KVRangeDB: Range Queries for A Hash-based Key-value
Device

MIAN QIN, Texas A&M University, USA

QING ZHENG, Los Alamos National Laboratory, USA
JASON LEE, Los Alamos National Laboratory, USA
BRADLEY SETTLEMYER, Nvidia, USA

FEI WEN, Texas A&M University, USA
NARASIMHA REDDY, Texas A&M University, USA
PAUL GRATZ, Texas A&M University, USA

Key-value (KV) software has proven useful to a wide variety of applications including analytics, time-series
databases, and distributed file systems. To satisfy the requirements of diverse workloads, KV stores have
been carefully tailored to best match the performance characteristics of underlying solid-state block devices.
Emerging KV storage device is a promising technology for both simplifying the KV software stack and
improving the performance of persistent storage-based applications. However, while providing fast, predictable
put and get operations, existing KV storage devices don’t natively support range queries which are critical to
all three types of applications described above.

In this paper, we present KVRangeDB, a software layer that enables processing range queries for existing
hash-based KV solid-state disks (KVSSDs). As an effort to adapt to the performance characteristics of emerging
KVSSDs, KVRangeDB implements log-structured merge tree key index that reduces compaction I/O, merges
keys when possible, and provides separate caches for indexes and values. We evaluated the KVRangeDB
under a set of representative workloads, and compared its performance with two existing database solutions:
a Rocksdb variant ported to work with the KVSSD, and Wisckey, a key-value database that is carefully tuned
for conventional block devices. On filesystem aging workloads, KVRangeDB outperforms Wisckey by 23.7x in
terms of throughput and reduce CPU usage and external write amplifications by 14.3x and 9.8x, respectively.

CCS Concepts: » Information systems — Flash memory; Key-value stores.

Additional Key Words and Phrases: Key value stores, KVSSD, Range Queries

1 INTRODUCTION

As the importance of key-value (KV) workloads has increased so has the sophistication of modern
KV databases [9, 12-14, 22, 25, 31]. Popular key-value databases, such as RocksDB [14], are carefully
optimized to extract performance from underlying flash-based SSDs. Log-structured merge (LSM)
trees [26] are used as the core data structure for these purposes: adaptive I/O size, disk request
alignment and key-value store ordering. Mordern SSDs are usually managed in larger and aligned
blocks. In spite of the significant efforts spent to improve the efficiency of storing small keys and
values into larger blocks, the block-oriented interface still leads to several possible sources of
inefficiency for KV workloads. First, the minimum device I/O is bound to the block size, regardless
of the requested key and value size. As a consequence, latency-sensitive workloads without effective
data prefetching experience large amounts of read amplification, as 4K-blocks are read to retrieve
much smaller values. Second, in order to minimize the external read and write amplification
associated with LSM compaction, existing state-of-the art KV store only performs compaction
on keys, while values are stored separately. Such storage policy provides efficient insertion and

Authors’ addresses: Mian Qin, Texas A&M University, College Station, USA, celery1124@tamu.edu; Qing Zheng, Los Alamos
National Laboratory, Los Alamos, NM, USA, gzheng@lanl.gov; Jason Lee, Los Alamos National Laboratory, Los Alamos,
NM, USA, jasonlee@lanl.gov; Bradley Settlemyer, Nvidia, Austin, TX, USA, bsettlemyer@nvidia.com; Fei Wen, Texas A&M
University, College Station, USA, fei8wen@gmail.com; Narasimha Reddy, Texas A&M University, College Station, USA,
reddy@tamu.edu; Paul Gratz, Texas A&M University, College Station, USA, pgratz@gratz1.com.

, Vol. 1, No. 1, Article . Publication date: January 2023.

HTTPS://ORCID.ORG/0000-0003-1753-3914
HTTPS://ORCID.ORG/0000-0002-7457-9874
HTTPS://ORCID.ORG/0000-0003-1604-1395
HTTPS://ORCID.ORG/0000-0002-9299-2654
HTTPS://ORCID.ORG/0000-0002-8789-8495
HTTPS://ORCID.ORG/0000-0003-4625-8819
HTTPS://ORCID.ORG/0000-0001-7120-7189
https://orcid.org/0000-0003-1753-3914
https://orcid.org/0000-0002-7457-9874
https://orcid.org/0000-0003-1604-1395
https://orcid.org/0000-0002-9299-2654
https://orcid.org/0000-0002-8789-8495
https://orcid.org/0000-0003-4625-8819
https://orcid.org/0000-0001-7120-7189

2 Mian Qin, et al.

retrieval performance, at the cost of expensive garbage collection when values are frequently
updated or deleted. Finally, interest is rising in computational storage devices, or storage devices
that support the offloaded programmed analysis and reduction functions. These devices promise
much lower query latencies, as common searching and reduction functions can be performed
within the storage without sending data back to the host CPU. However, when the structure and
metadata describing the LSM is updated in the host memory instead of the storage device, it is
typically impossible to semantically interpret the contents of a block device.

To address these three issues, researchers proposed key-value interfaces for flash-based storage
called KVSSDs [1, 4] . These KVSSDs directly support the insertion, retrieval, and deletion of
arbitrarily sized KV data. During this process two competing device designs have arisen that attempt
to address different workloads. Hash-based KVSSDs, such as the one produced by Samsung [18],
deliver fast individual KV operations but are incapable of range-ordered iteration. In contrast, LSM-
based KVSSDS [15, 16, 35] require additional on-device processing support, but they maintain the
key ordering entirely within the KVSSD; thus eliminating the external read and write amplification
incurred by compaction. Most real life applications are a mix of both point and range queries [20,
28, 36, 39, 41]. While a workload containing any range queries can benefit from an LSM-based
KVSSD, we can expect substantial performance degradation given a large portion of the workload
is not range queries. Significant processing power within LSM-based KVSSDs are allocated to
maintain the LSM organization, slowing down the point queries. Hence, a hash-based KVSSD with
support for range queries in host applications could become an attractive solution to the dilemmas
described above.

In this paper we present KVRangeDB, a KV store designed to exploit the fast point operations
from hash-based KVSSDs while providing support for efficient range queries. KVRangeDB is
implemented on the host side in a layer between the KV applications and the KV device. We employ
similar ideas of the key value separation used by Wisckey [23], i.e., using a small in-storage LSM
tree to store keys and preserve key order, while the value is stored separately using the device’s
KV interface. The key difference from Wisckey is that we preserve point query performance by
directly accessing the device through key value interface instead of using an LSM tree index which
incurs multiple I/O operations. Additionally, KVRangeDB effectively offloads the value log garbage
collection required by Wisckey into the device, which significantly mitigates host side CPU usage
and reduces the external write amplification.

Q 400 300 g 6
g - 250 §
2 300 — g >
- 200 «» 4
S Q w
2 200 150 g 3
2 100 > 2
© 100 o
< 50 © 1
[U]
0 0 z 0
ldev 2dev 4dev ldev 2dev 4dev
wisc kvr
. wisc = kvr
=-wisc-cpu kvr-cpu
(a) Performance and CPU(us) cost (b) Write Amplification Factor

Fig. 1. Record aging comparison between Wisckey, a block device key-value database, and KVRangeDB, a
KVSSD key-value database.

, Vol. 1, No. 1, Article . Publication date: January 2023.

KVRangeDB: Range Queries for A Hash-based Key-value Device 3

We conduct experiments to demonstrate how KVRangeDB outperforms Wisckey with respect
to aging. In these experiments, we first load 500 million records. Then we perform three rounds
of aging process, consisting of multiple delete/update/insert operations. Garbage collection was
triggered for Wisckey at the end of each aging round. Detailed experiment setup and methodology
are described in Section 4. Fig 1 presents the results of Wisckey on traditional block SSDs and
KVRangeDB on KVSSDs. The results show that Wisckey experiences substantial write amplification
at the host compared to our proposed KVRangeDB on key-value interfaced device. This write
amplification leads to lower throughput and higher CPU costs at the host when KV stores interface
with block level devices.

In order to better understand the performance characteristics of the key-value interface, we have
focused on two important storage system workloads: key-value database workloads and file system
metadata workloads. Both of these workloads emphasize the performance of small update, retrieval,
and deletion operations that are already supported by the existing key-value device. However,
key-value databases and file system metadata operations also leverage range queries that require
the retrieval of sequences of consecutive key-value pairs. Such types of operations are are not
natively supported by the device interface of the commercially available key-value storage device
to date. To cope with this limitation, we provide an efficient software-based range-query capability
to analyze the device under realistic usage scenarios.

In this paper we describe the detailed design of KVRangeDB and the performance of the only
commercially available KVSSD and we attempt to answer the question whether a key-value interface
for the storage device is superior to the traditional block interface. The contributions include:

o A detailed design of KVRangeDB which employs various novel techniques to enhance effi-
ciency of a hash-based key-value storage device.

e Comparison of a key-value workload using a hash-based key-value storage device and a
block device.

e Comparison of file system metadata workloads using a hash-based key-value device and a
block device.

e A senescence/aging analysis of block-based key value databases and a KV database imple-
mented on a key-value interface.

2 BACKGROUND

In this section, we briefly review the emerging key-value interface storage devices and the state-
of-art for software key-value stores. Then we introduce how modern file systems use key-value
storage to manage metadata.

2.1 KV SSDs

Flash vendors have provided users a variety of alternative interfaces to flash-based storage devices.
Open Channel SSDs [6] moved the majority of the FTL into software allowing users to manage
the physical placement of blocks and access the device’s internal parallelism. More recent Zone
Namespace (ZNS) devices [1, 5] provide an interface that allows users to leverage a block-oriented
page append interface and indicate to the devices groups of blocks that can be erased efficiently. Most
recently, the storage industry has standardized a Key-Value device interface [1, 4] that simplifies
the mapping of popular key-value software interfaces to the device interface [15, 16, 35]. Currently,
Samsung provides KVSSD products [18] with a hash table implementation [18, 19] targeting fast
put/get performance and low write amplification.

Fig 2 illustrates the system stacks for KVSSD based systems. Traditional software KV stores
involve complex key-value to file and then file to block translations done by the file system and

, Vol. 1, No. 1, Article . Publication date: January 2023.

4 Mian Qin, et al.

[KV Applications] [KV Applications]
$
KV engine
L B

(File system) I KVRangeDB i
(Block layer) (KV library)

Block device driver [KV-SSD device driver]
(. J

sw sw

Block SSD KV SSD

(a) Software KV system stacks (b) KVSSD system stacks

Fig. 2. Comparison between (a) traditional software KV system stack and (b) KVSSD system stack.

block layer of the operating system. By contrast, KV stores based on KVSSDs leverage a thin layer
of software consisting of only a device driver and a user space KV library. KVRangeDB is built on
top of the KV library layer as shown in Fig 2 (b). KVRangeDB can be also seen as an enhancement of
the KV library layer. The KVSSD provides put, get, delete, as well as basic KV iteration operations.
Its KV iteration interface allows traversing a group of keys (with the same 4B key prefix) without
key ordering. For ordered key scans for arbitrary keys, we implemented a range query engine using
the device iterator capable of retrieving all keys stored on a device. We then used an in-memory
priority queue to store all keys from the seek position up to the scan length. The range query
latency turned out to be impractically long for real life applications, in the ballpark of tens of
seconds for a 10 million records dataset.

2.2 Modern software KV-stores

Modern KV-store applications [8, 9, 13] rely on software KV engines to translate the key-value
interface to the block interface used by HDDs or SSDs. State-of-art software KV stores [3, 12, 14]
use LSM-tree data structures [26] for efficient reads and writes. LSM-trees organize KV objects into
multiple levels of large, sorted tables (SSTable). All writes and updates occur as out-of-place writes
to the top-level table. Reads search from the top-level table to the bottom-level tables for the most
recent data. LSM-trees achieve high performance by converting small writes into large sequential
I/Os which are optimal for the underlying device. However, this comes at the cost of high CPU
utilization and I/O amplification as previous work shows [23, 25, 31].

LSM-trees use compaction for efficient KV scans and get performance. To reduce the write
amplification overhead caused by compaction, Wisckey [23] proposes the separation of keys from
values for LSM-tree based KV stores. Wisckey stores values in a log and maintains a small LSM-tree
as an index that maps keys to offsets to the value log. While improving write performance, this
indirection reduces range query efficiency. The value log additionally requires garbage collection
which adds complexity to the design.

, Vol. 1, No. 1, Article . Publication date: January 2023.

KVRangeDB: Range Queries for A Hash-based Key-value Device 5

2.3 File systems using ordered KV-stores

Several local and distributed file systems [2, 21, 27, 32, 37, 40] used KV stores for file system
metadata management. The main advantages of using KV-store for metadata management instead
of traditional extent trees or B-trees is scalability and write performance. However, for efficient
directory traversal, these systems often require the underlying KV-store to provide efficient ordered
KV scan operations.

/
o

<0, “I"> {1, stat, ...}
= <1, “bin"> {3, stat, ...}
usr/ bin/ home/ S <1, “home™> {8, stat, ...}
(2) 3) (8) ;-?. <1, “usr’> {2, stat, ...}
<3, 48> {10, stat, ...}
<8, “bar”> {20, stat, ...}
Is foo/ - bar/ <8, “foo”> {15, stat, ...}
(10) (15) (20) Y

Fig. 3. TableFS metadata management schema illustration.

In this section, we describe TableFS [32] as an exemplar and briefly introduce how to use a
KV-store to manage file system metadata. Fig 3 illustrates the metadata schema of TableFS. Each
TableFS record stored in the KV-store corresponds to a file or directory in the file system. The
variable length key consists of a 64-bit inode number of the parent directory and the name of the
file. The value contains the inode number of the file and the file’s various attributes (type, size,
permission bits, owner information, etc).

To resolve a full file system path name, TableFS starts searching from the root inode. Then it
traverses each level of the directory tree with a search key that combines the inode number of the
current directory and the next component name in the path. For file system operations such as
mkdir, mknod, unlink, Istat etc., the file name is first resolved and then the corresponding put,
get, delete KV operation is performed. For readdir operations, range queries are used. TableFS first
resolves the target directory path name and then range queries records using the directory’s inode
number as the key to list all children of that directory. TABLEFS implements a light-weight locking
mechanism [32, 34] to guarantee the atomicity and the correctness under concurrent accesses.

3 KVRANGEDB

KVRangeDB is designed to support efficient range queries on hash-based KV storage devices while
retaining the native put/get performance benefits from the device. A critical feature is to manage
an ordered key index separately from the data. For a range query, we will first check the key index
and find the target keys in the queried range and then retrieve the values from the device. The idea
seems straightforward, however, there are many problems to consider.

Table 1 outlines the key challenges for efficient range queries on hash-based KV storage devices
and how our KVRangeDB design addresses those fundamental problems. We will detail our design
choices in the following sections.

, Vol. 1, No. 1, Article . Publication date: January 2023.

6 Mian Qin, et al.

Table 1. Key challenges and corresponding KVRageDB design

Challenges Design ideas
How to saturate device bandwidth for Packing multiple small records. (Sec 3.2)
small records?
How to implement efficient index LSM tree structure on top of native KV interfaces.
structure? (Sec 3.3)
How to amortize latency for separate value | Leverage value prefetch and packing heuristic.
retrieval? (Sec 3.4)
How to improve efficiency for empty Hierarchical bloom filter for point and range
queries? queries. (sec 3.5)

3.1 Basic API

KVRangeDB provides key-value semantics with range query support, similar to the APIs of
RocksDB[14] and LevelDB[12]. An iterator interface is provided to perform range query or scan
operations. We define the following APIs for our KVRangeDB (the user hint API will be discussed
in Section 3.4):

o put(k, v): Put new key-value pairs.
o get(k, v): Retrieve value from key.
o delete(k): Delete key-value pairs.
e iterator : Iterator for range query.
— seek(k): Moves the iterator to the first key-value pair with key greater than or equal to
the seek key.
— next(): Move the iterator to the next key-value pair.
— wvalid(): Whether iterator is valid.
— key(): Return the key of the current iterator.
— value(): Return the value of the current iterator.
— hint.scan_length: Specify the user hint for the scan length.

3.2 Packing smaller records

In the rest of the paper, we use logical keys and user keys interchangeably as the application keys.
We define physical/device keys as the actual key written to the device with the KVSSD KV interface.
For smaller size records, packing multiple values into a single physical record can yield better write
throughput and mitigate the performance decrease at large key counts. The logical key to physical
key mapping can also serve as a key index to provide the range query capability over logical keys,
accomplishing two goals with one mechanism.

Fig 4 illustrates how smaller KV records are packed into a large physical record. Samsung KVSSD
shows almost flat put IOPS for records smaller than 4KB [18, 30]. Multiple smaller logical records
can be packed into a single large physical record around 4KB to yield higher write throughput and
reduce the number of physical keys managed on the device. The key index keeps the logical keys
to physical keys mapping for retrieving records by the logical keys, which requires a linear scan on
the physical record to extract the user record. In order to support range query on the logical key,
we use LSM tree to maintain the logical key to physical key translation. The main reason to choose
LSM tree as the data structure for logical to physical key mapping instead of traditional B/B+ tree
is to achieve higher write performance [12, 14, 26].

, Vol. 1, No. 1, Article . Publication date: January 2023.

KVRangeDB: Range Queries for A Hash-based Key-value Device 7

.2KB
phy_key1
by ke | | KEY
phy_key1 .

phy key1

key size | user key | value size | user value

1B variable 4B variable

Fig. 4. Packing smaller records and translating user keys.

Point query processing When performing point queries on the packed records, LSM tree key
index is consulted first to find the physical key and then the value from the packed physical record
is retrieved.

Range query processing When range queries are performed, the LSM tree key index is traversed
to find the physical key mapped to the target user key and retrieve the values in the queried range
separately.

Update and remove operations We propose two approaches to handle update and remove
operations of the existing packed records. First, we can use in-place update mechanism which
requires read-modify-write to the packed physical records. Alternatively, we can always assign
new physical keys to the updated records (out-of-place update) to maintain high write throughput
and apply background garbage collection to clean up the stale records as shown in Fig 5.

3.3 Building a key index for range queries

This section will describe in detail how we design the key index to support range queries on a
key-value storage device. Compared to Wisckey [23], which also employs key value separation,
Our design has two main advantages.

o The get operations, or point queries can be fulfilled by a single read I/O directly from the
device.

o We effectively offload the value log garbage collection to the device side which significantly
reduces host CPU usage and external read/write amplifications.

As we mentioned in Section 3.2, to achieve high write/put throughput performance we choose
an LSM tree based key index for logical key to physical key mapping when packing smaller records.
For other records (large value records or frequently accessed records), on the other hand, we simply
leave the logical keys in the LSM tree key index to achieve logical key ordering for range queries
and use the logical key as the device key directly without the need for logical to physical key
translation. This is a core difference when compared to Wisckey [23]. Wisckey needs to consult
the key index for both point and range queries, in order to locate and retrieve the values from
the value log. However, for point queries with KVRangeDB, we can bypass the index and directly

, Vol. 1, No. 1, Article . Publication date: January 2023.

38 Mian Qin, et al.

put, delete get,scan el

[]4-
i memtable Memory
% KV-SSD

lkey21 pkey3| lkey74

L Key Index < |
v
. Value data
o [) T/ 70 su37sess sst37_idx | |
é v I v | 4
Ikeyl lkey31 | pkeyl 0->[key1-21]
D Ikey3 [pkey12| [lkey43 | 15645->[key31.74] |
L1 lkey7 Ikey47 | pkey3
Ikey12 lkey52|pkey12| I

D000

Fig. 5. LSM tree key index design for supporting range queries.

use the logical key to retrieve the value from the device with exactly one I/O for large unpacked
records. For example, as shown in Fig 5, lkey1, lkey7, lkey12, etc. are unpacked records that can
be retrieved directly from device through the logical keys. Records lkey3, lkey52 are packed into a
physical record (physical key pkey12) and need to go through key translation to retrieve the value
of the records.

To balance write and range query performance, we must carefully design the LSM tree structure.
In our LSM tree index design, we use separate keys to store each data block and the index block
(Here block is not fixed size block in the block device, it can be any size). Fig 5 illustrates the LSM
tree key index for KVRangeDB. Similar to levelDB and rocksDB, the LSM tree index contains a
memtable, multiple sorted SStables based on logical keys and manifest. The manifest uses a single
KV record. For SStable storage, we use separate device KV pairs to store each data block and index
block. The data block keys are the SStable number plus the offset. There is a single device KV pair
for each index block using the SStable number as the key and with the value containing the key
range information and offset for each data block.

It is not practical to expect that users always know
in advance whether a logical key is in a packed record

or directly stored as a physical key. To cope with that, 9€¢ i ""neg !

we implement a scheme called hybrid key translation. — ____ Ll I !_Iill_e_r:\?r_/_
Hybrid key translation provides an efficient mechanism 1 KV-SSD
to determine if the key index must be consulted or can | Key Index |_.| Value data |

be bypassed for a value retrieval. In the context of get
operations processing, it requires checking the key index
to make sure whether the queried key is translated or
not. In our design, we leverage a small bloom filter [7]
to reduce the overhead of key index checking when the
keys are not translated and can be directly retrieved from
the device with the logical/user keys. Fig. 6. Bypa.ssing index checking for hybrid
As illustrated in Fig 6, when we process the get oper- key translations.
ations, we consult the bloom filter. If the filter returns

Logical-> Physical

lkeyl
Ikey3 |pkey12|
lkey7 | pkey3 |

, Vol. 1, No. 1, Article . Publication date: January 2023.

KVRangeDB: Range Queries for A Hash-based Key-value Device 9

negative (dashed arrow) the queried key is definitely not translated and we directly retrieve the
value from the device with the logical key. Otherwise (solid arrow), we’ll consult the key index
to find the physical key for the value. In a false positive case, i.e. logical key are not translated to
physical key, we’ll still go to the key index for consultation (solid arrow). Since the key index has
the global view of all the logical keys mappings (if logical keys are not translated, the physical key
counterpart will be null as shown in Fig. 6). Then we go to the device to retrieve the value with the
logical key. Since the false positive rate is relatively low, the overhead of extra key index checking
can be neglected.

3.4 Value prefetching and caching for range queries

The key index introduces two problems that hinder efficient query processing. First, unlike LSM-
based software KV stores [12, 14] which pack key and values together, the range query in our
design will need to consult the index first in order to determine the target keys in the queried
range. Then, we need to separately issue I/Os to retrieve the values associated with the target keys
if the user also asks for values. This requires additional I/Os to satisfy the range query. Second,
the record packing introduces key translation from logical keys to physical keys, and the value
may not be directly retrieved with the logical key for simple point queries. In such a case, the point
query performance will be impacted by the additional I/Os for index look up.

We propose two approaches to resolve these issues. The first approach is to leverage user hints
for prefetching the values to overlap the value retrieval latency. We implemented two additional
read options for range query, i.e. scan length and upper bound key. Since users may have prior
knowledge of the queries (e.g. during a table scan, what is the approximate number of entries in
the table; or in a query for events between two timestamps, what is the end timestamp, etc.), by
applying those hints, we can prefetch the values in advance to hide the latency for accessing the
values separately. Besides user domain knowledge, proper profiling can be also used to help extract
hinting information to better leverage our hint interface. We also design a prefetch throttling
mechanism to prevent too many in-flight prefetch requests that may increase the device queueing
time and affect the other I/O requests.

The second approach is to leverage the temporal locality of the packed records. Application
may write the adjacent records (in defined key order) together and may get packed into a single
physical record. When range queries are performed, the LSM tree key index is traversed to find the
physical key mapped to the target user key. We will cache the other records packed in the same
physical records. When following next() and value() is called, we can examine small cache and
on a hit, return the value directly without issuing I/O to the device. In the worse case scenario,
we still perform the same number of I/Os as no packing. In Section 4.3, we will demonstrate how
real-world applications can leverage packing for range queries.

3.5 Range filter for empty queries

Given typical key sizes compared to the typical number of records stored within a key-value
database, most stores have only a small portion of the key space occupied. As a result, queries
may result in empty/negative replies and thus we need an efficient mechanism for deciding that
keys do not exist. In KVRangeDB, we design hybrid filters as an auxiliary structure to filter out
empty/negative queries for both point and range queries. (For example, “Is key 7 in the store?” or
"Do any keys between 3 and 100 exist in the store?"). Filters are compact/compressed structures
that can be completely stored in memory. For a typical data store with 1 billion keys, the key index
size may be tens of gigabytes which may exceed the available memory resources dedicated to the
database and an alternate filter must instead be designed as an in-storage data structure. Typical

, Vol. 1, No. 1, Article . Publication date: January 2023.

10 Mian Qin, et al.

filters only require very small memory footprint (1-2 gigabytes per billion keys) and can fit into
small memory budgets successfully.

Bloom filters are well studied [7] and has been deployed in various software key-value stores [12,
14]. As mentioned earlier, KVRangeDB also uses a bloom filter for our hybrid key translation
algorithm. However, simple bloom filters are not efficient to handle range queries ("Do any keys
between 3 and 100 exist in the store?"). We could query every possible key by accessing bloom filters
multiple times (from key 3 to key 100) to determine whether the queried range exists. However,
such a method suffers from high CPU cost and false-positive rate.

scan: [0x51, 0x53] - negative scan: [0xB4, 0xBF] - positive
0x5U 0xB0 X 0xB8 v
0x50 X 0xB8 /| 0xBC
PN AR 0xB8V 0xBA/ .7 .

“ 0xB8 X 0xB9V

BF_O | Bits 7-3 [0x50][0x08 || 0xB8] |

BF 1 | Bits 7-2 [oxsa | oxoc | [oxes] [oxac | |

BF 2 | Bits 7-1 [oxs4 | oxse | [oxoc | [oxss | [oxec |

I
J(
J(
J(

BF_3 | Bits 7-0 (oxs5 | oxs7 | (oxoc | (oxeo | (oxec |(oxep |

put keys: {0x57, 0x0C, 0xBD, 0xBC, 0x55, 0xB9}

Fig. 7. Hierarchical bloom filter for range queries filtering.

Recently, more advanced filters were proposed [24, 39] with similar purpose for range queries
especially for those short range queries with high probability of being empty. Unlike the prior
work [24, 39] which is designed for block-based range filters targeting LSM-tree based KV stores,
we propose a lightweight unified in-memory range filter for accelerating both empty point queries
and empty range queries. As opposed to storing filters for each sorted-run, we don’t store any
filter data in storage, but build the filter on the fly when opening the database (we can also persist
the filter data on the devices). There are two main reasons for this design. First, unlike LSM-tree
based KV-stores which need to scan the entire database to retrieve all keys in the database, our
KVRangeDB separates the sorted key index from the value store and can retrieve the keys efficiently.
Second, building the range filters on the fly is more flexible to accommodate fast shifting workloads
by altering the filter designs. For example, some workloads that frequently result in empty point
queries may only need a simple bloom filter with lower memory costs, and workloads that rarely
encounter empty queries may simply discard the range filter altogether.

In our design, we extend the idea of prefix bloom filter [14] and use multiple layers of a prefix
bloom filter, each with different sizes of prefix to enable efficient range filtering. When building the
filter, each key in the database stores various length prefixes into each level of bloom filters (the
bottom level stores the full key bloom filter which also works for point queries). Range queries
that consult the filter will be broken down to multiple prefix sets according to the top-level bloom
filter prefix length. For each prefix set covered by the top-level prefix length, it can then recursively
probe the lower level bloom filters to determine if there are potential keys in the checked range.

, Vol. 1, No. 1, Article . Publication date: January 2023.

KVRangeDB: Range Queries for A Hash-based Key-value Device 11

As long as there is one possible key existing in the queried range, the filter will return positive
and requires checking the key index in storage to satisfy the query. On the other hand, if the filter
returns negative then the queried range is definitely empty, and we can directly return and save
the I/O cost of checking the key index.

Fig 7 illustrates how our hierarchical range filter works, through an example. Consider we store
records with the keys shown at the bottom (the key size is 2 bytes, 0x57...). The hierarchical range
filter is designed as 4 levels of bloom filters (BF_0 to BF_3). The top level bloom filter BF 0 is
constructed using the 5 MSB bits prefix (bits 7-3) of all keys in the store. Each element in the top
level bloom filter covers a range of 8 keys. A negative result of BF 0 filter check means there is
definitely no key existing in this key range. Each lower level filter uses 1 more bit prefix and covers
half of the key range than the upper level filter. The bottom level stores the full key bloom filter
which also works for point queries. As an example, consider range query "scan [0x51, 0x53]" as
shown in the top left of Fig 7. We first consult the top level filter whether 0x50 prefix (covering key
range from 0x50 to 0x57) exists. The top level filter returns "yes" and it keeps consulting the next
level with 0x50 (BFE_I prefix 0x50 covers key range from 0x50 to 0x53). BF_I returns "no" which
means the query key range (0x50 to 0x53) is definitely empty in the store. A range query may break
into multiple prefix checks, each covering a smaller range as shown in the query example on the
top right. As long as there is one positive result when we reach the bottom level, a key possibly
exists in the queried range.

One critical component of a hierarchical bloom filter design is the amount of memory to dedicate
to each level of the data structure. Intuitively, higher level filters may contain less distinct keys due
to shorter prefix lengths and may require less memory for the filter. In our design, we use a simple
strategy to allocate the memory footprint as follows, which has thus far worked well.

Where N is the number of levels for the Hierarchical bloom filter. M is the total memory budget
for the range filter. M; is the memory budget for the ith level filter (i start from 0 to N).

4 EVALUATION

This section presents the experimental results of Yahoo! Cloud Serving Benchmark (YCSB) [11] and
TableFS [32, 34], a real-world KV application that relies on range queries. We compare KVRangeDB
against two other solution: Wisckey [23], the state-of-art software KV-store on block devices; and
RocksDB [14], the industry counterpart, ported to KVSSD. We analyze how each optimization
technique presented here contributes to the overall performance improvement and how they impact
different collections of KV operations.

4.1 Methodology

4.1.1 Experiments setup: Table 2 lists the detailed hardware information. Block SSD and KVSSD
use the same SSD hardware device except that the firmware is different.

Since the complete Wisckey source code is not disclosed to public, we implemented Wisckey
according to the paper for this evaluation. Instead of using LevelDB to store the user key to <log
offset, value size> mapping in the original paper, we use RocksDB [14] which has better overall
performance. In order to make our comparisons using the same memory budget and exclude page
cache effects for the block device, we use direct I/O mode for the Wisckey implementation, including
the RocksDB index and value log operations. The evaluation configurations within our experiments
are listed as follows:

, Vol. 1, No. 1, Article . Publication date: January 2023.

12 Mian Qin, et al.

Table 2. Hardware Specification

Component | Description

CPU Intel Xeon Silver 4216 @ 2.1GHz, 16 cores
Memory 96GB DDR4 @ 2133MHz

SSD PM983 3.84TB x4, (~580k 4KB read IOPS)
KVSSD PM983 3.84TB x4, (~200k 4KB read IOPS)
Memory 128GB DDR4

oS Linux version 4.15

e Wisckey: Wisckey implementation on a conventional block SSD. The values are packed in
a contiguous log file with 1MB log buffer. The key to log offset mapping for each record is
stored in RocksDB.

e RocksKV: RocksDB implementation ported to the KVSSD. It uses the key-value interface
instead of a file system interface to store the SSTable files and metadata files. For SSTable
files, we store each data block with a separate record using the combined SSTable file number
and block offset as the key. Manifest files are stored as a monolithic record.

e KVR: Baseline KVRangeDB implementation without hybrid record packing.

e KVR-PF: Baseline KVRangeDB optimized with value prefetching for range queries.

e KVR-PK: Baseline KVRangeDB optimized with hybrid record packing.

e KVR-PK-PF: Baseline KVRangeDB optimized with hybrid record packing and value prefetch-
ing.

4.1.2 Workloads: We conducted two categories of experiments to evaluate the above systems.

e To measure the KVRangeDB performance, we run comprehensive micro-benchmarks includ-
ing scan operations of various length, with/without retrieving values, as well as simple put,
get, and seek operations under YCSB. Quantitative description for each query workload is
explained in the following sections.

e File system applications under TableFS which utilizes a KV-store as its metadata management

engine. This application uses a large real-world directory tree, executes find commands, lists
file/directory contents and list metadata which are all composed of mixed put, get, and
range queries and we emulate the file system aging process with multiple rounds of updating,
removing and inserting files/directories.
TableFS only uses KV-store to store the file metadata. The file data blocks are stored sep-
arately. In our experiments, we use KVRangeDB to replace TableFS’s KV-store (LevelDB)
and only examine the metadata operations which are the main bottleneck of the filesystem
workloads [32]. The actual file data blocks are not included in the given filesystem tree and
our experiments.

For micro-benchmarks (YCSB), we use single SSD/KVSSD. To better emulate real-world TableFS
application, we use 4 devices in RAID0 mode. We use linux md to configure RAIDO for block SSDs.
For the 4 KVSSD array, we spread the records through hashing the key [29].

4.2 Results for YCSB

We use two datasets for YCSB experiments: first dataset of 250 million large records (with 16B key
and 4000B value size) doesn’t leverage packing; second dataset of 1 billion small records (with 16B
key and 1000B value size [38]) can leverage packing (We pack four logical records to form a physical
records). For all of our experiments, we first load all the data on the device (the index is written

, Vol. 1, No. 1, Article . Publication date: January 2023.

KVRangeDB: Range Queries for A Hash-based Key-value Device 13

with the data). We then run different query workloads to examine the performance of KVRangeDB,
RocksKYV, and Wisckey. For KVRangeDB, the bloom filter filter described in Section 3.3 is constructed
during the loading phase and persisted to the KVSSD when database is closed. However, we bypass
the bloom filter checking in the get workload since it’s either fully packed or unpacked.

Write performance Fig 8 (a) demonstrates
the throughput performance of loading data

onto the device. For smaller records, packing z 400 323.2

can be useful in improving the overall write S 300 253

throughput and reducing the number of keys = .

managed by the device as we discussed in é 200 112395 ¢
Section 3.2. The loading throughput of KVR- <, 100 :
PK outperforms RocksKV by 14x and Wis- 3 0 22.9 5.1

ckey by 1.3x. It’s also worth noting that Rock- &

sKV requires greater compaction I/O since it ™ 1k Value 4K Value
packs keys and values together. Packing more B RocksKV Wisckey KVR-PK 7 KVR
records into a physical record yields higher

write throughput, thus it enhances the data Fig. 8. YCSB write performance (16 threads).

loading efficiency. KVR-PK is beneficial for

write-heavy use cases which contain lots of

small records. For 4000B value size, KVR can achieve 18.8x better performance compared to Rock-
sKV. KVR performs slightly (~15%) worse than Wisckey in terms of write operations, as Wisckey
leverages large sequential I/O for writes. However, Wisckey’s implementation suffers on removes
and updates (which require host-side garbage collection); as contrary to KVRangDB which can
directly remove and update records from device through the user key. We evaluate remove perfor-
mance as part of the file system workloads in section 4.3.

80 80
v 2
8_ 60 58.8 8. 60 58.8
~ v
= = 423
3 40 33.9 a 40 28.5
= 24.9 < 218
%20 127 %20
2 3.9 49 o 42 5.4
'-E 0 L m=m || I_E 0 L mm |
1K Value 4K Value 1K Value 4K Value
M RocksKV m Wisckey ™ KVR-PK © KVR M RockskV m Wisckey m KVR-PK = KVR
(a) Throughput with no cache (b) Throughput with 1GB cache

Fig. 9. YCSB Get performance (16 threads)

Point query For RocksKYV, a get operation requires examining several sorted-runs in each level
of the LSM-tree to finally retrieve the records, introducing multiple I/Os. Wisckey needs to look up
the LSM-Tree for the log offset of a record based on user key before retrieving the value from the
log. In contrast, KVRangeDB without packing (KVR) can fulfill the get request by a single I/O using
the user key through the KV interface provided by the device. Similar to Wisckey, KVR-PK only
requires traversing a small LSM-tree to translate the logical key to physical key and then retrieve

, Vol. 1, No. 1, Article . Publication date: January 2023.

14 Mian Qin, et al.

the value from the device using the physical key. Hence, a small index cache is enough to help
reduce the I/O overheads from index lookup.

—40 .80

< <

&30 g 60

= =

520 540

o o

< <

210 220

e e

£ 0 £ 0 —

Scan0 10 50 100 Scan0 10 50 100
--RocksKV Wisckey KVR-PK --RocksKV Wisckey KVR

(a) Scan keys throughput for 1K value (16 (b) Scan keys throughput for 4K value (16
threads) threads)

—10 — 10

<L <

g6 S 6

o o \.\o\.

c 2 c 2

a0 o0

3 0 3 0

£ Scan 25 50 75 100 < Scan 25 50 75 100

10 a 10
—e-RocksKV Wisckey —e—RockskV Wisckey
KVR-PK KVR-PK-PF KVR KVR-PF

(c) Scan keys&values throughput for 1K (d) Scan keys&values throughput for 4K
value (16 threads) value (16 threads)

Fig. 10. YCSB range query performance

Fig 9 (a) and (b) demonstrates the performance of simple get (or point query) workload. KVR
exhibits a large advantage over RocksKV for both no cache and 1GB cache scenarios. KVR outper-
forms Wisckey for large records by 73% (no cache) and 39% (1GB cache). KVR-PK provides slightly
lower performance than Wisckey with 1000B value size because the block device provides better
read performance compared to KVSSD.

Scan keys For the scan key workload, KVRangeDB only needs to traverse a relatively small LSM
tree only containing keys. By contrast, RocksKV’s LSM-Tree comprises both keys and values, which
may require more I/Os. KVR-PK/KVR achieve much better performance, ~8x better compared to
RocksKV with 1GB cache as shown in Fig 10 (a) and (b). KVR-PK/KVR perform slightly worse
compared to Wisckey due to the device read performance disadvantage of KVSSD (Wisckey also
only needs single I/O to retrieve value after locating the log offset).

Some may wonder if scanning the keys only (without retrieving values) makes sense in real
world applications. Here is an example of a typical file system workload (more details in Section 4.3):
Consider the command line utility Is which lists files and sub-directories. In TableFS, a Is -1 $path
command translates to a scan on the target directory which needs to retrieve value (calling both

, Vol. 1, No. 1, Article . Publication date: January 2023.

KVRangeDB: Range Queries for A Hash-based Key-value Device 15

key() and value()) for parsing stats in the inode. However, a simple Is $path command only needs
to iterate on the keys without reading the value (inode information).

Scan keys and values On the flip side, KVRangeDB doesn’t perform equally well with range
queries that retrieve values, since it costs a separate I/O for each value() operation. As shown in
Fig 10 (c) (d), when the scan length passes 40, KVR-PK-PF/KVR-PF perform worse than RocksKV.
The optimization of value prefetch with user hints improves the performance to some extent
(~56%). From the analysis of real key-value workloads [41], the average scan length is less than 20.
Therefore it may not be worth packing key and value together like RocksKV which mostly benefits
longer scans with value retrieval (value() operation).

4.3 Results for TableFS

For the file system workloads [2, 33, 37, 40], we use a real file system trace from Los Alamos National
Lab which contains approximately 500 million files and directories (~20 million directories and
~480 million files), ~90% files are marked as "cold" which can leverage our hybrid packing technique
described in Section 3.2. The loading and aging phase consists of multiple file operations such as
path resolve, opendir, mkdir, mkmod, unlink, chmod, etc. which translates into a combination of
put, get, delete workloads to the KV-store. At the end of each aging round, we perform a value log
garbage collection for Wisckey (around 25% difference between real metadata capacity and actual
storage usage). Value prefetching is enabled for range queries for both Wisckey and KVRangeDB
variants.

For KVR-PK-PF, we selectively pack multiple file inode records (which are marked as cold set)
under the same directory into a single physical record as described in Section 3.2. Since the files
in the same directory are loaded together, such packing can benefit range queries as discussed
in Section 3.2. For the remaining ~10% hot files, we don’t perform packing and the values (inode
information) can be directly retrieved from the device through logical/application keys.

Load file system tree Fig 11 presents the results of loading the file system tree into TableFS.
KVR-PK-PF yields a 33.9x speedup over Rockskv and 1.14x over Wisckey respectively. Besides,
KVR-PK-PF also reduces CPU consumption by 15x and 1.5x respectively. We also collect the number
of I/O requests and read/write amplifications from/to the device. RocksKV incurs significantly
larger write amplification, 15.7x worse than KVR-PK-PF, due to constant compaction of the sorted-
runs. KVR-PK-PF also mitigates the read amplification enormously, specifically over 2000x fewer
than RocksKV and 14x fewer compared to Wisckey, from the direct get interface on the device.
KVR-PK-PF performs slightly worse than KVR-PF, however, it reduces CPU cost by 12% (due to
less number of write I/Os).

Aging the file system Fig 12 demonstrates the results of aging the TableFS file system tree. KVR-
PK-PF outperforms RocksKV and Wisckey by 72x and 23.7x respectively. Moreover, KVR-PK-PF
also saves CPU cost by 55.6x and 14.3x respectively. The main negative factor of Wisckey is the
value log garbage collection caused by records update [15, 23]. Wisckey issues a larger number of
read I/Os because it needs to lookup the key to log offset mapping for every get operation (check
file path existence), and also performs garbage collection after removes and updates of the records.
KVR-PK-PF greatly reduces read and write amplification by 385x and 9.8x compared to Wisckey.
This advantage is mainly attributed to using the direct key value interface on the KV devices to
store values which effectively offloads the value log garbage collection from the host to the device.

Metadata-intensive operations Fig 13 shows the performance and read I/O results for metadata-
intensive file system workloads. We use a limited number of CPU resources (4 and 8 physical cores)
to emulate the resource competition common in multi-tenant scenarios. We assign 16/32 client
threads for each physical core.

, Vol. 1, No. 1, Article . Publication date: January 2023.

16 Mian Qin, et al.

i
o
N
o

5 c s
= s
% 30 5215
5 38
= 20 Q ‘g 10
_; [T
o 10 Eg s
N 5
= S %
£ 0 5e 0
S S A & = QN &«
& ¥ 8§ @Qi SN &
(a) Wall time (b) CPU time
2866
600 _ 20 2454
5 o
= 450 w© 15
= o
S =
% 300 3 10
o (S
< ©
« 150 = 5
© <
* o
0 0
read write read write
B RockskV = Wisckey W RockskV ~ m Wisckey
KVR-PF m KVR-PK-PF KVR-PF m KVR-PK-PF
(c) Total # of 1/O requests (d) Read/Write amplification

Fig. 11. Results for loading file system tree to TableFS.

Parallel find workloads perform traversal of the files/directories in a breadth first search fashion.
These workloads contain path lookup and readdir operations which translate to get and range
queries. KVR-PK-PF yields ~5.1x better performance on average compared to RocksKV and reduces
CPU cost by a factor of 3.9x. This is because in a real file system directory tree, there are lots of
directories with very few sub-directories and files (leading to short scans). Wisckey outperforms
KVR-PK-PF by ~30% simply because current block SSD has much higher read IOPS performance
(~3x) as shown in Table 2 and better latency characteristics [15].

Parallel "ls -1" contains path lookup and readdir operations which translate to get and range
queries with both key() and value() operations with various scan lengths (depending on the number
of files and sub-directories within a queried directory). KVR-PK-PF yields ~5x better performance
on average compared to RocksKV and reduces CPU cost by 4x. KVR-PK-PF slightly improves
performance and reduces CPU consumption since it reduces get I/O operations (~10%) when the
queried directory file inodes are packed.

Parallel 1stat workload consists of get operations only. Compared to RocksKV and Wisckey
which require multiple I/Os per get operation (RocksKV needs to examine multiple sorted-runs

, Vol. 1, No. 1, Article . Publication date: January 2023.

KVRangeDB: Range Queries for A Hash-based Key-value Device 17

~ 80 — 60
= c >
o 2 X 50
% 60 c L2
= S 840
o Qe
5 £ 20
4]
g 20 52
€ o m— S o —
o)
N 2\ < < N\ A < <
&Y & &
SO SO G
+ £
(a) Wall time (b) CPU time
106052825
500 20 2201 408 53.7
g 400 g
= & 15
g 300 =
n a 10
O 200 €
= ©
%5 100 =z >
= &
0 0
read write read write
B RockskKV ~ m Wisckey B RockskV W Wisckey
KVR-PF = KVR-PK-PF KVR-PF M KVR-PK-PF
(c) Total # of 1/O requests (d) Read/Write amplification

Fig. 12. Results for aging TableFS file system tree.

or SSTable files, Wisckey needs to lookup the log offset from user key before retrieving the value
from the log), KVR only requires a single I/O per get through the KV device interface. Thus, KVR
reduce 15.9x and 1.9x respectively compared to RocksKV and Wisckey. Besides, KVR outperforms
RocksKV and Wisckey by 51x and 1.12x and reduces CPU usage by 30x and 1.15x. The file system
workloads showcase the advantages of KVR, even with the current KVSSD read performance being
relatively low compared to similar hardware block SSD. Despite the fact that KVR-PK-PF requires
more than one I/O per get when keys need to be translated, its performance is barely affected
under these workloads. To understand that, we analyse the workloads and found that most 1stat
operations are performed on hot file set whose keys don’t need translation (application key equals
physical key), thus KVR-PK-PF performs similar to KVR-PF.

For simple parallel "Is" without "-1", which is converted to a range query without value() operation,
KVR-PF performs 21x better compared to RocksKV. The cause of RocksKV’s poor performance is
that the SSTable packs key and value together, thus the cost of range queries only calling key() is
similar to range queries that calls both key() and value(). KVR-PF, KVR-PK-PF and Wisckey have
similar performance since they separate keys and values.

, Vol. 1, No. 1, Article . Publication date: January 2023.

18 Mian Qin, et al.

N
15

400 100

6 = <
H H 3 58 2 2
EX s " £ 5 3 £ 320 80 B
E} . . ~— Am Hp 43 3 3
36 = - s E g 20 60 g
= . o ° S
e s e A o 160 40 2
g, Is b Ml PEE g Tt | " £
g2 1 s S 80 s g nE Wl 20 2
= 15 l o}
:, wl al il | W . @ o mmmm HUHUM
S & 8 8 & 5 5 8 & 2 & 5 8 8 & 8 8 8
& p o o & ps o o 2 IS 508 @ IS I N
08 8§ 3 08 & 3 5 % B g 508 8 §
PE Pls- Plstat Pls
= RockskV = Wisckey KVR-PF m=KVR-PK = RocksKV =Wisckey KVR-PF m=KVR-PK
+-RocksKV-cpu =-Wisckey-cpu 4+ KVR-PF-cpu +-KVR-PK-PF-cpu *—RocksKV-cpu =-Wisckey-cpu 4+ KVR-PF-cpu +-KVR-PK-PF-cpu
(a) Parallel find and parallel Is -I. (b) Parallel Istat and parallel Is.
24.8 249 24.9 25.0 45.0 45.0 45.0 453
450 ot
S 400 S,
o o
g 350 g
o 300 w4
O 250 S,
S 200 T
g 150 52
o 100 o1
> 50 >
< Inpm Hepm Bupm Husw <,
& & 3 & 3 & s 3 & 5 3 [8 8 2 8
& 2 o o 3 2 2 i & I o © & = o o
5 & &8 & % 8B B & 5 8 B & 5 8 & &
g 1 b 1 g) E ks S % S S
PF Pls-l Plstat Pls
m RocksKV-io ™ Wisckey-io KVR-PK-io m KVR-PK-PF-io M RocksKV-io ® Wisckey-io © KVR-PK-io M KVR-PK-PF-io
(c) Parallel find and parallel Is -I. (d) Parallel Istat and parallel Is.

Fig. 13. Performance, CPU and read 1/Os for TableFS workloads(C and T in x axis denotes physical core and
total thread counts).

5 RELATED WORK

Key-value device interfaces has been a frequent topic of research since the release of the first
key-value device prototype [18]. Several researchers have explored command set extensions for
key-value devices [15, 19, 35] and Key-value device interfaces have also been explored as possible
interfaces to SmartNICs [22] and persistent memory [10, 17]. Some recent work explored how to
implement conventional block oriented storage features such as redundancy to key-value interfaced
devices [29, 30].

The design of KVRangeDB, our range query facility for key-value devices, extends several
techniques developed for LSM-based key-value databases to the key-value device interface. Wis-
ckey [23] proposed the idea of separation of key and values to reduce write amplification during
compaction and by storing values separately in a log. Zhang et alproposed SuRF [39] which uses a
compact trie structure as range query filter to accelerate range query performance on LSM tree
based software KV stores. KVRangeDB applies these techniques without requiring the use of an
LSM tree or value-log for key-value storage devices.

6 CONCLUSION

In this paper, we proposed and implemented KVRangeDB to support efficient range query capability
on hash based KVSSDs. Our design leverages a secondary key index based on log structure merged
tree. With that we can optionally pack records through logical to physical key translation, so as to
mitigate the key management overhead in the KVSSD device. We also employ user hints for value
prefetching to accelerate scans with value retrieval. Moreover, we leverage the state-of-art range
filter to efficiently improve empty range/point queries.

We evaluated our design with a series of real world applications. Our results show that KVRangeDB
provides faster put, get, short scans performance and lower host CPU utilization compared to the

, Vol. 1, No. 1, Article . Publication date: January 2023.

KVRangeDB: Range Queries for A Hash-based Key-value Device 19

state-of-art software KV engine (Wisckey) on conventional block SSD, although it may not be the
optimal choice for workloads with extremely long scans with value retrieval.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments. We appreciate Memory Solution
Lab (MSL) in Samsung Semiconductor Inc. for granting us the access of the hardware to carry out
the experiments. This work is supported in part by grants from Samsung, Los Alamos National Lab
and NSF Grants 1439722, 1823403 and 2203033.

REFERENCES

[1] 2020. NVM Express. https://nvmexpress.org/.

[2] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gregory R. Ganger, and George Amvrosiadis. 2019. File

Systems Unfit as Distributed Storage Backends: Lessons from 10 Years of Ceph Evolution. In Proceedings of the 27th

ACM Symposium on Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing

Machinery, New York, NY, USA, 353-369. https://doi.org/10.1145/3341301.3359656

Apache. 2013. HBase. https://hbase.apache.org/.

Jens Axboe. 2020. Key Value Storage API Specification - SNIA. https://www.snia.org/keyvalue.

Matias Bjerling. 2020. Zone Append: A New Way of Writing to Zoned Storage. USENIX Association, Santa Clara, CA.

Matias Bjerling, Javier Gonzalez, and Philippe Bonnet. 2017. LightNVM: The Linux Open-Channel SSD Subsystem. In

15th USENIX Conference on File and Storage Technologies (FAST 17). USENIX Association, Santa Clara, CA, 359-374.

https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling

[7] Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable Errors. Commun. ACM 13, 7 (July

1970), 422-426. https://doi.org/10.1145/362686.362692

[8] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo,

Sachin Kulkarni, Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkataramani. 2013.

TAO: Facebook’s Distributed Data Store for the Social Graph. In Presented as part of the 2013 USENIX Annual Technical

Conference (USENIX ATC 13). USENIX, San Jose, CA, 49-60. https://www.usenix.org/conference/atc13/technical-

sessions/presentation/bronson

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra,

Andrew Fikes, and Robert E. Gruber. 2006. Bigtable: A Distributed Storage System for Structured Data. In 7th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 06). USENIX Association, Seattle, WA.

https://www.usenix.org/conference/osdi-06/bigtable-distributed-storage- system-structured-data

Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020. FlatStore: An Efficient Log-

Structured Key-Value Storage Engine for Persistent Memory. In Proceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS °20).

Association for Computing Machinery, New York, NY, USA, 1077-1091. https://doi.org/10.1145/3373376.3378515

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana,
USA) (SoCC ’10). ACM, New York, NY, USA, 143-154. https://doi.org/10.1145/1807128.1807152

[12] J. Dean and S. Ghemawat. 2017. LevelDB: Google’s fast key value store library. Github release 1.2 (2017).

[13] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available
Key-value Store. SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007), 205-220. https://doi.org/10.1145/1323293.1294281

[14] Facebook. 2015. Rocksdb. https://rocksdb.org/.

[15] Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, and Sungjin Lee. 2020. PinK: High-speed In-storage Key-value Store
with Bounded Tails. In 2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association, 173-187.
https://www.usenix.org/conference/atc20/presentation/im

[16] Y. Jin, H. Tseng, Y. Papakonstantinou, and S. Swanson. 2017. KAML: A Flexible, High-Performance Key-Value
SSD. In 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA). 373-384. https:
//doi.org/10.1109/HPCA.2017.15

[17] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and Young ri Choi. 2019. SLM-DB: Single-Level
Key-Value Store with Persistent Memory. In 17th USENIX Conference on File and Storage Technologies (FAST 19). USENIX
Association, Boston, MA, 191-205. https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet

[18] Yangwook Kang, Rekha Pitchumani, Pratik Mishra, Yang-suk Kee, Francisco Londono, Sangyoon Oh, Jongyeol Lee,
and Daniel D. G. Lee. 2019. Towards Building a High-performance, Scale-in Key-value Storage System. In Proceedings

—
O
—

[10

—

, Vol. 1, No. 1, Article . Publication date: January 2023.

https://nvmexpress.org/
https://doi.org/10.1145/3341301.3359656
https://hbase.apache.org/
https://www.snia.org/keyvalue
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://doi.org/10.1145/362686.362692
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/osdi-06/bigtable-distributed-storage-system-structured-data
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1323293.1294281
https://rocksdb.org/
https://www.usenix.org/conference/atc20/presentation/im
https://doi.org/10.1109/HPCA.2017.15
https://doi.org/10.1109/HPCA.2017.15
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet

20

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Mian Qin, et al.

of the 12th ACM International Conference on Systems and Storage (Haifa, Israel) (SYSTOR ’19). ACM, New York, NY,
USA, 144-154. https://doi.org/10.1145/3319647.3325831

Sang-Hoon Kim, Jinhong Kim, Kisik Jeong, and Jin-Soo Kim. 2019. Transaction Support using Compound Commands
in Key-Value SSDs. In 11th USENLX Workshop on Hot Topics in Storage and File Systems (HotStorage 19). USENIX
Association, Renton, WA. https://www.usenix.org/conference/hotstorage19/presentation/kim

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and Christos Kozyrakis. 2018. Pocket:
Elastic Ephemeral Storage for Serverless Analytics. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 427-444. https://www.usenix.org/conference/osdi18/
presentation/klimovic

Jinhyung Koo, Junsu Im, Jooyoung Song, Juhyung Park, Eunji Lee, Bryan S. Kim, and Sungjin Lee. 2021. Modernizing
File System through In-Storage Indexing. In 15th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 21). USENIX Association, 75-92. https://www.usenix.org/conference/osdi21/presentation/koo

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yonggiang Xiong, Andrew Putnam, Enhong Chen, and Lintao
Zhang. 2017. KV-Direct: High-Performance In-Memory Key-Value Store with Programmable NIC. In Proceedings of the
26th Symposium on Operating Systems Principles (proceedings of the 26th symposium on operating systems principles
ed.). ACM, 137-152. https://www.microsoft.com/en-us/research/publication/kv-direct-high-performance-memory-
key-value-store-programmable-nic/

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016.
WiscKey: Separating Keys from Values in SSD-conscious Storage. In 14th USENIX Conference on File and Storage
Technologies (FAST 16). USENIX Association, Santa Clara, CA, 133-148. https://www.usenix.org/conference/fast16/
technical-sessions/presentation/lu

Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin, and Stratos Idreos. 2020. Rosetta: A
Robust Space-Time Optimized Range Filter for Key-Value Stores. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New
York, NY, USA, 2071-2086. https://doi.org/10.1145/3318464.3389731

Leonardo Marmol, Swaminathan Sundararaman, Nisha Talagala, and Raju Rangaswami. 2015. NVMKV: A Scalable,
Lightweight, FTL-aware Key-Value Store. In 2015 USENIX Annual Technical Conference (USENIX ATC 15). USENIX
Association, Santa Clara, CA, 207-219. https://www.usenix.org/conference/atc15/technical-session/presentation/
marmol

Patrick O’'Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The Log-structured Merge-tree (LSM-tree).
Acta Inf. 33, 4 (June 1996), 351-385. https://doi.org/10.1007/s002360050048

Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Zakharov, Abhinav Sharma, Shiva Shankar
P, Mike Shuey, Richard Wareing, Monika Gangapuram, Guanglei Cao, Christian Preseau, Pratap Singh, Kestutis
Patiejunas, JR Tipton, Ethan Katz-Bassett, and Wyatt Lloyd. 2021. Facebook’s Tectonic Filesystem: Efficiency from
Exascale. In 19th USENIX Conference on File and Storage Technologies (FAST 21). USENIX Association, 217-231. https:
//www.usenix.org/conference/fast21/presentation/pan

Markus Pilman, Kevin Bocksrocker, Lucas Braun, Renato Marroquin, and Donald Kossmann. 2017. Fast Scans on
Key-Value Stores. Proc. VLDB Endow. 10, 11 (Aug. 2017), 1526-1537. https://doi.org/10.14778/3137628.3137659
Rekha Pitchumani and Yang-Suk Kee. 2020. Hybrid Data Reliability for Emerging Key-Value Storage Devices. In
18th USENIX Conference on File and Storage Technologies (FAST 20). USENIX Association, Santa Clara, CA, 309-322.
https://www.usenix.org/conference/fast20/presentation/pitchumani

Mian Qin, A. L. Narasimha Reddy, Paul V. Gratz, Rekha Pitchumani, and Yang Seok Ki. 2021. KVRAID: High Performance,
Write Efficient, Update Friendly Erasure Coding Scheme for KV-SSDs. In Proceedings of the 14th ACM International
Conference on Systems and Storage (Haifa, Israel) (SYSTOR °21). Association for Computing Machinery, New York, NY,
USA, Article 3, 12 pages. https://doi.org/10.1145/3456727.3463781

Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017. PebblesDB: Building Key-Value Stores
Using Fragmented Log-Structured Merge Trees. In Proceedings of the 26th Symposium on Operating Systems Principles
(Shanghai, China) (SOSP ’17). ACM, New York, NY, USA, 497-514. https://doi.org/10.1145/3132747.3132765

Kai Ren and Garth Gibson. 2013. TABLEFS: Enhancing Metadata Efficiency in the Local File System. In 2013 USENIX
Annual Technical Conference (USENIX ATC 13). USENIX Association, San Jose, CA, 145-156. https://www.usenix.org/
conference/atc13/technical-sessions/presentation/ren

K. Ren, Q. Zheng, S. Patil, and G. Gibson. 2014. IndexFS: Scaling File System Metadata Performance with Stateless
Caching and Bulk Insertion. In Proceedings of the 2014 International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC 14). 237-248. https://doi.org/10.1109/SC.2014.25

CMU/PDL File Systems. 2013. Fast and efficient filesystem metadata through LSM-Trees. https://github.com/pdIfs/
tablefs/.

, Vol. 1, No. 1, Article . Publication date: January 2023.

https://doi.org/10.1145/3319647.3325831
https://www.usenix.org/conference/hotstorage19/presentation/kim
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi21/presentation/koo
https://www.microsoft.com/en-us/research/publication/kv-direct-high-performance-memory-key-value-store-programmable-nic/
https://www.microsoft.com/en-us/research/publication/kv-direct-high-performance-memory-key-value-store-programmable-nic/
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://doi.org/10.1145/3318464.3389731
https://www.usenix.org/conference/atc15/technical-session/presentation/marmol
https://www.usenix.org/conference/atc15/technical-session/presentation/marmol
https://doi.org/10.1007/s002360050048
https://www.usenix.org/conference/fast21/presentation/pan
https://www.usenix.org/conference/fast21/presentation/pan
https://doi.org/10.14778/3137628.3137659
https://www.usenix.org/conference/fast20/presentation/pitchumani
https://doi.org/10.1145/3456727.3463781
https://doi.org/10.1145/3132747.3132765
https://www.usenix.org/conference/atc13/technical-sessions/presentation/ren
https://www.usenix.org/conference/atc13/technical-sessions/presentation/ren
https://doi.org/10.1109/SC.2014.25
https://github.com/pdlfs/tablefs/
https://github.com/pdlfs/tablefs/

KVRangeDB: Range Queries for A Hash-based Key-value Device 21

[35] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin, Chen Zhang, and Jason Cong. 2014. An Efficient
Design and Implementation of LSM-tree Based Key-value Store on Open-channel SSD. In Proceedings of the Ninth
European Conference on Computer Systems (Amsterdam, The Netherlands) (EuroSys ’14). ACM, New York, NY, USA,
Article 16, 14 pages. https://doi.org/10.1145/2592798.2592804

Xingda Wei, Rong Chen, and Haibo Chen. 2020. Fast RDMA-based Ordered Key-Value Store using Remote Learned
Cache. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX Association,
117-135. https://www.usenix.org/conference/osdi20/presentation/wei

[37] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn. 2006. Ceph: A Scalable,
High-performance Distributed File System. In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (Seattle, Washington) (OSDI *06). USENIX Association, Berkeley, CA, USA, 307-320. http://dl.acm.org/
citation.cfm?id=1298455.1298485

Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A large scale analysis of hundreds of in-memory cache clusters at
Twitter. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX Association,
191-208. https://www.usenix.org/conference/osdi20/presentation/yang

Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen, Michael Kaminsky, Kimberly Keeton, and Andrew
Pavlo. 2018. SuRF: Practical Range Query Filtering with Fast Succinct Tries. In Proceedings of the 2018 International
Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New
York, NY, USA, 323-336. https://doi.org/10.1145/3183713.3196931

Qing Zheng, Charles D. Cranor, Danhao Guo, Gregory R. Ganger, George Amvrosiadis, Garth A. Gibson, Bradley W.
Settlemyer, Gary Grider, and Fan Guo. 2018. Scaling Embedded In-Situ Indexing with DeltaFS. IEEE Press.

zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020. Characterizing, Modeling, and Benchmarking
RocksDB Key-Value Workloads at Facebook. In 18th USENIX Conference on File and Storage Technologies (FAST 20).
USENIX Association, Santa Clara, CA, 209-223. https://www.usenix.org/conference/fast20/presentation/cao-zhichao

[36

—

[38

[t

[39

—

[40

—

[41

—

Received 21 June 2022; revised 11 October 2009; accepted 10 January 2023

, Vol. 1, No. 1, Article . Publication date: January 2023.

https://doi.org/10.1145/2592798.2592804
https://www.usenix.org/conference/osdi20/presentation/wei
http://dl.acm.org/citation.cfm?id=1298455.1298485
http://dl.acm.org/citation.cfm?id=1298455.1298485
https://www.usenix.org/conference/osdi20/presentation/yang
https://doi.org/10.1145/3183713.3196931
https://www.usenix.org/conference/fast20/presentation/cao-zhichao

	Abstract
	1 Introduction
	2 Background
	2.1 KV SSDs
	2.2 Modern software KV-stores
	2.3 File systems using ordered KV-stores

	3 KVRangeDB
	3.1 Basic API
	3.2 Packing smaller records
	3.3 Building a key index for range queries
	3.4 Value prefetching and caching for range queries
	3.5 Range filter for empty queries

	4 Evaluation
	4.1 Methodology
	4.2 Results for YCSB
	4.3 Results for TableFS

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

