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ABSTRACT
Coarse-grained (CG) models facilitate an efficient exploration of complex systems by reducing the unnecessary degrees of freedom of the
fine-grained (FG) system while recapitulating major structural correlations. Unlike structural properties, assessing dynamic properties in CG
modeling is often unfeasible due to the accelerated dynamics of the CGmodels, which allows for more efficient structural sampling. Therefore,
the ultimate goal of the present series of articles is to establish a better correspondence between the FG and CG dynamics. To assess and
compare dynamical properties in the FG and the corresponding CG models, we utilize the excess entropy scaling relationship. For Paper I of
this series, we provide evidence that the FG and the corresponding CG counterpart follow the same universal scaling relationship. By carefully
reviewing and examining the literature, we develop a new theory to calculate excess entropies for the FG and CG systems while accounting for
entropy representability. We demonstrate that the excess entropy scaling idea can be readily applied to liquid water and methanol systems at
both the FG and CG resolutions. For both liquids, we reveal that the scaling exponents remain unchanged from the coarse-graining process,
indicating that the scaling behavior is universal for the same underlying molecular systems. Combining this finding with the concept of
mapping entropy in CG models, we show that the missing entropy plays an important role in accelerating the CG dynamics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0116299

I. INTRODUCTION

With the aid of computation, coarse-grained (CG) models
allow for an efficient exploration of accessible spatiotemporal scales
occurring in chemical and physical systems.1–10 This enhancement is
feasible by integrating out fast degrees of freedom at the fine-grained
(FG) resolution, thus extending the applicability of computer sim-
ulations to larger system sizes and longer simulation times than
was previously perceived to be possible (for example, from HIV-1
research; see Refs. 11–15). To reproduce equilibrium structural cor-
relations in CG models compared to the FG reference, various
bottom-up CG methods have been proposed to approximate the
potential of mean force (PMF) between the CG particles as the effec-
tive CG interaction.1–10,16–20 Since the static equilibrium correlations
can be well-captured by designing these conservative interactions

between CG particles, bottom-up CG simulations are generally
carried out with Newtonian dynamics having only conservative
forces. During this CG Newtonian mechanics, the CG configura-
tion space tends to have a flatter or softer effective potential energy
surface than that of the FG reference, resulting in faster diffu-
sion dynamics than in the FG dynamics.21–26 While this artificial
“acceleration” helps to extend the sampling of the CG simulation,
it hinders the study of explicitly dynamical properties with the CG
model. It is known from the Mori–Zwanzig formalism27–30 that this
acceleration in the CG model occurs due to missing fluctuation and
dissipation forces in the CG equations of motion, but there is no
alternative theory to qualitatively understand the physical nature of
these missing forces and to quantitatively estimate the degree of the
acceleration in the CG model over the FG one due to the absence of
fluctuation and dissipation forces.
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In this light, numerous approaches and theories have been
developed and applied to understand the CG dynamics with respect
to the reference FG dynamics. Briefly, using the projection opera-
tor technique of Zwanzig,27–30 one can show that the time evolution
of specific collective variables in the reduced phase space follows
the form of the Generalized Langevin Equation (GLE). There-
fore, in an ideal sense, dynamics in the reduced CG representation
could be faithfully represented by the Mori–Zwanzig formalism.
Despite its theoretical rigor, a full derivation of Mori–Zwanzig
equations of motion for the CG system would be highly challeng-
ing or even intractable without making approximations to spec-
ify the non-Markovian frictional and fluctuation forces, which in
turn are completely dependent on the nature of the system.23,31

While we are aware of numerous efforts to emulate both the
structural and dynamical properties of CG systems based on the
Mori–Zwanzig formalism, e.g., works from Español, Karniadakis,
and others,23,25,26,32–47 we instead focus here on the CG Newto-
nian mechanics and aspire to better understand and to better
characterize the acceleration behavior of the CG system over the
FG one from which it is derived.

In the literature, several researchers have proposed a time-
rescaling approach where the time step in CG simulations is effec-
tively rescaled to match some reference dynamical behavior.24,48–50

While time-rescaling offers a reasonably intuitive and sometimes
applicable approach, there are intrinsic drawbacks such that the scal-
ing behavior is not universal among different systems.51–54 In order
to exactly determine the rescaling factor, one may need to revisit the
GLE or Langevin equation to estimate the frictional forces.35 A com-
prehensive review of these distinct approaches to understand the
dynamics of CG models is detailed in the literature.55,56

In this series of papers, we offer a different approach to assess-
ing the dynamical properties of the CG system. This alternative
approach is based on the excess entropy of the system. The relation-
ship, known as “excess entropy scaling,” posits that the dynamical
properties of a system (especially self-diffusion) scale as the excess
entropy of that system.57–61 Even though suggesting that entropy
as a thermodynamic quantity is related to the system dynamics
seems counterintuitive at first glance based on fundamental statisti-
cal mechanics,62 this semi-quantitative relation has been established
to be useful under certain systems:63 Starting from the original work
for the Lennard–Jones and soft-sphere models,57 the excess entropy
scaling formalism has been demonstrated in many complex sys-
tems, such as liquid metals,64,65 ionic liquids,66 polymer chains,67
and even extended to confined systems.68,69 We note that these
“liquid” systems are at ambient (or normal liquid, not deeply super-
cooled, regime) conditions at relatively high temperatures that do
not exhibit strong activated dynamics. Given its apparent validity in
a number of physical systems, several theoretical developments have
provided some physical explanations underlying the excess entropy
scaling relationship. As hinted by mode coupling theory (MCT),70,71

which links structures and dynamics based on the radial distribu-
tion function (RDF),72,73 recent work has further suggested that the
phenomenological entropy scaling can be microscopically derived
in certain conditions.74 In addition, other theoretical connections
between the Kolmogorov–Sinai entropy and dynamical properties
are described in the literature.73–77 It should be noted that recent
findings suggest that one can possibly derive the scaling relationship
in simple Hamiltonian systems using Boltzmann’s formula and rate

theory.61 Yet, there appears to be no systematic, first-principles
theory to fully derive the excess entropy scaling relationship in any
Hamiltonian system to date.

Interestingly, relatively less attention has been given to appli-
cations of excess entropy scaling to CG models, and therefore, it
is of particular interest to systematically extend this relationship to
CG dynamics. While earlier work provided somewhat limited inter-
pretations78 or implications for the relative entropy formalism of
simple models,79 recent research efforts to apply the excess entropy
scaling to CG models have been reported,80,81 hinting that a rigor-
ous extension to CG systems may be feasible. However, two main
caveats have limited the application of this concept to CG model-
ing. First and foremost, despite its applicability for a wide range of
molecular systems, there is no guarantee that such a scaling rela-
tionship still holds for CG systems. More importantly, even if it
does hold, no systematic theories or studies have shown that both
FG and corresponding CG systems will exhibit the same (universal)
scaling behavior. Without confirming the universality between FG
and its corresponding CG systems, an effort that tries to under-
stand CG dynamics in terms of excess entropy scaling would be
difficult. In particular, the aforementioned drawbacks are due to the
empirical nature of the scaling relationship, and thus, the physical
understanding and correspondence between full FG dynamics and
CG dynamics are still premature and largely unexplored.

In this series of papers, we aim to deliver a more comprehen-
sive understanding of CG dynamics with respect to the underlying
FG dynamics. For Paper I of the series, we will introduce the con-
cept of excess entropy scaling for the FG system and then also the
corresponding CG system by developing a new method to correctly
address different modal contributions to excess entropy. Then, we
will determine the excess entropy of atomistic systems and their CG
counterparts based on entropy representability. After confirming
that the excess entropy scaling relationship holds, in general, we will
explore if the same scaling relationship holds for both the FG and
CG dynamics for the same molecular system in order to elucidate
the universal nature of excess entropy scaling in such systems.

II. THEORY
A. Excess entropy scaling relationship

The starting point for the scaling relationship is to define the
excess entropy of the system at a given number density ρ and
temperature T such that

Sex = Sex(ρ,T) := S(ρ,T) − Sid(ρ,T), (1)

where S(ρ, T) is the system entropy, and Sid(ρ, T) is the corre-
sponding ideal gas entropy with the same ρ and T. Since the ideal
gas is the maximally disordered state, this condition gives Sex < 0
for non-ideal systems. The excess entropy scaling aims to con-
nect this thermodynamic property to a reduced dynamic quantity,
such as the self-diffusion coefficient. Two distinct scaling schemes
have been suggested, and here, both are introduced and compared
comprehensively.

First, the most well-known scaling relationship, known as the
Rosenfeld scaling, is given by57–59

D∗ = D0 exp(αSex/NkB), (2)
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where the reduced dynamic property (diffusion coefficient in this
case) is scaled as

D∗ = D
ρ

1
3

(kBT/m)
1
2
. (3)

Here, α and D0 are the coefficients obtained from the scaling rela-
tionship and are dependent on the system of interest. Alternatively,
Dzugutov reported a similar relationship expressed by a slightly
different formalism,60

D∗Z = D
0
Z exp(S(2)ex /NkB), (4)

where S(2)ex is the two-body contribution to the full excess entropy
Sex, including multi-particle correlations. Even though Eqs. (2)
and (4) look similar at first glance, the two scaling schemes have
distinct D0 and α expressions. Such differences between the Rosen-
feld and Dzugutov scaling schemes are extensively discussed in the
literature, but here, we emphasize the key differences and deter-
mine which scheme is more physically appropriate for the scope of
this work. First, in Eq. (4), the diffusion coefficient is reduced by
D∗Z = D ⋅ (σ

−2Γ−1E ) using the Enskog theory for hard spheres with
the collision frequency of ΓE = 4πσ2ρg(σ)

√
kBT/(πm). The idea of

using the microscopic Enskog collision rate is because the Dzugutov
scaling was derived by assuming that the diffusion process can be
regarded as a molecular “caging” effect in hard spheres.60 In this
sense, the exponent in the Dzugutov scaling becomes unity (α = 1)
under the ergodic assumption, but this scaling may only be valid in
hard sphere diffusion processes. We note that recent work demon-
strated that this ergodic assumption is usually not satisfied in many
Molecular Dynamics (MD) simulations,82 and an alternative expo-
nent 2/3 was instead derived in the case of the Dzugutov scaling from
theMCT.72 On the other hand, the Rosenfeld scaling applies tomany
dynamic properties, including diffusion, viscosity, and thermal con-
ductivity, indicating that the Dzugutov scaling is less universal and
less globally accurate than the Rosenfeld scaling, as has been pointed
out by several researchers.83

The physical consistency can also be seen from the scaling coef-
ficient. In Eq. (3), the diffusion coefficient is scaled by elementary
quantities (the so-called macroscopically reduced units) that cor-
respond to the characteristic length and timescales in Newtonian
dynamics. In theory, the reduced units applied in Eq. (3) are equiv-
alent to the reduced quantities used in the isomorph theory of Dyre,
implying a hidden scale invariance of strongly correlating systems,
which can explain the quasi-universality of scaling relationships.84,85

On the other hand, the reduced unit in the Dzugutov scaling is rather
microscopic and empirical, and this scaling scheme may be dubious
in some cases where diverging behavior is observed.77

Finally, the excess entropy terms utilized in these two scaling
relationships are different. The Dzugutov scaling only utilizes
the pair excess entropy term S(2)ex , while the other contributions
are neglected, whereas the Rosenfeld scaling employs the overall
excess entropy of the system Sex to better capture the full entropy
contribution.

To summarize, in this series of papers, we follow the original
scaling idea from the work of Rosenfeld using the macroscopically
reduced units for both FG and CG systems since it is a more general
scaling relation for liquids and also consistent with a macroscopic

point of view. However, a physical idea behind the Dzugutov scaling,
the Enskog picture, will be revisited in Paper II.176 With this inmind,
we aim to relate the FG diffusion relationship based on the Rosenfeld
excess entropy scaling,

D∗FG = D
FG
0 exp(α FGs FGex ), (5)

to its CG counterpart,

D∗CG = D
CG
0 exp(αCGsCGex ), (6)

where we denote the per particle entropy as sex = Sex/NkB for sim-
plicity. In other words, the main goal of this paper is to determine
αFG and αCG by calculating s FGex and sCGex to probe whether the CG
scaling relationship follows the same scaling exponent. The theo-
ries behind the calculation of s FGex and sCGex are presented in Secs. II B
and II C.

B. Excess entropy estimation
1. Conventional approach: Multiparticle
correlation expansion

Substantial research effort has focused on the means for calcu-
lating excess entropy. In principle, a direct determination of excess
entropy is possible by separately calculating the system entropy and
the ideal gas entropy using conventional methods, e.g., thermody-
namic integration (TI). Although we are aware of many papers that
have employed TI to calculate excess entropies,86–88 we opt not to
use this method in this work because TI is less straightforward for
linking the thermodynamics and structures between the detailed
(FG) systems to their reduced (CG) version. We seek to utilize a
more straightforward method that can physically elucidate the miss-
ing degrees of freedom during the coarse-graining process in order
to estimate excess entropy. Additionally, there are several practical
concerns of conventional TI calculations: (1) design of a correspond-
ing ideal gas system is needed and (2) slow numerical convergence
of the method.

Instead of the TI method, a configuration-based approach to
calculating the excess entropy quantity can be designed based on sta-
tistical mechanical theory. From Green’s derivation of multiparticle
correlation functions,89 Wallace rederived a systematic expansion
of the excess entropy expressed as a sum of integrals of n-particle
distribution functions,90–93

Sex =∑
n≥2

S(n). (7)

In Eq. (7), S(n) is the excess entropy contribution from the n-particle
contributions. The simplest and most common approach to eval-
uating Sex is to approximate the two-body contribution as being
dominant compared to other higher-order contributions, as shown
in several theoretical derivations.89,94–96 Furthermore, for a variety
of systems, this assumption has been widely adopted due to the fact
that the S(3) term cancels other higher-order contributions.66,97–100

With this in mind, the S(2) term is written as a function from the pair
distribution function g(2)(r),

S(2) = −2π∫
∞

0
{g(2)(r) ln g(2)(r) − [g(2)(r) − 1]}r2 ⋅ dr, (8)
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where the vector r includes information about both the position
and orientation of the molecule. Namely, Eq. (8) provides a con-
figurational basis to estimate excess entropy for various systems of
interest.

2. Orientational contribution
An important point to note in Eq. (8) is that the pair distri-

bution function g(2)(r) is a function of not only the pair distance
between particles r = ∣r∣ but also positions of the particle pair r1
and r2 with their orientations ω1 and ω2, resulting in 12 variables.
However, the majority of current literature only considers the trans-
lational component while ignoring the orientational (or angular)
contribution when calculating the scalar term,101

S(2)trans = −2πρ∫
∞

0
{g(2)(r) ln g(2)(r) − [g(2)(r) − 1]}r2 ⋅ dr. (9)

It is straightforward to see that Eq. (9) corresponds to only the trans-
lational component because the orientational dependence on ω1 or
ω2 no longer appears. Since only the RDF is required, this choice is
more numerically feasible and often preferred. Furthermore, the so-
called “homogeneity assumption”67 whereby S2 contributes nearly
80% to the overall excess entropy is satisfied by simple models
where there are no orientational degrees of freedom, e.g., Lennard-
Jones fluids.102,103 However, as Malvaldi and Chiappe have noted,
this approximation is often violated when the molecule has non-
spherical symmetry.66 Thus, in the case of water and methanol
studied in the present work, such considerations need to be care-
fully addressed. In particular, many studies reported calculating the
excess entropy of water to understand its connection to anomalous
properties.86,104–107 Subsequently, two pertinent findings were dis-
covered: (1) the contribution of non-translational components in
water is large108–112 and (2) the orientational entropy is not explicitly
connected to the translational entropy,113 meaning that transla-
tional entropy based on the RDF cannot account for orientational
contributions. Altogether, we believe that having only translational
components from the RDF to calculate the excess entropy can incur
major errors.

In that light, several theories and computational techniques
have been devised to account for the orientational contributions
beyond the pair translational motion. For rigid molecules, Lazaridis
and Karplus suggested that the function g(2)(r12) can be factorized
as follows:109

g(2)(r12) = g(2)(r,ω1,ω2) = g(2)trans(r) ⋅ g
(2)
or (ω1,ω2∣r). (10)

Later, Zielkiewicz108 designed a slightly different factorization
scheme in terms of translational, configurational, and orientational
contributions in order to perform feasible integrations,

g(2)(r12) = g(2)(r,ω1,ω2) = g(2)trans(r) ⋅ g
(2)
conf(ω1∣r) ⋅ g(2)orient(ω2∣r,ω1).

(11)
Equations (10) and (11) separate the translational component from
the orientational contribution using a conditional probability dis-
tribution function. However, a direct calculation of configura-
tional and orientational correlations of molecular pairs in liquids

is numerically challenging due to the multi-dimensional numerical
integrations. To elaborate, this orientational contribution is charac-
terized by the following integration form:

S(2)or = − 2πρ∫
∞

0
g(2)(r) ⋅ (−

1
Ω2 ∫∫ J(ω1,ω2)g(ω1,ω2∣r)

× lng(ω1,ω2∣r)dω1dω2)dr, (12)

where Ω = ∫ dω = 8π2, and J(ω1,ω2) is the Jacobian of the angular
variables ω1,ω2. Under homogeneous and isotropic conditions, we
can reduce the angular variables to five109 or six angles108 depending
on the choice of factorization. However, a full calculation of such
collective integrations over both distance and orientational variables
is numerically very demanding.78,108,114,115 Even though several algo-
rithmic improvements have been proposed after Lazaridis, Karplus,
and Zielkiewicz,116,117 only a few follow-up reports are available in
the literature to date. Yet, these approaches emphasize that one must
consider more than just the translational contribution, especially in
water.

3. Alternative approach: 2PT-based method
To surmount the numerical challenges mentioned earlier, we

use the two-phase thermodynamic (2PT) method118–122 that has
been applied to various chemical systems123–127 as an alternative
approach. Herein, we provide essential steps in performing the 2PT
simulation, with more detailed derivations and discussion found in
Refs. 118–122. In a nutshell, the 2PT method constructs the parti-
tion function of the system by designing the density of the states
(DoS) of the system as a linear combination of solid-like and gas-like
(diffusive) components. The total DoS of liquid is usually obtained
from the Fourier transform of the velocity autocorrelation function
(VACF) Cvv(t),

DoSliq(ν) = lim
τ→∞

1
2kBT∫

τ

−τ
Cvv(t)e−2πνtdt, (13)

where ν denotes the frequency of normal modes. This allows
for decomposing the liquid DoS into a fully harmonic solid-like
component and an anharmonic diffusive component with weights
ω(ν),

DoSliq(ν) = ωsolid(ν)DoSsolid(ν) + ωgas(ν)DoSgas(ν). (14)

Detailed formulas for ωsolid(ν) and ωgas(ν) can be found in the
original 2PT literature.118–122 From the decomposed liquid DoS in
Eq. (14), the corresponding thermodynamic entropy can be calcu-
lated using the entropy weighing function W(ν) for solid and gas
phases. For example, the gas component as a hard sphere system
such that the gas-like weightsWgas(ν) are readily given as a function
of the hard sphere entropy. The DoSgas(ν) term is then calculated by
solving the fluidity term in the gas-like DoS by matching the dif-
fusivity of the system to the Carnahan–Starling equation of state.
Finally, the solid-like weight Wsolid(ν) is assumed to be a harmonic
oscillator : Wsolid(ν) = βh̵ν

exp(βh̵ν)−1 − ln[1 − exp(−βh̵ν)].
This basic approach of 2PT is then applied to the primary

degrees of freedom in the molecular frame in order to decompose
thermodynamic properties into different modal contributions. In
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other words, the overall velocity of molecules can be decomposed
in the same manner,

v(t) = vtrans(t) + vrot(t) + vvib(t). (15)

While the translational velocity corresponds to the center-of-mass
motion, the rotational velocity can be determined from the angu-
lar velocity ω(t) based on the definition of the angular momentum
L = Iω. By inverting the inertia tensor I, one could estimate ω(t),
and then, the angular velocity vrot(t) is computed as vrot(t) = ω(t)
× r(t). Having these two components in hand, the vibrational
velocity vvib(t) is readily obtained as a complement: vvib(t) = v(t)
− (vtrans(t) + vrot(t)). Then, the thermodynamic quantities corre-
sponding to each motion are calculated based on Eq. (14). Assuming
this general decomposition of atomistic velocities, the overall
entropy of the system can be decomposed into translational,
rotational, and vibrational components as118–127

S = Strans + Srot + Svib. (16)

Each entropy component (t ∪ r ∪ v indicating each modal contribu-
tion, respectively) is calculated by

St∪ r∪ v = kB[∫
∞

0
Wt∪ r∪ v

solid (ν)DoS
t∪ r∪ v
solid (ν) + ∫

∞

0
Wt∪ r∪ v

gas (ν)

×DoSt∪ r∪ vgas (ν)dν], (17)

meaning that one must determine Wt∪ r∪ v
solid (ν), DoS

t∪ r∪ v
solid (ν),

Wt∪ r∪ v
gas (ν), and DoSt∪ r∪ vgas (ν). First, translational entropy is

calculated using the center-of-mass velocities to construct the
DoSCOM

liq (ν) and to apply the aforementioned procedures to yield
W COM

solid (ν) andW
COM
gas (ν). For the rotational components, we repeat

the calculation using vrot(t) = ω(t) × r(t). Finally, the vibrational
entropy is computed solely from the solid-like contributions of the
harmonic oscillators.

The partition scheme that 2PT provides as translational, rota-
tional, and vibrational contributions is also consistent with the
partition scheme used in Eqs. (10) and (11). We envisage that
the translational contribution remains the same, while the rota-
tional and vibrational components complement the orientational
entropies. Moreover, the 2PT partition scheme, Eq. (16), allows for
differentiating the missing modes from the coarse-graining proce-
dure. It is worth noting that we recently elucidated the missing
entropies during the coarse-graining process for the single-site CG
model using this framework.128 Here, single-site CGmodels are rep-
resented as the center-of-mass of each molecule, which interact via
isotropic CG pair potentials. At this CG resolution, assessing the
missing entropy ismuchmore intuitive since the CG system has only
translational motions. The entropy representability relationship fur-
ther suggests that the translational components from the FG entropy
remain at the CG resolution, while other entropies from rotation and
vibration are mapped into the approximate CG PMF.128 A theoreti-
cal link between the missing entropy and excess entropy scaling was
first suggested in Ref. 79 using an idea of relative entropy, where it
was postulated that the relative entropy differences are responsible
for differences in dynamics if the scaling relationship in both mod-
els holds with the same scaling exponent. However, in their work,79
this hypothesis was originally suggested for analytically mapping
Lennard-Jones liquids to simple soft-sphere potentials at the same

resolution and was never rigorously verified for actual molecular
systems upon a coarse-graining process.

Despite the 2PT receiving less attention in the literature for
the calculation of excess entropy, a few examples have success-
fully demonstrated its applicability. To our knowledge, employing
the 2PT-based approach for the atomistic liquid systems was first
introduced by Dhabal et al.,107 and then Palomar and Sesé sepa-
rately demonstrated the 2PT-based approach for atomistic dipolar
liquids.129 More importantly, these two distinct efforts were able
to show that the 2PT-based excess entropy reproduces trends as
accurately as from the TI values, thus validating its feasibility in com-
puting excess entropy. Similarly, work from Bernhardt et al. utilized
the 2PT method as an extension of Ref. 128 to obtain the trans-
lational excess entropies in a CG model.81 Both papers illustrated
that the 2PT method could be used to calculate the excess entropy
of the CG system; however, the aforementioned attempts were only
limited to translational motion in the center-of-mass frame. We
note that considering only a translational component to the excess
entropy ignores contributions from other motions at resolutions
finer than the single-site CG, resulting in incorrect scaling relation-
ship and dynamics. The α exponent near 0.38 in Eq. (2) for CG
systems was underestimated as reported in Ref. 81. This value sug-
gests that one needs to fully consider the representative motions
at the CG level. Inspired by this inconsistency, we propose a full
2PT-based approach to calculating the excess entropy beyond the
translational entropy for both the FG and its corresponding CG
systems by addressing entropy representability. While one could
recover the missing entropy values from CG simulations by utiliz-
ing entropy representability,128 here, our intention is to elucidate the
excess entropy differences between the FG and CG systems since
most CG simulations with accelerated CG dynamics do not fully
account for the missing entropy.

Our proposed approach utilizes the same partitioning used in
the 2PT method. That is, we divide the FG system entropy into
translational and angular terms,

S FG
= S FG

trn + S
FG
or = S

FG
trn + S

FG
rot + S

FG
vib. (18)

The first separation in Eq. (18) was from Eq. (10), and thus, the
excess entropy at the FG model becomes

S FG
ex = S

FG
− S(id) = S FG

trn + S
FG
rot + S

FG
vib − (S

(id)
trn + S

(id)
rot + S

(id)
vib ). (19)

Likewise, the entropy of the corresponding single-site CG system
can be formulated as

SCG
= SCG

trn , (20)

where the corresponding excess entropy is solely the translational
contributions from Eq. (19), i.e.,

SCG
ex = S

CG
− S(id) = SCG

trn − S
(id)
trn . (21)

To reiterate, the prior work in the literature has mainly attempted
to employ Eq. (20) to determine excess entropy scaling, but here,
we emphasize that one must also consider S FG

rot + S FG
vib to correctly

address the question of FG scaling.We will demonstrate this method
for two different molecular systems in Secs. III C and III D.
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C. Excess entropy formulation
1. Fine-grained system

From the definition of the excess entropy, the FG entropy
can be obtained from a direct 2PT calculation, whereas the cor-
responding ideal gas entropy term can be written as an analytical
formulation deduced from statistical mechanical theory.130 Despite
the FG resolution, the diffusion behavior is characterized by the tra-
jectories of the mapped center-of-mass of each molecule. Therefore,
the translational entropy must correspond to the single-component
ideal gas, and this term can be readily obtained by employing the
Sackur–Tetrode equation,

s(id)trn =
S(id)trn
NkB

= − ln(
h2

2πmkBT
)

3
2

− ln(
N
V
) +

5
2
. (22)

Even though the translational motions can be extracted from the
center-of-mass entities, the rotational motions also contribute to the
overall entropy of the system at the FG resolution. For an ideal gas,
the rotational partition function for the specific rotational modes at
a temperature Θr has the form

qrot =
8π2IkBT
σh2

=
T
σΘr

. (23)

The characteristic rotational temperatures are related to themoment
of inertia with respect to the principal moments Ir : Θr = h2/8π2kIr .
From the rotational partition function, the corresponding ideal gas
entropy term is given as

s(id)rot =
S(id)rot
NkB

= ln
⎡
⎢
⎢
⎢
⎢
⎣

√
π
σ
(

T3e3

ΘAΘBΘc
)

1
2
⎤
⎥
⎥
⎥
⎥
⎦

, (24)

where the rotations along the x, y, and z axes have rotational tem-
peratures ordered as ΘA ≥ ΘB ≥ Θc with the rotational symmetry
number σ.

The last term in Eq. (19) that corresponds to the vibrational
contributions is computed from the polyatomic vibrational partition
function,

qvib =
Fv
∏
j

e−Θvj /2T

1 − e−Θvj /T
, (25)

where the characteristic vibration temperatures are similarly defined
asΘvj = hvj/k by denoting vj as the characteristic frequency of the jth
vibrational modes. Fv are the remaining degrees of freedom for the
vibrational modes. For our work, Fv = 3N − 6 due to non-linearity.
Altogether, qvib determines the vibrational entropy of the ideal
gas s(id)vib ,

s(id)vib =
S(id)vib
NkB

=
3N−6

∑
j=1
[

Θvj/T
eΘvj/T − 1

− ln(1 − e−Θvj /T)]. (26)

However, vibrational contributions are generally known to be neg-
ligible compared to translational and rotational components. In
particular, for FG water force fields, the oxygen–hydrogen bond is
usually considered rigid. Therefore, the final excess entropy term
used in this work is written as

s FGex = s
FG
−

⎡
⎢
⎢
⎢
⎢
⎣

5
2
− ln(

h2

2πmkBT
)

3
2

−ln(
N
V
)

⎤
⎥
⎥
⎥
⎥
⎦

−ln
⎡
⎢
⎢
⎢
⎢
⎣

√
π
σ
(

T3e3

ΘAΘBΘc
)

1
2
⎤
⎥
⎥
⎥
⎥
⎦

.

(27)
2. Coarse-grained system

Equation (21) is built upon the findings of Ref. 128 that the
single-site CG model has only translational motions. Since the CG
system is constructed under the same condition as the FG system,
we can repeat Eq. (22) for the CG excess entropy sCGex as

sCGex = s
CG
−

⎡
⎢
⎢
⎢
⎢
⎣

5
2
− ln(

h2

2πmkBT
)

3
2

− ln(
N
V
)

⎤
⎥
⎥
⎥
⎥
⎦

. (28)

The CG excess entropy becomes fairly complicated when each
molecule is mapped to more than two CG sites. In principle, one
could include the rotational contribution to the CG excess entropy
by extracting the angular velocity of the CG beads along with the
computed moment of inertia tensor following the 2PT argument.
We will estimate the CG excess entropy of the two-site CG system in
the Appendix.

D. Coarse-grained model
1. CG water model: BUMPer

An accurate bottom-up CG model is designed to capture
important structural correlations in the CG system.8,131–133 Among
a number of bottom-up CGmethods, the multiscale coarse-graining
(MS-CG) methodology is shown to capture up to three-body cor-
relations using only two-body basis sets. Practically speaking, the
MS-CG force fields are fitted to approximate the many-body PMF
using variational force-matching. In this regard, CG water models
often aim to capture three-body correlations in water that originate
from hydrogen bonding.134–136 However, in the force-matched CG
water models, we recently found that the pairwise basis sets fail to
reproduce structural correlations, unlike other simple liquids. An
alternative approach is to utilize the CG water model based on the
Stillinger–Weber (SW) interaction,137 such as the mW model,138 or
the three-body force-matched CG model.139,140 However, having a
three-body interaction would slow down the overall performance
of the CG model, and there have been studies indicating that the
SW-based water model may be problematic for the entropy scaling
due to its many-body nature.64,141,142

The aforementioned drawbacks can be mitigated by employ-
ing our recently developed bottom-up CG model, which we call the
Bottom-Up Many-Body Projected Water (BUMPer) model.143,144

We have shown that the BUMPer CG interaction faithfully corre-
sponds to the CG interaction obtained from many-body projection
theory. In brief, the many-body projection theory stems from the
many-body expansion (MBE) of the CG interaction U(RN

),

U(RN
) =∑

I
∑
J≠I

U(2)(RIJ) +∑
I
∑
J≠I
∑
K>J

U(3)(θJIK ,RIJ ,RIK)

+∑
IJKL

U(4)(θ1, θ2,ϕ) + ⋅ ⋅ ⋅ , (29)

to effectively project higher-order interactions onto lower-order
basis sets, which is similar to the Bogoliubov–Born–Green–
Kirkwood–Yvon hierarchy in liquid state theory.145–149 We applied
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this theory by first performing force-matching up to three-body
interactions140 and then effectively projecting the force-matched
three-body SW interaction U(3)(θJIK ,RIJ ,RIK), which is written as

U(3)(θJIK ,RIJ ,RIK) = λJIK(cos θJIK − cos θ0)2 exp(
γIJ

RIJ − σIJ
)

× exp(
γIK

RIK − σIK
), (30)

onto the pairwise basis sets via

U(RN
) =∑

I
∑
J≠I
{U(2)3b (RIJ) + 2(Nc − 1)∫ dθJIKdRIK

× p(θJIK ,RIK ∣RIJ)U(3)(θJIK ,RIJ ,RIK)}. (31)

In Eq. (31), U(2)3b (RIJ) is the pairwise contribution from the three-
body force-matching, and U(3)(θJIK ,RIJ ,RIK) is the three-body
interaction from Eq. (30). The latter term is projected onto the
pairwise basis sets using the bottom-up conditional probability
p(θJIK ,RIK ∣RIJ) and the coordination number at the first coordi-
nation shell Nc. We will illustrate the physical principles of the
force-matching methodology in Subsection II D 2. From Eq. (31),
we demonstrated that the BUMPer model could faithfully recapit-
ulate the structural correlations of water, such as two-, three-, and
multi-body correlations, while retaining pairwise basis sets at an
inexpensive computational cost.143,144 Thus, we envisage that the
excess entropy scaling relationship will still hold in the CGwater sys-
temwhile recapitulating the structural correlations in water. Readers
are referred to Refs. 143 and 144 for the BUMPer theory and detailed
discussion.

2. CG methanol model
The CG model for methanol is generated by mapping the

methanol molecule to the center-of-mass at a single-site level. Then,
the CG interaction parameters between the methanol CG sites are
parameterized by the MS-CGmethod.150–154 In a practical sense, the
force-matching technique was employed by matching the mapped
FG forces exerted on the center-of-mass fI(RN

) to the CG force
FI(RN

). This is variationally determined by minimizing the force
residual functional χ2[F] defined as

χ2[F] =
1
3N
⟨

N

∑
I=1
∣fI(RN

) − FI(MN
R (r

n
))∣

2
⟩, (32)

where rn and RN denote FG and CG configurational variables linked
by the mapping operator MN

R : rn → RN . Here, fI(RN
) denotes the

microscopic force acting on the set I I of FG particles i that are
mapped into the CG particle I via MN

R , i.e., fI(RN
) = ∑

i∈ II
fi(rn).

Specifically, CG methanol force fields are also spanned over pair-
wise basis sets {ϕ2} as in the CG water force fields. Unlike water,
it has been shown that the pairwise representation of methanol
interactions can sufficiently capture the structural correlations at
a renormalized CG resolution.150,153,155 Hence, the many-body
projection theory accompanied by BUMPer is not needed for
methanol. Instead, we expand the interaction by adopting pairwise
decomposition as follows:

FI(MN
R (r

n
)) = FI(RN

) =∑
J
ϕ2(RIJ) ⋅ êIJ. (33)

In practice, we utilize B-splines to approximate the pairwise basis
sets ϕ2(RIJ) = ∑k ckuk(RIJ)with respect to the unit vector êIJ . There-
fore, Eq. (32) imparts the optimized spline coefficients {ck} that
minimizes χ2[F].

E. Computational details
All simulations in this work were performed by employ-

ing the Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS) MD engine.156–158 The FG and CG systems of
water143,144 and methanol128 were prepared based on our previ-
ous publications. In detail, the water system is composed of 512
molecules, and the methanol system consists of 1000 molecules after
the energy-minimization process.

Atomistic force fields were chosen as follows: SPC/E,159
SPC/Fw,160 TIP4P/2005,161 and TIP4P/ice162 for water and Opti-
mized Potentials for Liquid Simulations/All Atom (OPLS/AA) for
methanol.163,164 The equilibrium system size is chosen from the FG
simulations at 300 K and 1 atm condition. This is done by ini-
tially annealing the relaxed system using constant NVT dynamics
with a Nosé–Hoover thermostat165,166 with τNVT = 0.1 ps for 0.1 ns,
followed by constant NPT dynamics for 1 ns using the Andersen
barostat.167 At the target temperature, we generated the FG tra-
jectories for 5 ns under constant NVT dynamics using the same
settings.

From the NVT trajectories, the effective CG interactions of
BUMPer were parameterized based on Refs. 143 and 144. For
methanol, Eq. (33) was implemented by employing the sixth order
B-splines with a resolution of 0.20 Å. The obtained inner-core inter-
actions were additionally fitted to the A ⋅ R−B form to account
for a poor sampling in the core area.168 Using the parameterized
CG interactions, we ran the CG simulations for analysis under a
constant NVT ensemble with a Nosé–Hoover thermostat165,166

FIG. 1. Schematic diagram describing the correspondence between the FG and
CG dynamics. Dynamical properties are obtained by excess entropy scaling, which
is determined by system entropy using the 2PT-based method in this work (blue).
Our work aims to understand the unknown links (red) to provide a comprehensive
understanding of FG and underlying CG dynamics.

J. Chem. Phys. 158, 034103 (2023); doi: 10.1063/5.0116299 158, 034103-7

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0116299/16698001/034103_1_online.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

for 5 ns. For both FG and CG simulations, we collected the
configurations every 1 ps.

In summary, Fig. 1 shows the schematic flowchart of this paper.
From the FG (atomistic) simulations, we can calculate the overall
entropy and then excess entropy. Applying the Rosenfeld scaling to
the excess entropy, we can link this excess entropy to the dynamical
information. While the same logic applies to the CG system, in this
section, we introduced a new method to calculate the excess entropy
② and revisited the entropy representability relationship between the
FG and CG counterparts ① and ③. The remainder of this paper will
be devoted to examining the suggested theory and methodology.

III. RESULTS AND DISCUSSIONS
A. CG model interaction

Parameterized CG models are shown in Fig. 2. Since the
excess entropy is a function of (number) density and temperature,
Sex = Sex(ρ,T), we fixed the volume from the T = 300 K and
P = 1 atm condition while changing temperature to obtain different
Sex values. The main reason for fixing the volume is to enforce the
constant volume condition for parameterizing the CG interactions.
Since bottom-up CG models identify the many-body CG PMF as
the CG interaction, the effective CG interaction should also be inter-
preted as a free energy quantity.152 In order to consider the changes
in CG PMFs at different temperatures, the CG PMFs were designed

to be temperature transferable under constant volume, where the
pairwise free energy functional can be interpreted as the Helmholtz
free energy (ΔF = ΔE − TΔS):UCG(R) = ΔE(R) − TΔS(R),128,169,170
where ΔE(R) and ΔS(R) denote the pair energy and entropy func-
tional, respectively. In Refs 10, 128, and 155, this notational choice
was discussed in detail. In addition, due to the energy representabil-
ity, ⟨ΔE(R)⟩CG corresponds to the average energy of the FG system,
i.e., ⟨UFG(rn)⟩FG.

171,172

Previously, we have demonstrated that the changes in CGPMFs
over temperature, characterized as ΔUCG(R)/ΔT, remain constant
across different temperature ranges (280–360 K for water143,144

and 250–400 K for methanol128,155), confirming the temperature
transferability of CG models. This linear nature of the temperature-
dependent nature of CG interactions is plotted in Fig. 2. Moreover,
we observe that both liquid CG interactions have double-well inter-
actions. However, in the CGwatermodels, we note a clear separation
between two wells with a repulsive barrier near 3.3 Å, suggesting the
strongly structured pair correlations compared to liquid methanol.
We point the reader to a comprehensive overview and analysis of the
BUMPer CG interactions in Refs. 143 and 144.

B. Diffusion in FG/CG models
From the FG simulations and corresponding CG trajectories at

different temperatures, we computed the self-diffusion coefficients
for water and methanol. The molecular self-diffusion coefficients

FIG. 2. Temperature-dependent effective CG pair interactions for the CG model of (a)–(d) water and (e) methanol. For water, different BUMPer models were constructed
based on the atomistic force field: (a) SPC/E, (b) SPC/Fw, (c) TIP4P/2005, and (d) TIP4P/ice with different temperatures ranging from 280 K (red) to 360 K (blue).
CG methanol models are also constructed for different temperatures from 250 K (blue) to 400 K (red).
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were readily calculated from the center-of-mass mean squared
displacement (MSD),

⟨R2
(t)⟩ := ⟨∣R⃗(t) − R⃗ 0∣

2
⟩ =

1
N

N

∑
I
∣R⃗ I(t) − R⃗ I(0)∣

2. (34)

Thus, from Einstein’s relation, we arrive at the diffusion coefficient
given as

D = lim
t→∞

1
6t
⟨R2
(t)⟩. (35)

We also alternatively calculated D from the Green–Kubo (GK)
formalism using the VACF Cvv(t),173

D =
1
3∫

∞

0
Cvv(t)dt =

1
3∫

∞

0
⟨v⃗(t) ⋅ v⃗(0)⟩dt. (36)

Determination of Cvv(t) and the GK calculation were performed
in the 2PT program suite, where the velocity autocorrelation was
computed by averaging the x-, y-, and z-components of velocity
due to isotropy. Even though both approaches give similar values,
GK diffusion coefficients are relatively larger and less converged due
to the convergence issues of the VACF as reported in the 2PT bench-
mark paper.120 Based on this finding, we herein report the diffusion
coefficients computed from the MSD.

Figure 3 shows the calculated diffusion coefficients of water
and methanol for different FG and CG models at various temper-
ature ranges. We used a range between 280–360 K for water and
250–400 K for methanol. The trend of the diffusion coefficients indi-
cates that the temperature ranges studied here fall into the normal
liquid regime. For both molecular systems, we observe that the FG
diffusivity increases with the temperature as expected, and this trend
is also seen in the CG force fields. For water, this trend is invari-
ant under different choices of FG force fields as well. However, we
note that the FG diffusion coefficients among the four FGmodels are
slightly different. Even though this mismatch stands out in the case
of TIP4P/ice, this can be understood from the fact that TIP4P/ice

(unlike the SPC/E model) was designed to match the melting point
of the ice, not dynamical properties.162

As discussed earlier, the CG dynamics in the Hamiltonian sys-
tem are generally significantly faster than the FG dynamics, and this
acceleration factor is quantified as DCG/DFG. Figure 3(a) indicates
that DCG/DFG of water monotonically decreases as the temperature
increases from 280 to 360 K. Roughly speaking, DCG/DFG falls from
a factor of 8–12 at 280 K to 3–4 at 360 K. This trend seems consis-
tent regardless of the FG force fields, indicating an Arrhenius-like
behavior of the diffusion coefficient for both water and methanol.

In order to perform excess entropy scaling, we rescaled the dif-
fusion coefficient using the elementary or macroscopic units shown
in Eq. (3). Since the CG models and dynamical properties are
obtained under the constant volume condition, the size of the sim-
ulation box was fixed as LH2O = 25.022 Å for water according to
the original paper with N = 512.143,144 With these conditions, we
arrive at the reduced diffusion coefficient of water as a function of
temperature as

D∗ = D
ρ

1
3

(kBT/m)
1
2
= 1.4880 × 104 ×

D
√
T
. (37)

For methanol, the reduced diffusion coefficient was similarly scaled
by the following equation with N = 1000 and LMeOH = 41.30 Å:

D∗ = D
ρ

1
3

(kBT/m)
1
2
= 1.5029 × 104 ×

D
√
T
. (38)

Table I lists the reduced diffusion coefficients for both FG and CG
models at different temperatures.

C. Excess entropy scaling: Water
We next utilized the theory described here to calculate the

excess entropy and then examine the validity of the Rosenfeld scal-
ing for various state points of water. First, the translational entropy

FIG. 3. Diffusion coefficients of water and methanol evaluated for FG (brown bars) and CG (green bars) systems at different temperatures in each column. (a) Water: SPC/E,
SPC/Fw, TIP4P/2005, and TIP4P/ice force fields from 280 to 360 K at 20 K intervals. (b) Methanol: OPLS-AA force field at a temperature range from 250 to 400 K at 25 K
intervals.
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TABLE I. Macroscopically reduced diffusion coefficients of the water and methanol systems at the FG (D∗FG) and CG (D∗CG)
resolutions. For water, we scanned the temperature from 280 to 360 K using four FG force fields and corresponding BUMPer
CG models: (a) SPC/E, (b) SPC/Fw, (c) TIP4P/2005, and (d) TIP4P/ice. For methanol (e), we used a temperature ranging
from 250 to 400 K using OPLS-AA force fields and the corresponding MS-CG model.

Temperature (K) D∗FG D∗CG Temperature (K) D∗FG D∗CG

(a) SPC/E: Water (b) SPC/Fw: Water

280 1.379 × 10−2 1.087 × 10−1 280 1.955 × 10−2 8.349 × 10−2

300 2.152 × 10−2 1.298 × 10−1 300 3.031 × 10−2 1.030 × 10−1

320 3.310 × 10−2 1.280 × 10−1 320 4.022 × 10−2 1.225 × 10−1

340 4.305 × 10−2 1.434 × 10−1 340 4.910 × 10−2 1.314 × 10−1

360 4.797 × 10−2 1.537 × 10−1 360 5.312 × 10−2 1.419 × 10−1

(c) TIP4P/2005: Water (d) TIP4P/ice: Water

280 1.070 × 10−2 8.368 × 10−2 280 5.370 × 10−3 6.757 × 10−2

300 1.812 × 10−2 1.003 × 10−1 300 1.068 × 10−2 8.411 × 10−2

320 2.705 × 10−2 1.247 × 10−1 320 1.567 × 10−2 1.005 × 10−1

340 3.590 × 10−2 1.284 × 10−1 340 2.375 × 10−2 1.156 × 10−1

360 4.864 × 10−2 1.268 × 10−1 360 3.134 × 10−2 1.183 × 10−1

(e) OPLS-AA: Methanol

250 1.354 × 10−2 1.566 × 10−1 350 4.131 × 10−2 2.073 × 10−1

275 2.005 × 10−2 1.736 × 10−1 375 5.207 × 10−2 2.174 × 10−1

300 2.743 × 10−2 1.859 × 10−1 400 5.924 × 10−2 2.095 × 10−1

325 3.427 × 10−2 1.980 × 10−1

of the FG system in an ideal gas description was calculated using
the following constants: N = 512, mw = 18.015 × 10−3 kg, and LH2O
= 25.022 Å, giving

s(id)trn = − ln

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(6.6262 × 10−34m2 kg s−1)
2

2π( 18.015×10
−3kg

6.02214×1023 ) × 1.381 × 10
−23J K−1 × T

⎤
⎥
⎥
⎥
⎥
⎥
⎦

3
2

− ln
⎡
⎢
⎢
⎢
⎢
⎣

512

(25.022 × 10−10m)3

⎤
⎥
⎥
⎥
⎥
⎦

+
5
2
= 1.6787 +

3
2
lnT. (39)

As expected, the final result of Eq. (39) shows that the ideal gas
entropy is only a function of temperature and number density. Next,
we utilized Eq. (24) to calculate the rotational excess entropy of
water. From the characteristic rotational temperatures ΘA = 40.1,
ΘB = 20.9,ΘC = 13.4 K and the C2v symmetry (σ = 2), we arrive at
the following expression:

s(id)rot = −3.2840 +
3
2
lnT. (40)

Combining Eqs. (39) and (40), the final analytical expression is
written as

s FGex = S
FG
− (−3.2840 +

3
2
lnT) − (1.6787 +

3
2
lnT). (41)

Figure 4(a) plots s FGex over lnD∗FG for different FG force fields. Before
examining the scaling behavior, we first verified that the 2PTmethod
provides physically reasonable excess entropy values. In other words,
for all the data points shown in Fig. 4(a), we confirmed that sextrn ∣FG
= s FGtrn − s

(id)
trn < 0 and sexrot ∣FG = s

FG
rot − s

(id)
rot < 0, suggesting a well-

defined excess entropy.
It is immediately evident that the linear scaling relationship

is satisfied in water regardless of the force field or temperature. In
particular, this scaling relationship is given by

lnD∗FG = 0.73 × s
FG
ex + 2.15. (42)

We note that this exponent is slightly different from the original
exponent from Rosenfeld because the original Rosenfeld scaling
was computed for the translational component of the system, lack-
ing configurational effects. We believe that this deviation is due to
the contribution from the local configurational ordering of water,
especially rotational motions.

In order to verify the universality of the scaling relationship
between FG and CG systems, we compared sCGex over lnD∗CG in
Fig. 4(b). This is done by calculating the CG excess entropy from
translational contributions,

s(id)trn ∣CG = 1.6787 +
3
2
lnT. (43)
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FIG. 4. Examination of the Rosenfeld scaling in water. (a) FG scaling relationship where the SPC/E (red circle), SPC/Fw (green triangle), TIP4P/2005 (blue diamond),
TIP4P/ice (purple pentagon) models fall into a linear scaling relation shown in Eq. (42) (red dashed line). (b) CG scaling relationship using the BUMPer CG model by
parameterizing different force fields. Similarly, a linear excess entropy relationship is obtained (blue dashed line) from Eq. (43). (c) Overall comparison between the FG (red
circle) and CG (blue circle) water models. Note that the slope (exponent) of the FG scaling (red dashed line) is identical to that of the CG scaling relation (blue dashed line),
while only the y-intercept is different.

As expected, we find that sextrn ∣CG = s
CG
trn − s

(id)
trn < 0 in the CG system

as well. Surprisingly, we still see a linear dependency given by the
following relation:

lnD∗CG = 0.7 × s
CG
ex − 0.35. (44)

The exponent α obtained from the FG and CG seems slightly dif-
ferent at first glance. Our finding here shows different results with
respect to the previous work for the diffusion of the FG and CG
water systems.78 In this previous effort, the authors used theDzgutov
scaling [Eq. (4)] instead of the Rosenfeld scaling [Eq. (2)] to obtain
a dimensionless diffusion coefficient. As discussed earlier, Eq. (4)
was primarily derived for hard sphere diffusion processes only using
pairwise entropy information, which does not hold for water due to
hydrogen bonding and large contribution beyond pairwise contribu-
tions. In addition, while Ref. 78 aimed to compute the orientational
entropy based on Refs. 108–112, the computed orientational entropy
by sampling various angular configurations may pose a convergence
issue.116,117 We believe that these factors in Ref. 78 result in dif-
ferent scaling exponents for FG and CG water, αFG = 0.594 and
αCG = 2.373, which significantly deviate from the conventional
Rosenfeld scaling relationship. More importantly, an overestimated
CG exponent value of about eight times indicates that the accu-
rate estimation of excess entropy with a correct scaling scheme is
necessary for CG systems. By including all contributions to the
entropy with a more accurate scaling relationship as done here, we
instead conclude that both FG and CG systems have almost identical
scaling relationships, where both exponents also correspond to the
range of conventional Rosenfeld scaling. This trend is pronounced in
Fig. 4(c), where both FG and CG data points follow nearly identical
slopes.

At this point, a natural question arises in terms of differences
in lnD∗. As envisaged, the CG system has a larger excess entropy
(closer to zero) because the CG system does not have rotational

excess entropy. Note that excess entropy is always less than zero, and
thus, having a less negative value contributes to near positive values
(the differences between these entropies will be discussed in Sec. III
E). Indeed, it would be of great interest if this agreement between
αFG = αCG still holds in other molecular systems to confirm a general
correspondence.

D. Methanol
Given the same scaling behavior obtained in the FG and

CG water systems, we now examine the excess entropy scaling of
methanol. For the atomistic (FG) methanol, both translational and
rotational degrees of freedom contribute to the entropy (vibra-
tional modes are negligible). Using the Sackur–Tetrode equation,
the translational entropy of the ideal gas corresponding to the
center-of-mass is given as

s(id)trn = − ln

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(6.6262 × 10−34m2 kg s−1)
2

2π( 32.042×10
−3kg

6.02214×1023 ) × 1.381 × 10
−23J K−1 × T

⎤
⎥
⎥
⎥
⎥
⎥
⎦

3
2

− ln
⎡
⎢
⎢
⎢
⎢
⎣

1000

(41.30 × 10−10m)3

⎤
⎥
⎥
⎥
⎥
⎦

+
5
2
= 3.3764 +

3
2
lnT. (45)

The rotational partition function of methanol is relatively difficult
to construct since it requires an actual measurement of the molecu-
lar data in the mm to sub-mm wavelength regime. Fortunately, we
found the experimental observable, giving the rotational frequency
B = 4.257 30, 0.823 38, and 0.792 73 cm−1.174 Converting B to the
characteristic rotational temperatures using

ΘR =
hcB
kB
= 1.439 × B (46)
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results in ΘR = 6.125, 1.185, and 1.140 K. Substituting these ΘR
values in Eq. (24) gives the final expression for the rigid rotor,

s(id)rot = −0.08295 +
3
2
lnT. (47)

Altogether, we finally arrive at the excess entropy expression for
methanol,

s FGex = s
FG
− (−0.08295 +

3
2
lnT) − (3.3764 +

3
2
lnT). (48)

Figure 5(a) delineates the scaling relationship in the FG methanol.
Remarkably, one obtains a linear relationship in the methanol
system as well, given by

lnD∗FG = 0.65 × s
FG
ex + 0.62. (49)

As discussed above, we note differences in α FG
H2O and α FG

MeOH due
to different rotational and translational contributions. However, as
long as α FG

MeOH is close to αCG
MeOH, our universality hypothesis remains

valid.
To assess αCG

MeOH, we apply a similar procedure to CGmethanol
by only accounting for the translational degrees of freedom,

s(id)trn ∣CG =
S(id)trn
NkB

∣CG = 3.3764 +
3
2
lnT. (50)

An overall trend observed in the CG systems is illustrated in
Fig. 5(b), and a slight discrepancy observed in 400 K can be under-
stood from the atomistic trend depicted in Fig. 3. Nevertheless, we
find linearity over a wide range of temperatures from 250 to 400 K
in the following form:

lnD∗CG = 0.65 × s
FG
ex − 0.84. (51)

In other words, we conclude here again α FG
MeOH = α

CG
MeOH, as can be

seen in Fig. 5(c). The universality of α for methanol was further
tested by checking if the same scaling relationship will hold for dif-
ferent resolutions. Based on the two-site CG mapping studied in
Ref. 175, a two-site CGmethanolmodel was constructed bymapping
CH3– and OH– atoms to CG sites. In this CG model, the CG excess
entropymust consider additional rotational and vibrational motions
along the C–O bond, i.e., Eqs. (45)–(48). Interestingly, Fig. 9 in the
Appendix clearly demonstrates that two-site CG methanol also fol-
lows the nearly identical scaling relationship as the single-site model,
confirming our perspective on universality.

To conclude, we have discovered through an analysis of water
and methanol that the excess entropy scaling relationship holds
for both the FG and CG systems. More importantly, a universal-
ity relationship for simple liquids was elucidated for the first time
that, given the same molecular system, the exponent (or slope in
lnD∗) from the scaling relationship remains invariant during the
coarse-graining process. That is, αFG = αCG, indicating that the scal-
ing relationship is intrinsically related to the underlying nature of
the molecule, and thus, it is still captured in the “bottom-up” CG
models. Given the accelerated diffusion coefficient in the CG sys-
tem, a relevant question is to then explicitly relate the CG diffusion
coefficient to its FG analog in the scaled form.

E. Relationship with mapping entropy
From Eqs. (5) and (6), the differences in diffusion coefficient

between the FG and CG levels are due to two factors in the scal-
ing relationship: D0 and Sex. The differences between the S FG

ex and
SCG
ex terms can be clearly understood from the coarse-graining pro-
cess. Since less important degrees of freedom are integrated out

FIG. 5. Examination of the Rosenfeld scaling in methanol. (a) FG scaling relationship over different temperatures from 250 K (bottom, left) to 400 K (top, right) fall into
a linear scaling relation shown in Eq. (49) (red dashed line). (b) CG scaling relationship using the CG methanol model. Similarly, a linear excess entropy relationship is
obtained (blue dashed line) from Eq. (50). (c) Overall comparison between the FG (red circle) and CG (blue circle) methanol models. Note that the slope (exponent) of the
FG scaling (red dashed line) is identical to that of the CG scaling relation (blue dashed line), while only the y-intercept is different.
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FIG. 6. The present understanding of
FG/CG dynamics in terms of excess
entropy scaling. With an identical excess
entropy scaling confirmed in this work,
fast dynamics observed in the CG model
can be understood from the mapping
entropy S FG

conf and from different D0
values.

during the bottom-up coarse-graining process, the configurational
entropy of the resultant CG model is reduced compared to the
reference configurational entropy at the FG level. As discussed
above, for the single-site CG model, this missing entropy, known
as “mapping entropy,” corresponds to the motions “beneath” the
CG resolution: in this case rotation and vibration.128 Figure 6 sum-
marizes our understanding of the CG excess entropy scaling rela-
tionship with respect to the one obtained from the FG model. By
decomposing the overall entropy into its underlying modes, it is evi-
dent that the motions observed in the CG dynamics are fully from
translational motions SCG

= SCG
trn , corresponding to the translational

entropy at the FG resolution SCG
trn . In other words, the differences in

the excess entropy terms are primarily from the S FG
conf term, impor-

tantly, indicating that one can adjust the CG entropy term with
respect to the FG model to rescale the diffusion behavior.

IV. CONCLUSIONS
In this paper, we have elucidated the accelerated dynamical

properties in CG fluid systems compared to the reference FG sys-
tem by introducing an excess entropy scaling. While various studies
have focused on the excess entropy in order to understand the FG
dynamics, relatively less attention has been given to CG systems.
However, based on the observation ofmissingmotions in a given CG
model and their corresponding contributions to the excess entropy,
we assert that the excess entropy scaling can help to understand the
speed-up of the CG dynamics. By combining the 2PT method and
taking into consideration the orientational contributions, we were
able to propose a comprehensive approach to computing the excess
entropy for CG systems and the corresponding FG systems. Unlike
other conventional approaches, we utilize the 2PT-based decompo-
sition of molecular motions for the translational, vibrational, and
rotational contributions as this method has been shown to quantify
the missing entropy during the coarse-graining process. By taking
the ideal gas entropy from the Sackur–Tetrode equation for trans-
lation and using a rigid rotor entropy for rotation, we derived the
excess entropy scaling behavior for both water and methanol at the
atomistic (FG) level. By extending this approach to the CG sys-
tems, we observed that the same scaling behavior exists with an

identical scaling exponent for each molecular system. To our knowl-
edge, this finding corroborates the universality and invariance of
the excess entropy scaling under the coarse-graining process for
liquid molecules studied in this work. Our finding also substantiates
an earlier claim from Ref. 79 that proposed a connection between
relative entropy differences and the dynamical behavior of liquids.
Furthermore, the present theory proposes an alternative approach
to accurately calculate the excess entropy for any molecular sys-
tem and the corresponding CG model as long as one can construct
ideal gas partition functions from known structural parameters. This
requires a faithful construction of bottom-up CG models by con-
sidering the correct modal contribution to the excess entropy at the
given resolution.

Combining these pieces together, the present theory enables
one to link the missing (or mapping) entropy with the faster CG
dynamics followed by the identical scaling behavior as in the FG
model. By correcting the missing entropy to CG systems, introduc-
ing the rotational entropies from the FG model would further lower
the excess entropy since S(rot)ex < 0, resulting in slower CG dynam-
ics. Hence, if the D0 value for the FG model is known, it is possible
to rescale the accelerated CG dynamics to the FG dynamics value
by correcting the mapping entropy due to the coarse-graining fol-
lowing the formulation in Ref. 128 and adjusting DCG

0 to D FG
0 . We

further applied this idea to CG water systems in Fig. 7, where the
recovered FG diffusion coefficients from CG dynamics D corr

CG show
almost identical values as the original FG diffusion with an error
of 4.5% for SPC/E, 2.1% for SPC/Fw, 5.7% for TIP4P/2005, and
2.4% for TIP4P/ice. We note that a similar approach was recently
suggested by Rondina et al. for rescaling dynamics at different CG
resolutions of Lennard-Jones chains of polymers using the Dzugutov
scaling.80

Nevertheless, for complex molecules governed by the Rosen-
feld scaling, the ad hoc nature of D0 and alpha values are a current
bottleneck to bridge dynamics between the FG and CG dynam-
ics. To elaborate more on this viewpoint, Fig. 8 demonstrates that
the corrected CG diffusion coefficient and reference FG diffusion
coefficient simply based on the excess entropy differences do not
completely agree with each other due to the difference in the D0
terms. Despite having the same scaling exponent, we see differences
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FIG. 7. Corrected diffusion coefficients of water (yellow bars) from CG (green bars),
given the FG scaling intercept D FG

0 . Note that the rescaled CG diffusion coefficients
can reproduce the original FG diffusion coefficients (orange bars). Four force fields
from 280 to 360 K at 20 K intervals are considered.

in the D0 values (which we think of as an “entropy-free” diffu-
sion coefficient) between the FG and CG models. Thus, a better
understanding of the physical meaning and origin of the D0 term,
as well as their excess entropy difference, is required.

Nevertheless, the phenomenological foundations of the scaling
behavior limit further theoretical analysis of theD0 term for both the
FG and CG systems. Even though the FG dynamics involve compli-
cated coupled motions with different time scales, the single-site CG
resolution can integrate these extraneous motions out, leaving the
translational motions only. Thus, in order to systematically better
understand the meaning ofD0 and to develop approaches for its cal-
culation, it may be physically sound to approximate the reduced CG
dynamics as hard sphere dynamics. This approach is pursued further

FIG. 8. Excess entropy scaling (dashed lines) of water for FG (red dots) and CG
systems (blue dots) and after adjusting the mapping entropy to the CG model
(sky blue dots).

in Paper II of this series with the goal of providing a more complete
description of the CGmodel diffusion based on the universal scaling
law between the CG and FG systems of fluids as uncovered in this
paper.176
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APPENDIX: TWO-SITE CG METHANOL MODEL

The two-site CG model for methanol was constructed by fol-
lowing the same procedures described in Ref. 175. First, the CG
sites were determined by mapping CH3– and OH– atoms to the
center-of-mass of each group. Parameterization settings for non-
bonded interactions were kept identical to the single-site case, while
the bonded interaction was described by the fourth order B-splines
with smaller spacing (0.025 Å). After parameterizing the two-site CG
methanol model from MS-CG, the same simulation protocol was
used to run CG simulations at different temperatures as in Fig. 5.
The excess entropy scaling was accessed by computing the addi-
tional rotational and vibrational motions remained at the two-site
CG level. In Fig. 9, we observe that the fitted slope of the two-site
CG model differs by a value of 0.009 compared to the single-site CG
scaling relationship. Hence, we believe that the two-site CG model
also follows the nearly identical scaling exponent as the single-site
CG model, indicating that the scaling relationship is invariant for
methanol under different resolutions.
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FIG. 9. Rosenfeld scaling for CG methanol at different resolutions. Results from the
one-site CG model (blue circles) and a linear relationship from Fig. 5 (blue dashed
line) were directly on top of the results from the two-site CG model (green circle).
Differences between the fitted slopes and y-intercept for two CG resolutions are
obtained as 0.009 and 0.03, respectively, and are deemed negligible.
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