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Abstract—Storage is the Achilles heel of hybrid cloud
deployments of workloads. Accessing persistent state
over a WAN link, even a dedicated one, delivers an over-
whelming performance blow to application performance.
We propose FAB, a new storage architecture for the
hybrid cloud. FAB addresses two major challenges for
hybrid cloud storage, performance efficiency and backup
efficiency. It does so by creating a new FAB layer in the
storage stack that enables fault-tolerance, performance
acceleration, and backup for FAB storage volumes. A
preliminary evaluation of FAB’s performance acceleration
mechanism when deployed over Ceph’s distributed block
storage system offers encouragement to pursue this new
hybrid cloud storage architecture.

Index Terms—Storage, Hybrid Cloud, Fault-tolerance,
Performance Acceleration, Backup

|I. INTRODUCTION

The world of IT infrastructure has undergone trans-
formational change in the past decade. Public and
private cloud adoption within enterprises are at all time
highs and projections for hybrid and multi cloud deploy-
ments are robust [1]. Interoperability across public and
private clouds is a top-level concern among IT admin-
istrators who look for workload mobility, consolidated
cloud resource management, and cloud “burstability” to
support periods of high demand [2—4]. A foundation for
this approach to consuming resources and deploying
applications with full flexibility is the “hybrid cloud”
architecture.

There are several caveats to adopting a public-
private hybrid cloud solution architecture for IT infras-
tructure requirements. The first set of concerns address
data location. Verticals such as financial institutions,
health-care, and even retail are sensitive to externaliz-
ing proprietary and customer data [4, 5] Second, cloud
vendor lock-in is a risk for enterprises. Customers are
forced to pick one public cloud to run their workloads
because data has “gravity” and data movement charges
are lop-sided [6-8]. Finally, there are concerns related
to long term costs with cloud costs tending to increase
over time prompting enterprises to shift workloads back
to premises [4, 9].

This paper offers foundational principles of FAB,
a redesign of the conventional storage stack — as
defined by its abstractions and architecture — for the
hybrid cloud. It decouples storage location from ap-
plication workload location, ensuring “plug compatibil-
ity” for storage consuming applications. The FAB stor-
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age stack provides Fault-tolerance, Accelerated perfor-
mance, and Backup for hybrid cloud workloads. Fault-
tolerance in FAB rethinks the control and data path
for accesses to storage volumes by designing robust
recovery protocols that can handle arbitrary software
faults, network connectivity loss, and hardware compo-
nent failures. Accelerated performance in FAB develops
a new /O path for VMs in the public cloud that delivers
low-latency and high throughput storage accesses and
optimizes wide-area cross data center network data
communication to/from storage. Backup for FAB stor-
age volumes eliminates WAN data movement during
backup operations while providing disaster recovery
properties with tunable recovery point objective (RPO)
for the backed-up data volumes.

We conducted a preliminary evaluation of FAB’s
performance acceleration benefits by implementing the
acceleration mechanisms within FAB layered over a
Ceph distributed store instance that is accessed over
a local area network. In a hybrid cloud deployment the
Ceph store would be accessed over a WAN link and
the above experimental setup is rather conservative.
Even so, we find that the FAB layer leads to up to
50X improvement in block device latencies and block
device throughput as measured by FIO [10] and up to
4.4X improvement in transaction throughput with the
SysBench OLTP benchmark [11]. Through the rest of
this paper, we discuss the architecture and design of
FAB, possible limitations of the solution, and directions
for future work.

[I. MOTIVATION

In a perfect outcome, hybrid cloud storage solutions
will deliver seamless fluidity of data and workloads
across all the available hardware resources spread
across cloud data centers. The necessary decoupling
of persistently stored data from application workloads
manifests several fundamental requirements. Foremost
is the ability to run workloads unchanged; adopting a
hybrid cloud architecture should not require rewriting
applications and should support interface compatibility
across several storage back-ends. Second, any such
decoupling should ensure that there is no data loss
on failures or faults that are common at scale. Third,
any storage solution should ensure support for disaster
recovery (DR) via online backup. Finally, to address
the latency sensitive workloads of today, there must
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be a reliable way to overcome most, if not all, of the
WAN latency introduced when decoupling storage from
compute in a hybrid cloud deployment.

A. State of the Art

A straightforward solution to the first, second, and
third challenge above would create a virtual private
network (VPN) that spans the public cloud hosting the
application workload and the on-premise or external
(co-lo hosting) datacenter that hosts the storage infras-
tructure. This class of solutions is supported by several
industry vendors [9, 12, 13]. The solutions work well
when applications can tolerate WAN latencies in the
I/O path on average. However for storage performance
sensitive applications, these solutions are inadequate,
even when “direct connect” links across data centers
are deployed [14-16].

B. The Distance between Compute and Storage

Storage architectures have undergone significant
transformation over the past four decades as illustrated
in Figure 1. From individual servers and direct-attached
hard drives, enterprises moved to consuming private
cloud laaS whereby applications get to consume scale-
up and subsequently scale-out storage that provide
enterprise-class features. In private cloud deployments,
clients may consume scale-out storage using self-
managed solutions such as Ceph [21], Gluster [22], or
external vendor scale-out solutions such as VMware’s
VSAN [23], Nutanix [24], HPE’s Simplivity [25], The
alternate to scale-out storage is conventional scale-up
storage that may have some scale-out capabilities.

The public cloud has witnessed the rapid adop-
tion of cloud-native storage solutions such as AWS
EBS [26], AWS S3 [27], Google persistent disk [28],
and Azure SimpleStor [29]. We anticipate that the class
of applications and workloads that demand either on-
premise data deployment or cloud-independent storage
deployment will continue to sustain and expand for rea-
sons outlined earlier. Cross-cloud network latencies will
dominate as high-performance storage devices (NVMe
Flash [19], 3D-XPoint [20]) and lean scale-out software
stacks get increasingly commoditized.

C. The Inevitability of Compute-Local Storage

Storage demands that compute be deployed close to
itself so workloads may perform acceptably. If data is to
be resident in customer-owned infrastructure, running
workloads in the public cloud is challenging. Recent
efforts [12, 13] attempt to address the performance
challenge when accessing storage across data centers
with large caches provisioned at the data center run-
ning the application workload. Such caches are able
to reduce the data movement over the WAN network

by a large margin for read accesses. These caches,
unfortunately, do not address write accesses.

Koller et al. demonstrated that relative to write-
through caching, write-back caching improves re-
sponse times by two orders magnitude for transaction
processing workloads when caching data for iSCSI-
based storage [30]. More recently, Rodriguez et al.
have argued for building low-latency data-center scale
caches that can absorb writes to slower storage de-
vices within the same data-center [31]. To put this
previous work in context for hybrid cloud workloads
that access storage across data centers, the network-
attached storage system would be accessed over a
WAN, further amplifying the need for handling reads
and writes locally. Read and write caching bring storage
working-sets closer to compute and provide a huge 1/0
performance boost. However, for such caching to be
usable in a production environment, it must be infused
with high availability (HA) and disaster recovery (DR)
capabilities [32—-34]. While the demand for compute-
local storage in hybrid cloud deployments are rather
clear, there is no simple or obvious solution.

I1l. FAB CLOUD STORAGE ARCHITECTURE

The evolution of enterprise infrastructure to adopt
hybrid laaS cloud models requires bridging gaps in
how storage is architected and delivered, ideally with-
out changing storage consumption models. As dis-
cussed previously (§ll), any hybrid cloud storage so-
lution must ideally address four requirements to ef-
fectively decouple storage from application workloads:
(i) backwards compatibility of consumption interfaces,
(ii) fault-tolerance, (iii) disaster tolerance, and (iv) high-
performance. FAB is a new storage stack designed to
help meet these requirements.

A. Storage Abstraction

Ideal candidates for FAB are storage abstractions
that allow a straightforward decoupling of storage
from compute. A well-established service model for
the public and private clouds is Infrastructure-as-a-
Service (laaS) wherein the consumption of storage by
the systems software — bare metal, or virtualized,
or containerized — is as a block device. This lowest
common denominator storage abstraction enables the
broadest range of storage provider applications such
as filesystems, databases, object stores, or key-value
stores.

The block device abstraction has simple semantics
and a simple consistency contract. First, the unit of
access is a fixed size sector, 512-byte or 4KB, and
it supports primarily two operations — read and write.
Second, any acknowledged write may not be lost or
corrupted. Third, reads must always return the latest
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Fig. 1: Storage Latency Trends. The storage stack is divided into device, network, and software. Device and
software latencies have consistently improved over time [17—20]. Today, hybrid cloud deployments make cross
data-center network latencies dominate storage 1/O latency.

written version of the block. Fourth, writes issued si-
multaneously may be executed in any order. Finally,
to guard against data loss, a block device typically
implements fault-tolerance and disaster recovery capa-
bilities.

The FAB hybrid cloud storage solution is designed
around the block device abstraction because it allows
for a straightforward decoupling of compute and stor-
age. The block abstraction serves as a simple starting
point for optimizations such as read caching and write
buffering that are well-understood at the block device
layer [35]. The block device also enables simple ap-
proaches to build fault-tolerance and disaster recovery
capabilities because of its simple interface and consis-
tency contract.

B. Architecture

Workloads running in the public cloud get access
to a FAB block device that spans multiple cloud data
centers. The FAB storage architecture is designed
meet the requirements of hybrid cloud deployments
of enterprise applications and services. Creating a
decoupling of storage from compute while maintaining
performance, fault-tolerance, and disaster tolerance ca-
pabilities prompts a rethink of the conventional storage
architecture. FAB is a seamless extension of current
storage stacks that introduces a new FAB Layer con-
sisting of the FAB Block Device (FBD) and the FAB
Cluster, both co-located in the public cloud data center
with the storage-consuming application VM. The FBD
exports storage to applications and interacts with the
FAB Cloud Node VM that is part of a the FAB Cloud
Cluster which in turn serves all the FBDs and interfaces
with the storage back-end over a high-performance
WAN link [14-16]. The FAB Cluster also interfaces
with the backup storage service provider which would
typically be located in the same cloud datacenter as
the workload but it could also be located in a different
datacenter. Although the FAB Layer creates backups,
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recovery of the Primary Storage after a failure is done
directly from the backup storage, bypassing the FAB
Layer. The fault-tolerance of the FAB Layer is the
subject of the next section (§IV).

The FAB Layer gets deployed in the public clouds
where storage consuming workloads reside. This tier
is termed FAB Layer because it implements Fault-
tolerance, performance Acceleration, and Backup for
FAB storage volumes. Storage consuming applications
interact directly with an FBD serviced by a FAB Node
that is part of the FAB cluster implementing fault-
tolerance, performance acceleration, and disaster re-
covery capabilities. The FAB Layer and its interaction
with both the storage consuming workload and the
storage back-end located at the storage owner’s data
center premises are shown in Figure 2.

The FAB Layer manages primary data in motion, i.e.,
data that is accessed by the application VMs in the pub-
lic cloud that reside there either (relatively) permanently
or temporarily to handle unexpected loads via cloud
bursting. FAB’s volume storage is consumed similar to
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how public cloud VMs consume block storage service
(e.g., EBS [26], persistent disk [28], etc.) provided by
the public cloud vendors. There are key differences,
though. First, FAB is not a storage end-point; it serves
as a read cache and a fault-tolerant write buffer. Sec-
ond, FAB utilizes storage at rest outside of the public
cloud in two ways. At rest data is shipped to storage
arrays owned and managed by the data owner. At rest
data is also backed up to meet a specified recovery
point objective (RPO) to a cloud backup storage service
co-located with the data generating workload or to one
that is located at an alternate public cloud provider, as
shown in Figure 2. And third, FAB storage volumes offer
high performance because workloads perform storage
operations over the local network via the FAB Layer for
all writes and for reads that hit in the FAB read cache.

In summary, FAB introduces a new public-cloud res-
ident layer to the storage stack for hybrid storage.
In hybrid cloud implementations, Primary Storage is
expected to manage data at rest at the data owner’s
datacenter or in external co-location hosting providers.
A well-designed Primary Storage would provide core
storage features including namespace management,
access control, encryption, data redundancy, snap-
shots, and thin provisioning. Additionally, it would imple-
ment critical offline features of storage including data
deduplication, compression, and garbage collection;
the division of responsibility as suggested by the core
and offline feature set is typical in hyperconverged
storage implementations [23, 24]. With FAB, clients can
run workloads in any cloud while provisioning storage
in a cloud-independent manner, enabling workloads to
fully exploit the offerings of the public cloud ecosystem.

IV. FAULT-TOLERANCE

The FAB Layer is designed to provide fault-tolerance
properties for FAB storage volumes upon failures of
FAB block device and other components within the FAB
cluster. Such fault-tolerance must ensure data durability
and data consistency in spite of software and hardware
failures or unavailability at the public cloud layer. Failure
tolerance for the Primary Storage is discussed later

(§VI).

A. Control and Data Path

Figure 3 presents the three major architectural com-
ponents relevant to FAB’s data path. The FBD serves
as a single entry point for FAB storage clients and
instantiates the FAB storage volumes consumed within
the application VM. The FAB Node implements fault-
tolerance, acceleration, and backup for FAB storage
volumes. And the Primary Storage (PS) is the final
resting place for all persistent data located in a different
data center.
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Fig. 3: FAB’s Data-path Architecture.

The FBD first communicates with a known FAB
Cluster Configuration Manager (CCM), a named ser-
vice that is discoverable, to open the FAB volume
on behalf of the requesting application. The CCM is
in charge of tracking status information such as the
liveness of various FAB entities as well as FBD to
FAB Node mappings. Upon receiving an open request
for a FAB volume and corresponding Primary Storage
instance from an FBD instance, the CCM performs
access control and looks up the FBD-FN mappings
before responding to the FBD with the FAB Node IP
corresponding to the FAB volume, if it already exists,
else assigns a FAB Node to the volume dynamically.
The CCM is designed as a highly available distributed
configuration management service running on the FAB
Cluster [36]. Once the FAB node IP is obtained, the
FBD is ready to handle I/O requests.

B. Fault-tolerant Design

FAB must address arbitrary failures including client
nodes (i.e., FBD failures) and loss of network con-
nectivity to components within the FAB cluster and
outside. The design decisions depend on the proper-
ties of the underlying infrastructure and the durability
requirements of the application managing the data.

First, let's assume that the FBD and the FAB cluster
are being managed within independent failure domains.
Fault-tolerance of a block devices can be achieved by
synchronously replicating writes within the FBD and the
assigned FAB node. In case of FBD failure, the FAB
Node informs such change of state to the CCM. The
FAB Node then starts replicating its write log to other
nodes in the FAB cluster to protect against a near-term
failure within the FAB cluster prior to the recovery of the
FBD. The replicas are only necessary until recovery is
completed. Consequently, there is little benefit in using
data reduction techniques and/or erasure coding. In
case of a FAB Node failure, the dependent FBD informs
the CCM of this change of status. The CCM chooses a
replacement FAB node in the FAB cluster to take over
operations for the FBD. The FBD then synchronously
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replicates the it’s local write log to the replacement FAB
Node prior to handling further 1/O for the volume.

Next, let's assume that the FBD and the FAB clus-
ter nodes are in the same failure domain and must
tolerate two simultaneous failures. In this case, the
FBD and the FAB cluster run a consensus protocol
(e.g., Raft [37]) to synchronously replicate writes across
two FAB nodes and the FBD itself, thereby creating
two additional copies, before acknowledging the client.
The CCM mappings are modified to include the full
membership information as FBD-FN1-FN2. In case of
a FAB node failure, the CCM simply assigns another
FAB node to join the consensus cluster. In case of
FBD failure, the CCM awaits connection to the same
block device from another FBD before informing it of the
associated mapping thereby initializing the membership
for the consensus protocol. The consensus protocol
ensures that the state of the write log of the new FBD
is equivalent to the state of the log of the prior FBD
instance serving the same block device.

Solutions outlined above guarantee durability of
writes in the presence of faults. More aggressive per-
formance optimizations are possible using techniques
that effectively shift the durability point from the write
to a later time that preserves a useful notion of con-
sistency [38] and/or exploit the asynchrony in failures
across different parts of a distributed system [39].

Finally, in case the CCM receives a FAB block device
open request for a device that is already being serviced
by a FAB Node, it verifies that the FAB block device
client is indeed alive. If so, the block device open
request is allowed only if the device is being opened in
read-write mode by at most one of the previously active
or newly requesting clients.

V. PERFORMANCE ACCELERATION

When building a cross-cloud storage solution, one of
the primary challenges is delivering adequate perfor-
mance while ensuring data durability and availability.
This tension is highlighted by an application of Little’s
Law [40] to storage performance. This application ties
together quantities such as I/O latency, I/O through-
put, and I/O parallelism and may be expressed as
io_throughput = io_paralleism/io_latency. Given a work-
load with a given 1/O parallelism level, its I/O throughput
can be increased by reducing I/O latency and vice-
versa.

A straw man cross-cloud storage solution which
handles storage accesses over a WAN link will be
severely limited in 1/O throughput. Wide-area network
links have high latency and demand a lot of workload
I/O parallelism to saturate storage throughput. This
implies that storage 1/0 resource consumption is tightly
coupled with compute resource consumption as more
compute cycles become necessary to generate higher
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Fig. 4: FAB’s Write 1/0 Path

levels of 1/O parallelism. Furthermore, I/O parallelism
is a property of the application itself and is not easily
controlled.

A. FAB I/O Path

The FAB Layer is designed to decouple I/0 handling
from the access to the Primary Storage over the WAN
as much as possible. The FAB Layer’s I/O path spans
the FBD and its associated FAB node within the FAB
cluster. Read I/Os are handled by FBD by consulting in
sequence, the local cache first, and then the FAB Node,
for cached content. For local read caching at the FBD,
we anticipate the use of host-side SSDs as the caching
device [30, 41-46]. Aggressive prefetching techniques
that allow the handling of all reads from the FBD and/or
FAB Node can further reduce WAN accesses for reads.

The write 1/O path for FAB storage volume accesses
is more involved and is depicted in Figure 4, assuming
that the FBD and the FAB cluster reside in indepen-
dent failure domains. To optimize write 1/O latencies,
writes are handled at the FBD by simply logging the
write to its local write buffer and the FAB Node. Upon
receiving an acknowledgment from the FAB Node, the
write is acknowledged to the application VM. Next, it
is processed for transmission to the Primary Storage
in the background. Processing for transmission could
result in immediate or delayed transmission or even
elimination of transmission via coalescing as discussed
later (§V-B). When such processing is completed for the
I/0O in question, the FAB Node is sent a trim message
so that the FAB Node may delete the corresponding
I/O payload and entry from its log to reclaim space.

B. WAN Optimizations

Decoupling acknowledgments to applications from
updates over the WAN also effectively decouples the
I/O parallelism achievable over the WAN link from the
application’s 1/0O parallelism. This allows applications
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to achieve higher I/O throughput by simply provision-
ing adequate WAN link bandwidths. However, WAN
bandwidths are both expensive and limited. To fur-
ther decouple application I/O throughput from WAN
bandwidths, data reduction techniques including data
coalescing, compression, and deduplication are valu-
able. While compression and deduplication are well-
established WAN optimization techniques, data coa-
lescing for storage updates while ensuring no data
loss on failures has not been possible. FAB systems
can leverage the fault-tolerance capabilities of the FAB
cluster to pursue aggressive data coalescing at the
FBD prior to WAN transmission.

V1. BACK-UP FOR DISASTER RECOVERY

Modern day backup architectures include or are
transitioning to include public cloud infrastructure as
backup storage providers [47-49]. In hybrid cloud de-
ployments, when backup is deployed for on-prem Pri-
mary Storage, the resulting data movement overhead is
exorbitant. In particular, data gets moved twice across
WAN links, once to move the application generated
data from the public cloud to the on-prem Primary
Storage and subsequently from Primary Storage to the
public cloud storage backup service.

FAB co-designs the backup architecture with the hy-
brid cloud storage architecture to make backup orders-
of-magnitude more efficient. First, by making the public-
cloud resident FAB Layer create storage backups,
clients can reduce the amount of data moved across
WAN links by co-locating the data generating workload
with the backup service in the same public cloud data
center. Second, since the backup would be performed
in the I/O path of the data generating workload, the

increased access allows for greater control over the
granularity at which backups are created without pro-
portionately increasing resource overhead. This benefit
makes features such continuous data protection more
accessible to production storage workloads, which in
turn enable zero RPO backups.

A. Backing Up FAB Volumes

The FAB Layer provides backup for disaster re-
covery so that the FAB storage volumes continue to
be available despite Primary Storage unavailability.
FAB enables a range of interesting design choices
for backup granularity, tunable RPO, performance, and
fault-tolerance. First, because the FAB Layer has ac-
cess to the 1/0 stream as it is being modified, there is a
compelling opportunity to build backup solutions that of-
fer continuous data protection (CDP) with tunable RPO.
With CDP, recovery is possible with little to no data loss
on failure. Implementing CDP at the block storage level
demands that backups “mimic” the updates to primary
storage as closely as possible.

To enable efficient CDP capable backups, FAB em-
ploys a tiered buffering architecture at the FAB Node
using DRAM, cheaper non-volatile memory [50], and
flash-based SSD storage that is even cheaper. The
FAB Node uses an in-memory log to buffer “untrimmed”
writes. It also implements DR persistent buffers to
coalesce over customer defined RPO windows for FAB
Backup Storage. Figure 5 provides an illustration. The
tiered buffering capability allows for aggressive and tun-
able coalescing at the FAB node so that FAB volumes
can be configured for specific RPO guarantees which
may be revised over time depending on customer need.
To ensure that the Backup Storage is always point-
in-time consistent, an atomic write ingestion mecha-
nism at the backup storage becomes necessary as
suggested by Koller et al. [30].

VIl. PRELIMINARY EVALUATION

In this section, we discuss a limited evaluation of
the FAB approach to building hybrid cloud storage.
The evaluation is limited because it is focused on
the performance acceleration aspect of the FAB ar-
chitecture. In particular, we evaluated the importance
of a fault-tolerant and high-performance FAB Layer by
comparing the performance of a 4-node 10gE Ceph
storage cluster with a similarly configured, but addition-
ally FAB-enabled, Ceph store. More specifically, in the
FAB variant, an application VM running the workload
communicated with a FAB node to (i) log writes syn-
chronously while awaiting responses from the Ceph
store asynchronously, and (ii) to lookup/fetch reads,
which if not found not found were fetched from the Ceph
store synchronously. In contrast, the workload running
the Ceph configuration directly communicated with the
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Fig. 6: Performance data for LAN deployments of the FAB stack. The results represent an underestimate of
the actual performance difference that may be expected when the primary storage layer is accessed across a

WAN link in a hybrid cloud deployment.

Ceph store to perform I/O operations. Experiments
conducted at the application VM used the Flexible 1/0
tester [10] workload generator and the SysBench OLTP
benchmark [11].

The default (Ceph) distributed store performs dis-
tributed synchronous operations to serve reads and
writes. Our goal was to get broad estimates for how
accessing data synchronously at the FAB node over
a 10gE LAN link performs in terms of storage latency
and throughput when compared to accessing the Ceph
distributed storage system. It is important to point out
that this experimental setup reflects a significant under-
estimate of the performance potential of FAB’s tiered
storage architecture. If the Ceph storage cluster located
on-prem were to be accessed over a WAN link by a
workload running in a public cloud (as in Figure 2), such
access would incur substantial additional overhead due
to orders of magnitude higher latencies and reduced
bandwidth of the WAN link relative to the LAN link
as configured in these experiments. Nevertheless, the
findings reported in Figure 6 are instructive and inform
of the potential for performance acceleration.

FAB’s tiered storage architecture leads to 50X im-
provement in storage latencies relative to a distributed
storage system accessed over a local area network.
Figure 6¢ points out that storage 1/O performance
improvements do not entirely translate to application-
level performance improvements due to software over-
heads and limited inherent I/O parallelism in the work-
load. Nevertheless, there are significant application-
level performance improvements for the SysBench
OLTP benchmark. These application-level improve-
ments would of course depending on workload and/or
hardware on which the workload is deployed and the
actual WAN latencies involved in a hybrid cloud storage
deployment. Overall, given these storage latency and
throughput improvements, it is reasonable to expect
that FAB’s performance acceleration oriented design
will significantly reduce the impact of a hybrid cloud
deployment’s limitations on storage performance.

VIIl. DISCUSSION AND FUTURE WORK

FAB is a novel storage architecture for the hybrid
cloud where deployments get impacted by high latency
and low bandwidth WAN links when accessing persis-
tent data. Our preliminary, underestimated, evaluation
of its performance acceleration benefits are highly en-
couraging and indicate a need for further study of this
new architecture.

There are open questions and challenges around
FAB that deserve further study. First, as a primary side-
effect, FAB does induce data staleness at the primary
storage, since in-flight data from the FAB device to
the primary storage is persisted asynchronously rela-
tive to the application state. One instance of such a
requirement is with storage backup for disaster recov-
ery. Fortunately, FAB’s native backup solution offers a
way forward since it does not depend on the Primary
Storage state at all. If there is an unavoidable need
for zero staleness at the Primary Storage, additional
FAB protocols that flush out dirty data synchronously
become necessary.

Second, one variant of FAB’s design that we dis-
cussed assumes that the FAB node and the FAB cluster
are expected to fail non-concurrently with the FBD. If
deploying the FAB cluster in the public cloud cannot
satisfy this assumption, applications may be exposed
to a limited window of vulnerability where some data
loss may manifest with this design variant. Alternate
consensus-based log state replication within the FAB
stack is necessary under these alternate assumptions.
The performance impact of this alternate design are
likely to be different and would need additional study.

Third, fault-tolerance, consistency, and availability
are hard challenges being affected not just by software
and hardware failures but also network faults. Too many
ad-hoc implementations of distributed storage break in
unexpected ways at scale [51]. To avoid falling prey to
a hard-to-reason distributed systems implementations
over time, formal verification [52] of the fault-tolerance
properties of FAB storage is necessary. We believe

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on May 16,2023 at 13:09:37 UTC from IEEE Xplore. Restrictions apply.



that the above challenges for FAB are tractable and
addressing them will help create robust and performant
hybrid cloud storage systems.
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