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ABSTRACT
The first paper of this series [J. Chem. Phys. 158, 034103 (2023)] demonstrated that excess entropy scaling holds for both fine-grained and
corresponding coarse-grained (CG) systems. Despite its universality, a more exact determination of the scaling relationship was not possible
due to the semi-empirical nature. In this second paper, an analytical excess entropy scaling relation is derived for bottom-up CG systems.
At the single-site CG resolution, effective hard sphere systems are constructed that yield near-identical dynamical properties as the target
CG systems by taking advantage of how hard sphere dynamics and excess entropy can be analytically expressed in terms of the liquid pack-
ing fraction. Inspired by classical equilibrium perturbation theories and recent advances in constructing hard sphere models for predicting
activated dynamics of supercooled liquids, we propose a new approach for understanding the diffusion of molecular liquids in the normal
regime using hard sphere reference fluids. The proposed “fluctuation matching” is designed to have the same amplitude of long wavelength
density fluctuations (dimensionless compressibility) as the CG system. Utilizing the Enskog theory to derive an expression for hard sphere
diffusion coefficients, a bridge between the CG dynamics and excess entropy is then established. The CG diffusion coefficient can be roughly
estimated using various equations of the state, and an accurate prediction of accelerated CG dynamics at different temperatures is also possi-
ble in advance of running any CG simulation. By introducing another layer of coarsening, these findings provide a more rigorous method to
assess excess entropy scaling and understand the accelerated CG dynamics of molecular fluids.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0116300

I. INTRODUCTION

Coarse-grained (CG) models facilitate efficient computational
studies compared to conventional atomistic, or fine-grained (FG),
simulations.1–10 By averaging away the presumed unimportant
degrees of freedom, CG simulations can explore much larger spa-
tiotemporal scales of the molecular systems of interest. Among
various CG approaches, bottom-up CG models are designed to
approximate the many-body potential of mean force (PMF) from
FG simulations. In practice, relatively short FG simulations are
required to construct CGmodels to represent themany-dimensional
PMF for the given system correctly. Even though important static
(e.g., structural) correlations can be captured by employing accurate

conservative interactions between the CG particles,7,11–14 designing
a CG model with only conservative interactions may not capture
dynamic properties correctly. This is due to the missing fluctua-
tion and dissipation forces present at the FG resolution. Therefore,
in Hamiltonian mechanics, CG diffusion is often accelerated com-
pared to the reference data from atomistic simulations, and it is
of great importance to systematically rationalize different diffusion
behaviors between FG and CG models.

To date, a number of theories have been put forth in an
attempt to understand the accelerated dynamics and to correct
for these faster time scales in CG models. These efforts range
from the application of the Mori–Zwanzig formalism15–33 to time-
rescaling approaches,34–39 all for specific goals governed by different
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equations of motions. Readers are referred to Refs. 40 and 41 for
a detailed review of possibly dynamically consistent CG models
and the introduction section of the preceding paper42 in this series
(hereafter referred to as “Paper I”). To note, the Mori–Zwanzig
projection operator formalism allows for a rigorous description of
the CG dynamics as a form of the Generalized Langevin Equa-
tion (GLE).43–46 Combining the time-rescaling and Mori–Zwanzig
approaches, Lyubimov and Guenza developed the dynamical recon-
struction approach for polymers.47–49 In dynamical reconstruction,
the acceleration factor due to coarse-graining can be analytically
estimated by considering atomistic polymers as a bead-and-spring
and the CG representation as a soft-colloid representation. In detail,
by adopting several approximations based on polymer physics, the
effective friction coefficients for both FG and CG systems can be
further reduced into a tractable form with an analytical acceleration
factor. However, such a simplified description usually does not apply
to complex atomistic systems. Furthermore, a practical utilization of
the Mori–Zwanzig formalism is numerically challenging and seem-
ingly intractable for general molecular systems due to the complex
nature of frictional forces.16,50

As an alternative to other existing approaches, in this series, we
aim to leverage an apparently quasi-universal relationship in nor-
mal (not supercooled) liquids known as excess entropy scaling51–54

to understand the accelerated dynamics in CG models and their
relationship with the corresponding FG dynamics. In Paper I, we
discovered that FG and CG systems follow an identical excess
entropy scaling relationship with the same exponent for the same
molecule in the FG and corresponding CG models.42 Even though
this finding uncovered a universality in the scaling relationship at
the CG level with respect to its FG system, a complete understand-
ing of the accelerated CG dynamics in relation to the FG dynamics
was not possible because the excess entropy scaling relationship is
intrinsically empirical and semi-quantitative.

One end goal would therefore be to more rigorously derive an
exact analytical form of the scaling relationship from a systematic
theory to link dynamic properties with the excess entropy. Hav-
ing an analytical expression for excess entropy scaling, one can
explicitly deduce the effective acceleration due to coarse-graining.
Despite statistical mechanical efforts based on the mode coupling
theory55–57 and Boltzmann’s formula,58 a complete derivation of the
excess entropy scaling relationship for molecular systems at the FG
resolution is very challenging since FG systems exhibit complicated
dynamics as different molecular motions and degrees of freedom are
coupled. However, these complications are considerably reduced at
the CG resolution. Especially, at the single-site CG model, where
eachmolecule is mapped to its center-of-mass as the CG site, degrees
of freedom other than translation are integrated out, resulting in
single-site CG translational dynamics.42

In this second paper of the series, i.e., Paper II, we focus
solely on understanding the full CG dynamics and determining the
excess entropy scaling relationship at the single-site CG resolution
as the first step toward establishing accurate dynamic correspon-
dence between the FG and CG dynamics. Taking a step further
from the CG viewpoint, we investigate this dynamical behavior
through an even more simplified lens: the hard sphere reference
fluid point of view.59–62 Specifically, we treat the CG system as
an effective hard sphere fluid. Even though the hard sphere sys-
tem is characterized by an infinite repulsive interaction below

the contact distance with zero attraction, an extension to molec-
ular CG systems that have more complex interaction poten-
tials is conceivable. Seminal works on classical equilibrium
perturbation theories of liquids by Zwanzig,63 Barker–Henderson
(BH),64,65 and Weeks–Chandler–Andersen (WCA)66–68 suggest that
the short-range repulsive interaction determines the structure in
non-associated dense liquids, while the attractive longer-range inter-
action of any real single-site simple fluid gives a uniformly cohesive
background that effectively cancels the effect of the surround-
ing molecules in a dense fluid; this characteristic is known as
“force cancellation.”69 Based on theoretical developments supported
by computer simulations,70,71 hard sphere models have played an
important role in describing static and dynamic properties of real
dense liquids at the atomistic resolution using analytical expressions.
Nevertheless, it remains unexplored where such a hard sphere treat-
ment can be readily applied to bottom-upmolecular CGmodels, and
the case of strongly associated water is likely the most challenging
system.

This study presents a comprehensive, systematic approach for
representing molecular CG models via a much coarser hard sphere
description. By design, a minimalist hard sphere model of CG sys-
tems is appealing due to not only the simplicity of representation
at the CG resolution but also the spherically symmetric nature of
the CG interaction, especially at a single-site resolution. Since this
inherent simplicity of hard spheres allows the dynamic processes to
be analytically determined, the key idea of the present work is to
design a dynamically consistent hard sphere mapping theory that
can reasonably estimate CG dynamics.

Classical thermodynamic and related perturbation theories
serve as a theoretical basis for constructing a hard sphere mapping
to predict equilibrium structure, yet conventional mapping schemes
(e.g., the BH treatment) may be limited in their ability to faith-
fully capture dynamic properties. Indeed, conventional approaches
typically assume attractions do not change structure, and the map-
ping relates a hypothetical, purely repulsive force reference fluid to
an effective hard sphere fluid. In contrast, here we propose a map-
ping procedure we call “fluctuation matching” that is not tied to the
precise form of the intermolecular potential of the real system of
interest, which contains both repulsive and attractive interactions,
but rather is based on the amplitude of long wavelength collective
thermal density fluctuations that is rigorously related to a thermo-
dynamic property. This new methodology is directly inspired by
the recent theoretical work on the activated dynamics of polymer
and supercooled liquids by Schweizer and co-workers.72–77 Specifi-
cally, the dimensionless compressibility, because it is directly related
to the amplitude of long wavelength density fluctuations, has been
argued to be a natural quantity to base a mapping on for the
purpose of understanding dynamic barriers and activated struc-
tural relaxation times in supercooled molecular, polymer, and other
glass-forming liquids under isobaric conditions.72–77 We are thus
motivated to apply this idea to the higher temperature regime of
normal (or ambient) molecular liquids at the CG level. Our focus
is to build a bridge between CG dynamics and excess entropy scal-
ing in a dynamical regime not dominated by strongly activated
processes.

Based on a hard sphere system described by a packing frac-
tion or effective hard sphere diameter (EHSD), we derive here an
analytical expression of the diffusion coefficient using elementary
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kinetic theory. The two main theoretical findings are described in
Sec. II. Combined with the excess entropy scaling formalism, we
arrive at an analytical form of the entropy-free diffusion coefficient
for the CG resolution. We evaluate this quantity by approximat-
ing hard sphere systems using various well-known equations of
state (EOSs). Comparisons to the reference diffusion coefficient
obtained from molecular simulations in Paper I42 are presented
in Sec. III. Section IV concludes Paper II and lays the founda-
tion to resolve unaddressed questions for the next paper of the
series.

II. THEORY

A. Excess entropy scaling for CG systems
We introduced the concept of excess entropy scaling and

discussed its universality in molecular systems upon the coarse-
graining process in Paper I, and we briefly summarize the important
findings here. The excess entropy is defined as the entropy difference
between the system S(ρ,T) and its corresponding ideal gas under the
same temperature and density conditions Sid(ρ,T) given by

Sex = Sex(ρ,T) := S(ρ,T) − Sid(ρ,T). (1)

In order to quantify the quasi-empirical relations between
dynamic properties and excess entropy, two different scaling
schemes have been proposed in the literature. The first scheme
that links the dynamic property, here the self-diffusion coefficient
D, to the molar excess entropy sex = Sex/NkB was suggested by
Rosenfeld,51–53

D∗ = D0 exp(αsex), (2)

where the reduced diffusion coefficient is scaled by “macroscopic”
quantities (involving density, temperature, mass),

D∗ = D
ρ

1
3

(kBT/m)
1
2
. (3)

On the other hand, an alternative scaling scheme has been
suggested using a microscopic description by Dzugutov,54

D∗Z = D
0
Z exp(s(2)ex ), (4)

where s(2)ex is the molar pair excess entropy and is different from
the full excess entropy sex in Eq. (2). In the Dzugutov scaling, the
diffusion coefficient is reduced based on dynamic caging,

D∗Z =
D

σ2ΓE
=

D
σ2
⋅

1

4πσ2ρg(σ)
√

kBT
πm

, (5)

where σ denotes a contact distance, and ΓE = 4πσ2ρg(σ)
√
kBT/πm

is the Enskog collision frequency. Equation (5) uses the hard sphere
Enskog frequency to scale the diffusion coefficient, as Eq. (4) is
derived from the hard sphere system, which certainly is not as
realistic as the true molecular system. Due to this assumption, we

discovered that the Rosenfeld scaling imparts a more general rela-
tionship, thus making it more relevant for linking the FG and CG
systems. Comparisons between the two scaling schemes can be
found in Paper I.42

In Paper I,42 using Eq. (2), we discovered that FG water
(SPC/E, SPC/Fw, TIP4P/2005, and TIP4P/Ice) and CG water
models (see Sec. II G for detail) follow the Rosenfeld relation-
ship with near-identical slopes, i.e., D∗FG = D

FG
0 exp(α FGs FGex ) and

D∗CG = D
CG
0 exp(αCGsCGex ), with respect to the excess entropy,

ln D∗FG = α
FGs FGex + ln D FG

0 = 0.73 × s
FG
ex + 2.15, (6)

ln D∗CG = α
CGsCGex + ln DCG

0 = 0.7 × sCGex − 0.35. (7)

We note that Eqs. (6) and (7) hold regardless of the choices of
force fields for water at different temperatures and densities, indi-
cating the invariant nature of the scaling relationships under the
same molecular condition. Since the differences in the sex terms
can be explained by information loss,78 i.e., missing configurational
entropies upon coarse-graining,79 being able to elucidate theD0 vari-
able and its underlying difference between the FG and CG systems
can help to bridge the gap between the FG and CG descriptions
of center-of-mass diffusion. Due to the complexities at the FG res-
olution and an absence of rigorous theory for deriving the excess
entropy scaling relationship, our primary goal here is instead to
understand the physical meaning ofDCG

0 , which is hereafter denoted
as the “entropy-free” diffusion coefficient at the CG resolution:
ln DCG

0 = −0.35 for CG water.

B. Hard sphere mapping: General framework
An analytical expression of D0 for the given CG system

is obtained through three steps. Figure 1 illustrates a schematic
diagram of the hard sphere mapping procedure.

FIG. 1. Schematic diagram describing the overall procedure of this work: (1) Map a
given CG system to an effective hard sphere system. This step gives an EHSD or
packing fraction of the CG model. (2) From the EHSD or packing fraction, derive an
analytical expression for the diffusion coefficient of the hard sphere system. Since
the hard sphere diffusion process can be correctly described by the Dzugutov
scaling if the packing fraction is not too high, this step is done on the basis of the
Dzugutov relationship. (3) From the hard sphere diffusion coefficient expression,
infer the D0 term in the Rosenfeld scaling of the original CG system.
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We first map the CG system to the corresponding hard sphere
system. Since the dimensionless static or dynamic properties of lit-
eral hard spheres are completely described by their packing fractions
η, the first step is to determine values of η that can reproduce the
important properties of the reference CG system. Conventionally,
one assumes the number density is known, and this involves deter-
mining the EHSD, σ. Then, η is readily obtained from the EHSD by
the following relationship:

η =
π
6
σ3ρ =

π
6
σ3

NCG

V
, (8)

where the system volume V is identical to that of the CG system
composed of NCG particles. However, determining σ may not be the
only way to construct a dynamically consistent effective hard sphere
fluid. In Sec. II E, we introduce a simpler approach that allows for
directly mapping η.

Once the hard sphere packing fraction is determined from a
mapping, the diffusion coefficient of the specific hard sphere sys-
tem can be straightforwardly calculated using the hard sphere kinetic
theory. Since we are dealing with themapped hard sphere system, we
first revisit the Dzugutov scaling scheme. Unlike generally complex
FG systems, the Dzugutov scaling is valid only for hard sphere sys-
tems. Thus, our ultimate goal is to analytically derive theD0 term for
the original Rosenfeld scaling scheme by introducing what we per-
ceive as a dynamically consistent hard sphere reference as a proxy,
where its fundamental quantities can be analytically derived using
the Dzugutov scaling. Altogether, we build a dynamical correspon-
dence between the CG and hard sphere fluids (Step 1 in Fig. 1) in
order to analytically derive the D0 expression in the hard sphere sys-
tems (Step 2 in Fig. 1) and transferD0 back to the original CG system
(Step 3 in Fig. 1).

To calculate the static and dynamic properties of a hard sphere
fluid, one must carefully choose the proper EOS. By definition,
an EOS is an analytical relationship among pressure, volume, and
temperature, often given in terms of the compressibility factor Z,

Z = P
ρkBT

, (9)

where Z is a function of η. To accurately represent P(ρ,T) over a
range of ρ and T, an EOS is often obtained by accurately fitting to
the computed values of the virial EOS,

Z(ρ) = 1 + B2ρ + B3ρ2 + ⋅ ⋅ ⋅ = (1 +
∞

∑
k=2

Bkρ
k−1
), (10)

or in terms of η as

Z(η) = 1 + 22η + b3η2 + b4η3 + ⋅ ⋅ ⋅ = 1 + 4η +
∞

∑
k′=3

bk′η
k′−1, (11)

where the virial coefficient is rescaled as bk := ( π6 σ
3
)
1−kBk in three

dimensions. The particular choice of the analytic form for the EOS
is vital for applying the perturbation theory and calculating various
thermodynamic quantities of interest,80–83 even for systems exhibit-
ing non-negligible attractive interactions. While classical liquid state
theory asserts that such a hard sphere description cannot be directly
applied at the microscopic level to associated liquids characterized

by strong specific attractions (e.g., water), the goal of this paper is to
demonstrate how this minimalist description can still work rather
well for molecular CG models based on the mapping formulated
for the problem of supercooled molecular liquid relaxation.72–77

A detailed discussion of this practical extension will be given in
Sec. II E.
C. Conventional hard sphere mapping:
Barker–Henderson criterion

Classical perturbation theories of atomic or molecular (at the
interaction site level) liquids treat pair interactions by separating the
short-range repulsions as a hard sphere reference and the long-range
interactions as a perturbation (often attractions), assuming that the
structure (and sometimes the dynamics) of the liquid is determined
by the repulsive interactions. With this in mind, for a system with
soft-core repulsive interactions as relevant to our CG model, an
accurate estimation of the EHSD is needed to calculate the static and
dynamic properties of the corresponding hard sphere model. In this
light, various free energy perturbation theories have been developed
based on different criteria to determine the EHSD. To name a few,
BH64,65 and WCA66–68 theories are two frequently used approaches.

Barker and Henderson proposed the first perturbation the-
ory for simple Lennard–Jones systems. In brief, the short-range
repulsive potential [positive part of the overall potential U(R)] was
mapped to a hard sphere reference, and attractive long-range terms
were treated as a perturbation.64,65 At leading order, the simplest BH
EHSD was then defined as

σBH = ∫
R0

0
[1 − exp(−βU(R))] ⋅ dR, (12)

where R0 is the distance where the interaction vanishes, i.e.,
U(R0) = 0. In this work, we use the many-body CG PMF from
our prior work to determine the BH EHSD, which is different
from the original work, where it corresponds to the Lennard–Jones
interaction ULJ(R).
D. Weeks–Chandler–Andersen criterion
and its drawbacks

The well-knownWCA perturbation theory starts from an alter-
native, physically motivated separation method based on the sign of
forces (positive or negative) rather than interaction energies.66–68 In
doing so, theWCA perturbation theory provides a smoothly varying
first-order perturbative treatment of free energies. The WCA EHSD
criterion is derived by approximating the cavity correlation func-
tion of the reference system yHS(R) := g(R) exp(βU(R)) as that of
the hard sphere system, i.e., equating the long wavelength responses
in Fourier space between the hard sphere and the purely repul-
sive force from reference system.68 Mathematically, this require-
ment is provided by the static structure factor in Fourier space
given by

S(k⃗) =
1
N
⟨ρ(k⃗)ρ(−k⃗)⟩, (13)

where ρ(k⃗) = ∑N
j exp(ik⃗ ⋅Ð→rj ). Alternatively, for isotropic (sphere-

like) systems, Eq. (13) can be rewritten in terms of the radial
distribution function (RDF) as
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S(k) = 1 + 4πρ∫
∞

0
dRR2 sin(kR)

kR
[g(R) − 1]. (14)

In the k = 0 limit, the structure factor reduces to

S(k = 0) = 1 + 4πρ∫
∞

0
drR2
[g(R) − 1]. (15)

Therefore, based on the WCA separation of the pair potential, the
EHSD of the effective hard sphere fluid that best captures the behav-
ior of the purely repulsive fluid is determined by matching the
S(k = 0) (dimensionless compressibility) quantities,

∫

∞

0
yHS(R; σWCA){exp[−βUWCA(R)]

− exp[−βUHS(R; σWCA)]}R2
⋅ dR = 0. (16)

In practice, this procedure is conducted iteratively until σWCA
converges. It has been shown that the WCA theory is superior to the
BH description for atomic liquids, especially at the high densities of
present interest.59–62

However, the WCA theory suffers from three drawbacks perti-
nent to this study. First, the determination of σWCA requires solving
Eq. (16) iteratively, making it less efficient. Moreover, in our cases,
for both the BH andWCA theories, the EHSD is estimated by many-
dimensional CG PMFs projected on pairwise basis sets. Further-
more, it is worth noting that the original BH and WCA approaches
were designed for systems with harsh repulsive interactions, and
extending these approaches to systems with soft repulsions, in which
attractions vary rapidly in space and can change structure, is of
unknown reliability. Given the complex interaction profile of CG
PMFs of molecular liquids, we envisage that the EHSD scheme
based on U(R) might be less accurate when applied to CG systems.
This suggests that such a method should focus on determining the
effective packing fraction for which the density and hard sphere dia-
meter are not separable. Finally, both the BH and WCA criteria for
the EHSD are derived from the perspective of describing equilib-
rium thermodynamic properties (e.g., free energy), and thus it is not
a priori clear how good they are to capture CG dynamics. In this
regard, a mapping method that matches a quantity believed to be
strongly correlated with dynamics is desirable. We note that the
dynamical reconstruction approach also employs a reference hard
sphere model to understand the CG diffusion of polymers.47–49

However, in Refs. 47–49, the EHSD is determined via the long-time
limit of Rouse dynamics of polymer melts, and hence the underlying
physical implementation of the hard sphere description is different
with our approach.
E. Alternative hard sphere mapping: Fluctuation
matching

To reconcile the aforementioned issues, we employ a hard
sphere mapping method developed and applied by Schweizer and
co-workers.72–77 It is dynamically motivated and has been shown
to be useful for mapping real molecular and polymer liquids with
both repulsive and attractive interactions to an effective hard sphere
description for use in a dynamical theory of activated relaxation.72–77

The central idea is to require the dimensionless compressibility,
S(k = 0), of Eq. (17) to be exactly equal to its value for the real
thermal liquid at all temperatures and pressures. Note that the

right-hand side of Eq. (15) is related59 to the isothermal compress-
ibility, defined as κT = − 1

V (
∂V
∂P )T

, and can be rewritten as

S(k = 0) = ρkBTκT. (17)

This quantity also enters WCA theory, but there it is employed
to only match the dimensionless amplitude of long wavelength
density fluctuations of the purely repulsive reference fluid and its
effective hard sphere analog for atomic liquids. The criterion of
matching of S(k = 0) of attractive thermal liquids and a reference
hard sphere fluid yields an effective hard sphere packing fraction
that is chemistry and thermodynamic state dependent, and there is
no need to explicitly know the EHSD. Under isobaric conditions,
attractions can strongly modify density as the liquid is cooled, and
this important effect enters the mapping procedure. The idea to
use such a S(k = 0) mapping approach in a dynamical context was
motivated by the physical argument that collective density fluctu-
ation is the key slow variable that quantifies the caging effects in
dense liquids.72–77 When this mapping is combined with the acti-
vated dynamics theories of Refs. 72–77, an understanding of the
dependence of the structural relaxation time of chemically complex
molecular and polymer liquids over many orders of magnitudes,
extending from the weakly to strongly supercooled regimes down
to the kinetic glass transition, is achieved.72–77 We believe this pro-
vides a firm foundation for our present work in the normal liquid
regime where the dynamical problem is in fact simpler than in the
supercooled regime since the caging effects are far weaker.

Here, we extend the above ideas to CG models of molecular
liquids in the normal state regime. A priori, the accuracy of this
approach is unknown given the interparticle potentials are softer
and can have strong attractions, especially for water. The use of this
mapping assumes these features do not change the usefulness of the
basic idea that the effect of dynamic correlations and caging remains
strongly correlated with collective density fluctuation dynamics. For
hard spheres, since the isothermal compressibility is given by the
derivative of the EOS from the compressibility route, one only needs
the effective packing fraction, η, i.e., S(k→ 0)HS = f (η).

In the present context, we call this approach “fluctuation
matching,” which is defined mathematically as equating the dimen-
sionless long wavelength density fluctuation amplitude of the CG
and hard sphere systems,

S(k = 0)CG = S(k = 0)HS. (18)

We emphasize this mapping via S(k = 0) directly focuses on η and
hence avoids the issue of determining the EHSD with η carrying the
chemistry, temperature, and pressure dependences. This distinction
enhances the power of a hard sphere mapping in terms of transfer-
ability, and employing only η rather than separating it into EHSD
is consistent with Rosenfeld’s original work.51–53 In practice, for a
spherical particle system (i.e., a single-site CG model), the right-
hand side of Eq. (18) reduces to a direct connection between the
dimensionless compressibility and the RDF of any spherical particle
fluid,

f (η) = 1 + 4πρ∫
∞

0
dRR2

[g(R) − 1]. (19)
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Of course, a priori, one might expect this proposed approach
to face significant challenges in the application to molecular CG
systems that exhibit liquid dynamics influenced by strong- and
short-range attractive interactions (associated liquids). While recent
work in this direction has provided a deeper level of understanding
of the connections between S(k = 0) and local structure,84–88 being
able to match dimensionless compressibilities is not guaranteed to
be an accurate strategy in a dynamical context for associated nor-
mal state liquids. Moreover, the adoption of a hard sphere reference
system and the above mapping effectively assumes that although
attractions do modify the magnitude, temperature, and pressure
dependence of the effective packing fraction, and hence for dynam-
ics it is assumed that repulsive forces dominate. References 72–77,
where the analog of S(k = 0)CG is the experimental dimensionless
compressibility under isobaric conditions, have shown success for
supercooled (largely non-associated) molecular and polymer liquids
and provide support for this simplification. Concerning practical
implementation, as one sees from Eq. (19) the key quantity f (η) is
dependent on κT , which is determined from the EOS. In later sec-
tions, we will determine the full form of Eq. (18) using several hard
sphere fluid EOSs along with the FG simulations. This will be a main
focus of the rest of this paper.
F. Hard sphere diffusion coefficient
from hard sphere diameter

1. Excess entropy scaling
Sections II C–II E demonstrated that CG systems can be

mapped onto effective hard sphere fluids by utilizing either the BH
or fluctuationmatching.With this inmind, we now derive an analyt-
ical expression of DCG

0 for the Rosenfeld scaling in terms of effective
hard sphere packing fraction.

Our starting point is the alternative Dzugutov scaling relation-
ship that accurately holds for the hard sphere fluid as well as for the
Rosenfeld scaling: D∗Z = D ⋅ (σ

−2Γ−1E ) = D0
Z exp(s(2)ex ). For the hard

sphere system, we determine s(2)ex from the excess entropy of the
hard sphere fluid, sHSex , which can be computed analytically in many
cases.89,90 We thus write the unscaled diffusion coefficient D of the
hard sphere system as

D = σ2ΓED0
Z exp(sHS

ex ). (20)

An advantage of the hard sphere system is that the hard sphere
diffusion coefficient in Eq. (20) can be alternatively expressed based
on Enskog kinetic theory.91,92 By considering the positional correla-
tions in a fluid of spheres, Enskog theory has been shown to provide
a reasonably good description of dynamics up to moderate liquid-
like densities.93–95 We adopt the Enskog expression for the hard
sphere diffusion coefficient,

D = DHS
=

3
8π

√
πkBT
m

1
ρσ2g(σ)

. (21)

Equating Eq. (20) with Eq. (21) yields

D0
Z =

3
32π

exp(−SHS
ex )

ρ2σ6g2(σ)
. (22)

An explicit form of Eq. (22) can be fully determined by the EOS via
the compressibility factor Z, which from the thermodynamic virial
route is given by

g(σ) =
Z − 1
4η

, (23)

where the RDF at contact, g(σ), is directly related to the reduced
pressure. Furthermore, the excess entropy of the hard sphere system
can be obtained from

sHS
ex = −∫

η

0

Z[η′] − 1
η′

dη′. (24)

Since Z is a function of the packing fraction η, D0
Z is entirely

determined from η as follows:

D0
Z =

π
24
⋅

1
(Z − 1)2

exp(∫
η

0

Z − 1
η′

dη′). (25)

2. Equation of state
We now derive an analytic expression for D0 using the ana-

lytically solvable Percus–Yevick (PY) integral equation theory.96
However, the PY theory is thermodynamically inconsistent,97 mean-
ing that thermodynamic quantities derived from identical RDFs by
different formally exact routes are not identical. The compressibility
factor Z := P

ρkBT
derived from the PY theory via the compressibility

route is

Zc
PY =

(1 + η + η2)
(1 − η)3

, (26)

which agrees with the Scaled Particle Theory.98–100 However, an
alternative Z expression derived by Wertheim and Thiele from the
virial route is101–103

Zv
PY =

(1 + 2η + 3η2)
(1 − η)2

. (27)

In this work, we chose the compressibility route Zc
PY, since

overall Zc
PY provides better description of virial coefficients104 and

compressibility factors105 than Zv
PY and because the fluctuation

matching mapping strategy focuses on the dimensionless compress-
ibility. In the Appendix, we derive the relevant static and dynamic
quantities using the virial route.

Using the EOS as Eq. (26), the excess entropy predicted from
the PY EOS is

sHS
ex = −∫

η

0

η′2 − 2η′ + 4
(1 − η′)3

dη′ = ln(1 − η) −
3
2
[

1
(1 − η)2

− 1] (28)

and the pair correlation function at contact g(σ) is

g(σ) =
η2 − 2η + 4
4(1 − η)3

. (29)
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3. Final expression for D0

Combining Eqs. (28) and (29), we arrive at the D0
Z expression

based on the PY EOS (compressibility route), which we denote as
D0

Z,PY,

D0
Z,PY =

π
24
⋅

(1 − η)5

η2(η2 − 2η + 4)2
exp[

3(2η − η2)
2(1 − η)2

]. (30)

Therefore, the diffusion coefficient of the hard sphere using the
Dzugutov scaling D = σ2ΓED0

Z exp(Sex) is

D = 4πσ4ρg(σ)(
kBT
πm
)

1
2

×
π
24
⋅

(1 − η)5

η2(η2 − 2η + 4)2

× exp[
3(2η − η2)
2(1 − η)2

] exp(sex). (31)

Now, writing π
24σ

4ρ = σ
4 ⋅ (

π
6 σ

3ρ) = σ
4 ⋅ η, we obtain

D = σ2ΓED0
Z exp(sex) =

σ
4
(
πkBT
m
)

1
2

×
(1 − η)2

η(η2 − 2η + 4)

× exp[
3(2η − η2)
2(1 − η)2

] exp(sex). (32)

We now seek to transfer D (Step 3 in Fig. 1) back to the D0 of
the CG system via the Rosenfeld scaling. From the “macroscopic”
rescaling in Eq. (3), we arrive at

D∗ = D ⋅
ρ

1
3

(kBT/m)
1
2
=
6

1
3

4
π

1
6 η

1
3
(1 − η)2

η(η2 − 2η + 4)

× exp[
3(2η − η2)
2(1 − η)2

] exp(sex). (33)

An empirical aspect of the Rosenfeld scaling originates from
the exponent α, which hinders the derivation of a general and ana-
lytic expression. However, since the excess entropy of the hard
sphere fluid should be always larger (more positive) than the molec-
ular CG system due to missing degrees of freedom, the origin of
α arises from exp(αCGsCGex )/ exp(sHS

ex ) ≈ 1. We confirmed that this
back-mapping approximation holds for themolecular system studied
in this work. Detailed analysis and the underlying physical principles
of this approximation will be pursued in a future article.

Finally, the Rosenfeld scaling is applied to Eq. (33), giving

DPY
0 ≈

6
1
3

4
π

1
6 η

1
3
(1 − η)2

η(η2 − 2η + 4)
exp[

3(2η − η2)
2(1 − η)2

]. (34)

Equation (34) again highlights our central idea that the diffusion
coefficient in a single-site CG model is solely governed by the
packing fraction of the effective hard sphere system.

To summarize, in this subsection, we derived an approximate
expression for D0 for molecular CG systems. While analytically
deriving such an expression is generally not practical for real CG
systems, we overcame this bottleneck by representing the CG par-
ticles as effective hard spheres. Since the dynamics of hard spheres
can be (approximately) described analytically by both kinetic the-
ory and the alternative scaling relationship by Dzugutov, we showed

that for a given EOS, D0 can be expressed as a function of the pack-
ing fraction if one could faithfully map the molecular CG system to
its corresponding hard sphere system.

We note that the present approach is somewhat similar to the
previous work of Bretonnet, where the semi-empirical relationship
between the hard sphere diffusion coefficient and the Dzugutov
scaling was discussed.89 In Ref. 89, Bretonnet derived an analytical
expression using only the PY EOS as determined from the virial
route, Zv

PY, for the Dzugutov scaling. Since the Dzugutov relation-
ship is limited to hard spheres, the novelty of the current work lies
in extending the Enskog theory to an effective CG system under
a more general scaling relationship with an improved hard sphere
EOS [Eq. (34)]. Results for other choices of the EOS are discussed in
Secs. III B and III C.

G. Computational models
In this paper series, we utilize our recently developed CGmodel

for water: Bottom-UpMany-Body ProjectedWater (BUMPer).106,107

In Paper I, we have demonstrated the excess entropy scaling
relationship of the BUMPer model parameterized by the SPC/E,
SPC/Fw, TIP4P/2005, and TIP4P/Ice force fields follows Eq. (7).42
In principle, any other CG model for water, e.g., monatomic Water
(mW),108 can also be applied for this framework. While the strong
orientational preferences of water may require higher-order inter-
actions beyond the two-body interaction,109,110 the BUMPer model
is designed to reproduce many-body correlations using only pair-
wise basis sets. By design, BUMPer allows for effectively projecting
the Stillinger–Weber three-body interaction111 onto the short-range
pairwise interactions. In this regard, BUMPer is computationally
inexpensive compared to atomistic simulations or even compared to
other CG models with explicit three-body interactions. Despite hav-
ing only pairwise interactions, our recent findings also demonstrated
that BUMPer can accurately capture both pairwise and many-body
density correlations.106 The explicitly integrated three-body con-
tributions in BUMPer are further corroborated by its ability to
capture nucleation at the ice/water interface.107 Moreover, a pair-
wise decomposable form of the BUMPer interaction allows for the
excess entropy scaling to be valid, unlike other models with explicit
many-body interactions.112–114

One of the central assumptions made in this work originates
from the classical perturbation theory asserting that, for a dense liq-
uid, repulsive forces dominate the liquid structure. However, it is
known that this idea cannot generally be applied for highly polar liq-
uids, ionic solutions, and water.115 This is because strong attractive
interactions, such as hydrogen bonding for water at the atomistic
resolution, rapidly vary as interparticle distance changes, and thus
they play a non-negligible role in determining the structure.116 Nev-
ertheless, we note that the scope of this work is to apply a minimalist
hard sphere mapping to water at the CG resolution. In contrast to
atomistic resolutions, hydrogen bonding interactions do not directly
appear at the current CG level, as they are implicitly folded into the
CG model. Thus, we believe it is sensible to explore the possible
usefulness of an effective hard sphere mapping scheme for the CG
water systemwithout any strong interaction to account for hydrogen
bonding as in the sticky hard sphere model.117

Below, we analyze dynamical properties (diffusion coeffi-
cient) using the BUMPer model parameterized from four different
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atomistic force fields at 300 K: SPC/E, SPC/Fw, TIP4P/2005, and
TIP4P/Ice. The procedure to compute the dynamical properties is
discussed in Paper I,42 and the performance of the BUMPer mod-
els in terms of structural correlations is extensively analyzed in the
original BUMPer paper series.106,107

III. RESULTS
A primary goal of this section is to apply the aforementioned

theories for molecular CG systems in order to derive the D0 val-
ues. The organization of this section follows that of Fig. 1. In the
first step, we discuss two different approaches for obtaining the
EHSD or packing fraction for the given CG systems. In the sec-
ond step, we utilize Eqs. (20)–(34) to estimate the D0 values for
various EOSs. The accuracy of the present approach is evaluated
by comparing it to the actual D0 values obtained from the scaling
relationship.

A. Step 1: Barker–Henderson approach
The BH EHSD is directly determined from the many-body CG

PMFs. Therefore, compared to the fluctuation matching approach,

the BH EHSD is not affected by EOS choices. Figure 2 illustrates the
many-body CG PMF used in this work from Paper I42 and Refs. 106
and 107.

The four BUMPer interactions studied in this work are param-
eterized from FG simulations using SPC-type [Fig. 2(a)] and
TIP4P-type [Fig. 2(c)] force fields. Regardless of FG force fields,
the resultant BUMPer interactions have relatively similar profiles,
represented by two characteristic length scales corresponding to
hydrogen bonding and van der Waals interactions. From the pair-
wise CG interaction, the BH EHSD was calculated by employing
∫

R0
0 [1 − exp(−βU(R))] ⋅ dR, where the BH integrands are depicted
in Figs. 2(b) and 2(d), respectively. Here, we chose R0 as the shortest
pair distance with a zero potential value, resulting in EHSD values
of 2.549 Å for SPC/Fw, 2.527 Å for SPC/E, 2.563 Å for TIP4P/2005,
and 2.552 Å for TIP4P/Ice.

B. Step 1: Fluctuation matching

1. Percus–Yevick EOS
By equating Eq. (18) to Eq. (19), the fluctuation matching

approach yields η by solving the following equation:

FIG. 2. Many-body CG PMFs and corresponding EHSDs via the BH perturbation theory. Effective CG pair potentials of the BUMPer CG models that are parameterized
from (a) SPC-based force fields (SPC/E: blue, SPC/Fw: sky-blue) and (c) TIP4P-based force fields (TIP4P/2005: red, TIP4P/Ice: ivory). From each CG pair potential, we
calculate the BH diameter by integrating the integrand 1 − exp(−βU(R)) over the restricted range of separations shown in (b) and (d). The two reference lines shown in
(a) and (c) are U(R) = kBT (brown dashed line) and U(R) = 0 (gray dashed line).
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f (η) ∣
HS
= 1 + 4πρ∫

∞

0
dRR2

[g(R) − 1]∣
CG
. (35)

Note that the right-hand side of Eq. (35) is evaluated from
the CG simulation to fit f (η) from the hard sphere reference sys-
tem. To determine f (η) analytically, recall that the PY EOS via the
compressibility route is given as

ZPY =
(1 + η + η2)
(1 − η)3

. (36)

Then, the isothermal compressibility κT of the PY EOS can be
obtained using the chain rule

(
∂P
∂V
) = (

∂P
∂η
) ⋅ (

∂η
∂V
) = −(

∂P
∂η
) ⋅

η
V
. (37)

The last term η/V is obtained from the definition of the pack-
ing fraction: η = π

6 σ
3 N
V . Further simplification is possible using the

compressibility factor ZPY,

(
∂P
∂V
) = −

∂

∂η
(ZPY ⋅

Nβ
V
) ⋅

η
V
= −

6
πσ3
⋅
∂

∂η
(ηZPY) ⋅

η
V
. (38)

Substituting Eq. (36) into Eq. (38) gives

(
∂P
∂V
) = −

ρ
βV
⋅
(1 + 2η)2

(1 − η)4
. (39)

Finally, we arrive at the well-known dimensionless compressibility
relationship of hard spheres using the PY EOS given by

S(k = 0)PYHS = ρkBT ⋅ (−
1
V
⋅
∂V
∂P
) =
(1 − η)4

(1 + 2η)2
. (40)

Analytically, Eq. (40) has four solutions, but only one solution ηPY
satisfies 0 ≤ ηPY ≤ 1,

ηPY =
√

S(k→ 0)PYHS −

√

S(k→ 0)PYHS + 3
√

S(k→ 0)PYHS + 1. (41)

While Eqs. (18) and (19) are not explicitly concerned with the EHSD,
unlike the BH approach, the corresponding EHSD σPY can still be
written as

σPY =
⎧⎪⎪
⎨
⎪⎪⎩

6
πρ
⋅
⎡
⎢
⎢
⎢
⎣

√

S(k→ 0)PYHS −

√

S(k→ 0)PYHS + 3
√

S(k→ 0)PYHS + 1
⎤
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

1
3

.

(42)

In terms of the EHSD, the fluctuation matching approach pro-
vides an EHSD value from a single calculation without any iteration
in contrast to the WCA approach.

2. Carnahan–Starling EOS
An elegant phenomenological attempt to formulate an accu-

rate, yet empirical, hard sphere EOS was proposed by Carnahan
and Starling99 in order to solve the thermodynamic inconsistency

problem of the PY EOS obtained from the virial and compressibility
routes,

ZCS =
1 + η + η2 − η3

(1 − η)3
. (43)

We note that Eq. (43) can be derived by fitting the integer part
of the virial coefficient bk as k2 + k – 2 up to the first six coefficients118
or, equivalently, by a simple interpolation form,

ZCS(η) =
1
3
Zv

PY(η) +
2
3
Zc

PY(η). (44)

The Carnahan–Starling (CS) EOS is almost exact over the stable
liquid regime81 and even significantly into the metastable regime.119
Thus, we now choose the CS EOS to apply fluctuation matching.
From Eq. (18), the partial derivative ∂P/∂η is

(
∂P
∂η
) =

∂

∂η
[
6kBT
πσ3

⋅
η + η2 + η3 − η4

(1 − η)3
]

=
6kBT
πσ3

⋅ (
η4 − 4η3 + 4η2 + 4η + 1

(1 − η)4
). (45)

Utilizing the chain rule and Eq. (45), one has

(
∂P
∂V
) = −

ρ
V
kBT ⋅

η4 − 4η3 + 4η2 + 4η + 1
(1 − η)4

. (46)

Finally, the compressibility factor for the CS EOS is then given as

S(k = 0)CSHS =
(1 − η)4

η4 − 4η3 + 4η2 + 4η + 1
. (47)

3. Carnahan–Starling–Kolafa EOS
Even though the CS EOS generally provides an excellent

approximate EOS, it can be improved at very high densities using
the Carnahan–Starling–Kolafa (CSK) form120,121 while retaining its
simplicity,

ZCSK =
1 + η + η2 − 2

3(η
3
+ η4)

(1 − η)3
. (48)

Compared to Eq. (43), Eq. (48) correctly captures higher-order con-
tributions in density effects. This slight adjustment has been shown
to further enhance the evaluation of both the virial coefficients and
the compressibility factors.122

Other than the aforementioned EOSs, we note that there are
numerous empirically or semi-empirically designed EOSs for hard
disks, hard spheres, or even hard hyperspheres (e.g., Table III.11 in
Ref. 60 and Table I in Ref. 80). However, most of them have compli-
cated polynomial forms that rely on numerical fitting procedures in
contrast to the PY and/or CS EOSs, which we focus on in this paper.
Nevertheless, any of these complicated EOSs could be employed in
the proposed framework. From the compressibility factor ZCSK, the
pressure is

P =
6kBT
πσ3

⋅
η + η2 + η3 − 2

3(1 + η) ⋅ η
4

(1 − η)3
. (49)
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By repeating the procedures employed to obtain Eqs. (45)–(47),
we arrive at the following fluctuationmatching equation for the CSK
EOS:

S(k = 0)CSKHS =
3(1 − η)4

4η5 − 8η4 − 8η3 + 12η2 + 12η + 3
. (50)

4. CG fluctuation: Finite size effect
In order to solve Eq. (19) in practice, we evaluate the

structure factor at zero wave vector S(k = 0) using S(k)CG = 1
+ 4πρ∫

∞

0 (g(R) − 1)
sin(kR)

kR R2dR. From the mapped CG trajectory,
we applied the fast Fourier transformation of g(R)123 using the Liq-
uidLib suite.124 The g(R) functions were sampled with a bin size of
0.02 Å. Alternatively, S(k = 0) can be computed using direct numer-
ical integration. In this way, in order to obtain an accurate and
numerically stable value, the finite size effect of S(k = 0)CG must be
considered by integrating up to the finite distance Rcut,

S(k = 0,Rcut) = 1 + 4π∫
Rcut

0
dR′ ⋅ R′2[g(R′) − 1]. (51)

Differences between the estimated S(k = 0,Rcut) and actual
S(k = 0) values can be corrected via the scheme proposed by
Salacuse et al.,125

S(k,Rcut) ≈ SN(k,Rcut) +
S(k = 0)

N
4
3
πRcut

3

⋅ [
3

(kRcut)
3 ⋅ (sin kRcut − kRcut cos kRcut)], (52)

where SN(k,Rcut) is the computed structure factor for a system of
N particles with a cutoff Rcut. We used the maximum possible value
for Rcut as half of the system box length. In the k = 0 limit, Eq. (52)
reduces to

S(k = 0) ≈
SN(k = 0,Rcut)

1 − 1
N

4
3πρRcut

3 . (53)

The computed S(k = 0)CG values from both methods are in
close agreement and for water are 0.1033 for SPC/E, 0.1051 for
SPC/Fw, 0.088 14 for TIP4P/2005, and 0.098 71 for TIP4P/Ice.
Importantly, these values at 300 K and 1 atm conditions are within
the reported ranges of 0.06–0.08 from experiments and computer
simulations.126,127 We attribute the slightly overestimated S(k = 0)
values in CG systems tominor differences in g(R) during the coarse-
graining process. Another source of error might be due to the finite
size effect in estimating S(k = 0). Since the thermodynamic con-
ditions studied here are within the normal regime and not near a
critical point, the effect of an overly long correlation length should
not be pronounced.128,129 As expected, we checked that doubling the
system size gives a S(k = 0) value that differs by a very small amount
of 0.007 for the SPC/Fw at 300 K condition. A comprehensive com-
putational analysis to determine the S(k = 0) values under various
force field and temperature conditions will be systematically pursued
in future studies.

5. Fluctuation matching: Results
We now solve the fluctuation matching equation, Eq. (18),

for each EOS discussed above by equating the dimensionless com-
pressibility expression to the corrected S(k = 0) values from our

TABLE I. Effective hard sphere packing fractions (η) of the hard sphere system
mapped from the CG water system using the BH scheme and the fluctuation matching
approach with the selected EOSs.

Fluctuation matching

FG force field
Barker–

Henderson
Percus–
Yevick

Carnahan–
Starling

Carnahan–
Starling–
Kolafa

SPC/E 0.276 0.288 0.293 0.292
SPC/Fw 0.283 0.286 0.291 0.290
TIP4P/2005 0.288 0.308 0.313 0.312
TIP4P/Ice 0.285 0.294 0.299 0.298

computer simulations. Table I lists the computed packing fractions
for the CGwater systems at 300 K. Interestingly, the BH and fluctua-
tion matching approaches yield similar η values for different choices
of force fields and EOSs. Given the different principles underly-
ing these mapping approaches, this agreement indicates that both
methods provide nearly similar hard sphere systems with Δη ≈ 0.01
for the same FG system. We also note that the η values for both
approaches are well below η f = 0.494, the volume fraction of freez-
ing,130 validating the underlying assumption to treat CG particles as
equilibrium hard sphere liquids not in the metastable or supercooled
regime. The relatively low absolute values of the effective packing
fraction near 0.3 may seem surprising for a dense liquid. We believe
this is likely a consequence of the relatively large value of S(k = 0)
due to the highmolecular number density and atypical compressibil-
ity due to hydrogen bonding of water. For nonpolar or weakly polar
molecular liquids, one expects the mapping would deliver packing
fractions substantially larger than 0.3. This will be tested in a future
work.
C. Step 2: Estimating the hard sphere
diffusion coefficient

1. Percus–Yevick equation of state
We now determine an analytical form of the hard sphere diffu-

sion coefficient using different EOSs. For the simplest PY EOS, we
arrived at the following expression in Sec. II F:

DPY
0 ≈

6
1
3

4
π

1
6 η

1
3
(1 − η)2

η(η2 − 2η + 4)
exp[

3(2η − η2)
2(1 − η)2

]. (54)

2. Carnahan–Starling equation of state
The CS EOS has a more accurate contact value g(R = σ),

g(σ) =
Z − 1
4η
=

1 − η/2
(1 − η)3

, (55)

and excess entropy,

Sex = −∫
η

0

Z[η′] − 1
η′

dη′ = −η
(4 − 3η)
(1 − η)2

. (56)

Substituting Eqs. (55) and (56) in Eq. (22) yields an expression for
the entropy-free diffusion coefficient from the Dzugutov scaling,
D0

Z,CS,
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D0
Z,CS =

π
96
(1 − η)6

η2(2 − η)2
exp[

(4η − 3η2)
(1 − η)2

]. (57)

In Step 3, the hard sphere system (D0
Z,CS) is mapped back to the

original CG system to assess the entropy-free diffusion coefficient
DHS

0,CS under the Rosenfeld scaling,

DHS
0,CS ≈

π
1
6

48
⋅ 6

4
3 ⋅
(1 − η)3

η
2
3 (2 − η)

exp[
(4η − 3η2)
(1 − η)2

]. (58)

Compared to Eq. (54), differences in DHS
0 originate from changes in

g(σ) that affect collision rates and excess entropy terms from the
scaling relationship.

3. Carnahan–Starling–Kolafa equation of state
Similarly, DHS

0 from the CSK EOS can be derived, and several
structural and thermodynamic properties are required in order to
derive DHS

0 . The contact value of the pair correlation and excess
entropy are given by

g(σ) =
Z − 1
4η
=
1 − η

2 +
η2

12 −
η3

6

(1 − η)3
, (59)

Sex = −∫
η

0

Z[η′] − 1
η′

dη′ = −∫
η

0

4 − 2η′ + η′2

3 −
2
3η
′3

(1 − η′)3
dη′

= −
5
3
ln(1 − η) − η

4η2 − 33η + 34
6(1 − η)2

. (60)

Equation (60) is further confirmed by the results in Ref. 131.
Then, substituting Eq. (22) into Eq. (60) yields

D0
Z =

π
24
⋅

(1 − η)
23
3

η2(4 − 2η + 1
3η2 −

2
3η3)

exp[η
4η2 − 33η + 34

6(1 − η)2
]. (61)

Finally, simple manipulations yield an analytic expression for
DHS

0,CSK,

DHS
0,CSK ≈

π
1
6

96
⋅ 6

4
3 ⋅

(1 − η)
14
3

η
2
3 (1 − η

2 +
η2
12 −

η3
6 )

exp[η
4η2 − 33η + 34

6(1 − η)2
].

(62)

D. Step 3: Diffusion coefficient
We now evaluate the computed entropy-free diffusion coeffi-

cient DHS
0 of CG water from the dynamically consistent hard sphere

system. Table II lists the predicted ln(DHS
0 ) values from both the

BH approach and fluctuation matching scheme based on three EOSs
(PY, CS, and CSK). We find that both approaches predict DHS

0 val-
ues close to the CG reference value of DCG

0 = 0.7047, confirming the
validity of our assumptions. This finding seems rather remarkable
in the sense that (1) adoption of a simple hard sphere model can
still be effective for estimating the accelerated CG dynamics and (2)
the matching dimensionless compressibility idea is useful for molec-
ular liquids. Overall, DHS

0 values estimated by the BH approach
incur an error of 11.1%, whereas fluctuation matching yields values
that incur errors within 17%. The modest differences between the
two approaches for water may not be representative of the general
performance of the two methods for other less complex and non-
associated molecular liquids, especially in the supercooled regime,
where we expect the effective packing fractions will be significantly
larger than η ≈ 0.3 obtained for water. This issue will be explored in
a future article.

We also assess the accuracy of the specific EOS chosen in terms
of reproducing D0 values. While we find that the relative perfor-
mance of the EOS in reproducing correct CG dynamics generally
follows the accuracy of the EOS itself (BH approach), the relative
enhancement is minor (within errors of 2%). This low sensitivity
can be understood by the relatively low effective packing fractions
of the mapped water system where the choice of EOS does not
result in major variations.122,132,133 We also note that in this case,
the back-mapping approximation is a reasonable assumption, giving
exp(αCGsCGex )/ exp(sHS

ex ) as 1.1.
In turn, the results listed in Table II confirm the high-fidelity

nature of our approach for estimating the D0 value by treating CG
dynamics with an effective hard sphere model. Taken one step fur-
ther, we now compare the full diffusion coefficient DHS by including
the excess entropy contributions sCGex to the CG dynamics, as shown
in Fig. 3.

Figure 3 shows the CG diffusion coefficients recovered from
the hard sphere approaches with a correct unit. By comparing these
DHS values to the actual numerical CG diffusion coefficients DCG,
we find, as expected, that both approaches accurately capture the
accelerated CG diffusion coefficients. Interestingly, after incorporat-
ing the excess entropy terms, fluctuation matching shows an almost
identical level of description (average errors of 15.1%) compared to
the BH approach (16.0%). Remarkably, we emphasize that the trend

TABLE II. Effective “entropy-free” diffusion coefficients D HS
0 from the Rosenfeld scaling are predicted from the effective hard sphere systems mapped from the CG water system

using the BH and the fluctuation matching approaches with the selected EOSs.

Barker–Henderson Fluctuation matching

FG force field Reference value42
Percus–
Yevick

Carnahan–
Starling

Carnahan–
Starling–Kolafa

Percus–
Yevick

Carnahan–
Starling

Carnahan–
Starling–Kolafa

SPC/E

0.705

0.771 0.759 0.758 0.802 0.803 0.802
SPC/Fw 0.789 0.777 0.776 0.796 0.797 0.795
TIP4P/2005 0.802 0.790 0.789 0.951 0.973 0.972
TIP4P/Ice 0.792 0.780 0.780 0.855 0.862 0.860
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FIG. 3. Recovered CG diffusion coefficient using the dynamically consistent hard sphere models DHS for four different water force fields at 300 K: (a) SPC/E, (b) SPC/Fw,
(c) TIP4P/2005, and (d) TIP4P/Ice. Hard sphere packing fractions or effective diameters are estimated via two different approaches: Barker–Henderson (BH) and fluctuation
matching (FM). Then, the corresponding diffusion coefficients are obtained by employing different choices of EOS: Percus–Yevick (blue solid), Carnahan–Starling (half-filled),
and Carnahan–Starling–Kolafa (double-filled). Reference values from FG (red solid) and CG (green solid) systems are included as a comparison.

of acceleration factor ascribed to different atomistic force fields is
qualitatively captured in our approach. Here, the effective dynamic
acceleration factor is estimated by the ratio of DHS to DFG. Given
the acceleration factors of the CG water models (DCG/DFG is 6.0 for
SPC/E, 3.4 for SPC/Fw, 5.5 for TIP4P/2005, and 7.8 for TIP4P/Ice),
the hard sphere description correctly captures the accelerated diffu-
sion to be 5.0 for SPC/E, 4.2 for SPC/Fw, 5.6 for TIP4P/2005, and 6.4
for TIP4P/Ice.

E. Estimation of CG diffusion coefficient
at different temperatures

We emphasize that the main advantage of fluctuation match-
ing is that we can estimate the overall diffusion coefficient of CG
systems a priori, solely based on information from the FG sys-
tems. This is because if the hard sphere EOS is chosen, the fluc-
tuation matching equation only requires S(k→ 0) to match the
long wavelength density fluctuations, not the detailed intermolec-
ular potentials. Especially, this feature would be advantageous for

some bottom-up CG approaches that aim to reproduce important
structural correlations.10 Among various bottom-up CG method-
ologies, using pairwise basis sets, the iterative Boltzmann inversion
(IBI),134 inverse Monte Carlo (IMC),135 and relative entropy mini-
mization (REM)136,137 approaches can match the two-body correla-
tions, i.e., RDF. Moreover, the multiscale coarse-graining (MS-CG)
approach9,109,138–140 satisfies the Yvon–Born–Green equation in liq-
uid physics,141 indicating that MS-CG models aim to reproduce up
to three-body correlations. Notably, BUMPer is developed upon the
MS-CG principle, where themany-body projection theory allows for
recapitulating the pairwise correlation as well.106

Therefore, for bottom-up CG models designed for captur-
ing structural correlations, i.e., RDF, one can approximate the
S(k→ 0)CG without any CG simulation. In other words, with
bottom-up approaches, we can approximate the FG RDF as the
CG RDF in Eq. (19) to predict D0 values for CG systems at dif-
ferent thermodynamic conditions, especially variable temperature
at atmospheric pressure.142 This estimation is not possible in the
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conventional BH approach, in which the effective CG interactions
need to be first parameterized in order to employ Eq. (12).

Based on the predicted D0 from the hard sphere description,
a complete determination of DCG is also possible by considering
the effective excess entropy contribution remaining at the CG res-
olution. In Paper I, we elucidated the differences in excess entropy
between FG and CG systems corresponding to the mapping entropy,
i.e., the missing contributions to the configurational entropies
beneath the CG resolution. For single-site CG models, this mapping
entropy is the rotational and vibrational entropies from the FG res-
olution.79 Therefore, an estimation of CG excess entropy at different
temperatures is possible by assessing translational contributions in
the FG entropy,

sextrn ∣CG ≈ s
FG
trn − s

(id)
trn = s

FG
trn − (1.6787 +

3
2
ln T), (63)

where (1.6787 + 1.5 ln T) is obtained from the translational entropy
of ideal gas for this system; please see Ref. 42 for further deriva-

tion and analysis. Equation (63) assumes complete entropy repre-
sentability between the FG and CG systems. However, we adopt
an approximate notation instead of an equality since slight differ-
ences between sextrn ∣FG and sextrn ∣CG are expected due to the pairwise
approximation introduced in the CG model. With this in mind,
we compute the estimated CG diffusion coefficients over a range
of temperatures from 280 to 360 K at 20 K intervals by utiliz-
ing FG information only. For different temperature conditions, we
used the excess entropies and FG diffusion coefficients reported in
Paper I.42

As depicted in Fig. 4, it is immediately evident that the hard
sphere estimation using our approaches successfully recapitulates
the CG diffusion coefficients of water over a wide range of temper-
atures and for different atomistic force fields. For example, in the
case of SPC/E, the reference CG diffusion coefficients obtained are
1.22 × 10−4, 1.54 × 10−4, 1.77 × 10−4, and 1.96 × 10−4 cm2 s−1, as
temperature increases from 280, 320, 340, and 360 K, respectively.
The effect of temperature on the CG diffusion coefficient is well

FIG. 4. CG diffusion coefficients (plotted on a logarithmic scale) predicted from FG information for five different temperatures: (a) 280 K, (b) 320 K, (c) 340 K, and (d) 360 K.
The DHS values are computed by combining the entropy representability relationship from FG information (sex

trn ∣FG) and dynamically consistent hard sphere models (D HS
0 )

using three different EOSs: Percus–Yevick (blue solid), Carnahan–Starling (half-filled), and Carnahan–Starling–Kolafa (double-filled). The predicted hard sphere diffusion
coefficients reasonably reproduce the actual CG values (green solid), which show accelerated dynamics compared to the reference FG (red solid) diffusion coefficients.
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TABLE III. Reduced CG diffusion coefficients D HS
0 of water predicted from the fluctuation matching approach using the

FG compressibilities and the Percus–Yevick, Carnahan–Starling, and Carnahan–Starling–Kolafa EOSs. D HS
0 is predicted at

temperatures ranging from 280 to 360 K using four FG force fields: (a) SPC/Fw, (b) SPC/E, (c) TIP4P/2005, and (d) TIP4P/Ice.

(a) SPC/E (b) SPC/Fw

Temp (K) DHS
0,PY DHS

0,CS DHS
0,CSK Temp (K) DHS

0,PY DHS
0,CS DHS

0,CSK

280 0.778 0.796 0.794 280 0.774 0.792 0.791
320 0.827 0.849 0.848 320 0.790 0.809 0.808
340 0.826 0.849 0.847 340 0.815 0.837 0.835
360 0.847 0.872 0.871 360 0.844 0.868 0.867

(c) TIP4P/2005 (d) TIP4P/Ice

Temp (K) DHS
0,PY DHS

0,CS DHS
0,CSK Temp (K) DHS

0,PY DHS
0,CS DHS

0,CSK

280 0.815 0.837 0.836 280 0.799 0.820 0.818
320 0.883 0.912 0.910 320 0.863 0.889 0.888
340 0.906 0.936 0.935 340 0.892 0.921 0.919
360 0.930 0.963 0.962 360 0.918 0.950 0.948

reproduced in the hard sphere model as 9.33 × 10−5, 1.68 × 10−4,
2.05 × 10−4, and 2.55 × 10−4 cm2 s−1, respectively. In turn, the hard
sphere description provides diffusion coefficients for water similar
to the CG model values regardless of the EOS adopted.

We attribute the success of a hard sphere description to the
accurate prediction of CG excess entropies from FGmodels (entropy
representability) and to the effective hard sphere nature of normal
liquid dynamics, yielding accurate D0 values for different thermo-
dynamic conditions. Although the short-range structural ordering
(e.g., RDF intensities at the first peaks) of associated liquids can be
significantly affected by temperature, slight changes appear in the
dimensionless compressibility, resulting in modest changes of the η
values. For example, in the case of SPC/E, as S(k = 0) varies from
0.10 to 0.088, the resultant η values range from 0.28 to 0.31. In other
words, from 280 to 360 K at 1 atm pressure (ambient liquid water
condition), we observe that D0 does not change significantly. Such
a weak temperature dependence is consistent with the underlying
hypothesis of the excess entropy scaling approach that assumes D0
is invariant under changes in temperature and density. Table III fur-
ther supports our claim that the computed DHS

0 is not very sensitive
to temperature. As discussed earlier, the strongly associated nature
of water results in rather large values of S(k = 0) and a different
temperature dependence compared to nonpolar and weakly polar
non-associated liquids.

Recently, Bernhardt et al. suggested that there may be a sin-
gle unified excess entropy scaling relationship that encompasses
several CG liquid systems.143 Nevertheless, they also found that
the correlation of the putative unified scaling law is not strong
and does not agree with the scaling constant of the Rosenfeld
relationship.51–53 Our work resolves these inconsistencies, showing
thatD0 is quite dependent on the effective packing fraction of differ-
ent CG molecules, and, thus, a single scaling relationship for many
CG systems is not generically valid.

Altogether, our work sheds light on understanding accelerated
CG diffusion by focusing on two points: (1) leveraging the entropy
representability relationship between FG and CG systems79 and (2)

constructing effective hard sphere systems that approximate CG
dynamics. Given the empirical nature of the excess entropy scaling
relationships, we introduced another layer of coarsening to map CG
systems to hard sphere systems where dynamical properties can be
formulated analytically. For conditions that the CG particles can be
represented as effective hard spheres, we believe that our findings
open up a new avenue for bottom-up CG modeling by interpret-
ing CG dynamics from classical perturbation theory and fluctuation
matching. As this paper is the first study of such combined efforts,
we anticipate several potential directions that can be taken to further
analyze the faster CG dynamics for complex molecular systems. One
natural extension would be to elucidate the role of resolution in CG
dynamics. Since the continuous effort to establish a theoretical link
between the CG dynamics and CG resolution has mainly remained
ad hoc,144 the proposed methodology is expected to systematically
bridge the choice of CG mapping and the resultant dynamics.

IV. CONCLUSIONS
In this paper, we developed a new mapping scheme for molec-

ular liquids in the normal regime from a target coarse-grained (CG)
system to an effective hard sphere system as part of our ongoing
effort to understand accelerated CG dynamics in terms of excess
entropy scaling, which was introduced in Paper I of this series.42
Even though CG interactions are intrinsically many-body poten-
tials of mean force (PMFs), the treatment of single-site CG systems
as hard spheres is substantiated by perturbation theories of liquids
where the repulsive intermolecular interaction primarily determines
the structural and dynamical properties. Such simplified models in
which the equation of state (EOS) is a function only of packing frac-
tion allow for employing analytical theories to predict the diffusion
coefficient in CG systems.

In determining the packing fraction, conventional perturbation
theories may have a limitation to correctly reproduce dynamics as
they mainly aim to determine the effective hard sphere diameter
for the purpose of predicting equilibrium structural correlations
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of a reference fluid that interacts only via harsh repulsive forces
from an effective hard sphere model. To construct an effective hard
sphere model suitable for describing dynamics in the presence of
chemical complexity and attractive interactions, we adopt the idea
of Mirigian and Schweizer72–77 that the long wavelength amplitude
of density fluctuations or dimensionless compressibility is a physi-
cally appropriate quantity for constructing amapping under isobaric
conditions in a CG framework. This idea was successfully applied
for supercooled liquid activated relaxation of molecular and poly-
meric liquids. This so-called “fluctuation matching” idea requires
the chemistry and thermodynamic state dependent dimensionless
compressibilities of the molecular CG and hard sphere systems are
exactly equal. The fluctuation matching method directly determines
effective hard sphere packing fractions in a manner consistent with
the original excess entropy scaling relationship. Along with the con-
ventional BH criterion, we employ fluctuation matching for one-site
CG water systems to construct effective hard sphere systems based
on adopting different hard sphere fluid EOSs.

Analytical formulations of the entropy-free diffusion coeffi-
cient are derived by applying two excess entropy scaling schemes
sequentially in an elementary kinetic theory framework for dense
liquids. For the mapped hard sphere system, we determine the
dynamic properties using the well-known Enskog theory. As the
Dzugutov scaling is derived for the hard sphere system, we first apply
the Dzugutov scaling to obtain the entropy-free diffusion coeffi-
cientsD0

Z , and thenmap it back toD0 of the Rosenfeld scaling for the
original CG system. This scheme allows for estimating the entropy-
free diffusion coefficient for the underlying CG system. Given a wide
range of applications of excess entropy scaling, this paper opens a
promising direction for future research to better characterize the
accelerated dynamics of complex molecules at the reduced level,
e.g., confined145,146 or activematter147 systems, especially when com-
prehensive analysis of collective behaviors at longer timescales is
computationally challenging.

The key finding from this work is that the estimated entropy-
free diffusion coefficient DHS

0 is in remarkable agreement with the
actual values from the excess entropy scaling of the CG system
DCG

0 , as well as in agreement with the full diffusion coefficient DCG.
Notably, and nontrivially, we show that fluctuation matching can
be faithfully applied to molecular liquids with (specific) attractive
interactions at the CG level and at temperatures in the normal liquid
regime. We believe our work demonstrates the efficacy of the hard
sphere mapping to single-site CG systems since the less important
degrees of freedom are effectively integrated out, and the resultant
CG interactions are spherically symmetric. By employing such a
minimalist model, we claim that the acceleration in the CG dynamics
can be understood from the hard sphere point of view. We further
corroborate our claim by successfully predicting temperature depen-
dent CG diffusion coefficients a priori using only FG information
combined with fluctuation matching.

Finally, our findings lead to a systematic rationalization of the
acceleration factor, DCG/DFG. Under the excess entropy scaling for-
malism, this acceleration can be understood from two contributing
factors. While the first term exp(αsCGex )/ exp(αs FGex ) can be under-
stood from the entropy representability relationship, the second
term DCG

0 /D
FG
0 is not relatively clear due to D FG

0 . Returning to the
issue of correspondence between FG and CG scaling relationships
introduced in Paper I,42 a relevant follow-up question based on the

present article is how can we physically understand D FG
0 ? Unlike

dynamics at the CG level, dynamics at full atomistic resolution entail
various motions other than pure translation, even at the single-
site level of description. However, it might be natural to envision
that these other motions, as well as the translational motions, are
encoded in the center-of-mass diffusion behavior. In the following
paper of this series, we will approach this problem by decoupling
rotational motions from translational motion and assessing how
rotational diffusion is correlated with the overall translational dif-
fusion. Another possible direction would be to combine fluctuation
matching for S(k→ 0)CG with non-hard sphere EOSs that can cap-
ture the FG dynamics. Using idealized or semi-empirical EOSs, it is
possible that rotational and vibrational contributions deviated from
hard sphere translations could be addressed with additional vari-
ables. Altogether, these proposed directions may lead to a unified
framework for unraveling the fundamental differences underlying
FG and CG dynamics.
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APPENDIX: PERCUS–YEVICK THEORY VIA
THE VIRIAL ROUTE

1. Fluctuation matching
As introduced in Sec. II F, the compressibility factor for the

virial route of the PY EOS is101–103
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Zv
PY =

(1 + 2η + 3η2)
(1 − η)2

. (A1)

Repeating the analysis employed in Eqs. (38)–(40), we calculate the
( ∂P
∂V ) term using the chain rule

(
∂P
∂V
) = −

6
πσ3
⋅ [−

3η3 − 9η2 − 5η − 1
(1 − η)3

] ⋅
η
V

= −
ρ
βV
⋅
−3η3 + 9η2 + 5η + 1

(1 − η)3
. (A2)

Finally, the compressibility factor from the structure factor is
obtained as

S(k = 0)PYHS = ρkBT ⋅ (−
1
V
⋅
∂V
∂P
) =

(1 − η)3

−3η3 + 9η2 + 5η + 1
. (A3)

2. Diffusion coefficient
As demonstrated in Sec. II F, the hard sphere diffusion coef-

ficient is described by Eq. (26), where its complete form can be
analytically determined using the EOS or compressibility factor Z.
In this section, we derive an exact expression of D0 using the virial
route PY EOS. First, we calculate the contact value of the radial
distribution function,

g(σ) =
1 + η

2

(1 − η)2
. (B1)

The excess entropy can be expressed as

SHSex = −∫
η

0

Z − 1
η′

dη′ = −∫
η

0
2

η′ + 2
(1 − η′)2

dη′ = −2 ln(1 − η) −
6η

1 − η
.

(B2)

Combining Eqs. (B1) and (B2), we obtain

D0
Z =

π
96
⋅
(1 − η)6

η2(2 + η)2
exp(

6η
1 − η

). (B3)

Therefore, the full diffusion coefficient is expressed as

D =
π2

48
σ4ρ

√
kBT
m
⋅ [
(1 − η)4

η2(2 + η)
] exp(

6η
1 − η

) exp(sex). (B4)

After mapping D in Eq. (B4) back to the CG system, we obtain

DPY
0 ≈

6
1
3

8
π

1
6 η

1
3
(1 − η)4

η(2 + η)
exp(

6η
1 − η

). (B5)
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