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A B S T R A C T

Safety–critical systems cannot afford to wait for data from multiple high-consequence events to become
available in order to inform safety recommendations. Counterfactual reasoning has been widely used in system
safety to address this issue, enabling the incorporation of evidence from single events with an analyst’s current
knowledge of a system to learn from past events. However, current counterfactual methods have been criticized
for making analysts prone to linearizing and oversimplifying complex events. In order to overcome these
limitations, this work establishes a novel probabilistic approach to counterfactual reasoning called ‘‘possible
worlds’’ counterfactuals. This methodology enables the integration of an analyst’s causal knowledge about a
system (in the form of a Bayesian network-based risk assessment model) with the best available evidence
about an event of interest (e.g., an accident). As a result, counterfactual hypotheses, commonly used in the
practice of system safety, can now be rigorously assessed through causally-sound probabilistic methods. We
demonstrate the capabilities of ‘‘possible worlds’’ counterfactuals with a real-world case study on the 2018 Sun
Prairie gas explosion and show how this approach can provide additional lessons and insights beyond those
provided by authorities at the time of the event.
1. Introduction

In Safety–critical systems such as oil & gas pipelines and infras-
tructure, transportation, and power plants, it is essential to learn from
every event; we cannot afford to wait for data from multiple high-
consequence events to become available in order to inform safety
recommendations [1]. System safety researchers and practitioners have
xplored different ways to tackle this issue, from which a ‘‘learning from
vents’’ strategy is considered fundamental to the field [2–4]. The strat-
gy’s main objective is the search of safety improvement opportunities
nformed by evidence on single events. Investigation reports then make
ecommendations on areas of improvement. These recommendations
re usually based on rectifying the identified causes of the undesired
vent, and counterfactual reasoning is widely used to identify these
auses [5,6].
Counterfactual reasoning is a type of causal reasoning concern-

ng hypotheses and queries on possible realizations of a past event
i.e., what could have happened, but did not). The use of counterfac-
ual reasoning in system safety has been historically based, at least
mplicitly, on qualitative ‘‘but-for’’ investigations [1]; that is, finding
he necessary causes of an event through statements of the form ‘‘but-
or this cause, the event could have been avoided’’. A number of examples
an be found in official accident and incident reports, such as the U.S.
TSB’s investigations into the Asiana Flight 214 [7] and the U.S. Air

∗ Correspondence to: 0151.C Glenn L. Martin Hall, 4298 Campus Drive, College Park, MD 20742, USA.
E-mail address: aruiztag@umd.edu (A. Ruiz-Tagle).

Flight 1016 accidents [8]. Both reports used counterfactuals to imply
that the accidents could have been avoided, ‘‘but-for the lack of pilot
training’’ for the Asiana Flight 214, and ‘‘but-for the misjudgment of
the crew regarding weather conditions’’ for the U.S. Air Flight 1016. In
addition, counterfactuals are a central feature of several guidelines and
formal analysis techniques for incidents and accidents. For example,
Branford and Hopkins recommended using ‘‘but-for’’ counterfactuals to
identify a causal structure for Accimap analysis [9]. Likewise, Ladkin’s
popular Why-Because Analysis method relies on a causal network con-
structed through ‘‘but-for’’ counterfactual statements [10]. Moreover,
counterfactual reasoning has been recommended to safety practitioners
as a heuristic for root cause analysis in manuals and guidelines [6,11].

Some researchers, however, have criticized current counterfactual
reasoning methods in system safety. These criticisms can be summa-
rized into the following limitations: (1) Linearity : ‘‘but-for’’ counter-
factuals can make investigators prone to turn complex events into
linear cause-and-effect chains [12,13]; (2) Incompleteness: event inves-
tigators tend to use counterfactuals to transform an event’s evidence
into a proof of failure to perform according to a system’s proce-
dures and norms, therefore missing additional underlying reasons for
the occurrence of an event [12,14]. We add a third limitation (3)
‘‘Uncomparable’’: there is no rigorous method to compare and prioritize
vailable online 28 August 2022
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Notation

𝑉𝑖 Relevant variable of a system’s model.
𝑉𝑥 = 𝑣𝑥 ‘‘factual world’’ antecedent variable and

state.
𝑉𝑦 = 𝑣𝑦 ‘‘factual world’’ consequent variable and

state.
𝑉𝑥 = 𝑣′𝑥 ‘‘possible world’’ antecedent variable and

state.
𝑉𝑥 = 𝑣′𝑦 ‘‘possible world’’ consequent variable and

state.
𝑑𝑜(⋅) 𝑑𝑜-operator for intervention reasoning.
𝑀 Bayesian network model.
𝑀𝑉𝑖=𝑣𝑖 Intervened Bayesian network model

through 𝑑𝑜(𝑉𝑖 = 𝑣𝑖).
𝑀𝑐 Pre-intervention twin network model of a

counterfactual.
𝑀𝑐

𝑉𝑥=𝑣′𝑥
Twin network model of a counterfactual.

𝑄 Counterfactual query.
{𝑉𝑒 = 𝑣𝑒} Set of ‘‘factual world’’ evidence from a

system event.
𝑉𝑖 ‘‘possible world’’ variable in a twin network

model of a counterfactual.
𝑊 Factual world nodes in a twin network

model of a counterfactual.
𝐵 Common background nodes in a twin

network model of a counterfactual.
𝑃𝑊 Possible world nodes in a twin network

model of a counterfactual.

counterfactual hypotheses on event investigations. Consequently, cur-
rent counterfactual methods limit the bounds of what can be learned
from a past event.

Nevertheless, ‘‘but-for’’ counterfactuals are still supported by re-
searchers who pose them as a crucial method for incorporating evi-
dence from single events into their current knowledge of a system to
learn from them and to inform safety recommendations [1,15,16]. In
fact, ‘‘but-for’’ counterfactuals are currently being used to inform causal
relationships on the construction of modern systemic methods for
accident investigations such as Accimaps and HFACS [9,17]. However,
some authors contend that the limitations of current counterfactual
methods still outweigh their benefits [12].

Although we agree that the aforementioned shortcomings of coun-
terfactuals are well justified, we argue that these criticisms do not
apply to counterfactual reasoning per se, but specifically for their use
on qualitative ‘‘but-for’’-based accident and incident investigations. The
main issue with the ‘‘but-for’’ approach to counterfactual reasoning in
system safety is that it is typically used in terms of learning through at-
tribution, that is, in trying to infer what caused an event’s outcome [18].
Instead, we hold that counterfactual reasoning should be used to enable
investigators to learn from a single event by generating and analyzing
counterfactual scenarios that are motivated by their hypotheses on why
the event happened the way it did. In order to do this, counterfactual
reasoning must explicitly acknowledge the stochastic nature of history;
that is, a past event is only one of the many possible realizations that
could have unfolded. As such, we hold that counterfactual hypotheses
can only be rigorously studied through the use of quantitative risk
assessment (QRA) techniques since QRA provides a comprehensive
characterization of the risks of a system, its associated uncertainties,
and different scenarios and events evaluations that can be studied
through probabilistic inference methods [19].

This work establishes a new perspective on counterfactual reasoning
for system safety by going beyond ‘‘but-for’’ investigations towards
2

a probabilistic ‘‘possible worlds’’ approach. This approach aims to
formally integrate the knowledge from a risk assessment model of a
system with the best available evidence on a past event to quanti-
tatively simulate counterfactual scenarios of the event. By doing so,
‘‘possible worlds’’ counterfactual reasoning enhances a ‘‘learning from
events’’ system safety strategy by enabling investigators to assess their
current qualitative counterfactual hypotheses on a past event through
a rigorous quantitative evaluation.

To enable a probabilistic ‘‘possible worlds’’ approach to counter-
factual reasoning, we present a first-of-its-kind system safety-oriented
methodology to assess counterfactual hypotheses through Bayesian
network models. Bayesian networks were selected due to their wide
popularity in both the system safety [20–22] and risk assessment [23,
24] literature, which stems from their ability to integrate multiple
sources of information and probabilistically model a complex system’s
risk-influencing factors and causal dependencies. In addition, Bayesian
networks are capable of performing probabilistic reasoning under un-
certainty [25–27], making them an ideal framework for capturing
an event’s complexity and reason about its potential counterfactual
realizations. We demonstrate the proposed ‘‘possible worlds’’ approach
to counterfactual reasoning through a case study on the 2018 Sun
Prairie gas explosion in the U.S. [28], showing how ‘‘possible worlds’’
counterfactuals can be used to inform safety recommendations that
overcome the limitations of current counterfactual analyses.

The rest of this work is structured as follows: Section 2 presents a
ackground on counterfactuals and the relevant methods used in this
ork. Section 3 describes the proposed methodology for enabling a

‘‘possible world’’ approach to counterfactual reasoning in system safety.
This methodology is applied to a real-world case study on the Sun
Prairie gas explosion in Section 4. Section 5 provides a discussion on
the implications of ‘‘possible world’’ counterfactuals in system safety.
This work ends with concluding remarks in Section 6.

2. Relevant methods

This section presents the relevant definitions and methods needed
to develop a methodology to perform ‘‘possible worlds’’ counterfactual
reasoning in system safety. First, we provide a review on the constitu-
tive elements of counterfactual hypotheses and queries that will be used
throughout this work. Second, causal Bayesian network models and
associated intervention reasoning methods, the backbones that supports
counterfactual reasoning, are presented. Last, we explain the graphi-
cal twin network approach to counterfactual modeling with Bayesian
networks, which enables the probabilistic assessment of counterfactual
hypothesis and queries.

2.1. Counterfactuals

Take an event 𝑉𝑦, in which 𝑉𝑦 = 𝑣𝑦 occurred. A counterfactual
hypothesis looks for an answer to queries of the type ‘‘Could the
consequent state of 𝑉𝑦 be 𝑣′𝑦 in an event, instead of the observed 𝑣𝑦, had the
antecedent state of 𝑉𝑥 been 𝑣′𝑥, instead of the observed 𝑣𝑥?’’ Two ‘‘worlds’’
can be identified in this query. First, a ‘‘factual world’’ that represents
what actually happened in the event, which is composed of the states
of the antecedent 𝑉𝑥 = 𝑣𝑥 and consequent 𝑉𝑦 = 𝑣𝑦. Second, a ‘‘possible
world’’ (also called counterfactual world) that indicates what could have
happened to the ‘‘factual world’’ consequent, namely 𝑉𝑦 = 𝑣′𝑦 instead of
𝑉𝑦 = 𝑣𝑦, had the antecedent been different, namely 𝑉𝑥 = 𝑣′𝑥 instead
of 𝑉𝑥 = 𝑣𝑥. The factual and possible worlds of a counterfactual query
share a common set of background conditions; that is, the variables in
an event that are assumed to be causally independent from the factual
and possible worlds [29,30]. This notation will be used for the rest of
this work.

Counterfactual reasoning in system safety has traditionally relied on
a ‘‘but-for’’ approach. This approach is used to identify the causes of an
event by testing the validity of a counterfactual hypothesis of the form:
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but-for the antecedent 𝑉𝑥 = 𝑣𝑥, the consequent 𝑉𝑦 = 𝑣𝑦 would have been
𝑉𝑦 = 𝑣′𝑦 in a ‘‘possible world’’. For technical causes, logic is often used to
test the validity of the ‘‘but-for’’ statement, while human-related causes
are often assessed through expert judgment [1]. An example of ‘‘but-
for’’ counterfactuals can be found in many applications, such as in the
use of the Swiss cheese model of accident causation, which holds that
but-for a failure of a safety barrier, an event would not have happened.

The problem of using logic or expert judgment to assess the validity
of a ‘‘but-for’’ statement is that it requires a thoroughly understood
causal mechanism to support that the consequent state 𝑉𝑦 = 𝑣′𝑦 would
be true in an event had the antecedent been 𝑉𝑥 = 𝑣′𝑥 in a ‘‘pos-
sible world’’. A probabilistic approach is required to this issue in
counterfactual reasoning. We hold that it is valid to state that the
consequent 𝑉𝑦 = 𝑣′𝑦 is a possible counterfactual outcome of an event
had the antecedent been 𝑉𝑥 = 𝑣′𝑥 in a ‘‘possible world’’ [31]. Therefore,
probabilistic inference methods must be used to assess the probability,
rather than the certainty, of a counterfactual hypothesis. To ensure
the feasibility of a possible counterfactual outcome, it is necessary to
assess its compliance with the constraints entailed by the causal model
that characterizes the system in which the event of interest happened.
As such, it is crucial that counterfactuals are grounded on the current
knowledge of this system and its risks. A QRA model therefore serves
as an ideal framework in which to study counterfactuals. In fact, a QRA
model is built towards the thorough characterization of the scenarios,
consequences, and uncertainties that are involved in a system [32,33],
with cause-and-effect relationships as the basis of the modeling meth-
ods that have been used for this purpose (e.g., fault trees, event trees,
and currently, Bayesian networks) [26,32].

The definitions and assumptions presented above are the basis
of what we propose as a probabilistic ‘‘possible world’’ approach to
counterfactual reasoning in system safety. To enable this approach, the
following methods are used.

2.2. Causal Bayesian networks

Bayesian networks are widely used in risk assessment and system
safety as a causal model to express the joint probability distribution of
a system’s events [23,24]. To do so, a Bayesian network model 𝑀 is
used to represent a system’s variables 𝑉 = {𝑉1,… , 𝑉𝑛} and their depen-
dencies as the nodes and edges of a Directed Acyclic Graph (DAG), 𝐺.
Dependencies among variables are modeled as conditional probability
distributions, 𝑃𝑟(𝑉𝑖 ∣ 𝑉𝑗 ), which can be quantified through discrete
conditional probability tables or continuous probability functions. A
basic Bayesian network model is shown in Fig. 1a.

The Bayesian network model 𝑀 represents the prior joint probabil-
ity distribution for a system’s events. Mathematically, this distribution
can be computed using the factorization formula [27]:

𝑃𝑟(𝑉1,… , 𝑉𝑛) =
𝑛
∏

𝑖=1
𝑃𝑟(𝑉𝑖 ∣ 𝑝𝑎(𝑉𝑖)) (1)

where 𝑝𝑎(𝑉𝑖) corresponds to the ‘‘parent nodes’’ of 𝑉𝑖; that is, all nodes
in 𝐺 ∈ 𝑀 with an outgoing edge into the node 𝑉𝑖. Further, a causal
Bayesian network model assumes that 𝑝𝑎(𝑉𝑖) causes 𝑉𝑖.

The evidence obtained after the investigation of a particular system
event (e.g., an incident or accident) can be easily incorporated into the
Bayesian network as a set of specific states of the system’s variables,
denoted as {𝑉𝑒 = 𝑣𝑒}. Then, Bayes theorem can be used to obtain a
posterior distribution for a system’s events, 𝑃𝑟(𝑉1,… , 𝑉𝑛 ∣ {𝑉𝑒 = 𝑣𝑒}).
n system safety, this process of evidence updating is named associative
easoning [25], and is mainly used to provide associative insight such
s ‘‘if we observe an excavation being performed by an untrained
xcavator, we expect to observe a damage to underground utilities with
probability of 0.5’’.
3

c

.3. Modeling interventions

As we showed in our previous work [25], Bayesian networks can
lso be used to model the effect of interventions on a system, which
ill be required for the probabilistic assessment of counterfactual hy-
otheses. An intervention is equivalent to enforcing a fixed value, state,
r distribution, to a variable (or set of variables) 𝑉𝑗 . As such, an inter-
vention estimates the causal effect of a variable on another by blocking
any correlational influence from their potential common causes. Eq. (1)
only guarantees associative insights regarding what is expected to be
observed in a system when new evidence is observed from an event.
On the other hand, intervention modeling can be used to get causal
insights on a system such as ‘‘if an excavator is trained, underground
utility damage is expected to decrease by 50%’’. To enable intervention
reasoning in Bayesian networks, the joint probability distribution for a
system’s events conditioned by an intervention 𝑉𝑗 = 𝑣𝑗 is computed by
modifying Eq. (1) into the truncated factorization formula [27]:

𝑃𝑟
(

𝑉1,… , 𝑉𝑛
|

|

|

𝑑𝑜(𝑉𝑗 = 𝑣𝑗 )
)

=
∏

𝑖∣𝑉𝑖∉𝑉𝑗

𝑃𝑟
(

𝑉𝑖 ∣ 𝑝𝑎(𝑉𝑖)
)

|

|

|𝑉𝑗=𝑣𝑗
(2)

where 𝑑𝑜(⋅) is the do-operator, which simulates an intervention in a
Bayesian network model by fixing the value of a node and removing all
incoming edges to it1 [27]. The subsequent Bayesian network with re-
moved edges is referred as a submodel 𝑀𝑉𝑗=𝑣𝑗 of the original Bayesian
network model 𝑀 .

As shown in the next section, interventions allow the simulation
of the ‘‘possible world’’ in a counterfactual model by forcing the an-
tecedent variables to have a different state in a ‘‘possible world’’ from
the ones observed in the ‘‘factual world’’.

2.4. The twin network representation of counterfactuals

In order to represent and evaluate counterfactual hypotheses and
queries on a system’s event, Pearl’s twin network graphical approach to
counterfactuals [27,34] will be used in the context of Bayesian network
models. Twin networks graphically represent Pearl’s perspective on
counterfactual reasoning to predict the possible world consequent of
an event given a hypothetical possible world antecedent. This per-
spective can be explained in three steps [27]. First, the factual world
evidence on an event’s antecedent and consequent is used to update
the past information on the event’s background variables. Second, the
course of history is bent to comply with the hypothetical possible
world antecedent. Third, the possible world consequent can be pre-
dicted based on the new understanding of the past information on the
event’s background variables and the newly established possible world
antecedent.

To illustrate the twin network approach, consider the Bayesian
network model of Fig. 1a. The nodes of this network are ‘‘𝑉1: Main-
tenance’’, ‘‘𝑉2: Safety barrier’’, and ‘‘𝑉3: System failure’’. Consider also
a system event in which a system failure and a safety barrier failure
were observed (i.e., ‘‘𝑉3: System failure = yes’’ and ‘‘𝑉2: Safety barrier=
fail’’ in Fig. 1a). In an event investigation, a counterfactual hypothesis
could be ‘‘had the safety barrier worked, the failure could have been
avoided’’. This hypothesis looks for an answer to the query ‘‘Could
the system’s failure been avoided had the safety barrier worked?’’ Fig. 1b
shows a twin network representation of the query. Given that we are
interested in the effect that ‘‘𝑉2 = work’’ could have had on the outcome
of ‘‘𝑉3’’, a copy of these two variables, identified with a hat accent,

1 It is important to highlight that removing the incoming edges to the
ntervened node is not strictly necessary to simulate an intervention. For
nstance, an alternative approach (with equivalent results) can be the use of
Boolean switch variable such that conditioning on the switch either sets the
ntervention on or off. In both cases, the result is a node whose states do not

ondition the states of its parents.
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Fig. 1. Twin network model construction [26]. (a) Original Bayesian network model
. (b) Twin network model 𝑀 𝑐

𝑉3=𝑣′3
.

re added to the model. In Fig. 1b, the portion of the network that
ncludes the antecedent and consequent {𝑉2, 𝑉3} represents the ‘‘factual
orld’’, while {𝑉2, 𝑉3} represents the ‘‘possible world’’. In the ‘‘possible
orld’’ portion of the network, all incoming edges to the antecedent 𝑉2
re removed, thereby emulating the action of the 𝑑𝑜-operator. This is
one to force the antecedent of the ‘‘possible world’’ to take a different
alue to the one observed in the ‘‘factual world’’ (i.e., ‘‘𝑉2 = work’’
nstead of the observed ‘‘𝑉2 = fail’’). Last, the variables whose posterior
robabilities remain invariant in both worlds, such as 𝑉1 in Fig. 1a,
epresent the background conditions of the event. For the rest of this
ork, a twin network model will be denoted by 𝑀𝑐

𝑉𝑥=𝑣′𝑥
, where 𝑉𝑥 = 𝑣′𝑥

epresents the ‘‘possible world’’ antecedent of interest.
It is important to note that twin network theory has been mainly

eveloped for functional models [27]. Nevertheless, works by Fen-
on and Neil have successfully explored its use in Bayesian networks
or health risks applications [26,35,36]. Although their research has
demonstrated the value of performing counterfactual reasoning with
Bayesian networks for decision-making support, their work is unrelated
to system safety and does not provide the requirements or guidelines
needed to construct a causally-sound twin network model from a
Bayesian network model; two gaps that are tackled in this work.

2.5. Previous methods used for quantitative counterfactual analyses in risk
assessment and system safety

Although scarce, there is relevant literature on system safety and
risk assessment that has performed quantitative counterfactual analyses
as a part of their work. For instance, Lam and Cruz [37] investigated
consumer-level utility gas incidents through a probabilistic network
approach to represent cause–effect chains based on historical incident
investigations. Here, counterfactual scenarios were modeled by remov-
ing specific sets of causes from their incident network to analyze their
effect on the likelihood of relevant consequences. A similar approach
can be seen in Hughes et al. [38] on a hybrid physics-based and
data-driven model for power distribution infrastructure hardening and
outage simulation. To analyze the effects of pole hardening on an
outage probability in storm events, they set up a counterfactual study
by fitting their model to historical storms. Then, they set specific pole
hardening levels to estimate if an outage probability could have been
decreased. Likewise, Oughton et al. [39] used a similar methodology
to set up a counterfactual study on a cyber–physical attack performed
in 2015 on the Ukrainian electricity distribution network. Their model
represented the Ukrainian network in 2015, and multiple disruption
levels were set to estimate their impact on different socioeconomic
variables.

We argue that the studies mentioned above use modeling methods
that, although used in a counterfactual setting, are not suited for
simulating a counterfactual outcome of an event. Rather, these studies
should be interpreted as intervention analyses (similar to the methods
4

shown in Section 2.3), in which the calculated outcome corresponds h
Fig. 2. Proposed methodological framework for counterfactual reasoning. The acronym
BN refers to Bayesian network.

to the expected causal effect of an intervention on a system. There
is a crucial difference between counterfactuals and interventions that
should be considered in a counterfactual model: all evidence on a past
event is included in the model, which can contain information on the
variable that we want to intervene in and the outcome of interest,
that is, the event’s ‘‘factual world’’ antecedent and consequent. As it
was explained in Section 2.4, the evidence on the ‘‘factual world’’
must be used to update the probability of the states of the variables
representing the background conditions in which an event happened.
However, the methods used in the works presented above do not
incorporate the information provided by an event’s ‘‘factual world’’
antecedent and consequent to evaluate counterfactual outcomes in a
‘‘possible world’’. The methodology proposed in Section 3 addresses this
ap through the use of the twin network approach to counterfactuals
resented in Section 2.4. For a further discussion on the distinction
between interventions and counterfactuals, and their implications for
risk and safety assessment, we refer the reader to [27] and [25,40],
espectively.

. A methodology to enable a ‘‘possible world’’ approach to coun-
erfactual reasoning in system safety

To enable a ‘‘possible world’’ approach to counterfactual reasoning
n system safety, we propose the methodological framework presented
n Fig. 2. The framework’s objective is to assess the likelihood of
ounterfactual hypotheses on a past event in a system. To do this, the
ramework uses the best available evidence about an event together
ith a causal Bayesian network-based risk assessment model of the
ystem in which the event occurred. The elements of the framework
re described as follows.

.1. Input: Event evidence and causal Bayesian network model

A counterfactual hypothesis studies a possible outcome that a sys-
em event could have had, but did not (i.e., an outcome in a ‘‘possible
orld’’). Therefore, in order to assess the likelihood of a counterfactual
ypothesis, an analyst only has access to the evidence gathered from
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Fig. 3. Simple illustrative example of a fire event (a) Bayesian network, (b) pre-intervention twin network, and (c) twin network model for the fire event example. In this example,
the following counterfactual query is solved: ‘‘Could the fire damage state be ‘‘No’’, instead of the observed ‘‘Yes’’, had the sprinkler sate been ‘‘worked’’, instead of the observed
‘‘failed’’, in the event?’’
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the event (i.e., the ‘‘factual world’’) and their knowledge of the system
in which the event happened. As it was explained in Section 2, a
ayesian network-based risk assessment model of a system is a suitable
odel for expressing an analyst’s expert knowledge of a system and for
erforming reasoning under uncertainty when evidence becomes avail-
ble. As such, the input to the counterfactual reasoning methodology
f Fig. 2 consists of the tuple:

nput =
⟨

𝑀,
{

𝑉𝑥 = 𝑣𝑥, 𝑉𝑦 = 𝑣𝑦, {𝑉𝑒 = 𝑣𝑒}
}⟩

(3)

where𝑀 corresponds to a system’s Bayesian network-based risk assess-
ment model and {𝑉𝑥 = 𝑣𝑥, 𝑉𝑦 = 𝑣𝑦, {𝑉𝑒 = 𝑣𝑒}} corresponds to the set of
evidence gathered from a past event in terms of the nodes in 𝑀 . The
specific elements of the evidence set {𝑉𝑥 = 𝑣𝑥, 𝑉𝑦 = 𝑣𝑦, {𝑉𝑒 = 𝑣𝑒}} are
xplained in Section 3.2.1.

.2. Counterfactual reasoning methodology

Using the input tuple in Eq. (3), we propose the following four-step
ethodology to assess the likelihood of counterfactual hypotheses on
system safety context. It is important to note that the explanations
resented below are written in terms of answering a counterfactual
uery regarding a single antecedent variable 𝑉𝑥. This methodology,
owever, also holds for a query on a set {𝑉𝑥} of antecedent variables.
To exemplify the steps of the proposed counterfactual reasoning
ethodology, consider a hypothetical event in which a fire damaged
facility. In this example, an investigation found that the sprinkler
ystem did not work at the time of the event. In addition, the event
nvestigators have access to a Bayesian network-based risk assessment
odel of the fire protection system of the facility, 𝑀 , as the one shown
n Fig. 3a. Therefore, the tuple ⟨𝑀, {𝑉5 = yes, 𝑉3 = failed, {𝑉𝑒 = ∅}}⟩
ill be used as an input to exemplify the proposed methodological steps
or counterfactual reasoning.

.2.1. Step 1: Define the counterfactual query
First, an analyst transforms their counterfactual hypothesis into a

ounterfactual query, and expresses it in probabilistic terms. The goal is
o express the query in a form that can be answered by setting evidence
n the causal Bayesian network model of a system. The evidence is
athered from a past event.
To clearly express a counterfactual’s antecedent and consequent in

query, this must be structured as: ‘‘Given evidence {𝑉𝑒 = 𝑣𝑒}, could the
onsequent state of 𝑉𝑦 be 𝑣′𝑦, instead of the observed 𝑣𝑦, had the antecedent
tate of 𝑉𝑋 been 𝑣′𝑥, instead of the observed 𝑣𝑥, in the event?’’
In this query, the ‘‘factual world’’ antecedent and consequent vari-
5

bles and states of interest are 𝑉𝑥 = 𝑣𝑥 and 𝑉𝑦 = 𝑣𝑦, respectively.
ikewise, the ‘‘possible world’’ antecedent and consequent are 𝑉𝑥 = 𝑣′𝑥
nd 𝑉𝑦 = 𝑣′𝑦, respectively. In addition, all evidence on the ‘‘factual
orld’’ regarding other set of variables relevant to the event but
ifferent from 𝑉𝑥 and 𝑉𝑦 are expressed as {𝑉𝑒 = 𝑣𝑒}. Therefore, a
ounterfactual query can be translated into a probabilistic expression
s:

= 𝑃𝑟
(

(𝑉𝑦)𝑉𝑥=𝑣′𝑥 = 𝑣′𝑦
|

|

|

𝑉𝑥 = 𝑣𝑥, 𝑉𝑦 = 𝑣𝑦, {𝑉𝑒 = 𝑣𝑒}
)

(4)

where 𝑄 is the query of interest and (𝑉𝑦)𝑉𝑥=𝑣′𝑥 = 𝑣′𝑦 is the possible
outcome state of the consequent 𝑉𝑦 had 𝑉𝑥 = 𝑣′𝑥 in the event.

To illustrate this step through the fire damage example, consider
that, after gathering evidence on the event, investigators hypothesized
that the fire could have been mitigated had the sprinklers worked. Fol-
lowing Step 1 of the proposed counterfactual reasoning methodology,
this hypothesis can be transformed to the counterfactual query: ‘‘Could
the fire damage state be ‘‘No’’, instead of the observed ‘‘Yes’’, had the
sprinkler sate been ‘‘worked’’, instead of the observed ‘‘failed’’, in the
event?’’ Then, the input tuple ⟨𝑀, {𝑉5 = yes, 𝑉3 = failed, {𝑉𝑒 = ∅}}⟩
can be used with Eq. (4) to generate the counterfactual query 𝑄 =
𝑟((𝑉5)𝑉3=worked = no ∣ 𝑉3 = failed, 𝑉5 = yes).

.2.2. Step 2: Create a twin network model
The term (𝑉𝑦)𝑉𝑥=𝑣′𝑥 = 𝑣′𝑦 in Eq. (4) corresponds to an unobserved

ounterfactual outcome of a past event. Thus, computing Eq. (4)
hrough traditional probabilistic methods is not straightforward. This
omputation is instead done with a twin network model as shown in
ection 2.4. Therefore, the input causal Bayesian network model of the
ystem, 𝑀 , is transformed into a twin network model, 𝑀𝑐

𝑉𝑥=𝑣′𝑥
, of the

ounterfactual query obtained in Step 1.
The main feature of a twin network model is that it simulates the

ame background conditions of the ‘‘factual world’’ in an event and
llows the transfer of this knowledge to a ‘‘possible world’’ scenario.
s explained in the beginning of Section 2, this is a key requirement
or assessing the likelihood of a counterfactual hypothesis.
In order to guide the construction of a twin network model 𝑀𝑐

𝑉𝑥=𝑣′𝑥
rom an initial Bayesian network𝑀 , the following three node types are
efined:

• Factual world nodes (𝑊 ). Corresponds to the nodes in the sys-
tem’s Bayesian network model𝑀 representing the counterfactual
query antecedents {𝑉𝑥}, consequents {𝑉𝑦}, and all of their direct
descendants (i.e., all nodes in 𝑀 connected by a direct path
starting with an outgoing edge from a node in {𝑉𝑥} or {𝑉𝑦}). In
addition, the ‘‘factual world’’ event evidence on these nodes must

be instantiated. If the evidence on the ‘‘factual world’’ antecedent
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is uncertain or unavailable from an event’s investigation, no
evidence is instantiated on the node representing it.

• Common background nodes (𝐵). Corresponds to all other nodes in
𝑀 different from those identified as factual world nodes. The
‘‘factual world’’ evidence on these nodes must be instantiated.
These nodes represent the common background conditions be-
tween the factual and possible worlds in the counterfactual. As
such, these nodes will enable the transfer of knowledge gathered
on the ‘‘factual world’’ to a counterfactual ‘‘possible world’’.

• Possible world nodes (𝑃𝑊 ). Corresponds to a copy of the nodes in
𝑊 (and their causal dependencies), but without instantiating the
event’s evidence. These nodes are differentiated from the ones in
𝑊 by a hat accent (e.g., if 𝑉𝑥 ∈ 𝑊 , then 𝑉𝑥 ∈ 𝑃𝑊 ).

The node types defined above are sufficient to construct a ‘‘pre-
ntervention twin network’’ of a counterfactual query, which will be
enoted by 𝑀𝑐 . This network encodes all the information needed to
erform counterfactual reasoning on a past event. However, the ‘‘pos-
ible world’’ antecedent has yet to be forced to be different from what
t was in the ‘‘factual world’’. In order to do this, the pre-intervention
odel 𝑀𝑐 is intervened to generate the final twin network model
𝑐
𝑉𝑥=𝑣′𝑥

. This is done through the 𝑑𝑜-operator by forcing 𝑑𝑜(𝑉𝑥 = 𝑣′𝑥) ∈
𝑊 in a possible world, instead of 𝑉𝑥 = 𝑣𝑥 ∈ 𝑊 as it was observed

in the event. Consequently, estimating the probability of (𝑉𝑦)𝑉𝑥=𝑣′𝑥 = 𝑣′𝑦
in the counterfactual query of Eq. (4) is equivalent to estimating the
probability of 𝑉𝑦 = 𝑣′𝑦 in the twin network model 𝑀

𝑐
𝑉𝑥=𝑣′𝑥

.
To illustrate this step, consider the input tuple of the fire event

example, ⟨𝑀, {𝑉5 = yes, 𝑉3 = failed, {𝑉𝑒 = ∅}}⟩, and the corresponding
counterfactual query 𝑄 = 𝑃𝑟((𝑉5)𝑉3=worked = no ∣ 𝑉3 = failed, 𝑉5 = yes)
constructed in Step 1. Analysts can identify the factual world nodes
as {𝑉3 = failed, 𝑉5 = yes} ∈ 𝑊 ; the common background nodes as
{𝑉1, 𝑉2, 𝑉4} ∈ 𝐵; and the possible world nodes as {𝑉3, 𝑉5} ∈ 𝑃𝑊 .
Then, the pre-intervention twin network 𝑀𝑐 shown in Fig. 3b can
be constructed. Last, the intervention 𝑑𝑜(𝑉3 = worked) is applied
to evaluate what could have happened if the sprinkler worked. The
intervention eliminates all incoming edges to 𝑉3 ∈ 𝑃𝑊 , thus generating
the finalized twin network model 𝑀𝑐

𝑉3=worked
shown in Fig. 3c.

3.2.3. Step 3: Compute the counterfactual query
As shown in the previous step, a counterfactual’s twin network

model 𝑀𝑐
𝑉𝑥=𝑣′𝑥

is a post-intervention distribution of 𝑀𝑐 in Fig. 3. As
such, its joint probability distribution can be expressed through the
truncated factorization formula (see Eq. (2)) as:

𝑃𝑟
(

𝑉𝑖 ∈ {𝑊 ∪ 𝐵}, 𝑉𝑖≠𝑥 ∈ 𝑃𝑊 |

|

|

𝑑𝑜(𝑉𝑥 = 𝑣′𝑥)
)

=
∏

𝑖∣{𝑉𝑖 ,𝑉𝑖}≠𝑉𝑥

𝑃𝑟
(

{𝑉𝑖, 𝑉𝑖}
|

|

|

𝑝𝑎
(

{𝑉𝑖, 𝑉𝑖}
)

)

|

|

|𝑉𝑥=𝑣′𝑥
(5)

Then, if the network variables are discrete, Eq. (5) can be marginal-
ized to compute the counterfactual query 𝑄 of Eq. (4) as:

𝑄 =
∑

𝑖∣{𝑉𝑖 ,𝑉𝑖}≠{𝑉𝑥 ,𝑉𝑦}

⎛

⎜

⎜

⎝

∏

𝑖∣{𝑉𝑖 ,𝑉𝑖}≠𝑉𝑥

𝑃𝑟
(

{𝑉𝑖, 𝑉𝑖}
|

|

|

𝑝𝑎
(

{𝑉𝑖, 𝑉𝑖}
)

)

|

|

|𝐸

⎞

⎟

⎟

⎠

(6)

where 𝐸 =
{

𝑉𝑥 = 𝑣𝑥, 𝑉𝑦 = 𝑣𝑦, {𝑉𝑒 = 𝑣𝑒}, 𝑉𝑥 = 𝑣′𝑥
}

, that is, all the event’s
evidence gathered by an investigator and the ‘‘possible world’’ an-
tecedent of interest. Given that Eq. (6) can be computed from a single
twin network model 𝑀𝑐

𝑉𝑥=𝑣′𝑥
, Bayesian network software (e.g., GeNIe

[41]) or programming libraries (e.g., Python’s pgmpy [42]) can be
used for this task. Additionally, Eq. (6) is extendable to continuous
nodes through integration instead of summation. However, its com-
putation becomes difficult, requiring specialized algorithms such as
dynamic discretization for hybrid Bayesian networks [26].

This step can be illustrated in the fire event example, in which
estimating the counterfactual query 𝑄 = 𝑃𝑟((𝑉5)𝑉3=worked = no ∣ 𝑉3 =
failed, 𝑉5 = yes) is equivalent to estimating the probability of }}𝑉5 =
noε in the twin network model 𝑀𝑐 of Fig. 3c.
6

𝑉3=worked
3.2.4. Decision: Explore other factors?
In this step, an analyst decides if the estimated answer of the

counterfactual query is enough to inform their analysis and safety
recommendations. This decision is not trivial, and should align with
the objectives of the analysis. If no further information is needed from
counterfactual queries, the analyst proceeds to provide the generated
knowledge to risk managers as decision support. An example of this
can be illustrated using the fire event example. If the objective of the
analysis was only to determine if a working sprinkler could have helped
to avoid fire damage, the outcome of Step 3 of the proposed methodol-
ogy provides enough information. However, a simplistic objective like
this is rarely the goal of an event investigation.

To learn the most and inform the best decisions from past events,
an analyst is encouraged to include in their analysis’ objectives the
exploration of potential safety improvement opportunities and to ex-
pand their knowledge on a past event through the analysis of multiple
counterfactual scenarios. This additional objective has the potential of
revealing a number of factors that could have had a relevant influence
on the outcome of a past event which might have been overlooked
at first glance. In fact, the importance of this additional objective has
been stressed by authors such as Woo et al. [15,43] and Oughton
et al. [39], which have proposed a downward counterfactual searching
approach (that is, an analysis on how an event could have had a worse
consequence, such as higher failure probabilities or more severe losses)
to elucidate the potential of black swans and extreme events based on
past hazardous experiences (we refer to [43] for further information
on the counterfactual search approach). Leveraging this objective into
quantitative system safety, Step 4 provides a sensitivity analysis-based
method for exploring additional factors that could have a relevant effect
on the outcome of a past event.

3.2.5. Step 4: Perform a sensitivity analysis
In order to explore other factors that could have had a relevant

effect into the outcome of a past event in a counterfactual setting, we
propose a ‘‘downward’’ approach to counterfactual reasoning. In partic-
ular, we focus on which variables of the system could have increased
the probability of an undesired consequence state in a ‘‘possible world’’
scenario. This is done through a Bayesian network-based local sensitiv-
ity analysis over the ‘‘possible world’’ consequent 𝑉𝑦 = 𝑣′𝑦 ∈ 𝑃𝑊 . Then,
the most influential ‘‘possible world’’ nodes on the consequent node’s
sensitivity are selected to be further analyzed through counterfactual
reasoning; that is, going back to Step 1 and analyze how they could
have affected the outcome of the event of interest.

This step is illustrated on the fire damage example as follows:
after computing the result of the counterfactual query ‘‘Could the
fire damage state be ‘‘No’’, instead of the observed ‘‘Yes’’, had the
sprinkler state been ‘‘worked’’, instead of the observed ‘‘failed’’, in
the event?’’ the analysts found that a working sprinkler would have
not significantly reduce the probability of fire damage. Consequently,
the analysts decide to explore if other safety barriers, such as the
correct functioning of the alarm system and the maintenance schedule,
could have further reduced the likelihood of the event. Using the twin
network 𝑀𝑐

𝑉3=worked
built in step 2, in which {𝑉3, 𝑉5} ∈ 𝑊 , {𝑉3, 𝑉5} ∈

𝑃𝑊 , and {𝑉1, 𝑉2, 𝑉3} ∈ 𝐵, a sensitivity analysis is performed over 𝑉5 =
yes. Imagine that the sensitivity analysis results show that ‘‘𝑉4 ∶ Alarm’’
is the most influential factor on the counterfactual outcome. As such,
analysts can decide on going back to Step 1 of this methodology to
answer the counterfactual 𝑄 = 𝑃𝑟((𝑉5){𝑉3=worked,𝑉4=worked} = No ∣ 𝑉3 =
failed, 𝑉5 = Yes).

3.3. Output: Answer to counterfactual query

The output of the counterfactual reasoning methodology presented
above corresponds to the probability of a possible outcome of a past
event on a system. Depending on how the Bayesian network model of
the system is specified, this result can be in the form of an expected
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value or a probability distribution. However, we discourage investi-
gators to use these specific values as the sole basis of their safety
improvement recommendations. Rather, the two following points must
be taken into consideration:

• The power of counterfactual reasoning in system safety lies on
assessing the contrasts between an event and other possible re-
alizations of it [44]. Consequently, the output value of a coun-
terfactual query should not be studied on its own, but rather in
comparison to other possible outcomes of a past event.

• The output value of a counterfactual query should be studied as a
complement to the results obtained through traditional ‘‘learning
from events’’ safety strategies. For instance, ‘‘possible worlds’’
counterfactual reasoning can be used to assess the distance be-
tween models and practice. This can be done by evaluating the
differences between the answer of counterfactual queries esti-
mated through the proposed methodology of Section 3.2 and the
narrative and recommendations provided in an accident investi-
gation report [45].

These points will be illustrated in the case study presented in
Section 4 and further discussed in Section 5.

4. A case study on excavation damage of natural gas pipelines

A leading cause of failure across natural gas pipelines in the U.S.
is third-party damage caused by an excavator that has no relationship
to a utility company [46,47]. According to the Pipeline and Hazardous
aterials Safety Administration (PHMSA), third-party damage was, on
verage, the cause of 21.4% of excavation incidents on distribution
nd transmission lines between 2016 and 2021 [46]. These incidents
esulted in 11 fatalities, 34 injuries, and $140M USD in property
amage.
To prevent excavation damages, the following dig-in best practices

re encouraged (and regulated in some states) [48]:

1. The excavator provides notice of intent (also referred as locate
request) to an 811 One Call center or submits an online request;

2. The utility operator locates and marks their underground facili-
ties at the excavation site, and;

3. The excavator proceeds to dig carefully as understood in [49].

Although damage prevention practices are well established for un-
erground utilities, third-party damage rates have been roughly con-
tant in time [46]. Due to the significant risks posed by third-party dam-
ge, Ruiz-Tagle et al. developed BaNTERA, a comprehensive Bayesian
etwork model for third-party excavation risk assessment [50]. Pre-
iminary results demonstrated how BaNTERA can be used beyond a
robability estimation of third-party damage, offering valuable insights
nto cause–effect relationships, ‘‘what-if’’ scenarios, and identifying and
rioritizing ways to prevent and mitigate third-party damage risk.
Currently, safety recommendations for natural gas utilities are gen-

rated from either qualitative or quantitative studies. Examples of
hese are PHMSA’s event investigations [51] and the yearly CGA DIRT
eport [47]. As such, probabilistic ‘‘possible world’’ counterfactuals rep-
esent an opportunity to integrate these data with the risk assessment
odel BaNTERA to learn from past events caused by third-party dam-
ge and inform safety recommendations. This section presents a case
tudy that uses BaNTERA and a real-world accident report narrative
o demonstrate the capabilities of ‘‘possible world’’ counterfactuals for
earning from a past event.

.1. The 2018 Sun Prairie gas explosion

Around 6 p.m. on July 10, 2018 in Sun Prairie, Wisconsin, U.S., a
hird-party excavator from VC Tech struck a natural gas main while
7

Fig. 4. The 2018 Sun Prairie gas explosion.
Source: The Daily Reporter [28].

performing drilling activities to install fiber–optic lines for Bear Com-
munications, LLC. Gas was released, migrating below ground into
nearby buildings. One hour later the gas was ignited by an unknown
source, provoking an explosion that resulted in 1 fatality, 8 injures, and
approximately $20M USD in property damage [51]. A picture of the
event is shown in Fig. 4.

An investigation by the U.S. Department of Labor’s Occupational
Safety and Health Administration (OSHA) [52] determined, through
an administrative trial, that both Bear Communications, LLC and its
contractor, VC Tech, were liable for this event. Each company failed
to notify an intent to excavate, which is a mandatory practice by
Wisconsin’s state law. However, the event was more complicated than
the judgment entails. The following points summarize the event’s story-
line presented by OSHA during the administrative trial, which has been
widely covered by specialized media [28]:

• Spring of 2018 — Bear Communications, LLC contracted Jet
Underground Drilling Company to perform an excavation for
fiber–optic cable installations.

• June 2018 — Jet Underground provided a locate request through
a notification to Diggers Hotline, Wisconsin’s 811 One Call center.
USIC Locating Service performed the location and marking of
underground utilities in the site.

• July 2018 — Due to timing issues, Bear Communications LLC
decided that a competing drilling company, VC Tech, would pro-
ceed with the excavation activities. VC Tech had not notified their
intent to excavate to an 811 One Call center, relying on previous
markings made for Jet Underground in June. While performing
drilling operations, VC Tech strucked a natural gas main, causing
an explosion.

• Public hearings and event’s aftermath — In public hearings, VC
Tech acknowledged that they were knowingly violating state law
by excavating without a locate request notification. However,
they blamed USIC Locating Service for the event, arguing that
the marks performed for Jet Underground were incorrect. This
information could not be verified nor refuted. USIC Locating
Service answered that the purpose of the hearing was not to
blame them, but rather to determine whether VC Tech notified
their intent of excavation or not. Moreover, USIC Locating Service
argued that, in addition to a lack of notification, VC Tech did not
follow dig-in best practices which could have avoided the event
even though the site was mismarked.

The investigation performed by OSHA indicates clear liability; the
excavators did not comply with state law by failing to notify their
intent to excavate. Additionally, a separate investigation by PHMSA
determined that the root cause of the event was a lack of notification
(see event #20180073 in [51]); the lesson seems clear, ‘‘but-for the lack
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Fig. 5. Marginalized version of BaNTERA, a Bayesian network model for third-party excavation risk assessment. This model will be identified as 𝑀 .
Source: Adapted from [50].
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f notification, the event could have been avoided’’. However, the story-
ine presented above shows that there were multiple event precursors
hat could have influenced the outcome of the accident. As system
afety practitioners, we need to learn from this event as thoroughly
s possible so we can prevent future accidents. To expand OSHA’s and
HMSA’s investigations on the Sun Prairie gas explosion, we analyzed it
hrough the ‘‘possible world’’ counterfactual reasoning methodological
ramework presented in Section 3.

.1.1. Input: BaNTERA and accident narrative
Following the guidelines presented in Section 3.1, the following

nput tuple (see Eq. (3)) is selected for the ‘‘possible world’’ counter-
actual reasoning case study on the Sun Prairie gas explosion:

• Causal Bayesian network model (𝑀): Since BaNTERA [50] rep-
resents a thorough risk assessment model for the third-party
damage problem, a marginalized version of it is used for this case
study. This model is presented in Fig. 5 and will be identified as
𝑀 . A marginalized version of BaNTERA is selected to make the
case study clear in this work. Originally, BaNTERA has 64 nodes
and 101 edges, representing a level of complexity that could
hinder the presentation of the case study results. On the other
hand, the model in Fig. 5 was marginalized to only 23 nodes and
36 edges. Additionally, it must be highlighted that BaNTERA was
marginalized in order to only model a pipe hit probability, not
pipe damage. This was done to focus this study on the excavation
process. We refer the reader to Appendix A for a list of the nodes
in the model of Fig. 5, their states, and their prior marginal
probabilities. We also refer the reader to BaNTERA’s original
paper [50] for more information on the model’s construction,
parameterization, and validation.
8

i

• Event evidence: The evidence on the Sun Prairie gas explosion is
obtained from PHMSA’s event report #20180073 in [51]. This
evidence was mapped to the nodes of the Bayesian network model
𝑀 , resulting in the node states presented in the ‘‘Prior’’ column
of Table 1. An additional piece of evidence that is not explicitly
shown in this column is that a pipe was hit in the excavation. In
terms of the model 𝑀 , this evidence is equivalent to ‘‘𝑉23 = Yes’’.

A value of interest that can be obtained using the information
presented above is the prior expected probability of a pipe hit by VC
Tech given the conditions in which the excavation took place. This
value can be calculated through Eq. (1) using the input model 𝑀 of
Fig. 5 and the event’s evidence presented in Table 1. As a result, a prior
pipe hit probability of 𝑃𝑟(𝑉23 = Yes) = 25.75% is obtained; that is, it
is expected to observe 25.75 pipe hits in 100 excavations in which the
same event evidence is observed. This value will be used for comparison
with the outcomes of the counterfactual scenarios analyzed in the next
section.

4.1.2. Scenario analysis through counterfactual reasoning
The probabilistic ‘‘possible world’’ counterfactual reasoning method-

ology presented in Section 3.2 is applied to four distinct scenarios
regarding the Sun Prairie gas explosion. These scenarios were formu-
lated to thoroughly study the different event precursors presented in
the trial story-line shown in Section 4.1. Scenarios A and C are used to
tudy the effectiveness that a notification could have had on impacting
he probability of a pipe hit by VC Tech. Additionally, the scenarios B
nd D are used to evaluate if there were any opportunities to decrease
he likelihood of a pipe hit at the time of the event had the previous
arks made by the USIC Locating Service, and used by VC Tech, were

ncorrect.
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Table 1
Summary of the inputs and results of Sun Prairie gas explosion case study. The ‘‘-’’ symbol indicates that no information was instantiated in the Bayesian network model used in
the study. For counterfactual scenarios, 𝑊 , 𝑃𝑊 , and 𝐵 indicates information that was instantiated in the ‘‘factual world,’’ ‘‘possible world’’ and background nodes, respectively,
of the scenario’s twin network. 𝑑𝑜(⋅) indicates the use of the do-operator in the scenario’s twin network ‘‘possible world’’ nodes.

Node (Fig. 5) Prior Scenario A Scenario B Scenario C Scenario D

𝑉1: Regulatory district East north central 𝐵 ∶ East north central 𝐵 ∶ East north central 𝐵 ∶ East north central 𝐵 ∶ East north central

𝑉2: Terrain Under pavement 𝐵 ∶ Under pavement 𝐵 ∶ Under pavement 𝐵 ∶ Under pavement 𝐵 ∶ Under pavement

𝑉3: Area development Class 3 𝐵 ∶ Class 3 𝐵 ∶ Class 3 𝐵 ∶ Class 3 𝐵 ∶ Class 3

𝑉4: Pipeline system Distribution 𝐵 ∶ Distribution 𝐵 ∶ Distribution 𝐵 ∶ Distribution 𝐵 ∶ Distribution

𝑉5: Excavator type Professional 𝐵 ∶ Professional 𝐵 ∶ Professional 𝐵 ∶ Professional 𝐵 ∶ Professional

𝑉6: Notification awareness Aware 𝐵 ∶ Aware 𝐵 ∶ Aware 𝐵 ∶ Aware 𝐵 ∶ Aware

𝑉7: Other notification issues – – – – –

𝑉8: Notification made No 𝑊 : No; 𝑃𝑊 : 𝑑𝑜(Yes) 𝑊 ∶ No 𝑊 : No; 𝑃𝑊 : 𝑑𝑜(Yes) 𝑊 ∶ No

𝑉9: Notification issue – – – – –

𝑉10: Other improper excavation practice – – – – –

𝑉11: Dug prior to verifying marks by pot hole – – – – 𝑊 : -; 𝑃𝑊 : 𝑑𝑜(No)

𝑉12: Failed to protect/shore/support facilities – – – – –

𝑉13: Marks faded, lost, or not maintained – – – – –

𝑉14: Improper backfilling – – – – –

𝑉15: Failed to maintain clearance after
verifying marks

– – – – 𝑊 : -; 𝑃𝑊 : 𝑑𝑜(No)

𝑉16: Excavation issue – – – – –

𝑉17: Patrol frequency – – – – –

𝑉18: Right way of excavation detected No 𝐵 ∶ No 𝐵 ∶ No 𝐵 ∶ No 𝐵 ∶ No

𝑉19: Locating & marking issue – – 𝑊 : -; 𝑃𝑊 : 𝑑𝑜(Yes) 𝑊 : -; 𝑃𝑊 : 𝑑𝑜(Yes) 𝑊 : -; 𝑃𝑊 : 𝑑𝑜(Yes)

𝑉20: Sufficient preventive measures – – – – –

𝑉21: Excavation adjacent to pipeline Yes 𝐵 ∶ Yes 𝐵 ∶ Yes 𝐵 ∶ Yes 𝐵 ∶ Yes

𝑉22: Excavation deeper than cover Yes 𝐵 ∶ Yes 𝐵 ∶ Yes 𝐵 ∶ Yes 𝐵 ∶ Yes

𝑉23: Pipeline hit

𝑃𝑟(No) = 0.7425

𝑃𝑟(Yes) = 0.2575 𝑊 : 𝑃𝑟(Yes) = 1; 𝑊 : 𝑃𝑟(Yes) = 1; 𝑊 : 𝑃𝑟(Yes) = 1; 𝑊 : 𝑃𝑟(Yes) = 1;

𝑃𝑊 : 𝑃𝑟(No) = 0.8961 𝑃𝑊 : 𝑃𝑟(No) = 0.3197 𝑃𝑊 : 𝑃𝑟(No) = 0.8815 𝑃𝑊 : 𝑃𝑟(No) = 0.3925

𝑃𝑊 :𝑃𝑟(Yes) = 0.1039 𝑃𝑊 :𝑃𝑟(Yes) = 0.6803 𝑃𝑊 :𝑃𝑟(Yes) = 0.1185 𝑃𝑊 :𝑃𝑟(Yes) = 0.6075
• Scenario A. First, we will analyze the lack of notification present
in the excavation process, which was hypothesized by authorities
as the root cause of the Sun Prairie gas explosion. In order to do
this, the following query is studied through probabilistic ‘‘possible
world’’ counterfactuals: Given evidence {𝑉𝑖 = 𝑣𝑖} gathered from
the event, could the consequent state of ‘‘𝑉23 ∶ Pipeline hit’’ be
‘‘No’’, instead of the observed ‘‘Yes’’, had the antecedent state of
‘‘𝑉8 ∶ Notification made’’ been ‘‘Yes’’, instead of the observed ‘‘No’’,
in the event? Here, and in the subsequent scenario analyses, {𝑉𝑖 =
𝑣𝑖} corresponds to all evidence gathered from the event that is
different from the antecedent and consequent of interest (𝑉8 and
𝑉23 respectively for this scenario). This evidence is presented in
Table 1 under the ‘‘Scenario A’’ column. Following Step 1 of the
methodology, this query can be expressed mathematically as:

𝑄𝐴 = 𝑃𝑟
(

(

𝑉23
)

𝑉8=Yes
= No ||

|

𝑉8 = No, 𝑉23 = Yes, {𝑉𝑖 = 𝑣𝑖}
)

(7)

Then, following Step 2 of the methodology, the twin network
presented in Fig. B.8 (in Appendix B) is created to compute the
answer to the query in Eq. (7). Last, following Step 3 of the
methodology, the answer to the counterfactual query is calcu-
lated, obtaining 𝑄𝐴 = 89.61%. As such, a notification by VC Tech
could have reduced the expected probability of a pipeline hit from
25.75% in the ‘‘factual world’’ to 10.39% in a ‘‘possible world’’
(see Table 1).

• Scenario B. The result obtained in Scenario A aligns well with the
conclusions provided by the OSHA and PHMSA investigations;
that is, if a notification had been provided by VC Tech, the
incident could have been less likely to occur. VC Tech, however,
9

argued that the actual root cause of the event was that the prior
locating and marking works performed by USIC Locating Service
were wrong. In order to assess this hypothesis, the following
counterfactual query is studied: Given evidence {𝑉𝑖 = 𝑣𝑖} gathered
from the event, how likely is that the consequent state of ‘‘𝑉23 ∶
Pipeline hit’’ been ‘‘No’’, instead of the observed ‘‘Yes’’, had the
antecedent state of ‘‘𝑉19 ∶ Locating & marking issue’’ been ‘‘Yes’’ in
the event? Here, the ‘‘factual world’’ antecedent state on 𝑉19 is un-
known; that is, there was no clear evidence supporting a locating
and marking issue at the time of the event. Following Step 1 of
the methodology, this query can be expressed mathematically as:

𝑄𝐵 = 𝑃𝑟
(

(

𝑉23
)

𝑉19=Yes
= No ||

|

𝑉23 = Yes, {𝑉𝑖 = 𝑣𝑖}
)

(8)

The twin network shown in Fig. B.9 is used to compute Eq. (8),
obtaining 𝑄𝐵 = 31.97%. Therefore, the ‘‘possible world’’ counter-
factual suggests that if the marks used by VC Tech to perform
their excavation activities had been incorrect, there was 68.03%
probability of a pipeline hit at the time of the event (see Table 1).

• Scenario C. Even though the potential negative effect of locating
and marking issues were considered in OSHA’s investigation,
the focus remained on a lack of locate request notification. To
assess the effect of a notification on the probability of a pipe
hit in the scenario in which there were incorrect locating and
marking works at the excavation site, the following counterfactual
query is studied: Given evidence {𝑉𝑖 = 𝑣𝑖} gathered from the event,
how likely is that the consequent state of ‘‘𝑉23 ∶ Pipeline hit’’ been
‘‘No’’, instead of the observed ‘‘Yes’’, had the antecedent state of
‘‘𝑉19 ∶ Locating & marking issue’’ been ‘‘Yes’’ and the antecedent
state of ‘‘𝑉 ∶ Notification made’’ been ‘‘Yes’’, instead of the observed
8
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‘‘No’’, in the event? Mathematically, this query is equivalent to
answering:

𝑄𝐶 = 𝑃𝑟
(

(

𝑉23
)

𝑉8=Yes,𝑉19=Yes
= No ||

|

𝑉8 = No, 𝑉23 = Yes, {𝑉𝑖 = 𝑣𝑖}
)

(9)

The twin network shown in Fig. B.10 is used to compute Eq. (9),
obtaining 𝑄𝐶 = 11.85%. Therefore, a notification by VC Tech
could have reduced the expected probability of a pipeline hit from
a 25.75% in the ‘‘factual world’’ to a 11.85% in a ‘‘possible world’’
in which there was a locating and marking issue in USIC Locating
Service works at the site (see Table 1).

• Scenario D. The result obtained for scenario B shows that a pipe
hit could have been highly probable (68.03%) if the marks used
by VC Tech would have been incorrect. Nevertheless, Scenario
C showed that this probability could have still been significantly
reduced (11.85%) had VC Tech provided a locate request notifica-
tion. In public hearings, however, USIC Locating Service claimed
that VC Tech did not follow dig-in best practices that could have
avoided the event even in the scenario in which a locating and
marking issue was present. This claim motivated us to study if
there were any dig-in best practices that VC tech could have
followed to effectively avoid a pipe hit in this scenario.
In order to perform the abovementioned study, Scenario B will be
expanded to include the fourth step of the proposed counterfac-
tual reasoning methodology; that is, explore other risk influencing
factors through a sensitivity analysis. The same evidence used
in Scenario B is instantiated on the twin network presented in
Fig. B.9, and a sensitivity analysis is performed over the ‘‘possible
world’’ outcomes of the node ‘‘𝑉23 ∶ Pipeline hit’’. In particular,
this is done by calculating Kjærulff and Van Der Gaag [53] sensi-
tivity derivative parameter, 𝑆, for all ‘‘possible world’’ dig-in best
practices errors that depend on a marked excavation site (that
is, 𝑉11, 𝑉12, 𝑉13, and 𝑉15 in Table 1)2 The results of the sensitivity
analysis are shown in Fig. 6.
Fig. 6 shows that, if there had been a marking error at the
time of the event, a pipe hit (i.e., ‘‘𝑉23 = Yes’’) would have
been most sensitive to increasing its probability due to the two
following dig-in issues: ‘‘𝑉11: Dug prior to verifying marks by
pot hole’’ and ‘‘𝑉15: Failed to maintain clearance after verifying
marks’’. Potholing and clearance maintenance are expected to
be performed consecutively in any excavation. As such, the fol-
lowing counterfactual query is studied: Given evidence {𝑉𝑖 = 𝑣𝑖}
gathered from the event, how likely is that the consequent state of
‘‘𝑉23 ∶ Pipeline hit’’ been ‘‘No’’, instead of the observed ‘‘Yes’’, had
the antecedent state of ‘‘𝑉11: Dug prior to verifying marks by pot
hole’’ been ‘‘No’’, the antecedent state of ‘‘𝑉15: Failed to maintain
clearance after verifying marks’’ been ‘‘No’’, and the antecedent
state of ‘‘𝑉19 ∶ Locating & marking issue’’ been ‘‘Yes’’, in the event?
Mathematically, this query can be expressed as:

𝑄𝐷 = 𝑃𝑟
(

(

𝑉23
)

𝑉11=No,𝑉15=No,𝑉15=Yes
= No ||

|

𝑉23 = Yes, {𝑉𝑖 = 𝑣𝑖}
)

(10)

The twin network shown in Fig. B.11 is used to compute Eq. (10),
obtaining 𝑄𝐶 = 39.25%. Therefore, if VC Tech had excavated us-
ing wrong marks, a pipe hit probability could have only been re-
duced from 68.03% (as shown in Scenario B) to 60.75% had they
performed a pothole and a subsequent maintenance of clearance
at the excavation site (see Table 1).

2 The sensitivity derivative parameter 𝑆 of a node state ‘‘𝑉𝑖 = 𝑣’’ given a
arget node state ‘‘𝑌𝑖 = 𝑦𝑖’’ means that a change 𝑐 on the value of 𝑃𝑟(𝑉𝑖 = 𝑣𝑖)
ill cause a change of 𝑆 ⋅ 𝑐 on the value of 𝑃𝑟(𝑌𝑖 = 𝑦𝑖). For more information
n the method, we refer the reader to [53].
10
Fig. 6. Min, max, and mean sensitivity derivative parameter (𝑆) of the nodes
𝑉11 , 𝑉12 , 𝑉13, and 𝑉15 on the target node 𝑉23.

.1.3. Output: Lessons learned
Both OSHA’s and PHMSA’s investigations identified a lack of a

ocate request notification as the root cause of the event. This claim
s supported by the results obtained for the scenarios A and C of this
tudy. In fact, the ‘‘possible world’’ counterfactual analysis showed
hat a pipe hit probability could have been reduced from a 25.75%
o a 10.39% had a notification been provided to authorities (Table 1,
cenario A). In addition, this study showed that a pipe hit probability
ould have increased only to 11.85% had locating and marking works
y USIC Locating service on the site had been incorrect (Table 1,
cenario C).
The results obtained for the scenarios B and D, however, showed

hat if it was true that VC Tech used incorrect marks to perform the
xcavation activity, the probability of a pipe hit could have been of
8.03% ( Table 1, Scenario B); 2.25 times more likely that the expected
prior of 25.75%. Furthermore, this value could have been reduced
only to 60.75% had VC Tech performed the dig-in best practices of
potholing and subsequent site clearance, which were found to be the
most influential on a pipe hit probability in this scenario ( Table 1,
Scenario D).

Therefore, the ‘‘possible world’’ counterfactual analysis performed
on the Sun Prairie gas explosion showed that, in the particular case in
which an excavator uses incorrect marks from a previous locating and
marking work, only a locate request notification has the potential to
significantly reduce a pipe hit probability. However, considering that
a lack of notification is the major root cause of third-party damage
in the U.S. [46], we conclude that it is necessary to find additional
safety barriers beyond current dig-in best practices such as potholing
and clearance maintenance to avoid similar events in the future.

5. Discussion

Counterfactual reasoning is prevalent in system safety in the form
of ‘‘but-for’’ analyses due to the ability to incorporate the evidence
from single events into an analyst’s knowledge of a system in order to
identify an event’s causes and inform recommendations [1,5,54]. How-
ever, researchers have raised three important limitations on ‘‘but-for’’
counterfactuals use for learning from events: linearity, incompleteness,
and uncomparable. In this work, we created the probabilistic ‘‘possible
worlds’’ approach to counterfactuals to tackle these limitations while
keeping the benefits of counterfactual reasoning in system safety.

The first limitation on the current use of counterfactuals in sys-
tem safety is linearity, meaning that event investigators are prone to
turn complex events into linear cause-and-effect chains. Probabilistic
‘‘possible worlds’’ counterfactuals address this limitation through the
use of a Bayesian network-based QRA model to assess the likelihood
of counterfactual hypotheses. Bayesian networks are built represent-
ing the current state of knowledge on the uncertainties about the
phenomena, processes, and activities involved in a system [33]. As
such, the use of a Bayesian network model enabled us, for instance,

to incorporate into the Sun Prairie gas explosion case study different
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Fig. A.7. Nodes, states, and marginal prior probabilities of the Bayesian network model used in the Sun Prairie gas explosion case study.
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elevant factors that are not currently considered in dig-in best practices
rocedures [49] such as notification awareness, excavator type, and
a utility company’s patrol frequency (see Appendix A). Furthermore,
the use of the BaNTERA QRA model enabled us to better express the
causal complexity of an excavation activity by incorporating commonly
overlooked causal dependencies such as the effect that a type of terrain
has on the likelihood of locating and marking issues (𝑉2 → 𝑉19 in
Fig. 5) and the effect that a regulatory district has on an excavator’s
awareness on notification procedures and the quality of locating and
marking works (𝑉6 ← 𝑉1 → 𝑉19 in Fig. 5).

The second limitation on the current use of counterfactuals is in-
ompleteness, namely, event investigators tend to use counterfactuals
o transform an event’s evidence into a proof of failure to perform
ccording to a system’s procedures and norms, therefore missing un-
erlying reasons of an event. Incompleteness was clear in the official
nvestigations following the Sun Prairie gas explosion. Both OSHA [52]
and PHMSA [51] concluded, without further analysis, that the root
ause of the event was a lack of locate request notification. Although
here was additional evidence into potential location and excavation
rrors, the event was reduced into additional evidence on the potential
igh consequences that not following notification procedures can have
n pipeline safety. Drawing a parallel to a ‘‘but-for’’ approach to
ounterfactual reasoning, the statement ‘‘but-for the lack of notification,
he Sun Prairie gas explosion could have been avoided’’ was found by
uthorities as a logical, valid, and sufficient explanation to the event. As
uch, the investigation was halt, and the only lesson learnt was to keep
romoting and enforcing the compliance to notification procedures (see
ection 4). However, as we showed in this work, much more could have
een learned from this event.
As discussed above, the use of Bayesian network models in proba-

ilistic ‘‘possible worlds’’ counterfactuals allows the inclusion of rele-
ant factors beyond a system’s procedures and standards in the assess-
11

ent of counterfactual hypotheses. This capability, however, does not c
nsure that these factors will be taken into consideration in the analysis.
o overcome this issue, the proposed methodological framework for
ounterfactual reasoning (Fig. 2) includes a sensitivity analysis step
hat identifies which variables of a system (different from the previ-
usly queried ‘‘possible world’’ antecedents) could have increased the
robability of an undesired consequence in a counterfactual scenario.
his step is suggested to be performed after assessing an analyst’s initial
ounterfactual hypotheses, thereby expanding the bounds of what can
e learned from a past event. This capability was demonstrated in the
un Prairie gas explosion case study by showing that, even though
ig-in best practices had been performed, a pipe hit still could have
een highly probable. Considering that there has been a call for action
eyond current damage prevention practices in the U.S. [49], a ‘‘pos-
ible world’’ counterfactual analysis of the Sun Prairie gas explosion
rovided relevant evidence into exploring further actions beyond dig-
n best practices to prevent damages when all previous safety barriers
ave failed.
The last limitation on the current use of counterfactuals in system

afety is that they are uncomparable; that is, there is no rigorous method
o compare and prioritize counterfactual hypotheses on event investi-
ations. In order to tackle this issue, probabilistic ‘‘possible worlds’’
ounterfactuals uses the QRA principles of uncertainty quantification
nd scenario analysis.
To incorporate uncertainty quantification in a counterfactual anal-

sis of an event, we acknowledge a past event as one of many possible
cenarios that could have unfolded. As such, we propose to assess
he likelihood of a counterfactual hypothesis by transforming it into
probabilistic query to be answered through Bayesian network-based
ethods (see Fig. 2). Quantifying the uncertainty on the realization of
past event through probabilities allows different counterfactual hy-
otheses to be directly compared. This capability of ‘‘possible worlds’’
ounterfactuals was demonstrated, for instance, in the case study when
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Fig. B.8. Twin network model used in the counterfactual scenario A of the Sun Prairie gas explosion case study. Although it is not shown in the twin network figure for clarity,
some common background nodes have instantiated evidence as shown in Table 1.
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assessing the likelihood of the counterfactual hypothesis ‘‘A locate
request notification could have avoided a pipe hit’’. In Table 1, we
howed that the effect that a locate request notification could have
ad in a pipe hit probability could have been similar independently
f a locate and marking error had been present at the excavation site
10.39% compared to 11.85%).
Although counterfactual hypotheses can be compared through prob-

bilities, their calculation is not straightforward. Traditionally, a risk
ssessment quantifies the probability of a specific scenario; that is,
ssessing how a cause can potentially lead to a specific consequence.
ounterfactuals, however, are based on the evidence gathered from a
ast event, namely, a scenario that have already unfolded. As such, it
as necessary to establish the mathematical background and methods
eeded to incorporate an event’s evidence into the analysis of a coun-
erfactual scenario in a system safety context. As demonstrated in this
ork’s case study, this was done through a Bayesian network-based
win network method, which allows a transparent representation of a
ounterfactual’s elements (namely, its factual and possible worlds an-
ecedent, consequent, and background conditions), and the integration
f evidence through probabilistic inference methods (see Section 2.3).
Despite the abovementioned benefits of ‘‘possible worlds’’ coun-

erfactuals in system safety, it is important to take into account its
imitations when informing ‘‘lessons learned’’ and recommendations.
nsights that can be learned from a ‘‘possible worlds’’ counterfactual
nalysis are bounded by the Bayesian network-based QRA model used
o describe the system and the event of interest. In particular, an
ccurate causal model of the event is necessary to provide useful
nformation when learning from an event [55]. If a causal model is
12
ot accurate, it is possible to overlook potential causal mechanisms
r background variables that can affect the correct assessment of the
ikelihood of a counterfactual hypothesis of interest [27]. Addition-
lly, accurate causal modeling is also important due to the fact that
ounterfactual hypotheses are not possible to verify; an event already
appened the way it did. Although natural experiments have been
ecommended to verify counterfactuals [1], we hold that the use of
‘possible world’’ counterfactuals should not be limited to the existence
f these experiments. Rather, we recommend that the analyzed coun-
erfactual hypotheses do not diverge from what is plausible to answer
ith the used QRA model [27,35].
Finally, the proposed methodology in Section 3 assumes that an

vent’s twin network counterfactual model is solely based on the vari-
bles included in the analyzed system’s original causal Bayesian net-
ork model. Although this assumption holds for well-understood sys-
ems, for new technologies, highly-complex systems, and events with
parse/conflicting evidence, it may be necessary to add new variables
o model a ‘‘possible world’’ event. An example concerning sparse
nd conflicting evidence can be seen in legal argumentation, which
an be a direct ramification of a high-consequence accident such as
he Sun Prairie explosion. As described by Neil et al. [56], a model
epresenting two competing narratives of an event (one as a ‘‘factual’’
nd the other as a ‘‘possible’’ world) will have commonalities. However,
ariables such as factual evidence and source credibility can differ in
oth narratives.
Similar challenges can be seen when performing counterfactual

nalyses on new technologies. An example of this can be seen when an-
lyzing the transportation of hydrogen blends in natural gas pipelines.
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Fig. B.9. Twin network model used in the counterfactual scenario B of the Sun Prairie gas explosion case study. Although it is not shown in the twin network figure for clarity,
some common background nodes have instantiated evidence as shown in Table 1.

Fig. B.10. Twin network model used in the counterfactual scenario C of the Sun Prairie gas explosion case study. Although it is not shown in the twin network figure for clarity,
some common background nodes have instantiated evidence as shown in Table 1.
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Fig. B.11. Twin network model used in the counterfactual scenario D of the Sun Prairie gas explosion case study. Although it is not shown in the twin network figure for clarity,
some common background nodes have instantiated evidence as shown in Table 1.
Consider the following counterfactual query: ‘‘Given the evidence on the
Sun Prairie explosion, could the consequences have been different if the
transported gas was a hydrogen blend, instead of natural gas?’’ A twin net-
work model of this query will require additional nodes in the ‘‘possible
world’’ to incorporate the effect of hydrogen on natural gas pipelines,
such as hydrogen embrittlement on steel pipes and potentially higher
operational pressures. Addressing these challenges presents an excel-
lent opportunity to expand the insights and lessons learned from an
event’s investigation in the face of complex systems, events, and new
technologies. The proposed ‘‘possible worlds’’ approach can serve as the
backbone of these analyses in the future.

6. Concluding remarks

This work established a ‘‘possible worlds’’ approach to counter-
factual reasoning for system safety that improves a ‘‘learning from
events’’ safety strategy. The proposed probabilistic ‘‘possible worlds’’ ap-
proach to counterfactuals enables the integration of an analyst’s causal
knowledge of a system (in the form of a Bayesian network-based risk
assessment model) with the best available evidence on an event of in-
terest. As a result, counterfactual hypotheses, which are of common use
in the practice of system safety, can now be rigorously assessed through
causally-sound probabilistic methods. This approach overcomes current
‘‘but-for’’ counterfactuals’ limitations, as it was demonstrated in the
case study on the 2018 Sun Prairie gas explosion.

Learning from single past events is crucial in the practice of system
safety, and the new ‘‘possible worlds’’ approach provides a new foun-
dation for enabling this. In summary, this work’s major contributions
are:

• The establishment of the ‘‘possible world’’ approach to counter-
factual reasoning that enables, for the first time, a probabilistic
14

assessment of counterfactuals in system safety.
• Demonstrating that ‘‘possible world’’ counterfactuals built on a
QRA model and the best available evidence on an event provides
an objective, defensible, and transparent basis for addressing
counterfactual reasoning in system safety.

• Posit the mathematics of ‘‘possible worlds’’ counterfactuals to
expand current capabilities of counterfactual methods in QRA and
system safety for learning from past events (e.g., incident and
accident investigations).

• The demonstration of the probabilistic ‘‘possible worlds’’ ap-
proach to counterfactual reasoning with the Sun Prairie explosion
case study.

This work presents a first approach to the use of probabilistic
counterfactuals in system safety, and future work is needed to keep
developing the method and exploit its capabilities. A first direction for
future research will be the development of a criteria that bounds which
counterfactuals hypotheses can be accurately tested by the used risk
assessment model. Future work will also explore generative modeling
to account for both aleatory and epistemic uncertainties beyond the
currently used conditional probability tables in the Bayesian network
models shown in this work. Finally, future work will also focus on
models that include not only the probabilities but also the consequences
of an event. This direction will further expand the lessons that can
be learned from events based on possible world counterfactuals. For
instance, if the model presented in this work is expanded to include
expected consequences in terms of loss of life and cost, ‘‘possible
worlds’’ counterfactuals can provide insight into the probability that
an accident such as the Sun Prairie explosion could have turned into
a major catastrophe, and identify which variables are driving that

scenario.
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Appendix A. Nodes, states, and marginal prior probabilities of the
Bayesian network model used in the Sun Prairie gas explosion case
study

See Fig. A.7.

Appendix B. Twin network model used in the counterfactual sce-
narios

See Figs. B.8–B.11.
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