)]
Check for
Updates

The Best of Both Worlds
High Availability CDN Routing Without Compromising Control

Jiangchen Zhu

Columbia University

Ethan Katz-Bassett
Columbia University

ABSTRACT

Content delivery networks (CDNs) provide fast service to clients
by replicating content at geographically distributed sites. Most
CDN s route clients to a particular site using anycast or unicast
with DNS-based redirection. We analyze anycast and unicast and
explain why neither of them provides both precise control of user-
to-site mapping and high availability in the face of failures, two
fundamental goals of CDNs. Anycast compromises control (and
hence performance), and unicast compromises availability. We then
present new hybrid techniques and demonstrate via experiments
on the real Internet that these techniques provide both a high level
of traffic control and fast failover following site failures.

CCS CONCEPTS

« Networks — Network measurement.

KEYWORDS

Anyecast, unicast, routing, performance, availability, CDN.

ACM Reference Format:

Jiangchen Zhu, Kevin Vermeulen, Italo Cunha, Ethan Katz-Bassett, and Matt
Calder. 2022. The Best of Both Worlds: High Availability CDN Routing
Without Compromising Control. In ACM Internet Measurement Conference
(IMC °22), October 25-27, 2022, Nice, France. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3517745.3561421

1 INTRODUCTION

A Content Delivery Network (CDN) provides high performance
content distribution via geographically distributed sites. CDNs dis-
tribute load and provide low latency by directing clients to nearby
sites. However, site failures in a distributed networked system like
a CDN are common and can prevent clients from accessing content
or services until they are mitigated. Site failures can inevitably
originate from server software or hardware upgrades [17], hard-
ware failures (e.g., router, line-card), network misconfiguration (e.g.,
BGP, DNS), facility outages [15], or sudden bursts of traffic (e.g.,
DDoS). CDNs need techniques that reliably direct clients to sites

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IMC ’22, October 25-27, 2022, Nice, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9259-4/22/10...$15.00
https://doi.org/10.1145/3517745.3561421

Kevin Vermeulen
LAAS-CNRS

655

Italo Cunha

Universidade Federal de Minas Gerais

Matt Calder

Columbia University

that provide high performance access to services and content and
that quickly divert clients to alternate sites in cases of failures.

The most common current techniques to direct clients to sites
for latency-sensitive services, IP unicast and IP anycast (§2), force
CDN s to make a tradeoff between traffic control and availability.
With IP unicast, a CDN directs users to a particular site by using
DNS to return IP addresses specific to the site, but the speed at
which the CDN can move users between sites is inherently lim-
ited by caching of DNS records. A DNS record’s time-to-live (TTL)
specifies how long it should be cached but cannot guarantee fast
failover. Setting TTL too low introduces additional latency for ap-
plications, and some client software and DNS resolvers continue
to use a DNS record after the TTL expires, directing traffic to the
corresponding site [1, 21, 29]. IP anycast relies on BGP’s distributed
path selection to direct clients to sites and so lacks unicast’s control
[26, 27] but enables fast failover following failures by withdrawing
announcements of the anycast address from the failed site [3].

To address the current need to compromise either control or
availability, we present new techniques that combine the strengths
of both unicast and anycast to achieve both precise traffic control
and fast site failover. Our approaches rely on each site being as-
signed a distinct prefix (e.g.,/24 or /48), from which DNS records are
returned as in unicast. To achieve fast site failover, in addition to
updating DNS records, we demonstrate that other sites can provide
alternative routes to the failing site’s prefix, which is similar to IP
anycast. To prevent these alternative routes from interfering with
control under normal operations, the other sites either announce
them only upon failure or announce them in ways that make them
less preferred (e.g., prepending). In this way, even if clients do not re-
ceive new DNS records immediately, packets destined to the failing
site’s address will instead be routed to other sites.

We evaluate our techniques with PEERING [34], a testbed that
lets us make BGP announcements and exchange traffic with the real
Internet at different sites. We show that our techniques combine
traffic control and fast site failover better than existing techniques.

e Qur first technique (§4) is able to retain the same amount of
traffic control as unicast and has a failover time of 10 seconds in
the median (for hosts across the Internet and emulated failures
of each PEERING site), only 2 seconds longer than IP anycast.
In contrast, the DNS TTLs used by top domains are around 10
minutes at median [29]. Although some CDNs use much lower
DNS TTLs (e.g., Akamai uses 20s [37]), some clients continue
using out-of-date DNS records in violation of TTL [1].

e Compared to our first technique, our second technique (§4) pro-
vides even faster failover, at the cost of some control. Compared
to anycast, it achieves roughly the same failover time, but, of the

IMC 22, October 25-27, 2022, Nice, France

many clients that anycast directs to a suboptimal site [27], our
technique is able to correctly steer 60% of them.

We compare the routing convergence properties of PEERING
announcements with those of real-world hypergiant networks and
conclude that the results can be generalized to real CDNs.

2 BACKGROUND

Unicast-based CDN site selection. In DNS-based redirection [9],
each site announces a unique unicast prefix. The CDN’s authorita-
tive DNS resolver returns an IP address within the optimal site’s
prefix (e.g., based on performance and load). We call this technique
unicast in the rest of the paper to highlight its announcement strat-
egy, as all techniques use DNS to provide IP addresses to clients.

During failures, the CDN updates DNS records and relies on the
clients requerying DNS for IP addresses to other sites, but records
are cached by the clients’ recursive resolvers, OSes, and, potentially,
applications. The CDN specifies a time-to-live (TTL) value in the
DNS record that indicates the maximum time the record should be
cached. Although the TTL can be set to a small value (e.g., less than
60s), this increases application latency [4, 40], and some applications
and recursive resolvers violate the TTL. A recent study found that
many connections were established after the TTL expired, and the
median time since expiration was 890s [1].

Anycast-based CDN site selection. With anycast, each site
announces the same IP prefix, and BGP policy routes clients to a
particular site. Since the path taken to the CDN’s network is de-
termined by the BGP policy of other networks, the CDN does not
have direct traffic control for performance and load management.
Previous work showed that a subset of clients are routed to sub-
optimal sites [7, 27]. Despite this, IP anycast has some advantages
during site failure: no DNS records need updating, and, if a site fails,
it can withdraw its announcements, and the remaining anycast
announcements from other sites will quickly attract traffic from
clients that previously had gone to the failed site. Although the
failover time is subject to BGP convergence, previous work [3] and
our work show that IP anycast achieves failover in tens of seconds.

3 GOALS AND NON-SOLUTIONS

Goals. Our goal is to develop techniques that overcome the lim-
itations of current redirection techniques (§2): achieve both the
control over client-to-site mapping of unicast and the availability
in the face of site failure of anycast. Control is necessary because
only the CDN has access to the service availability, server load, and
internal software and hardware health information necessary to
make the best redirection decisions. High availability is critical to
a CDN’s business and is closely tied to its ability to quickly direct
clients away from a failed (or failing) site.

Hybrid non-solutions. Our goal of combining some of the
advantages of unicast with the advantages of anycast suggests
the use of hybrid solutions. While the approaches we propose in
Section 4 are in fact hybrid, the two existing hybrid approaches of
which we are aware are not good solutions to our goal.

First, our prior work proposed identifying the subset of clients
with poor anycast performance and using unicast just for these
clients [7]. While this approach can overcome the disadvantages of

656

Jiangchen Zhu, Kevin Vermeulen, Italo Cunha, Ethan Katz-Bassett, and Matt Calder

anycast for clients of the CDN’s choice, it comes at the expense of
inheriting the disadvantages of unicast for that subset of clients.
Second, a CDN can announce a unicast prefix from a par-
ticular site while also announcing a less-specific covering
prefix from other sites. For example, a specific site advertises
184.164.244.0/24, and all sites advertise 184.164.244.0/23 as backup
(proactive-superprefix in Figure 1). DNS returns an address
in 184.164.244.0/24 to route clients to the specific site. Because
Internet routing uses longest-matching prefixes, as long as routes
for the unicast prefix exist, this approach enjoys the same traffic
control as unicast, but, once the unicast prefix is withdrawn
following a failure, traffic to addresses in that prefix will instead
use routes to the covering prefix announced from other sites, even
before receiving a new DNS record. We described this approach,
which we call proactive-superprefix, to colleagues at three
major CDNs, and all thought it would improve failover and
availability for a CDN using unicast. To find evidence of possible
use, we examined a RIS [30] BGP dump for prefixes containing
IP addresses of hypergiant web servers from April 2021 [14]. Of
the most specific prefixes that hosted these servers and were
announced by the hypergiants, 39% were also covered by less
specific prefixes announced by the hypergiants at the same time,
with the value ranging from 12% to 95% for individual hypergiants.
Despite the simplicity and great traffic control, the failover time
is poor. After a failed site withdraws its unicast prefix, (invalid)
routes to the prefix still exist in routers during route convergence,
which is slow for unicast prefixes [24] due to the lack of valid com-
peting routes for the exact prefix from other sites. When a router’s
preferred route to the prefix is withdrawn, if it has a route to the
prefix from another neighbor, it will select one and perhaps an-
nounce it to other neighbors, but the route is necessarily invalid
as the failed site withdrew its unicast announcement. BGP will
continue choosing invalid routes until none exist, taking time to
reach a consistent view. Until that happens, longest prefix matching
means that routers will use invalid routes to the withdrawn prefix
over valid routes from other sites to the covering superprefix, de-
laying failover. Even packets forwarded by a router that has already
converged to only have the covering superprefix may encounter
routers that still have invalid routes to the withdrawn prefix, pre-
venting the packets from reaching alternate sites. In contrast, the
withdrawal of an anycast prefix from a site converges faster because
valid paths to alternative sites are already learned by some routers,
which can quickly reconverge to these alternate routes (§5.4.1).
We study the convergence time for withdrawals of unicast pre-
fixes both by making our own announcements from PEERING and
by inspecting BGP collector archives to identify instances when
a prefix that had been announced by a hypergiant is withdrawn
from all collectors. We find that they take ~100s to converge at
the median (across (BGP collector peer, withdrawal event))
and more than 10 minutes at the tail (appendix A). Given that the
median DNS TTL for popular domains is 10 minutes [29] and DNS
records may be used past TTL expiration [1], this result suggests
that proactive-superprefix may improve availability over pure
unicast during some failures for some domains, but 100 seconds—
much less 10 minutes—of unavailability during route convergence
will quickly exhaust the unavailability budget of a CDN (e.g., a few
minutes per month) that hosts important Internet services [17].

The Best of Both Worlds: High Availability CDN Routing Without Compromising Control

Technique Before specific After specific
site fails site fails
Specific site { All 184.164.244.0/124 None

I__________"| 1
: Other sites | unicast None Unchanged
! |
! I) +164.244.024)
! I

|
: : proactive- 184.164.244.0/23 Unchanged
| superprefix
=

|
: | reactive- None 184.164.244.0/24
| ! anycast
| |

|
I
| H : proactive- 184.164.244.0/24 | Unchanged
! " ! prepending | prepended

e N

Figure 1: Announcements made by the specific site and other sites
before and after the specific site fails.

4 OUR TECHNIQUES

Existing techniques (§2) and hybrid non-solutions (§3) are not able
to achieve site failover without compromising traffic control. This
section presents two new techniques that achieve fast site failover
and preserve traffic control during normal operations. For traffic
control, a CDN needs the ability to redirect clients to specific sites.
This requires each site to be assigned a unique prefix. While the
requirement increases address usage for a pure anycast CDN, in
practice anycast CDNs already often have per-site unicast prefixes
as well [7]. On site failure, we assume that the site withdraws its
prefix announcements. In normal operation, a CDN can either
apply traffic control on all of its clients (like unicast) or use anycast
on most clients but apply traffic control on a subset of clients where
it wants specific control to avoid poor anycast routes, to achieve
better load distribution, or to achieve other control-based goals [7].

reactive-anycast enables fast failover by introducing routes
to alternative sites after failure. In normal operation, each specific
site advertises a unicast prefix, and DNS returns IP addresses within
that prefix. When the unicast prefix is withdrawn from the site
due to site failure, the CDN’s monitoring and control system will
cause all other sites to immediately announce it (Fig. 1). The new
announcements introduce new valid paths to the same prefix into
the Internet, and routers can select them to replace invalid paths to
the failed site, speeding up convergence. The failover time depends
on how quickly the new routes propagate to and are selected by
the clients or clients’ upstream networks. The full propagation of
new routes to all networks is not needed for failover. Immediately
after the withdrawal of the unicast prefix, a client network that is
not directly connected to the CDN still has an outdated path that
goes through its upstream to the site, so it will still forward packets
to its upstream provider. As soon as the upstream gets a new route
to another site, the packets will reach the CDN, even before the
client network learns of the new route.

The failover mechanism of reactive-anycast is similar to
anycast in that both rely on other networks replacing the invalid
paths with valid paths to other sites, but it differs in that this
technique only introduces paths to alternate sites after failure
and requires them to be propagated to clients or their upstreams.

657

IMC 22, October 25-27, 2022, Nice, France

So the deciding factor for failover is how quickly an anycast
announcement can propagate. We find that anycast announcements
propagate fast (~10s at median across public BGP collectors) by
making announcements on the PEERING testbed and looking into
announcements on the real Internet (appendix B). This result
makes us believe that reactive-anycast can failover faster than
proactive-superprefix (§3). However, during convergence
of reactive-anycast, some routers might lose routes, if the
withdrawal reaches them before an alternate route. One might
think that combining the two approaches would work better
than either on its own—proactive-superprefix could provide
a covering “backup” for any routers that the withdrawal reaches
before an alternate route, and this covering route could lead
packets to routers with more specific routes to alternate sites.
We implemented this combined technique, and our experiments
(similar to those in Section 5) revealed that it is only faster than
reactive-anycast for the fastest 20% of failovers, and it is much
worse in the long tail, an undesirable tradeoff. In future work we
will investigate the dynamics more.

reactive-anycast maintains fine-grained traffic control be-
cause the prefix is unicast in normal operation, allowing clients to
be directed to specific sites via DNS. It requires a real-time moni-
toring system to detect site outages, similar to ones that CDNs have
deployed to quickly detect problems [5, 8]. To minimize the failover
time, CDNs need to make new announcements quickly after the
detection of an outage. Such real-time action has been applied in
some traffic engineering systems [13, 36]. However, a disadvantage
of reactive-anycast is that global routing configuration must
be updated in response to a failure. Such simultaneous global con-
figuration changes are operationally treacherous [33], potentially
resulting in unexpected and cascading routing changes and intro-
ducing the potential for a global outage from a simple mistake [19].
To debug the propagation of the new anycast announcement, prior
to failure, a CDN can rotate through its sites and withdraw a test
prefix at the site to see if its clients are routed as expected.

proactive-prepending overcomes the shortcoming of
reactive-anycast by introducing alternative routes ahead of
failure. In normal operation, a specific site advertises a prefix
without prepending its AS path, and other sites also advertise
the same prefix with prepending as backup routes (Fig. 1). If
the specific site goes down and withdraws its announcement,
prepended routes to other sites provide reachability.

proactive-prepending sacrifices some traffic control com-
pared to unicast because AS path length is not the top factor in
BGP decisions. A network could prefer a prepended route due
to LOCAL_PREF, for example if it only peers with a site making
the prepended announcement. There is an interesting tradeoff.
On one hand, if the other sites prepend more times, the CDN
may get more traffic control because the non-prepended route to
the specific site is more likely to be chosen. On the other hand,
additional prepending will also make the backup routes longer
than additional invalid routes following a failure, so it may take
longer for them to be preferred, delaying failover. We will present
results about traffic control for different prepending lengths in
Section 5.4.2.

To limit the loss of control, a CDN can only announce the
prepended route for a site’s prefix to neighbors that also connect

IMC 22, October 25-27, 2022, Nice, France

to the site and hence receive the non-prepended route. (It has been
argued that best practice is to make consistent advertisements to
a neighbor at different peering locations [12], but we are simply
replacing the inconsistent advertisement of a CDN using a unicast
advertisement tied to one site with anycast announcements vary-
ing path lengths. BGP MED could also be used for neighbors that
support it.) For such a neighbor, the LOCAL_PREF is likely to be the
same for all announcements from the CDN, leading all its routers
to choose the non-prepended route to the intended site. If the peer
sets different LOCAL_PREF on announcements from different sites,
then the CDN will notice that all traffic goes to the sites with higher
LOCAL_PREF and can complain to the peer. Networks also tend to
set the same policy on peering points in the same continent [16].
After the site fails and withdraws the announcement, the border
routers receiving prepended routes will select and then propagate
them. This failover is similar to that of reactive-anycast but does
not require global routing reconfiguration.

Announcing the prepended routes to neighbors with multiple
connections to the CDN will position backup routes in two impor-
tant classes of CDN neighbors. First, most CDN traffic is exchanged
with a small number of eyeball networks that often serve multi-
ple metropolitan regions within a country or region, and a CDN
will typically connect to such networks in as many locations as
possible. Second, CDNs often connect to the same tier-1 or large
regional providers across many sites. For example, the majority of
Microsoft’s bandwidth costs are for traffic to 3 North American
ISPs, with tens of peering points [38]. Backup routes in these two
key classes provide outsized benefit to availability, as the eyeball
networks host most users and the providers carry traffic between
the CDN and many other networks. By prepending the routes from
backup sites, the CDN retains the control necessary to take advan-
tage of the full information it has about its customers and services
[9]. In addition, with modern intent-based centralized configuration
management, managing site- and/or peer-specific configurations is
straightforward [34], so adding or removing a peer introduces only
manageable and automatable configuration changes.

5 EVALUATION

We conduct failover measurements comparing our techniques
reactive-anycast (§4) and proactive-prepending (§4) to other
approaches, proactive-superprefix (§3) and pure IP anycast
(§2). We use the PEERING testbed [34] to emulate a small-scale
CDN on the real Internet, emulating site failures by withdrawing
announcements from one PEERING site. We measure failover time
on the control plane via BGP route collectors and on the data plane
by issuing pings out from PEERING to targets across the Internet
to assess when responses reach other PEERING sites. We do not
perform experiments to study the failover time of unicast because
our emulated CDN does not host real, popular services that clients
worldwide reach via DNS, and so we have no straightforward way
to measure the impact of DNS caching (and DNS TTL violations)
worldwide, which is what determines the failover time. PEERING
has multiple sites, which have routers with BGP sessions with
universities, providers, and/or IXP peers. We are allocated the
prefix 184.164.244.0/23 and are allowed to advertise or withdraw it
(and the two /24 prefixes within it) from any of the sites, with or

658

Jiangchen Zhu, Kevin Vermeulen, Italo Cunha, Ethan Katz-Bassett, and Matt Calder

without AS path prepending. Since a few PEERING sites only have
peers, we only use those that have at least one provider (and hence
should be globally reachable and able to reach all destinations) and
test their reachability with RIPE Atlas. The sites are located in
Amsterdam, Athens, Boston, Atlanta, Belo Horizonte, Seattle (two
sites), Salt Lake City, and Madison.

5.1 Target selection

To study traffic control before failure and availability after failure,
we select different sets of client targets for each PEERING site from
ISI’s IPv4 Hitlist [22]. The Hitlist provides one address per /24 that
is likely to respond to pings, of which ~3.5M actually respond to our
test pings. Probing targets from PEERING provides wider coverage
and more frequent measurements than platforms such as RIPE Atlas.
From the responsive targets, we choose 2.8M prefixes that have
web clients [20], which are more representative of CDN clients.
For each site, we select targets based on the following criteria.

o Site proximity. We only consider targets that are within 50ms
round-trip latency (measured using a unicast announcement
from the site). This is because CDNs generally serve clients from
nearby sites, and PEERING lacks sites in some regions.

e Not routed to site by anycast. In terms of traffic control, a
target that is routed by anycast to the site can always be routed
to that site by any of the techniques introduced in our work,
so it suffices to evaluate traffic control on those that cannot
be routed to the site by anycast, allowing us to limit probing
overhead and to measure the additional control that a tech-
nique provides beyond what is possible with anycast. To see
this, in proactive-superprefix and reactive-anycast, the
most specific prefix is only announced at the site, so return-
ing corresponding DNS records can route any target to the site.
For proactive-prepending, this is because routes to other sites
are prepended in proactive-prepending, and become less pre-
ferred than they are in anycast. To assess whether this criterion
impacted the failover time we measured, we also picked an alter-
nate set of targets without this criterion and found that failover
times were very similar for both datasets. In the rest of the paper,
we only present results using the set with this criterion.

Using the criteria above, we select 50K targets for each site. We
choose the targets to spread them across ASes as evenly as possible,
selecting randomly within an AS when there are multiple that meet
the criteria. In total, our targets include more than 20K ASes.

5.2 Experiment setup

We iterate through each technique and, for each technique, through
all sites, failing one at a time. First, we advertise the prefix(es)
according to each technique’s announcements before failure
(Fig. 1). Since PEERING providers differ by site, our evaluation of
proactive-prepending prepends from all alternate sites, not just
to neighbors that also connect to the non-prepended site as we
believe a real CDN could. We prepend three times at other sites
(Section 5.4.2 compares results for three vs. five, and the majority
of sites do not see much change in traffic control). Then we wait
for one hour to ensure convergence has been reached, and after
that we test the reachability of targets. In this stage of the test,
we ping the targets once and check which targets have responses

The Best of Both Worlds: High Availability CDN Routing Without Compromising Control

- Reconnection

= proactive-superprefix

= reactive-anycast

__1,— proactive-prepending
anycast

© o o0 opr
o N U N o
S v o u o

CDF across
<failed site, target>

10° 102

Time (second)
Figure 2: Reconnection and failover time for each technique.
reactive-anycast and proactive-prepending achieve failover time
similar to anycast. proactive-superprefix has a much longer
failover time than anycast.

that are routed to the current site, which represent the targets
controllable by the technique. Next, we emulate a site failure by
withdrawing all prefixes that are announced by the current site.
After the failure, we advertise prefixes from other sites if it is
specified by the technique (Fig. 1), send pings to each controllable
target every ~1.5s for ~600s, and run tcpdump at each site to record
when and at which PEERING site the replies from targets arrive.
We use this probing to evaluate availability for our study, but real
CDNs would not need this type of probing, plus already have
deployed measurement solutions [8, 35]. We send the ping requests
using Verfploeter [23] from a PEERING site other than the failed
one, using source address 184.164.244.10 so that the responses are
routed towards the current site’s prefix. Each ping request has
a unique sequence number so that we can match each response
with its request and observe whether there is a missing response
(i.e., disconnection). We also collect BGP feeds from RIS [30] and
Routeviews [42] to show that the convergence time on PEERING is
similar to other networks (§5.4.3, appendix B).

5.3 Ethics

Our probing towards the targets follows established ethical mea-
surement practices. First, these targets have not opted out during
ISI’s scan [11]. Second, in the payload of our ping requests, we
included a link to a web page with details on our experiment and
contact information to opt out. We did not receive messages to
opt out. Third, we calculate that the average traffic rate during the
probing period is less than 100B/s for individual targets, which is
unlikely to disrupt targets or cross traffic. Fourth, we did not see
evidence that we exceeded ICMP rate limits because we did not
observe significant loss after convergence [18].

5.4 Results

5.4.1 Reconnection and failover time. Following a failure, a target
may experience periods of disconnection and be routed to one or
more alternate sites before its routes converge to a new site. We
calculate two metrics, the reconnection time as the delay from our
prefix withdrawal until we first receive a ping response from the
target at any site and the failover time as the delay from our prefix
withdrawal until the first ping response after which the target does
not switch sites or experience disconnection again. Reconnection
time describes how quickly a client can connect to another site
for the first time after the site goes down and is the lower bound
of the time to restore the service. However, following this initial
reconnection time, some clients may experience further periods of
disconnection or switch sites, which can break ongoing connections.

659

IMC 22, October 25-27, 2022, Nice, France

To quantify the above effect, we measure the failover time, which
serves as a conservative upper bound for the time to restore the
service after failure, since client transactions can succeed before
this time as long as they are not interrupted by a site change. A
small number of clients change anycast sites frequently [44], which
could inflate our tail failover times.

Figure 2 presents the CDF of reconnection and failover
time for proactive-superprefix, reactive-anycast,
proactive-prepending, and anycast. The CDF is across all
targets for all sites. Our two techniques reactive-anycast (§4)
and proactive-prepending (§4) have a reconnection time close
to anycast, with the median around 10 seconds. reactive-anycast
has a very similar failover time as anycast. proactive-prepending
has a failover time ~5 seconds slower than anycast, which is
likely because the longer routes are less preferred during the
convergence. proactive-superprefix (§3) has a much longer
failover time than anycast (§3) or our new techniques (§4). A recent
study observed many clients initiating connections to servers long
after the TTL of the corresponding DNS record expired (890s in the
median) [1], suggesting that the tail failover for unicast is likely
much slower than for anycast or our techniques.

For each technique, the gap between reconnection and failover
time (a few seconds to 20 seconds at median) shows that clients
may bounce between sites for a short period of time after they
reconnect for the first time, with most targets bouncing once or
twice. We also find that, during this interval, most targets do not
experience periods of unreachability. Infrequent bounces and high
availability mean short connections are unlikely to be interrupted
unless they overlap the time when the client switches sites. A
long connection may be interrupted during this interval but the
connection can be re-established by applications. Since many CDN
connections are short and idle for much of their duration [35],
we think that restoring reachability quickly (reconnection time)
while having long connections potentially being interrupted (before
failover time) is a better solution than waiting for unpredictable
DNS caching to be cleared.

Finally, we evaluate each technique twice using different sets of
targets selected under the same criterion (§5.1) and observe similar
reconnection and failover time.

5.4.2 Traffic control. The techniques reactive-anycast (§4) and
proactive-superprefix (§3) can route all targets to a specific site
because the prefix is unicast in normal operation. The technique
proactive-prepending loses some traffic control (§4) in exchange
for higher availability and the lower risk of not requiring global
reconfiguration in the face of a failure (§7). To further investigate
the tradeoff between control and the fast failover that provides high
availability, we conduct two experiments: one prepends three times
at other sites, and another one prepends five times at other sites. We
measure the fraction of clients that are routed to the intended site
and the failover time when the specific site withdraws the prefix.
Table 1 shows the fraction of targets that are routed to the specific
site. Most sites can attract ~60% of the clients that cannot be routed
to it by anycast (plus all those that can). Three of the sites (bos, msn,
and atl) see obvious improvement when increasing the number
of prepends. However, as the number of prepends increases, the

IMC 22, October 25-27, 2022, Nice, France

ams ath bos atl seal slc sea2 msn
Not routed
by anycast 15% 90% 80% 95% 87% 80% 69% 80%
prepend 3 55% 97% 58% 58% 6% 57% 78% 28%
prepend 5 54% 95% 69% 75% 6% 64% 87% 68%

Table 1: For targets that are within 50 ms of a site, % that
anycast routes to a different site (2nd row). Of those targets
that anycast routes to different sites, % that can be routed by
proactive-prepending when other sites prepend 3 or 5 times (lower
rows). Section 5.1 presents target selection criterion.

failover time slightly increases, likely because longer alternative
paths are less preferred during convergence (appendix C.2).

The degree to which increasing prepends improves control de-
pends on specifics of the sites [28]. We investigated why many
clients route to sites announcing prepended routes, especially when
seal was the non-prepending (i.e., intended) site. We found that
82% of targets route to another site rather than seal because the
other route is preferred by standard BGP policy (e.g., it was via a
customer rather than a peer). Appendix C.1 provides details.

This lack of control will not impact CDNs that follow our rec-
ommendation to only announce the prepended route for a site’s
prefix to neighbors that also connect to the site and hence receive
the non-prepended route (§4). Further, even without this recom-
mendation, this scenario is unlikely to significantly impact large
CDNes. First, the providers of large CDNs tend to be tier-1 providers
or large tier-2/regional providers [38]. These providers are unlikely
to have providers they export these routes to, and so only the di-
rect providers of the CDNs will have customer routes. Second, if
a network has any peer routes, it likely has a peer route to the
non-prepended (intended) site. The only networks with peer routes
to large CDNs are direct peers and peers (generally tier-1s) of large
providers of the CDN. According to conversations with CDN op-
erators, these large providers generally connect to the CDN in all
regions where both have a large presence, meaning they will learn
(and prefer) the non-prepended route for all sites. Similarly, a peer
of the CDN generally peers with the CDN in all regions in which it
has a presence, and hence is likely to receive non-prepended routes
for all sites in those regions. In the future, we will investigate the
traffic control of proactive-prepending on real CDNs.

5.4.3 Result generalization. PEERING lacks the global footprint and
connectivity of real CDNs, and so we consider factors that influence
whether our results generalize. For proactive-superprefix, the
withdrawal convergence is the deciding factor in failover time,
because only after that can the routes to the covering prefix be used.
For reactive-anycast, the propagation of new valid anycast
routes is the key to failover, because the new valid routes can
replace the invalid routes caused by withdrawals. In Appendix A
and Appendix B, we show that withdrawal convergence and
announcement propagation speed of PEERING prefixes has a
similar time to other networks (including hypergiants). This
suggests that the failover result of proactive-superprefix
and reactive-anycast can be generalized to real CDNs. For
proactive-prepending, we explain in Section 4 which sites a
real CDN should announce the prepended routes to maximize the
traffic control while providing alternative routes for fast failover.

660

Jiangchen Zhu, Kevin Vermeulen, Italo Cunha, Ethan Katz-Bassett, and Matt Calder

Technique Control | Availability | Risk
proactive-prepending high low
reactive-anycast high high high
proactive-superprefix | high low
anycast low high low
unicast high low low

Table 2: CDN redirection techniques tradeoffs. Figure 2 provides
quantitative comparisons of availability.

6 RELATED WORK

CDN traffic control and availability. Previous work shows how
DNS and DNS extensions can map clients to a nearby site [9]. The
effects of DNS caching and violations of DNS TTL have been stud-
ied [1, 21, 29]. They prevent clients from getting the up-to-date DNS
records and reduce CDN availability. These effects motivate our
investigation of techniques that provide failover for cached DNS
records. Egress path selection has been studied to address failures on
the egress path [25, 36, 45]. Our work is complementary, aiming to
improve failure recovery on the ingress path through site selection.
Other work uses techniques similar to our proactive-prepending
to ensure anycast availability during DDOS attack [32]. FastRoute
uses DNS to divert traffic from anycast frontends to a separate any-
cast deployment of datacenters for load balancing and failover [13],
but within each deployment it has the limited control of anycast.

Routing events and BGP convergence. Previous work has found
that withdrawals tend to take longer than announcements to con-
verge, with a median of 170 seconds [24]. We use these insights
to explain the limitations of proactive-superprefix (§3) and de-
velop techniques that avoid waiting for a unicast prefix withdrawal
to converge. Previous work observed that anycast failover com-
pletes within 20 seconds for many clients [3], and our techniques
leverage this fast failover (§4). Other work assesses loss during
route changes [43], which is related to our experiments.

7 CONCLUSION

Existing techniques to direct users to CDN sites for latency-sensitive
services cannot achieve both fast failover and precise control. While
unicast lacks fast failover and anycast lacks traffic control, we pro-
posed techniques that combine strengths of both. We evaluated the
techniques on the real Internet by emulating a small-scale CDN.
Our techniques achieve a combination of traffic control and fast
failover that existing techniques cannot match.

Table 2 compares the techniques. A technique has high client-to-
site control if it has the same control as unicast, low control if it is
the same as anycast, and medium control if it is between anycast and
unicast. A technique’s availability is high if its failover time is close
to anycast’s, low if it depends on new DNS record distribution,
and medium if it improves the availability of unicast but is still
slower than anycast. A technique has high risk if it requires global
routing reconfiguration after a site failure; otherwise it has low risk.
Our techniques achieve better control than anycast and/or better
availability than unicast, and represent different tradeoffs.
Acknowledgements. The NSF partially funded this project
via grant CNS-1835253. Italo is partially funded by FAPESP
APR-20/05192-9. We thank our shepherd Cecilia Testart and the
anonymous reviewers for their insightful comments.

The Best of Both Worlds: High Availability CDN Routing Without Compromising Control

1.00 -
- Hypergiants

0751 =~ PEERING

0.50
0.25

0.00
10°

CDF across
<RIS peer, withdrawal>

10! 10? 10°

Time (second)
Figure 3: Convergence time for unicast prefix withdrawal from hy-
pergiants and PEERING. They have similar convergence time at me-
dian and tail.

A CONVERGENCE OF UNICAST PREFIX
WITHDRAWALS

Following a site failure, proactive-superprefix does not failover
until the withdrawal of the site’s unicast prefix convergences, at
which point routers will use the covering superprefix (§3). To assess
the likely delay, we study the convergence time of withdrawals
of announcements from hypergiants, which have similar deploy-
ments and connectivity to CDNs (and in some cases are CDNs). We
obtain a list IP addresses of on-net web servers within hypergiant
ASes from a HTTPS scan in 2021 also used in a recent study of
hypergiants off-net (i.e., outside the ASes) deployments [14]. Each
on-net IP address belonged to some hypergiant and hosted HTTPS
services. We remove all anycast addresses, according to 2021 data
from Manycast® [39]. For the remaining unicast addresses, we then
use RIPE Routing History API [31] to find the contemporaneous
longest IP prefixes for those addresses and the visibility of those
prefixes, which we define as the fraction of RIS peers that have
routes to the prefix (out of RIS peers that export full BGP tables).
RIPE Routing History aggregates data by the day and so even a
fully withdrawn prefix may not show visibility 0 if the withdrawal
does not span a full day. We flag as potentially withdrawn a prefix
that previously had visibility > 0.9 and then experiences a day
with reduced visibility of < 0.7. We then download the BGP up-
dates of the prefix around the potential withdrawal time (one day
before to one day after) from RIS collectors and verify whether
they are actual withdrawals by checking whether 90% of the peers
eventually withdraw the route. We do not know the exact time the
site withdrew the prefix, so we estimate it as the first time when 5
withdrawals are seen within 20 seconds. To verify this criterion, we
withdraw prefixes from PEERING sites and find that the difference
between the PEERING withdrawal and the estimated time is within
10 seconds at median.

For a given withdrawal, we compute the convergence time of a
BGP collector peer as the time between the estimated withdrawal
time and the last update from that peer (in a 1000s window after the
withdrawal time). Figure 3 depicts the distribution of convergence
times per (RIS peer, hypergiant withdrawal), with a median
of 100s and a 90th percentile of 400 seconds. This result suggests that
proactive-superprefix can take hundreds of seconds to failover,
and this delayed convergence can be longer than the DNS TTLs used
by CDNSs, meaning that proactive-superprefix may provide lim-
ited benefit over the status quo. Figure 3 also depicts withdrawal
times for unicast prefix announced and then withdrawn from PEER-
ING, which yields a very similar distribution to the hypergiant
withdrawals. This similarity suggests that the convergence/failover
time results in Section 5.4.1 that use PEERING may be similar to
what a real CDN would experience.

661

IMC 22, October 25-27, 2022, Nice, France

1.00

0.75

0.50
= Manycast2

== PEERING

CDF across
<RIS peer, announcement>

0.25

0.00
10°

10? 10°

Time (second)
Figure 4: Propagation time of anycast announcements of Manycast?
and PEERING prefixes. They share similar results at median and tail.

B ANYCAST ANNOUNCEMENT
PROPAGATION

The deciding factor for reactive-anycast failover is how quickly
an anycast announcement can propagate, so we measure how
quickly anycast announcements propagate on the Internet to es-
timate how quickly reactive-anycast would failover if used by
real networks. Rather than limiting our analysis to hypergiant pre-
fixes, we use all anycast prefixes because we observed few anycast
announcements from hypergiants, and hypergiants tend to have
particularly short AS paths [2, 10], and so our use of a broader
set of anycast networks will provide a conservative (over)estimate
of the failover time if a CDN were to use reactive-anycast. We
obtain anycast addresses from the Manycast? census result [39].
We use RIPE Routing History API [31] to find instances when a
prefix becomes announced (visibility > 0.9) after a period in which
it was not (visibility is zero). We download the BGP updates of the
prefix during the potential announcement period from RIS collec-
tors. We estimate the anycast announcement as having occurred
when 5 announcements are made by route collector peers in 20
seconds (the burst of announcements is likely to be caused by the
anycast announcement). We have assumed that the announcements
were anycast when they were made (since the prefixes are from
Manycast? anycast prefixes dataset), but we did not have a way of
verifying this.

Figure 4 shows the anycast announcement distribution of an-
nouncement propagation time per (RIS peer, announcement)
for the anycast prefixes identified by Manycast? as well as any-
cast announcements we make from PEERING. For both sets of an-
nouncements, the median delay is less than 10s, suggesting that
reactive-anycast is likely to introduce alternative valid routes
to networks much earlier than the invalid ones are eliminated in
proactive-superprefix (appendix A).

C ADDITIONAL ANALYSIS ON
PROACTIVE-PREPENDING

C.1 Explaining poor control

This section investigates the results of Table 1 to understand why
many clients route to sites announcing prepended routes, especially
when seal is the non-prepending (i.e., intended) site but only at-
tracted responses from 6% of targets. To summarize, we use reverse
traceroute [41] to measure the routes and find that 82% of targets
route to another site rather than seal because the other route is
preferred according to standard BGP policy (e.g., via a customer
rather than a peer). For 54% of targets (including a subset of the
82%), providers prefer to route through an R&E network to another
site, rather than through a commercial network to seal.

IMC 22, October 25-27, 2022, Nice, France

A0 : -
g,o ol — Prepending 3 times

§§ : = Prepending 5 times

S g06 - _

o g Y - -

D7 0.4 /7 e

w un B -

8202 —zZ--="" —— Reconnection
e = = Failover
$ 0.0

10° 10! 102

Time (second)
Figure 5: Prepending 3 and 5 times for proactive-prepending.
Prepending more times in other sites can lead to longer reconnection
and failover time.

C.1.1 Experiment. We announce a unicast prefix u from seal and
an anycast prefix as from all sites including seal, with all other
sites prepending five times. We then run reverse traceroutes from
the 50k seal targets to the two prefixes. Of the 50k targets, we
successfully measure 17,908 pairs of reverse paths to both v and as,
so we can compare them and analyze the reasons why only 6,479
(36.2%) of the targets selected seal for as. For the remaining targets,
reverse traceroute failed to measure the paths because they did not
support the Record Route IP option, which reverse traceroute relies
on to measure the paths.

C.1.2 Methodology. We use standard IP-to-AS mapping to trans-
late the reverse traceroutes to AS-level paths. We compare each
target’s route to u with its route to as, identify the last common AS
after which paths diverge (termed the diverging AS), and compare
the two AS links defining the divergence. We look at two things:
the type of the next hop AS, using a state-of-the-art classification
[46], and the type of AS relationship between the diverging AS
and the divergent options it selects, using the CAIDA relationships
dataset [6].

C.1.3 Results. First, no target has an AS path to u that is more
than five longer than its path to as, meaning that AS path length is
likely not the determining factor in deciding not to route to seal
for as. Of the 11,429 targets that did not go to seal, for 6,169 (54%),
the next hop of the diverging AS to as is an R&E network, whereas
the unicast AS path goes through a commercial AS. An example is
when the diverging AS is Level3, and the unicast AS path goes to u
via AS2914 (NTT), whereas it goes to as via the Pacific Northwest
Gigapop to sea?2 site (at University of Washington), rather than
to seal (at the Seattle Internet exchange). Of the 4,866 pairs of
AS links for which we could infer relationships (the other pairs
containing at least one AS link with no classification in the AS
relationships dataset), 3,986 (82%) are likely explained by business
preferences for customer links over peer links over provider links,
with the diverging AS using a more preferred link to reach as
compared to the link used to reach u and seal. These patterns are
largely a result of PEERING’s unusual properties as an academic
testbed with ad hoc hosting via volunteer networks and, as we
discuss in Section 5.4.2, we do not expect that real CDNs would
experience them frequently and so would likely retain more control
with proactive-prepending than we did.

C.2 proactive-prepending failover time and
number of prepends

We conduct two experiments for proactive-prepending. In nor-
mal operation, we prepend at other sites 3 times in one experiment

662

Jiangchen Zhu, Kevin Vermeulen, Italo Cunha, Ethan Katz-Bassett, and Matt Calder

and 5 times in another experiment. The traffic control improves
at a few PEERING sites when the number of prepends increases
(§5.4.2). Figure 5 shows the reconnection and failover time of the
two configurations. The reconnection time remains similar but the
failover time increases by 20 seconds at median when increasing
the number of prepends from 3 to 5. This result demonstrates that
there is a tradeoff between the degree of traffic control and failover
time.

REFERENCES

[1] Mark Allman. Putting DNS in Context. In ACM IMC, 2020.

[2] Todd Arnold, Jia He, Weifan Jiang, Matt Calder, Italo Cunha, Vasileios Giotsas,
and Ethan Katz-Bassett. Cloud Provider Connectivity in the Flat Internet. In
ACM IMC, 2020.

Hitesh Ballani, Paul Francis, and Sylvia Ratnasamy. A Measurement-Based
Deployment Proposal for IP Anycast. In ACM IMC, 2006.

Ilker Nadi Bozkurt, Anthony Aguirre, Balakrishnan Chandrasekaran, P Godfrey,
Gregory Laughlin, Bruce Maggs, and Ankit Singla. Why is the Internet so Slow?!.
In PAM, 2017.

Sam Burnett, Lily Chen, Douglas A. Creager, Misha Efimov, Ilya Grigorik, Ben
Jones, Harsha V. Madhyastha, Pavlos Papageorge, Brian Rogan, Charles Stahl,
and Julia Tuttle. Network Error Logging: Client-side Measurement of End-to-end
Web Service Reliability. In USENIX NSDI, 2020.

CAIDA. 2020. AS Relationships. https://www.caida.org/catalog/datasets/as-
relationships/

Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra
Padhye. Analyzing the Performance of an Anycast CDN. In ACM IMC, 2015.
Matt Calder, Ryan Gao, Manuel Schroder, Ryan Stewart, Jitendra Padhye, Ratul
Mahajan, Ganesh Ananthanarayanan, and Ethan Katz-Bassett. Odin: Microsoft’s
Scalable Fault-Tolerant CDN Measurement System. In USENIX NSDI, 2018.
Fangfei Chen, Ramesh K. Sitaraman, and Marcelo Torres. End-User Mapping:
Next Generation Request Routing for Content Delivery. In ACM SIGCOMM, 2015.
Yi-Ching Chiu, Brandon Schlinker, Abhishek Balaji Radhakrishnan, Ethan Katz-
Bassett, and Ramesh Govindan. Are We One Hop Away from a Better Internet?.
In ACM IMC, 2015.

Xun Fan and John Heidemann. Selecting Representative IP Addresses for Internet
Topology Studies. In ACM IMC, 2010.

Nick Feamster, Jay Borkenhagen, and Jennifer Rexford. Guidelines for Interdo-
main Traffic Engineering. In ACM SIGCOMM CCR, 2003.

Ashley Flavel, Pradeepkumar Mani, David Maltz, Nick Holt, Jie Liu, Yingying
Chen, and Oleg Surmachev. Fastroute: A scalable Load-Aware Anycast Routing
Architecture for Modern CDNs. In USENIX NSDI, 2015.

Petros Gigis, Matt Calder, Lefteris Manassakis, George Nomikos, Vasileios Kotro-
nis, Xenofontas Dimitropoulos, Ethan Katz-Bassett, and Georgios Smaragdakis.
Seven Years in the Life of Hypergiants’ off-Nets. In ACM SIGCOMM, 2021.
Vasileios Giotsas, Christoph Dietzel, Georgios Smaragdakis, Anja Feldmann,
Arthur Berger, and Emile Aben. Detecting Peering Infrastructure Outages in the
Wild. In ACM SIGCOMM, 2017.

Vasileios Giotsas, Matthew Luckie, Bradley Huffaker, and kc claffy. Inferring
Complex AS Relationships. In ACM IMC, 2014.

Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
Evolve or die: High-availability Design Principles Drawn from Googles Network
Infrastructure. In ACM SIGCOMM, 2016.

Hang Guo and John Heidemann. Detecting ICMP Rate Limiting in the Internet.
In PAM, 2018.

[19] Rebecca Hersher. 2017. Amazon and the $150 Million Typo.
https://www.npr.org/sections/thetwo-way/2017/03/03/518322734/amazon-and-
the-150-million-typo

Weifan Jiang, Tao Luo, Thomas Koch, Yunfan Zhang, Ethan Katz-Bassett, and
Matt Calder. Towards Identifying Networks with Internet Clients Using Public
Data. In ACM IMC, 2021.

Jaeyeon Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS Performance and the
Effectiveness of Caching. In ACM SIGCOMM IMW, 2001.

ISI ANT Lab. 2022. IPv4 Hitlists. https://ant.isi.edu/datasets/ip_hitlists/

ISI ANT Lab. 2022. Verfploeter: Active Measurement of Anycast Catchements.
https://ant.isi.edu/software/verfploeter/index.html

Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed Internet
Routing Convergence. In ACM SIGCOMM, 2000.

Raul Landa, Lorenzo Saino, Lennert Buytenhek, and Jodo Taveira Aradjo. Staying
Alive: Connection Path Reselection at the Edge. In USENIX NSDI, 2021.

Zhihao Li. 2019. Diagnosing and Improving the Performance of Internet Anycast.
Ph.D. Dissertation. University of Maryland, College Park.

Zhihao Li, Dave Levin, Neil Spring, and Bobby Bhattacharjee. Internet Anycast:
Performance, Problems, & Potential. In ACM SIGCOMM, 2018.

—
)

=
=2

—
—

ey
&

=
it

jpory
&

=
o)

=
)

)
=

&
)

The Best of Both Worlds: High Availability CDN Routing Without Compromising Control

[28]

[29

[30]

[31

[32]
[33]

[34

[35]

[36

[37]

Pedro Marcos, Lars Prehn, Lucas Leal, Alberto Dainotti, Anja Feldmann, and
Marinho Barcellos. AS-Path Prepending: There is No Rose without a Thorn. In
ACM IMC, 2020.

Giovane C. M. Moura, John Heidemann, Ricardo de O. Schmidt, and Wes Hardaker.
Cache Me If You Can: Effects of DNS Time-to-Live. In ACM IMC, 2019.

RIPE NCC. 2022. Routing Information Service (RIS). https://www.ripe.net/
analyse/internet-measurements/routing-information-service-ris

RIPEstat. 2021. Routing History. https://stat.ripe.net/docs/02.data-api/routing-
history.html

A'S M Rizvi, Leandro Bertholdo, Jodo Ceron, and John Heidemann. Anycast
Agility: Network Playbooks to Fight DDoS. In USENIX Security, 2022.

Mark Russinovich. 2020. Advancing safe deployment practices. https://azure.
microsoft.com/en-us/blog/advancing-safe-deployment-practices/

Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-Bassett. PEERING:
Virtualizing BGP at the Edge for Research. In ACM CoNEXT, 2019.

Brandon Schlinker, Italo Cunha, Yi-Ching Chiu, Srikanth Sundaresan, and Ethan
Katz-Bassett. Internet Performance from Facebook’s Edge. In ACM IMC, 2019.
Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V.
Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. Engineering Egress with Edge Fabric: Steering Oceans of Content to the
World. In ACM SIGCOMM, 2017.

Kyle Schomp, Onkar Bhardwaj, Eymen Kurdoglu, Mashooq Muhaimen, and
Ramesh K Sitaraman. Akamai DNS: Providing Authoritative Answers to the
World’s Queries. In ACM SIGCOMM, 2020.

663

[38

[39

[46]

IMC 22, October 25-27, 2022, Nice, France

Rachee Singh, Sharad Agarwal, Matt Calder, and Paramvir Bahl. Cost-effective
Cloud Edge Traffic Engineering with Cascara. In USENIX NSDI, 2021.

Raffaele Sommese, Leandro Bertholdo, Gautam Akiwate, Mattijs Jonker, Roland
van Rijswijk-Deij, Alberto Dainotti, KC Claffy, and Anna Sperotto. MAnycast2:
Using Anycast to Measure Anycast. In ACM IMC, 2020.

Srikanth Sundaresan, Nazanin Magharei, Nick Feamster, Renata Teixeira, and
Sam Crawford. Web Performance Bottlenecks in Broadband Access Networks.
In ACM SIGMETRICS, 2013.

Kevin Vermeulen, Ege Gurmericliler, Italo Cunha, Dave Choffnes, and Ethan
Katz-Bassett. Internet Scale Reverse Traceroute. In ACM IMC, 2022.

Route Views. 2022. University of Oregon Route Views Project. http://www.
routeviews.org/routeviews/

Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, and Randy Bush. A
Measurement Study on the Impact of Routing Events on End-to-End Internet
Path Performance. In ACM SIGCOMM, 2006.

Lan Wei and John Heidemann. Does Anycast Hang Up on You? In Network Traffic
Measurement and Analysis Conference (TMA), 2017.

Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-
man, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain,
et al. Taking the Edge off with Espresso: Scale, Reliability and Programmability
for Global Internet Peering. In ACM SIGCOMM, 2017.

Maya Ziv, Liz Izhikevich, Kimberly Ruth, Katherine Izhikevich, and Zakir Du-
rumeric. ASdb: A System for Classifying Owners of Autonomous Systems. In
ACM IMC, 2021.

	Abstract
	1 Introduction
	2 Background
	3 Goals and Non-Solutions
	4 Our Techniques
	5 Evaluation
	5.1 Target selection
	5.2 Experiment setup
	5.3 Ethics
	5.4 Results

	6 Related Work
	7 Conclusion
	A Convergence of unicast prefix withdrawals
	B Anycast announcement propagation
	C Additional analysis on
	C.1 Explaining poor control
	C.2 failover time and number of prepends

	References

