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Abstract—Storage is the Achilles heel of hybrid cloud
deployments of workloads. Accessing persistent state
over a WAN link, even a dedicated one, delivers an over-
whelming performance blow to application performance.
We propose FAB, a new storage architecture for the
hybrid cloud. FAB addresses two major challenges for
hybrid cloud storage, performance efficiency and backup
efficiency. It does so by creating a new FAB layer in the
storage stack that enables fault-tolerance, performance
acceleration, and backup for FAB storage volumes. A
preliminary evaluation of FAB’s performance acceleration
mechanism when deployed over Ceph’s distributed block
storage system offers encouragement to pursue this new
hybrid cloud storage architecture.

Index Terms—Storage, Hybrid Cloud, Fault-tolerance,
Performance Acceleration, Backup

I. INTRODUCTION

The world of IT infrastructure has undergone trans-

formational change in the past decade. Public and

private cloud adoption within enterprises are at all time

highs and projections for hybrid and multi cloud deploy-

ments are robust [1]. Interoperability across public and

private clouds is a top-level concern among IT admin-

istrators who look for workload mobility, consolidated

cloud resource management, and cloud “burstability” to

support periods of high demand [2–4]. A foundation for

this approach to consuming resources and deploying

applications with full flexibility is the ”hybrid cloud”

architecture.

There are several caveats to adopting a public-

private hybrid cloud solution architecture for IT infras-

tructure requirements. The first set of concerns address

data location. Verticals such as financial institutions,

health-care, and even retail are sensitive to externaliz-

ing proprietary and customer data [4, 5] Second, cloud

vendor lock-in is a risk for enterprises. Customers are

forced to pick one public cloud to run their workloads

because data has “gravity” and data movement charges

are lop-sided [6–8]. Finally, there are concerns related

to long term costs with cloud costs tending to increase

over time prompting enterprises to shift workloads back

to premises [4, 9].

This paper offers foundational principles of FAB,

a redesign of the conventional storage stack — as

defined by its abstractions and architecture — for the

hybrid cloud. It decouples storage location from ap-

plication workload location, ensuring “plug compatibil-

ity” for storage consuming applications. The FAB stor-

age stack provides Fault-tolerance, Accelerated perfor-

mance, and Backup for hybrid cloud workloads. Fault-

tolerance in FAB rethinks the control and data path

for accesses to storage volumes by designing robust

recovery protocols that can handle arbitrary software

faults, network connectivity loss, and hardware compo-

nent failures. Accelerated performance in FAB develops

a new I/O path for VMs in the public cloud that delivers

low-latency and high throughput storage accesses and

optimizes wide-area cross data center network data

communication to/from storage. Backup for FAB stor-

age volumes eliminates WAN data movement during

backup operations while providing disaster recovery

properties with tunable recovery point objective (RPO)

for the backed-up data volumes.

We conducted a preliminary evaluation of FAB’s

performance acceleration benefits by implementing the

acceleration mechanisms within FAB layered over a

Ceph distributed store instance that is accessed over

a local area network. In a hybrid cloud deployment the

Ceph store would be accessed over a WAN link and

the above experimental setup is rather conservative.

Even so, we find that the FAB layer leads to up to

50X improvement in block device latencies and block

device throughput as measured by FIO [10] and up to

4.4X improvement in transaction throughput with the

SysBench OLTP benchmark [11]. Through the rest of

this paper, we discuss the architecture and design of

FAB, possible limitations of the solution, and directions

for future work.

II. MOTIVATION

In a perfect outcome, hybrid cloud storage solutions

will deliver seamless fluidity of data and workloads

across all the available hardware resources spread

across cloud data centers. The necessary decoupling

of persistently stored data from application workloads

manifests several fundamental requirements. Foremost

is the ability to run workloads unchanged; adopting a

hybrid cloud architecture should not require rewriting

applications and should support interface compatibility

across several storage back-ends. Second, any such

decoupling should ensure that there is no data loss

on failures or faults that are common at scale. Third,

any storage solution should ensure support for disaster

recovery (DR) via online backup. Finally, to address

the latency sensitive workloads of today, there must
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be a reliable way to overcome most, if not all, of the

WAN latency introduced when decoupling storage from

compute in a hybrid cloud deployment.

A. State of the Art

A straightforward solution to the first, second, and

third challenge above would create a virtual private

network (VPN) that spans the public cloud hosting the

application workload and the on-premise or external

(co-lo hosting) datacenter that hosts the storage infras-

tructure. This class of solutions is supported by several

industry vendors [9, 12, 13]. The solutions work well

when applications can tolerate WAN latencies in the

I/O path on average. However for storage performance

sensitive applications, these solutions are inadequate,

even when “direct connect” links across data centers

are deployed [14–16].

B. The Distance between Compute and Storage

Storage architectures have undergone significant

transformation over the past four decades as illustrated

in Figure 1. From individual servers and direct-attached

hard drives, enterprises moved to consuming private

cloud IaaS whereby applications get to consume scale-

up and subsequently scale-out storage that provide

enterprise-class features. In private cloud deployments,

clients may consume scale-out storage using self-

managed solutions such as Ceph [21], Gluster [22], or

external vendor scale-out solutions such as VMware’s

VSAN [23], Nutanix [24], HPE’s Simplivity [25], The

alternate to scale-out storage is conventional scale-up

storage that may have some scale-out capabilities.

The public cloud has witnessed the rapid adop-

tion of cloud-native storage solutions such as AWS

EBS [26], AWS S3 [27], Google persistent disk [28],

and Azure SimpleStor [29]. We anticipate that the class

of applications and workloads that demand either on-

premise data deployment or cloud-independent storage

deployment will continue to sustain and expand for rea-

sons outlined earlier. Cross-cloud network latencies will

dominate as high-performance storage devices (NVMe

Flash [19], 3D-XPoint [20]) and lean scale-out software

stacks get increasingly commoditized.

C. The Inevitability of Compute-Local Storage

Storage demands that compute be deployed close to

itself so workloads may perform acceptably. If data is to

be resident in customer-owned infrastructure, running

workloads in the public cloud is challenging. Recent

efforts [12, 13] attempt to address the performance

challenge when accessing storage across data centers

with large caches provisioned at the data center run-

ning the application workload. Such caches are able

to reduce the data movement over the WAN network

by a large margin for read accesses. These caches,

unfortunately, do not address write accesses.

Koller et al. demonstrated that relative to write-

through caching, write-back caching improves re-

sponse times by two orders magnitude for transaction

processing workloads when caching data for iSCSI-

based storage [30]. More recently, Rodriguez et al.

have argued for building low-latency data-center scale

caches that can absorb writes to slower storage de-

vices within the same data-center [31]. To put this

previous work in context for hybrid cloud workloads

that access storage across data centers, the network-

attached storage system would be accessed over a

WAN, further amplifying the need for handling reads

and writes locally. Read and write caching bring storage

working-sets closer to compute and provide a huge I/O

performance boost. However, for such caching to be

usable in a production environment, it must be infused

with high availability (HA) and disaster recovery (DR)

capabilities [32–34]. While the demand for compute-

local storage in hybrid cloud deployments are rather

clear, there is no simple or obvious solution.

III. FAB CLOUD STORAGE ARCHITECTURE

The evolution of enterprise infrastructure to adopt

hybrid IaaS cloud models requires bridging gaps in

how storage is architected and delivered, ideally with-

out changing storage consumption models. As dis-

cussed previously (§II), any hybrid cloud storage so-

lution must ideally address four requirements to ef-

fectively decouple storage from application workloads:

(i) backwards compatibility of consumption interfaces,

(ii) fault-tolerance, (iii) disaster tolerance, and (iv) high-

performance. FAB is a new storage stack designed to

help meet these requirements.

A. Storage Abstraction

Ideal candidates for FAB are storage abstractions

that allow a straightforward decoupling of storage

from compute. A well-established service model for

the public and private clouds is Infrastructure-as-a-

Service (IaaS) wherein the consumption of storage by

the systems software — bare metal, or virtualized,

or containerized — is as a block device. This lowest

common denominator storage abstraction enables the

broadest range of storage provider applications such

as filesystems, databases, object stores, or key-value

stores.

The block device abstraction has simple semantics

and a simple consistency contract. First, the unit of

access is a fixed size sector, 512-byte or 4KB, and

it supports primarily two operations – read and write.

Second, any acknowledged write may not be lost or

corrupted. Third, reads must always return the latest
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Fig. 1: Storage Latency Trends. The storage stack is divided into device, network, and software. Device and

software latencies have consistently improved over time [17–20]. Today, hybrid cloud deployments make cross

data-center network latencies dominate storage I/O latency.

written version of the block. Fourth, writes issued si-

multaneously may be executed in any order. Finally,

to guard against data loss, a block device typically

implements fault-tolerance and disaster recovery capa-

bilities.

The FAB hybrid cloud storage solution is designed

around the block device abstraction because it allows

for a straightforward decoupling of compute and stor-

age. The block abstraction serves as a simple starting

point for optimizations such as read caching and write

buffering that are well-understood at the block device

layer [35]. The block device also enables simple ap-

proaches to build fault-tolerance and disaster recovery

capabilities because of its simple interface and consis-

tency contract.

B. Architecture

Workloads running in the public cloud get access

to a FAB block device that spans multiple cloud data

centers. The FAB storage architecture is designed

meet the requirements of hybrid cloud deployments

of enterprise applications and services. Creating a

decoupling of storage from compute while maintaining

performance, fault-tolerance, and disaster tolerance ca-

pabilities prompts a rethink of the conventional storage

architecture. FAB is a seamless extension of current

storage stacks that introduces a new FAB Layer con-

sisting of the FAB Block Device (FBD) and the FAB

Cluster, both co-located in the public cloud data center

with the storage-consuming application VM. The FBD

exports storage to applications and interacts with the

FAB Cloud Node VM that is part of a the FAB Cloud

Cluster which in turn serves all the FBDs and interfaces

with the storage back-end over a high-performance

WAN link [14–16]. The FAB Cluster also interfaces

with the backup storage service provider which would

typically be located in the same cloud datacenter as

the workload but it could also be located in a different

datacenter. Although the FAB Layer creates backups,

Fig. 2: FAB hybrid cloud storage solution.

recovery of the Primary Storage after a failure is done

directly from the backup storage, bypassing the FAB

Layer. The fault-tolerance of the FAB Layer is the

subject of the next section (§IV).

The FAB Layer gets deployed in the public clouds

where storage consuming workloads reside. This tier

is termed FAB Layer because it implements Fault-

tolerance, performance Acceleration, and Backup for

FAB storage volumes. Storage consuming applications

interact directly with an FBD serviced by a FAB Node

that is part of the FAB cluster implementing fault-

tolerance, performance acceleration, and disaster re-

covery capabilities. The FAB Layer and its interaction

with both the storage consuming workload and the

storage back-end located at the storage owner’s data

center premises are shown in Figure 2.

The FAB Layer manages primary data in motion, i.e.,

data that is accessed by the application VMs in the pub-

lic cloud that reside there either (relatively) permanently

or temporarily to handle unexpected loads via cloud

bursting. FAB’s volume storage is consumed similar to
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how public cloud VMs consume block storage service

(e.g., EBS [26], persistent disk [28], etc.) provided by

the public cloud vendors. There are key differences,

though. First, FAB is not a storage end-point; it serves

as a read cache and a fault-tolerant write buffer. Sec-

ond, FAB utilizes storage at rest outside of the public

cloud in two ways. At rest data is shipped to storage

arrays owned and managed by the data owner. At rest

data is also backed up to meet a specified recovery

point objective (RPO) to a cloud backup storage service

co-located with the data generating workload or to one

that is located at an alternate public cloud provider, as

shown in Figure 2. And third, FAB storage volumes offer

high performance because workloads perform storage

operations over the local network via the FAB Layer for

all writes and for reads that hit in the FAB read cache.

In summary, FAB introduces a new public-cloud res-

ident layer to the storage stack for hybrid storage.

In hybrid cloud implementations, Primary Storage is

expected to manage data at rest at the data owner’s

datacenter or in external co-location hosting providers.

A well-designed Primary Storage would provide core

storage features including namespace management,

access control, encryption, data redundancy, snap-

shots, and thin provisioning. Additionally, it would imple-

ment critical offline features of storage including data

deduplication, compression, and garbage collection;

the division of responsibility as suggested by the core

and offline feature set is typical in hyperconverged

storage implementations [23, 24]. With FAB, clients can

run workloads in any cloud while provisioning storage

in a cloud-independent manner, enabling workloads to

fully exploit the offerings of the public cloud ecosystem.

IV. FAULT-TOLERANCE

The FAB Layer is designed to provide fault-tolerance

properties for FAB storage volumes upon failures of

FAB block device and other components within the FAB

cluster. Such fault-tolerance must ensure data durability

and data consistency in spite of software and hardware

failures or unavailability at the public cloud layer. Failure

tolerance for the Primary Storage is discussed later

(§VI).

A. Control and Data Path

Figure 3 presents the three major architectural com-

ponents relevant to FAB’s data path. The FBD serves

as a single entry point for FAB storage clients and

instantiates the FAB storage volumes consumed within

the application VM. The FAB Node implements fault-

tolerance, acceleration, and backup for FAB storage

volumes. And the Primary Storage (PS) is the final

resting place for all persistent data located in a different

data center.

Fig. 3: FAB’s Data-path Architecture.

The FBD first communicates with a known FAB

Cluster Configuration Manager (CCM), a named ser-

vice that is discoverable, to open the FAB volume

on behalf of the requesting application. The CCM is

in charge of tracking status information such as the

liveness of various FAB entities as well as FBD to

FAB Node mappings. Upon receiving an open request

for a FAB volume and corresponding Primary Storage

instance from an FBD instance, the CCM performs

access control and looks up the FBD-FN mappings

before responding to the FBD with the FAB Node IP

corresponding to the FAB volume, if it already exists,

else assigns a FAB Node to the volume dynamically.

The CCM is designed as a highly available distributed

configuration management service running on the FAB

Cluster [36]. Once the FAB node IP is obtained, the

FBD is ready to handle I/O requests.

B. Fault-tolerant Design

FAB must address arbitrary failures including client

nodes (i.e., FBD failures) and loss of network con-

nectivity to components within the FAB cluster and

outside. The design decisions depend on the proper-

ties of the underlying infrastructure and the durability

requirements of the application managing the data.

First, let’s assume that the FBD and the FAB cluster

are being managed within independent failure domains.

Fault-tolerance of a block devices can be achieved by

synchronously replicating writes within the FBD and the

assigned FAB node. In case of FBD failure, the FAB

Node informs such change of state to the CCM. The

FAB Node then starts replicating its write log to other

nodes in the FAB cluster to protect against a near-term

failure within the FAB cluster prior to the recovery of the

FBD. The replicas are only necessary until recovery is

completed. Consequently, there is little benefit in using

data reduction techniques and/or erasure coding. In

case of a FAB Node failure, the dependent FBD informs

the CCM of this change of status. The CCM chooses a

replacement FAB node in the FAB cluster to take over

operations for the FBD. The FBD then synchronously
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replicates the it’s local write log to the replacement FAB

Node prior to handling further I/O for the volume.

Next, let’s assume that the FBD and the FAB clus-

ter nodes are in the same failure domain and must

tolerate two simultaneous failures. In this case, the

FBD and the FAB cluster run a consensus protocol

(e.g., Raft [37]) to synchronously replicate writes across

two FAB nodes and the FBD itself, thereby creating

two additional copies, before acknowledging the client.

The CCM mappings are modified to include the full

membership information as FBD-FN1-FN2. In case of

a FAB node failure, the CCM simply assigns another

FAB node to join the consensus cluster. In case of

FBD failure, the CCM awaits connection to the same

block device from another FBD before informing it of the

associated mapping thereby initializing the membership

for the consensus protocol. The consensus protocol

ensures that the state of the write log of the new FBD

is equivalent to the state of the log of the prior FBD

instance serving the same block device.

Solutions outlined above guarantee durability of

writes in the presence of faults. More aggressive per-

formance optimizations are possible using techniques

that effectively shift the durability point from the write

to a later time that preserves a useful notion of con-

sistency [38] and/or exploit the asynchrony in failures

across different parts of a distributed system [39].

Finally, in case the CCM receives a FAB block device

open request for a device that is already being serviced

by a FAB Node, it verifies that the FAB block device

client is indeed alive. If so, the block device open

request is allowed only if the device is being opened in

read-write mode by at most one of the previously active

or newly requesting clients.

V. PERFORMANCE ACCELERATION

When building a cross-cloud storage solution, one of

the primary challenges is delivering adequate perfor-

mance while ensuring data durability and availability.

This tension is highlighted by an application of Little’s

Law [40] to storage performance. This application ties

together quantities such as I/O latency, I/O through-

put, and I/O parallelism and may be expressed as

io throughput = io paralleism/io latency. Given a work-

load with a given I/O parallelism level, its I/O throughput

can be increased by reducing I/O latency and vice-

versa.

A straw man cross-cloud storage solution which

handles storage accesses over a WAN link will be

severely limited in I/O throughput. Wide-area network

links have high latency and demand a lot of workload

I/O parallelism to saturate storage throughput. This

implies that storage I/O resource consumption is tightly

coupled with compute resource consumption as more

compute cycles become necessary to generate higher

Fig. 4: FAB’s Write I/O Path

levels of I/O parallelism. Furthermore, I/O parallelism

is a property of the application itself and is not easily

controlled.

A. FAB I/O Path

The FAB Layer is designed to decouple I/O handling

from the access to the Primary Storage over the WAN

as much as possible. The FAB Layer’s I/O path spans

the FBD and its associated FAB node within the FAB

cluster. Read I/Os are handled by FBD by consulting in

sequence, the local cache first, and then the FAB Node,

for cached content. For local read caching at the FBD,

we anticipate the use of host-side SSDs as the caching

device [30, 41–46]. Aggressive prefetching techniques

that allow the handling of all reads from the FBD and/or

FAB Node can further reduce WAN accesses for reads.

The write I/O path for FAB storage volume accesses

is more involved and is depicted in Figure 4, assuming

that the FBD and the FAB cluster reside in indepen-

dent failure domains. To optimize write I/O latencies,

writes are handled at the FBD by simply logging the

write to its local write buffer and the FAB Node. Upon

receiving an acknowledgment from the FAB Node, the

write is acknowledged to the application VM. Next, it

is processed for transmission to the Primary Storage

in the background. Processing for transmission could

result in immediate or delayed transmission or even

elimination of transmission via coalescing as discussed

later (§V-B). When such processing is completed for the

I/O in question, the FAB Node is sent a trim message

so that the FAB Node may delete the corresponding

I/O payload and entry from its log to reclaim space.

B. WAN Optimizations

Decoupling acknowledgments to applications from

updates over the WAN also effectively decouples the

I/O parallelism achievable over the WAN link from the

application’s I/O parallelism. This allows applications
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FAB

(a) Flexible I/O Tester latency.

FAB

(b) Flexible I/O Tester IOPS.

FAB

(c) MySQL transaction rate.

Fig. 6: Performance data for LAN deployments of the FAB stack. The results represent an underestimate of

the actual performance difference that may be expected when the primary storage layer is accessed across a

WAN link in a hybrid cloud deployment.

Ceph store to perform I/O operations. Experiments

conducted at the application VM used the Flexible I/O

tester [10] workload generator and the SysBench OLTP

benchmark [11].

The default (Ceph) distributed store performs dis-

tributed synchronous operations to serve reads and

writes. Our goal was to get broad estimates for how

accessing data synchronously at the FAB node over

a 10gE LAN link performs in terms of storage latency

and throughput when compared to accessing the Ceph

distributed storage system. It is important to point out

that this experimental setup reflects a significant under-

estimate of the performance potential of FAB’s tiered

storage architecture. If the Ceph storage cluster located

on-prem were to be accessed over a WAN link by a

workload running in a public cloud (as in Figure 2), such

access would incur substantial additional overhead due

to orders of magnitude higher latencies and reduced

bandwidth of the WAN link relative to the LAN link

as configured in these experiments. Nevertheless, the

findings reported in Figure 6 are instructive and inform

of the potential for performance acceleration.

FAB’s tiered storage architecture leads to 50X im-

provement in storage latencies relative to a distributed

storage system accessed over a local area network.

Figure 6c points out that storage I/O performance

improvements do not entirely translate to application-

level performance improvements due to software over-

heads and limited inherent I/O parallelism in the work-

load. Nevertheless, there are significant application-

level performance improvements for the SysBench

OLTP benchmark. These application-level improve-

ments would of course depending on workload and/or

hardware on which the workload is deployed and the

actual WAN latencies involved in a hybrid cloud storage

deployment. Overall, given these storage latency and

throughput improvements, it is reasonable to expect

that FAB’s performance acceleration oriented design

will significantly reduce the impact of a hybrid cloud

deployment’s limitations on storage performance.

VIII. DISCUSSION AND FUTURE WORK

FAB is a novel storage architecture for the hybrid

cloud where deployments get impacted by high latency

and low bandwidth WAN links when accessing persis-

tent data. Our preliminary, underestimated, evaluation

of its performance acceleration benefits are highly en-

couraging and indicate a need for further study of this

new architecture.

There are open questions and challenges around

FAB that deserve further study. First, as a primary side-

effect, FAB does induce data staleness at the primary

storage, since in-flight data from the FAB device to

the primary storage is persisted asynchronously rela-

tive to the application state. One instance of such a

requirement is with storage backup for disaster recov-

ery. Fortunately, FAB’s native backup solution offers a

way forward since it does not depend on the Primary

Storage state at all. If there is an unavoidable need

for zero staleness at the Primary Storage, additional

FAB protocols that flush out dirty data synchronously

become necessary.

Second, one variant of FAB’s design that we dis-

cussed assumes that the FAB node and the FAB cluster

are expected to fail non-concurrently with the FBD. If

deploying the FAB cluster in the public cloud cannot

satisfy this assumption, applications may be exposed

to a limited window of vulnerability where some data

loss may manifest with this design variant. Alternate

consensus-based log state replication within the FAB

stack is necessary under these alternate assumptions.

The performance impact of this alternate design are

likely to be different and would need additional study.

Third, fault-tolerance, consistency, and availability

are hard challenges being affected not just by software

and hardware failures but also network faults. Too many

ad-hoc implementations of distributed storage break in

unexpected ways at scale [51]. To avoid falling prey to

a hard-to-reason distributed systems implementations

over time, formal verification [52] of the fault-tolerance

properties of FAB storage is necessary. We believe
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that the above challenges for FAB are tractable and

addressing them will help create robust and performant

hybrid cloud storage systems.
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