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Abstract—Data-driven remote vital sign estimation provides an efficient alternative to on-site clinical monitoring, however, its
performance can be biased due to the imbalanced training sets. In this work, we take remote photoplethysmography (rPPG) as an
example to examine the performance bias from skin tone variations in non-contact heart rate estimation. In rPPG, recent deep learning
models have significantly improved the accuracy of the physiological measurement, however, the existing datasets MMSE-HR, AFRL,
and UBFC-RPPG only contain roughly 10%, 0%, and 5% of dark-skinned subjects respectively. The imbalanced training sets resultin a
poor generalization capability of these models and lead to unwanted bias toward different demographic groups. In Western academia,
it is regrettably difficult in a university setting to collect data on these dark-skinned subjects. Here we show a first attempt to overcome
the lack of dark-skinned subjects by synthetic augmentation. A joint optimization framework is utilized to translate real videos from
light-skinned subjects to dark skin tones while retaining their pulsatile signals. In the experiment, our method exhibits around 38%
reduction in mean absolute error for the dark-skinned group and 49% improvement on bias mitigation, as compared with the previous
work trained with just real samples. Project website: https://visual.ee.ucla.edu/rppg_augmentation.htm/.

Index Terms—Remote Photoplethysmography, Bio-realistic Skin-tone Translation, Fairness in Healthcare, Bias Mitigation

1 INTRODUCTION

DURING the pandemic, telehealth consults have in-
creased more than 50-fold for certain groups (e.g.,
those with chronic diseases) [1] due to the concerns that the
congregation of people may increase the risk of contraction.
Although contact sensors (e.g., electrocardiograms, oxime-
ters) provide a gold-standard measurement of human body
functions, these contact devices are not widely available,
which makes a non-contact way of detecting vital signs
crucial for telehealth settings [2], [3], [4]. Non-contact health
sensing can also benefit applications in clinical settings, such
as neonatal intensive care unit (ICU) sensing [5], as the con-
tact sensors may cause infection for these vulnerable groups.
For non-contact health sensing systems to be deployed at
scale in society, it is important to ensure their performance
consistency across a broad range of ethnic groups [6]. In
this paper, we use remote photoplethysmography (rPPG)
as an example to explore how to push Pareto frontier by
promoting both accuracy and fairness in heart rate esti-
mation with synthetic augmentation as shown in Figure 1.
We select camera-based rPPG [7], [8] since it provides a
solution to the above scenarios given that web cameras
are more ubiquitously available, contactless, and low-cost.
In the meantime, the existing rPPG datasets are usually
overwhelmed by subjects of light skin tones, which makes
it problematic to deploy rPPG for various demographic
groups.

Camera-based rPPG uses subtle skin color variations on
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Fig. 1. Our proposed augmentation method pushes the Pareto
frontier toward both axes: accuracy and equity for rPPG. We use
the mean absolute error (MAE) of the heart rate (HR) estimation for all
skin tones as the overall performance metric and the standard deviation
of MAEs across different skin-tone groups as the bias metric. Our
proposed augmentation method has the lowest estimation error with
minimized bias as compared with the existing solutions. HR MAE is
measured in the unit of beats per minute (BPM) in the plot.

the face to obtain physiological signals. When the light hits
the face, the amount of light reflected or absorbed is deter-
mined by the physiological processes, and the color change
corresponding to the Blood Volume Pulse (BVP) is synchro-
nized with the heart rate (HR), which provides the feasibility
to extract HR from facial videos. While data-driven neural
networks have exhibited remarkable estimation accuracy for
non-contact camera-based sensing [9], [10], [11], [12], there
exist several practical constraints towards collecting large-
scale data from patients for these deep learning models:
(1) demographic biases in society that translate to data
(e.g., innovation happening in some countries/regions may
not have access to a diverse dataset); (2) the requirement
of medical-grade sensors and necessity of intrusive /semi-



intrusive traditional methods for data collection; and (3) pa-
tient privacy concerns (e.g., OBF dataset [13] is not publicly
available due to the licence issue).

Recent studies have shown that computer vision al-
gorithms have been disadvantaging the underrepresented
groups in some applications, such as face recognition [15].
Non-contact rPPG estimation is not an exception given the
unbalanced and relatively small datasets in the field [16].
There are very rare subjects with dark skin tones in the exist-
ing benchmark datasets. More specifically, MMSE-HR [17],
AFRL [18], and UBFC-RPPG [19] only contain roughly 10%,
0%, and 5% dark-skinned subjects respectively. With the
training sets heavily biased towards subjects of light skin
tones, the state-of-the-art data-driven rPPG models usu-
ally fail to generalize their performance to the underrep-
resented groups [16]. This prohibits the clinical deployment
of these algorithms, since it is critical for rPPG algorithms to
have consistent performance across different demographic
groups in the clinical settings.

Realizing the difficulty of recruiting patients to collect
large-scale rPPG datasets in the university setting, synthetic
augmentation of facial videos has become an active research
topic recently. McDuff et al. [20] use synthetic avatars with
ray tracing to reflect the blood volume changes under vari-
ous configurations. However, as the authors point out, that
infrastructure is labor-intensive and requires a significant
amount of rendering time for each frame (approximately 20
seconds per frame), which impedes their scalability. Pulse
signals can also be incorporated to make the synthetic
avatars more lifelike, yet it is difficult for avatar-based
methods to generate a balanced dataset due to the lack of
dark-skinned avatars [21]. Tsou et al. [22] augment source
rPPG videos with other specified pulse signals, however,
their framework is restricted to the face appearance in the
original source videos and fails to produce novel videos
with dark skin tones.

In contrast to these prior arts, we do a first attempt to
directly augment the existing rPPG dataset by translating
videos of light-skinned subjects to dark skin tones. This is
difficult because the color variations due to blood volume
changes are subtle, and the generation network has to be
carefully designed to reflect these subtle changes while con-
ducting skin tone translation without accessing real rPPG
videos of dark-skinned subjects. However, this technique
is rewarding, since it is capable of producing both photo-
realistic and physiologically accurate synthetic videos in
a fast manner (approximately 0.005 seconds per frame in
average for our model) and can assist the development
of algorithms and techniques for remote diagnostics and
healthcare. In the experiment, our proposed method can re-
duce around 31% HR estimation error for the dark-skinned
group and show 46% improvement on bias mitigation for
all the groups, as compared with the existing architecture
trained with just real samples.

Yucer et al. [14] introduce a race translation model across
various racial domains with a CycleGAN-based architec-
ture [23]. However, their work is not designed to incorporate
pulsatile signals. As illustrated in Figure 2, this vanilla skin
tone translation network [14] merely focuses on the visual
appearance, and the pulsatile signals are not preserved. To
address this issue, we propose a learning framework that

can augment realistic rPPG videos with dark skin tones that
are of high fidelity. The framework consists of two intercon-
nected components: (1) a generator to translate light skin
tones to dark skin tones and (2) an rPPG estimator named
PhysResNet (PRN) to encourage pulsatile signals within
the generated videos. The generator is trained to learn
both the visual appearance and the subtle color variations
with respect to the underlying blood volume variations,
and the rPPG network can simultaneously benefit from the
generator to genera]jze its performance in diverse groups.
We also demonstrate that our generated synthetic videos
can be directly utilized to improve the performance of the
state-of-the-art data-driven rPPG method with reduced bias
across different skin color groups.

1.1 Contributions

To summarize, the contributions of our work include:

« We introduce a first attempt to translate facial videos
of light-skinned subjects to dark tones while preserv-
ing the underlying blood volume variations;

« We demonstrate that our synthetic videos can be
directly utilized to improve the performance of the
state-of-the-art deep rPPG methods with mitigated
bias across different demographic groups;

« We propose a simple yet efficient rPPG estimation
model based on 3D convolution operations and show
that the proposed model can achieve state-of-the-art
performance on various facial videos.

2 RELATED WORK
2.1 Imaging Photoplethysmography

Imaging PPG methods aim to recover the pulsatile signal
from the subtle color changes in the face videos. Algo-
rithms of detecting non-contact PPG signal can roughly
be divided into three categories: Signal decomposition [8],
[24], [25], [26], [27], model-based methods [28], [29], [30],
[31], and deep learning methods [9], [10], [11], [12]. Signal
decomposition techniques based on Blind Source Separation
(BSS) techniques decompose/demix the face videos into
different sources utilizing PCA [24] or ICA [8]. However,
these methods do not exploit skin reflectance properties that
are specific to rPPG problems.

Model-based methods, such as CHROM [29], apply color
space transforms to linearly combine the chrominance sig-
nals to obtain the final PPG signals. The Pulse Blood Vec-
tor [28] method uses characteristic blood volume changes to
weight different color channels. This method can be further
improved by first projecting the temporally-normalized skin
tone onto the plane which is orthogonal to the intensity
variation term and then linearly combine the projected sig-
nals [30]. These methods use all the face skin pixels for the
rPPG measurement, which may achieve sub-optimal results
as each pixel may have very different contribution to the
pulse signals.

More recently, data-driven method has gained more
attention [10], [22], [32], [33], [34], [35]. More specifically,
DeepPhys [32] proposes a Convolutional Attention Network
(CAN) which uses appearance information to guide motion
estimation to recover physiological signals. PhysNet [10]
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Fig. 2. The proposed method successfully incorporates pulsatile signals into the generated videos, while the existing work [14] only
focuses on the visual appearance. For different facial regions, frames generated by the proposed method exhibit similar pixel intensity variations
as compared with frames from real videos, while the prior work shows unrealistic RGB variations. As a result, pulsatile signals can be well preserved

in our method as opposed to the vanilla skin tone translation.

captures the temporal correlation of the pulse signals in
the rPPG face videos using a 3D spatial-temporal Convo-
lutional Neural Network (3D-CNN) or a Recurrent Neural
Network (RNN). While these methods exhibit remarkable
performance improvement as compared with model-based
solutions, their generalization capability is highly affected
by the diversity of the training samples.

2.2 Synthetic Augmentation in Healthcare

Medical images have been widely used in clinics and played
a critical role in various clinical applications. Due to the sig-
nificant cost of collecting high-quality medical images, most
datasets are very limited in size, and this has impeded the
scientific progress. Traditional data augmentation schemes,
such as horizontal/vertical flipping, rotation, translation,
are used and have become a standard procedure for training
deep neural networks in computer vision applications [36].
However, the diversity of the dataset can not be improved
significantly by such schemes. Medical image synthesis can
be of great benefit to address this problem [37], such as
synthetic skin lesion images [38] and synthetic Magnetic
Resonance (MR) images for brain tumors [39].

In the rPPG field, McDuff et al. [20] use synthetic avatars
with blood volume changes to generate rPPG face videos
under various settings. The infrastructure for their pipeline
is expensive and labor-intensive, which makes it difficult to

scale up their generation process. Tsou et al. [22] propose to
augment the source rPPG videos with a specified rPPG sig-
nal present in another video and show improvement on the
heart rate estimation task with the augmented dataset. Their
model cannot augment the original dataset with different
face appearance, such as skin tones. In contrast, we use a
generator to synthesize bio-realistic videos with dark skin
tones to reflect the underlying subtle PPG signal variations
in a scalable way and show that it is beneficial to improving
the measurement of heart rate for remote clinical use.

2.3 Neural Style Transfer for Medicine

Neural style translation has been applied to various medical
applications, such as digital histopathological, since the
images of the same tissue recorded from different labs and
hospitals usually exhibit a large variation in terms of their
colors [40], [41], [42], [43]. Color translation frameworks
based on neural networks [44], [45], [46] have been proposed
to learn not only the certain color distribution but also the
corresponding histopathological patterns. The performance
of tissue segmentation and classification is improved with
the color-augmented histopathological datasets. Inspired by
these successful applications, our paper provides a first
attempt to bridge the gap between neural style transfer and
rPPG for bio-realistic skin tone augmentation.
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Fig. 3. lllustration of the dichromatic skin model. The specular com-
ponent is due to the reflection from the skin surface, and the diffuse
component is related to the absorption and scattering properties of the
skin tissues. Our bio-realistic skin tone translation model aims to conduct
skin tone translation while preserving the relative variations between
BVP and the skin appearance.

3 METHOD

Our bio-realistic skin translation framework is designed to
adhere to the light transport analysis of human skins. In
Section 3.1, we briefly review the existing skin reflection
theory that models pulsatile blood variations. In Section 3.2,
we detail our pipeline to translate videos of real subjects
with light skin tones to synthetic dark skin tones. The
implementation details are provided in Section 3.3.

3.1 Optical Model for Pulsatile Blood Variations

Under the assumption of a light source with a constant
spectral composition and varying intensity, RGB channels
Ci(t) at the kth skin pixel measured by a remote color
camera can be described by the dichromatic reflection model
as a time-varying function [30] as illustrated in Figure 3:

Ci(t) =1(t) - (va(t) + Va(t) + Vn(t), (1)

where I(t) is the luminance intensity level, v,(t) and v4(t)
are the time-varying specular and diffuse reflections respec-
tively, and v (t) is quantization noise. Specular component
V4(t) in Equation (1) is a result of the mirror-like reflection
from the skin surface, which is usually considered to be
BVP independent. We can write v,(t) as the following
equation [30]:

Ve(t) = ug - (so + s(t)), (2)

where 1, is the unit color vector of incident light, sq is the
stationary part of the specular reflection, and s(t) is varying
part of the specular reflection induced by motion. Diffuse
reflection v4(t) in Equation (1) is related to the absorption
and scattering properties of the skin tissues, and its varying
component is identified as a key indicator to the blood
volume changes [30]:

va(t) =ugq - do + up - p(t), (3)

where 1y is the unit color vector of the skin, dy is the
stationary reflection strength, u, is the relative pulsatile
strengths in RGB channels, and p(t) is the pulse signal.

Substituting Equation (2) and Equation (3) into Equation (1),
we can write Cg(t) as follows:

Ci(t) = () (us-(so+5()) +ta-dot1up-p(t) ) +Va(t). (&)

The stationary parts of the specular and diffuse components
can be combined into a single skin stationary term:

U, - cp = Ug - So + Ug - do, (5)

where u, is the unit color vector of the skin reflection, and
co denotes the reflection strength. This further simplifies
Equation (4) as:

Cr(t) = Iop-(1+4i(t)) - (uc-co+ue-s(t)+up-p(t) ) +va(t), (6)

where I(t) is expressed as the sum of a stationary part I
and a time-varying motion-induced part I - i(t). Video-
based PPG measurement algorithms aim to estimate the
pulse signal p(t) from the pixel intensity C(t) by sepa-
rating the physiological and non-physiological variations,
while the primary focus of this paper is to establish an
inverse mapping between p(t) and Cg(t) for dark-skin
realistic human faces in a data-driven manner.

3.2 Bio-realistic Skin Tone Translation

In order to translate real subjects with light skin tones
to synthetic subjects with dark skin tones, we utilize two
interconnected networks: a video generator G and an rPPG
estimator F, as illustrated in Figure 4. We next describe
the proposed 3D convolutional video generator, the rPPG
estimation network, and our joint optimization scheme.

3.2.1 3D Convolutional Video Generator

The goal of our video generator G is to translate frame
sequences of real light-skinned subjects to synthetic dark-
skinned subjects. We propose a novel 3D convolutional neu-
ral network to accomplish this goal. The model consists of
an encoder (several convolutional layers), a transformer (6
ResNet Blocks), and finally a decoder (several convolutional
layers). Please refer to the supplementary material for a
detailed description of the network architecture.

The generator takes 256 consecutive frames Ijjgn; at
size 80 x 80 as the input and generates the corresponding
translated frames in the same dimension. Since the paired
ground-truth translated frames do not exist, we use a race
transfer model [14] pretrained on VGGFace2 [47] to gen-
erate the pseudo target frames Igqr. More specifically, the
generator Caucasian-to-African in [14] is utilized to translate
videos of light-skinned subjects in the existing rPPG dataset
to dark skin tones.

The generator is first supervised by the L1 distance
between the pseudo target frames Igqr and the generated
frames I, = G(Liignt) to learn the visual appearance of
the synthetic dark-skinned subjects. At this stage, the output
frames 14, do not contain pulsatile signal, since the target
frames Igqri from [14] are generated in a frame-by-frame
manner without temporal pulse correspondence along the
time dimension. In the joint optimization part, we describe
how to further incorporate the pulsatile signals presented in
the original videos Ij;gn; into the generated frames.
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synthetic dark-skinned videos and gradually learn to conduct inference on dark-skinned subjects without accessing real facial videos with dark skin

tones.

3.2.2 PRN: rPPG Estimator with Residual Connections

The rPPG estimator is designed to model the BVP temporal
information from a sequence of facial frames. Similarly, it
takes 256 consecutive frames at size 80 x 80 as the input,
and its output is the corresponding BVP value for each
input frame. We build our novel rPPG estimator based on
3D convolution operations. It consists of three consecutive
3D convolutional blocks with residual connections, and an
average pooling is performed after each block for the down-
sampling purpose. A detailed description of each block can
be found in the supplementary material.

To supervise the network, we use a negative Pearson
correlation loss between the estimated pulse signals p € RT
and the ground-truth pulse signals p € RT:

Lppg(?;ﬁ) =1-
ng- Dibi —Egpezgﬁe @)

VOt = ) (TS 60 - (S0)?)

where the summation ), is over the frame length T'. This
negative Pearson correlation loss has shown to be more
effective as compared with the point-wise mean squared
error (MSE) loss in the previous work [10]. We first train
PRN with only real subjects, and this simple yet efficient ar-
chitecture can already achieve state-of-the-art performance
on the existing rPPG datasets. In next part, we detail how to
further incorporate the synthetic subjects into the training
process.

3.2.3 Joint Optimization

The generator trained with L1 loss in the previous part fails
to produce synthetic dark-skinned subjects with desired
pulsatile information, and the rPPG estimator trained with
only real light-skinned subjects exhibits poor generalization
capability on unseen data or data that rarely appears in the
training set (i.e., the underrepresented group with dark skin
tones). To make use of these two models, we design a joint
optimization mechanism to incorporate pulsatile signals
into the synthetic videos and improve the generalizability
of the rPPG estimator simultaneously.

We use a two-phase weight updating scheme to train
the video generator and the rPPG estimator simultaneously.
These two phases are alternated within each mini-batch as
illustrated in Figure 4. In the generation phase, we freeze
the weight of the rPPG estimator E, and the generator G is
supervised by the following loss function to maintain both
the visual appearance and the pulsatile information:

LG(Ihght: p) = Lppg(p: E(idar.‘c)) + A% LA (Ida'rk: ida'rk):
()]
1

L 4(Laark, Laark) = e > zilldark, — Liar,|,  9)
i“i

i

; (10)

Zi =
1 otherwise

_ {0 if |Idark,¢ - ida'rk,-| <E€

where 145 = G(Liignt) is the generated frame sequence
from synthetic dark-skinned subjects, A is the balance factor,
L(-) is the visual appearance loss designed based on



a threshold L1 loss, and ¢ is the selected threshold. The
weighting factor A is chosen to be 1.0. Directly enforcing
a L1 loss between Ijrr and idark causes the generator
to struggle between the visual appearance and the pulse
information, since the pseudo ground-truth Lys,z, from [14]
do not contain the desired BVP variations. Therefore, we
relax the appearance loss L4(-) by a threshold e. The re-
laxation is based on the observation that the color changes
due to BVP variations are subtle in the RGB domain. In our
implementation, we select € = 0.1 based on an empirical
analysis of the color variations in real videos.

In the rPPG estimation phase, we freeze the weight of
the generator G and train the rPPG estimator E with both
real and synthetically augmented frame sequences:

Le(Liight, idark):p) = Lyppq(p, E(idark))+LPP§(p: E(Liight))-

(11)
Both real and synthetic subjects are utilized to supervise
the rPPG network E while updating its weights. This ar-
rangement allows E to gradually adapt to the synthetic
dark-skinned subjects without losing estimation accuracy
on real subjects. With this two-phase updating rule, both the
generator and the rPPG estimator benefit from each other
in an alternate manner. At convergence, the generator G
can successfully translate frame sequences from real light-
skinned subjects to dark skin tones while maintaining the
original BVP variations, and the estimator E can generalize
its performance to dark skin tones without using actual real

videos from dark-skinned subjects.

3.3 Implementation Details

The facial bounding box for each video is estimated by
applying a face detector based on Multitask Cascaded Con-
volutional Neural Networks (MTCNN) [48] to its first frame,
and a square region with 160% width and height of the
detected bounding box is cropped and resized to 80 x 80
using linear interpolation. The learning rate for the genera-
tor and the rPPG network are 0.0001 and 0.0003 respectively.
The learning rates are modified base on a cosine annealing
schedule during training [49]. The networks are initialized
with Kaiming initialization [50] with a batch size of two and
ReLU activation. We use Adam [51] solver with 3; = 0.5
and 2 = 0.999. The network architectures are implemented
with batch normalization [52] in PyTorch [53], and the
experiments are conducted on a single NVIDIA Tesla V100
GPU.

4 EXPERIMENTS

To demonstrate the effectiveness of the proposed method,
we conduct a comprehensive evaluation on several com-
monly used rPPG datasets. We describe the datasets for
our experiment in Section 4.1, the comparison methods in
Section 4.2, and the evaluation metrics in Section 4.3. Some
illustration of the generated the synthetic videos is provided
in Section 4.4. The performance of different comparison
models and the proposed solutions are listed in Section 4.5
and Section 4.6. The bias mitigation analysis is shown in
Section 4.7.

Datasets

4.1.1 UBFC-RPPG [19]:

UBFC-RPPG database contains 42 front facial videos from 42
subjects, and the corresponding ground-truth PPG singals
are collected from a fingertip pulse oximeter. The videos
are recorded at 30 frames per second with a resolution of
640x480 in the uncompressed 8-bit AVI format. Each video
is roughly one minute long.

4.1

4.1.2 VITAL dataset [54]:

Facial videos are recorded at 1920x1080 pixel resolution and
30 frames per second for 60 subjects at room lighting in
the highly compressed MP4 format. Each video is roughly 2
minutes long. A Philips IntelliVue MX800 patient monitor is
utilized for ground-truth vital sign monitoring. The subject
wears a blood pressure cuff, 5-ECG leads, and a finger pulse
oximeter, which is connected to the MX800 unit. Diverse
skin tones and varied demographic groups are represented
in the dataset. We use 58 subjects in the VITAL dataset
(subject 26 and subject 40 are left out due to data errors
in the collecting process). For the skin types quantified by
Fitzpatrick scales [55], there are 5, 16, 14, 11, 5, 7 subjects
respectively from I (lightest) to VI (darkest).

4.2 Comparison Methods

We compare our model with three conventional methods:
POS [30], CHROM [29] and ICA [8]. These rPPG baseline
methods are implemented based on the publicly available
MATLAB toolbox [56], and we follow the procedures in the
toolbox to obtain facial pixels of interest, i.e., converting fa-
cial frames from RGB to Y CrCp and identifying skin pixels
based on a predefined threshold. We also compare with a
data-driven state-of-the-art rPPG algorithm 3D-CNN [22].
It is implemented based on the architecture description as
detailed in the original publication.

4.3 Evaluation Metrics

After obtaining the estimated pulse waves from each model,
we apply a Butterworth filter to the output signals with cut-
off frequencies of 0.7 and 2.5 Hz for heart rate estimation.
The filtered waves are divided with sliding windows of
30-second length and 1-second stride, and a heart rate is
estimated based on the position of the peak frequency
for each window. For each subject, four error metrics are
calculated and averaged over all windows. The four metrics
include mean absolute error (MAE), root mean square error
(RMSE), Pearson’s correlation coefficient (PCC) between the
estimated hear rate and the ground-truth hear rate, and
signal-to-noise ratio (SNR) of the estimated PPG waves. The
ground-truth HR for UBFC-RPPG is obtained by applying
the same procedures as described above to the ground-
truth pulse waves, and the ground-truth HR for the VITAL
dataset is obtained from the MX800 patient monitor through
ECG signals. Details of these metrics are provided as fol-
lows:
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where HR is the ground-truth heart rate, HR is the esti-
mated heart rate, N is the total number of windows, p is the
ground-truth pulse wave, p is the estimated pulse signal, S
is the power spectrum of the estimated pulse signal, f is the
frequency in Hz, and Uy(-) is a binary mask. For the heart
frequency region from fyg - 0.1 Hz to fug + 0.1 Hz and its
first harmonic region from 2 * fyg- 0.1 Hz to 2 * fyr + 0.1
Hz, Uy(-) is set to be one. For other regions, Uy(-) is set be

Zero.

4.4 Generating Synthetic Dark-skinned Subjects

We demonstrate the superiority of our proposed method
with empirical results on UBFC-RPPG [19] and VITAL [54]
for HR estimation using the above four metrics. The syn-
thetic videos generated by our model can also further
improve the performance of the existing data-driven PPG
estimation model with reduced bias across different skin
tones.

UBFC-RPPG dataset is randomly split into a training set
(32 subjects) and a validation set (10 subjects). The training
set is used to jointly optimize the generator G and the rPPG
estimator F. Models with minimum validation loss are
selected for a cross-dataset evaluation on the VITAL videos.
Some generated frames in the UBFC-RPPG validation set
are illustrated in Figure 5. Our generator G can successfully
produce photo-realistic videos that reflect the associated
underlying blood volume changes. Estimated pulse waves
from the real videos and the synthetic videos are both
closely aligned with the ground truth. In the frequency
domain, power spectrum of the PPG waves is also preserved
with a clear peak near the gold-standard HR value.

4.5 Performance on UBFC-RPPG

Performance metrics of different models in the UBFC-RPPG
validation set are listed in Table 1. We list the HR estimation
accuracy of PRN trained with the proposed joint optimiza-
tion pipeline (referred as PRN augmented), real samples
(referred as PRN w/ Real), and synthetic samples (referred
as PRN w/ Synth). The synthetic samples are generated by
our generator G through translating the real samples in the
UBFC-RPPG training set when the joint optimization con-
verges. As a comparison, we also include the performance
of a state-of-the-art deep learning model 3D-CNN [22] that
is trained with both real and synthetic samples (referred as

TABLE 1
Performance of HR estimation on UBFC-RPPG. Boldface font
represents the preferred results.

Method MAE| RMSE| PCCt SNRt
PRN augmented 0.68 1.31 0.86 5.76
PRN w/ Real 0.75 1.64 0.83 7.91
PRN w/ Synth 4.32 6.56 0.54 -1.93
3D-CNN [22] w/ Real&Synth 0.89 1.66 0.88 7.74
3D-CNN [22] w/ Real 1.09 1.91 0.84 7.80
3D-CNN [22] w/ Synth 0.95 1.80 0.82 348
“POST30] T T T T T T T T T 369 ~ 5317 T 075 T 307
CHROM [29] 1.84 3.40 0.77 4.84
ICA [8] 8.28 9.82 055 145

3D-CNN w/ Real&Synth), just real samples (referred as 3D-
CNN w/ Real), and just synthetic samples (referred as 3D-
CNN w/ Synth). Performance of three traditional methods
(POS [30], CHROM [29] and ICA [8]) are also provided in
the table.

Notably, the proposed PRN architecture has already
outperformed other rPPG estimation methods even without
synthetic skin color augmentation. More specifically, the
proposed PRN has around 31% improvement on MAE
and around 14% improvement on RMSE over the state-
of-the-art 3D-CNN using real training samples. With the
synthetic augmentation, the performance of PRN can be
further improved. PRN trained with augmentation achieves
9% improvement on MAE (from 0.75 BPM to 0.68 BPM)
as compared with PRN trained with just real samples.
This suggests that even for UBFC-RPPG dataset which is
overwhelmed by subjects with light skin tones, increasing
the diversity of training samples is still able to enhance
the performance. This finding is consistent with the recent
research [57] that demonstrates a balanced dataset can lead
to optimal performance for all the groups.

The joint optimized generator G can be beneficial to
other data-driven models as well. We train 3D-CNN with
both real and corresponding synthetic samples from G.
As compared with the 3D-CNN model trained with just
real samples, 3D-CNN model trained with both real and
synthetic samples exhibits 18% improvement on MAE and
13% improvement on RMSE. This further indicates that
our generator has successfully learned to produce both
visually-satisfying and BVP-informative facial videos, and
these synthetic videos can facilitate the learning progress of
the existing data-driven rPPG estimation algorithm without
conducting the joint optimization process again to adapt to
another new network architecture.

4.6 Cross-dataset Performance on VITAL

In real-world applications, it is common that the test subjects
are in a different environment (e.g., illumination conditions)
in contrast to the training samples. Therefore, we conduct
a cross-dataset evaluation on the VITAL dataset using the
models trained on the UBFC-RPPG videos. VITAL dataset
contains different subjects and is captured in an entirely dif-
ferent environment as compared to the UBFC-RPPG dataset.
This type of cross-dataset verification can provide more
visibility on the generalization capability of the models.
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Fig. 5. lllustration of real frames and the corresponding synthetic frames in the UBFC-RPPG dataset. Our proposed framework has
successfully incorporated pulsatile signals when translating the skin color. The estimated pulse waves from PRN exhibit high correlation to the
ground-truth waves, and the heart rates are preserved in the frequency domain.

Similarly, we report MAE, RMSE, PCC, and SNR of
various models trained with real and synthetic samples
in Table 2. Since VITAL dataset contains testing subjects
of diverse skin tones with the associated Fitzpatrick scale
labels (F1-6), we group the subjects into three categories,
ie., F1-2 (light skin color), F3-4 (medium skin color), and
F5-6 (dark skin color), to measure the performance across
different demographic groups.

PRN trained with the joint optimization pipeline exhibits
signjﬁcant improvement across these metrics as compa_red
with PRN trained with just real samples. More precisely,
there is 1.01 BPM reduction on MAE and 1.33 BPM re-
duction on RMSE for the light skin color group, 1.72 BPM
reduction on MAE and 2.01 BPM reduction on RMSE for the
medium skin color group, and 2.22 BPM reduction on MAE
and 2.5 BPM reduction on RMSE for the dark skin color
group. For all the methods, it is observed that the error of
light skin tone group is generally lower than other groups.
This is probably due to the melanin concentration of the
light-skinned subjects is the least, and more light can be
reflected to the camera. However, it should also be noted
that models trained by both real and synthetic data have a
relatively smaller performance difference among the three
groups. For the dark skin color groups, PRN trained with

synthetic data shows lower estimation errors as compared
with real data, and the errors are reversed for the light skin
color group. This validates the fact that data-driven rPPG
estimation models are heavily impacted by the skin color
distribution of training samples, and it is critical to create
a diverse and balanced training set for generalizability and
real-world deployment of rPPG algorithms.

To assess the cross-dataset generalization capability of
synthetic videos, we also evaluate 3D-CNN trained on real
and synthetic samples from UBFC-RPPG on the VITAL
dataset. Similar improvement can be observed in the 3D-
CNN model, where 3D-CNN trained with both real and
synthetic samples outperforms the model trained on only
real or only synthetic samples. This supports that our gener-
ator can generate synthetic videos that can accurately reflect
subtle color variations due to blood volume changes, instead
of simply overfitting the UBFC-RPPG training samples. Our
synthetic data can therefore serve as a bio-realistic augmen-
tation to the real samples.

POS [30], CHROM [29] and ICA [8] show relatively
large HR estimation errors as compared with the data-
driven models, where their MAEs on the light skin color
group is usually larger than 4 BPM. Their MAEs are even
higher for other groups. Unlike the end-to-end rPPG estima-



TABLE 2
The proposed method shows an improved HR estimation accuracy on the VITAL dataset. Boldface font denotes the preferred results.

Method F1-2 F3-4 F5-6 Overall
MAE| RMSE| MAE]| RMSE| MAE| RMSE| MAE| RMSE]
PRN augmented 2.37 3.13 2.95 3.82 4.39 5.98 3.04 4.01
PRN w/ Real 3.38 4.46 4.67 5.83 6.61 8.48 4.60 5.88
PRN w/ Synth 4.27 6.01 4.52 6.18 5.64 8.33 4.66 6.57
3D-CNN [22] w/ Real&Synth 2.32 3.11 3.18 4.09 545 7.07 3.34 4.35
3D-CNN [22] w/ Real 3.31 4.64 5.86 6.78 7.07 8.89 5.19 6.44
3D-CNN [22] w/ Synth 3.88 5.23 4.68 6.07 7.81 9.88 5.04 6.56
POS [30] 4.97 6.28 5.36 6.86 7.25 974 5.69 7.25
CHROM [29] 6.51 8.92 5.01 6.38 7.83 14.56 6.14 8.99
ICA [8] 7.65 9.66 7.14 8.40 5.75 7.31 7.04 8.63
F1-2 F3-4 F5-6 Overall
PCCt SNRT PCCt SNRT PCCt SNRT PCCt SNRT
PRN augmented 0.40 3.45 0.63 5.73 030  -3.38 0.48 3.02
PRN (w/ Real) 0.36 0.32 0.50 0.03 0.08 -7.00 0.36 -1.32
PRN (w/ Synth) 0.29 -0.64 0.42 -0.44 0.11 -6.35 0.31 -1.74
3D-CNN [22] (w/ Real&Synth) 0.42 3.96 0.65 521 0.17 -4.84 0.47 2.68
3D-CNN [22] (w/ Real) 0.30 -0.61 0.48 -1.26 0.11 -8.26 0.34 -2.47
3D-CNN [22] (w/ Synth) 0.07 -2.04 0.38 -1.34 0.10 -6.38 0.21 -2.64
POS [30] 0.26 -2.22 0.42 -1.04 0.27 -5.59 0.33 241
CHROM [29] 0.15 -2.14 0.46 -1.11 -0.10 -5.53 0.23 -2.40
ICA [8] 0.24 -2.06 0.32 -1.73 0.06 -5.04 0.23 -2.53
tion networks, these conventional methods usually require ——Y 3.99
preprocessing steps which may diminish the subtle color EN_ L s L.
changes on the face and degrade the performance. Besides, a3 ' 3.19
these models need to average the pixel intensities over E-*-U' = e 2.74
the skin region, and this might be a sub-optimal solution Z25- 240 . 25
since skin pixels at different facial regions can contribute é . L0022 1o zl
differently to the pulse signals. T, LS -
The cross-dataset experiment indicates that the improve- -E
ment of our proposed framework is more substantial as g v
compared with intra-dataset evaluation where all the sam- 0.5
ples are obtained within the same environment. This sug- 0.0- WO P T A e

gests that synthetic videos can provide more significant
benefit by diversifying the training samples when there
exist some data distribution shifts between real training and
testing videos. This finding is also consistent with the ob-
servation for ray-tracing based augmentation method [20].
Synthetic augmentation techniques thus become particu-
larly effective for cross-domain learning and can improve
the generalization capability of HR estimation for real-world
applications.

4.7 Bias Mitigation

It is critical for an algorithm to have consistent performance
across different demographic groups in real-world medical
deployment. To quantify the performance gap for each
group, we use the standard deviation of MAE and RMSE
for each Fitzpatrick scale as the measurement. This measure-
ment has also been used in some prior work [14], [20]. The
standard deviation for each method in the VITAL dataset is
illustrated in Figure 6, together with a sample portrait for
each skin scale from F1 to F6. Conventional POS method
exhibits large variation (MAE: 2.66 BPM, RMSE: 3.19 BPM)
across different Fitzpatrick scales, while the jointly opti-
mized PRN shows the lowest bias (MAE: 1.53 BPM, RMSE:

augmented w/ Real w/ Real+Syn, w/ Real

F1

F2

Fig. 6. Synthetic dark-skinned videos can help to reduce bias in HR
estimation. The augmented PRN and the 3D-CNN [22] trained on both
real and synthetic videos show a reduced standard deviation on MAE
and RMSE across Fitzpatrick scales F1-6 in the VITAL dataset.

1.80 BPM) as compared with all the conventional methods.
In contrast to PRN trained with just real samples (MAE: 2.03
BPM), the augmented training offers a 25% improvement
of bias mitigation among different groups while simultane-
ously improving the overall performance of all the groups.
This suggests our joint training framework can provide
a more desired trade-off between performance and bias.
For 3D-CNN, the standard deviations for MAE and RMSE
are also reduced by adding the synthetic samples into the
training set. We attribute this improvement to the more
diverse and balanced dataset augmented by our generator.



5 DISCUSSION AND LIMITATIONS

The paper has made an attempt to tackle bias in rPPG.
The lack of dark-skinned subjects in existing rPPG datasets
(MMSE-HR, AFRL, and UBFC-RPPG have roughly 10%,
0%, and 5% dark-skinned subjects) has produced unwanted
bias against some underrepresented groups, and there exist
several practical constraints towards collecting a large-scale
balanced dataset for rPPG. To address this issue, an attempt
is proposed to translate facial frames from light-skinned
subjects to dark skin tones while preserving the subtle color
variations corresponding to the pulsatile signals. The jointly
optimized rPPG estimator can outperform the existing state-
of-the-art methods with reduced estimation bias across dif-
ferent demographic groups. More specifically, PRN trained
with augmentation has around 38% reduction in MAE for
the dark-skinned group along with 49% improvement on
bias mitigation in the VITAL dataset, as compared with
3D-CNN [22] trained with just real samples. Our gener-
ated synthetic videos maintain both photo-realistic and bio-
realistic features and can be directly used to improve the
performance of the existing deep learning rPPG estimation
model.

Video synthesis, such as deepfakes, has raised public
concerns in the community [58]. Over half a decade, these
‘fake’ videos generated by deep learning have been used for
face manipulation, and the malicious usage has drawn a lot
of social attention. We demonstrate a positive example that
these bio-realistic ‘fake’ videos can also be utilized for the
purpose of social good. Our synthetic videos are capable of
reducing both HR estimation error and bias for rPPG models
and further facilitate the development of remote healthcare.
We hope our framework can act as a tool to address some
social issues in the existing medical applications.

We now discuss a few limitations of this work. Qur
current pipeline is an initial attempt that focuses on the skin
color translation, and all the remaining factors (e.g., pulse
signals, body motion, and other facial attributes) are directly
copied from the original videos. To maximize the benefit of
synthetic augmentation, it is also critical to extend the gen-
eration framework to incorporate arbitrary facial attributes
and pulse waves. We hope the method presented in this
paper could inspire following work on synthetic generation
for a more diverse dataset. Besides, it should also be noted
that the generated frames are limited by a fixed resolution
at 80 x 80. Future work may produce solutions to generate
frames at arbitrary pixel resolution to fit the requirements
of various subsequent rPPG estimation models without
frame size interpolation. The primary goal of this work is
to overcome the shortness of real dark-skinned subjects by
synthetic generation. Therefore, the current framework is
designed based on Caucasian-to-African translation. Future
work may extend this to other appropriate racial group(s) to
further diversify the training data. Our framework replies
on a generator designed based on 3D convolutions, where
its output is not directly supervised by videos from real
dark-skinned subjects. While the improved heart rate es-
timation results support the effectiveness of the proposed
solution, inductively generalizing claims in this paper of
reducing bias need to be validated in much larger-scale
clinical trials than what are possible in an academic paper

introducing a new method.

In this paper, we used existing metrics to evaluate rPPG
quality, such as standard waveform measures of MAE and
RMSE. These metrics were carefully chosen so they are re-
gressable against previous rPPG papers. It could be that the
metrics could themselves be biased (e.g., if the rPPG wave-
form has a unique shape amongst demographics and/or if
the synthetic data has an unusual shape). Ultimately, we
felt more comfortable using the same error metrics used in
previous works, to aid in comparisons. Identifying biases in
a metric and/or proposing solutions requires thought and
experiment, particularly when the context involves fairness.
An option for future work is to evaluate if there is possibly
a better metric for the rPPG problem.

6 CONCLUSION

To conclude, we perform appearance transfer while
retaining the subtle transient characteristics of realistic
blood flow. During training, we demonstrate that heart rate
estimation can be improved in both performance and equity.
Other than heart rate estimation, we hope that future work
can apply physiologically-sound appearance transfer to
other vital signs, such as blood pressure, blood oxygen
saturation, and respiration rate.

Ethics Statement: We envision positive benefits of bio-
realistic avatars, as a way to expand training datasets
for medical instruments, like remote vital sign monitors.
We condemn the use of this technique to fool DeepFake
catchers.
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