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Abstract—Numerical exceptions, which may be caused by

overflow, operations like division by 0 or sqrt(�1), or conver-

gence failures, are unavoidable in many cases, in particular

when software is used on unforeseen and difficult inputs. As

more aspects of society become automated e.g., self-driving

cars, health monitors, and cyber-physical systems more

generally, it is becoming increasingly important to design

software that is resilient to exceptions, and that responds

to them in a consistent way. Consistency is needed to allow

users to build higher-level software that is also resilient

and consistent (and so on recursively). In this paper we

explore the design space of consistent exception handling

for the widely used BLAS and LAPACK linear algebra

libraries, pointing out a variety of instances of inconsistent

exception handling in the current versions, and propose

a new design that balances consistency, complexity, ease

of use, and performance. Some compromises are needed,

because there are preexisting inconsistencies that are outside

our control, including in or between existing vendor BLAS

implementations, different programming languages, and

even compilers for the same programming language. And

user requests from our surveys are quite diverse. We also

propose our design as a possible model for other numerical

software, and welcome comments on our design choices.

I. INTRODUCTION

Sometimes it takes an event like the crash of the
Ariane 5 rocket [1], a naval propulsion failure [2],
or a crash in a robotic car race [3] to make people
aware of the importance of handling exceptions correctly
in numerical software [4], [5]! As applications like
self-driving cars, health monitors, and cyber-physical
systems more generally become widespread, society’s
dependence on the correctness of these applications
will only become more apparent. Since many of these
applications are built using lower-level building blocks,
such as linear algebra, these building blocks clearly need
to be resilient to exceptions (e.g., still terminate), and

respond to exceptions in a predictable, consistent way
(e.g., report certain exceptions on exit) to allow higher-
level applications to be resilient too.

In this paper, we explore the design space of ways to
make exception handling more resilient and consistent, in
particular for the widely used BLAS [6] and LAPACK [7]
linear algebra libraries. While these have been widely
used for decades, it turns out they do not handle
exceptions consistently in a number of ways that we
will describe later. We explore this design space because
there is no single best solution for a number of reasons:

1) Based on our user surveys, in which 67% of
respondents said exception handling was important
or very important, there is no single approach that
meets all needs. These needs range from users who
want the behavior of interfaces to change as little as
possible for code compatibility to users who want
more fine-grained control over the way exceptions
are handled or reported. And not all users may agree
on the definition of “consistency”. Consider an upper
triangular matrix with an Inf or NaN entry above
the diagonal. Are its eigenvalues well-defined, being
just the diagonal entries, or not? Matlab currently
chooses to return with a warning, and no eigenvalues
are reported. Roughly speaking, user wishes for
consistency fall into 4 (related) categories: guaran-
teed termination, correct mathematical behavior (e.g.,
what an eigenvalue means, as above), propagation
(e.g., a NaN that is input to or created during
a subroutine call should propagate to the output
unless there is a mathematical reason that it should
not), and reporting (e.g., using LAPACK’s INFO
parameter, or new mechanisms, to flag exceptions).
We present these user requests in more detail in
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Section III-A. Some of these needs can be met
by having different “wrappers” that offer different
interfaces and semantics to the users who want
them, some by new subroutine arguments, and some
by new routines that let users choose options for
subsequent LAPACK calls.

2) The BLAS and LAPACK are based on lower-level
building blocks, on whose behavior theirs depend.
We describe these building blocks, and their potential
inconsistencies that we need to accommodate. These
include the IEEE 754 floating-point standard, higher
level language standards (e.g., Fortran and C), and
different compilers for the same language.

3) There are vendor BLAS implementations that may
have different exceptional behavior. In some cases,
this means that we will need to update the reference
BLAS (e.g., see IxAMAX below) to assure consis-
tency, and encourage vendors to adopt these new
BLAS, including providing updated test code. In
other cases that may depend on architecture-specific
optimizations, it means that we will compromise on
what consistency means, for example, an exception
can propagate either as an Inf or a NaN, as long
as it propagates somewhere in the result.

4) There is a cost/consistency tradeoff, with the most
rigorous definitions of “consistency” potentially
taking much more runtime. For example, the most
rigorous definition of consistency would insist on
bit-wise reproducibility, of both numerical results
and exceptions, from run to run of the same code on
the same platform. On modern parallel architectures,
where operations may be scheduled dynamically and
so their order e.g., summation order, may change
from run to run, bit-wise reproducibility is not guar-
anteed. A simple example is summing the 4 finite
numbers [x,x,-x,-x], where x+x overflows; depending
on the order of summation, the result could be
+Inf, -Inf, NaN, or 0 (the correct result). Different
orders may also produce differently signed zeros.
Solutions for reproducible summation have been
proposed, which work independently of the order
of summation, but at a cost of being several times
slower [8], although with opportunities for hardware
acceleration [9], [10]. Intel also provides a version of
their Intel(R) Math Kernel Library (Intel(R) MKL)
with CNR = Conditional Numerical Reproducibility,
which guarantees deterministic, and so reproducible,
execution order for their multicore platforms, also
with a potential performance slowdown. We leave
bit-wise reproducibility to future work building on
consistent handling of exceptional cases.

Section II explores a variety of existing exception
handling inconsistencies and possible solutions. Sec-
tion II-A considers IEEE arithmetic and its differing
implementations, programming languages, and compilers.
We have no control over these inconsistencies, and must
accommodate them. Section II-B considers the BLAS
and LAPACK, giving examples of current inconsistencies,
and some proposed solutions for the BLAS. Section III
presents our proposed exception handling interface for
LAPACK, including a list of all the user requests that it
is based on, and a summary of the options provided to
the user, with more details for the interface of SGESV.
Section IV describes how to generate test code to verify
that our solutions work, using the concept of “fuzzing”,
i.e., inserting Infs and NaNs at selected locations in the
middle of execution. More details on all these topics are
available in [11].

II. EXPLORING EXISTING INCONSISTENCIES,
OBSTACLES, AND POSSIBLE SOLUTIONS

We present a variety of examples of inconsistencies,
possible solutions, and obstacles at various levels in the
stack, from the computer arithmetic to LAPACK. We
mentioned a few of these above but go into more detail
here. This list is not exhaustive, and indeed rigorous
testing (or proofs) are required to have confidence that
nearly all possibilities have been found. We return to that
topic in Section IV.

A. IEEE Arithmetic, Programming Languages, and Com-
pilers

Nearly all numerical software depends on the semantics
of IEEE 754 floating-point arithmetic, including the
BLAS and LAPACK. (Dealing with new, shorter formats
like bfloat16 [12] is future work.) In addition to changes
affecting exception handling in the latest standard [9],
the standard allows some flexibility in the semantics of
operations used to evaluate arithmetic expressions, which
can affect exception handling. Examples include (1) the
optional use of extended precision formats (see section 3.7
of the 754 standard), which may have more exponent bits,
(2) using fused-multiply-add a⇥b+c, where an overflow
exception depends on the final value but not a⇥b, (3)
whether underflow is detected before or after rounding,
(4) the use of the default gradual underflow vs. flush-
to-zero, which could change whether c/(a�b) signals
divide-by-zero or not, and (5) changing rounding modes,
which may impact whether a final result is rounded down
to the overflow threshold OV or up, causing an overflow.

One important change (a bug fix) in the 2019 standard
are the added definitions of the operations min(x,y)
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and max(x,y), which are specified to return NaN if
either operand is a NaN, so that they are associative
and propagate NaNs. The 2008 standard did not define
these, just the related operations minNum, maxNum,
minNumMag, and maxNumMag, but because of an
oversight regarding different sections’ impacts these were
defined in a way that was not associative, and might or
might not propagate NaNs [13] when signalling NaNs
are involved. The 2019 standard adapted to this oversight
to ensure the operations are associative. Eventually, these
new definitions will find their way into languages (the C
and Fortran standard committees are working on it) and
compilers, but this will take a while, so in the meantime,
we need to cope with the ambiguity.

Finally, we will not depend on the five IEEE 754
exception flags, which indicate whether an exception
(invalid operation like sqrt(-1), division by 0, overflow,
underflow, inexact) has occurred since the corresponding
flag was the last reset. The 2008 and 2018 Fortran
standards defined how to access these flags, but said
that whether they were provided was implementation and
hardware dependent. Similarly, the C99 standard [14]
provides for a floating-point environment within which
exceptions can be examined, but again its availability
depends on the implementation. And while they may
be available on one processor, if some routines (like the
BLAS) are implemented on an accelerator (like a GPU or
remote memory system) without or with only aggregate
access to the flags, then we cannot depend on them.

In addition to different programming languages and
compilers choosing different ways to provide IEEE
754 features as described above, different programming
languages and compilers may also implement basic
mathematical operations in different ways, with differ-
ent exception behavior. Beyond min and max there
are also the absolute value, product, and quotient of
complex numbers. When implemented using their text-
book definitions, they are susceptible to over/underflow
even when the final result is innocuous. The Fortran
standard explicitly does not specify how to implement
intrinsic arithmetic operations. However, the 2008 and
2018 Fortran standards do say that the absolute value
of a complex number should be “computed without
undue overflow or underflow” [15]. The C99 and C11
standards [16, Annex G.3] define when a complex number
is “infinite” in more detail, with a 30+ line procedure
for complex multiplication [17, Annex G.5.1]. While
compilers will adopt this as a default, the compilers also
provide options for using other definitions (e.g., gcc’s

-fcx-limited-range1). There are similar rules for
complex division provided in the C standard working
draft [18, Annex G.5.1] although no procedure is provided
in the C standard document. In contrast, the IEEE 754
standard and both 2008 and 2018 Fortran standards say
nothing about handling exceptions in complex arithmetic,
or how intrinsic operations like complex multiplication
and division should be implemented.

The takeaway from these and other examples [11] is
that our definition of “consistent” exception handling
needs to take these unavoidable inconsistencies into
account, since they are beyond our control. So our
goals will be to propagate exceptions whenever they
occur (unless the code anticipates and handles them
appropriately), and provide appropriate run-time and
install-time warnings to the user, including modifying the
LAPACK test code to warn the user about how operations
like complex division, etc. might cause exceptions.

B. BLAS and LAPACK

We give a few examples where floating-point ex-
ceptions are handled inconsistently by the BLAS and
LAPACK and provide some suggestions for consistent
handling. We also show examples where exceptions are
dealt with carefully. For more examples, see [11].

First consider IxAMAX, where x=S, D, C or Z, which
takes a vector of type x as input and returns the index of
the “largest” entry in absolute value, where in the complex
case the size of z is |¬z|+ |¡z|. The straightforward im-
plementation of the reference BLAS [6] currently returns
ISAMAX([0,NaN,2]) = 3 and ISAMAX([NaN,0,2]) =
1, which is clearly inconsistent, and does not always
propagate a NaN as is our goal. Letting OV denote the
overflow threshold, and letting z1 = .6 ·OV + i · .6 ·OV
and z2 = .7 ·OV + i · .7 ·OV , we get ICAMAX([z1,z2]) =
1 = ICAMAX([z2,z1]) because of overflow, even though
both inputs are finite and differ in size.

For consistency, we propose requiring that IxAMAX
always point to the first NaN if one exists, else to the first
Inf, else to the first largest finite entry. Section 2.3.2
and Appendix A in [11] have correct implementations
of ISAMAX and ICAMAX, resp. Appendix B gives test
cases for ISAMAX and ICAMAX that are meant to stress
test whether an implementation satisfies this specification.
It also includes test results for a variety of existing BLAS
implementations, both commercial and open-source, most
of which exhibit failures for ISAMAX, and all of which
do for ICAMAX (except our proposed new ones).

1https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#
Optimize-Options
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Next consider GER, which computes a rank-1 update
A = A+a · x · yT . The reference implementation checks
for yi = 0, and skips updating A(:, i) = A(:, i)+a · x · yi.
In contrast, x is not checked for zero entries. Thus Inf
and NaN in x and y are not propagated consistently.

The same issue arises in many other BLAS2 routines.
In particular, consider TRSV, which solves T x = b for x
where T is triangular. Suppose T =U is upper triangular.
Then the reference implementation will both check for
trailing zeros in b, which lead to trailing zeros in x in
the absence of exceptions, and for other zero entries
of x that may occur because of cancellation. The code
then skips multiplying column i of U by xi = 0, so that
Infs and NaNs in column i of U are not propagated. In
contrast, solving the same system by asking TRSV to
solve LT x = b where L =UT does not do any checks for
zeros.

Finally, we consider SGESV, the LAPACK driver for
solving A*x=b using Gaussian Elimination. For this
example, we assume we use the original non-recursive
version which calls SGETF2 internally. We give a 2x2
example that shows how the inconsistencies described
above in ISAMAX, GER and TRSV interact to cause
a NaN in input A not to propagate to output x. Let

A =


1 0

NaN 2

�
and b =


0
1

�
. First, in LU factorization

ISAMAX is called on
⇥
1 NaN

⇤
to identify the pivot,

and returns 1. Next GER is called to update the Schur
complement, i.e. replace 2 by 2 – NaN *0. But GER notes
the 0 factor, does not multiply it by the NaN, and leaves
2 unchanged, instead of replacing it by NaN. This yields

the LU factorization A =


1 0

NaN 1

�
⇥


1 0
0 2

�
. The first

call to TRSV solves L*y=b, correctly setting y(1) = 0,
and then chooses not to multiply 0*NaN when updating
y(2) = 1 – 0*NaN, leaving y(2)=1. Finally, TRSV is

called again to solve U*x=y, yielding x =


0
0.5

�
, with no

NaN appearing in the final output.
If one calls the recursive of SGESV introduced in

release 3.6.0, then 2 – 0*NaN will be computed by a
call to SGEMM, which may be more likely to compute
a NaN.

To deal with these inconsistencies, we propose not
checking for zeros in situations like these. However, we
do want to continue checking for zero scalars like a
and b in operations like GEMM, C = a ·A ·B+b ·C,
and omitting either term if the scalar is zero. This is
well-documented behaviour long expected by users, who,
for example, want to compute C = A ·B without needing
to initialize C to make sure it doesn’t contain Infs or

NaNs.
As an example where NaNs are anticipated and handled

correctly, LAPACK routine SSTNEG counts the number
of eigenvalues of a symmetric tridiagonal matrix that are
less than a shift SIGMA, where the inner loop looks like:

DPLUS = D( J ) + T,
IF( DPLUS.LT.ZERO ) NEG1 = NEG1 + 1,
TMP = T / DPLUS,
T = TMP * LLD( J ) - SIGMA

A tiny DPLUS can cause T to overflow to Inf, which
makes the next T = Inf/Inf = NaN, which propagates.
Checking for this rare event in the inner loop would
be expensive, so SLANEG only checks for T being
a NaN every 128 iterations, recomputing the results
more carefully, yielding significant speedups in the most
common cases. The value 128 is a tuning parameter.

III. LAPACK - PROPOSED EXCEPTION HANDLING
INTERFACE

Our proposed fixes for the BLAS do not change the
interface at all. In contrast, we do propose a new LAPACK
interface for optionally reporting exceptions (as well
as maintaining the existing “legacy” interface using a
wrapper). Section III-A begins with a summary of all the
user requests we received over the course of the design
process. Section III-B summarizes our current design.
Section III-C illustrates our design as applied to SGESV
(a model implementation of the new SGESV, and all the
routines in its call tree, appears in [11]).

A. User Requests
Our latest design (ninth in a sequence) tries to balance

user requests ranging from not wanting to change
any legacy code, to adding significant new exception
handling capabilities in multithreaded environments, all
with allowing the LAPACK developers to continue
maintaining one core implementation. Specifically, we
want to maintain just (1) one core that can be called
from multiple languages, including C, C++, and Python,
(2) one “wrapper” providing the legacy interface, and
(3) the existing LAPACKE wrapper for C and C++
programmers.2

We start with a list of all the user requests we have
received, and more thoughts about who may want control
over exception handling and what they might want. These
requests and related thoughts occurred at different points
in our design process, which is why our design has gone
through multiple versions:
(R1) I like my legacy code, calling LAPACK from

Fortran/C/C++/NumPy, don’t make me change it!

2https://netlib.org/lapack/lapacke.html
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(R2) Ok if you want to help other folks with debugging,
but don’t slow down.

(R3) I’d like help debugging, when I find it necessary; I
might need different kinds of information for this,
depending on the situation, and just in the parts of
the code where I suspect the problem to be. I’m
willing to modify my code to do this, i.e. set the
kind of exception handling I want, and get a report
back, for each LAPACK call that I make.

(R4) I want to be able to set a flag at the beginning of
execution that selects the kind of exception-handling
I need for every LAPACK call and how to report
them. I might want reporting done by returning
information in a subroutine argument (analogous
to LAPACK’s INFO), or by collecting reports for
multiple subroutine calls in some common data
structure that I can inspect later. I don’t want to
modify my legacy code beyond setting this flag, and
possibly inspecting the common data structure.

(R5) Same as (R4), except the flag should be settable
(and changeable) at run-time.

(R6) Same as (R5), except I program in a multi-
threaded/multi-task environment, so different thread-
s/tasks may need to independently control how they
handle and report exceptions, i.e., depending on
“context.”

(R7) I want to write bullet proof code, i.e. that won’t
crash or give surprising wrong answers. I’m willing
to slow down a little for this, but hopefully not
much. All the approaches above from (R3) to (R6)
are relevant.

(R8) I want to be able to turn off all error checking (e.g.
N < 0) and exception handling, to run faster.

In addition to these requests, we considered which
stakeholders might want to “control” the ways exceptions
can be handled, including:

(C1) The user.
(C2) A library calling LAPACK internally.
(C3) Vendors of LAPACK equivalents.
(C4) Core LAPACK team, perhaps just prescribing what

happens in “model” error handlers, with changes
allowed in downstream customizations.

We want our interface design to be flexible enough to
support all of these. Of course, if a user links versions
of different routines that have been built with different
assumptions about who is “in control,” this could cause
bugs which are beyond our control.

Regarding item C2 above, we considered the DOE
xSDK (Extreme-scale Scientific Software Development

Kit) project3 which is a large LAPACK user, and
maintains a set of “community policies” for library
development.4 Recommendation R3 and policies M11,
M12, and M16 are particularly relevant. We briefly
summarize these:
R3 Adopt and document a consistent system for propagat-

ing/returning error conditions/exceptions and provide
an API for changing this behavior. (This is clearly
consistent with our goals.)

M11 No hardwired print or I/O statements that cannot be
turned off via an API. (This also impacts LAPACK’s
default use of XERBLA, which prints an error
message and stops. Our design is independent of
how XERBLA is implemented.)

M12 If a package imports software that is externally de-
veloped and maintained, then it must allow installing,
building, and linking with an outside copy of that
software. (This refers specifically to the BLAS and
LAPACK.)

M16 Any xSDK-compatible package that compiles code
should have a configuration option to build in Debug
mode.

We believe that our design is consistent with this
(long) list of requests and recommendations, and solicit
comments.

As we considered the programming effort required to
satisfy all these requests, we decided that we wanted there
to be one core version of the LAPACK code to maintain
that offers all these new features, and that can be called
from all the different languages from which LAPACK is
called, including C, C++, Python, and others. We also
decided that the interface should be simple enough to
allow significant code reuse across different LAPACK
routines.

B. LAPACK Interface Proposal

Each LAPACK routine that already has an INFO
argument will have a corresponding error-checking rou-
tine. The subroutine name will be changed to add EC
(for “error checking”) to the end, allowing the original
name to be retained providing the “legacy” interface and
functionality.

In the new EC version, following INFO (currently
the last argument), 3 more arguments will be added:

1) FLAG REPORT. For terseness and clarity, in the
descriptions below we will use the abbreviations
FLAG REPORT(1) = WHAT (since it specifies what

3https://github.com/xsdk-project/
4https://github.com/xsdk-project/xsdk-community-policies/tree/

master/package policies
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errors and exceptions to report), and FLAG RE-
PORT(2) = HOW (since it specifies how to report
them).

2) INFO ARRAY is an array used for more detailed
reporting than possible using a single scalar INFO.

3) CONTEXT is an “opaque” argument that can be
used to identify errors and exceptions associated
with different threads or tasks.

(1) FLAG REPORT: integer array, input only. We
give a high level summary of the choices WHAT and
HOW offer the user. The possible choices of WHAT
errors or exceptions to report are as follows:

• WHAT �1: turn off all error checking.
• WHAT = 0: “legacy” error checking only.
• WHAT = 1: also check input and output arguments

for Infs and NaNs.
• WHAT � 2: also check input and output arguments

throughout the call tree of the subroutine being
called.

The user must independently choose HOW to report this
information:

• HOW  0: only report using the scalar INFO.
• HOW = 1: also report more details using the array

INFO ARRAY.
• HOW = 2: also, if INFO 6= 0, call the routine

REPORT EXCEPTIONS, which can provide a cus-
tomized way of reporting this information, e.g. a
print statement, or recording this information in a
data structure for later inspection. We will provide
some simple model implementations of REPORT -
EXCEPTIONS, but leave further customization to
other software providers.

• HOW = 3: do all the above reporting throughout
the call tree of the subroutine being called.

• HOW � 4: call GET FLAGS TO REPORT, to get
values of WHAT and HOW, thus allowing users to
choose WHAT and HOW with less modification of
source code.

We note that the choice WHAT = HOW = 0 corresponds
to the legacy LAPACK interface. We leave details of
how other choices of WHAT and HOW interact with one
another to [11].
(2) INFO ARRAY: integer array, input/output. This
is accessed only if WHAT � 0 and HOW = 1, 2 or 3.
The length of INFO ARRAY is customized for each
routinename, with detailed reporting as requested above,
as follows:

• INFO ARRAY(1) = legacy INFO.

• INFO ARRAY(2) = value of FLAG report(1) =
WHAT that was used to determine the other entries
of INFO ARRAY.

• INFO ARRAY(3) = value of FLAG report(2) =
HOW that was used to determine the other entries
of INFO ARRAY.

• INFO ARRAY(4) = value of INFO depending on
WHAT as described above.

• INFO ARRAY(5) = number of routine arguments
reported on.

• INFO ARRAY(6) = number of internal LAPACK
calls reported on.

• INFO ARRAY(7:) contains a fixed number of en-
tries, depending on the LAPACK routine, and on
FLAG report.

Here are more details on the values reported in INFO -
ARRAY(7:).

Locations INFO ARRAY(7:6+INFO ARRAY(5)) con-
tain one entry per floating point argument of the routine,
with values:

• -1 if not checked (default).
• 0 if checked and ok (no Inf or NaN in input or

output).
• 1 if it contains an input Inf or NaN, but not output.
• 2 if it contains an output Inf or NaN, but not input.
• 3 if it contains both an input and output Inf or
NaN.

Input-only arguments are only checked on input, with
possible return values in {0,1}, and output-only argu-
ments are only checked on output, with possible return
values in {0,2}. If an input argument has already been
checked before calling the routine, this is indicated by
setting INFO ARRAY(*) = 0 on input (if checked and
ok) or 1 (if it contains an Inf or NaN), otherwise
INFO ARRAY(*) should be set to -1 on input. For
example, when calling SGESV EC, the matrix A may
have been checked by SGETRF EC on output, so it
does not need to be checked again by SGETRS EC on
input, saving work. Similarly, B may have been checked
by SGESV EC on input, so it does not need to be
checked again by SGETRS EC on input. Input values
of INFO ARRAY(*) less than -1 or greater than 1 will
be treated the same as -1, i.e. not checked.

Locations INFO ARRAY(7+INFO ARRAY(5) :
6+INFO ARRAY(5)+INFO ARRAY(6)) contain one
entry per LAPACK call (with an INFO parameter)
appearing in the source code, with values:

• -1 if not checked (default).
• 0 if checked and ok.
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• 1 if no input or output contains an Inf or NaN,
but some LAPACK call deeper in the call chain
signaled.

• 2 if an argument contains an input Inf or NaN, but
not an output.

• 3 if an argument contains an output Inf or NaN,
but not an input.

• 4 if an argument contains both an input and output
Inf or NaN.

As before, we do not distinguish multiple calls to the
same LAPACK routine at the same location (say inside
a loop) in the source code, instead all their reports are
combined into one, by taking the maximum of all the
reporting values described above. Note that we do not
attempt to report details about exceptions throughout the
call chain of LAPACK routines. This is done by setting
HOW = 3 so that the routine REPORT EXCEPTIONS
is called, as described below.

We note that INFO ARRAY has a length customized
for each routine. To make programming easier, we will
document the maximum length of all these arrays, so
that users can simply declare all INFO ARRAY arrays
to have this maximum length.
(3) CONTEXT: input only. This opaque argument may
be accessed only if WHAT � 0 and HOW = 2, 3 or 4.

When HOW = 2 or 3, it is used as an argument when
LAPACK calls the routine REPORT EXCEPTIONS
(CONTEXT, SIZE ROUTINENAME, ROUTINENAME,
INFO ARRAY) to report exceptional information in
INFO ARRAY immediately before returning from an
LAPACK routine. REPORT EXCEPTIONS will only
be called if there is an exception to report, i.e. INFO
is nonzero. CONTEXT is meant to accommodate ap-
plication or architecture specific reporting methods,
for example dealing with multithreaded programming
environments, as in user request R6 (this argument can
be ignored if it is not relevant). Here ROUTINENAME
is a character array of length SIZE ROUTINENAME, to
indicate which routine is being reported on. All arguments
are input only.

When HOW = 4, the LAPACK routine calls GET -
FLAGS TO REPORT(CONTEXT, FLAG REPORT) to
get the (output-only) integer array FLAG REPORT(1:2),
which the user should have set by calling SET FLAGS -
TO REPORT(CONTEXT, FLAG REPORT) before call-
ing the LAPACK routine with HOW = 4. This allows the
user to report differently in different CONTEXTs. The
default value of FLAG REPORT should be [0, 0], i.e.
legacy INFO reporting, in case the user has not called
SET FLAGS TO REPORT.

Since the semantics of CONTEXT are system depen-

dent, we will only supply 2 placeholder versions of the
3 routines above, see [11] for details.

C. Example: SGESV EC

We illustrate the proposed interface from the last
section by summarizing how it applies to SGESV,
yielding SGESV EC. The calling sequence of
SGESV EC is as follows, where the 3 new arguments
appear at the end:

SGESV EC( N, NRHS, A, LDA, IPIV, B, LDB, INFO,
FLAG REPORT, INFO ARRAY, CONTEXT )

First, we explain how to interpret INFO; the possible
values are listed in decreasing priority order (only the
first error found is reported):

1) “Legacy” values of INFO (WHAT � 0):
= 0 if successful execution, else
= -1 if N < 0, else
= -2 if NRHS < 0, else
= -4 if LDA < min(1,N), else
= -7 if LDB < min(1,N), else
1  INFO  N if U(INFO,INFO)=0, else ...

2) Possible values of INFO if checking input/output
arguments for Infs/NaNs is requested (WHAT � 1):
= -3 if A contains an Inf/NaN on input, else
= -6 if B contains an Inf/NaN on input, else
= N+1 if A contains an Inf/NaN on output, else
= N+2 if B contains an Inf/NaN on output, else ...

3) Possible values of INFO if checking internal sub-
routine calls for Infs/NaNs is requested (WHAT
� 2):
= N+3 if SGETRF EC had an Inf/NaN in an

input/output, or a subroutine in its call tree did,
else

= N+4: ditto for SGETRS EC.
Next, we explain how to interpret the entries of INFO -

ARRAY, an array of length 10:
(1): INFO from “legacy” argument checking only.
(2): FLAG REPORT(1) = WHAT to report.
(3): FLAG REPORT(2) = HOW to report.
(4): INFO as determined by WHAT, as explained above
(5):  2; the number of arguments reported on (0 or 2,

i.e., A and B) .
(6):  2; the number of internal calls reported on (0 or

2, i.e., SGETRF EC and SGETRS EC)
(7): Reports on Infs/NaNs in A (if WHAT � 1):

= -1 if not checked (default), else
= 0 if checked and no Infs/NaNs on input/output,

else

7



= 1 if checked and contains Inf/NaN on input but
not output, else

= 2 if checked and contains Inf/NaN on output
but not input, else

= 3 if checked and contains Inf/NaN on input and
output.

(8): Ditto for B
(9): Reports on exceptions in call to SGETRF EC (if

WHAT � 2):
= -1 if not checked (default), else
= 0 if checked and no Infs/NaNs, else
= 1 if checked and no input/output of SGETRF EC

contains an Inf/NaN, but some LAPACK call
deeper in the call chain signalled an Inf/NaN,
else

= 2 if checked and an input contains an Inf/NaN,
but not an output, else

= 3 if checked and an output contains an Inf/NaN,
but not an input, else

= 4 if checked and both an input and output contain
an Inf/NaN.

(10): Ditto for call to SGETRS EC.

IV. HOW TO TEST CONSISTENCY

We propose expanding our LAPACK test code to
test both termination and error reporting. Recent work
presented FPDiff [19], a differential testing framework
for numerical functions which checks for correctness
by discovering and comparing multiple implementa-
tions of the same function in different libraries. FPDiff
discovered over 100 bugs in four numerical libraries
that are attributable to a lack of unifying standards
for exception handling. Similarly, approaches based on
symbolic execution have been proposed to generate
floating-point inputs that maximize error and trigger
floating-point exceptions [20], [21], [22]. From these, [21]
is the most relevant as it aims at triggering underflows
and overflows, however their technique cannot be directly
applied to Fortran code mainly due to a lack of support
for symbolic execution of Fortran programs.

Random input generation has also been employed to
generate floating-point inputs that mazimize error in the
output of a program [23], [24]. In our case, we believe it
is simplest to insert Infs and NaNs into random locations
in the inputs of a routine and see what happens, and this
should be our first step. But this will not test what happens
if an Inf or NaN is generated in an unpredictable location
in the middle of an execution, which is certainly needed
to test all the ways exceptions could be reported as
discussed in Section III. We propose to use fuzzing [25],
which in our context means introducing an Inf or a

NaN into one or more chosen variables during the course
of an execution. We propose fuzzing because it is very
difficult to devise an input without Infs or NaNs that
will, or should, generate an Inf or NaN during some
intermediate calculation. Since our exception handling
should be impervious to when and where exceptions are
generated, fuzzing is a suitable approach. In addition to
choosing locations to introduce Infs and NaNs, we can
introduce them into subroutines called by the routine
being tested to make sure that our reporting mechanisms
work (or identify what needs to be fixed).

V. CONCLUSIONS

We have presented our proposed design to improve
consistent exception handling in the BLAS and LAPACK,
which could potentially also serve as a model for other
numerical software. More details, including a draft
implementation of SGESV EC and all the routines in its
call tree, and a list of the tasks (in priority order) needed
to fully implement this proposal, are available in [11].
We invite user feedback.
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