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Input Influence Matrix Design for MIMO Discrete-Time
Ultra-Local Model
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Abstract— Ultra-Local Models (ULM) have been applied to
perform model-free control of nonlinear systems with unknown
or partially known dynamics. Unfortunately, extending these
methods to MIMO systems requires designing a dense input
influence matrix which is challenging. This paper presents
guidelines for designing an input influence matrix for discrete-
time, control-affine MIMO systems using an ULM-based con-
troller. This paper analyzes the case that uses ULM and a
model-free control scheme: the Holder-continuous Finite-Time
Stable (FTS) control. By comparing the ULM with the actual
system dynamics, the paper describes how to extract the input-
dependent part from the lumped ULM dynamics and finds
that the tracking and state estimation error are coupled. The
stability of the ULM-FTS error dynamics is affected by the
eigenvalues of the difference (defined by matrix multiplication)
between the actual and designed input influence matrix. Finally,
the paper shows that a wide range of input influence matrix
designs can keep the ULM-FTS error dynamics (at least locally)
asymptotically stable. A numerical simulation is included to
verify the result. The analysis can also be extended to other
ULM-based controllers.

I. INTRODUCTION

An Ultra-Local Model (ULM) is a control affine model
designed to locally represent a controlled dynamical system
with unknown or partly known dynamics. When the input
influence matrix is designed, the ULM dynamics can be
estimated by model-free observers and applied to perform
feedback control [1]. However, for a system with n inputs
and m outputs, the input influence matrix has n X m entries
in general, which is non-trivial to determine when its size
becomes large. To provide guidelines for the design of the
input influence matrix in the MIMO ULM framework, we
analyze the stability of the error dynamics considering the
coupling effect of controller and observer. As the current dig-
ital controllers are implemented in discrete-time, we consider
the case using the model-free Holder-continuous Finite-Time
Stable (FTS) control and estimation framework [1].

Intelligent PID (iPID) [2], [3] control has been applied
for model-free control using the ULM, where a lumped
dynamics term represents the system dynamics locally. The
iPID controller has been applied to the SISO system and
requires the user to design the input coefficient via trial and
error. For a MIMO system, the coefficient becomes a matrix
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(possibly dense), which makes applying the ULM framework
difficult. Therefore, many applications assume the system
can be decoupled into several SISO systems; thus, classical
ULM-based iPID framework can be applied [4], [5], [6].
However, this assumption may not always be reasonable.
Additionally, the trial and error method in parameter tuning
has no guarantee of stability. The work of [7] imposes the
Linear Matrix Inequality condition to obtain the optimal
ULM gain. However, [7] only considers linear time-invariant
systems and the real input influence matrix is known.

By using a Holder-continuous Lyapunov function [8], a
FTS tracking controller has been proposed and applied in [9],
[10], [11]. An FTS state estimator has also been applied
for unmanned aerial vehicle state estimation [12]. In [1],
the FTS control and estimation scheme is developed for the
ULM framework, which enables finite-time stable learning
and control of the unknown nonlinear system. Although most
applications of ULM are in continuous time, the discrete-
time system naturally considers time delay and is more
advantageous in embedded systems. In our previous work
[1], the discrete-time FTS tracking and state estimation
scheme has been applied in the ULM framework. Similar to
other applications of ULM, it is also a challenge to design
the input influence matrix.

The main contribution of this work is the quantitative
analysis of the stability of the ULM framework on the
control affine system considering the design of the input
influence matrix. As the designed input influence matrix
in the ULM framework is different (almost always) from
the real one, this discrepancy makes the ULM dynamics
input-dependent. Therefore, the control input can affect the
observer for the ULM dynamics, which makes the observer
and controller coupled. Unlike the work of [3] that assumes
lumped dynamics terms, we extract the input-dependent part
from the ULM dynamics. Based on this formulation, we
derive the error dynamics that can guide the design of
the input influence matrix. Furthermore, we show that the
stability of the error dynamics is affected by the eigenvalues
of the difference (defined by matrix multiplication) between
the real and designed input influence matrix.

The remainder of this paper is organized as follows. In
Section II, we provide the basic knowledge of the nonlinear
discrete-time dynamics system, ultra-local model framework,
and the Holder-continuous finite-time stable control and state
estimation scheme. Section III provides stability analysis of
the coupled observer and controller error dynamics. Nu-
merical analysis is provided in Section IV to present and
verify the conditions under which the error dynamics are
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asymptotically stable. Section V discusses the limitations and
future works. Finally, Section VI concludes the paper.

II. PRELIMINARIES

This section introduces the basic concepts of a discrete-
time nonlinear system, an ultra-local model of the unknown
dynamics, and a Holder-continuous finite-time stable state
estimator and controller.

A. Discrete-time nonlinear system

Consider a nonlinear system with m inputs, n outputs and
! unknown parameters. The notation (-); = (-)({x) denotes
the value of time-varying variables at the time step ;. We
define ux € R™ to be the input vectors, y;, € R™ to be
outputs and z; € R to be unknown parameters. We define
ke W ={0,1,2,..} and W to be the set of the whole
numbers including 0.

We use the superscript (1) to denote the uth order finite
difference of a variable in discrete time:

4 —1 —1
yl(:) — yl(gl-i-l ) y]iu )

U = ke )
Thus the unknown discrete time system can be expressed as:
3 =w (yk,y;il)7 . 7y;(€v71),2k7uk7tk) : 2

Using (1), we can convert the nonlinear system (2) to:

Yktv = @ Uk Ykt 15 - -+ Ykpo—1s 2k Uk, i) - 3)

We assume that the system (3) can be represented in the
control affine form:
Yktv = Fi + Grug, “4)

where Fj, € R", G, € R*™™ wu;, € R™. Note that not all
dynamical systems are in the control affine form. But for a
wide range of applications on robotics, this assumption is
applicable. We denote the vectors of variables on which the
system (3) depends, as:

Xk = (Uk> Ykt 1> Yko—15 2k Uk, k) (5)
We assume that the system has the following properties:

Assumption 1. Fj, and G} are Lipschitz continuous with
respect to the .

Assumption 2. The numbers of inputs and outputs are the
same, i.e., m = n. G, is invertible.

These assumptions guarantee that the system (4) is input-
output controllable.
B. Ultra-local model of discrete-time nonlinear system

To control the system without knowledge of system dy-
namics G and Fj, the ultra-local model (ULM) represents
the system (4) by:

Yrto = Fr + Grik, (6)

where F, € R",G, € R™ ™, G, is unknown but can
be identified or designed. Fj, is also unknown but can be

obtained via state observers when G is determined. It is
worth noticing that the ULM model we use is only local
and not unique even for a control-affine system, as the input
influence matrix is obtained by design.

C. Holder-continuous feedback

We briefly introduce the discrete-time Holder-continuous
Lyapunov function [1] as a prerequisite to the controller
and observer design. We say that a discrete-time Lyapunov
function V}, : R™ — R is Holder-continuous if

Vi1 = Vie < =V, (N

where vy is a positive definite function of V}, satisfying the
condition that Je € R™:

Ve =7Ve) >n:=€e"% Vi >e

Lemma 2.1 and Theorem 2.1 in [1] suggest that the Vj
converges to 0 in finite steps if it satisfies (7). We will show
the finite-time stability of the controller and observer by
constructing the discrete-time Holder-continuous Lyapunov
function.

D. Model-free finite fime stable observer

A first-order observer has been proposed in [1] to estimate
unknown dynamics Fi. in the ULM (6). Let the estimation
of Fi be F; and thus the estimation error becomes:

el = Fi — Fr,
The first order finite difference of F;, can be defined as:
AFy = Fre1 — Fr.
According to Theorem 3.1 of [1], with v > 0 and r € (1,2),
a first-order observer can be designed as:
Fip1 =D (ef) e + Fi, given Fo,

T 1-1/r
) ef) -

where D (ekf.) = (( ®)

1-1/r :
(D)Te) "+

By Theorem 3.1 in [1], if the estimation error dynamics
ef satisfies ef = D (eéT ) ekf s ef will converge to zero
in finite time. The convergence property can be verified by
defining the Lyapunov function [1], [8]:

Vil = (el)Tef.

Thus, we can find v; and show it satisfies (7),
Vi =Vl = A Vi),
_1
W= (1 =D(e)H Vi)

As Fj+1 is not available at time step k, we substitute Fjq

with Fj thus introducing the perturbation term AJFj. The
estimation error ekjC is guaranteed to converge to a bounded

neighborhood of zero as long as AFj, is bounded [1].

E. Model-free finite time stable controller

Similar to the first-order observer, a finite-time stable
tracking controller can also be designed based on the estima-
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tion of Fj. Theorem 4.1 of [1] suggests that, with positive
number p > 0 and s € (1,2), we can define the control law
as:

gk'uk = yg—&-v - ﬁk +C (€%+v71) €Z+v717
AT y 1-1/s
((ej) ej) — K )

1-1/s '
(") ™
Similar to the observer design, we can define the Holder-
continuous Lyapunov function and show the finite-time sta-
bility for this control law. The tracking error is expected to
converge to a bounded neighborhood of zero as long as the
ef is bounded.

C(ef) =

III. STABILITY ANALYSIS OF THE ERROR DYNAMICS

In many applications with ULM, the controller and state
estimator are designed separately. In this section shows
that the ULM dynamics term Fj, is input-dependent, thus
making the tracking error and state estimation error coupled.
Based on the coupled error dynamics, we could derive the
conditions under which the errors are asymptotically stable.

A. Splitting the ultra-local model dynamics

Considering the real system dynamics (4) and its ULM
representation (6), we define the difference between the real
input influence matrix and the designed one:

AGy == G, — Gy
Now the system dynamics (4) can be written as:
Ykto = (Fr + AGruy) + Grug.

Comparing with (6), we find that the ULM dynamics also
depends on the inputs:

.7:}9 :Fk—l—Agkuk. (10)

Now we have split the ULM dynamics into the input-
dependent part AGruy and the real system dynamics F}.
We can see that Fj is a function of state input wuj that
comes from the feedback controller. Later we will show the
term AGyuj makes the tracking and state estimation error
coupled.

B. Dynamics of state estimation error
Considering the observer (8) and substituting the expres-
sion (10), we have the dynamics of ekf:
ety = Frr1 — Frt
=D (6{) 6‘]:: + Fr — ]:k+1

=D (ef)er + (Fr + AGrur) — (Foy1 + AGri1ups1

=D (e) el — AFx + (AGrup — AGyi1uky1), a1

where AFy = Fjpy1 — Fy is assumed to be bounded
according to the Lipschitz continuity of F}. Comparing to
the error dynamics in [1], we find the dynamics is perturbed
by the term (AGrur — AGriiugs1). If the actual input

influence matrix is known, such that AG, = 0, the system
dynamics is identical to that of [1], thus, having the same
error convergence.
C. Dynamics of tracking error
To analyze the tracking error dynamics, we first express
input uy by substituting (10) and (II-D) into (9):
Uk = gk_l(yk-i-v —-Fi+C (6Z+v—1) 6%4—1;—1)
=G (Yrto — (Fi + AGrug +e,)
+C (el 1) Elpor)-
Extracting uy, we have:
_ -1 ,_
up = (I+G, ' AGr) G, o
= (G, "(Gr + AGr)) G, 1o
= (Gk + AGk) 'GiG; 10k = G 16y,
Op = ngrv —ef —F.+C (€Z+v—1) Chto1-
Substituting (12) into the system dynamics (4), we have:
Yo = Fr + Grug = Fy, + 5
= Fk + yl(ci+v - e.lz: - Fk? + C (€%+v71) 6Z+v71'

By reorganising the last equations, we can obtain the tracking
error dynamics:

12)

13)

iyt er =C (ehiv 1) o s (14)

which is identical to that of [1]. However, we also note that
ez 4, Will appear in (11) when we substitute (12).
D. Coupled error dynamics
With (11), (14) and control input (12), we have a discrete
error dynamics that depends on AGy:
ezléjtv = C(ez+v71)ez+v71 - 6']::
6Z+v+1 = C(€%+v)€%+v - ef (15)
6‘;:_,'_1 = D(B)Z:)E)Z: — AFk =+ (Agkuk — Agk+1uk+1).
The perturbation term AGruy can be converted to:
AGrug = AGLG (YR — ef — Fi + Cee)
= (Gr — Gr)Gy  (yiy, — €k — Fi + Cee)
= (I - ngZI)(Z/ng - 6']: —Fr+ C(ez+v71)ez+v*%%'6
With (15) and (16), we can derive the error dynamics in

control affine form. With some algebraic manipulation on
(16) and (15), we have:

Y Yy
{ekiﬁvﬂ} = Ay {6235”] + Bi Ry,
k

17
€k+1

) where we define Hy := ng,gl and:

A, [d - Ijlr,;jl(f — Hi)(1—¢) —Hkljld}
Hi (I = Hy)(1 =) Hy d
I
B.= ||,

Ry = Hi1 (I = Hi) (Y, — F)
—(I = His1) Wy o1 = Frsr) — AF)
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where ¢ :=C(e, ), d :=D(e{,,). As the input Ry, is not a
function of the error term, we consider Ry as a perturbation
and only analyze the other part for the stability. We assume
here Ry is bounded. Due to the complexity of considering
2 matrix variables, we assume that Hy,1 = Hy = H for
simplicity. Therefore we have:

cl —HYI-H)(1-¢)
H Y I-H)(1-¢)

—dH!
dH !

As we are concerned about the stability at the origin of
(17), we analyze the linearized dynamics at the origin. Now
the problem is to find the matrix H that makes Ay have
eigenvalues inside the unit circle. We have the characteristic
polynomial:

det(A — AI) =

Ay =

el —(H'-DH(1-c¢)—A —dH!
det([ (H'—D)(1-c)  dH - A})
cl —A —A
= det( [(Hl ~I)(1-¢) dH™ '~ A])

=det(cI — A)det(dH " — A
+(H =D =e)(el —A)TTA)

1—
=(c—Ndet(dH ' — A+ (H ' - I)%)
c—
B 1, (=o)X oy, @=0A
= det(H (-5 4 d) = M = =0T,
(18)
where A := AI. As we are concerned about the case

when |[A|| < 1, then we can assume I + A is invertible.
Additionally, we have ¢ € [—1, 1), so we have (18). Now we
can decompose H:

H =P lJP

where J is the Jordan canonical form and P is an invertible
matrix. Therefore we have:

H—l(i(lc__i)A +d) — A — 7(16__3»1
—p! (J((lc__c)?)‘ +d)— (A + (lc__c)?/\)l> P

Let the eigenvalues of H be o; € C,j = 1,2,...,n, then
det(A — M) = 0 is equivalent to:

[[ (3 +0-c—d—a)r+dc) =0, [A]<L

j=1

(19)

When ¢ = d = —1, if each «; ensures solutions to the
quadratic function a;A? 4+ (1 —c—d — a;)A + dc = 0 being
inside of unit circle, the error dynamics (17) would be at
least locally asymptotically stable. We notice that each «;
corresponds to a pair of solution \. For simplicity below, we
omit the subscript j and analyze each .

IV. NUMERICAL ANALYSIS

Now we numerically analyze the effect of Gy on the
stability and launch several simulations to verify it.

logyo [|All
Im(a)
b bbb on s o e B

0 50 10 s 0 5 10 s
Re(a) Im(a) Re(a)

Fig. 1: Norm of eigenvalues of Ay, i.e. A w.r.t the eigenvalues of H, i.e.
a when ¢ = d = —1. Left: The distribution of ||A||max in complex plane.
Right: Contour of distribution of ||A||max in complex plane. « at the right
side of the red contour ensure the error dynamics (15) is stable at the origin.

6 T

i
: i - =1
] i — nl
3 i
2
4

—

log [|A]l

Fig. 2: Norm of eigenvalues of Ay when « € Rand c =d = —1.

A. Pole distribution

To make (19) more intuitive, we sample « and plot the
corresponding ||A|| in Fig. 1. Note that each « corresponds
to 2 (distinct) solutions of A in (19):

(a—i—d—i—c—l):ﬁ:\/(a+d+c—1)2—4dca
A= 5 . (20)
et

Thus we only consider the larger norm, namely || A||max. For
the stability at the origin, we let c = d = —1 and we can see
« at the right side of the red contour in Fig. 1 can ensure
the all A being inside of the unit circle. The boundary (red
contour) can also be obtained via o = w, when
we make ||[A|| =1 in the complex plane.

We also present the case that I'm(«) = 0 in Fig. 2. We can
see that the origin is stable when o > 1. This result suggests
that if we only overestimate the scale of G, and apply it for
control, the origin can be stable. But if o — +o00, ||A1] will
approach 1, which makes the origin sensitive to disturbance.
When a < 1, ||A1] > 1, the origin becomes unstable.

Note that the A, is a function of the error term, which
makes constructing the Lyapunov function for (17) difficult.
We instead analyze the eigenvalues of Ay to roughly show
the global properties of (17). We fix a« € R and plot
[[M||max with respect to ¢ and d in Fig. 3. As ¢ and d are
monotone functions of e}, || and || ||, Fig. 3 can reflect
the distribution of || A\pax|| in the entire space of system (17).

B. 2D fully actuated rigid body

To validate the former analysis, we apply the ULM-FTS
framework with different o € R to an input-output control-
lable system. We consider a 2D rigid body system, where
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a=—10 a=-1

Amaz

a=-0.1

a=08

a=10 a =100

Fig. 3: The distribution of ||A||max in the state space of system (17). Red contour: ||A||max = 1. Lighter region: larger ||A||max. Darker region: smaller
[[A]lmax. Black dots: Origin of the system (17): ¢ = d = —1. When & > 1, ||A|lmax < 1 in the entire space except for d = ¢ = 1. However, when
a — 409, ||Allmax — 1, thus the system tends to be unstable. When o < 1, the origin is no longer attractive. However, ||A|lmax < 1 still holds for
some part of the state space (the enclosed region by red contours in Fig. 3) thus the error may not go to infinity. As o« — —oo, this region vanishes.

fZ

Fig. 4: 2D fully actuated rigid body system. The system inputs are force
(fx, f-) and torque 7 applied in the body frame. For the purpose of
simulation, we let the mass be 2.0 kg and the inertial be 3.0 kg m2.

the states are the Cartesian position (z, z) and orientation 0:
:c %1005 6 Lsinh 0 [z
Z | =| —;;sinf -cosf (1) I
0 0 0 7

T T

The system is presented in Fig. 4. We define the time step as
At := tp1 —t; and we get the following discrete dynamical
system:

) Yk+2 — 2Ukt1 t YUk
Y = At2
% cosO, Lsinf, 0 fak
= f% sinf -cosb O | fox
0 O % Tk
Converting to the form in (4), we have
Yk+2 = Fi + Gruy,
% cosf, Lsinf, 0
G = At? —% sinf ~-cosf O],
0 0 7

Fy=2yes1 — Yk e = [for for Tk

0 - 1

'I e R eference:

+ Actual Trajectory | |

Position - =

L
200 400 600 800 1000 1200

L
0 200 400 600 800 1000 1200

|
200 400 600 800 1000 1200
Time(s)

Fig. 5: Reference step signal, initial condition and tracking performance
when o = 1.2.

We apply the controller with different «, i.e. G = aGy.
Two step signals are designed for the controller to track,
see Fig. 5. We also assume upper bounds of the input, i.e.,
lurlloo < 3.

We apply the controller with different input influence
matrices parameterized by o € R. The tracking errors
are presented in Fig. 6. The result is consistent with the
distribution of eigenvalues of Ay, shown in Fig. 2 and Fig. 3.
When o = 1.2,2,10, the tracking error soon converges as
[[AMlmax < 1. It is worth noticing that & = 1 means that
the Ry = 0. Therefore, ||e] || is continuously dropping. The
jump in the tracking error is due to the saturation of input
in this case. When o < 1, the origin is no longer stable,
and thus the tracking error is much larger or diverges. As
a — —o0, the tracking error starts to diverge. Note that when
a = 100, the Ay have poles with the norm approaching 1 at
the origin; thus, the system is sensitive to perturbations.
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0 1000 2000 3000 0 1000 2000 3000 0 1000

logyg [le]|

a=1

0 -2
2000 3000 0 1000 2000 3000 0 1000 2000 3000

a =100

- -1 -15
0 1000 2000 3000 0 1000 2000 3000 O 1000

Time (s)

-15 2
2000 3000 0 1000 2000 3000 0 1000 2000 3000

Fig. 6: Closed-loop simulation with different o € R. When o < 1, the error do not converge to 0 and may diverge completely. When a = 1, the
perturbation term Rj becomes zero so the state estimation error consistently converge to 0. Note that the jump in tracking error is solely caused by the
saturation of inputs. When oo = 1.2, 2, 10, the error is asymptotically stable according to || A||max at the origin. When o = 100, ||A|lmax at the origin is

near 1, which makes system (17) extremely sensitive to Ry,.

V. DISCUSSION

The previous result suggests that if the designed input
influence matrix is within some range w.r.t the real input
influence matrix, we can guarantee asymptotically stable
error dynamics. One practical application is when partial
knowledge of the system is given. Based on Fig. 1, we can
overestimate the scale of the input influence matrix for con-
trol. For example, multiply the imperfectly known influence
matrix with a positive number to make the eigenvalues of I
reside in the valley in the right half-plane of Fig. 1.

This work assumes the use of a discrete-time Holder-
continuous finite-time stable control and estimation scheme;
it can be extended to other ULM-based model-free control
and state estimation cases. One example is that we replace
the gain in (9) and (8) with constants between —1 and 1. In
this case, the error dynamics (17) becomes linear and can be
globally asymptotically stable.

As it is hard to construct the Lyapunov function for the
error dynamics (17), we only gives the local stability by the
eigenvalues of Aj matrix. As the A; matrix in (17) remains
Hurwitz for a wide range of ¢ and d given H (see Fig. 3),
we may extend the local asymptotic stability to global.

One limitation of this work is that the analysis only applies
to control affine systems, where we could define the actual
system input influence matrix and dynamics. For system that
is not control affine, we have to compare the ULM dynamics
with the actual system without this assumption for a more
generalized stability criterion. Another limitation of this work
is the assumption that Hy; = Hj in (17). Without this
simplification, Ay in (17) will explicitly depend on time.
However, if Ay is Lipschitz continuous or weakly dependent
on time, we may be able to obtain the stability criteria using

the ULM dynamics. In the case of applying the Holder-
continuous finite-time stable controller, we find that the
error convergence is determined by the eigenvalues of the
difference (defined by matrix multiplication) between the
designed and real input influence matrix. We show that this
condition is not conservative. This result can guide designing
the input influence matrix for MIMO ULM-based model-
free control when only partial knowledge of the system is
accessible.
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