

# Nitrite accumulation and anammox bacterial niche partitioning in Arctic Mid-Ocean Ridge sediments

Rui Zhao<sup>1</sup>, Andrew R. Babbin<sup>1</sup>, Desiree L. Roerdink<sup>2</sup>, Ingunn H. Thorseth<sup>2</sup>,  
Steffen L. Jørgensen<sup>2</sup>

<sup>7</sup> <sup>1</sup> Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of  
<sup>8</sup> Technology, Cambridge, MA 02139, USA

<sup>9</sup> <sup>2</sup>Centre for Deep Sea Research, Department of Earth Science, University of Bergen, Bergen  
<sup>10</sup> 5007, Norway

11 Correspondence: Rui Zhao ([rzh041@mit.edu](mailto:rzh041@mit.edu)), Andrew R. Babbin ([babbin@mit.edu](mailto:babbin@mit.edu)) and  
12 Steffen L. Jørgensen ([Steffen.Jorgensen@uib.no](mailto:Steffen.Jorgensen@uib.no))

13

15 By consuming ammonium and nitrite, anammox bacteria form an important functional guild  
16 in nitrogen cycling in many environments, including marine sediments. However, their  
17 distribution and impact on the important substrate nitrite has not been well characterized.  
18 Here we combined biogeochemical, microbiological, and genomic approaches to study  
19 anammox bacteria and other nitrogen cycling groups in two sediment cores retrieved from the  
20 Arctic Mid-Ocean Ridge (AMOR). We observed nitrite accumulation in these cores, a  
21 phenomenon also recorded at 28 other marine sediment sites and in analogous aquatic  
22 environments. The nitrite maximum coincides with reduced abundance of anammox bacteria.  
23 Anammox bacterial abundances were at least one order of magnitude higher than those of  
24 nitrite reducers and the anammox abundance maxima were detected in the layers above and  
25 below the nitrite maximum. Nitrite accumulation in the two AMOR cores co-occurs with a  
26 niche partitioning between two anammox bacterial families (*Candidatus*  
27 *Bathyammonoxibiaceae* and *Candidatus Scalinduaceae*), likely dependent on ammonium

28 availability. Through reconstructing and comparing the dominant anammox genomes (*Ca.*  
29 *Bathyamammoxibius amoris* and *Ca. Scalindua sediminis*), we revealed that *Ca. B. amoris* has  
30 fewer high-affinity ammonium transporters than *Ca. S. sediminis* and lacks the capacity to  
31 access alternative substrates and/or energy sources such as urea and cyanate. These features  
32 may restrict *Ca. Bathyanammoxibiaceae* to conditions of higher ammonium concentrations.  
33 These findings improve our understanding about nitrogen cycling in marine sediments by  
34 revealing coincident nitrite accumulation and niche partitioning of anammox bacteria.

35

## 36 **Introduction**

37 The cycling of nitrogen in ecosystems is intricately controlled by a network of processes  
38 mediated by microorganisms. In an ecosystem, new bioavailable (or fixed) nitrogen is  
39 generated by diazotrophy, and can be converted back to N<sub>2</sub> by two nitrogen loss processes:  
40 denitrification and anaerobic ammonium oxidation (anammox) [see the review in e.g. [1]].  
41 The latter two anaerobic metabolisms are generally favored in low-oxygen environments,  
42 either the ocean's pelagic oxygen minimum zones or benthic sediments [2]. Prior estimates  
43 suggest fixed nitrogen loss in the benthos is 1.3–3 times greater in magnitude than the water  
44 column on a global basis [3-5]. Therefore, sedimentary nitrogen loss processes play a crucial  
45 role in regulating the abundance of bioavailable nitrogen across marine habitats. Nitrite is a  
46 crucial substrate of both anammox and denitrification [6,7], the availability of which exerts a  
47 profound control on the magnitude of nitrogen loss [8]. However, nitrite rarely accumulates to  
48 as high a level as nitrate and ammonium in marine sediments, leading the presence and  
49 transformation pathways of nitrite in this vast environment to be largely overlooked.  
50 Anammox bacteria are among the major consumers of nitrite, owing to their strict  
51 requirement of this compound to oxidize ammonium.

52 Since its discovery in the marine environment two decades ago [8], anammox has been  
53 shown to be a significant contributor to fixed nitrogen loss [e.g., [9]. Among the previously  
54 recognized marine anammox bacteria (affiliated with the families *Candidatus* Brocadiaceae  
55 and *Candidatus* Scalinduaceae), members of *Ca.* Scalinduaceae have been consistently  
56 detected in marine sediments [10-13], and several enrichment cultures have been obtained  
57 from coastal sediments [e.g., *Ca.* Scalindua japonica [14] and *Ca.* Scalindua profunda [15]].  
58 However, while seemingly ubiquitous, *Ca.* Scalinduaceae may not be the only anammox  
59 bacterial family present in marine sediments. Recently, by examining metagenome-assembled  
60 genomes from Arctic Mid-Ocean Ridge (AMOR) sedimentss and from the groundwater  
61 environment, a new family of anammox bacteria was discovered (i.e., *Candidatus*  
62 *Bathyamammoxibiaceae* [16]). In the AMOR cores, both *Ca.* Scalinduaceae and *Ca.*  
63 *Bathyamammoxibiaceae* are confined within the nitrate-ammonium transition zone and *Ca.*  
64 *Bathyamammoxibiaceae* can sometimes significantly outnumber their counterparts of *Ca.*  
65 *Scalinduaceae* [16]. The co-existence of two functionally (almost) identical lineages in  
66 AMOR sediments raised the questions of whether these families occupy the same niche and  
67 what influence they might have on the distribution and transformations of nitrite.

68 Given their prevalence in deep-sea sediments, anammox bacteria have been suggested  
69 to play an important role in consuming the upward diffusive flux of ammonium and  
70 preventing the transport of ammonium from sediments to the overlying seawater [13].  
71 Because nitrite is a necessary substrate for anammox [17], we hypothesize that, by analogy,  
72 the abundance and metabolic activity of anammox may also exert a strong influence on the  
73 distribution of nitrite in addition to ammonium. To test this hypothesis, we combined  
74 biogeochemical, microbiological, and genomic approaches to study the relationships between  
75 the distribution of dissolved nitrogen species and anammox bacteria and other nitrogen  
76 cycling groups. We first identified a phenomenon of nitrite accumulation in the nitrate-

77 depletion zone in diverse marine sediment systems: the continental slope, mid-ocean ridges,  
78 and also hadal trenches. Through high-resolution analyses of microbial communities in two  
79 AMOR sediment cores with apparent nitrite accumulation, we observed niche partitioning of  
80 anammox bacteria between the families *Ca. Scalinduaceae* and *Ca. Bathyanammoxibiaceae*  
81 that are prevalent in marine sediments. Based on the newly generated high quality anammox  
82 genomes, we also proposed the likely underlying genetic mechanisms driving the observed  
83 niche partitioning.

84

## 85 **Results and Discussion**

### 86 ***General geochemical context of GS14-GC04***

87 The measurement of nitrite in the sediment porewater, along with ammonium and nitrate, was  
88 attempted for over a dozen sediment cores retrieved from the seafloor during our cruises to  
89 the Arctic Mid-Ocean Ridge (AMOR) area (e.g., [13,18]). However, coherent nitrite profiles  
90 (defined as >2 consecutive depths with detectable nitrite concentrations) were only detected in  
91 two cores: GS14-GC04 and GS16-GC04 (see results below). These two cores offered an  
92 opportunity to explore the underlying mechanism(s) of nitrite accumulation, a unique  
93 geochemical phenomenon that has been well studied in seawaters of oxygen deficient zones  
94 [e.g., [19]] but not in marine sediments. Because the general geochemical context [13],  
95 microbiology data [13], and anammox bacteria communities [16] of core GS16-GC04 have  
96 been published previously, below we provide thorough descriptions for core GS14-GC04.

97 GS14-GC04 is a 2.4-m-long core retrieved from a 1050-m deep seamount 50 km west  
98 of the Jan Mayen hydrothermal vent fields (Fig. 1A) on the Arctic Mid-Ocean Ridge where  
99 white smoker hydrothermal vents were reported [20,21]. Total organic nitrogen content (Fig.  
100 S1A) in the retrieved sediments of GS14-GC04 was measured to be in the range of 0.06-  
101 0.11% , while the total organic carbon content was measured to be less than 0.5 wt% (Fig.

102 S2A). Thus, the calculated carbon to nitrogen ratio (C/N) fell generally in the range of 2 – 4  
103 (Fig. S1B). Oxygen was measured to be only 15  $\mu\text{M}$  at the top of the recovered core and was  
104 depleted within 23 cm below the seafloor. Below the depletion depth of oxygen, dissolved Mn  
105 accumulated in the porewater (Fig. S2B), a phenomenon also present in other sediment cores  
106 retrieved from the AMOR region [13]. Porewater pH fell between 7.6 and 7.8 (Fig. S1C),  
107 similar to those in other AMOR cores [13]. Dissolved Fe was not detected throughout the core  
108 (Fig. S1D), indicating that the reduction of Fe is not important in the recovered sediments.  
109 GS14-GC04 exhibited higher concentrations of dissolved inorganic carbon (DIC) (Fig. S2)  
110 than GS16-GC04 and the other AMOR cores without significant hydrothermal influences [13],  
111 indicating higher organic matter degradation activity in GS14-GC04. Despite the uppermost  
112 sediments of GS14-GC04 potentially been lost during coring (see Supplementary Note 1), the  
113 oxygen penetration depth of this core was shallower than the non-hydrothermal sites (e.g., ~  
114 110 cm in GS16-GC04 (Fig. 1C and S2D) and 35-100 cm in the other three cores previously  
115 described in [13]) and does not affect our interpretation of deeper anaerobic microbes and  
116 their metabolisms.

117

#### 118 *Accumulation of nitrite in the nitrate-depletion zone*

119 In contrast to GS16-GC04 (Fig. 1C) and the other AMOR cores previously described in [13]  
120 where the counter gradients of nitrate and ammonium converge within the thin nitrate-  
121 ammonium transition zone, core GS14-GC04 features a vertical separation between the  
122 downward flux of nitrate and the upward flux of ammonium. Nitrate in GS14-GC04  
123 decreased with depth and was depleted around 130 cm (Fig. 1B). Yet, ammonium in this core  
124 was not detected in the porewater until 213 cm, well below the nitrate-depletion depth (Fig.  
125 1B).

Unlike most AMOR sediment cores where nitrite was routinely measured but generally undetectable throughout all measured depths [18], nitrite in GS14-GC04 accumulated around the nitrate-depletion zone (50 – 180 cm), with a concentration maximum ( $\sim 3 \mu\text{M}$ ) at 105 cm (Fig. 1B). A similar nitrite accumulation, albeit of lower magnitude ( $\sim 1 \mu\text{M}$ ) and shorted vertical span (150 – 200 cm), was also detected in the nitrate-depletion zone of GS16-GC04 (Fig. 1C). By searching published literature, we found that such accumulation of nitrite around the nitrate-depletion zone can be seen in 28 additional globally distributed sediment cores (Fig. 1D; See the detailed nitrite, nitrate, and ammonium profiles in individual cores in Supplementary Figure S3). Such accumulation was mainly detected in sediments on the continental slopes [e.g., [22-25]], along the mid-ocean ridges [26] of the Pacific and Atlantic Oceans, and within hadal trenches in the Pacific [10,27,28], rather than along the continental margin or in the abyssal plains (Fig. 1D). Most of these sites accmulate nitrite within the nitrate-ammonoum transiztion zone (Fig. S3), where the anammox reaction occurs [13]. This alignment suggests a potential link between anammox bacteria and the observed nitrite accumulation. Nitrite accumulation was hardly detected in the upper few meters of sediments (i) of continental margins because nitrate penetration is too shallow to be properly resolved without dedicated microscale measurements, and (ii) of abyssal plains [e.g., [27]] because high porewater concentrations of nitrate and  $\text{O}_2$  are present deep into the sediments [27,29-31]. Through this comparison, it is likely that the observed nitrite accumulation in sediments of continental slopes, mid-ocean ridges, and hadal trenches is tightly associated with low concentrations of nitrate within the nitrate-depletion zone, which in turn is caused by moderate levels of organic matter flux. Although our compilation suggests that nitrite accumulation is distributed globally at sediment sites of intermediate organic carbon rain, more systematic sampling is needed to assess the frequency and mechanistic controls on nitrite accumulation in marine sediment systems.

151 While not generally reported in marine sediments, nitrite accumulation coincident with  
152 declining nitrate concentrations is often observed in other stratified aquatic environments like  
153 the water columns of the Black Sea [32,33] and Golfo Dulce [34], the freshwater Lake  
154 Tanganyika [35], hypersaline Lakes Vanda and Bonney [36] in the McMurdo Dry Valleys in  
155 Antarctica, river and estuary sediments [37,38], subtropical mangrove sediments [39], and  
156 denitrifying biofilms in wastewater treatment plants [40]. The observations indicate that the  
157 accumulation of nitrite within the low nitrate zone occurs in diverse aquatic environments that  
158 harbor redox gradients.

159

160 ***Accumulated nitrite is likely produced by nitrate reduction but only accounts for a small  
161 fraction of the consumed nitrate***

162 The nitrite concentration maxima in the 30 sediment cores (i.e., 2 AMOR sites and 28  
163 reference sites) are generally below 3  $\mu$ M (Fig. S3), with the maximum nitrite of 8  $\mu$ M  
164 detected in Station 13 of [24] in the Pacific Ocean (Site #15 in Fig. 1D). These nitrite  
165 concentrations are comparable or higher than those measured in oxygen deficient zones [e.g.,  
166 [41,42]]. In the 30 cores, nitrite concentrations are generally lower than the concomitant  
167 nitrate concentrations, indicating that nitrite is only a minor inorganic nitrogen species in the  
168 sediments. Yet, nitrite is a central metabolite for many microorganisms, and the low  
169 concentrations only imply its fast turnover is well coupled in the environment rather than it is  
170 an unimportant metabolite [43].

171 In the two AMOR cores, the nitrite accumulating zones were well separated from the  
172 overlying oxic zones (Fig. 1B and 1C), indicating that aerobic processes (e.g., ammonia and  
173 nitrite oxidation) may not contribute substantially, if at all, to the generation or consumption  
174 of the accumulated nitrite. Instead, the accumulated nitrite more likely results from the

175 imbalance between anaerobic processes of nitrite production (e.g., dissimilatory nitrate  
176 reduction) and nitrite consumption (e.g., nitrite reduction and anammox).

177 Nitrite accumulation in the nitrate-depletion zone also indicates that some of the  
178 detected nitrite can diffuse both upward and downward and support two distinct zones (e.g.,  
179 above and below the nitrate depletion depth) that harbor intensified nitrite consumption. By  
180 calculating the nitrate influx and the total (the sum of the upward and downward) efflux of  
181 nitrite from the nitrate-depletion zone of the total 30 sediment sites shown in Fig. 1D, we  
182 found that at all but one site (Site #14, Pacific Station 12 reported in [24]) the nitrate flux is  
183 higher than that of the combined nitrite flux at all sites (Fig. 1E). Because of this, the  
184 calculated ratio of nitrate to nitrite flux at all but one site is less than 0.6 (Fig. 1F), with an  
185 average ratio of  $0.285 \pm 0.07$  (mean  $\pm$  95% confidence interval). This calculation suggests that  
186 (i) nitrite flux only accounts for on the order of a quarter of the nitrate flux consumed within  
187 the nitrate-depletion zone and that (ii) the majority of the nitrate diffusing into that zone is lost  
188 by further reduction to unmeasured gaseous compounds (e.g.,  $\text{N}_2$ ).

189

#### 190 **Prevalence of anammox bacteria in GS14-GC04**

191 To elucidate which microbial groups play a role in controlling the observed nitrite  
192 accumulation, we performed 16S rRNA gene amplicon sequencing for 13 sediment layers of  
193 GS14-GC04, while similar data of GS16-GC04 has been previously generated by [13]. We  
194 noted the prevalence of putative anammox bacteria (affiliated to both families *Ca.*  
195 *Scalinduaceae* and *Ca. Bathyanammoxibiaceae* [16]) in most layers of GS14-GC04.  
196 Anammox bacteria, notoriously slow growers [44], were sizable contributors of the  
197 communities in this core, accounting for 6% of the total community in the uppermost  
198 sediments in the oxic zone, and increasing to a first peak of 11% of the total community in the  
199 upper nitrite consumption zone (Fig. 2A). After a major collapse in the interval of 75 – 120

200 cm, the relative abundance of anammox increased again and reached the second peak of a full  
201 ~18% of the total community within the second nitrite consumption zone before again  
202 decreasing in deeper sediments (Fig. 2A). By comparison, anammox communities in other  
203 systems represent <5% of the total population in hadal sediments [10] and <2% in the Arabian  
204 Sea ODZ [45]. The second peak was roughly within the broad nitrate-ammonium transition  
205 zone. By contrast, anammox bacteria in GS16-GC04 were mainly detected (up to 18% of the  
206 community) within the nitrate-ammonium transition zone (~120 – 190 cm) but not the oxic  
207 zone (Fig. 2J). Still, like GS14-GC04, this second core shows two relative abundance peaks  
208 observed in the upper and lower net nitrite consumption zones flanking the nitrite maximum  
209 (Fig. 2J).

210 To check whether the relative abundance changes of anammox bacteria are caused by  
211 growth/decay of other taxa vs. those of anammox themselves, we tracked the absolute  
212 abundances of anammox bacteria in the two AMOR cores using two complementary methods:  
213 (i) qPCR of the functional gene *hzo*, which encodes hydrazine dehydrogenase, the ultimate  
214 step of the anammox metabolism and therefore a diagnostic gene for anammox bacteria, and  
215 (ii) calculation as the product of the total cell abundance (estimated as the sum of the 16S  
216 rRNA genes as presented in Fig. S4A for core GS14-GC04) and the relative abundances given  
217 by the 16S rRNA gene amplicon sequencing. As shown for other AMOR cores [13], results of  
218 the two methods generally agree with each other in the two cores (Fig. 2E and 2N), indicating  
219 the major anammox clades are accounted for in this analysis. The prevalence of anammox  
220 bacteria in the upper and lower portions of GS14-GC04 was corroborated by their high  
221 absolute abundances in the range of  $10^6$ – $10^8$  cells g<sup>-1</sup> wet sediment, while relatively lower  
222 abundances of  $10^2$ – $10^4$  cells g<sup>-1</sup> are detected in the middle section of the core (75–120 cm bsf)  
223 (Fig. 3E). In contrast, anammox bacteria in GS16-GC04 were confined within the nitrate-  
224 ammonium transition zone (Fig. 2N), similar to the other three AMOR cores described in [13].

225 Therefore, our results from GS14-GC04 suggest that anammox bacteria can thrive in marine  
226 sediments further from the nitrate-ammonium zone than previously implied.

227 Anammox bacteria (mainly affiliated with *Ca. Scalinduaceae*) were also detected in  
228 the oxic zone (Fig. 2E, with up to 20  $\mu\text{M}$   $\text{O}_2$ ) of GS14-GC04. Such presence of anammox  
229 bacteria in the presence of oxygen was not detected in GS16-GC04 (Fig. 2N), the other  
230 previously reported AMOR cores [13], or hadal trench cores [10]. Although early bioreactor  
231 studies have shown that 1  $\mu\text{M}$   $\text{O}_2$  reversibly inhibits the anammox metabolism [46], anammox  
232 bacteria and activity have been detected in oxygenated seawater with up to 25  $\mu\text{M}$   $\text{O}_2$  [47,48],  
233 which may be facilitated by associating with particles [49] and the microenvironments therein  
234 [50] particularly in high organic carbon environments. Particles and colonized surfaces are  
235 widespread in marine sediments, which can harbor anoxic microniches to greatly expand the  
236 anoxic habitats even in bulk oxygenated environments [51,52]. Therefore, increased anoxic  
237 microenvironments in hydrothermal sediments, which typically have larger grain size than  
238 typical sediments [53], could enable the presence of anammox bacteria in the bulk oxic  
239 surface sediments. Alternatively, the anammox bacteria detected in the oxic zone could be  
240 dormant. Nevertheless, the detection of anammox bacteria in the surface sediments do  
241 confirm the previous hypothesis that anammox bacteria thriving in subsurface nitrate-  
242 ammonium transition zones were seeded from surface sediments [13].

243

#### 244 **Role of anammox bacteria in ammonium and nitrite consumptions**

245 Ammonium is the major fixed nitrogen species present in most of the anoxic sediment  
246 porewaters of continental shelves and slopes. In these sediments, ammonium is mainly  
247 produced from organic nitrogen degradation and dissimilatory nitrate reduction to ammonium  
248 (DNRA) and can be consumed by biological metabolic activities such as aerobic ammonia  
249 oxidation and anammox and also biological re-assimilation, albeit the latter should be

250 minimal due to the extremely slow microbial turnover rates. Previous studies have shown that  
251 ammonia-oxidizing archaea (AOA) prevail in the oxic zone [30,54] and anammox bacteria in  
252 the nitrate-ammonium transition zone [13], respectively, which may be the major ammonium  
253 consumers in their major niches. In GS14-GC04, despite continuous ammonium release from  
254 organic matter degradation as evident by the increasing DIC concentrations with depth (Fig.  
255 S2), ammonium was not detected until both nitrate and nitrite were depleted from the  
256 porewater (Fig. 1B), suggesting active ammonium consumption throughout the upper 180 cm  
257 sediments. However, which organisms dominate ammonium consumption in the sediment  
258 interval between the depths of oxygen and nitrate depletion, i.e., between the primary niches  
259 of AOA and anammox bacteria, is still unclear.

260 To better understand the relative importance of anammox bacteria for ammonium  
261 consumption, we examined, in addition to anammox bacteria themselves, the distribution (i.e.,  
262 both the relative and absolute abundances) of AOA and ammonia-oxidizing bacteria (AOB) in  
263 the two AMOR cores using the two microbial quantitative methods described above.  
264 Consistent with their requirement of oxygen [55,56], both AOA (affiliated with the class  
265 *Nitrosopumilales* [57,58]) and AOB were mainly detected in the oxic zones (i.e., the upper 10  
266 cm sediments of GS14-GC04 (Fig. 2B and 2C) and the upper 110 cm of GS16-GC04 (Fig. 2K  
267 and 2L)) by 16S rRNA gene amplicon sequencing. While AOB of low relative abundances  
268 [ $<0.3\%$  of the total communities throughout GS14-GC04 (Fig. 2C) and  $<1.5\%$  throughout  
269 GS16-GC04 (Fig. 2L)] seem to be restricted to the oxic zones (Fig. 2G and 2P), AOA were  
270 detected not only in the oxic zones but also in deeper anoxic sediments (Fig. 2F and 2O). The  
271 discrepancy of AOA abundances determined by the two methods (Fig. 2F) may be attributed  
272 to the possibility that the qPCR primers of the AOA *amoA* gene assays fail to detect some  
273 novel AOA genotypes and therefore underestimate the AOA abundances. Although AOA  
274 have the potential to oxidize ammonium to nitrite in the absence of oxygen [59], their

275 abundances in the sediment interval between the depths of oxygen-depletion and nitrate-  
276 depletion were at least one order of magnitude lower than those of anammox bacteria, making  
277 it plausible that anammox bacteria dominate the ammonium consumers across anoxic depths.  
278 Therefore, in addition to the nitrate-ammonium transition zone [13], ammonium liberated  
279 from organic matter degradation in sediments between the depths of oxygen-depletion and  
280 nitrate-depletion of GS14-GC04 may also be consumed predominantly by anammox bacteria  
281 as a dissimilatory substrate and by all microbes as their assimilatory nitrogen source.

282 To support our speculation that dissimilatory nitrate reduction was likely the process  
283 of nitrite generation in the anoxic sediments of both AMOR cores, we detected and quantified  
284 the abundance of nitrate reducing bacteria by qPCR targeting the *narG* gene encoding the  
285 membrane-bound nitrate reductase alpha subunit. We detected *narG* throughout the cores,  
286 which generally showed a downcore decreasing trend. In particular, we detected up to  $10^6$   
287 copies g<sup>-1</sup> of *narG* in the uppermost sediments and  $\sim 10^4$  copies g<sup>-1</sup> of *narG* within the nitrite  
288 accumulating zones of the two AMOR cores (Fig. 2I and 2R), suggesting that nitrate reducers  
289 may employ this pathway to reduce nitrate and therefore produce the accumulated nitrite.

290 To assess the contribution of anammox bacteria to nitrite consumption, we also  
291 quantified the contemporaneous distributions of nitrite-oxidizing and nitrite-reducing bacteria,  
292 the other two functional groups involved in nitrite consumption. In both GS14-GC04 and  
293 GS16-GC04, the relative abundance of NOB affiliated with the bacterial genera *Nitrospira*  
294 and *Nitrospina* were observed to increase with depth in the shallow sediments, and then  
295 decrease to low levels (<0.5% of the total communities) in sediments without detectable  
296 oxygen (Fig. 2D and 2M). The presence of putative NOB in anoxic sediments is also  
297 supported by the calculated absolute abundances (Fig. 2H and 2Q). These observations  
298 suggest that some NOB may persist in anoxic sediments for long periods of time. Although  
299 *Nitrospira* and *Nitrospina* NOBs are metabolically versatile [e.g., as reviewed in [60]], they

300 are not known to maintain nitrite oxidation activity without oxygen and therefore should not  
301 greatly affect the distribution of nitrite in anoxic sediments. Moreover, the abundances of  
302 nitrite-reducing bacteria, as indicated by the absolute abundances of *nirS* and *nirK* genes,  
303 were at least one order of magnitude lower than those of anammox bacteria (Fig. 2I and 2R).  
304 In the nitrite accumulating zones of both cores, the nitrite reducing bacterial populations were  
305 dominated by *nirS*-containing members (Fig. 2I and 2R). Compared to the adjacent layers, the  
306 nitrite accumulating zones in both cores harbored higher rather than lower abundances of *nirS*  
307 (Fig. 2I and 2R), indicating that the accumulated nitrite does not result from an abundance  
308 decrease of nitrite reducers. However, because gene abundance variations do not necessarily  
309 represent metabolic rate differences, future rate measurements of nitrite reduction across  
310 various depths are required to reliably assess the impact of nitrite reducers on the distribution  
311 of nitrite in the AMOR sediments. Nevertheless, from abundance arguments alone anammox  
312 bacteria are crucially important, outnumbering other dissimilatory ammonium and nitrite  
313 consumers by at least an order of magnitude at the depths of nitrite accumulation.

314

### 315 **Identities and distribution of anammox bacteria in GS14-GC04**

316 To elucidate the reasons leading to the two relative abundance peaks of anammox bacteria in  
317 GS14-GC04, we examined the anammox bacteria community at the level of individual OTUs  
318 (97% nucleotide identity cutoff). Anammox bacteria were represented by 8 OTUs (OTU\_2,  
319 OTU\_6, OTU\_180, OTU\_571, OTU\_595, OTU\_602, OTU\_4527, and OTU\_4769) (Fig. 3A).  
320 Among these anammox phylotypes, only OTU\_2 was detected throughout the sediment core,  
321 while the other OTUs were only detected in discrete sediment horizons (Fig. 3A).  
322 Phylogenetic analysis (Fig. 3B) indicated that OTU\_2, OTU\_571, OTU\_602, OTU\_4527, and  
323 OTU\_4769 are members of the *Ca. Scalinduaceae* family, with OTU\_2 matching with *Ca.*  
324 *Scalindua sediminis*, an anammox bacterium previously proven to be prevalent in AMOR

325 sediments [13]. OTU\_602 and OTU\_4769 fell into the broad cluster containing *Ca. S. brodae*  
326 [61], *Ca. S. profunda* [15], and *Ca. S. japonica* [14], three anammox enrichment cultures from  
327 coastal sediments. The other three OTUs (OTU\_6, OTU\_180, and OTU\_595) are members of  
328 the newly proposed anammox bacterial family *Ca. Bathyanammoxibiaceae* [16], and cluster  
329 with uncultured anammox bacteria from the AMOR area [13] and other locations such as the  
330 South China Sea [62] (Fig. 3B). Analyses of the identities and distribution of anammox  
331 bacteria in GS16-GC04 were previously described elsewhere [16], in which members of both  
332 families of *Ca. Scalinduaceae* and *Ca. Bathyanammoxibiaceae* were also found.

333

334 **Long-term niche partitioning between the two anammox families and its co-occurrence  
335 with nitrite accumulation**

336 Anammox bacteria of the two families exhibit markedly contrasting distribution patterns in  
337 both AMOR cores. In GS14-GC04, *Ca. Scalinduaceae* accounted for 7% of the total  
338 community in the shallowest sediment and decreased with depth until increasing again in the  
339 interval of 120 – 220 cm, with the peak (18% of the total community) detected at 160 cm (Fig.  
340 4A). *Ca. Bathyanammoxibiaceae* showed the opposite trend. This family was undetectable in  
341 the two uppermost examined sediment layers, but increased in the upper sediments to reach  
342 the peak (11% of the total community) at 50 cm, before decreasing to low levels in deeper  
343 layers (Fig. 4A). In GS16-GC04, *Ca. Scalinduaceae* occupied the interval of 125–170 cm (i.e.,  
344 the upper portion of the nitrate-ammonium transition zone), while *Ca.*  
345 *Bathyanammoxibiaceae* was confined in the interval of 170–220 cm (i.e., the lower portion of  
346 the nitrate-ammonium transition zone) (Fig. 4C). Such distribution of anammox bacterial  
347 families observed in GS16-GC04 was also visible in GS16-GC05 (Fig. S5), another AMOR  
348 core described previously in [13], in which weak signals of nitrite's presence in the interval of  
349 50–60 cm were noted but not quantified during the onboard measurements. These

350 observations in the AMOR cores provide the first evidence of niche partitioning (trading  
351 between dominant families) between the two anammox bacterial families in the marine  
352 environment.

353 Differentiating the two anammox bacterial families is helpful to better evaluate their  
354 respective roles in nitrite consumption. By calculating the absolute abundances of *Ca.*  
355 *Scalinduaceae* and *Ca. Bathyanammoxibiaceae*, it is clear that their absolute abundances  
356 peaks match well with the two net nitrite consumption zones above and below the nitrite  
357 concentration maxima in GS14-GC04 (Fig. 4B) and GS16-GC04 (Fig. 4D), indicating that  
358 they are likely contributing substantially to the local nitrite consumption. In the other two  
359 AMOR cores (GS14-GC08 and GS14-GC09) where no nitrite accumulation was found [13],  
360 no clear niche partitioning between *Ca. Scalinduaceae* and *Ca. Bathyanammoxibiaceae* can be  
361 observed [16]. This comparison of a small number of AMOR cores suggests a co-occurrence  
362 between nitrite accumulation and the niche partitioning between the two anammox bacterial  
363 families in AMOR sediments. While the anoxic depths with low abundance of anammox  
364 coincide with nitrite accumulation and are sandwiched between the peaks of the two families,  
365 the full dynamics leading to the niche separation of the two anammox bacterial families  
366 remain to be clarified with further study.

367 Regarding the distribution of the two anammox bacterial families, it appears that an  
368 opposite trend exists between GS14-GC04 and the other two cores (GS16-GC04 and GS16-  
369 GC05): *Ca. Bathyanammoxibiaceae* occupied the upper nitrite consumption zone of GS14-  
370 GC04 but the lower ones of GS16-GC04 and GS16-GC05 (Fig. 4B, 4D, and S5). However,  
371 the discrepancy between these cores may be caused by the insufficient coring of GS14-GC04.  
372 Although not easily reflected by the relative abundance profile (Fig. 4A), *Ca.*  
373 *Bathyanammoxibiaceae* in GS14-GC04 showed increases in absolute abundance with depth  
374 (including the lower nitrite consumption zone) toward deeper sediments (Fig. 4B). It is

375 possible that its dominance in deeper sediments was not well resolved, because only the onset  
376 of *Ca. Bathyanammoxibiaceae* in the deep ammonium-bearing sediments was captured (Fig.  
377 4B). Therefore, in the AMOR cores examined here, we speculate that *Ca.*  
378 *Bathyanammoxibiaceae* likely prefers conditions of higher ammonium availability and *Ca.*  
379 *Scalinduaceae* lower ammonium conditions.

380 Low activity of microbes in subsurface sediments results in long generation times and  
381 can prolong the population evolutionary process. The observed abundance maxima of the two  
382 anammox bacterial families in GS14-GC04 and GS16-GC04 were separated by ~110 cm and  
383 45 cm of sedimentation, respectively (Fig. 4). Given the sedimentation rate of ~2 cm ky<sup>-1</sup> at  
384 this area [63], the maximum duration of the niche partitioning between the two anammox  
385 families in the two AMOR cores can be estimated to be about 55,000 years. The partial  
386 collapse of the whole anammox bacterial population in GS14-GC04 observed during this  
387 prolonged process of niche partitioning (Fig. 2E) can be caused by the changes of the two  
388 essential substrates of anammox bacteria: nitrite and ammonium. However, the following two  
389 observations speak against the scenario that the slight increase of nitrite in the nitrite  
390 accumulation zone can strongly affect the activity or abundance of anammox bacteria. First,  
391 considering the observation that anammox bacteria abundance was higher in the low nitrite  
392 depths but lower in the high nitrite depths (Fig. 2A and 2E), it is unlikely the measured nitrite  
393 concentrations are too low to fuel the detected anammox bacteria. Second, the highest nitrite  
394 concentrations measured in GS14-GC04 (3.3  $\mu$ M) is much lower than the reported mM levels  
395 of tolerable nitrite by anammox bacteria (e.g., 7.5 mM for *Ca. S. japonica* [64], 2.1 mM for  
396 *Ca. Kuenenia stuttgartiensis* [65], and 6 mM for anammox bacteria enriched from wastewater  
397 sludge [66]), indicating that the local nitrite concentrations should not inhibit the anammox  
398 bacteria. Instead, decreased ammonium supply is a plausible factor responsible for the partial  
399 collapse of the anammox bacterial population. Comparing to the nitrate-depletion zone,

400 shallower sediments may receive higher ammonium supply due to the higher organic matter  
401 degradation rates, while deeper sediments may also have higher ammonium supply due to the  
402 upward diffusion of ammonium from deeper anoxic sediments. The lower ammonium supply  
403 in the nitrite accumulation zone may have limited the anammox population in GS14-GC04  
404 and therefore sustained the accumulation of nitrite. Compared to GS16-GC04, GS14-GC04  
405 features a higher magnitude of nitrite accumulation (Fig. 1C), greater vertical partitioning  
406 between the anammox families (Fig. 4), and a clear anammox population collapse (Fig. 2N),  
407 which can be attributed to the extended separation between nitrate and ammonium (Fig. 1B).  
408 Different from GS14-GC04, ammonium diffusing from deep sediments of GS16-GC04 is not  
409 only consumed within the lower nitrite consumption zone but also can enter the nitrite  
410 accumulation zone (Fig. 1C) and support the anammox bacteria residing there. In other words,  
411 when the two different ammonium sources are too far apart to support anammox in the middle,  
412 nitrite can accumulate, with more profound effects in GS14-GC04 than GS16-GC04. Due to  
413 the reliance on the vertical separation between nitrate and ammonium, the further these two  
414 nutrients are split, the more nitrite should accumulate, as is observed with GS14-GC04 vs.  
415 GS16-GC04.

416

#### 417 **Potential mechanisms driving the observed anammox niche partitioning**

418 Given the lack of anammox cultures from pelagic marine sediments, we relied on comparative  
419 genomic analysis to identify potential (and probable) reasons that lead to the niche  
420 partitioning between the two anammox bacterial families in AMOR sediments. High quality  
421 genomes are a prerequisite for such analysis. Although *Ca. Scalindua sediminis* [13] is a high-  
422 quality representative of the *Ca. Scalinduaceae* family, the previous metagenome-assembled  
423 genome (MAG) of *Ca. Bathyanammoxibiaceae* in AMOR sediments, Bin\_158, was estimated  
424 to be only 74% complete [16]. Therefore, to obtain high-quality representative genomes of *Ca.*

425 Bathyanammoxibiaceae in AMOR sediments, we performed metagenome sequencing on the  
426 sediment horizon GC05\_55cm, because *Ca.* Bathyanammoxibiaceae in this sediment layer  
427 was revealed to account for 28% of the total prokaryotic community by 16S rRNA gene  
428 amplicon sequencing [16]. By metagenome assembly and binning, we obtained a high-quality  
429 MAG (96.6% completeness and 1.5% redundancy) affiliated with *Ca.*  
430 Bathyanammoxibiaceae. The contigs of this MAG show higher guanine-cytosine (GC)  
431 contents than the co-occurring *Ca.* Scalindua sediminis (Fig. 5A and S6), and therefore can be  
432 reliably distinguished. This MAG is 2.1 mega-base pairs in size, smaller than anammox  
433 bacterial of other families (Fig. 5A), and with 1905 coding genes distributed on 32 scaffolds.  
434 It has an average nucleotide identity of 98% with Bin\_158 previously recovered from core  
435 GS14-GC08 [16] and therefore can be regarded as the same anammox bacterial species shown  
436 to prevail in AMOR sediments. It has a ribosomal operon, and the 16S rRNA gene (1 334 bp)  
437 is a 100% match with OTU\_6 of GS14-GC04 presented here (Fig. 3B) and with OTU\_23 of  
438 the four previously characterized AMOR cores [16], indicating that it can represent the most  
439 dominant Bathyanammoxibius phylotype in these AMOR cores. It also contains all necessary  
440 genes for the core anammox metabolism, including hydrazine synthase (though the alpha,  
441 beta, and gamma subunits are located at the ends of two separated contigs), hydrazine  
442 dehydrogenase, and nitrite oxidoreductase. We provisionally name this MAG *Candidatus*  
443 *Bathyanammoxibius amoris* (named after AMOR, the originating location of this MAG).

444 Using *Ca.* S. sediminis and *Ca.* B. amoris as representative genomes of the *Ca.*  
445 Scalinduaceae and *Ca.* Bathyanammoxibiaceae families, respectively, shown to dominate in  
446 this system, we performed a comparative genomic analysis to identify potential reasons that  
447 may lead to the niche partitioning between the two anammox bacterial families in AMOR  
448 sediments. The two genomes combined contain 4808 genes summarized in 1548 gene clusters,  
449 of which 917 are shared by the two genomes (Fig. 5B). Of the remaining 631 gene clusters,

450 457 are unique in *Ca. S. sediminis*, and the other 174 gene clusters are unique in *Ca. B.*  
451 *amoris* (Fig. 5B). Since both are anammox genomes, genes encoding the key enzymes of the  
452 core anammox metabolism are among the shared gene clusters (included in Supplementary  
453 dataset S2). Comparing to *Ca. Scalindua sediminis* [13], *Ca. B. amoris* lacks urease and  
454 cyanase (Fig. 5B), indicating that it does not have the capacity to conserve energy or produce  
455 extra ammonium from the degradation of urea and cyanate. Although cyanate availability in  
456 marine sediments has not been determined, urea concentrations had been measured to be eight  
457 times lower than ammonium [67,68]. The majority of the urea production in anoxic sediments  
458 attributed to microbial degradation [69] of purines and pyrimidines [70], while in oxic  
459 sediments macrofauna, if exist, may also play a role in urea production [71]. The urea  
460 hydrolysis capacity may provide *Ca. S. sediminis* a competitive advantage to live in  
461 environments of limited ammonium, such as the surface oxic sediments (Fig. 4A and 4B). *Ca.*  
462 *B. amoris* also lacks thiosulfate reductase, an enzyme present in *Ca. S. sediminis* and also  
463 some other anammox bacteria [72] which may enable them to utilize thiosulfate as an electron  
464 acceptor. Unique genes present in *Ca. B. amoris* include genes encoding for lactate  
465 dehydrogenase, pyruvate:ferrodoxin oxidoreductase and [NiFe] hydrogenase (Fig. 5B), all of  
466 which may be involved in fermentation.

467 Given that observed ammonium concentrations are profoundly different between the  
468 two niches of anammox bacteria, we investigated the types and numbers of ammonium  
469 transporters (Amt) - the essential cell apparatus for ammonium assimilation conserved in all  
470 domains of life - in available high-quality anammox bacteria genomes. We identified a total  
471 of 55 Amt among the 10 selected high-quality anammox genomes. Phylogenetic analysis of  
472 Amt suggested that anammox bacteria contain Amt of both Rh-type and MEP-type (Fig. 6A).  
473 We identified one clade of anammox Amt in the Rh-type branch clustering with those of AOB  
474 and *Nitrospira* NOB [73], and 6 anammox Amt clades in the MEP-type branch (Fig. 6A). Rh-

475 type transporter proteins in AOB [74,75] and other organisms [76] were demonstrated to have  
476 low ammonium affinity and can only be operational in high ammonium concentrations in the  
477 millimolar range, while MEP-type ammonium transporters have higher affinity [77,78] and  
478 can be efficient under conditions of low ammonium concentrations. A Rh-type Amt of low  
479 affinity is conserved in genomes of the families *Ca. Brocadiaceae* and *Ca.*  
480 *Bathyanammoxibiaceae*, but seem to be absent in *Ca. Scalinduaceae* (Fig. 6B). For the MEP-  
481 type, high-affinity Amt, anammox bacteria in the *Ca. Scalinduaceae* family have between four  
482 and eight, while *Ca. Bathyanammoxibiaceae* members have only 2–5 of these ammonium  
483 transporters (Fig. 6B). Combined with the lack of access to alternative substrates and extra  
484 ammonium, encoding fewer high-affinity ammonium transporters in *Ca.*  
485 *Bathyanammoxibiaceae* than *Ca. Scalinduaceae* may drive the former inhabit only conditions  
486 of high concentrations or fluxes of ammonium, which is supported by the observed preference  
487 of *Ca. Bathyanammoxibiaceae* in sediment layers of (observed or inferred) higher ammonium  
488 availabilities.

489 The genome-inferred preference of higher ammonium availabilities for *Ca.*  
490 *Bathyanammoxibiaceae* is also consistent with the recent phylogenomic and molecular clock  
491 analysis of anammox bacteria [79]. In this work, anammox bacteria on Earth were inferred to  
492 emerge around the Great Oxidation Event [79], before which ammonium was the dominant  
493 oceanic nitrogen species [1]. *Ca. Bathyanammoxibiaceae* is more deep-branching than *Ca.*  
494 *Scalinduaceae*, which could have been more adapted to original conditions (e.g., high  
495 ammonium concentrations) of anammox bacteria.

496

#### 497 **Limitations**

498 It is worth noting that microbiological data of only two of the 30 sediment sites that feature  
499 nitrite accumulation were analyzed in this study, and whether the proposed mechanism here

500 for the AMOR sediments is applicable to other global sites more broadly remains unclear.  
501 Depth-resolved microbiological data are the key to make this assessment. Although microbial  
502 communities in some of the 28 literature sites have been characterized, especially those from  
503 the Atacama Trench [10,80], at least two differences can be seen between these Atacama  
504 Trench cores and the two AMOR cores investigated here. (i) The relative abundance maxima  
505 of anammox bacteria in hadal trench sediments (maximally 5% of the total communities; [10])  
506 are much lower than those in AMOR cores (maximally 15% of the total communities; Fig. 2).  
507 (ii) The shapes of nitrite profiles are different. While the upper nitrite consumption zones in  
508 both AMOR cores are well separated from the oxic zone (Fig. 1B and 1C), nitrite was  
509 frequently detected in the upper part including the oxic zone of some of the Atacama Trench  
510 cores (e.g., AT1, AT3, AT4, AT6, and AT7; Fig. S3), indicating that aerobic processes may  
511 play a role in generating or depleting nitrite in shallow sediments of these trench cores. Such  
512 differences are to be expected at these disparate sites, each characterized by different depth,  
513 organic matter and nutrient supply, and sedimentation rate. Microbiological investigations of  
514 more sediment cores are needed to develop a more complete understanding about microbial  
515 processes underlying the observed nitrite accumulation in marine sediments.

516

## 517 **Conclusion**

518 We combined biogeochemical, microbiological, and genomic data to study anammox bacteria  
519 and their geochemical impacts in marine sediments. We revealed that the anammox  
520 community consisted of members of both families *Ca. Scalinduaceae* and *Ca.*  
521 *Bathyammonoxibaciaceae* and documented a niche partitioning between them in two sediment  
522 cores retrieved from Arctic Mid-Ocean Ridge. These cores showed nitrite accumulation  
523 around the nitrate-depletion zones, an analogous feature also observed in 28 other globally  
524 distributed marine sediment cores and in other stratified aquatic environments. The

525 accumulated nitrite is mainly produced by nitrate reducers, and accumulates due to limitation  
526 of ammonium for anammox bacteria and nitrite reducers. The observed nitrite accumulation  
527 in the AMOR sediment cores is accompanied by the niche partitioning between the two  
528 anammox bacterial families, in which *Ca. Bathyanammoxibiaceae* and *Ca. Scalinduaceae*  
529 occupy higher and lower ammonium conditions, respectively. This niche partitioning is likely  
530 driven by the differential capacities in ammonium assimilation and utilizing alternative  
531 organic nitrogen substrates like urea and cyanate. Future efforts in developing mechanistic  
532 models that can explain the observed geochemical and microbiology data while also  
533 reconciling the sedimentation history will greatly advance our understanding of the  
534 interactions between the nitrogen cycling processes in marine sediments.

535

### 536 **Etymology description**

537 *Candidatus Bathyanammoxibius amoris*. *Bathyanammoxibius amoris* (a.mo'ris, N.L.  
538 gen. masc, n. *amoris* of AMOR, derived from the oceanographic location (Arctic Mid-Ocean  
539 Ridge, AMOR) where this bacterium was found to be abundant). The genome shows 98.8%  
540 amino acid identity with *Bathyanammoxibius* Bin\_158 previously reported [16], but is more  
541 complete (96.6% compared to 72.4%). It contains essential genes for key enzymes of the  
542 anammox metabolism, such as hydrazine synthase, hydrazine dehydrogenase, nitrite  
543 oxidoreductase, hydroxylamine oxidoreductase. No urease or cyanase genes were discovered  
544 in the genome. The genome reference sequence of *Candidatus Bathyanammoxibius amoris* is  
545 JAMXCW000000000. This genome was recovered from core GS16-GC05 (55 cm below the  
546 seafloor) of the central Knipovich Ridge (76°55' N, 7°7.5' E). The G+C content in the genome  
547 is 52.36%.

548

### 549 **Materials and Methods**

550 **Study area, sampling, and geochemical measurements**

551 Two cores were studied in this study with the same sampling and analytic procedure, although  
552 they were collected during two different cruises. GS14-GC04 (71°17.08'N, 6°33.69'W), was  
553 retrieved using a gravity corer from the seafloor at a water depth of 1050 meters during the  
554 CGB 2014 summer cruise onboard the Norwegian R/V G.O. Sars. This coring site is about 50  
555 km west of the Jan Mayen hydrothermal vent field [71.2°N, 5.5°W, [20,21]] and north of the  
556 Jan Mayen fraction zone (Fig. 1A). GS16-GC04 was retrieved using the same method from  
557 the east flank of the central Mohns Ridge (72°16' N, 1°42' E). As described elsewhere [13],  
558 the retrieved cores were split into two halves on deck. One half was immediately wrapped  
559 with plastic films for archiving at 4 °C at the core repository at the University of Bergen, and  
560 the other half was used for sampling on the deck. First, the oxygen concentrations were  
561 measured using an optode by lowering the sensor into the middle part of selected depths in the  
562 working half. The optode sensors were connected to a MICROX TX3 single-channel fiber-  
563 optic oxygen meter, which was calibrated according to the manufacturer's protocols (PreSens,  
564 Regensberg, Germany). Second, porewater was extracted using Rhizon samplers [81] from  
565 discrete depths. Microbiology subsamples were taken simultaneously with porewater  
566 extraction, using sterile 10 ml cut-off syringes from nearly identical depths as the porewater  
567 extraction, and immediately frozen at -80 °C for onshore-based DNA analysis.

568

569 **Geochemical analyses**

570 Geochemical analyses were performed using the same procedure as described in [13].  
571 Nutrient concentrations in porewater were measured onboard. Concentrations of ammonium  
572 ( $\text{NH}_4^+$ ), nitrate ( $\text{NO}_3^-$ ), nitrite ( $\text{NO}_2^-$ ), and dissolved inorganic carbon (DIC) were analyzed  
573 colorimetrically by a QuAAstro continuous flow analyzer (SEAL Analytical Ltd,  
574 Southampton, UK), following the manufacturer's protocol. The photometric indophenol

575 method was used for the ammonium measurement [82]. Nitrite was measured as a pink  
576 complex after reacting with *N*-1-naphthylethylenediamine dihydrochloride and sulfanilamide.  
577 The sum of porewater nitrate and nitrite was measured using the same method after reducing  
578 nitrate to nitrite by a Cu-Cd reduction coil [83]. Nitrate concentrations were calculated as  
579 the difference between these two measurements. The protocol for DIC was based on [84].  
580 Porewater samples for metal concentrations (including dissolved Mn and Fe) were acidified  
581 by ultrapure nitric acid to a final concentration of 3 vol% and stored in acid-cleaned bottles at  
582 4 °C until analysis. Metal concentrations were determined by Thermo Scientific iCap 7600  
583 ICP-AES (inductively coupled plasma atomic emission spectrometry) at the University of  
584 Bergen. For total organic carbon (TOC) and nitrogen (TON) measurements, sediments were  
585 first dried at 95 °C for 24 hours and then measured on an element analyzer (Analytikjena  
586 multi EA4000, Jena, Germany), after inorganic carbon removal by adding 1 mL of phosphoric  
587 acid.

588

### 589 **Diffusive flux calculation**

590 Diffusive fluxes of nitrate into and nitrite effluxes (both upward and downward) from the  
591 nitrate-depletion zone in sediment cores were calculated based on the measured profiles using  
592 Fick's first law of diffusion:

$$593 J = \varphi \times D_s \times \delta[C]/\delta z$$

594 where,  $J$  is the flux;  $\varphi$  is the measured sediment porosity;  $D_s$  is the sedimentary diffusion  
595 coefficient for a given solute ( $\text{m}^2 \text{ yr}^{-1}$ ) calculated using the *R* package *marelac* [85];  $z$  is the  
596 sediment depth below the seafloor (m); and  $\delta[C]/\delta z$  equals the solute ( $\text{NO}_3^-$  or  $\text{NO}_2^-$ )  
597 concentration gradient ( $\text{mmol m}^{-3}$ ), calculated from nearby three data points. The ratio of  
598 nitrite to nitrate flux was calculated by dividing the sum of the upward and downward fluxes

599 of nitrite by the (downward) flux of nitrate. The mean value and the 95% confidence interval  
600 of this ratio at the 30 sediment sites were calculated in *R*.

601

602 **DNA extraction, PCR amplification, and sequencing**

603 Total DNA for amplicon sequencing and qPCR was extracted from ~0.5 g of sediment per  
604 sample using the PowerLyze DNA extraction kits (MO BIO Laboratories, Inc.) with the  
605 following minor modifications: 1) Lysis tubes were replaced by G2 tubes (Amplikon, Odense,  
606 Denmark), and 2) water bathed for 30 min at 60 °C before bead beating (speed 6.0 for 45  
607 seconds) using a FastPrep-24 instrument (MP Biomedicals). A blank extraction (without  
608 sediment addition) was carried out in parallel with the sample extraction batch following the  
609 same procedure. The DNA was eluted into 80 µL of molecular grade double-distilled H<sub>2</sub>O  
610 (ddH<sub>2</sub>O) and stored at -20 °C until analysis. Amplicon libraries of 16S rRNA genes were  
611 prepared using the primer pair 519F/806R in a two-round amplicon strategy[13], with an  
612 optimal PCR cycle number in the first round for each sample to minimize over-amplification.  
613 Amplicon libraries were sequenced on an Ion Torrent Personal Genome Machine.

614

615 **Amplicon sequencing data analysis**

616 Sequencing reads were quality filtered and trimmed to 220 bp using the USEARCH pipeline  
617 [86] and chimera were detected and removed using UCHIME. Trimmed reads were clustered  
618 into operational taxonomy units (OTUs) at >97% nucleotide sequence identity using  
619 UPARSE [87]. Most of the OTUs detected in the extraction blanks (negative controls) were  
620 manually removed, except for a few OTUs that may be introduced into the blanks by cross-  
621 contamination. Overall, >99.9% of reads in the negative controls were removed. Samples  
622 were subsampled to 20,000 reads for each sediment horizon. The taxonomic classification of  
623 OTUs was performed using the lowest common ancestor algorithm implemented in the

624 CREST package [88] with the SILVA 138.1 Release as the reference. The relative abundance  
625 of anammox bacteria was taken as the total percentage of the OTUs affiliated with the  
626 families *Ca. Scalinduaceae* and *Ca. Bathyanammoxibiaceae* [16]. The distribution of  
627 individual anammox OTUs was visualized in heatmaps generated using the *R* package  
628 *ggplot2* [89].

629

### 630 **Quantification of 16S rRNA genes and functional genes**

631 Abundances of anammox bacteria were quantified using qPCR by targeting the *hzo* gene  
632 (encoding the hydrazine dehydrogenase responsible for the degradation of hydrazine to N<sub>2</sub>)  
633 using the primer pair hzoF1/hzoR1 [90] following the procedure described elsewhere [30].  
634 The abundances of denitrifying bacteria were quantified by targeting the *narG* (coding the  
635 periplasmic nitrate reductase alpha subunit), *nirS* and *nirK* genes (coding cytochrome *cdl*-  
636 and Cu-containing nitrite reductases, respectively), using the protocol described in [30]. The  
637 qPCR standards of these functional genes were prepared from PCR amplification of DNA  
638 extracts of environmental samples using the corresponding qPCR primers. For *hzo* and *narG*  
639 genes, the DNA extracts of a marine sediment horizon (160 cm of core GS14-GC08 [13])  
640 were used, while for *nirS* and *nirK* genes, an Arctic permafrost soil sample was used. After  
641 purification, the PCR products were cloned using the StrataClone PCR Cloning Kit (Agilent  
642 Technologies, USA), including ligation into vectors and transformation into competent cells  
643 of *Escherichia coli* DH5 $\alpha$ . The transformed *E. coli* cells were plated onto LB solid medium  
644 and grown overnight for the blue/white colony selection. For each gene, a white colony was  
645 selected and amplified using the vector primers M13F/M13R, to generate linear qPCR  
646 standards. In addition, archaeal and bacterial 16S rRNA genes were quantified as described in  
647 [91]. The qPCR standards for archaeal and bacterial 16S rRNA gene quantification were  
648 genomic DNA of Thaumarchaeota fosmid 54d9 (AJ627422) and *E. coli*, respectively. Total

649 cell abundance was estimated from 16S rRNA gene copies, assuming a single copy of 16S  
650 rRNA genes in each bacterial or archaeal genome [54]. All gene abundances were determined  
651 triplicate in qPCR, and standard deviations are presented using horizontal error bars.  
652 Absolute abundances of the aforementioned groups were also calculated as the product of the  
653 total cell abundance and the percentage of these groups in the total community assessed by  
654 amplicon sequencing.

655

### 656 **Metagenome sequencing, assembly, and binning**

657 To recover high-quality genomes (>90% completeness and <5% redundancy) of *Ca.*  
658 *Bathyamammoxibiaceae*, we focused on the sediment horizon of 55 cm of core GS16-GC05,  
659 because our previous survey indicated that this particular sediment horizon harbors the  
660 highest relative abundance of *Ca. Bathyamammoxibiaceae* in the total archaea and bacteria  
661 community [16]. We extract the total DNA from 6.4 g of sediment (~0.4 - 0.6 g sediment in  
662 each of the 12 individual lysis) using PowerLyze DNA extraction kits (MO BIO Laboratories,  
663 Inc.) following the manufacturer's instructions. The DNA extracts were iteratively eluted  
664 from the 12 spin columns into 100  $\mu$ L of ddH<sub>2</sub>O for further analysis.

665 Shotgun metagenome libraries were constructed using a NEBNext Ultra II FS DNA  
666 Library Prep Kit (New England Laboratories) and sequenced (2 $\times$ 150 bp paired-end) on an  
667 NextSeq 500 sequencer (Illumina) at the MIT BioMicro Center. The quality of the reads and  
668 the presence of adaptor sequences were first checked using FastQC v.0.11.9 [92]. Adapters  
669 were removed and reads trimmed using BBduk implemented in the BBMap package [93].  
670 The overall quality of processed reads was evaluated in a final check with FastQC v.0.11.9  
671 [92], to ensure only high-quality reads (i.e., with a minimum length of 50 bp and a Phred  
672 quality score higher than 30) were used in the downstream analysis. The quality-controlled  
673 reads were *de novo* assembled into contigs using Megahit v.1.1.2 [94] with the *k*-mer length

674 varying from 27 to 117 and a contig length threshold of 1000 bp. Contigs were grouped into  
675 genome bins using three programs: MaxBin2 v2.2.6 [95], MetaBAT v2.15.3 [96], and  
676 CONCOCT v1.1.0 [97], all with the default parameters. The resulting bins from these three  
677 programs were subject to dereplication and aggregation by DAS\_Tool v1.1.4 [98] with the  
678 default parameters. The quality of the obtained genome bins was assessed using the option  
679 “lineage\_wf” of CheckM v.1.1.3 [99]. To improve the quality of the genomes affiliated to the  
680 Brocadiales order, the quality-controlled reads were mapped onto the contigs using BBmap  
681 [93], and the mapped reads were re-assembled using SPAdes v.3.14.0 [100]. After removal of  
682 contigs shorter than 1000 bp, the resulting scaffolds were visualized and re-binned manually  
683 using gbtools [101] as described in [13]. The quality of the resulting *Ca. Bathyanammoxibius*  
684 genome was checked using the CheckM “lineage\_wf” command again, based on the  
685 Planctomycetes marker gene set.

686

### 687 **Comparative genomic analysis**

688 We performed a comparative analysis on the genomes *Ca. Scalindua sediminis* [13] and *Ca.*  
689 *Bathyanammoxibius amoris* (recovered in this study), the dominant species of the two  
690 anammox bacterial families in marine sediments [16]. We did the analysis using Anvio v7.1  
691 [102] according to the workflow described at [http://merenlab.org/2016/11/08/pangenomics-](http://merenlab.org/2016/11/08/pangenomics-v2/)  
692 v2/. All genomes were first annotated using Prokka v.1.14 [103] and BLASTp using the  
693 Clusters of Orthologous Groups of proteins (COG) [104] as the reference database. The  
694 comparative genomic analysis use BLAST to quantify the similarity between each pair of  
695 genes, and the Markov Cluster algorithm (MCL) [105] (with inflation parameter of 2) to  
696 resolve clusters of homologous genes. The shared and unique genes in the two genomes were  
697 identified via the functional enrichment analysis [106].

698

699 **Phylogenetic analyses**

700 A maximum-likelihood phylogenetic tree based on 16S rRNA genes was reconstructed for  
701 known anammox bacteria and close relatives of the putative anammox OTUs identified via  
702 BLASTn [107] in the NCBI database. Sequences were aligned using MAFFT-LINSi [108]  
703 and the maximum-likelihood phylogenetic tree was inferred using IQ-TREE v.1.5.5 [109]  
704 with GTR+F+R5 as the best-fit substitution model selected by ModelFinder [110]. 1000  
705 ultrafast bootstraps iterations were performed using UFBoot2 [111] to assess the robustness of  
706 tree topology.

707 For the phylogeny of Amt (ammonium transporter), the sequences of anammox  
708 genomes were extracted from the Prokka annotation and used as the queried in BLASTp  
709 [107] searches against the NCBI database (>50% similarity were retained), to identify its  
710 close relatives. These sequences were complemented with known nitrifiers (e.g. ammonia-  
711 oxidizing bacteria (AOB) from the genera of *Nitrosospira*, *Nitrosomonas*, *Nitrososcoccus*,  
712 nitrite-oxidizing bacteria (NOB) from *Nitrospira* and *Nitrospina*, and ammonia-oxidizing  
713 archaea (AOA) from the *Thaumarchaeota* phylum) and aligned using MAFF-LINSi [108].  
714 The alignment was trimmed using trimAl [112] with the mode of “automated”. A maximum  
715 likelihood phylogenetic tree was reconstructed using IQ-TREE v.1.5.5 [109] with the  
716 LG+F+R7 as the best-fit substitution model and 1,000 ultrafast bootstraps.

717

718 **Data availability**

719 All sequencing data used in this study are available in the NCBI Short Reads Archive under  
720 the project number PRJNA854201. Raw metagenome sequencing data of core GS16-GC05  
721 (55 cm) is available in the NCBI database under the BioSample number SUB11625283. The  
722 genome of *Ca. Bathyanammoxibius amoris* is available under the accession number  
723 JAMXCW000000000. Raw geochemical data of core GS14-GC04 can be found in the

724 supplementary data S1. A compilation of the porewater profiles of nitrate, nitrite, and  
725 ammonium for the 28 reference sites shown in Figure S3 can be found in Supplementary data  
726 S2.

727

728 **Acknowledgments**

729 Sediment coring opportunities in the AMOR area were made possible by the chief scientist  
730 Rolf Birger Pedersen and the crew of R/V G.O. Sars. We thank Anita-Elin Fedøy for the  
731 amplicon preparation, Michael Melcher and Steffen Lydvo for sampling collection and DNA  
732 extraction, and Jan-Kristoffer Landro for sediment carbon and nitrogen contents  
733 measurements. Constructive comments from anonymous reviewers greatly improved the  
734 quality of this article. This research work was funded by the Research Council of Norway  
735 through the Centre for Excellence in Geobiology, the K.G. Jebsen Foundation and Trond  
736 Mohns Science Foundation to S.L.J., and Simons Foundation grant 622065 and National  
737 Science Foundation grants OCE-2138890 and OCE-2142998 to A.R.B. R.Z. is supported by  
738 the MIT Molina Postdoctoral Fellowship.

739

740 **Author contribution**

741 R.Z. and S.L.J. conceived the study. R.Z., D.R., I.H.T, and S.L.J. collected samples onboard  
742 the cruises. D.R. and I.H.T. performed the porewater extraction and analysis. R.Z., S.L.J, and  
743 A.R.B. collected and analyzed the genomic data. R.Z. performed the DNA analyses and  
744 interpreted the results. R.Z. and A.R.B. wrote, and all authors edited, and approved the  
745 manuscript.

746

747 **Conflict of interest**

748 The authors declare that they have no conflict of interest.

749

750 **References**

- 751 1. Canfield DE, Glazer AN, Falkowski PG. The evolution and future of Earth's nitrogen  
752 cycle. *Science*. 2010; 330:192-6.
- 753 2. Devol AH. Denitrification, anammox, and N<sub>2</sub> production in marine sediments. *Annual  
755 Review of Marine Science* 2015; 7:403-23.
- 756 3. Brandes JA, Devol AH. A global marine-fixed nitrogen isotopic budget: Implications  
758 for Holocene nitrogen cycling. *Glob. Biogeochem. Cycles.* 2002; 16:1120.
- 759 4. DeVries T, Deutsch C, Rafter P, Primeau F. Marine denitrification rates determined  
761 from a global 3-D inverse model. *Biogeosciences*. 2013; 10:2481-96.
- 762 5. Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. *Nat.  
764 Rev. Microbiol.* 2018; 16:263-76.
- 765 6. van de Graaf AA, Mulder A, de Bruijn P, Jetten M, Robertson LA, Kuenen JG. Anaerobic oxidation of ammonium is a biologically mediated process. *Appl. Environ.  
767 Microbiol.* 1995; 61:1246-51.
- 769 7. Bristow LA, Callbeck CM, Larsen M, Altabet MA, Dekaezemacker J, Forth M et al. N<sub>2</sub> production rates limited by nitrite availability in the Bay of Bengal oxygen  
771 minimum zone. *Nat. Geosci.* 2017; 10:24-9.
- 773 8. Thamdrup B, Dalsgaard T. Production of N<sub>2</sub> through anaerobic ammonium oxidation  
775 coupled to nitrate reduction in marine sediments. *Appl. Environ. Microbiol.* 2002;  
776 68:1312-8.
- 777 9. Thamdrup B, Schauberger C, Larsen M, Trouche B, Maignien L, Arnaud-Haond S et  
779 al. Anammox bacteria drive fixed nitrogen loss in hadal trench sediments. *Proc. Natl.  
780 Acad. Sci. U.S.A.* 2021; 118:e2104529118.
- 781 10. Falkowski PG. Evolution of the nitrogen cycle and its influence on the biological  
783 sequestration of CO<sub>2</sub> in the ocean. *Nature*. 1997; 387:272-5.
- 784 11. Prokopenko M, Hirst M, De Brabandere L, Lawrence D, Berelson W, Granger J et al.  
786 Nitrogen losses in anoxic marine sediments driven by *Thioploca*-anammox bacterial  
787 consortia. *Nature*. 2013; 500:194-8.

788

- 789 12. Schmid MC, Risgaard-Petersen N, van de Vossenberg J, Kuypers MMM, Lavik G,  
790 Petersen J et al. Anaerobic ammonium-oxidizing bacteria in marine environments:  
791 Widespread occurrence but low diversity. *Environ. Microbiol.*. 2007; 9:1476-84.
- 792
- 793 13. Zhao R, Mogollón JM, Abby SS, Schleper C, Biddle JF, Roerdink DL et al.  
794 Geochemical transition zone powering microbial growth in subsurface sediments. *Proc.  
795 Natl. Acad. Sci. U.S.A.* 2020; 117:32617-26.
- 796
- 797 14. Oshiki M, Mizuto K, Kimura Z, Kindaichi T, Satoh H, Okabe S. Genetic diversity of  
798 marine anaerobic ammonium-oxidizing bacteria as revealed by genomic and  
799 proteomic analyses of "*Candidatus Scalindua japonica*". *Environ. Microbiol. Reports.*  
800 2017; 9:550-61.
- 801
- 802 15. van de Vossenberg J, Woebken D, Maalcke WJ, Wessels H, Dutilh BE, Kartal B et al.  
803 The metagenome of the marine anammox bacterium '*Candidatus Scalindua profunda*'  
804 illustrates the versatility of this globally important nitrogen cycle bacterium. *Environ.  
805 Microbiol.*. 2013; 15:1275-89.
- 806
- 807 16. Zhao R, Biddle JF, Jørgensen SL. Introducing *Candidatus Bathyanammoxibiaceae*, a  
808 family of bacteria with the anammox potential present in both marine and terrestrial  
809 environments. *ISME Commun.*. 2022; 2:42.
- 810
- 811 17. Graaf AAvd, Mulder A, Bruijn Pd, Jetten MS, Robertson LA, Kuenen JG. Anaerobic  
812 oxidation of ammonium is a biologically mediated process. *Appl. Environ. Microbiol.*.  
813 1995; 61:1246-51.
- 814
- 815 18. Møller TE, Le Moine Bauer S, Hannisdal B, Zhao R, Baumberger T, Roerdink DL et  
816 al. Mapping microbial abundance and prevalence to changing oxygen concentration in  
817 deep-sea sediments using machine learning and differential abundance. *Front.  
818 Microbiol.*. 2022; 13:804575.
- 819
- 820 19. Lam P, Jensen MM, Kock A, Lettmann KA, Plancherel Y, Lavik G et al. Origin and  
821 fate of the secondary nitrite maximum in the Arabian Sea. *Biogeosciences*. 2011;  
822 8:1565-77.
- 823
- 824 20. Pedersen RB, Thorseth IH, Nygård TE, Lilley MD, Kelley DS. Hydrothermal activity  
825 at the Arctic Mid-Ocean Ridges. In: Diversity of hydrothermal systems on slow  
826 spreading ocean ridges. (2010):67-89.
- 827
- 828 21. Stensland A, Baumberger T, Lilley MD, Okland IE, Dundas SH, Roerdink DL et al.  
829 Transport of carbon dioxide and heavy metals from hydrothermal vents to shallow  
830 water by hydrate-coated gas bubbles. *Chem. Geol.*. 2019; 513:120-32.
- 831

- 832 22. Engstrom P, Penton CR, Devol AH. Anaerobic ammonium oxidation in deep-sea  
833 sediments off the Washington margin. *Limnol. Oceanogr.* 2009; 54:1643-52.
- 834
- 835 23. Hyacinthe C, Anschutz P, Carbonel P, Jouanneau J-M, Jorissen F. Early diagenetic  
836 processes in the muddy sediments of the Bay of Biscay. *Mar. Geol.* 2001; 177:111-28.
- 837
- 838 24. Jahnke RA, Emerson SR, Murray JW. A model of oxygen reduction, denitrification,  
839 and organic matter mineralization in marine sediments. *Limnol. Oceanogr.* 1982;  
840 27:610-23.
- 841
- 842 25. Christensen JP, Rowe GT. Nitrification and oxygen consumption in northwest Atlantic  
843 deep-sea sediments. *Journal of Marine Research.* 1984; 42:1099-116.
- 844
- 845 26. Emerson S, Jahnke R, Bender M, Froelich P, Klinkhammer G, Bowser C et al. Early  
846 diagenesis in sediments from the eastern equatorial Pacific I: Pore water nutrient and  
847 carbonate results. *Earth Planet. Sci. Lett.* 1980; 49:57-80.
- 848
- 849 27. Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M et al. Microbial  
850 community and geochemical analyses of trans-trench sediments for understanding the  
851 roles of hadal environments. *ISME J.* 2020; 14:740-56.
- 852
- 853 28. Nunoura T, Nishizawa M, Hirai M, Shimamura S, Harnvoravongchai P, Koide O et al.  
854 Microbial diversity in sediments from the bottom of the Challenger Deep, the Mariana  
855 Trench. *Microbes Environ.* 2018; ME17194.
- 856
- 857 29. D'Hondt S, Inagaki F, Zarikian CA, Abrams LJ, Dubois N, Engelhardt T et al. Presence  
858 of oxygen and aerobic communities from sea floor to basement in deep-sea sediments.  
859 *Nat. Geosci.* 2015; 8:299-304.
- 860
- 861 30. Zhao R, Hannisdal B, Mogollon JM, Jørgensen SL. Nitrifier abundance and diversity  
862 peak at deep redox transition zones. *Scientific Reports.* 2019; 9:8633.
- 863
- 864 31. Versteegh GJ, Koschinsky A, Kuhn T, Preuss I, Kasten S. Geochemical consequences  
865 of oxygen diffusion from the oceanic crust into overlying sediments and its  
866 significance for biogeochemical cycles based on sediments of the Northeast Pacific.  
867 *Biogeosciences.* 2021; 18:4965-84.
- 868
- 869 32. Kuypers MMM, Slielkers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG et al.  
870 Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. *Nature.* 2003;  
871 422:608-11.
- 872
- 873 33. Schulz-Vogt HN, Pollehne F, Jürgens K, Arz HW, Beier S, Bahlo R et al. Effect of  
874 large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of  
875 the suboxic zone in the Black Sea. *ISME J.* 2019; 13:1198-208.

- 876
- 877 34. Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuna-Gonzalez J. N<sub>2</sub> production  
878 by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica.  
879 *Nature*. 2003; 422:606-8.
- 880
- 881 35. Callbeck CM, Ehrenfels B, Baumann KBL, Wehrli B, Schubert CJ. Anoxic chlorophyll  
882 maximum enhances local organic matter remineralization and nitrogen loss in Lake  
883 Tanganyika. *Nature Communications*. 2021; 12:830.
- 884
- 885 36. Lee PA, Mikucki JA, Foreman CM, Priscu JC, DiTullio GR, Riseman SF et al.  
886 Thermodynamic constraints on microbially mediated processes in lakes of the  
887 McMurdo Dry Valleys, Antarctica. *Geomicrobiol. J.*.. 2004; 21:221-37.
- 888
- 889 37. Nielsen M, Gieseke A, de Beer D, Revsbech NP. Nitrate, nitrite, and nitrous oxide  
890 transformations in sediments along a salinity gradient in the Weser Estuary. *Aquat.*  
891 *Microb. Ecol.*.. 2009; 55:39-52.
- 892
- 893 38. Akbarzadeh Z, Laverman AM, Rezanezhad F, Raimonet M, Viollier E, Shafei B et al.  
894 Benthic nitrite exchanges in the Seine River (France): An early diagenetic modeling  
895 analysis. *Science of the Total Environment*. 2018; 628:580-93.
- 896
- 897 39. Meyer RL, Risgaard-Petersen N, Allen DE. Correlation between anammox activity and  
898 microscale distribution of nitrite in a subtropical mangrove sediment. *Appl. Environ.*  
899 *Microbiol.*.. 2005; 71:6142-9.
- 900
- 901 40. De Beer D, Schramm A, Santegoeds CM, Kuhl M. A nitrite microsensor for profiling  
902 environmental biofilms. *Appl. Environ. Microbiol.*.. 1997; 63:973-7.
- 903
- 904 41. Glass JB, Kretz CB, Ganesh S, Ranjan P, Seston SL, Buck KN et al. Meta-omic  
905 signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones.  
906 *Front. Microbiol.*.. 2015; 6:998.
- 907
- 908 42. Thamdrup B, Steinsdóttir HGR, Bertagnoli AD, Padilla CC, Patin NV, Garcia-  
909 Robledo E et al. Anaerobic methane oxidation is an important sink for methane in the  
910 ocean's largest oxygen minimum zone. *Limnol. Oceanogr.* 2019; 64:2569-85.
- 911
- 912 43. Babbin AR, Buchwald C, Morel FMM, Wankel SD, Ward BB. Nitrite oxidation  
913 exceeds reduction and fixed nitrogen loss in anoxic Pacific waters. *Mar. Chem.*.. 2020;  
914 224:103814.
- 915
- 916 44. Zhang L, Narita Y, Gao L, Ali M, Oshiki M, Okabe S. Maximum specific growth rate  
917 of anammox bacteria revisited. *Water Res.*.. 2017; 116:296-303.
- 918

- 919 45. Villanueva I, Speth D, vanalen t, hoischen a, Jetten M. Shotgun metagenomic data  
920 reveals significant abundance but low diversity of “*Candidatus Scalindua*” marine  
921 anammox bacteria in the Arabian Sea oxygen minimum zone. *Front. Microbiol.*. 2014;  
922 5:31.
- 923
- 924 46. Strous M, Gerven EV, Kuenen JG, Jetten M. Effects of aerobic and microaerobic  
925 conditions on anaerobic ammonium-oxidizing (anammox) sludge. *Appl. Environ.*  
926 *Microbiol.*. 1997; 63:2446-8.
- 927
- 928 47. Babbin AR, Peters BD, Mordy CW, Widner B, Casciotti KL, Ward BB. Multiple  
929 metabolisms constrain the anaerobic nitrite budget in the Eastern Tropical South  
930 Pacific. *Glob. Biogeochem. Cycles.*. 2017; 31:258-71.
- 931
- 932 48. Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R et al. Massive  
933 nitrogen loss from the Benguela upwelling system through anaerobic ammonium  
934 oxidation. *Proc. Natl. Acad. Sci. U.S.A.* 2005; 102:6478-83.
- 935
- 936 49. Woebken D, Fuchs BM, Kuypers MM, Amann R. Potential interactions of particle-  
937 associated anammox bacteria with bacterial and archaeal partners in the Namibian  
938 upwelling system. *Appl. Environ. Microbiol.*. 2007; 73:4648-57.
- 939
- 940 50. Babbin AR, Tamasi T, Dumit D, Weber L, Rodríguez MVI, Schwartz SL et al. Discovery  
941 and quantification of anaerobic nitrogen metabolisms among oxygenated  
942 tropical Cuban stony corals. *ISME J.* 2021; 15:1222-35.
- 943
- 944 51. Bianchi D, Weber TS, Kiko R, Deutsch C. Global niche of marine anaerobic  
945 metabolisms expanded by particle microenvironments. *Nat. Geosci.*. 2018; 11:263-8.
- 946
- 947 52. Smriga S, Ciccarese D, Babbin AR. Denitrifying bacteria respond to and shape  
948 microscale gradients within particulate matrices. *Commun. Biol.*. 2021; 4:570.
- 949
- 950 53. Lackschewitz K, Wallrabe-Adams H-J. Composition and origin of sediments on the  
951 mid-oceanic Kolbeinsey Ridge, north of Iceland. *Mar. Geol.*. 1991; 101:71-82.
- 952
- 953 54. Zhao R, Mogollón JM, Roerdink DL, Thorseth IH, Økland I, Jørgensen SL. Ammonia-  
954 oxidizing archaea have similar power requirements in diverse marine oxic sediments.  
955 *ISME J.* 2021; 15:3657-67.
- 956
- 957 55. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation  
958 of an autotrophic ammonia-oxidizing marine archaeon. *Nature*. 2005;  
959 437:543-6.
- 960
- 961 56. Arp DJ, Stein LY. Metabolism of inorganic N compounds by ammonia-oxidizing  
962 bacteria. *Critical Reviews in Biochemistry and Molecular Biology*. 2003; 38:471-95.

- 963
- 964 57. Kerou M, Ponce-Toledo RI, Zhao R, Abby SS, Hirai M, Nomaki H et al. Genomes of
- 965 Thaumarchaeota from deep sea sediments reveal specific adaptations of three
- 966 independently evolved lineages. *ISME J.* 2021; 15:2792-808.
- 967
- 968 58. Zhao R, Dahle H, Ramírez GA, Jørgensen SL. Indigenous ammonia-oxidizing archaea
- 969 in oxic subseafloor oceanic crust. *mSystems*. 2020; 5:e00758-19.
- 970
- 971 59. Kraft B, Jehmlich N, Larsen M, Bristow LA, Könneke M, Thamdrup B et al. Oxygen
- 972 and nitrogen production by an ammonia-oxidizing archaeon. *Science*. 2022; 375:97-
- 973 100.
- 974
- 975 60. Daims H, Lücker S, Wagner M. A new perspective on microbes formerly known as
- 976 nitrite-oxidizing bacteria. *Trends Microbiol.* 2016; 24:699-712.
- 977
- 978 61. van de Vossenberg J, Rattray JE, Geerts W, Kartal B, van Niftrik L, van Donselaar EG
- 979 et al. Enrichment and characterization of marine anammox bacteria associated with
- 980 global nitrogen gas production. *Environ. Microbiol.* 2008; 10:3120-9.
- 981
- 982 62. Li T, Wang P. Biogeographical distribution and diversity of bacterial communities in
- 983 surface sediments of the South China Sea. *Journal of Microbiology and Biotechnology*.
- 984 2013; 23:602-13.
- 985
- 986 63. Eldholm O, Windisch CC. Sediment distribution in the Norwegian-Greenland Sea.
- 987 *Geol. Soc. Am. Bull.* 1974; 85:1661-76.
- 988
- 989 64. Awata T, Oshiki M, Kindaichi T, Ozaki N, Ohashi A, Okabe S. Physiological
- 990 characterization of an anaerobic ammonium-oxidizing bacterium belonging to the
- 991 “*Candidatus Scalindua*” group. *Appl. Environ. Microbiol.* 2013; 79:4145-8.
- 992
- 993 65. Strous M, Kuenen JG, Jetten MS. Key physiology of anaerobic ammonium oxidation.
- 994 *Appl. Environ. Microbiol.* 1999; 65:3248-50.
- 995
- 996 66. Kimura Y, Isaka K, Kazama F, Sumino T. Effects of nitrite inhibition on anaerobic
- 997 ammonium oxidation. *Appl. Microbiol. Biotechnol.* 2010; 86:359-65.
- 998
- 999 67. Lomstein BA, Blackburn TH, Henriksen K. Aspects of nitrogen and carbon cycling in
- 1000 the northern Bering Shelf sediment. I. The significance of urea turnover in the
- 1001 mineralization of  $\text{NH}_4^+$ . *Marine Ecology Progress Series*. 1989; 237-47.
- 1002
- 1003 68. Hulth S, Hall POJ, Blackburn TH, Landen A. Arctic sediments (Svalbard): Pore water
- 1004 and solid phase distributions of C, N, P and Si. *Polar Biol.* 1996; 16:447-62.
- 1005

- 1006 69. Pedersen H, Lomstein BA, Blackburn TH. Evidence for bacterial urea production in  
1007 marine sediments. *FEMS Microbiol. Ecol.*. 1993; 12:51-9.
- 1008
- 1009 70. Therkildsen MS, King GM. Urea production and turnover following the addition of  
1010 AMP, CMP, RNA and a protein mixture to a marine sediment. *Aquat. Microb. Ecol.*  
1011 1996; 10:173-9.
- 1012
- 1013 71. Bianchi D, Babbin AR, Galbraith ED. Enhancement of anammox by the excretion of  
1014 diel vertical migrators. *Proc. Natl. Acad. Sci. U.S.A.* 2014; 111:15653-8.
- 1015
- 1016 72. Suarez C, Dalcin Martins P, Jetten MSM, Karačić S, Wilén BM, Modin O et al.  
1017 Metagenomic evidence of a novel family of anammox bacteria in a subsea environment.  
1018 *Environ. Microbiol.*. 2022; 24:2348-60.
- 1019
- 1020 73. Koch H, van Kessel MAHJ, Lücker S. Complete nitrification: Insights into the  
1021 ecophysiology of comammox *Nitrospira*. *Appl. Microbiol. Biotechnol.* 2019; 103:177-  
1022 89.
- 1023
- 1024 74. Weidinger K, Neuhäuser B, Gilch S, Ludewig U, Meyer O, Schmidt I. Functional and  
1025 physiological evidence for a Rhesus-type ammonia transporter in *Nitrosomonas*  
1026 *europaea*. *FEMS Microbiol. Lett.*. 2007; 273:260-7.
- 1027
- 1028 75. Lupo D, Li X-D, Durand A, Tomizaki T, Cherif-Zahar B, Matassi G et al. The 1.3-å  
1029 resolution structure of *Nitrosomonas europaea* Rh50 and mechanistic implications for  
1030 NH<sub>3</sub> transport by Rhesus family proteins. *Proc. Natl. Acad. Sci. U.S.A.* 2007;  
1031 104:19303-8.
- 1032
- 1033 76. Westhoff C, Wylie D. Transport characteristics of mammalian Rh and Rh  
1034 glycoproteins expressed in heterologous systems. *Transfusion Clinique et Biologique*.  
1035 2006; 13:132-8.
- 1036
- 1037 77. Javelle A, Thomas G, Marini A-M, Krämer R, Merrick M. In vivo functional  
1038 characterization of the *Escherichia coli* ammonium channel AmtB: Evidence for  
1039 metabolic coupling of AmtB to glutamine synthetase. *Biochemical Journal*. 2005;  
1040 390:215-22.
- 1041
- 1042 78. Walter B, Küspert M, Ansorge D, Krämer R, Burkovski A. Dissection of ammonium  
1043 uptake systems in *Corynebacterium glutamicum*: Mechanism of action and energetics  
1044 of AmtA and AmtB. *J. Bacteriol.*. 2008; 190:2611-4.
- 1045
- 1046 79. Liao T, Wang S, Stüeken EE, Luo H. Phylogenomic evidence for the origin of  
1047 obligately anaerobic anammox bacteria around the great oxidation event. *Mol. Biol.*  
1048 *Evol.*. 2022; 8: msac170 .
- 1049

- 1050 80. Schauberger C, Glud RN, Hausmann B, Trouche B, Maignien L, Poulaïn J et al.  
1051 Microbial community structure in hadal sediments: High similarity along trench axes  
1052 and strong changes along redox gradients. *ISME J.* 2021; 15:3455-67.
- 1053
- 1054 81. Seeberg-Elverfeldt J, Schlüter M, Feseker T, Kölling M. Rhizon sampling of pore  
1055 waters near the sediment/water interface of aquatic systems. *Limnol. and Oceanogr.:*  
1056 *Methods.* 2005; 3:361-71.
- 1057
- 1058 82. Sorozano L. Determination of ammonia in natural waters by the phenolhypochlorite  
1059 method. *Limnol. Oceanogr..* 1969; 14:799-801.
- 1060
- 1061 83. Badea M, Amine A, Palleschi G, Moscone D, Volpe G, Curulli A. New  
1062 electrochemical sensors for detection of nitrites and nitrates. *Journal of*  
1063 *Electroanalytical Chemistry.* 2001; 509:66-72.
- 1064
- 1065 84. Stoll M, Bakker K, Nobbe G, Haese R. Continuous-flow analysis of dissolved  
1066 inorganic carbon content in seawater. *Analytical Chemistry.* 2001; 73:4111-6.
- 1067
- 1068 85. Soetaert K, Petzoldt T, Meysman F. Marelac: Tools for aquatic sciences. In: R package  
1069 version, (2010):<https://cran.r-project.org/web/packages/marelac/index.html>.
- 1070
- 1071 86. Edgar RC. Search and clustering orders of magnitude faster than BLAST.  
1072 *Bioinformatics.* 2010; 26:2460-1.
- 1073
- 1074 87. Edgar RC. Uparse: Highly accurate OTU sequences from microbial amplicon reads.  
1075 *Nat. Methods.* 2013; 10:996-8.
- 1076
- 1077 88. Lanzen A, Jørgensen SL, Huson DH, Gorfer M, Grindhaug SH, Jonassen I et al.  
1078 CREST - classification resources for environmental sequence tags. *PLoS One.* 2012;  
1079 7:e49334.
- 1080
- 1081 89. Wickham H. *ggplot2: elegant graphics for data analysis.* Springer, (2016).
- 1082
- 1083 90. Li M, Hong Y, Klotz MG, Gu J-D. A comparison of primer sets for detecting 16S  
1084 rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria  
1085 in marine sediments. *Appl. Microbiol. Biotechnol.* 2010; 86:781-90.
- 1086
- 1087 91. Jørgensen SL, Zhao R. Microbial inventory of deeply buried oceanic crust from a  
1088 young ridge flank. *Front. Microbiol..* 2016; 7:820.
- 1089
- 1090 92. Andrews S. FastQc: A quality control tool for high throughput sequence data. 2010;  
1091 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.
- 1092

- 1093 93. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US). BBMap:  
1094 A fast, accurate, splice-aware aligner. Press Release 2014.
- 1095
- 1096 94. Li DH, Liu CM, Luo RB, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-  
1097 node solution for large and complex metagenomics assembly via succinct *de Bruijn*  
1098 graph. Bioinformatics. 2015; 31:1674-6.
- 1099
- 1100 95. Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: An automated binning algorithm to  
1101 recover genomes from multiple metagenomic datasets. Bioinformatics. 2015; 32:605-7.
- 1102
- 1103 96. Kang DD, Li F, Kirton E, Thomas A, Egan R, An H et al. MetaBAT 2: An adaptive  
1104 binning algorithm for robust and efficient genome reconstruction from metagenome  
1105 assemblies. PeerJ. 2019; 7:e7359.
- 1106
- 1107 97. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ et al. Binning  
1108 metagenomic contigs by coverage and composition. Nat. Methods. 2014; 11:1144-6.
- 1109
- 1110 98. Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG et al. Recovery  
1111 of genomes from metagenomes via a dereplication, aggregation and scoring strategy.  
1112 Nat. Microbiol.. 2018; 3:836-43.
- 1113
- 1114 99. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing  
1115 the quality of microbial genomes recovered from isolates, single cells, and  
1116 metagenomes. Genome Res. 2015; 25:1043-55.
- 1117
- 1118 100. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al.  
1119 SPAdes: A new genome assembly algorithm and its applications to single-cell  
1120 sequencing. Journal of Computational Biology. 2012; 19:455-77.
- 1121
- 1122 101. Seah BK, Gruber-Vodicka HR. gbtools: Interactive visualization of metagenome bins  
1123 in R. Front. Microbiol.. 2015; 6:1451.
- 1124
- 1125 102. Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML et al. Anvi'o: an  
1126 advanced analysis and visualization platform for 'omics data. PeerJ. 2015; 3:e1319.
- 1127
- 1128 103. Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;  
1129 30:2068-9.
- 1130
- 1131 104. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families.  
1132 Science. 1997; 278:631-7.
- 1133
- 1134 105. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale  
1135 detection of protein families. Nucleic Acids Res.. 2002; 30:1575-84.

- 1136
- 1137 106. Shaiber A, Willis AD, Delmont TO, Roux S, Chen L-X, Schmid AC et al. Functional  
1138 and genetic markers of niche partitioning among enigmatic members of the human  
1139 oral microbiome. *Genome Biol.* 2020; 21:292.
- 1140
- 1141 107. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W et al. Gapped  
1142 BLAST and PSI-BLAST: a new generation of protein database search programs.  
1143 *Nucleic Acids Res.* 1997; 25:3389-402.
- 1144
- 1145 108. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:  
1146 Improvements in performance and usability. *Mol. Biol. Evol.* 2013; 30:772-80.
- 1147
- 1148 109. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective  
1149 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.*  
1150 2015; 32:268-74.
- 1151
- 1152 110. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder:  
1153 Fast model selection for accurate phylogenetic estimates. *Nat. Methods.* 2017; 14:587-  
1154 9.
- 1155
- 1156 111. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving  
1157 the ultrafast bootstrap approximation. *Mol. Biol. Evol.* 2017; 35:518-22.
- 1158
- 1159 112. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated  
1160 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics.* 2009;  
1161 25:1972-3.
- 1162

1163

1164 **Figure legends**

1165 **Fig. 1 The occurrence of nitrite accumulation in sediment porewater of the Arctic Mid-**  
1166 **Ocean Ridge and other locations. (A)** Bathymetric map showing two coring sites (GS14-  
1167 GC04 investigated in this study and GS16-GC04 investigated in Ref. 13) in the Arctic Mid-  
1168 Ocean Ridge area where nitrite accumulation was observed. Also highlighted are the Jan  
1169 Mayen Fracture Zone and the Mohns Ridge, as well as the Jan Mayen hydrothermal vent field  
1170 (yellow star). **(B, C)** Accumulation of nitrite in the two AMOR sediment cores. Porewater  
1171 profiles of nitrate, nitrite, and ammonium of **(B)** GS14-GC04 and **(C)** GS16-GC04 are shown.

1172 The oxic zones and two (upper and lower) net nitrite consumption zones are highlighted by  
1173 horizontal bands. **(D)** Sediment locations where nitrite accumulation in the sediment  
1174 porewater was detected. The two AMOR sites are shown in red circles, while other sites are  
1175 shown in yellow circles (See Fig. S3 for the porewater nitrite and nitrate profiles of individual  
1176 sites). Maps in **(A)** and **(D)** were generated with GeoMapApp v. 3.6.14  
1177 ([www.geomapapp.org](http://www.geomapapp.org)), using the default Global Multi-Resolution Topography Synthesis  
1178 basemap. **(E)** Nitrate influx and (combined upward and downward) nitrite efflux in the  
1179 nitrate-depletion zones of the 30 sediment sites shown in **(D)**. The paired fluxes for each site  
1180 are connected with a black dotted line. **(F)** Calculated nitrite/nitrate flux ratio for the  
1181 individual sites. The horizontal line denotes the mean value of the 30 sites, while the dashed  
1182 lines represent the 95% confidence interval.

1183

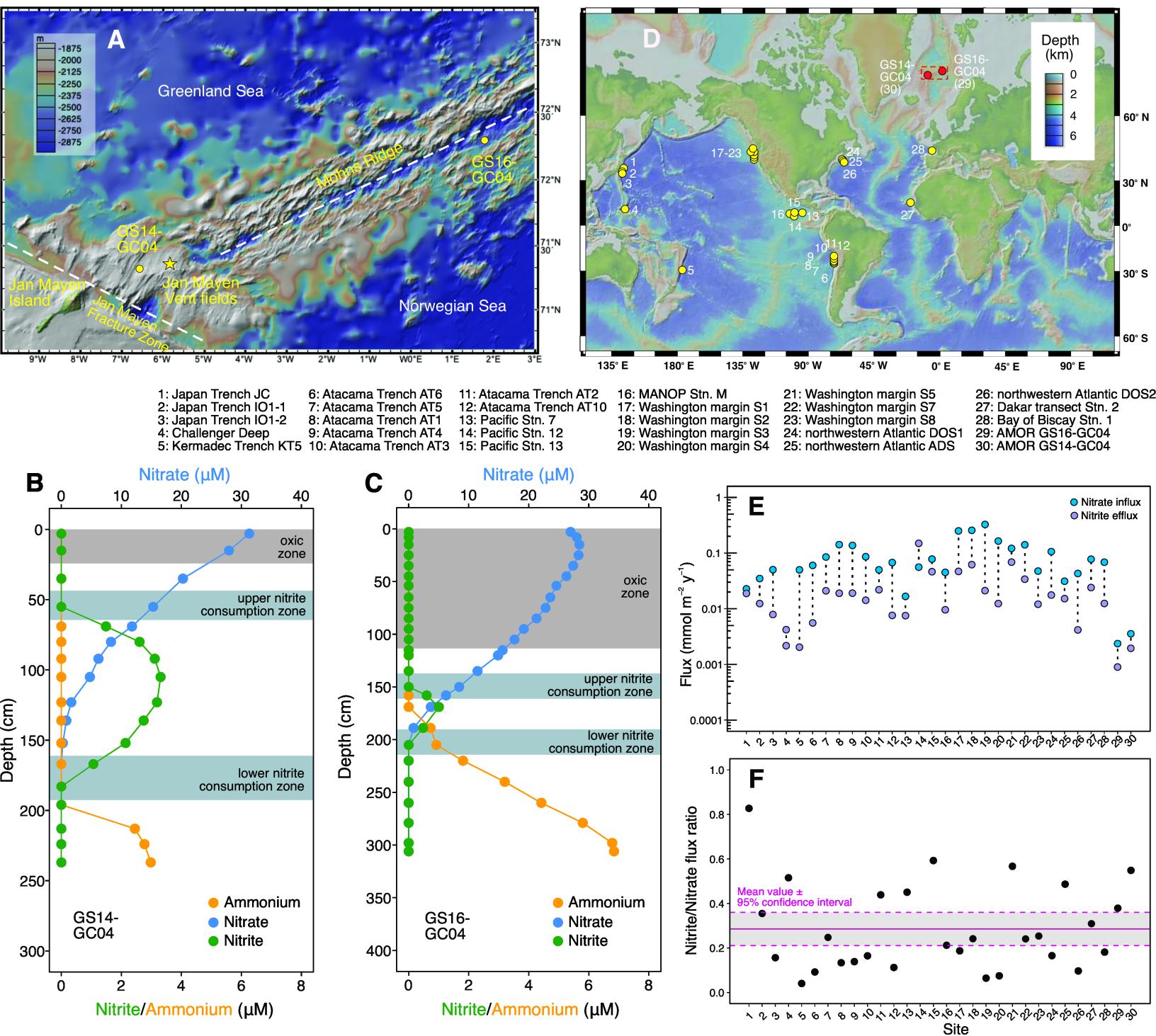
1184 **Fig. 2. Abundances of anammox bacteria, ammonia-oxidizing archaea (AOA),**  
1185 **ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), and denitrifying**  
1186 **bacteria.** Data from both cores GS14-GC04 **(A-I)** and GS16-GC04 **(J-R)** are shown. Data in  
1187 **(A-D)** and **(J-M)** are relative abundances of the functional groups assessed by 16S rRNA  
1188 gene amplicon sequencing. In **(E-I)** and **(N-R)**, filled circles indicate the absolute abundances  
1189 of these groups determined by qPCR using specific primers targeting their diagnostic genes,  
1190 while open circles denote the absolute abundances of anammox bacteria, AOA, AOB, and  
1191 NOB calculated as the product of the total cell numbers (shown in Fig. S4A) and their  
1192 respective relative abundances in the total community. The zones are highlighted according to  
1193 the definitions presented in Fig. **1B** and **1C**, while the nitrite profiles are also re-plotted in **(A)**  
1194 and **(J)** to help denote the two net nitrite consumption zones in each core. Panels **(J, N, R)** of  
1195 core GS16-GC04 derive from data published in Ref. 16.

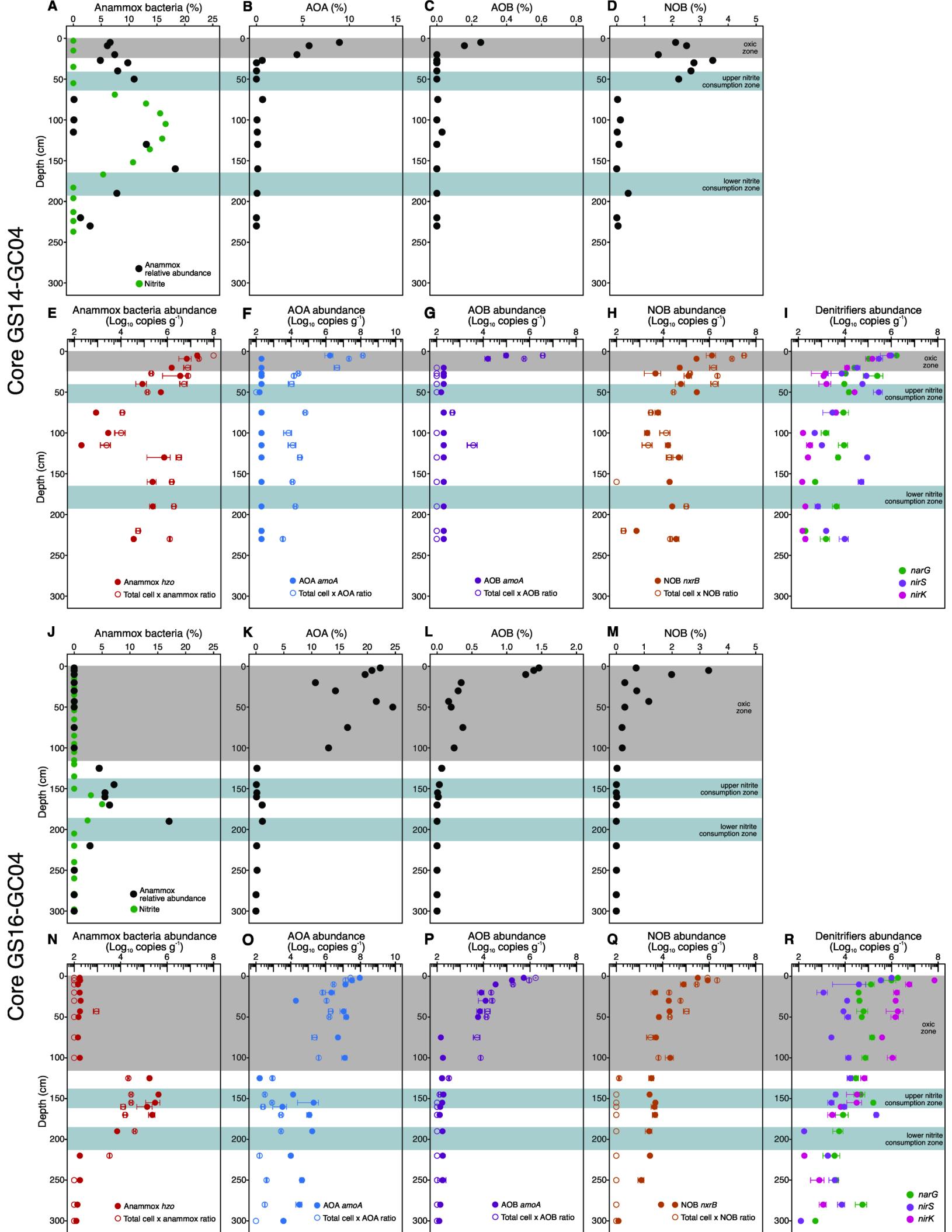
1196

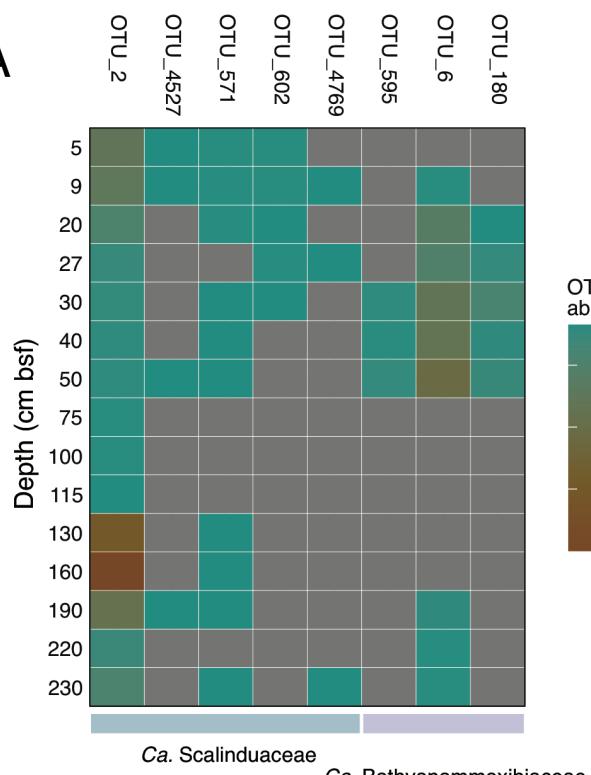
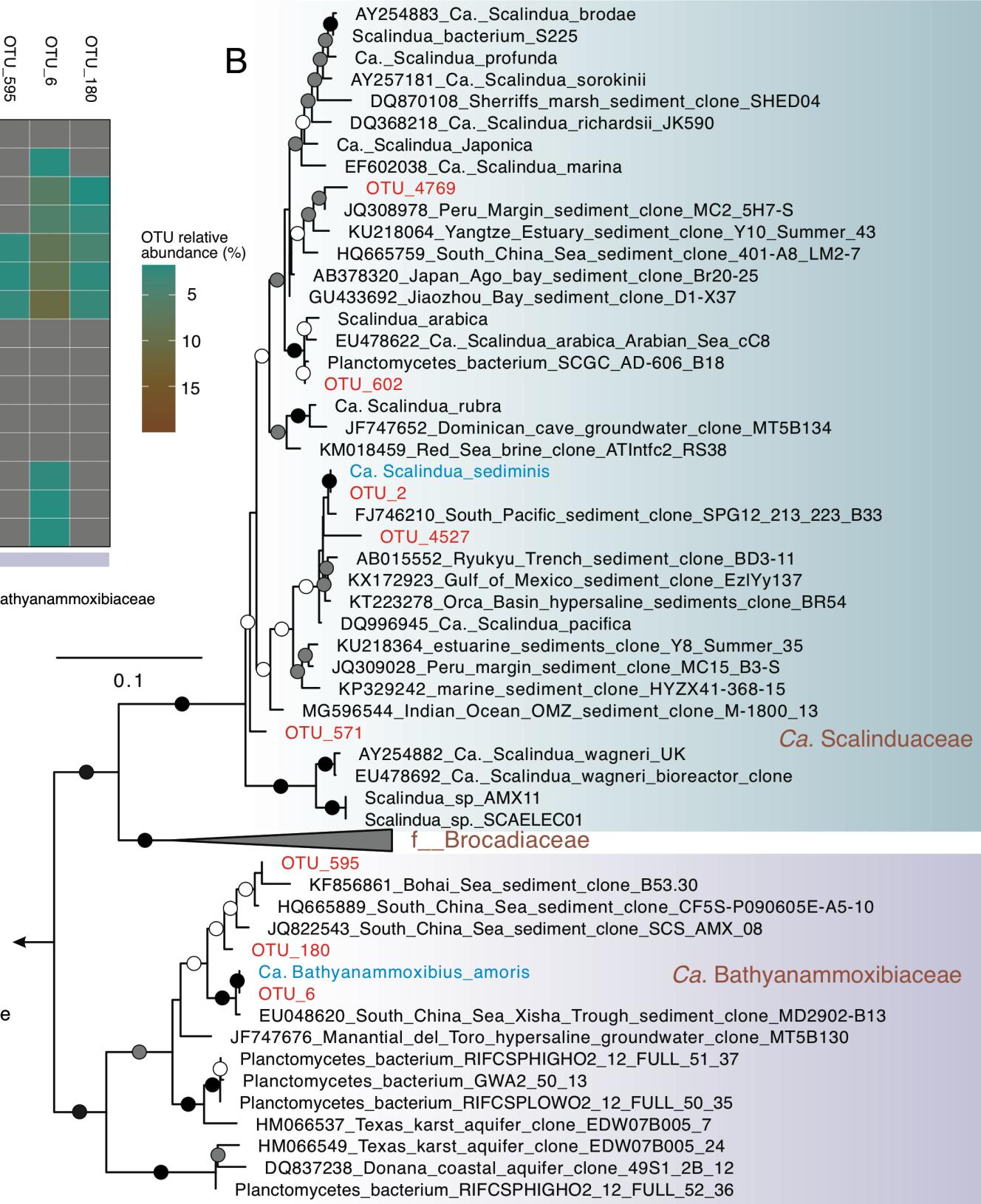
1197 **Fig. 3. Distribution and phylogeny of anammox bacteria in GS14-GC04.** (A) A heatmap  
1198 showing the occurrence and relative abundance of eight anammox OTUs in the investigated  
1199 sediment layers. The taxonomic classification of the individual OTUs, showed at the bottom  
1200 of the heatmap, is based on the phylogenetic placements in (B). (B) Maximum-likelihood  
1201 phylogenetic tree of anammox bacteria. Anammox bacteria OTUs (97% identity cutoff)  
1202 recovered from GS14-GC04 are highlighted in red. The two genomes recovered from AMOR  
1203 sediments are highlighted in blue. The bar indicates estimated sequence divergence per  
1204 residue. The robustness of the tree was evaluated by 1,000 times of ultrafast bootstrap  
1205 iteration, and bootstrap values higher than 70 are shown by symbols indicated in the legend.

1206

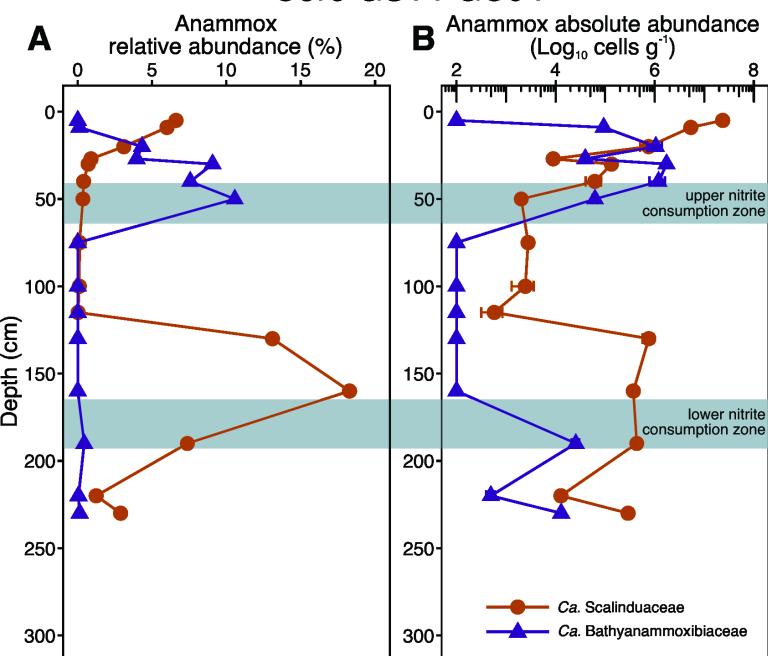
1207 **Fig. 4. Niche partitioning of anammox bacterial families in GS14-GC04 and GS16-GC04.**  
1208 (A, C) Relative abundances of the anammox families (*Ca. Scalinduaceae* and *Ca.*  
1209 *Bathyamammoxibiaceae*) throughout cores GS14-GC04 (A) and GS16-GC04 (C), as assessed  
1210 by 16S rRNA gene amplicon sequencing. (B, D) Absolute abundances of the two anammox  
1211 families in cores GS14-GC04 (B) and GS16-GC04 (D), calculated as the product of the total  
1212 cell numbers times their relative abundances in the total communities. Panels (C, D) are  
1213 replotted from Ref. 16.


1214

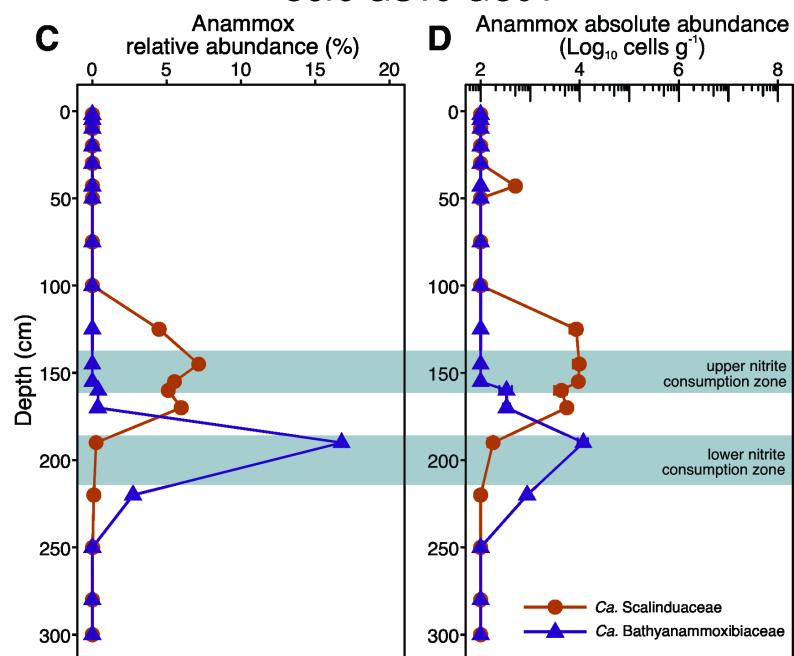

1215 **Fig. 5. Comparative analysis of genomes of the dominant anammox bacteria in marine**  
1216 **sediments.** (A) A plot of genome size against GC content of the three families of anammox  
1217 bacteria genomes. *Ca. Bathyanammoxibius amoris* (in this study) and *Ca. Scalindua*  
1218 *sediminis* (Ref. 13), representatives of the families *Ca. Bathyanammoxibiaceae* and *Ca.*  
1219 *Scalinduaceae* widespread in marine sediments, are highlighted. (B) Venn diagram showing  
1220 the shared and unique gene clusters between *Ca. B. amoris* and *Ca. S. sediminis*.

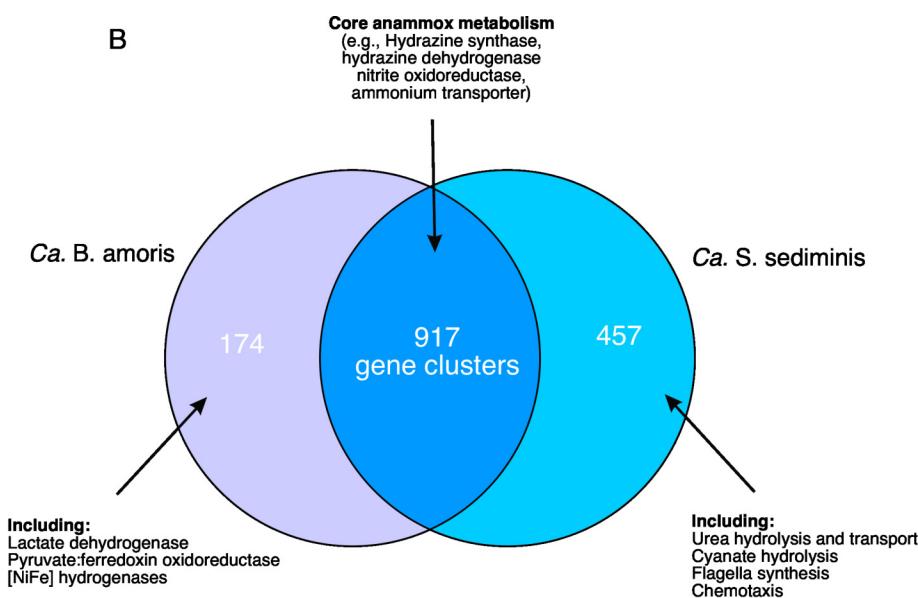
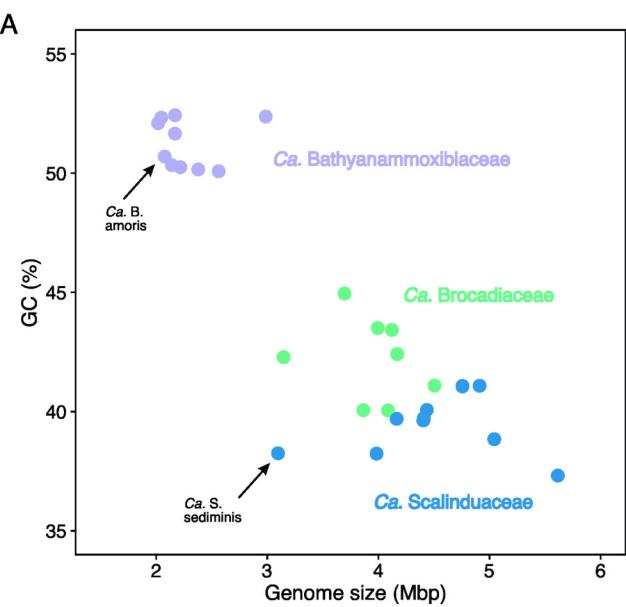


1221

1222 **Fig. 6. Phylogeny and distribution of ammonium transporters (Amt) in anammox**  
1223 **bacteria.** **(A)** Maximum-likelihood phylogenetic tree of Amt in anammox bacteria and other  
1224 related nitrogen cycling groups (AOB, NOB, and AOA). Amt clades of nitrogen cycling  
1225 groups are highlighted with different colors. The bar indicates estimated sequence divergence  
1226 per residue. **(B)** Heatmap showing the occurrence of Amt in 10 selected high-quality  
1227 anammox bacterial genomes.


1228



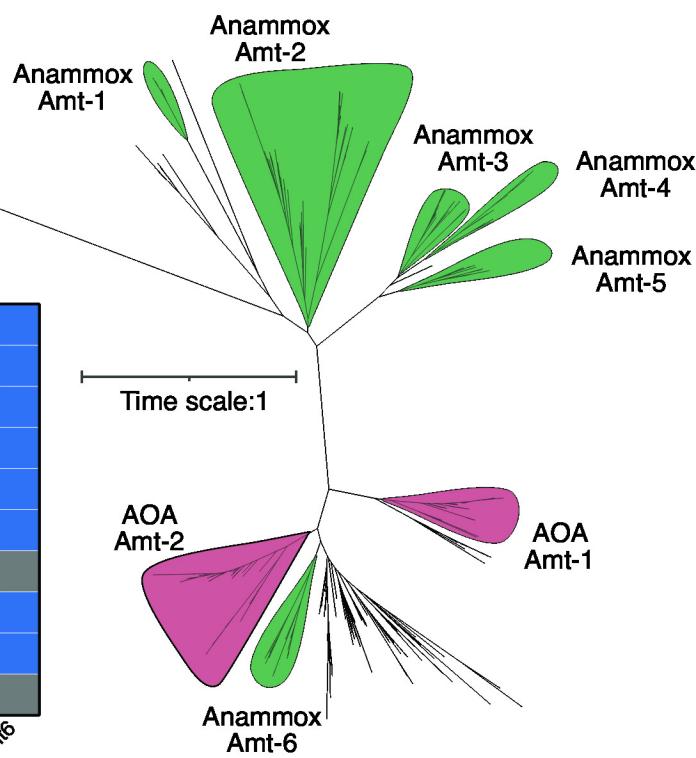
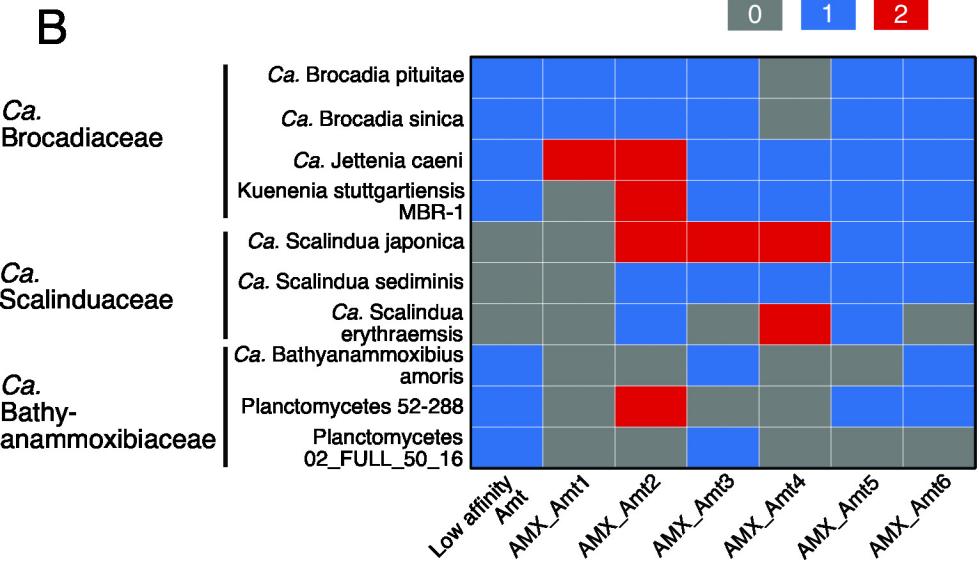





**A****B**

Core GS14-GC04



Core GS16-GC04




**A**

Low affinity Amt  
(Betaproteobacteria AOB,  
Nitrospira, and anammox bacteria)

0 1 2

