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ARTICLE INFO ABSTRACT

Keywords: 2-Deoxy glycosides are important components of many oligosaccharides with antibiotic and anti-cancer activity,

DET but their synthesis can be very challenging. Phenanthrolines and substituted pyridines promote stereoselective

gelatalymls ) glycosylation of 1-bromo sugars via a double Sy2 mechanism. Pyridine reacting with a-bromo, 2-deoxyglucose
ycosylation

was chosen to model this reaction. The first step involves displacement of bromide by pyridine which can be
rate limiting because bromide ion is poorly solvated in the non-polar solvents used for these reactions. We
examined a series of small molecules to bind bromide and stabilize this transition state. Geometry optimization
and vibrational frequencies were calculated using M06-2X/6-31+G(d,p) and SMD implicit solvation for diethyl
ether. More accurate energies were obtained with M06-2X/aug-cc-pVTZ and implicit solvation. Urea, thiourea,
guanidine and cyanoguanidine bind bromide more strongly than alkylamines, (NH2CH2CH3),NH3.,. Compared
to the uncatalyzed reaction, urea, thiourea and cyanoguanidine lower the free energy of the transition state by 3
kcal/mol while guanidine lowers the barrier by 2 kcal/mol.

2-deoxyglucose

1. Introduction

The o- and p-2-deoxy glycosides (Scheme 1) are constituents of many
bacterial antibiotic and anti-cancer oligosaccharides.[1] Altering the
composition of these sugars affects their biological activity (for exam-
ples, see [2-4]). Efforts to study their therapeutics are hindered by their
synthetic access. Although a- and p-2-deoxy glycosides are structurally
diverse, they all lack a C2-oxygen functionality adjacent to the C1-
anomeric center. In addition, many bacterial 2-deoxy-sugars often
contain a number of modifications, including further deoxygenation at
the C3- and/or C6-position.

The oligosaccharides are constructed using glycosylation reactions,
in which a hydroxyl nucleophile (ROH) displaces a leaving group from
an activated sugar electrophile (Scheme 1) (for recent reviews and ad-
vances, see [5-9]). This reaction creates a new stereocenter at the C1-
anomeric carbon where the a- and p-2-deoxy glycosides are formed.
Lack of C2-oxygen functionality precludes the use of well-established
strategies to control the anomeric selectivity in the glycosylation re-
actions for the assembly of 2-deoxy-sugars.[10-12] In addition, many
bacterial sugars lack a C6-oxygen, preventing conformational biases to
control the anomeric selectivity. The stereoselective synthesis of 2-
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deoxy glycosides can rely on a direct strategy, an indirect strategy or
addition to a glycal.[12] The indirect strategy requires a temporary
group at C2 in the electrophilic donor. Although glycosylation reactions
with the indirect approach are high selectivity, it is necessary to remove
the temporary C2 group. Addition to glycans requires the use of specific
protecting groups and the stereochemical configuration of the C4-
substituent in the glycal donor for controlling 2-deoxy selectivity. The
direct strategy requires proper selection of the promoter, solvent, pro-
tecting groups, and coupling partners to obtain high selectivity.
Although substrate-controlled glycosylation methods have been suc-
cessful in providing solutions to a number of challenging oligosaccha-
ride syntheses, subtle changes to the sugar structures have pronounced
effects on reaction selectivity and reactivity.

The ability of phenanthrolines to catalyze the stereoselective for-
mation of a-glycosidic bonds has recently been discovered by the
Nguyen group [13-16]. The glycosylation proceeds through a double
Sn2 mechanism. The first step involves a phenanthroline or substituted
pyridine displacing a bromide (Scheme 2). In the second step, this group
is displaced by the HO of the nucleophile to complete the glycosylation
reaction. In the present work, we focus on the first step and, to simplify
the calculations, examine pyridine reacting with o-bromo, 2-
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Scheme 1. Glycosylation reactions to form a- and p-2-deoxy glycosides.
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Scheme 2. First step in the glycosylation of a-bromo, 2-deoxyglucose catalyzed by pyridine. The glycosylation is completed in a second Sy2 reaction, in which the

ROH nucleophile displaces the pyridine.

deoxyglucose protected by methyl groups. This step can be rate limiting
because the bromide ion is poorly solvated in the nonpolar solvents
needed for the glycosylation reaction. Hydrogen bond donors can be
effective catalysts by stabilizing ionic intermediates and products
[17-19], with urea and thiourea being particularly effective. Thiourea
derivatives are significantly better than ureas at catalyzing glycosylation
reactions [20,21]. Specifically, macrocyclic bis-thiourea are excellent
catalysts yielding p-glycosides with high stereoselectivity via a direct
Sn2 mechanism.[21-24].

In previous studies, we have employed density functional theory
(DFT) calculations to investigate stereoselective a-glycosylation and 1,2-
cis furanosylation reactions catalyzed by phenanthroline in a double Sn2
mechanism [13-15]. In the present study, we use DFT calculations to
examine the binding of bromide ion by a selection of small molecule
hydrogen bond donors: 1,2-diaminoethane, bis(2-aminoethyl)amine,
tris(2-aminoethyl)amine, urea, thiourea, guanidine and cyanoguani-
dine. We then test the ability of the best ligands to lower the energy of
the transition state (TS) for the first Sy2 reaction of the glycosylation
(Scheme 2) and thereby catalyze the overall reaction. The calculations in
this short study have paved the way for an extensive experimental
investigation supported by density functional calculations of catalysis of
a-glycosylation reactions by protonated hydrogen bond donors.

The present exploratory study is dedicated to the memory of Pro-
fessor Imre G. Csizmadia. HBS has known IGC since his graduate student
days 50 years ago. Throughout his career, IGC championed the scientific
education of students of diverse backgrounds through the hands-on
experience of quantum chemical calculations. In keeping with this
spirit, the present study began as a senior undergraduate research
project for a student in biology (SH).

2. Computational methods

Calculations were carried out with the Gaussian series of programs
[25] using the M06-2X functional [26,27]. In our previous studies on
catalysis of glycosylation reactions [13-15], the mechanism for stereo-
selective glycosylation calculated with M06-2X functional was in better
agreement with experiment than calculations with other functionals
such as B3LYP. The SMD implicit solvation method [28] was used to
model solvation in diethyl ether. Geometry optimization and frequency
calculations employed the 6-31+G(d,p) basis set and included SMD
solvation. The zero point energies and thermal corrections for enthalpy
and free energy (298.15 K, 1 atm) computed with the M06-2X/6-31+-G
(d,p) level of theory were combined with single point energy calcula-
tions at the M06-2X/aug-cc-pVTZ level of theory and SMD solvation to
obtain more accurate estimates of the energies. Because there are dif-
ficulties in estimating the solvation of ions in non-polar solutions using
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Fig. 1. Complexes of Br with (a) 1,2-diaminoethane, (b) bis(2-aminoethyl)
amine and (c) tris(2-aminoethyl)amine (H-Br~ distances in A).

implicit solvation methods, the energies for the ligands binding to bro-
mide are calculated relative to a solvent molecule binding to bromide.
Likewise, the energies for the ligands binding to the transition state and
to the post-transition state complex are calculated relative to the en-
ergies of the ligands binding to a solvent molecule. This results in a
partial cancelation of the errors arising from the implicit solvation
model and from the electronic structure method as well as contributions
arising from translational entropy in solution.

3. Results and discussion

The first step in the stereoselective glycosylation reaction developed
by the Nguyen group involves a phenanthroline or a related substituted
pyridine displacing a bromide (Scheme 2).[13-16] Since bromide ion is
poorly solvated in the non-polar solvents used for these reactions, a
hydrogen bond donor ligand that can bind bromide should lower the
barrier for this step and the catalytic effect should be proportional
bromide binding strength. A series of simple ligands with N-H bonds was
selected for their potential to form hydrogen bonds with Br". Fig. 1 shows
Br” complexed with a set of alkyl amines with increasing numbers of NHy
groups. These ligands are often used in transition metal complexes.
Since urea and thiourea derivatives have been shown to catalyze ster-
eoselective glycosylations [20-24], a second set of simple urea de-
rivatives was chosen to complex with Br. Complexes of Br” with urea,
thiourea, guanidine and cyanoguanidine are shown in Fig. 2.

The relative binding energies for Br in the complexes in Figs. 1 and 2
are summarized in Table 1. Some caution is needed in calculating these
binding energies since implicit solvation methods have difficulties in
modeling bare anions in non-polar solvents. These difficulties can be
circumvented by calculating the binding energy of Br™ in a complex
relative to the binding energy of Br™ to a solvent molecule. For bromide
complexed with diethyl ether (Eq. (1)), the Br’ interacts with the hy-
drogens of one of the CH3CH; groups and is stabilized by the C-O bond
dipole. Bromide interacts more strongly with the N-H bonds in the
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Fig. 2. Complexes of Br” with (a) urea, (b) thiourea, (c) guanidine and (d) cyanoguanidine (H-Br™ distances in ;\).

Table 1
Calculated relative binding energies for bromide with selected ligands (kcal/
mol, using Eq. (3)).

Ligand AH AG

H,NCH,CH,NH, -5.1 -39
(NH,CH,CH,),NH 7.4 5.6
(NH,CH2CH2)3N -8.1 —4.1
urea -10.6 -8.9
thiourea -12.9 —10.6
guanidine -9.5 -8.6
cyanoguanidine —-15.1 —14.0

complexes with the ligands (Eq. (2)) than to the solvent (Eq. (1)). The
relative binding energies are obtained by subtracting Eq. (1) from Eq.
(2), which eliminates the need for calculating the energy of an isolated
Br” ion in solution.

EtOEt + Br — EtOEt-Br~ (€]
L + Br - L-Br (2)
L + EtOEt-Br — L-Br + EtOEt @=2-

The alkyl amines have binding enthalpies of 5.1 — 8.1 kcal/mol and
the values increase with the number of hydrogen bonds to Br’, as ex-
pected. For the free energies of binding, there is a greater change in
vibrational entropy on binding Br” for the larger alkylamines with more

Fig. 3. Transition structures for the Sy2 reaction of pyridine 1-bromo, 2-deoxyglucose catalyzed by (a) urea, (b) thiourea, (c) guanidine and (d) cyanoguanidine
(distances in A). For the uncatalyzed reaction R(C1-N) = 2.163 A and R(C1-Br) = 2.815 A.

3
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Fig. 4. Post-transition state minima for pyridine displacing Br" in 1-bromo, 2-deoxyglucose complexed with (a) urea, (b) thiourea, (c) guanidine and (d) cyano-

guanidine (H-Br™ distances in .7\).

rotatable bonds than for the smaller alkylamines with fewer rotatable
bonds. This counters the trend in the free energies of binding with the
number of hydrogen bonds to Br™ and also leads to a smaller range in
binding free energies (3.9 — 5.6 kcal/mol). Urea has a significantly larger
binding enthalpy than (NH2CH3CHjy)sN even though it has only 2
hydrogen bonds to Br". This is due to a larger dipole moment and larger
partial charges on the hydrogens of urea compared to the alkylamines.
Replacing the O in urea with S yields thiourea and increases the binding
enthalpy by 2.5 kcal/mol. This is in accord with the better catalytic
activity for glycosylation found for thiourea derivatives than for urea
derivatives [20,21]. Switching O in urea to NH yields guanidine and
decreases the binding enthalpy by 1 kcal/mol. Adding CN as an electron
withdrawing group to guanidine gives cyanoguanidine and increases the
binding energy by 5 kcal/mol. The bromide binding energies in the urea,
thiourea, guanidine and cyanoguanidine derivatives parallel the trends
in the partial charges on the hydrogens (0.34, 0.36, 0.34 and 0.37, resp.)
and the dipole moments (5.4, 7.4, 4.1 and 10.2 Debye, resp. by M06-2X/
6-31+G(d,p)). The increase in binding energy is accompanied by a
shortening of the NH - Br” distances by 0.06 A for thiourea compared to
urea and 0.08 A for cyanoguanidine compared to guanidine. Since the
alkyl amines bind Br" more weakly than urea, thiourea, guanidine and
cyanoguanidine, only the latter are considered for catalyzing the Sn2
reaction of pyridine with a-bromo glucose.

In the uncatalyzed reaction, the transition state for pyridine dis-
placing the bromide is a simple Sy2 reaction with C-N and C-Br distances
of 2.163 A and 2.815 A, respectively. The transition states with the li-
gands complexed to the bromide are shown in Fig. 3. The C-N distances
are 0.10 — 0.13 A longer and the C-Br distances are 0.05 — 0.07 A longer
than in the uncatalyzed transition state, with the more strongly bound
ligands producing the larger shifts. The ligands are bound to the Br” in
the transition state with geometries similar to the complexes with Br”
shown in Fig. 2. The ligands interact with the Br n-type lone pairs and are
approximately perpendicular to the C-Br ¢ bond that is being broken in

Table 2
Calculated relative binding energies of the ligands with the transition structure
(kcal/mol, using Eq. (6)).

Ligand AH AG

urea —4.0 -3.2

thiourea —4.8 -3.2

guanidine -3.1 -1.9

cyanoguanidine -3.8 -3.3
Table 3

Calculated relative binding energies of the ligands with the post-transition state
minimum (kcal/mol, using Eq. (6)).

Ligand AH AG

urea —5.6 -3.8
thiourea -5.3 —4.7
guanidine —5.4 -3.7
cyanoguanidine -5.8 —4.3

the Sn2 transition state.

Along the reaction path after the transition state, there is a complex
with the negatively charged bromide bound to the positively charged
pyridyl sugar. The Br sits beneath C1-N bond at a distance of about 3.3 A
and interacts with the hydrogen on C1 (2.5 - 2.7 ;\) in both the unca-
talyzed case and when complexed with the ligands. Like in the transition
states, the ligands are approximately perpendicular to the pyridyl sug-
ar-Br~ interaction (Fig. 4). The ligand NH — Br” distances are similar to
the complexes in Figs. 2 and 3.

The relative binding energies for the ligands with the transition
structure and with the post-transition state complex are listed in Tables 2
and 3, respectively. Since the ligands also bind fairly strongly with
diethyl ether (enthalpies of —4.5 to —6.5 kcal/mol), the binding energies



S. Haisha et al.

~ 20 TS
g Product

8

= 10}

S —— no catalyst
'5/ urea

a ol - thiourea

= Reactant ~— guanidine

'q*a ~— cyanoguanidine
g -10}

post—TS complex

Reaction Coordinate

Fig. 5. Enthalpy profile for the reaction with and without the cata-
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Fig. 6. Free energy profile for the reaction with and without the cata-
lyzing ligands.

of the ligands in the transition state complex are computed relative to
the binding of the ligands with the solvent. The energies for binding to
the post-transition state minimum and to the EtOEt-Br” complex in the
product are calculated in an analogous fashion. There is also a pre-
transition state minimum, but most of the ligands bind more strongly
to the diethyl ether solvent than to the pre-transition state complex.

L + EtOEt — L-EtOEt 4
L+X->LX 5)
X =TS, post-TS complex, EtOEt-Br

L-EtOEt + X — L-X + EtOEt 6 =0B)-@

The calculated binding energies show that all of the ligands lower the
energy of the transition state. Guanidine is the least effective, in accord
with the lower ligand-Br” binding energies listed in Table 1. However,
the relative binding energies for the transition state fall in a narrower
range than in Table 1, primarily because the binding energies of the
ligand with the solvent (Eq. (4)) vary in a parallel fashion to the binding
energies of the ligand with Br™ (Eq. (5)). The ligands stabilize the post-
transition state complex and the product by a little more than the
transition state because the charge on the Br is fully developed.

The binding energies in Tables 1-3 can be combined with the energy
profile for the uncatalyzed glycosylation reaction to obtain the enthalpy
and free energy profiles for the catalyzed reactions shown in Figs. 5 and
6, respectively. The final step from the post-TS complex to the product is
endothermic because it involves the separation of the post-TS complexes
into a positively charged pyridyl sugar and the negatively charged
ligand-bromide complexes shown in Fig. 2.

The uncatalyzed reaction has a substantial enthalpy barrier in part
because the Br~ leaving group is poorly solvated by diethyl ether.
Furthermore, the free energy barrier is higher than enthalpy barrier
because of loss of translational entropy as the pyridine nucleophile ap-
proaches the a-bromo, 2-deoxyglucose to form the transition state. For
the catalyzed reactions, the calculations show that the ligands bind more
strongly to the transition state than to the solvent, thereby lowering the

Computational and Theoretical Chemistry 1224 (2023) 114122

reaction barrier. Urea, thiourea and cyanoguanidine lower the free en-
ergy of the transition state by a similar amount but guanidine is less
effective. The post-transition state complex is strongly stabilized by the
electrostatic attraction between the negatively charged Br™ leaving
group and the positively charged pyridyl sugar. The four ligands
considered in the present study are nearly equally effective in stabilizing
the post-transition state complex. The electrostatic attraction in the post-
transition state complex must be overcome when the leaving group is
separated from the pyridyl sugar to form the separated products and
results in a large increase in energy. In practice, this increase in energy is
avoided by scavenging the Br” by an agent such as isobutylene oxide
(IBO).

4. Conclusions

Relatively few methods are available for the selective synthesis of
a-2-deoxy glycosides. Substituted pyridines and phenanthrolines are
highly effective in promoting the stereoselective glycosylation of 1-
bromo 2-deoxy sugars via a double Sy2 mechanism. The first step,
displacement of bromide by a substituted pyridine or phenanthroline,
can be rate limiting because bromide is poorly solvated in the non-polar
solvents used for these reactions. Pyridine reacting with a-bromo, 2-
deoxyglucose was chosen as a representative reaction. A set of small
molecules was selected to bind bromide in order to lower the energy of
the transition state and accelerate the reaction. A series of alkylamines,
(NH2CH2CH3);NH3.,, showed increasing binding enthalpy with the
number of H — Br hydrogen bonds. However, urea, thiourea, guanidine
and cyanoguanidine were found to bind bromide more strongly because
of a larger dipole moment and larger partial positive charges on the
hydrogens that interact with the bromide. Urea, thiourea and cyano-
guanidine lowered the free energy of the transition state by 3 kcal/mol
while guanidine lowered the barrier by 2 kcal/mol, potentially accel-
erating the first step of the overall reaction by 2 orders of magnitude.
Even better catalysis may be achieved with ligands that bind Br" more
strongly, but not so strongly as to favor an Syl mechanism with
concomitant loss of stereoselectivity. One possibility is to use protonated
ligands since these will bind Br” more strongly in the TS and will form a
neutral complex with Br’, reducing the electrostatic barrier to forming
separated products. This approach is currently being explored experi-
mentally and computationally, and computationally and will be re-
ported in due course.
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