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Key-value (KV) software has proven useful to a wide variety of applications including analytics, time-series
databases, and distributed �le systems. To satisfy the requirements of diverse workloads, KV stores have
been carefully tailored to best match the performance characteristics of underlying solid-state block devices.
Emerging KV storage device is a promising technology for both simplifying the KV software stack and
improving the performance of persistent storage-based applications. However, while providing fast, predictable
put and get operations, existing KV storage devices don’t natively support range queries which are critical to
all three types of applications described above.

In this paper, we present KVRangeDB, a software layer that enables processing range queries for existing
hash-based KV solid-state disks (KVSSDs). As an e�ort to adapt to the performance characteristics of emerging
KVSSDs, KVRangeDB implements log-structured merge tree key index that reduces compaction I/O, merges
keys when possible, and provides separate caches for indexes and values. We evaluated the KVRangeDB
under a set of representative workloads, and compared its performance with two existing database solutions:
a Rocksdb variant ported to work with the KVSSD, and Wisckey, a key-value database that is carefully tuned
for conventional block devices. On �lesystem aging workloads, KVRangeDB outperforms Wisckey by 23.7x in
terms of throughput and reduce CPU usage and external write ampli�cations by 14.3x and 9.8x, respectively.

CCS Concepts: • Information systems! Flash memory; Key-value stores.
Additional Key Words and Phrases: Key value stores, KVSSD, Range Queries

1 INTRODUCTION
As the importance of key-value (KV) workloads has increased so has the sophistication of modern
KV databases [9, 12–14, 22, 25, 31]. Popular key-value databases, such as RocksDB [14], are carefully
optimized to extract performance from underlying �ash-based SSDs. Log-structured merge (LSM)
trees [26] are used as the core data structure for these purposes: adaptive I/O size, disk request
alignment and key-value store ordering. Mordern SSDs are usually managed in larger and aligned
blocks. In spite of the signi�cant e�orts spent to improve the e�ciency of storing small keys and
values into larger blocks, the block-oriented interface still leads to several possible sources of
ine�ciency for KV workloads. First, the minimum device I/O is bound to the block size, regardless
of the requested key and value size. As a consequence, latency-sensitive workloads without e�ective
data prefetching experience large amounts of read ampli�cation, as 4K-blocks are read to retrieve
much smaller values. Second, in order to minimize the external read and write ampli�cation
associated with LSM compaction, existing state-of-the art KV store only performs compaction
on keys, while values are stored separately. Such storage policy provides e�cient insertion and
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retrieval performance, at the cost of expensive garbage collection when values are frequently
updated or deleted. Finally, interest is rising in computational storage devices, or storage devices
that support the o�oaded programmed analysis and reduction functions. These devices promise
much lower query latencies, as common searching and reduction functions can be performed
within the storage without sending data back to the host CPU. However, when the structure and
metadata describing the LSM is updated in the host memory instead of the storage device, it is
typically impossible to semantically interpret the contents of a block device.

To address these three issues, researchers proposed key-value interfaces for �ash-based storage
called KVSSDs [1, 4] . These KVSSDs directly support the insertion, retrieval, and deletion of
arbitrarily sized KV data. During this process two competing device designs have arisen that attempt
to address di�erent workloads. Hash-based KVSSDs, such as the one produced by Samsung [18],
deliver fast individual KV operations but are incapable of range-ordered iteration. In contrast, LSM-
based KVSSDS [15, 16, 35] require additional on-device processing support, but they maintain the
key ordering entirely within the KVSSD; thus eliminating the external read and write ampli�cation
incurred by compaction. Most real life applications are a mix of both point and range queries [20,
28, 36, 39, 41]. While a workload containing any range queries can bene�t from an LSM-based
KVSSD, we can expect substantial performance degradation given a large portion of the workload
is not range queries. Signi�cant processing power within LSM-based KVSSDs are allocated to
maintain the LSM organization, slowing down the point queries. Hence, a hash-based KVSSD with
support for range queries in host applications could become an attractive solution to the dilemmas
described above.
In this paper we present KVRangeDB, a KV store designed to exploit the fast point operations

from hash-based KVSSDs while providing support for e�cient range queries. KVRangeDB is
implemented on the host side in a layer between the KV applications and the KV device. We employ
similar ideas of the key value separation used by Wisckey [23], i.e., using a small in-storage LSM
tree to store keys and preserve key order, while the value is stored separately using the device’s
KV interface. The key di�erence from Wisckey is that we preserve point query performance by
directly accessing the device through key value interface instead of using an LSM tree index which
incurs multiple I/O operations. Additionally, KVRangeDB e�ectively o�oads the value log garbage
collection required by Wisckey into the device, which signi�cantly mitigates host side CPU usage
and reduces the external write ampli�cation.
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Fig. 1. Record aging comparison between Wisckey, a block device key-value database, and KVRangeDB, a
KVSSD key-value database.
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We conduct experiments to demonstrate how KVRangeDB outperforms Wisckey with respect
to aging. In these experiments, we �rst load 500 million records. Then we perform three rounds
of aging process, consisting of multiple delete/update/insert operations. Garbage collection was
triggered for Wisckey at the end of each aging round. Detailed experiment setup and methodology
are described in Section 4. Fig 1 presents the results of Wisckey on traditional block SSDs and
KVRangeDB on KVSSDs. The results show that Wisckey experiences substantial write ampli�cation
at the host compared to our proposed KVRangeDB on key-value interfaced device. This write
ampli�cation leads to lower throughput and higher CPU costs at the host when KV stores interface
with block level devices.

In order to better understand the performance characteristics of the key-value interface, we have
focused on two important storage system workloads: key-value database workloads and �le system
metadata workloads. Both of these workloads emphasize the performance of small update, retrieval,
and deletion operations that are already supported by the existing key-value device. However,
key-value databases and �le system metadata operations also leverage range queries that require
the retrieval of sequences of consecutive key-value pairs. Such types of operations are are not
natively supported by the device interface of the commercially available key-value storage device
to date. To cope with this limitation, we provide an e�cient software-based range-query capability
to analyze the device under realistic usage scenarios.
In this paper we describe the detailed design of KVRangeDB and the performance of the only

commercially available KVSSD andwe attempt to answer the question whether a key-value interface
for the storage device is superior to the traditional block interface. The contributions include:

• A detailed design of KVRangeDB which employs various novel techniques to enhance e�-
ciency of a hash-based key-value storage device.

• Comparison of a key-value workload using a hash-based key-value storage device and a
block device.

• Comparison of �le system metadata workloads using a hash-based key-value device and a
block device.

• A senescence/aging analysis of block-based key value databases and a KV database imple-
mented on a key-value interface.

2 BACKGROUND
In this section, we brie�y review the emerging key-value interface storage devices and the state-
of-art for software key-value stores. Then we introduce how modern �le systems use key-value
storage to manage metadata.

2.1 KV SSDs
Flash vendors have provided users a variety of alternative interfaces to �ash-based storage devices.
Open Channel SSDs [6] moved the majority of the FTL into software allowing users to manage
the physical placement of blocks and access the device’s internal parallelism. More recent Zone
Namespace (ZNS) devices [1, 5] provide an interface that allows users to leverage a block-oriented
page append interface and indicate to the devices groups of blocks that can be erased e�ciently. Most
recently, the storage industry has standardized a Key-Value device interface [1, 4] that simpli�es
the mapping of popular key-value software interfaces to the device interface [15, 16, 35]. Currently,
Samsung provides KVSSD products [18] with a hash table implementation [18, 19] targeting fast
put/get performance and low write ampli�cation.
Fig 2 illustrates the system stacks for KVSSD based systems. Traditional software KV stores

involve complex key-value to �le and then �le to block translations done by the �le system and
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Fig. 2. Comparison between (a) traditional so�ware KV system stack and (b) KVSSD system stack.

block layer of the operating system. By contrast, KV stores based on KVSSDs leverage a thin layer
of software consisting of only a device driver and a user space KV library. KVRangeDB is built on
top of the KV library layer as shown in Fig 2 (b). KVRangeDB can be also seen as an enhancement of
the KV library layer. The KVSSD provides put, get, delete, as well as basic KV iteration operations.
Its KV iteration interface allows traversing a group of keys (with the same 4B key pre�x) without
key ordering. For ordered key scans for arbitrary keys, we implemented a range query engine using
the device iterator capable of retrieving all keys stored on a device. We then used an in-memory
priority queue to store all keys from the seek position up to the scan length. The range query
latency turned out to be impractically long for real life applications, in the ballpark of tens of
seconds for a 10 million records dataset.

2.2 Modern so�ware KV-stores
Modern KV-store applications [8, 9, 13] rely on software KV engines to translate the key-value
interface to the block interface used by HDDs or SSDs. State-of-art software KV stores [3, 12, 14]
use LSM-tree data structures [26] for e�cient reads and writes. LSM-trees organize KV objects into
multiple levels of large, sorted tables (SSTable). All writes and updates occur as out-of-place writes
to the top-level table. Reads search from the top-level table to the bottom-level tables for the most
recent data. LSM-trees achieve high performance by converting small writes into large sequential
I/Os which are optimal for the underlying device. However, this comes at the cost of high CPU
utilization and I/O ampli�cation as previous work shows [23, 25, 31].
LSM-trees use compaction for e�cient KV scans and get performance. To reduce the write

ampli�cation overhead caused by compaction, Wisckey [23] proposes the separation of keys from
values for LSM-tree based KV stores. Wisckey stores values in a log and maintains a small LSM-tree
as an index that maps keys to o�sets to the value log. While improving write performance, this
indirection reduces range query e�ciency. The value log additionally requires garbage collection
which adds complexity to the design.
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2.3 File systems using ordered KV-stores
Several local and distributed �le systems [2, 21, 27, 32, 37, 40] used KV stores for �le system
metadata management. The main advantages of using KV-store for metadata management instead
of traditional extent trees or B-trees is scalability and write performance. However, for e�cient
directory traversal, these systems often require the underlying KV-store to provide e�cient ordered
KV scan operations.

/
(1)

usr/
(2)

bin/
(3)

home/
(8)

foo/
(15)

bar/
(20)

…

…

Key Value
<0, “/”> {1, stat, …}

<1, “bin”> {3, stat, …}

<1, “home”> {8, stat, …}

<1, “usr”> {2, stat, …}

<3, “ls”> {10, stat, …}

<8, “bar”> {20, stat, …}

<8, “foo”> {15, stat, …}ls
(10)

key order

Fig. 3. TableFS metadata management schema illustration.

In this section, we describe TableFS [32] as an exemplar and brie�y introduce how to use a
KV-store to manage �le system metadata. Fig 3 illustrates the metadata schema of TableFS. Each
TableFS record stored in the KV-store corresponds to a �le or directory in the �le system. The
variable length key consists of a 64-bit inode number of the parent directory and the name of the
�le. The value contains the inode number of the �le and the �le’s various attributes (type, size,
permission bits, owner information, etc).
To resolve a full �le system path name, TableFS starts searching from the root inode. Then it

traverses each level of the directory tree with a search key that combines the inode number of the
current directory and the next component name in the path. For �le system operations such as
mkdir, mknod, unlink, lstat etc., the �le name is �rst resolved and then the corresponding put,
get, delete KV operation is performed. For readdir operations, range queries are used. TableFS �rst
resolves the target directory path name and then range queries records using the directory’s inode
number as the key to list all children of that directory. TABLEFS implements a light-weight locking
mechanism [32, 34] to guarantee the atomicity and the correctness under concurrent accesses.

3 KVRANGEDB
KVRangeDB is designed to support e�cient range queries on hash-based KV storage devices while
retaining the native put/get performance bene�ts from the device. A critical feature is to manage
an ordered key index separately from the data. For a range query, we will �rst check the key index
and �nd the target keys in the queried range and then retrieve the values from the device. The idea
seems straightforward, however, there are many problems to consider.

Table 1 outlines the key challenges for e�cient range queries on hash-based KV storage devices
and how our KVRangeDB design addresses those fundamental problems. We will detail our design
choices in the following sections.
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Table 1. Key challenges and corresponding KVRageDB design

Challenges Design ideas
How to saturate device bandwidth for
small records?

Packing multiple small records. (Sec 3.2)

How to implement e�cient index
structure?

LSM tree structure on top of native KV interfaces.
(Sec 3.3)

How to amortize latency for separate value
retrieval?

Leverage value prefetch and packing heuristic.
(Sec 3.4)

How to improve e�ciency for empty
queries?

Hierarchical bloom �lter for point and range
queries. (sec 3.5)

3.1 Basic API
KVRangeDB provides key-value semantics with range query support, similar to the APIs of
RocksDB[14] and LevelDB[12]. An iterator interface is provided to perform range query or scan
operations. We de�ne the following APIs for our KVRangeDB (the user hint API will be discussed
in Section 3.4):

• put(k, v): Put new key-value pairs.
• get(k, v): Retrieve value from key.
• delete(k): Delete key-value pairs.
• iterator : Iterator for range query.
– seek(k): Moves the iterator to the �rst key-value pair with key greater than or equal to
the seek key.

– next(): Move the iterator to the next key-value pair.
– valid(): Whether iterator is valid.
– key(): Return the key of the current iterator.
– value(): Return the value of the current iterator.
– hint.scan_length: Specify the user hint for the scan length.

3.2 Packing smaller records
In the rest of the paper, we use logical keys and user keys interchangeably as the application keys.
We de�ne physical/device keys as the actual key written to the device with the KVSSD KV interface.
For smaller size records, packing multiple values into a single physical record can yield better write
throughput and mitigate the performance decrease at large key counts. The logical key to physical
key mapping can also serve as a key index to provide the range query capability over logical keys,
accomplishing two goals with one mechanism.

Fig 4 illustrates how smaller KV records are packed into a large physical record. Samsung KVSSD
shows almost �at put IOPS for records smaller than 4KB [18, 30]. Multiple smaller logical records
can be packed into a single large physical record around 4KB to yield higher write throughput and
reduce the number of physical keys managed on the device. The key index keeps the logical keys
to physical keys mapping for retrieving records by the logical keys, which requires a linear scan on
the physical record to extract the user record. In order to support range query on the logical key,
we use LSM tree to maintain the logical key to physical key translation. The main reason to choose
LSM tree as the data structure for logical to physical key mapping instead of traditional B/B+ tree
is to achieve higher write performance [12, 14, 26].
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value sizeuser key user value

variable variable

phy_key1

Fig. 4. Packing smaller records and translating user keys.

Point query processing When performing point queries on the packed records, LSM tree key
index is consulted �rst to �nd the physical key and then the value from the packed physical record
is retrieved.

Range query processingWhen range queries are performed, the LSM tree key index is traversed
to �nd the physical key mapped to the target user key and retrieve the values in the queried range
separately.
Update and remove operations We propose two approaches to handle update and remove

operations of the existing packed records. First, we can use in-place update mechanism which
requires read-modify-write to the packed physical records. Alternatively, we can always assign
new physical keys to the updated records (out-of-place update) to maintain high write throughput
and apply background garbage collection to clean up the stale records as shown in Fig 5.

3.3 Building a key index for range queries
This section will describe in detail how we design the key index to support range queries on a
key-value storage device. Compared to Wisckey [23], which also employs key value separation,
Our design has two main advantages.

• The get operations, or point queries can be ful�lled by a single read I/O directly from the
device.

• We e�ectively o�oad the value log garbage collection to the device side which signi�cantly
reduces host CPU usage and external read/write ampli�cations.

As we mentioned in Section 3.2, to achieve high write/put throughput performance we choose
an LSM tree based key index for logical key to physical key mapping when packing smaller records.
For other records (large value records or frequently accessed records), on the other hand, we simply
leave the logical keys in the LSM tree key index to achieve logical key ordering for range queries
and use the logical key as the device key directly without the need for logical to physical key
translation. This is a core di�erence when compared to Wisckey [23]. Wisckey needs to consult
the key index for both point and range queries, in order to locate and retrieve the values from
the value log. However, for point queries with KVRangeDB, we can bypass the index and directly
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Fig. 5. LSM tree key index design for supporting range queries.

use the logical key to retrieve the value from the device with exactly one I/O for large unpacked
records. For example, as shown in Fig 5, lkey1, lkey7, lkey12, etc. are unpacked records that can
be retrieved directly from device through the logical keys. Records lkey3, lkey52 are packed into a
physical record (physical key pkey12) and need to go through key translation to retrieve the value
of the records.

To balance write and range query performance, we must carefully design the LSM tree structure.
In our LSM tree index design, we use separate keys to store each data block and the index block
(Here block is not �xed size block in the block device, it can be any size). Fig 5 illustrates the LSM
tree key index for KVRangeDB. Similar to levelDB and rocksDB, the LSM tree index contains a
memtable, multiple sorted SStables based on logical keys and manifest. The manifest uses a single
KV record. For SStable storage, we use separate device KV pairs to store each data block and index
block. The data block keys are the SStable number plus the o�set. There is a single device KV pair
for each index block using the SStable number as the key and with the value containing the key
range information and o�set for each data block.

Key Index

K->V
lkey1 val1

pkey12 kv3,7
lkey5 val5

Value data

Bloom 
Filterget

lkey1
lkey3
lkey7 pkey3

pkey12

Logical-> Physical

Memory
KV-SSD

pos
neg

Fig. 6. Bypassing index checking for hybrid
key translations.

It is not practical to expect that users always know
in advance whether a logical key is in a packed record
or directly stored as a physical key. To cope with that,
we implement a scheme called hybrid key translation.
Hybrid key translation provides an e�cient mechanism
to determine if the key index must be consulted or can
be bypassed for a value retrieval. In the context of get
operations processing, it requires checking the key index
to make sure whether the queried key is translated or
not. In our design, we leverage a small bloom �lter [7]
to reduce the overhead of key index checking when the
keys are not translated and can be directly retrieved from
the device with the logical/user keys.
As illustrated in Fig 6, when we process the get oper-

ations, we consult the bloom �lter. If the �lter returns
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negative (dashed arrow) the queried key is de�nitely not translated and we directly retrieve the
value from the device with the logical key. Otherwise (solid arrow), we’ll consult the key index
to �nd the physical key for the value. In a false positive case, i.e. logical key are not translated to
physical key, we’ll still go to the key index for consultation (solid arrow). Since the key index has
the global view of all the logical keys mappings (if logical keys are not translated, the physical key
counterpart will be null as shown in Fig. 6). Then we go to the device to retrieve the value with the
logical key. Since the false positive rate is relatively low, the overhead of extra key index checking
can be neglected.

3.4 Value prefetching and caching for range queries
The key index introduces two problems that hinder e�cient query processing. First, unlike LSM-
based software KV stores [12, 14] which pack key and values together, the range query in our
design will need to consult the index �rst in order to determine the target keys in the queried
range. Then, we need to separately issue I/Os to retrieve the values associated with the target keys
if the user also asks for values. This requires additional I/Os to satisfy the range query. Second,
the record packing introduces key translation from logical keys to physical keys, and the value
may not be directly retrieved with the logical key for simple point queries. In such a case, the point
query performance will be impacted by the additional I/Os for index look up.

We propose two approaches to resolve these issues. The �rst approach is to leverage user hints
for prefetching the values to overlap the value retrieval latency. We implemented two additional
read options for range query, i.e. scan length and upper bound key. Since users may have prior
knowledge of the queries (e.g. during a table scan, what is the approximate number of entries in
the table; or in a query for events between two timestamps, what is the end timestamp, etc.), by
applying those hints, we can prefetch the values in advance to hide the latency for accessing the
values separately. Besides user domain knowledge, proper pro�ling can be also used to help extract
hinting information to better leverage our hint interface. We also design a prefetch throttling
mechanism to prevent too many in-�ight prefetch requests that may increase the device queueing
time and a�ect the other I/O requests.
The second approach is to leverage the temporal locality of the packed records. Application

may write the adjacent records (in de�ned key order) together and may get packed into a single
physical record. When range queries are performed, the LSM tree key index is traversed to �nd the
physical key mapped to the target user key. We will cache the other records packed in the same
physical records. When following next() and value() is called, we can examine small cache and
on a hit, return the value directly without issuing I/O to the device. In the worse case scenario,
we still perform the same number of I/Os as no packing. In Section 4.3, we will demonstrate how
real-world applications can leverage packing for range queries.

3.5 Range filter for empty queries
Given typical key sizes compared to the typical number of records stored within a key-value
database, most stores have only a small portion of the key space occupied. As a result, queries
may result in empty/negative replies and thus we need an e�cient mechanism for deciding that
keys do not exist. In KVRangeDB, we design hybrid �lters as an auxiliary structure to �lter out
empty/negative queries for both point and range queries. (For example, “Is key 7 in the store?” or
"Do any keys between 3 and 100 exist in the store?"). Filters are compact/compressed structures
that can be completely stored in memory. For a typical data store with 1 billion keys, the key index
size may be tens of gigabytes which may exceed the available memory resources dedicated to the
database and an alternate �lter must instead be designed as an in-storage data structure. Typical

, Vol. 1, No. 1, Article . Publication date: January 2023.



10 Mian Qin, et al.

�lters only require very small memory footprint (1-2 gigabytes per billion keys) and can �t into
small memory budgets successfully.

Bloom �lters are well studied [7] and has been deployed in various software key-value stores [12,
14]. As mentioned earlier, KVRangeDB also uses a bloom �lter for our hybrid key translation
algorithm. However, simple bloom �lters are not e�cient to handle range queries ("Do any keys
between 3 and 100 exist in the store?"). We could query every possible key by accessing bloom �lters
multiple times (from key 3 to key 100) to determine whether the queried range exists. However,
such a method su�ers from high CPU cost and false-positive rate.

BF_3

BF_1

BF_0 Bits 7-3

Bits 7-2

Bits 7-0

BF_2 Bits 7-1

put keys: {0x57, 0x0C, 0xBD, 0xBC, 0x55, 0xB9}

0x55 0x57 0x0C 0xB9 0xBC 0xBD

0x54 0x56 0x0C 0xB8 0xBC

0x54 0x0C 0xB8

0x50 0x08 0xB8

0xBC

scan: [0x51, 0x53] - negative scan: [0xB4, 0xBF] - positive

✘
✔0x50

0x50
0x50 0x52

0x50 0x51 0x52 0x53

✘0xB0
0xB4

✔0xB8

0xBA
0xB0 0xB8 ✔

0xB8
0xB8 0xB9✘

✔
✔

0xBC

Fig. 7. Hierarchical bloom filter for range queries filtering.

Recently, more advanced �lters were proposed [24, 39] with similar purpose for range queries
especially for those short range queries with high probability of being empty. Unlike the prior
work [24, 39] which is designed for block-based range �lters targeting LSM-tree based KV stores,
we propose a lightweight uni�ed in-memory range �lter for accelerating both empty point queries
and empty range queries. As opposed to storing �lters for each sorted-run, we don’t store any
�lter data in storage, but build the �lter on the �y when opening the database (we can also persist
the �lter data on the devices). There are two main reasons for this design. First, unlike LSM-tree
based KV-stores which need to scan the entire database to retrieve all keys in the database, our
KVRangeDB separates the sorted key index from the value store and can retrieve the keys e�ciently.
Second, building the range �lters on the �y is more �exible to accommodate fast shifting workloads
by altering the �lter designs. For example, some workloads that frequently result in empty point
queries may only need a simple bloom �lter with lower memory costs, and workloads that rarely
encounter empty queries may simply discard the range �lter altogether.
In our design, we extend the idea of pre�x bloom �lter [14] and use multiple layers of a pre�x

bloom �lter, each with di�erent sizes of pre�x to enable e�cient range �ltering. When building the
�lter, each key in the database stores various length pre�xes into each level of bloom �lters (the
bottom level stores the full key bloom �lter which also works for point queries). Range queries
that consult the �lter will be broken down to multiple pre�x sets according to the top-level bloom
�lter pre�x length. For each pre�x set covered by the top-level pre�x length, it can then recursively
probe the lower level bloom �lters to determine if there are potential keys in the checked range.
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As long as there is one possible key existing in the queried range, the �lter will return positive
and requires checking the key index in storage to satisfy the query. On the other hand, if the �lter
returns negative then the queried range is de�nitely empty, and we can directly return and save
the I/O cost of checking the key index.

Fig 7 illustrates how our hierarchical range �lter works, through an example. Consider we store
records with the keys shown at the bottom (the key size is 2 bytes, 0x57...). The hierarchical range
�lter is designed as 4 levels of bloom �lters (BF_0 to BF_3). The top level bloom �lter BF_0 is
constructed using the 5 MSB bits pre�x (bits 7-3) of all keys in the store. Each element in the top
level bloom �lter covers a range of 8 keys. A negative result of BF_0 �lter check means there is
de�nitely no key existing in this key range. Each lower level �lter uses 1 more bit pre�x and covers
half of the key range than the upper level �lter. The bottom level stores the full key bloom �lter
which also works for point queries. As an example, consider range query "scan [0x51, 0x53]" as
shown in the top left of Fig 7. We �rst consult the top level �lter whether 0x50 pre�x (covering key
range from 0x50 to 0x57) exists. The top level �lter returns "yes" and it keeps consulting the next
level with 0x50 (BF_1 pre�x 0x50 covers key range from 0x50 to 0x53). BF_1 returns "no" which
means the query key range (0x50 to 0x53) is de�nitely empty in the store. A range query may break
into multiple pre�x checks, each covering a smaller range as shown in the query example on the
top right. As long as there is one positive result when we reach the bottom level, a key possibly
exists in the queried range.

One critical component of a hierarchical bloom �lter design is the amount of memory to dedicate
to each level of the data structure. Intuitively, higher level �lters may contain less distinct keys due
to shorter pre�x lengths and may require less memory for the �lter. In our design, we use a simple
strategy to allocate the memory footprint as follows, which has thus far worked well.

"8 = "
8 + 1Õ#
==1 =

, 8 = 0, 1...# � 1

Where # is the number of levels for the Hierarchical bloom �lter." is the total memory budget
for the range �lter."8 is the memory budget for the 8th level �lter (8 start from 0 to # ).

4 EVALUATION
This section presents the experimental results of Yahoo! Cloud Serving Benchmark (YCSB) [11] and
TableFS [32, 34], a real-world KV application that relies on range queries. We compare KVRangeDB
against two other solution: Wisckey [23], the state-of-art software KV-store on block devices; and
RocksDB [14], the industry counterpart, ported to KVSSD. We analyze how each optimization
technique presented here contributes to the overall performance improvement and how they impact
di�erent collections of KV operations.

4.1 Methodology
4.1.1 Experiments setup: Table 2 lists the detailed hardware information. Block SSD and KVSSD
use the same SSD hardware device except that the �rmware is di�erent.
Since the complete Wisckey source code is not disclosed to public, we implemented Wisckey

according to the paper for this evaluation. Instead of using LevelDB to store the user key to <log
o�set, value size> mapping in the original paper, we use RocksDB [14] which has better overall
performance. In order to make our comparisons using the same memory budget and exclude page
cache e�ects for the block device, we use direct I/O mode for theWisckey implementation, including
the RocksDB index and value log operations. The evaluation con�gurations within our experiments
are listed as follows:
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12 Mian Qin, et al.

Table 2. Hardware Specification

Component Description
CPU Intel Xeon Silver 4216 @ 2.1GHz, 16 cores
Memory 96GB DDR4 @ 2133MHz
SSD PM983 3.84TB x4, (⇠580k 4KB read IOPS)
KVSSD PM983 3.84TB x4, (⇠200k 4KB read IOPS)
Memory 128GB DDR4
OS Linux version 4.15

• Wisckey: Wisckey implementation on a conventional block SSD. The values are packed in
a contiguous log �le with 1MB log bu�er. The key to log o�set mapping for each record is
stored in RocksDB.

• RocksKV: RocksDB implementation ported to the KVSSD. It uses the key-value interface
instead of a �le system interface to store the SSTable �les and metadata �les. For SSTable
�les, we store each data block with a separate record using the combined SSTable �le number
and block o�set as the key. Manifest �les are stored as a monolithic record.

• KVR: Baseline KVRangeDB implementation without hybrid record packing.
• KVR-PF: Baseline KVRangeDB optimized with value prefetching for range queries.
• KVR-PK: Baseline KVRangeDB optimized with hybrid record packing.
• KVR-PK-PF: Baseline KVRangeDB optimized with hybrid record packing and value prefetch-
ing.

4.1.2 Workloads: We conducted two categories of experiments to evaluate the above systems.
• To measure the KVRangeDB performance, we run comprehensive micro-benchmarks includ-
ing scan operations of various length, with/without retrieving values, as well as simple put,
get, and seek operations under YCSB. Quantitative description for each query workload is
explained in the following sections.

• File system applications under TableFS which utilizes a KV-store as its metadata management
engine. This application uses a large real-world directory tree, executes �nd commands, lists
�le/directory contents and list metadata which are all composed of mixed put, get, and
range queries and we emulate the �le system aging process with multiple rounds of updating,
removing and inserting �les/directories.
TableFS only uses KV-store to store the �le metadata. The �le data blocks are stored sep-
arately. In our experiments, we use KVRangeDB to replace TableFS’s KV-store (LevelDB)
and only examine the metadata operations which are the main bottleneck of the �lesystem
workloads [32]. The actual �le data blocks are not included in the given �lesystem tree and
our experiments.

For micro-benchmarks (YCSB), we use single SSD/KVSSD. To better emulate real-world TableFS
application, we use 4 devices in RAID0 mode. We use linux md to con�gure RAID0 for block SSDs.
For the 4 KVSSD array, we spread the records through hashing the key [29].

4.2 Results for YCSB
We use two datasets for YCSB experiments: �rst dataset of 250 million large records (with 16B key
and 4000B value size) doesn’t leverage packing; second dataset of 1 billion small records (with 16B
key and 1000B value size [38]) can leverage packing (We pack four logical records to form a physical
records). For all of our experiments, we �rst load all the data on the device (the index is written
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with the data). We then run di�erent query workloads to examine the performance of KVRangeDB,
RocksKV, andWisckey. For KVRangeDB, the bloom �lter �lter described in Section 3.3 is constructed
during the loading phase and persisted to the KVSSD when database is closed. However, we bypass
the bloom �lter checking in the get workload since it’s either fully packed or unpacked.
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Fig. 8. YCSB write performance (16 threads).

Write performance Fig 8 (a) demonstrates
the throughput performance of loading data
onto the device. For smaller records, packing
can be useful in improving the overall write
throughput and reducing the number of keys
managed by the device as we discussed in
Section 3.2. The loading throughput of KVR-
PK outperforms RocksKV by 14x and Wis-
ckey by 1.3x. It’s also worth noting that Rock-
sKV requires greater compaction I/O since it
packs keys and values together. Packing more
records into a physical record yields higher
write throughput, thus it enhances the data
loading e�ciency. KVR-PK is bene�cial for
write-heavy use cases which contain lots of
small records. For 4000B value size, KVR can achieve 18.8x better performance compared to Rock-
sKV. KVR performs slightly (⇠15%) worse than Wisckey in terms of write operations, as Wisckey
leverages large sequential I/O for writes. However, Wisckey’s implementation su�ers on removes
and updates (which require host-side garbage collection); as contrary to KVRangDB which can
directly remove and update records from device through the user key. We evaluate remove perfor-
mance as part of the �le system workloads in section 4.3.

3.9 4.9

24.9
33.9

18.7

58.8

0

20

40

60

80

1K Value 4K Value

Th
ro

ug
hp

ut
 (k

op
/s

)

RocksKV Wisckey KVR-PK

4.2 5.4

28.5

42.3

21.8

58.8

0

20

40

60

80

1K Value 4K Value

Th
ro

ug
hp

ut
 (k

op
/s

)

RocksKV Wisckey KVR-PK

YCSB: get (L:no cache, R:1GB cache)

(a) Throughput with no cache

3.9 4.9

24.9
33.9

18.7

58.8

0

20

40

60

80

1K Value 4K Value

Th
ro

ug
hp

ut
 (k

op
/s

)

RocksKV Wisckey KVR-PK

4.2 5.4

28.5

42.3

21.8

58.8

0

20

40

60

80

1K Value 4K Value

Th
ro

ug
hp

ut
 (k

op
/s

)

RocksKV Wisckey KVR-PK

YCSB: get (L:no cache, R:1GB cache)
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Fig. 9. YCSB Get performance (16 threads)

Point query For RocksKV, a get operation requires examining several sorted-runs in each level
of the LSM-tree to �nally retrieve the records, introducing multiple I/Os. Wisckey needs to look up
the LSM-Tree for the log o�set of a record based on user key before retrieving the value from the
log. In contrast, KVRangeDB without packing (KVR) can ful�ll the get request by a single I/O using
the user key through the KV interface provided by the device. Similar to Wisckey, KVR-PK only
requires traversing a small LSM-tree to translate the logical key to physical key and then retrieve
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the value from the device using the physical key. Hence, a small index cache is enough to help
reduce the I/O overheads from index lookup.
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Fig. 10. YCSB range query performance

Fig 9 (a) and (b) demonstrates the performance of simple get (or point query) workload. KVR
exhibits a large advantage over RocksKV for both no cache and 1GB cache scenarios. KVR outper-
forms Wisckey for large records by 73% (no cache) and 39% (1GB cache). KVR-PK provides slightly
lower performance than Wisckey with 1000B value size because the block device provides better
read performance compared to KVSSD.

Scan keys For the scan key workload, KVRangeDB only needs to traverse a relatively small LSM
tree only containing keys. By contrast, RocksKV’s LSM-Tree comprises both keys and values, which
may require more I/Os. KVR-PK/KVR achieve much better performance, ⇠8x better compared to
RocksKV with 1GB cache as shown in Fig 10 (a) and (b). KVR-PK/KVR perform slightly worse
compared to Wisckey due to the device read performance disadvantage of KVSSD (Wisckey also
only needs single I/O to retrieve value after locating the log o�set).
Some may wonder if scanning the keys only (without retrieving values) makes sense in real

world applications. Here is an example of a typical �le system workload (more details in Section 4.3):
Consider the command line utility ls which lists �les and sub-directories. In TableFS, a ls -l $path
command translates to a scan on the target directory which needs to retrieve value (calling both

, Vol. 1, No. 1, Article . Publication date: January 2023.



KVRangeDB: Range�eries for A Hash-based Key-value Device 15

key() and value()) for parsing stats in the inode. However, a simple ls $path command only needs
to iterate on the keys without reading the value (inode information).
Scan keys and values On the �ip side, KVRangeDB doesn’t perform equally well with range

queries that retrieve values, since it costs a separate I/O for each value() operation. As shown in
Fig 10 (c) (d), when the scan length passes 40, KVR-PK-PF/KVR-PF perform worse than RocksKV.
The optimization of value prefetch with user hints improves the performance to some extent
(⇠56%). From the analysis of real key-value workloads [41], the average scan length is less than 20.
Therefore it may not be worth packing key and value together like RocksKV which mostly bene�ts
longer scans with value retrieval (value() operation).

4.3 Results for TableFS
For the �le systemworkloads [2, 33, 37, 40], we use a real �le system trace from Los Alamos National
Lab which contains approximately 500 million �les and directories (⇠20 million directories and
⇠480 million �les), ⇠90% �les are marked as "cold" which can leverage our hybrid packing technique
described in Section 3.2. The loading and aging phase consists of multiple �le operations such as
path resolve, opendir, mkdir, mkmod, unlink, chmod, etc. which translates into a combination of
put, get, delete workloads to the KV-store. At the end of each aging round, we perform a value log
garbage collection for Wisckey (around 25% di�erence between real metadata capacity and actual
storage usage). Value prefetching is enabled for range queries for both Wisckey and KVRangeDB
variants.

For KVR-PK-PF, we selectively pack multiple �le inode records (which are marked as cold set)
under the same directory into a single physical record as described in Section 3.2. Since the �les
in the same directory are loaded together, such packing can bene�t range queries as discussed
in Section 3.2. For the remaining ⇠10% hot �les, we don’t perform packing and the values (inode
information) can be directly retrieved from the device through logical/application keys.
Load �le system tree Fig 11 presents the results of loading the �le system tree into TableFS.

KVR-PK-PF yields a 33.9x speedup over Rockskv and 1.14x over Wisckey respectively. Besides,
KVR-PK-PF also reduces CPU consumption by 15x and 1.5x respectively. We also collect the number
of I/O requests and read/write ampli�cations from/to the device. RocksKV incurs signi�cantly
larger write ampli�cation, 15.7x worse than KVR-PK-PF, due to constant compaction of the sorted-
runs. KVR-PK-PF also mitigates the read ampli�cation enormously, speci�cally over 2000x fewer
than RocksKV and 14x fewer compared to Wisckey, from the direct get interface on the device.
KVR-PK-PF performs slightly worse than KVR-PF, however, it reduces CPU cost by 12% (due to
less number of write I/Os).

Aging the �le system Fig 12 demonstrates the results of aging the TableFS �le system tree. KVR-
PK-PF outperforms RocksKV and Wisckey by 72x and 23.7x respectively. Moreover, KVR-PK-PF
also saves CPU cost by 55.6x and 14.3x respectively. The main negative factor of Wisckey is the
value log garbage collection caused by records update [15, 23]. Wisckey issues a larger number of
read I/Os because it needs to lookup the key to log o�set mapping for every get operation (check
�le path existence), and also performs garbage collection after removes and updates of the records.
KVR-PK-PF greatly reduces read and write ampli�cation by 385x and 9.8x compared to Wisckey.
This advantage is mainly attributed to using the direct key value interface on the KV devices to
store values which e�ectively o�oads the value log garbage collection from the host to the device.

Metadata-intensive operations Fig 13 shows the performance and read I/O results for metadata-
intensive �le system workloads. We use a limited number of CPU resources (4 and 8 physical cores)
to emulate the resource competition common in multi-tenant scenarios. We assign 16/32 client
threads for each physical core.
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Fig. 11. Results for loading file system tree to TableFS.

Parallel �nd workloads perform traversal of the �les/directories in a breadth �rst search fashion.
These workloads contain path lookup and readdir operations which translate to get and range
queries. KVR-PK-PF yields ⇠5.1x better performance on average compared to RocksKV and reduces
CPU cost by a factor of 3.9x. This is because in a real �le system directory tree, there are lots of
directories with very few sub-directories and �les (leading to short scans). Wisckey outperforms
KVR-PK-PF by ⇠30% simply because current block SSD has much higher read IOPS performance
(⇠3x) as shown in Table 2 and better latency characteristics [15].

Parallel "ls -l" contains path lookup and readdir operations which translate to get and range
queries with both key() and value() operations with various scan lengths (depending on the number
of �les and sub-directories within a queried directory). KVR-PK-PF yields ⇠5x better performance
on average compared to RocksKV and reduces CPU cost by 4x. KVR-PK-PF slightly improves
performance and reduces CPU consumption since it reduces get I/O operations (⇠10%) when the
queried directory �le inodes are packed.
Parallel lstat workload consists of get operations only. Compared to RocksKV and Wisckey

which require multiple I/Os per get operation (RocksKV needs to examine multiple sorted-runs
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(d) Read/Write amplification

Fig. 12. Results for aging TableFS file system tree.

or SSTable �les, Wisckey needs to lookup the log o�set from user key before retrieving the value
from the log), KVR only requires a single I/O per get through the KV device interface. Thus, KVR
reduce 15.9x and 1.9x respectively compared to RocksKV and Wisckey. Besides, KVR outperforms
RocksKV and Wisckey by 51x and 1.12x and reduces CPU usage by 30x and 1.15x. The �le system
workloads showcase the advantages of KVR, even with the current KVSSD read performance being
relatively low compared to similar hardware block SSD. Despite the fact that KVR-PK-PF requires
more than one I/O per get when keys need to be translated, its performance is barely a�ected
under these workloads. To understand that, we analyse the workloads and found that most lstat
operations are performed on hot �le set whose keys don’t need translation (application key equals
physical key), thus KVR-PK-PF performs similar to KVR-PF.

For simple parallel "ls" without "-l", which is converted to a range querywithout value() operation,
KVR-PF performs 21x better compared to RocksKV. The cause of RocksKV’s poor performance is
that the SSTable packs key and value together, thus the cost of range queries only calling key() is
similar to range queries that calls both key() and value(). KVR-PF, KVR-PK-PF and Wisckey have
similar performance since they separate keys and values.
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Fig. 13. Performance, CPU and read I/Os for TableFS workloads(C and T in x axis denotes physical core and
total thread counts).

5 RELATEDWORK
Key-value device interfaces has been a frequent topic of research since the release of the �rst
key-value device prototype [18]. Several researchers have explored command set extensions for
key-value devices [15, 19, 35] and Key-value device interfaces have also been explored as possible
interfaces to SmartNICs [22] and persistent memory [10, 17]. Some recent work explored how to
implement conventional block oriented storage features such as redundancy to key-value interfaced
devices [29, 30].
The design of KVRangeDB, our range query facility for key-value devices, extends several

techniques developed for LSM-based key-value databases to the key-value device interface. Wis-
ckey [23] proposed the idea of separation of key and values to reduce write ampli�cation during
compaction and by storing values separately in a log. Zhang et al.proposed SuRF [39] which uses a
compact trie structure as range query �lter to accelerate range query performance on LSM tree
based software KV stores. KVRangeDB applies these techniques without requiring the use of an
LSM tree or value-log for key-value storage devices.

6 CONCLUSION
In this paper, we proposed and implemented KVRangeDB to support e�cient range query capability
on hash based KVSSDs. Our design leverages a secondary key index based on log structure merged
tree. With that we can optionally pack records through logical to physical key translation, so as to
mitigate the key management overhead in the KVSSD device. We also employ user hints for value
prefetching to accelerate scans with value retrieval. Moreover, we leverage the state-of-art range
�lter to e�ciently improve empty range/point queries.

We evaluated our designwith a series of real world applications. Our results show that KVRangeDB
provides faster put, get, short scans performance and lower host CPU utilization compared to the
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state-of-art software KV engine (Wisckey) on conventional block SSD, although it may not be the
optimal choice for workloads with extremely long scans with value retrieval.
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