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ABSTRACT

The energy and industry sectors depend upon the reliability of complex engineering systems (CESes), such
as nuclear power plants or manufacturing plants; it is important, therefore, to monitor system health and
make informed decisions on maintenance and risk management practices. One proposed approach is to use
causal-based models such as Dynamic Bayesian Networks (DBN), which contain the structural logic of and
provide graphical representations of the causal relationships within engineering systems. A current challenge
in CES modeling is fully understanding how different data stream discretizations used in developing underlying
conditional probability tables (CPTs) impact the DBN’s system health estimates.

This paper demonstrates the impact that different time discretization strategies have on the performance
of DBN models built for CES health assessments. Using simulated nuclear data of a sodium fast reactor (SFR)
experiencing a transient overpower (TOP), different strategies for discretizing CES data streams are used to
construct the CPTs for a health-based DBN model. This study finds that these strategies generate different
models with varying levels of performance for determining different assessments of overall system health.
By understanding how these design factors impact the model’s health assessments, future risk models can be
developed to provide a more meaningful assessment of a system’s health, resulting in more informed decisions.

1. Introduction

Complex engineering systems (CESes), large-scale systems that con-
sist of interconnected and physically distributed hardware, software,
and human components, are embedded within many critical infras-
tructures. Failure of these systems poses significant risks to public
health and safety; therefore, it is important to monitor them to avoid
total system failure. One approach is to develop health monitoring
models that use operational data to generate health assessments that
provide necessary information for system health management. A recent
modeling method proposed for CES health management is to system-
atically integrate currently used prognostics and health management
(PHM) and probabilistic risk assessment (PRA) techniques into a single
approach (SIPPRA) [1]. However, there are still many questions about
how to effectively design models, such as dynamic Bayesian networks
(DBNs), that are intended for SIPPRA health management.

This paper integrates results from previous research efforts to im-
plement performance metrics to better understand how different data
stream discretization strategies affect the performance of health mon-
itoring models. Using the case study scenario outlined by Lewis and
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Groth [2] as a specific example for a complex engineering system, this
study conducted a structured comparison of model alternatives. The
results indicate that different model design choices not only affect the
health value outputs, but also lead to significant variations in usability.
Understanding these differences can inform different design selections
under different operational conditions and restrictions. This research
is distinct from other efforts to study DBNs and their performance as
health monitoring models for complex systems as this work analyzes
the fundamental discretization assumptions used to construct the net-
works. Furthermore, the comparisons are made across a wide range of
performance metrics beyond model accuracy, contributing to a more
holistic approach to considering model design decisions.

This paper first provides background information on SIPPRA health
management and DBNs (Section 2). This is followed by a description
of the general approach used to make comparisons on the performance
of health monitoring models (Section 3) and the methodology used in
the transient overpower (TOP) case study (Section 4). Results of the
comparison are then presented (Section 5), followed by a discussion of
the results (Section 7) and conclusion (Section 8). The insight from this
study supports effective model designs for SIPPRA health management.
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Acronyms

BN Bayesian Network

CES Complex Engineering System

CPT Conditional Probability Table

DBN Dynamic Bayesian Network

DET Dynamic Event Tree

DRACS Direct Reactor Auxiliary Cooling System
PHM Prognostics and Health Management
PRA Probabilistic Risk Assessment

RPS Reactor Protection System

SFR Sodium Fast Reactor

SIPPRA Systematic Integration of PHM and PRA
TOP Transient Overpower

2. Background
2.1. SIPPRA health management

One approach for addressing current gaps in CES health manage-
ment capabilities is to systematically integrate aspects of PHM and PRA
into system health assessments. Interests in scaling up PHM for larger
systems and the introduction of dynamic and forecasting elements into
PRA have led to the development of system-level models. SIPPRA ties
these two fields together and provides a structured form for consistently
utilizing available techniques and practices for monitoring, measuring,
and evaluating system health across PHM and PRA. This has largely
taken the form of PHM models providing input information for PRA
models [3-5] or a PHM model taking the logic structure usually used
in PRA models [6,7]. Recognizing the need for a unified approach to
combine PHM and PRA, Moradi and Groth [1] outlined a structured
SIPPRA framework, shown in a simplified form in Fig. 1, for mon-
itoring complex engineering systems. In their approach, a dynamic
risk assessment framework identifies the system-level faults before
incorporating online system data to perform health evaluation. System
health management decisions made using this structure take a holistic
view of the system while utilizing available and relevant data.

The biggest challenge facing SIPPRA health management is its
novelty and limited use. Although there are multiple research efforts
underway to model CES health using a mix of PHM and PRA tech-
niques, it has yet to be widely applied in industry settings to support
system management. This means that there are many questions left
unanswered regarding effective means for representing CESes, includ-
ing how to appropriately incorporate system-level data into the health
models. Although there are many techniques for assessing CES health
through SIPPRA, the remainder of this research will focus on one
potential modeling method: the Dynamic Bayesian Network (DBN).

2.2. DBNs

DBNs are an extension of Bayesian networks, directed acyclic graphs
that describe conditional probability relationships between dependent
nodes connected by arcs. The “dynamic” aspect of these networks
comes from the fact that the conditional probabilities considered are
time-dependent. Like BNs, DBNs hold the Markov property in which
only the direct parents of a node have an impact on the state of that
node [8]. This assumption results in the formation of two types of
relationships to consider for each dynamic node state: a “T,” proba-
bility that exists as the initial state relationship, and a ‘T,,e probability
that changes as the system being modeled develops over time. To
calculate these probabilities, DBNs model certain system conditions as
a joint probability across the dependencies captured in the model. For a
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given DBN with X, variables, the underlying probability that a certain
scenario would occur, P, is based on Eq. (1) [8]:
n
P(X\, Xy, ..., X,) = [ P (X;Iparents(X ) )
j=1
where parents(X ;) is the set of nodes with arcs into the variable X I

Like static BNs, DBNs share the same overall structural relationship
between nodes over time; however, time-dependent relationships are
now included in the model. This means that the state of a node at
time ¢ is affected not only by the inter-slice dependencies of its parents
during that time, but also any parents from the previous t step. DBNs
are discrete-time models, meaning they work at specified points in time
rather than a continuous timeframe [8,9]. Specific node relationships
are more visible when the DBN is presented as an unrolled BN, as shown
in the right image in Fig. 2.

Risk-focused and reliability engineering studies have shown the
versatility of DBNs for capturing system reliability and monitoring
system health [10-13]. Early research connected DBN formalisms to
reliability block diagrams [14], dynamic fault trees [15], and Markov
Chain models [16]. As part of their extensive literature review on the
use of Bayesian networks for fault diagnostics, Cai et al. [17] found that
DBNs were used to support specific areas of reliability engineering re-
search, including process, structural, and manufacturing systems. Amin
et al. [18] used DBNs to determine a dynamic availability assessment of
safety critical systems, Wu [19] found that DBNs could be used to make
safety decisions for tunnel constructions, and Rebello et al. [20] relied
on Hidden Markov Models to monitor system functionality through
DBNs. These researchers wanted to capture the dynamic qualities that
would otherwise not be accessible to static models. There has also
been some research into whether DBNs could be used for system health
prognostics [21,22]. Medjaher et al. [23] represented a small industrial
system through DBNs to determine the expected prognostics of the
system, and Zhao et al. [24] proposed the use of DBNs to monitor
fault diagnostics and loss-of-coolant accident progression prediction in
a High Temperature Gas Cooled Reactor Pebble-bed Module reactor.

DBNs are increasingly used in prognostics modeling and risk assess-
ments for CES health management for their graphical representations
of complicated causal relationships and powerful inference capabili-
ties [17,25,26]. Lewis and Groth [27] found in their literature search on
the use of BNs in reliability research that the number of articles related
to DBNs published per year has been steadily growing since 2012.
These include studies related to structural engineering (e.g., [28,29]),
mechanical engineering (e.g., [30,31]), and risk and system safety
(e.g., [10D). In these studies, the CPTs and initial value distribution
used to parameterize the networks are calculated from available data
or determined through expert-based opinions. A DBN’s logic structure
and inference capabilities make it a common alternative for causal-
based system-level research. The growing interest in using DBNs to
solve reliability problems places additional motivation to create models
that are effective and efficient in their inference capabilities.

3. Approach

Given the novelty of SIPPRA and the limited understanding of
system health management for CESes, the approach outlined in Fig. 3
supports the rigorous comparison of CES health monitoring model
designs based on multi-dimensional performance metrics. Before apply-
ing the process to better understand the impact of time discretization
strategies on the performance of DBN-based health monitoring models,
three inputs are required: a set of performance metrics to evaluate
SIPPRA methods, a list of methods used to discretize continuous time-
series data for DBNs, and a real-world case study for analyzing the
impact of different design choices on health monitoring models.

The first step in carrying out such a comparison across health
monitoring models is the development of relevant performance metrics.
Current metrics used to evaluate model performance in PRA and PHM
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Fig. 1. General process for SIPPRA derived from Moradi and Groth [1].
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Fig. 2. Rolled (left) and unrolled (right) two-time sliced DBN. This study seeks to understand the impact of varying the “At” in the graph.

Methods and Metrics

How should different CES SIPPRA

modeling methods be compared?

1. Define metrics for comparing the
performance of SIPPRA methods.

How is a DBN built for CES
SIPPRA?

(2. Identify and define methods that
discretize continuous time-series
\_data for use in DBNs for SIPPRA.

J

= =
‘What CES is being modeled?

3. Develop real-world case study

that demonstrates feasibility of

DBNSs for assessing CES
operational health and facilitates

comparisons of DBN
\ discretization methods. /
N

Application

How do similar CES DBNs vary in
performing SIPPRA?

4. Compare the performance of
DBNs built with different time

discretization strategies

7

Fig. 3. Comparison of DBNs built with different time discretization strategies requires a set of preliminary questions to be already answered.

techniques are not sufficient for system-level health models that utilize
SIPPRA techniques. Lewis and Groth [32] developed a rigorous process
to identify performance metrics as indicators of a successful completion
of SIPPRA tasks to ensure that the metrics set was comprehensive and
verifiable. This produced a set of thirty-five metrics that could be used
to compare the performance of different system-level health monitoring
models as a multi-dimensional concept , including assessment accuracy,
model construction costs, information content per sampling rate, and
number of inferred data sources. These performance metrics were de-
signed to be evaluated for a specific system or operational environment,
enabling meaningful and justifiable comparisons across model designs.

The next step is to define different methods for discretizing con-
tinuous time-series data for use in DBNs. In their review of the recent
reliability literature, Lewis and Groth [27] found that in constructing
DBNs, researchers have relied on the use of only two discretization
methods: time-based and state-based discretizations. Time-based dis-
cretizations uses system operational time as the discretizing factor,
while state-based discretizations partition time by either events that
affect the system or the attributes of system parameters; this is similar
to the “instant-based” and “interval-based approaches described by
Boudali and Dougan to categorize what they refer to as “temporal
Bayesian networks [33]. However, these approaches are shown to not

always respond appropriately to changes in a complex engineering
system timeline. Between the capability gaps of these two discretization
lies a third approach: a multi-interval hybrid discretization that adjusts
its sampling frequency based on operational and environment changes.
Lewis and Groth presented and verified the framework to develop a
model using this discretization process through a simplified model of a
CES undergoing an accident sequence [34].

The last step before the comparison of different model performances
is to develop a case study in which different models could be generated
to reflect the system. Lewis and Groth [2] produced a real-world case
study of the operational after-effects of a SFR experiencing a transient
overpower; this serves as a structured means for studying the impact
of different DBN structures and designs meant to capture CES health.
Structured processes were defined for converting simulated operational
nuclear data into the DBN’s node structure and CPTs. This work in-
troduced a framework to use for constructing DBNs for CES health
monitoring based on connecting operational environments, component
health, and human interventions, to system failures and prognostics.

4. Methodology

This case study compares the performance of different DBNs de-
signed to model the accident scenario described by Lewis and Groth
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[32]; that is, an SFR experiencing a TOP and subsequent system de-
cay, resulting in potential fuel relocation or thermal clad failures. A
total of fifty-six different DBN models are constructed in GeNle and
PySmile [35], a BN software tool, using the different discretization
strategies outlined by Lewis and Groth [34]. These models all have
the same node structure shown in Fig. 4; however, each discretization
method generates different CPTs that describe the underlying condi-
tional probabilities of the system, as separate sets of data are considered
when constructing the tables. This produces distinct models to consider
as viable for system health monitoring, diagnosing system failures, or
predicting current and future system states. Following a short descrip-
tion of the case study used in this comparison, the remainder of this
section outlines the different discretization methods studied and how
each metric compared is measured in this study.

4.1. Case study background

The remainder of this paper focuses on a sodium fast reactor ex-
periencing a transient overpower event. This is a simplified version
of the one studied by Jankovsky et al. [36]. SFRs can be considered
a typical CES in that they feature the primary characters inherent for
a CES; namely, they are composed of human, hardware and software
components and generate a large amount of operational data from
several data sources at varying rates. In addition to the nuclear core,
the system in the case study includes a “SCRAM”process for shut down
the nuclear reactions, a reactor protection system (RPS) and a direct
auxiliary cooling system (DRACS). For the purposes of this case study,
although there are multiple components to a sodium fast reactor that
provide a significant amount of system information through sensors
and operational reports, only a limited number of data sources will be
considered. These are, namely, the main indicators of the automatic
SCRAM process for shutting down the reactor, and are captured in
Fig. 4.

The primary accident event described through the DBN model in
this case study is a TOP event. TOPs can be caused by external factors,
e.g., an earthquake, that results in a sudden surge of power generation
in the reactor. When such an event occurs, the reactor’s automatic
SCRAM mechanism is expected to respond to operational changes
by inserting control rods into the reactor to greatly reduce power
generation; common indicators for the automatic SCRAM mechanism
include changes to net reactivity, cold pool temperature, and other fuel
feedback values [37]. Depending on the cause of the accident, however,
SCRAM and RPS functions may be impacted, limiting their ability to
prevent core reactions from further escalating. If this were to occur, the
reactor would face a significant risk of fuel relocation and clad melting,
resulting in a partial or full nuclear meltdown.

The accident data used in this case study to define the CPT tables
in the DBN models was determined from a dynamic event tree (DET)
that defined a series of accident event scenarios addressing potential
failure points when responding to a TOP event [37]. Based on software-
generated event scenario branching conditions, simulation modeling of
the nuclear reactor under these conditions produced time sequence data
for the different green measurable and derived parameters in Fig. 4 that
are necessary for monitoring overall system health. CPT tables were
then constructed based on the values of the simulated data as well
as the underlying event conditions from that data. The models were
run to simulate data readings throughout the reactor and BOP for a
full day after the TOP event (86,400 simulation seconds). The scenario
was considered finished when either: the cladding fraction of the core
channels reached an average of 90% (representing a clad melting
failure), the temperature of the cold pool had reached a significantly
high temperature resulting in a fuel relocation, or the reactor had
survived the simulated day without reaching those other thresholds.
In those instances, it is assumed that operators would have had enough
time to address any problems with the system’s processes.
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The nodes in the DBN in Fig. 4, represent either underlying system
state conditions or the type of health monitoring data seen under those
conditions. This network is dynamic in that the state values of three
model nodes (“Human Intervention”, “DRACS”, and “Clad Thickness”)
are dependent on their previous states (represented with a rounded
arrow). For ease of calculation, the nodes in the model are all discrete,
with the table of states shown in Table 1.

4.2. Discretization practices compared

This study compares the performances of DBNs that utilize time-
based, state-based, and hybrid time-based discretization methods.
Table 2 provides a summary description of the discretization approach
used in the models compared in this study.

4.2.1. Constructing DBNs with time-based discretization

DBNs constructed with a time-based discretization approach are
built on data collected over a specified period of time, as shown in
Fig. 5a. Four different data collection frequencies are evaluated in this
comparison: models with data collected every 9, 60, 120, and 1,200 s.
As this case study covers a period of 86,400 s, these rates roughly
translate to a DBN model with 9,500, 1,440, 720, and 72 time-steps,
respectively. These values were selected to provide a range of feasible
monitoring time periods, with the 9 s rate equivalent to the rate in
which the simulation code generates temperature data. These models
were constructed using the process outlined by Lewis and Groth [2].

4.3. Constructing DBNs with state-based discretization

DBNs constructed with a state-based discretization approach are
structured on data pertaining to a certain operational state; this is
shown in Fig. 5b. For this case study, the reactor’s net reactivity value
was used as the trigger for data collection. Data is collected only
when the net reactivity is evaluated over a specified threshold in a
given accident scenario. Net reactivity was selected as the triggering
variable as that parameter indicates whether a nuclear reaction is
moving towards additional power increases.

Four net reactivity values were chosen to compare as thresholds
for collecting system data: —$0.1, $0, $0.02, and $0.2. These values
relate to the binning used to discretize the associated net reactivity
node ($0.02), capture baseline operations ($0), or provide extreme
bounding scopes (—$0.1, $0.2). To build the CPTs for these models,
data is evaluated over the smallest available interval for each accident
scenario. If the value of the net reactivity is evaluated as greater than
the specified threshold at a given measurement, then all of the system
data associated with that time is included in constructing the relevant
CPTs.

4.4. Constructing DBNs with hybrid time-based discretization

Similar to those built with a time-based discretization, the CPTs for
DBNs developed using a hybrid time discretization approach are built
from data collected over a specified interval; however, once a threshold
state is reached on a triggering variable, data is then collected at a
different rate as explained by Lewis and Groth [34]. This type of model
is built as a hybrid of the previous two models, shown in Fig. 5c.

For this study, different combinations of time-based discretization
values are paired with a net reactivity threshold as the limit to switch
from one data collection rate to another. This results in a total of
forty-eight distinct models (combinations where the two rates are the
same are not compared as they are equivalent to the single time-
based discretization described above). Two different situations were
considered when defining the threshold state: when the initial time
steps are larger than the subsequent ones, and when the initial time
steps are smaller than the next steps. The first describes an instance
of increasing the data uptake from the system; for those models, the
second time steps begin when net reactivity is greater than the specified
threshold. The second situation relaxes data uptake. There, the second
time steps start when net reactivity is less than the specified threshold.
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Fig. 4. Each DBN compared in this case study has the same causal graph structure. Blue — human intervention, gray — CES components, dark green — measurable parameters,
light green — derived parameters, red — failure modes, light blue — system health.

Table 1
Model nodes and node states.

Node name Type of node Number of General state
states descriptions

SCRAM state System Component 4 SCRAM and Trip Success,
SCRAM Success and Trip Failure,
SCRAM Failure and Trip Success,
SCRAM and Trip Failure

RPS pump System Component 2 Operational, Not Operational

DRACS System Component 3 Degraded, Nominal, Enhanced

Human intervention Human Involvement 3 Yes, No, Undecided

Cold pool temperature System Information/ 3 Below 753K, Above 753K

Sensor data

Net reactivity System Information/ 3 Low, Medium, High
Sensor data
Coolant feedback System Information/ 3 Low, Medium, High
Sensor Data
Radial expansion System Information/ 3 Low, Medium, High
Sensor Data
Doppler System Information/ 3 Low, Medium, High
Sensor Data
Clad thickness System Information/ 11 90%-100% (by percent),
Sensor Data Below 90%
Failure: fuel relocation System Prognostics 2 Yes, No
Failure: clad fraction System Prognostics 2 Yes, No
System diagnostics System Diagnostics 2 Yes, No
Table 2
Summary description of discretization values used in model comparison.
Discretization Discretization description Number of cases
Time-based Data collected every 9s 60 s 120 s 1200 s 4
State-based Data collected when reactivity greater than -%0.1 $0 $0.02 $0.2 4
Hybrid time-based Data collected every X sec until reactivity threshold; then, every Y sec 48
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Fig. 5. The CPTs in the DBN compared in this study are generated from data derived from (a) time-based, (b) state-based, and (c) hybrid time-based data stream discretizations.

4.5. Performance metrics used to compare model designs

For this study, relevant performance metrics were selected and then
framed based on the specifications of the case study. The metrics used
to compare the different model designs were selected from the list
generated by Lewis and Groth [32]. After reducing the list to consider
metrics relevant for inspection, the following metrics were identified
as providing different ranges of performance: assessment accuracy (as
the alignment of risk assessment), prelimary model construction costs
(as CPT development time) and information content per sampling rate
(as average information content). Since this work studies how different
discretization methods impact model performance, these metrics are
model characteristics that are affected by changes data quantity. The
remainder of this section outlines how each metric is measured in this
study.

4.5.1. Assessment accuracy: Alignment of risk assessment

The first metric used to compare the different discretization ap-
proaches is assessment accuracy; in this study, that means how well
the model’s prior estimate of system health, represented by the “System
Diagnostics” node’s “Healthy” state, matches the underlying system
safety of the accident scenario. Model accuracy is a common metric
for evaluating model performance; if a monitoring model is unable to
provide an appropriately reflective health assessment, it is limited in
its ability to be used as a health management tool.

Joint prior probability for the “System Diagnostics” node is calcu-
lated using a model’s generated CPTs. The value of the node’s “Healthy”
state at the model’s last time step (86,400 s or equivalent) is then
compared by both magnitude and percent error to the calculated system
health assessment from the underlying DET used to generate the system
data. As an event tree, DET system health is determined from the
summation of failure probabilities. The closer the assessment is to the
baseline estimate (2.77 * 1077), the more aligned the model is to the
DET assessment. In terms of percent error, those values should be as
close to zero as possible.

4.5.2. Model construction costs: CPT development time

The next metric studied is the model construction cost; in par-
ticular, the time required to develop the CPTs for the DBN models.
For networks representing complex engineering systems, CPTs are of-
ten calculated through processing online data associated with specific
parent and child node configurations. Timing how long it takes for CPT-
generating programs to process the data and then construct the CPT
through internal software timers can provide model builders a sense of
CPT development time. Understanding the length of time required to
develop a model prior to use is important when considering appropriate
model designs to pursue.

This metric is evaluated as the summation of time taken to construct
network CPTs that vary in response to the different discretization
methods. These CPTs describe the causal relationships for the four
unobservable parameters (net reactivity, coolant feedback, radial ex-
pansion, and doppler), observable parameter (cold pool temperature),
dynamic clad thickness, and fuel relocation failure. For this metric,
models that take a shorter amount of time to construct are preferable
to those that take longer to develop.

4.5.3. Information content per sampling rate: Average information content
per measurement

The last metric compared in the study is the average information
content of each model. At the beginning of an accident scenario, there
are many unknowns beyond the probabilities of occurrence that are
assigned to the potential accident timelines. As new system informa-
tion becomes available from different data sources over time, there is
greater certainty about the nature of the current accident sequence as
well as its outcome. This new knowledge can ultimately lead to better
preparation and risk management for expected outcomes.

Information content for each measurement from the “Cold Pool
Temperature” node is quantified using information theory. Eq. (2)
shows how the information content for a collection of scenario out-
comes X based on the previous knowledge about Y data measurements
can be expressed as the sum of the conditional entropies of the potential
operational sequences that resulted in those measurements:

1
(};{ Pr(x|y)log <m>>

The total information entropy is then averaged to better approxi-
mate the information content for a given set of cold pool temperature
measurements. As entropy describes the amount of overall uncertainty
or information required to identify a current scenario from all possible
events, lower values for this metric are preferable (e.g., a value of 0
indicates complete certainty) to larger values.

HX|Y) == Pr(y) @

yeY

5. Results

This section presents the results from evaluating the performance
metrics described above for DBN models built using different data
stream discretization strategies. For a cleaner discussion and analysis,
this section will feature either sample values or summarizing figures.
The summary figure common across the performance metrics is a heat
map of metrics values. Shown in Fig. 6, these maps can be divided
into the four regions for the discretization approach used: the lower-
left section (hybrid time-based discretization where the first time step
rate is less than the secondary rate), the diagonal (standard time-based
discretization), the upper right part (hybrid time-based discretization



A.D. Lewis and K.M. Groth

Table 3
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Sample DBN model prior safety estimates (vs. DET baseline safety estimate of 2.77 * 10-7).

Time-based State-based Hybrid time-based
120 s 1200 s Net Reac. Net Reac. 1200-120 120-1200
>=0 >=0.02 @ Net Reac. <=0.02 @ Net Reac. >=0.02
Prior risk 2.59*10E-07 2.68E-07 5.16E-08 8.00E-08 8.65E-08 2.47E-07
% Difference -6.36% -3.21% —81.4% -71.1% —68.8% -10.73%

Time-Related (Time- and Hybrid Time-based) Discretization
Primary Time-Step Length (s

State-Based
Discretization

1200 (A)[120 (B)|60 (C

1200: Thresh. 0.2
1200: Thresh. 0.02
1200: Thresh. 0
1200: Thresh. -0.1
120: Thresh. 0.2
120: Thresh. 0.02
120: Thresh. 0
120: Thresh. -0.1
60: Thresh. 0.2
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Fig. 6. Heat maps like this one summarize the results from the metric studies. Green
indicates a preferable metric value, while red squares indicates less preferable values.

where the first time step rate is greater than the secondary rate), and
the separate right-side column for state-based discretization. Model
designs with more preferable values appear closer to dark green, while
those with less desirable values are a darker shade of red.

5.1. Results of risk assessment alignment study

Table 3 shows a sample of estimated priors from example models
for the different discretization approaches and their similarity with
the underlying DET’s baseline estimate of 2.77 =« 10~7. The values lie
roughly within an order of magnitude to the baseline estimate. The
models that collect more data (120s time step vs. 1200s time step,
and reactivity threshold greater than 0 vs. greater than 0.02) appear to
produce more conservative safety estimates with greater percent error
from the baseline estimate. This trend is further expressed in Fig. 7,
which plots the calculated safety assessment for each state- and time-
based values (the DET value is included as reference). Even though both
time- and state-based discretization strategies have a similar trajectory,
the state-based discretization cover a wider range of values.

The percent errors for the hybrid discretization are compared along-
side the time- and state-based discretization results in the heat map in
Fig. 10. The percent difference for the diagonal region is consistently
better than the other two regions, but gets progressively larger with
smaller time step lengths. The upper-right region is slightly worse than
its diagonal counterparts, but improves with lower threshold states. On
the other hand, the models represented in the lower-left region are
significantly further off from the baseline DET estimate but worsens
with lower threshold states (see Fig. 8).

5.2. Results of CPT development time study

Table 4 presents the amount of time it took to develop the CPTs
for the example models described previously in Table 3. Overall, the
CPTs that required the most amount of time to construct described the
causal relationships for the non-observable and observable parameters.
This is largely in part due to these variables changing over time, while

the other nodes relate to system aspects that occur less frequently or at
the end of the accident scenario.

As expected, the models with CPTs constructed with more data,
either by shortening the time step length or lowering the threshold
value, took longer to build that those with longer time steps or higher
threshold values. Since the number of CPT entries for a given node
remained constant across the models, the CPT development time is
dependent upon the quantity of data that was required to be processed
during each discretization process. The construction times for the four
time-based and state-based models are plotted in Fig. 9 and compare
the increases in computational time requirements with the increases in
available data for either discretization strategy (either through shorter
time-steps or lower thresholds). The CPT construction times associated
with the DBNs built from a time-based discretization follow a power
curve. While the state-based models also require more time to develop
CPTs at lower thresholds, the increase in time is not easily modeled
through a curve. This can easily be seen by the sharp jump in computa-
tional time between the model measuring data at $0.02 to $0 threshold.
The model construction time for these two discretization times appears
to intersect somewhere between $0.02-0 reactivity threshold and, us-
ing the power curve to determine boundaries similar to the time for the
state-based discretization strategies, somewhere between 240 to 3500
s.

The CPT construction times for the hybrid time-based models pre-
sented in Table 4 lie between the construction values for the two
discretization rates when used in a time-based discretization. The re-
maining computational times for the hybrid strategies are captured
and compared to the times from the other models in the heat map
in Fig. 10. For the most part, hybrid-time discretization construction
times lie between the values of the two time-based methods used,
presented along the diagonal of the heat map. That is not always the
case, however; for some models, like the one built with a primary
time step length of 120 s that transitions over into a new rate of 60 s
following a reactivity measurement above $0.02, the computational
time required for developing the hybrid CPTs were longer than that
for the time-based model built with a time-based discretization of 60 s
time steps (46,278.3 vs 46,053.5 s).

5.3. Results of information content study

The charts in Figs. 11 and 12 show the progression of average
conditional entropy, or information content, for the models built using
the state- and time-based discretization strategies across the different
model time steps. Each model begins with an entropy of 4.32; this
is derived from the failure probabilities from the DET branches. The
figures show that additional system information can affect the value of
information for the particular scenario.

Generally speaking, the average conditional entropy decreases over
time across all discretization methods studied, with greater decreases
more likely to occur towards the earlier time steps for each model.
In instances where the time-steps overlap (i.e., data would have been
collected at the same time), the average conditional entropy is greater
for models with more time steps. The difference between entropies at
the same point in time however, appears to be reduced over smaller
distances than larger ones. This is further seen, when at approximately
70,000 s into the simulation for the time-based discretizations, differ-
ences in the conditional entropy across the models eventually decrease,
leading to roughly consistent entropy values from then on.
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Fig. 8. Comparison of percent error of safety estimates across models and discretization strategies.

The heat map presented in Fig. 13 captures the averages of each
model’s average information content. In general, those values were
larger for models with larger time steps and more inclusive thresh-
olds, validating the observations made before. The values for the hy-
brid time-based models lay between the values of the two time-based
methods used.

6. Analysis

The structure of the metrics studies allowed for an initial evaluation
of the difference between modeled system safety and the “ground

truth” system safety captured by the DET. For the most part, the
models provide roughly the same level of performance with respect to
prior assessment accuracy, with time-based models providing slightly
more similar results than either the state-based or hybrid time-based
models. From this metric alone, the discretization strategies appear
comparable in model performance; however, the results from the other
metrics studies indicate that there are substantial differences in the
performances of DBN SIPPRA health monitoring models derived from
the discretization approach used to derive model CPTs. The rest of this
section expands upon more findings from this study with respect to the
different discretization strategies.
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Time-based State-based Hybrid time-based
120 s 1200 s Net Reac. Net Reac. 1200—-120 120-1200
>=0 >=0.02 @ Net Reac. <=0.02 @ Net Reac. >=0.02
Non-observable 383.3 3,420.1 838.2 838.2 4,068.6 1,223.0
parameters
Observable 2,035.6 19,590.1 9,958.6 9,958.6 2,610.3 2,229.9
parameter
Fail: fuel 58.7 28.7 15.1 15.1 16.4 17.1
relocation
Dyn. clad 1.0 10.2 21.8 21.8 31.9 338.4
thickness
Total (s) 2,478.6 23,032.9 10,833.7 10,833.7 6,727.2 3,808.4
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Fig. 9. Comparison of the construction time of DBN CPTs based on the length of time steps and threshold values.
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Fig. 10. Comparison of the different CPT construction times across models and discretization strategies.
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Time-Related (T ime- and Hybrid Time-bas ed) Discretization State-Based
Primary Time-Step Length (s) Discretization
Net Reactivity
1200 120 60 9 Threshold
1200: Thresh. 0.2 3545.1 47919 17.645.1
1200: Thresh. 0.02 24786 38084 4831.1 17.147.0
1200: Thresh. 0 37354 47961 17179.5
1200: Thresh. -0.1 18.820.6 36,783.1 220.696.3
120: Thresh. 0.2 2.780.0 26513.9 38205.7
120: Thresh. 0.02 6.727.2 23.032.9 26202.7 383’5%49 0.0
Secondary 120: Thresh. 0 12,791.7 26,797.3 390515.8
Time—Steb 120: Thresh. 0.1 24.134.4 444204 236.564.0
Length and 60: Thresh. 0.2 2632.1 26,159.5 61993 4
Threshold Value |60: Thresh. 0.02 10.884.9 46,278.3 e
60: Thresh. 0 240474 48,627.0 Gl b .
60: Thresh. 0.1 47.880.3 40458.4 240578 .4
9: Thresh. 0.2 27250 26930.4 53.125.0
9: Thresh. 0.02 624932 2054232 281304.2 -
9: Thresh. 0 155,799 34755 312017.7 Ll A S0 Al
9: Thresh. -0.1 312.802.7 3134126 318069.3

Fig. 13. Comparison of mean values of average conditional entropy across models and discretization strategies.

6.1. Analysis of state-based discretization model performance

The DBN literature search by Lewis and Groth [27] found that
examples of time-based and state-based discretization methods were
being used to develop DBNs for research. When applied to constructing
DBNs for SIPPRA, both approaches seem to offer a way to reduce the
overwhelming amount of CES data to consider when developing CPTs.
Where the data is reduced, however, varies significantly. While adjust-
ing time-based discretizations changes how many measurements are
taken across all potential scenarios equally, a change in the threshold
for state-based discretization alters the number of scenarios considered
for as usable system information. If the measurement threshold would
not be reached during a potential scenario, that scenario is not con-
sidered in building out the underlying conditional probabilities of that
model.

The elimination of certain scenarios during model construction
distinguishes the metrics results for the models built with state-based
discretization from those built with the time-based discretization. First,
the range of prior assessment values is considerably larger for state-
based models as only similar data are considered for use in constructing
the CPTs; adjusting the threshold value changes what data are deemed
“relevant”. With respect to computational time requirements, DBNs
constructed with state-based discretization could not be plotted along
a similar power curve like the time-based discretization. Rather, it is
the amount of system data above the threshold value that indicates
the time required for CPT construction; for this accident space, there
are far more instances across more scenarios where net reactivity was
measured between $0 and $0.02 than $0.02 and $0.2. This explains the
large increase in computational time when the threshold was lowered
from $0.02 to $0. Lastly, DBNs discretized with a state-based approach
had the widest range of average entropy values. Although lowering the
number of time steps for these models tended to lower average entropy,
and therefore reduce the uncertainty, of the accident scenario’s identity
for any specific point in time, the information content values associated
with these models were greater than either time-based or hybrid-based.
One reason for this is that net reactivity can be associated with values
of cold pool temperature. As such, the threshold selected for the net
reactivity also impacts the range of different cold pool temperatures
available for constructing model CPTs.

Another effect of eliminating any data from certain scenarios is
the transformation of CPTs across models and discretization values.
Table 5 shows the same portion of a CPT across different time-steps and
threshold values considered for this studies. As the threshold and length
of time steps get lower, the CPTs begin to approach a similar value; this

is to be expected as with the smallest possible steps and no threshold for
collecting data, both approaches would capture the same data. Moving
away from that point, however is when the CPTs vary drastically.
With a reactivity threshold value placed at $0.2, system data collected
for that model would suggest that a scenario in which DRACS could
be enhanced or degraded is not possible. With this albeit unrealistic
threshold value, model designers are left to figure out an appropriate
uninformed relationship to place in the empty spaces of the CPTs. As
the threshold is lowered, however, evidence is made available about
those scenarios, and the CPT can be filled in using available system
data. This contrasts from the time-based discretization models, where
even at the largest time step studied, the time-based discretization had
access to available data for those scenarios.

For these reasons, constructing a DBN health monitoring model
using a state-based discretization is not a recommended approach.
Although they were often faster to construct than their time-based
counterparts, DBNs constructed with state-based discretization have too
much uncertainty and variability associated with the amount of data
above or below different threshold values to consistently predict their
performance across the different metrics studied. Eliminating scenarios
that do not meet a threshold also presents significant challenges in
ensuring that the health monitoring model has appropriate scenario
coverage; that is, the model is applicable for different scenarios of sys-
tem operation. If the model is unusable in certain situations, i.e. when
there is a SCRAM failure but not high net reactivity, then it will be
not helpful in predicting the system’s progression of system health.
This problem is only exacerbated if sensors that are used to determine
whether a threshold has been reached are inaccurate or broken.

6.2. Analysis of time-based discretization model performance

Although models built with the time-based discretization approach
were shown to have the most similar safety assessments relative to
the baseline estimates, the other results from the multi-dimensional
performance study indicate that models built with the time-based dis-
cretization also face limitations of their own. The placement of CPT
construction time on a power curve greatly restricts the ability for the
model to capture on-line time. For example, in some instances, the
SAS4 A data set also used to develop this case study, provided data
about the reactor simulation at a rate of 0.1 s. Using the modeled power
curve as an estimate for predicting computational time, the amount
of time require to construct a 8,640,000 time step model would be
approximately 24.5 million seconds, or about 284 days. For modeling
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Table 5
Portion of radial expansion CPT (SCRAM: SCRAM failure, trip success; RPS pump: operational) over different State- (upper table) and Time-based (lower table) discretizations.
React. 0.2 0.02 0 -0.1
thresh.
DRACS Enh. Nom. Deg. Enh. Nom Deg. Enh. Nom Deg. Enh. Nom Deg.
Low No 0.306 No 0.209 0.079 0.208 0.068 0.018 0.095 0.084 0.002 0.083
Evid. Evid.
Middle No 0.575 No 0.791 0.371 0.792 0.932 0.184 0.905 0.916 0.061 0.917
Evid. Evid.
High No 0.119 No 0 0.550 0 0 0.797 0 0 0.937 0
Evid. Evid.
Time 1200 s 120 s 60 s 9s
step
DRACS Enh. Nom. Deg. Enh. Nom Deg. Enh. Nom, Deg. Enh. Nom. Deg.
Low 0 0 0 0.0004 4.3E-06 0.0004 0.001 6.2E-06 0.001 0.001 1.3E-05 0.001
Middle 1 0.011 1 0.9996 0.01 0.9996 0.999 0.010 0.999 0.999 0.010 0.999
High 0 0.989 0 0 0.990 0 0 0.990 0 0 0.990 0

a CES with even more components and failure modes, this would be an
overwhelming amount of time and computational requirements. There
were even challenges in calculating CPTs for models with larger time
steps; even building a model with a realistic monitoring of every two
minutes took a considerable amount of time to construct. Time-based
discretization models are also constrained by the length of time that
they cover; for instance, given the limited capability for GeNIE to tackle
models greater than 3,000 time steps, the models with the 9.5 s had to
be split up over subsequent models. This space requirement is a major
concern for time based models over long forecasting periods; reducing
the time of interest to focus on more upcoming events and scenarios
may be beneficial for improving the performance of these models.

As shown in Table 5, the CPTs for time-based models quickly
converge; this is a product of the data from this study, as most of
the accident scenarios have relatively constant data over the length of
the simulation time. This also helps to explain the stabilizing average
information content per model as the simulation progresses. However,
as these CPTs become relatively similar, the only noticeable difference
becomes the amount of time steps present to represent the 86,400 s
time period. As the model CPTs reflect a degrading system, more time
steps indicate a greater likelihood of system failure. This explains why
the time-based discretization models with more time steps have lower
safety assessments than those with fewer. Furthermore, with fewer
time steps, the beginning of the simulation time (where most of the
data volatility occurs), is weighted more heavily against the more
constant data of the success scenarios; this helps capture why, in this
instance, the system safety assessment of the models utilizing larger
time steps are closer to the underlying baseline estimate. It should be
noted that in more volatile scenarios, larger time-step values could
overstep available information that indicated a SCRAM failure event
had occurred. Without that information, the model would provide an
incorrect assessment. Furthermore, increasing the number of time steps
for time-based models tended to lower average entropy for any specific
point in time. With only a set number of scenarios addressed in this case
study, providing more information about the branching from “High”
to “Low” cold pool temperature restricts the range of possibilities that
could occur. This allows the user of these models to limit his or her
attention to the possible scenarios based on the available information.
Smaller time steps capture more data variations and data trends earlier,
which, when incorporated into a CPT, help to create DBNs that are
better aligned with the scenario; however, this results in increased
computational requirements.

6.3. Analysis of hybrid time-based discretization model performance

The hybrid time-based discretization approach was introduced to
address some of the challenges faced by the previous two discretization
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strategies, The aim of this approach is to reduce the computational costs
of the time-based discretization strategies by emphasizing scenarios
relevant to the model user while minimizing, but not eliminating the
scenarios that do not meet the specified interests.

The metrics results from the hybrid models indicate a discretiza-
tion approach that provides comparable performance while reducing
computational requirements. Table 6 shows how the probability values
from CPTs for a hybrid time-based discretization for a given parent-
node “operational context” compare to the same CPT conditions for
the two related time-based discretization scenarios. Depending on the
threshold, some columns of the table may align more to one time-step
length or another as the threshold value restricts data from certain
scenarios. This is similar to the state-based discretization approach,
which is built from data of predetermined scenarios; however, unlike
that discretization approach, all scenarios are considered in building
the CPTs. This is shown in the computational time required to build a
hybrid time-based model’s CPTs. In most instances studied, the com-
putational time for these models lie between the computational time
for the two measurement rates as they remove a number of excess
measurements from scenarios that are of lower interest. However, it
should be noted that as the number of scenarios meet the specified
threshold, the additional time required to check scenario data causes
these models to become equivalent, or even become greater than,
the time required for a model constructed using single time-based
discretization with the smaller time steps.

The performance of the hybrid time-based models vary based on
the time-step lengths used as well as the threshold value assigned to
switch from one rate to another. This can be seen in the stark difference
in the models’ system safety estimates. Here is another instance in
which the discretization of the operational data is affecting model
performance. For models whose primary time-step length is smaller
than the secondary rate, more emphasis is placed on data after the
threshold value has been met. In this situation, where an accident has
already occurred, this switch gives data further away from the accident
more weight in the CPTs. On the other hand, time step rates that are
smaller immediately following an accident prioritize data closer to an
accident that can offer a better picture of what is going on. These rates
can be relaxed once more normal values have been met. This is also
shown in the average conditional entropies for these models, in which
the two scenarios present different amounts of knowledge about the
current situation.

6.4. Comparison across model performances

Ultimately, the results from the study show that in this scenario,
models built with a hybrid time-based discretization method provide a
useful compromise between the operationally dependent but often in-
complete state-based models, and the all-inclusive but time-consuming
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Table 6
Comparison of “Radial Exp” node CPTs for time-based discretization and sample hybrid-time discretizations across select specific system state “operational contexts”.
Select portion Operational context 1 2 3 4 5 6 7
of radial CPT
“Radial expansion”
node state
Time-based disc.: Low 0.0004 4.3E-06 0.0004 0.0004 0.006 0.0002 0.006
120 s time ste s Medium 0.9996 0.010 0.9996 0.002 0.845 0.028 0.831
P High 0 0.990 0 0.998 0.149 0.971 0.162
Time-based disc.: Low 0.001 5.6E-06 0.001 0.0002 0.006 0.0002 0.006
60 s time steps . Medium 0.999 0.010 0.999 0.002 0.845 0.028 0.831
P High 0 0.990 0 0.998 0.148 0.971 0.162
Hybrid time-based disc.: Low 0.001 9.3E-06 0.001 0.0002 0.006 0.0004 0.006
120 s until net reactivity Medium 0.999 0.017 0.999 0.001 0.845 0.055 0.831
>0.02, then 60 s time steps High 0 0.983 0 0.999 0.148 0.945 0.162
Hybrid time-based disc.: Low 0.0005 5.6E-06 0.0005 0.0002 0.006 0.0002 0.006
120 s until net reactivity Medium 0.9995 0.01 0.9995 0.001 0.845 0.028 0.831
>0 s, then 60 s time steps High 0 0.990 0 0.999 0.148 0.971 0.162
Hybrid time-based disc.: Low 0.0004 4.3E-06 0.0004 0.0005 0.006 0.0002 0.006
60 s until net reactivity Medium 0.9996 0.010 0.9996 0.003 0.845 0.028 0.831
<0, then 120 s time steps High 0 0.990 0 0.997 0.149 0.971 0.162
Table 7
Metric summary comparisons.
Time-based State-based Hybrid time-based
Risk alignment with Comparable Comparable Comparable

underlying DET assessment

(More Accurate)

(Less Accurate) (In-Between)

Defined
power curve

Description of CPT
Development time

Bounded between
Time-based values

Disjointed
step function

Information content: Lowest

Avg. conditional entropy

Highest In-Between

time-based models. If model selection was solely based on time or
assessment accuracy, the model constructed with 72 time steps would
be the top choice. However, because it fails to provide meaningful
knowledge assessments, the hybrid time-based model that starts at
120 s time steps and transitions over to 72 following a reactivity
threshold of $0 might also be another choice to consider. These de-
cisions require understanding the model user’s needs and subsequent
consequences for system failure.

7. Discussion

7.1. Applying different discretization strategies to other CES health manage-
ment scenarios

Table 7 summarizes the broad findings of applying the three perfor-
mance metrics on DBN models constructed using each of the different
data-stream discretization approaches. The differences in metric values
across the three discretization strategies highlight the variations in
model performance that arise when DBN CPTs are parameterized using
data collected over different time windows and system characteristics.
These findings serve as an initial step towards better understanding the
impact of the decisions the dynamic risk model developers make when
determining what time discretization to use for a particular health
monitoring scenario.

Ultimately, the range of values provided by these metrics indicate
that the performance of SIPPRA health monitoring models is multi-
dimensional, and cannot be narrowly constrained to a single metric.
This is important when considering an appropriate discretization ap-
proach for developing, as there exists opportunities for trade-offs based
on different risk model user preferences, needs, and requirements.
For example, in the SFR case study, larger time steps may result in
shorter computational time to develop the CPT, but this comes at a
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loss of information per model step. Likewise, smaller time steps and
more relaxed thresholds provide more information about the current
scenario, but require significantly more time to construct the model. A
hybrid time-based model may address some of these limitations, but
it is still often bounded in performance between time-based models
constructed using either rate. Considering these trade-offs, as well as
additional ones from other performance metrics mentioned in Lewis
and Groth [32], will provide better understanding on how DBN dis-
cretization strategies impact SIPPRA model performance and allow risk
model developers clearer insight for designing improved system health
assessment models.

It should be noted that although these results are valid for this
particular scenario and CES, inherently, conclusions cannot be sepa-
rated from the purpose behind building a model and the assumptions
that went into constructing it. This SFR TOP scenario has a number
of unique features that may have contributed to these results. First,
the scenario outlined in this case study is the aftermath of a external
disaster that has damaged the system; as a result, the focus of this
scenario is not the prevention of a disaster (that has already happened),
but rather a better understanding of whether the system will be able to
return to normal operations. To that end, the time period covered for
this accident sequence is skewed far beyond most operational changes
would occur to the system. As a result, the volatility of the parameters
lessens over time, making inspection beyond a certain point unneces-
sary. This is seen in the relatively constant CPTs constructed over time.
Despite the additional information, the data was still incorporated into
the CPTs at the same rate (as in, doubling the time steps over the period
of time would just double the count of data to consider).

Understanding CES operational scenario nuances is important when
considering discretization strategies for a health monitoring model
design, particularly in the case for hybrid time-based discretization. As
previously mentioned, models built to assess system health within the
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context of the scenario in this study are intended to reflect the health of
a system that has already experienced damage. Given that insight, the
hybrid-time structure best suited for this study is one that collects more
system data early on, gradually loosening restrictions once a certain
threshold has been reached. Other CES operational data may appear
differently than the accident data used in this study, however. For
example, the scenario of interest may be the lead-up to a potential
system failure based on component degradation or human intervention.
In that instance, system parameter values begin as baseline values but
become more abnormal over time. There, it is reasonable to increase
measuring rates once an abnormal threshold is met, as the aim there
is to identify the likelihood of system failure as early as possible. To
determine which discretization approach would be best suited for that
example would require a similar study to the one carried out here that
takes into consideration the operational nuances and requirements of
the CES of interest.

7.2. Applying study methodological process to other SIPPRA model design
decisions

The results from this study provide further insight into how dis-
cretization strategies affect different aspects of model performance, and
also serve as a validation for the use of the methodological process
applied in this study to investigate aspects of CES health monitoring
model design decisions. Effectively discretizing data streams is just one
open question in the area of SIPPRA and CES health management; there
are many others that would greatly benefit from a similarly structured
comparison study. These potential research areas may be focused, like
studying the impact of different data binning discretization practices on
DBN health assessments, or broad, like comparing different approaches
to health monitoring. Tackling these research questions would require
a similar approach: identifying the different model designs for the com-
parison, selecting the performance metrics used to compare the model
designs, and then applying them on a specific CES health monitoring
scenario and analyzing the results of the comparison. The continual
process of studying the impact of different SIPPRA approaches on
model performance would support a richer understanding of CES health
and provide better approaches for effectively monitoring and managing
them.

7.3. Future work

As an initial investigation into the impact that applying different
time-discretization strategies has on the performance of SIPPRA-based
DBNs, there are several areas to further our understanding of CES
health management. The first approach would be to expand the current
SFR case study. The model used in this research can be expanded by
adding additional nodes and arcs to the structure to provide a more
detailed representation of SFR system operations following a transient
overpower. Incorporating information about other reactor components
could provide either more understanding about the current scenarios
explored in the case study, or provide more information about the
impact that time discretization strategies have on DBNs constructed for
dynamic PRA.

The second area for future work would be to perform additional CES
case studies. In this study, a number of conclusions were drawn on the
contrast of performance of models utilizing different time discretization
strategies from the model comparisons made in the SFR case study.
Carrying out another case study on a different system would help to
validate the applicability of these findings across CESes. This secondary
case study could be on another accident scenario for a different nuclear
reactor, other systems within the nuclear power plant, or even in a
completely separate system domain. Other metrics could be selected to
analyze the differences of each DBN model built, including prognostic
and diagnostic model metrics like outcome accuracy and prognostic
horizon or model uncertainty [38].
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8. Conclusion

This paper presented the results of comparing fifty-six DBN-based
SIPPRA health models for a sodium fast reactor experiencing a tran-
sient overpower using different discretization techniques and compared
across different performance metrics identified by Lewis and Groth [32,
34]. Although the risk assessments for each model are comparable to
one another, the computational time and information content for each
model vary drastically. This indicates that the modeling decisions one
makes in the formation of health monitoring models have an impact on
their performance. Ultimately, the results of the study show that other
performance metrics are needed outside of considering assessment
accuracy in determining appropriate discretization parameters for opti-
mal performance. This study helps to provide better understanding on
how DBN time-step discretization impacts model performance through
the variations of these metrics; prioritizing certain metrics over others
will allow risk model developers to design useful tools to provide risk
managers clearer insight into potential accident scenarios and help to
develop improved risk management strategies for CESes.
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