RANDOM TRIGONOMETRIC POLYNOMIALS: UNIVERSALITY AND
NON-UNIVERSALITY OF THE VARIANCE FOR THE NUMBER OF REAL ROOTS
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ABSTRACT. In this paper, we study the number of real roots of random trigonometric polynomials with iid
coefficients. When the coefficients have zero mean, unit variance and some finite high moments, we show that
the variance of the number of real roots is asymptotically linear in terms of the expectation; furthermore the
multiplicative constant in this linear relationship depends only on the kurtosis of the common distribution of the
polynomial’s coefficients. This result is in sharp contrast to the classical Kac polynomials whose corresponding
variance depends only on the first two moments. Our result is perhaps the first paper to establish the variance
for general distribution of the coefficients including discrete ones, for a model of random polynomials outside the
family of the Kac polynomials. Our method gives a fine comparison framework throughout Edgeworth expansion,
asymptotic Kac-Rice formula and a detailed analysis of characteristic functions.
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1. INTRODUCTION

Universality for the distribution of roots of random polynomials is an exciting subject that has attracted the
attention of many generations. When the degree of a polynomial is very large, it is often challenging, even
numerically, to solve for the roots, and a very natural question is to obtain an accurate estimate for the number
of roots in a given region (in particular in R). There is a large body of studies in the past centuries dedicated to
this task, showing that the typical size of the number of roots depends mostly on the underlying symmetries of
the random polynomials and not on the particular distributions of the coefficients. These studies often assume a
fairly minimal normalization condition, where the coefficients are independent with fixed means and variances.
Results of this type are known in the literature as universality results for the number of (real) roots.

Among many statistics about the number of real roots of random polynomials, denoted by N,, (or N, ), the
following are often considered first by many authors: the expectation EN,,, the variance Var(N,), and the

limiting distribution of the standardization N;f = % One of the most studied random polynomials in
ar(iNn

the literature is perhaps the Kac polynomial,

where ; are iid copies of a common random variable &, often assumed to have zero mean and unit variance. The
issue of estimating N, for such polynomials was already raised by Waring as far back as 1782 (|59], [40]). In the
early 1940s, Kac [37] (see also [55]) developed a magnificent formula for the expectation of number of real roots

EN,, / / lylp(t, 0, y)dydt, (1)
—o0 J—o0
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where p(t,z,y) is the probability density for P,(t) = z and P)(t) = y. See for instance [1l [3| [19] for other
variants of this Kac-Rice formula. When ¢ is standard Gaussian, one can easily evaluate the right-hand side of
and obtain

E(N,,G) = (i + 0(1)) log )

where the notation E(NV,,, @) indicates the expectation of N,, when ¢ is standard Gaussian. Similarly, one can
also show that

Var(N,,G) = (4(1 34y 0(1)> log n.

™ ™

Evaluating the double integral in the Kac-Rice formula is feasible only when the function p(t,z,y) is suf-
ficiently nice which often requires that the random variable ¢ is continuous. It is thus of great interest to
understand what happens when £ is discrete. A crucial example is when £ is Rademacher, that is £ takes
values +1 with equal probability. Even though the Rademacher distribution is arguably the simplest looking
discrete distribution that one can think of, it is often the case in the study of random polynomials that a method
applicable to Rademacher distribution can be adapted to much more general distributions.

For the Kac polynomials with Rademacher coefficients, the seminal results of Littlewood and Offord [42] [43]
441 [45] and Erdés and Offord [21] showed that EN,, is universal in the sense that the Rademacher case behaves
asymptotically like the Gaussian case . In particular,

E(N,, Ra) = (i + 0(1)> logn (3)

where the left-hand side indicates the expectation of N,, with Rademacher coefficients. Ibragimov and Maslova
[29, 130} B1], B2] (among others) generalized the method by Erdés and Offord to show that EN,, is universal as
long as the random variable £ has mean 0, variance 1, and belongs to the domain of attraction of the normal
distribution.

Beyond the Kac polynomials, proving universality for the roots of other classical random ensembles including

elliptic polynomials,

hyperbolic polynomials (which include the Kac polynomials),
trigonometric polynomials,

and Weyl polynomials,

has become an active direction of research in recent years [11}, 12} [34] [36] [6T], (17, 25 [26]. There is also a distinction
between local and global universality. The global universality concerns the limiting distribution of the empirical
measure of all complex roots and has been established in several papers for many random polynomials, see for
instance [36l [54] [15] and the references therein. The local universality concerns the distribution of the roots
(complex, real, or both) in smaller/thinner sets and is developed in a series of work by Tao, Vu, and the current
authors [61], 50, [17, [52].

Thanks to these results, the universality of EN,, has been systematically established for all of the aforementioned
classical models of random polynomials, as done in [52]. On the other hand, understanding the universality of
Var(N,,) remains greatly challenging. It is known that for the Kac polynomials and their generalization, this
variance is universal [48, [53]. For other models of random polynomials, to the best of our knowledge, this
variance is only known for Gaussian distribution or for some cases, distributions with certain continuous-ness.
Our result would be the first to establish the variance outside the framework of Kac polynomials for discrete
distributions, including the Rademacher one.
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We study the random trigonometric polynomial

1 & it . (it
P,(t,Y) = % Zyﬂ cos (n) + Y2 Sin (n) , (4)
i=1

where y;; are independent random variables. Let Y; = (yi1,¥i2) and ¥ = (¥3,...,Y,). In this note, we
are interested in the real roots of the periodic polynomial P, (¢,Y") (although some other statistics of random
trigonometric polynomials also play crucial role in several recent interesting studies, such as [4] and [56]). We
now redefine N,, = N, (Y") to be the number of roots of P, in one period, namely for ¢ € [—nm, nx]. It is known
from a result of Qualls [57] in the 1970s that when the y;; are iid standard Gaussian, we have

EN, =2v/(2n+1)(n +1)/6.

Confirming a striking heuristic by Bogomolny, Bohigas, and Leboeuf [14], about ten years ago, Granville and
Wigman [27] proved the following.

Theorem 1.1. When the y;; are iid standard Gaussian, there exists an explicit positive constant cq such that
the variance satisfies

Var(N,,) = (cg + o(1))n.
Furthermore,

Nn - ENn
Zn” 0 4N, 1).
cgn

Here, asymptotically, cq =~ 0.55826. More precisely,

4 % 71— ()2 — 3d'(1)? 2
. < g9(t)" —3g'(t) (W+R* arcsinR*) 1) dt + —=

T3l \ (- g2 V3

where
9" (1)1 —g(t)*) +g(t)g'(t)?

1/3(1—g(t)?) = g'(t)
Granville and Wigman established this beautiful result by a delicate method basing on the Kac-Rice formula.
More recently, Azais and Leén [6] provided an important alternative approach basing on Wiener chaos decompo-
sition. Roughly speaking, they showed that P, (¢,Y") converges in certain strong sense to the stationary Gaussian
process of covariance r(t) = sin(t)/t, from which variance and CLT can be deduced.

g(t) = @, and R* = R*(t) =

More relevant to our current note, the above result has been extended recently by a ground-breaking result
of Bally, Caramellino, and Poly [8] to more general distributions where certain continuousness is assumed. To
discuss this extension, we first introduce some of their notions. We say that Y; satisfies the (two-dimensional)
Doeblin’s condition if there exists a; € R? and r,n € (0,1) such that for any A C B,(a;),

P(Y; € A) > nA(A).

Let D(r,n) denote the sequences of random variables Yi = (yx1, yr2) satisfying the Doeblin’s condition, with
Ky, Ykjo = 05, ., and uniformly bounded moments of all orders

sup E|Y;|P < oo Vp,
k
where the Y} are independent but not necessarily identically distributed.

Suppose that (Yy) € D(r,n) and for all a = (e, ..., qm) € {1,2}™ with m = 3,4, the following limits exist

nh_{go E H Yna; = Yoo Q).

i=1
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The following result from [8] was formulated for N,,([0,n7],Y), the number of roots inside [0, n7] of P, (¢, Y)El
Let N, ([0,n7],G) be the number of roots inside [0,nn] of P,(nt,G) which is the random polynomial with
coefficients y;; being standard Gaussian.

Theorem 1.2. [8] Theorem 2.1] We have
lim lVar(Nn([O, nr],Y)) = lim lValf(Nn([O, nn), G)) + iy*
non non 60
with
ye = (¥(1,1,2,2) = 1) + (y(2,2,1,1) = 1) + (y(1,1,1,1) — 3) + (y(2,2,2,2) — 3).
In particular, if the y;; are #d copies of a random variable & of mean zero, variance one and satisfies the
(one-dimensional) Doeblin’s condition, then

lim lVar(]\fn([o, nm],Y)) = lim lVauc(z\rn([o, nm), G)) + 3%15:(54 - 3). (5)

n—oo n n n

This result implies strong concentration around the mean of N,,. More crucially, it says that the variance is not
universal with respect to second order normalization of { (having mean zero and variance one). At the same
time, it also suggests a possible universal picture that in the limit, the ratio V;, /n asymptotically depends on L.,
and particularly on the fourth moment in the iid case.

In this paper, we confirm this phenomenon and completely remove the Doeblin’s condition.

Theorem 1.3 (main theorem). Assume that y;;,1 <i <n,j=1,2 are #d copies a random variable £ of mean
zero, variance one, and E|¢|Mo < oo for a sufficiently large positive number My. Then

1 2
lim ~Var(N,) = g + B1E(g4 - 3),

where we recall that c is the constant from Theorem[1.1.

We thus obtain that for the case where y; ; are Rademacher random variables,

1 4
lim —Var(N,,) = cg — 5~ 0.29159.

n n

Our numerical experiments appear to be in accordance with these results as shown in Figure

Note that our result is stated for the number of roots over [—nm, nx], but the approach automatically works
for roots over [0,n7] as well. As a matter of fact, most of our arguments work for random variables |{| of
bounded (2 + £¢)-moment, except at the Edgeworth expansion step (for instance Theorem where we assume
boundedness of moments. Determining the minimum value of M, seems to be an interesting problem.

We can view Theorem and Theorem as a mixture of universality and non-universality. The fact that the
variance is linear in n indicates that there is no correlation (repulsion and attraction) among sufficiently far apart
roots, and this phenomenon is universal in the sense that it suffices to assume |£| to have bounded moments.
However, the multiplicative constant, which is determined by the correlation of nearby roots, is affected by the
kurtosis as seen.

Finally, we also invite the reader to Theorem which says that under a very general setting (including the
non-iid case) there is already a significant cancellation in the variance formula. More precisely, there exists a
positive constant ¢ such that

Var(N,,) = O(n*7°). (6)
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FIGURE 1. Sample variance (divided by n) of the number of roots in [—nm,nn] for Gaussian
random variables (dashed line) and Rademacher random variables (solid line).
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FIGURE 2. Sample variance (divided by n) of the number of roots in [0, nr] for Gaussian random
variables (dashed line) and Rademacher random variables (solid line).

2. OUR METHODS

We first mention briefly the approach by Bally et al. to prove Theorem Here, powerful tools such as
Malliavin calculus and Wiener chaos theory (see [6] and the references therein) do not apply under the Doeblin’s
condition. Instead, the authors above have developed a sophisticated method using the Edgeworth expansion
and approximate Kac-Rice formulas basing on their previous results in [7].

IThe authors of |8] considered the number of roots inside [0, 7] of Py, (nt,Y), which is the same as our Ny ([0, n7],Y).
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Generally speaking, for Theorem [1.3] we will follow the same machinery. However, as we have to deal with
discrete random variables, none of the results from [7] and [§] could be applied. For instance, in our opinion, it
is a non-trivial problem to study the small ball probability for the random walks associated to P, (t,Y) without
Doeblin’s condition.

We would also like to point out that, broadly speaking, using the Edgeworth expansion to study the distribution
of normalized sums of independent random variables is a classical approach (see [9]) and this approach was also
used by Bally et al. [7], [8]. The novelty in our argument is a more refined estimate for characteristics functions
motivated by work of Konyagin-Schlag [41] that works for a large class of distributions (including the discrete
cases). This is where we deviate from Bally et al. [7} 8], who used a completely different approach to deal with
non-smooth distributions. More precisely, in their papers [7} 8], the authors use the Nummelin splitting (which
requires Doeblin’s condition) to decompose non-smooth distribution into two parts: a smooth part that can
be treated directly by Edgeworth expansion methods, and a noisy part that can be treated by Wiener chaos
techniques. Our modified approach circumvents the need for Nummelin’s splitting and therefore avoids the need
for anti-concentration conditions like the Doeblin condition in Bally et al. 7] [g].

One trade-off that we need to face in order to obtain the generality of our result is that we necessarily rule out
a set of points that are well-approximated by the integer lattice (see Condition . To show that this set does
not contribute significantly to the whole picture, we utilize a universality result in [52] (Theorem [7.7)) which,
roughly speaking, says that the difference between the variance of the number of roots of P,(-,Y) and P,(-,G)
over small intervals is negligible.

In what follows we sketch the highlights, some of which are of independent interest. (For instance, a variant of
Theorem finds some applications in [51].)

2.1. Small ball estimates and characteristic functions. Here, we only assume £ to have mean zero, variance
one and bounded (2 + €p)-moment for any g > 0.

For ¢t € [—nm, nw], we define the vectors

o= (s (£) - Lan (1)) ant it (s () e (). o

Assume that y;;,1 < ¢ < n,j = 1,2, are iid copies of a random variable £ of mean zero and variance one.
Consider the random walk in R?

Sp(Y,t) = Z yinu; + yipu;. (8)
i=1

This random walk can also be written as S, (¢,Y) = Z;;l Cn(i,t)Y;, where Y; = (y;1,¥:2) and
cos (ﬂ) _sin (“)

o= (Faulthy Salth) ?)

n

Note that for some values of ¢ such as t = o(1), the random walk does not spread out in the Radamacher case.
We will show that these are the only cases to cause this clustering.

Condition 1. Let 7 be a constant to be chosen sufficiently small. A number t € [—nm,nx| is said to satisfy
Condition |Z if there does not exist a non-zero integer | with || < n™ such that |[l-Lt-||g/z < n='T87. In other
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words
b

™

VOo<I<n™, >n 18T

R/Z

Here ||.||g/z is the distance to the nearest integer. In other words, the above condition requires that ¢/7n cannot
be within a distance of n~'+°() from rational numbers of denominator n°().

Theorem 2.2. Let C' > 0 be a given constant. Assume that ¢ satisfies Condition [ with sufficiently small 7.
Then for 6 =n~Y and for any open ball B(a,§), we have

P (\}ﬁSn(t, Y) e B(a,a)) =0 (6.

As mentioned before, our condition on t is almost optimal. Towards Theorem [1.3] as we will be dealing with
pair correlations, we will need to work with vectors in R*. Let s,t be given, define the vectors v;, v/ as follows

o o (s (1)~ L () o ()L () )
o= (s (1) Lo (1) o (2) Lo () =

These vectors are obtained by simply concatenating u;(¢), u;(s) and u}(t), u}(s), respectively.

and

Here we are interested in the random walk

Sn(s,t,Y) = Zyﬂvi + Yia V. (12)
i=1

Using (9), if we let C,,(i,s,t) be the 4 x 2 matrix obtanied as a joint of Cy,(i,t) and C,(i,s), then we can see
that this random walk can also be written as S,,(s,t,Y) = > 1" | Cn(i, s, t)Y;.

We will assume that s/7mn and t/mn cannot be jointly well-approximated by rational numbers.
Condition 2. Let 7 be a constant to be chosen sufficiently small. Two numbers s,t € [—nm,nx] are said to

satisfy Condition@ if there do not exist integers k,l with |k|, |l| < n™, not both zero, such that

S n71+87'.

™ ™n R/Z

t
‘kerl

Note that if s,t satisfy Condition [2[ then each of them satistifes Condition [I| separately. It is clear that the
measure of (s/n,t/n) € [—m,7]? that does not satisfies the above condition is n~'*°(). We will show the
following small ball probability.

Theorem 2.3. Let C > 0 be a given constant. Assume that s,t satisfy Condition [2 with sufficiently small 7.
Then for 6 = n~%and for any open ball B(a,§), we have

P (\}ﬁSn(&t, Y) e B(a,5)> =0 (5%).

To prove these small ball estimates, we will rely on the following results on the characteristic functions. First,
for the random walk S, (¢,Y), let

Pre (2) = H ¢i(x) = HEe(yn(ui,w)) HEe(ym(ll&@), z €R?,
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where e(y) = . We will show that this function decays very fast.

Theorem 2.4. Let C, > 0 be any given constant, and t satisfies Condition[I for some sufficiently small constant
7. Then the following holds for sufficiently large n and sufficiently small 7. (depending on Cy and 7). For any
n® 12 < zf|y < n, we have

|¢r2 ()] < exp(—n"").

We note that this was also studied in [41] for the Radamacher case, covering up to |z[l2 < n'/2t°(1). This
result has been improved to ||z||2 < n'~°(") in [51] recently for any & of variance one. Our current approach to
prove Theorem [2.4| goes deeper than those of [41] [51] where we need to solve certain inverse-type problems. (See
Sections [10| and (9| for more details.)

Similarly to the case of R?, to establish these results we will study the characteristic function

n

¢ri(z) = [[ ¢i(2) = [[ Be(yir (vi, 2)) [ [ Be(yia(vi.z)), = €R™
i=1 i=1

i=1

Theorem 2.5. Let C, > 0 be any given constant, and assume that s,t satisfy Condition[2 for some sufficiently
small constant . Then the following holds for sufficiently large n and sufficiently small T, (depending on C.,
and 7). For any n®™~1/2 < ||z|ls < n%*, we have

|¢ms (2)] < exp(—nT").
We note that this result implies Theorem because with ¢ under Condition (I} there exists s € [—nm, nw| so
that s,t satisfies Condition [2 We then apply Theorem with = (21, 22,0,0). However, we will present a

separate proof of Theorem [2.4]in Section[J]to serve as a preparation for our more technical treatment of Theorem

2.5 in Section 10l

2.6. Approximated Kac-Rice formula and proof conclusion. We next briefly recall the use of approxi-
mated Kac-Rice formula.

Consider a smooth function f on an interval [a,b] where for all ¢ € [a,b], we have |f(¢)| + |f'(¢)] > 0. Then
according to a celebrated formula of Kac and Rice, the number of roots of f in [a, b] is given by

b
lim—/ |f/(t)|1‘f(t)|<5dt.
a

We will use this approximated formula for our polynomial P,(-,Y) with the following choice of § E|
§:=0, =n"". (13)
We have
lim lVar(Nn(Y)) = lim lVaur (1 /7”7 |P (¢, Y)|1|pn(t7y)|<6> dt.

n—oo M n—oo n 26 J_pn

After expanding out the integrals, we will need to compute

1 s s
572/_n7r /_,.m Cov (‘P;L(t7Y)|l‘p"(t,y)|<5,|P7/L(S,Y)|1|pn(s7y)‘<5) dsdt.

2Here we slightly abuse the use of §: namely in other parts of the note we can have § = n~¢ where C can be any (large) constant,
while in the approximate Kac-Rice and Edgeworth-expansion sections we concretely picked § = n~° for convenience.
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Let us introduce a few notations to simplify the discussion. We define the following even functions that appear
in the above formula

1

Fg(x) = ?61|$‘<5, reR (14)

and
®s(z) == |z2|Fs(z1), z = (21,22) € R (15)

and
\1’5(1‘) = @5(%1,$2)‘I’5(£3,$4) = |$2|F5($1)|$4|F5($3), Tr = (l‘1,$2,1‘3,$4) S R4. (16)

We have ) .
85 (J=5u(01)) = IPLY)| X 551im, s = 6s(6Y)
and

v, (\/lﬁSn(s,uY)) — 65(5,Y)bs(t, V).

Finally, for short we introduce
vn(s, t, Y) L= COV(P;I(S, Y)1|Pn(s,Y)\<5a P;L(t, Y)1|Pn(t,Y)\<6)

=Eops(s,Y)ps(t,Y) —Eps(s,Y)Eps(t,Y). (17)
For a given £ > 0, we will decompose the interval (—nm, nm) into subintervals of length e
Iy, = [ke, (k4 1)e)] C [—nm, nn) (18)
and let
Dne= |J Iex1, (19)
(k,p)eD

where D is the set consisting of all (k,p) with —nw/e <k < p < nm/e such that for all s € I, and t € I, s and
t satisfy Condition . We refer the reader to Section [7| for further discussion on D.

Let N, (G) and v,(s,t,G) be the statistics when the y;; are standard Gaussian. In our next lemma, we show
that, in comparison with the Gaussian part, the contribution R,, from (s,t) ¢ D,, . is negligible in the variance
computation.

Lemma 2.7. With § as in we have

VarN, (V) = VarN,(G) + 2/ (U (8,8, Y) —vp(s,t,G))dsdt + Ry, (20)
Dn,s
where R
lim —= = 0.
non

Therefore, we will need to control [, (vn(s,t,Y) — v, (s, t,G))dsdt from , for which we will use Proposition
to show the following (see also |8, Lemma 5.1]).
Proposition 2.8. For every ¢ > 0 we have
1 1
1i7rln - . (Vn(s,8,Y) — vn(s,t,G))dsdt = BE(§4 —3)+re

with |re] = O(e).

Combining Lemma and Proposition with & — 0, we obtain Theorem [1.3] We will prove Lemma in
Section [7] and Proposition in Section [6] Notice that for these results we will also need to incorporate other
existing results in the literature (notably [52]). We will also justify @ by the same way (see Section .
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2.9. Edgeworth expansion. We now compare v,(s,t,Y) with v,(s,t,G) by using Edgeworth expansion of
order three. This approach is originated from [8], but our proof is directly based on the study of characteristic
functions.

If X; are iid real random variables of mean zero and variance one, the Central Limit Theorem says that, with ®
being the C.D.F. of the standard Gaussian distribution, for any real number x, we have

P (% <o) - 0w =0

lim
n— oo

where S, =Y 1, X

The Edgeworth expansion by Edegworth [22], Chebyshev [63], and Cramér [16] says that under the so-called
Cramér condition, if the X; has bounded sy moments then there exist explicit polynomials P,..., Ps,_1 with
coefficients depending on the cumulants of % such that

S x fso_lnfr/z - z))| = O(n=%/?
P2 <o) > n R D)o >>|0< )

where D is the differential operator.

To prove Proposition we will carry out the Edgeworth expansion for EWg (ﬁSn(snﬁ, Y)) as well as for

Ed; (ﬁSn(&Y)) and E®; ﬁS’n(t,Y))7 where we recall S,,(¢,Y) and S, (s,¢,Y) from (8) and (12), and the
functions ®5 and ¥y from (15) and .

In what follows, we shall mention briefly our main contribution; we invite the reader to Section [4f and Section
for more details.

We let X,,(¢t,Y) be the vector (Cy,(k,t)Y%)3_, and X, (s,¢,Y) be the vector (C,(k,s,t)Ys)i ;. We also let
Vo(t) = 2370 Colk, t)Cr(k,t)* and Vi (s,t) = 2370 Cy(k,s,t)Cy(k, s,t)* be the average covariance matri-
ces. Finally, we defer the technical definition of I'j, 2, which occurs in the following statement, to . We will
show the following CLT type estimates.

Proposition 2.10. Assume that ¢ has mean zero, variance one, and E|¢|M0 < oo for sufficiently large M.
Assume that s,t satisfy Condition @ Let 6 be as in . Then we have

BES(Pa(t, ) ~ EFs(Pa(t, G))| < ~75. e1)

and
1 1 1 _
\E% (\/ﬁsn(mY)) —E®; (\/ﬁSn(t, G)) - gE[%(IQ()\)WWg)FW (I(\) 1/2Xn(t,Y),W2)]‘

< W + %Tn(ta (1)5)3 (22)

and
‘m& (\/lﬁSn(s,t,Y)> —EU; (\}ﬁSn(s,t,G)> - %E[\IJ(;([4(/\)1/2W4)F,L,2 (14(A)—1/2Xn(s,t,y),w4)]‘
< % + %rn(&t, Uy), (23)
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where Io(N\) and I4(\) are any invertible diagonal matm’ceslﬂ and Wy, Wy are standard Gaussian vectors in
R,R? and R* respectively, and where the implied constants are allowed to depend on the My-moment of &, on
the constants in Conditions [I and [2, and on a lower bound of the least singular values of V,(t),Vn(s,t) and
I5(A\), I4(N\). Furthermore we have the following bounds

ra(t; ®5) = O([Va(t) — I2(A)]l2) and rn(s,t, Us5) = O(|[Va(s, 1) — Ls(A)]l2)-

We also refer the reader to |8, Section 3] where a better error bound was obtained under the Doeblin’s conditions.
In application (Section [6), we will choose I()\) and I4()) so that r, — 0.

We will prove Proposition by giving a general Edgeworth expansion result in Section [4] and then use it to
conclude the proof in Section Roughly speaking, our approach here is based on the work of Bhattacharya
and Rao [9] (see also [2]) which relates Edgeworth expansion to the growth of characteristic functions of the
corresponding random walks.

Notations. Throughout the note n is the parameter to be sent to co. We write X = O(Y), Y = Q(X), X <Y,
or Y > X if | X| < CY for some fixed C; this C' can depend on other fixed quantities such as the My-moment
of . T X <Y and Y <« X, we say that Y = O(X) or X <Y. We write w(1) for a number that tends to co as
n — 00.

3. SMALL BALL PROBABILITY

In this section, we address the small ball probabilities, we will just prove the R* case (i.e. d = 4) because the
R? case can be proved similarly (by using Theorem [2.4]instead of Theorem [2.5).

Proof of Theorem[2.3. Let

to = (5_1 = nc.
By a standard procedure (see for instance [2, Eq. 5.4]), we can bound the small ball probability by characteristic
functions as follows

2
nllullz

1 n\%? _
Pl — i Vi vl € B < — . 212 )
<\/ﬁ XZ: zivi + z;v; € B(a, 5)) < Cy (t%) /Rd 1:[(1)1(11)6 du

Choose C. to be sufficiently large compared to C. We break the integral into three parts, J; when [julls < r¢ =
O(1), Jo when rg < |Jul|z < R =n®*, and J3 for the remaining part.

For Ji, recall that

‘H ¢i(u)‘ < exp <—Z ||<vi,u)|ﬂ2§/z/2> )

So if |lulls < ¢ for sufficiently small ¢, then we have ||(vi, u)||r/z = [[(Vi,u)||2, and so because of Condition |2
(where we would need that Y-, (e, v;)> > ¢/n for any unit vector e, see also Claim with |I] < n) we have

Do lviw)llRsz/2 =Y Ive,u)ll3/2 = ¢nllul3.

3The vector parameter X stands for the diagonal entries, see (48).
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Thus,

nA d/2 _nlluli3 n d/2 el )
J1=Cy (72) / H ¢z(u)€ 23 dy <Oy (2) / e 2t ¢ nHUHZd’u,,
¢ lulla<ro ™ 5 lull2<ro

5 <0, (n)d/z/ (2tz+c n)l\ullz — 0, (1) — 0y, (5(1)
t5 uu|\2gm ("t + 1)/2

For Js, recall by Theorem that for ro < |Jullzs < R = n%, we have

el <e™ ™.

n\ 42 ST 13 n\ %2 .
Jo=Cy (2) / [[¢iwe =% du<cy ( ) / e du,
£ ro<|lulla<R " 5 ro<|lull2<R

n\ /2 ,
< 7,"47'* _ 7717'* 2 )
Jo < Oy <n (t%) e ) Oy (e )

and so

Thus,

and so,

For J3, we have

d/2 nlul3
n - 5 _
J3=C I | i 2% du = O "
3 d (tO) /|u|2>nc* i ¢ (U)e " ¢ (e )

as we chose C, sufficiently large compare to C'. 0

Before concluding this section, we introduce some useful corollaries of our small ball estimates. For short, let
G = G, be the collection of t € [—nm, nw| that satisfies Condition

We first deduce from Theorem a small ball estimate for P,(¢,Y") alone, which will be useful later.

Corollary 3.1. Let C > 1 be a given constant. Assume that y;; are iid copies of a random variable & of mean
zero, variance one, and bounded E(|¢|M0) < oo for some even positive integer My. Assume that t € G with
sufficiently small 7. Then for 6 = n=C and any open interval (a — §,a + 0) we have

P (Pu(t,Y) € (a—6,a+38)) = O (aw) .

Proof. Since the random variables ¥;1, 3;2 are uncorrelated with mean 0 and bounded My moments, we have
E (P (t,Y)M) = 0(1).
Thus, by Markov’s inequality, for a positive constant A > 1 to be chosen,
P(|P,(t,Y)| > n?) = O(n~ o4
We have
B(IPa(t,Y)] <8) P (IPL(E,Y)] = n) + B (|Pu(t,Y)] < 6, [PL(t,Y)] < n) .
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Since the latter event is a subset of a union of n6~" events of the form S, (Y,t) € B(a,§) for some a € C, we
apply Theorem to get

P(|P,(t,Y)] < 8) = O(n~MoA 4 pA5=152).

By choosing A = ﬁ, this proves Corollary 0

Our next corollary is the following analog of [8, Eq. 3.40].

Theorem 3.2. Let 6 and € < 1/2 be given constants. Assume that y;; are iid copies of a random variable § of
mean zero, variance one, and bounded E(|¢|M0) < oo for sufficiently large My (in terms of 6 and ). We have

P ( inf
|t|eg

Proof. First of all, let &, be the event that |y;;| < n® for all ¢, j. Then as M, is sufficiently large, by a union
bound and by Markov’s inequality, we have

B(£5) < 20P(€] > 1n°) < 20B(|€] o) /Mo = O(n~ M0+t = O(n <30/,

1 _9 _
< +e/2 ) _ 0+1+-¢ )
\/ﬁSn(t,Y)’ <n > O(n )

Hence it suffices to condition on &,. Next, for any fixed ¢ we control the magnitude of

1
d (\/ﬁSn(t,Y)) Jdt = (f1(t,Y), f2(t,Y))

e (o () 1o (2)
=L (3 oe(2) o (2 = £)

For this, again as ¢ has mean zero and variance one and E(|¢|M°) < oo, a moment computation shows that as
long as |¢;|, |d;| <1 we have

where

and

n Mo
1
El|— i1 + diy; = Oy, (1).
‘\/ﬁgcyri— Yi2 M, (1)
Therefore for any fixed t we have
P(IA(5Y)] 2 n/?) =0 (nM/2) and P (|f2(t,Y)| = n°/2) = O (n=eM0/2) | (24)

Notice that on &, we trivially have supyc(_r na |fi (8 Y)] = O(n'/?*%). By a standard net argument that
considers [—nm,n7| as a union of n? equal intervals, we obtain from and the union bound that

1
P sup d <Sn(t, Y)) /dt
(te[—nmnﬂ \/ﬁ
We will condition the complement of this event. Decompose G into O(n'*?) intervals of length n~=? each, whose

midpoints satisfy Condition For each such interval I, we estimate the probability that inf;cs S, (t,Y)] < n~°.
By , this implies that for the midpoint ¢t; we have

1
NG

> n5/2> = O(n=sMo/%y, (25)
2

Sn(t],Y) < n=? + n5/2n79 _ O(n5/27«9)'
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However, by using Theorem we can control this event by

1 79 _
< +e/2 ) _ 20+4-¢ )
P ( Tn <n > O(n )

Taking union bounds over the midpoints of the O(n'*?) intervals we obtain the bound O(n=9+1+¢) as claimed,
provided that M, is sufficiently large. O

Sp(tr,Y)

4. EDGEWORTH EXPANSION INVOLVING TRIGONOMETRIC FUNCTIONS

Our goal in this section is to establish an Edgeworth expansion for several sums of random vectors that arise
from random trigonometric functions. The results are formulated under very mild assumptions on the coefficient
distribution(s), which hold in discrete settings (such as the Rademacher distribution) beyond the scope of the
Cramér condition and known extensions [2].

Let s, € R be given. Let d = 4. Consider the following sequence of random vectors in R?
Xn,k = Cn(k)yk, k= 1,...,TL, (26)

where (i) Y3’s are random vectors in R? and their coordinates are iid with mean zero and variance one (we’ll

actually assume in our result that furthermore E||Y;||57*™ < oo for some ¢ > 4), and (ii) the deterministic d x 2
matrices Cy, (k) are defined below. Recall from Subsection that

kt sin(kt
Caint) = (5o ) (27)
and
= (&) )

is the 4 x 2 matrix obtained as the joint of C,(k,t) and C,,(k, s). Recall also S,(s,t,Y) from (12)), and for short
let

Sy = Sp(8,6,Y)=Xp1+ -+ Xnn- (29)

Let the average covariance matrix be
1 n
Vi, = — Crh(k)Cr (k). 30
2 2 Gl B (30)

This is the same as the covariance for S, /y/n. Let Q,, denote the distribution of S,,/v/n, and let Q,(z) denote
the cumulative distribution function for this distribution.

The main result of this section, stated below, shows that @n is asymptotically @n’oo, where for £ > 2 let

(-2
Que:= Y n PP (=%, {X,})- (31)
r=0
and we will define the signed measure P,.(—®¢ v, {X, }) below after fixing a few notations. For convenience, the
density of @, ¢ is denoted by @, ¢ while the density of @, is denoted by @,.

First, let W be the standard Gaussian vector in R?, then for any covariance matrix V', V*/2W will be the Gaussian
random variable in R? with mean zero and covariance V. Let ¢y denote the density of its distribution and
let ®g v denote the cumulative distribution function. If V' is the identity matrix then we simply write ¢ and ®,
respectively. Note that this is consistent with our definition of ® at the beginning Section [2.9
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Secondly, recall that the cumulants of a random vector X in R? are the coefficients in the following (multiple)
power series expansion

Xv2¥
|

logE[e* ] =
V!

veNd

, z€C% (32)

Given that X has mean zero, it is standard that the cumulant y, is bounded above by the |v|-th moment of X.

In our situation, using independence of X, 1,..., X, , it follows that the cumulants of S,, are the sum of the

corresponding cumulants of X, 1,..., X, n. Let X, := X, (Sn)/n, then X, is also the average cumulant of X, 1,
ey X
) n,n

Now, note that cumulants of V,t/2W match with the cumulants of Sn/+/n for any |v| < 2, at the same time the
higher order cumulants of Vi /2W vanish thanks to symmetries of centered Gaussian. Therefore,

(S| (VW) V2l /2
logE [e } = logE[e 1+ Z (nx,) "
veNd:|v|>3

14
og Bl [ x|
£>1 \veN:|y|=(+2 v

Letting X,(z) := ¢! ZueNd:|V|:€ X,z for all z € C?, we obtain

2(Sn /) 2view] Xe+2(2) —1/2
E[e }/]E{e ] = exp éz(£+2)!n
>1
_ Z 1 Z 7@+2(2)n4/2 _ Zﬁgn%ﬁ
o™ \ iz (2! >0 ’

where P, is obtained by grouping terms of the same order n=¢2. It is clear that P, depends only on z and

the average cumulants Y, |v| < £+ 2. We'll write ]34(2, {X,}) to stress this dependence. Replacing z by iz, we
obtain the following expansion for the characteristic function of S, /y/n:

E [eiz'(s"/\/ﬁ)} = E [eiz-V;/2W:| Zﬁe(iz, {x, })n=2.
>0

Now, let D = (Dy,...,D,) be the partial derivative operator and let P;(—D,{x,}) be the differential op-
erator obtained by formally replacing all occurences of iz by —D inside Py(iz,{¥,}). The signed measure
Py(—®o v, ,{X,}) in the definition of Q¢ now can be defined: it has the following density with respect to

the Lebesgue measure:

Pi=03,+ {1 @) = (P(=D.X, )60, ) (@).

For convenience of notation, for each £ > 0, let p; := 2 > E| X; ||} and

@)
My(f) = sup L
e AR

for any measurable function f.

Theorem 4.1. Let S, be defined as above using where we assume that the distribution of Y; satisfies
E[Y;[|5T%"" < oo for some £ > 4. Let f be measurable such that My(f) < oo.
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Suppose that:

(1) all eigenvalues of V;, are larger than a constant o > 0 independent of n;

(2) the parameters s,t in the definition of Cn(1),...,Cy(n) satisfy Condition[2 for some sufficiently small
T

Then the following estimate holds for ¢ = n=% where C, is any given positive constant:

‘ [ 1@~ [ s@)iGn

l+d—2
< CMy(f)(n~ D2 e ™ 4 emom) +wf< Z n~"2 P ¢O,Vn;{x,,})>

where
wf(€r¢)=/< sup  f(y) — infy )f(y)> do(z),

and the implied constant C depends on {p, k < £}, o, Cy, and the implicit constants from Condition @, but not
on f.

Notice that the verification of condition (1) in this theorem on the invertibility of V;, follows from [8] Appendix
C].

The general strategy of our proof follows the approach in [9], here we focus on the main differences while trying
to keep the exposition self-contained. Here our goal is not about proving the sharpest possible version for
Theorem in terms of the number of bounded moments for Y;, rather our aim is to present a simpler argument
(compared to [9]) at the sake of a more stringent moment assumption.

Before starting the proof, we include some estimates that will be useful in the proof.

Lemma 4.2. Let I,co > 0 be any given constants. Assume that || X, 1||5T = O(1) uniformly over n and
k=1,...,n. Then for some sufficiently small ¢c; > 0 the following holds for all |n|l2 < cin'/? and all muti-
inder o

~
[v)

D (Blein 2/ VDY Bl VW)t =3 B (in, {xrhn T2

T

< On= (Dol (g 5100 g 1),

I
<

Here the implicit constant may depend on co, £, and X, ..., Xp41

Proof. For brevity we will write P,(in) as a shortcut of Py(in, {x,}).

Let

-2 _
o) 1= explgyo(w) = exp (ﬂ; Ww) .

We first show that for any multi-index «

(f“< ) ZP injn )‘ < O DRyl g3 ol (33)
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for all ||n]|2 < e1n'/? and ¢; > 0 is sufficiently small.

s

Let u € R (that may depend on n). As a function of u € R, the polynomial Ef;é P,.(in)u” is the Taylor

approximation of degree ¢ — 2 for f, ¢(u). Now, if |[n]2u < 1 then
|gn.e(w)l = O(Inl3lul) < collnll3

and similarly |g£7ke) (u)] = O(||n||5+%)

‘fnz 1) ‘ < Cledne(w) Z H|g(k) |Jk

J1+2jo+-=€—-1k>1

. Thus, using the chain rule and the generalized Leibniz rule, we may bound

< Qe > T lmigo
J142ja+-=t—1k>1
= O ((ImlE + nllg=)ecellz)
(Here the implicit constant may depend on ¢o, 4, and Xg, ..., Xp41-)

We obtain, assuming ||n||s < c1|u|™?,
-2
(e = Polimpu
r=0

We now let u = ﬁ Using analytic dependence on 7 of f, ¢ (ﬁ) — Zf;% P,(in)n~"/? and Cauchy’s theorem
for analytic functions, we obtain .

_ Yi 2
< Clul " (Inlls™ + [l )ece .

Now, it remains to show that

o 1 1 —(0— (+1—|o 3l+1—|o c 2
‘D" (f"’“ (ﬁ)f’“ (ﬁ))‘ < O DR(|pllg I 4 3 el e2eolimlz,

As before it suffices to show the case @ = 0 of this estimate, and then the desired estimate follows from an

application of Cauchy’s theorem. Now, since |f, ¢ (ﬁ) | < ecollnly ag proved above, it suffices to show that

1 1\
o () e () -
Let u € (—2,2) and let h(u) := Guy,00 (%) Gun,¢ (\F) It is clear that the first ¢ derivatives with respect to
u € R of h all vanish at © = 0. Thus, using the chain rule and the generalized Leibniz rule, it follows that the

-1
first ¢ derivatives with respect to u of fuy o (ﬁ) Sun,e (ﬁ) — 1 also vanish at v = 0. With |u| = O(1), we

obtain
e (B () = (8 (e () () )

Mo Z H |R) (1) P* (35)

J1+2ja+-=0+1Ek>1

— — C 2
1 < Cn= D2 (gl 4 Il )ece . (34)
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Now, as the first ¢ derivatives of h all vanish at u = 0, for any k < £ + 1 we have (with |u| =

|h(k) (u)| < C sup ‘h(e+1)(t)| =C sup
[¢]<]ul [t <]l

d (e+1) 1
di Jtnco \ T )|

1 . n o
Gun,o0 (\/ﬁ> = —log(Ee!7Va""Wey 4 > log(Ee!(rXma)u/ vy
=1

Using E|| X, ;|l2 = O(1) we obtain

By definition we have

B Xna /N 1] = O(|lnll2/ v/n),

o))

therefore using the given assumption we obtain |Ee!” Xn.s u/ ‘/ﬁ| > 1/2. Consequently, using the chain rule and

the Leibniz rule we have

d l+1 .
(m) log(Ee"™ X/ V)

Jitjet--=L+1k2>1

Since log(Eei(mVa*W)u) is quadratic with respect to u and £ > 4, we obtain

(&) ()

—(f— /—
B8 (w)] < Cn= D25+t < o2 1|3,

= O0(n~ V2 plly™).

Consequently,

=o X TIEIn Y2 Xugl*] | = Ot E02 )5,

in particular by choosing ¢; small we can ensure that |h(u)| < co|n||3. Therefore, using (35), we obtain

IN

N

142t =041 k>1

Cecolls 3™ T D2y

< Ce I (=D g 4 (=057

< el =02 glIs (14 (1 3)
We then set u = 1 to obtain the desired estimate. 0
As a corollary, we obtain
Corollary 4.3. Assume that E|X,, |**! = O(1) uniformly overn andk = 1,...,n. Assume that the eigenvalues

of Vi, are bounded below by some positive constant independent of n. Then for some sufficiently small constants

co,c1 > 0, the following holds for all ||n||2 < c1in'/? and all muti-inder a:
« in- (S, n el 1/2 -
De (E[emsn/m] in-V,! ZP inn /2)

< O D emeollB ([T gy 1),

This corollary follows from the fact that E[e?Ve /QW] is e=<(mVa ") for some ¢ > 0, so with ¢y > 0 sufficiently

small one has e ,
| DSE[e Ve W] < e=2eollnll (|| 1 4 1),

and combining these estimates with the Leibniz rule we obtain the desired conclusion.
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Proof of Theorem[{.I. We now begin the proof of the main estimate. Let

e=¢e, =n"%. (36)
For convenience, denote

Hy, = Qn — Qn.e,
and let H, be its density. As usual the characteristic function of H, is H = [pa€” 1H, (dt).

Let K be a probability measure supported inside the unit ball B(0,1) = {z € R?: ||lz|| < 1} (whose density is
denoted by K) such that its characteristic function K (n) satisfies

DK () = O(e1M2"), o] < €4 d+1. (37)

Such a measure could be constructed using elementary arguments, see for instance [9, Section 10]. We then let
K. be the e-dilation of K, namely K.(A) = K(e 1A) and e 1A := {x/e : € A} for all measurable A. Note
that K. is a probability measure on B(0, €) and it satisfies the dilated version of .

We will be using the following simple identity: for any two measures ji; and po of bounded variation, | |(R9), |ua|(RY) <

0o, and any bounded f , it holds that
//f x +y)dp (z)dps(y /f (dpy * dp2)(t). (38)
Now, for each x € B(0,¢€) we have f(y) < sup.ep(o,) f(z +y + 2), therefore using nonnegativity of dQ,, we
obtain
[rwame = [ [ iR )
z€B(0,¢€)
[ (] sw syt 20w - [ £0)d000w)dR ()

z€B(0,¢)

IN

_ // sup  f(z +y + 2)dH, (y)dK.(z) +

z€B(0,¢)

/ / ( sup f(a +y+z>—f<y>> 00 (9)dR . (x).
z€B(0,¢)
Thus, by (38),

/ f)di(y) < / sup [t -+ 2)(H, « KJ)(t)dt + / ( sup f(x+y+Z)—f(y)> 00 o(y)dE, (x)

z€B(0,¢) z€B(0,¢)

< M(f >/<1+|\t||2+e> Hy 5 K|t dt+// sup f(t)— inf F(£)dDn (|(n)dE.(x)

B(y,2¢) B(y,2¢)
< CMf) [+ Tt Kol ()t + (22 5 1 Q).

By applying the above estimate for —f in place of f, it follows immediately that | [ fdﬁn| is bounded above by
the same right hand side. By standard Sobolev embedding estimates for Fourier transforms, we have

¥4 _ e
Jas et ki@ = o max [ H R ()

0 (mox{ [ 10" (E) D" Ewldn ol +161 < £+ d+1}).



20 YEN DO, HOI H. NGUYEN, AND OANH NGUYEN

Using we have DK, (n) = O(1) for all |a| < £+ d + 1. While this estimate is fairly generous, it is good
enough to control the contribution of small 7 in the integrals. More specifically, let B2 = V1, then by the given
assumption the eigenvalues of B,, are O(1), so E| B, X, x[57*™ = O(1). For some ¢; > 0 sufficiently small,
using Corolary we obtain

/ |D* H,,(n) DK (n)|dn = 0( / ID("I?n(n)Idn>
Inlla<eiv/n lInll2<civ/n

— O(n~+d-1/2),

We now consider the range ||n]|2 > c1v/n. We estimate

/ D (0D Rofdn < [ DG (1) D® K| diy
[Inll2>c1v/n [Inll2>c1vn

£—2+d
i /|77| > be ( z_;) niT/QPT(in : {Xu,n})> exp(—1/2(n, B,n))

and it is clear that the second term can be controlled by O(e~“") thanks to the Gaussian decay of exp(—1/2(n, B,n)).

dn,

Let ¢;(n) = Ee" X1, Then for |a| < £+ d+ 1 we have D2 (¢;(n//n)) = n~1*/20(E|| X,,;|5") = O(1). Thus,

1D |—| (Hcm )’— S ] qsz(f) ,

Vit yn=ai=1yi=

while we also have / /
o _ 1/2 _ 1/2
IDPK.(n)| = O(elPle=Clnll2)"*y = O(e=(lnl=)=y,

Thus, it remains to control, for each (y1,...,7,) with |v1| 4+ -+ + |y < €+ d+ 1 and each r > 0 independent
of n:

n
2)1/2

n _
7o) = | 01 ()| e el 2 gy
! Inlle2rv/a i:HZO v

n
—nd/Q/ [ it e v g
Inl2>r

1=1,7;=0

n
_(n—Cx+1/2 1/2
_nd/z/ I &) Inll2)/2 g
Inllo>r

1=1,7;=0

Clearly it suffices to consider r < ||n]|s < n®~1/2+7 because the integral for |[n|s > n®~1/2%7 is extremely
small. Again, because « is fixed, by throwing away from the set {v;} a fixed number of elements, let us assume
that a = 0 for simplicity [} By Theorem m for sufficiently large n we have

|H¢>z N <e ™

Thus we just shown that, with ¢ = n=¢*,

—T

Jy(n,e)=0(e™™ 7).

4In the general case o # 0 we use Theorem [10.6 instead of Theorem
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Putting the bounds together, we obtain the desired estimate:

/

{—2+d
w| SCM(f)(n= D2 pem™™ 4o +wf< Z n~"/2 P, qSOMl:{)_(,,}).

O

4.4. A useful corollary. Below we consider a consequence of Theorem that will be convenient for our proof
of Theorem [1.3]in subsequent sections.

With Y, = (y&1, yx2) where y;; are iid with mean zero and variance one, we recall the definition of P, (¢,Y") from
. Let Gi = (gk1, gr2) where g;; are iid standard Gaussian. Recall the definition of S, (Y, s,t) from and
let S, (G, s,t) be its Gaussian analogue.

Clearly ]50 = 1 and by explicit computation we have

A=Y % B = Bl B0 (39)

|v|=3

For convenience of notation, let e; = (...,0,1,0,...) € R? where 1 is in the jth coordinate. Using we
obtain

P-0{m) = 3 (Do) =

IS

1 1 _ _
= |:6 ZXSeJ( ij 2 Z X2e;+e; (xf'rj - ‘rj) + Z Xei+ej+ekxi'rjmk} o(x)

Jj=1 2753 ’l-<j<k
—

where hy(z) = (—1)}“6I2/2%e’w2/2(k =0,1,2,...) are the (one dimensional) Hermite polynomials.

Se h’3 JJ] ZXQ@ +e .131 h’l 33] + ZXe +e; +ekh ($l)h1($])h1(£k)} (b(x)a

1#] 1,5,k

|\M»>

Now for any multi-index a = (ag, ..
j=1,...,d. We then define

Lap) € {1,...,d}*, we let |a| = £ and let n;(a) = |{i : a; = j}| for each

Hy(x1, .. = b (1) - Py (). (40)
For a random vector Z = (Zy,...,Z4) as usual let Z¢ = ]_[j,1 Z(-l". With X = (X,,1,...,Xn,n) define
Aa(ka) = IEX& ]EGn ks (41)
1 n
en(a, X) = — ZAQ (42)
gt
1
Fn,l(Xax) = 6 Z Cn(avX)Hoz(x)' (43)

Note that if o/ is a permutation of « then H, = H,. Furthermore using and explicit computations it
follows that y,(X) = E[X"] for all |v| = 2,3 if X is a random vector in R? with mean EX = 0. Thus, for all
distinct 1, 7, k,

Y3e,~ :Cn((j,j7j)7X), YQ@,;—i-ej :OZCn((i,i,j),X), Xeitej+er :O:Cn((i’jrk)’X)'
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Using these observations, we obtain

Pi(=do,v,, {X,}) = Tn1(X,2)00,v, ().

We also define

Cpo(X,z) =T 5+ 17 5 (44)
where .
F;z,2(Xa‘r) = 24 Z Cn(ﬁvX)Hﬁ(x)
|B|=4
and

I o (X, ) Z > (B X)en(p, X)Hg p(2).
\p\ 318]=3
Via explicit computations, it can also be checked that

Py(=¢o,v,., {X,}) = Tn2(X, 2)0,v, (2).
Finally, recall the definition of @na from 7 which has density

Qna2(X,2) =1+ n" 2P (=Doy,, {X,}) + 0 Pa(—ov,, {X,})-

It follows that

Fact 4.5.
1 1
711”71()(,]}) —|— 7Fn,2(BnX, J?)
n

Qn,Q(Xax):1+ \/ﬁ

Now by applying Theorem and then swallow higher order terms in the Edgeworth expansion into the error
terms (resulting into O(n~3/2), keeping the first three terms), we obtain the following corollary.

Theorem 4.6. With the same assumption as in Theorem the following holds for ¢ = n=% (and C, is any
given positive constant):

E(f(Sn(5,1,Y))) = E(f(V,2W)Qp2(X, W)

L+d—2
< O Y4 CM(f)(n D2 g e g e +wf< > R ¢0,Vn:{xy}>>.

where W is the standard Gaussian vector in R<.

5. PROOF OF PROPOSITION 2.10] : ASYMPTOTIC KAC-RICE FORMULA

We will show the following more precise statement.

Proposition 5.1. Let ¢ be a fixed positive integer. Let § be as in . Assume that n has mean zero and
variance one and E|n|™0 < oo for sufficiently large My. Assume that s,t satisfy Condition E Then for any
e =n"%% (where C, > 0 is any absolute constant), we have

C «
[EFS (Pa(t,Y)) = EFs(Pa(t, G))| < —5 + COTH (n™ D2 47" 47" 1) (45)
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and
i _ i fl 1/2 —1/2
b ( \/ﬁSn(t,Y)> Ed; < \/ﬁSn(t,G’)) E[@5 (L) 2 W)Lz (V) 72X (1, V), Wa)) |
1 - —(£— —n"* —cn
SW—FErn(t,@(;)—i—C(S Lp=(=D/2 ¢ +e M +e) (46)
and

‘E% (\/lﬁSn(s,t,Y)> _EU, <\}55n(s,t,G)) - %E[%(Q(A)l/?m)rn,g (14()\)*1/2Xn(s,t,Y),W4)]‘
c

1 — —(— —n"* —cn
< W—l—ﬁrn(s,t,\ll(;)—&—C’é 2p= =1/ 4 +e " +e), (47)

where Iy and I, are any invertible diagonal matrices and W, Wa, Wy are standard Gaussian vectors in R, R? and
R* respectively, and where the implied constants are allowed to depend on C,, on the My-moment of n, on the
constants in Condz'tionslz and @, and on a lower bound of the least singular values of Vi, (t), Vi (s,t) and I3, I4.
Furthermore, we have the following bounds

rn(t, ®5) = O(||Va(t) — I2||2) and ry(s,t,Us) = O(||Va(s, t) — L4]|2).

Note that if we apply the above theorem for € = n~(~1)/2 and for sufficiently large ¢ (for instance ¢ = 16 would
suffice), then all the error bounds are absorbed into O(#), and hence proving Proposition

We now discuss the proof. We first note that if f is an even function then using the fact that the standard
Gaussian distribution is symmetric and the fact that Hermite polynomials of odd degrees are odd functions we
obtain

E[f(V,2W) T (V72X W)] = 0.
In our applications below the functions f are indeed even therefore we could ignore the contribution of I', ; in
the estimates.

Now, recall and recall that 6 = n=° and ¢ = n= S~ for some given constant C, > 0. Recall also the definitions
of the even functions F5 : R — R, ®5 : R? = R,, ¥s : R* - R, from Subsection Now, using standard
integration by parts (for details see |8, Eq. 3.23]) we may rewrite the Gaussian part in a more canonical form:
with f being either Fs, Us or @45, and with W being either W5 or W, we have
E(f (V) PW) Do (Vi V2K W)) = E(F (L2 W) Do (172X, W) + 7 () (48)
with I; being a diagonal matrix with diagonal entries at least ¢ and here
[rn(f)] < Cl|Vi — Lal|2-

For this proof, we will only work with W5 and prove as and are similar and simpler. By Fact
and by , to prove Proposition for this f = W; it suffices to show

Tk

’Ef (1sn<s,t,y>) ~E (J(VPW)Qua(X, m)’ SOOI e T T te). (49)

vn

Proof of Proposition[5.1. Let A € (0,1) and let ¢y : R — [0,1] be a C°°(R) function with support inside [—4, ]
such that

(i) pa(x) =61 for |z| < 5(1 - N).

(ii) |0 ()] = O(6=F+DA=F) for any k > 0.
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Let $y : R* — R be defined by @(z) = @a(z1)@a(z3). Let

Ia(@y, 22, 23, 24) = |22||24|P().

Then f) is locally Lipschitz, and its derivative (defined almost everywhere) satisfies
1
ED
Recall that @f(e : ) = [(Supyep(re) f(¥) — infyep(ae) f(y))d(x)dz, and ¢ is the density of a Gaussian vector.
Consequently, for any polynomial p(z) with bounded degree and bounded coefficients we have

@y, (€ 2 p(x)do,v, (2)) = O(A"10%).

Here we are implicitly using the fact that the the eigenvalues of V,, are bounded above by O(1), which should
follow from the fact that the singular values of C), (k) are bounded: they are bounded by the Hilbert—Schmidt
norm, which is bounded since the entries of Cy, (k) are bounded.

IVfrl € C—=(1+ |z])%.

Note that one could write
+d—2

> T PP(=dov, 1 (X)) = p(@)ov, (@)
r=0

for some polynomial p with degree at most d + £ and coefficients bounded by the first d + ¢ moments of the
random coefficients Y7,...,Y,, of P,. Therefore

t+d—2
G225 Y nTP(=doy,  {X,}) = O(A157%). (50)
r=0
We will also use the following elementary estimate: given any a4, ..., a, deterministic and 7y, ..., n, independent

with mean 0 and bounded 4th moment, the following holds
Elain 4 - + anna|* < C(a2 +--- +a2)2.
Indeed, thanks to independent and the mean zero property, the left hand side is
E( Y aajarammmen) = Y aiEnl + 0> ajaiEnin})

,5,k,1 1<j

In particular,
E[P;(t,Y)|* = n720((Y_ sin®(jt/n) + cos*(jt/n))?) = O(1).
j=1

We next proceed to conclude Proposition for f = W;s. Recall that ¢¢ v, denotes the density of Vi /%W . Then
using Holder’s inequality and Theorem [2.2] we obtain

B - 1) (=Sulsti)

COP (| P (8, Y) P (8, V)L, 1, a1 <00 1 P (5,1 |01 <20]

OS2 (E|P, (. Y) ) (EIP, (s, Y)|*) V*P([Pa(t, )| = 6] < 6X)V4B(|| Pa(s,Y)| — 6] < 63)1/*
C572(ndN)¥®  (assume bounded 4th moment for coefficients of P, and Corollary
C572N2/5,

IANIN N CIA
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By Theorem 4.6/ and (50), applying for ¢7/2 in place of e, we obtain

B (G Suls.1) ) ~ BT W)Qualx. W))\
l4+d—2

= O(n™%?) + My( Ja)o(n—“-”/2 +e " +e_C”) + @277 Y 0T PP(= oy, X))
r=0
_ O(n_3/2) 4 6—20(n—(l—1)/2 _|_e—n77* + e—cn) + 0(5—2)\—157/2)’

where we note that My(fy) = O(6~2). Note that as a special case, this bound also holds for the Gaussian case.
Consequently,

Bf (Ju(t.1)) ~ BUV W) Qua(X. W)

< ]E(f s (jﬁsn@,t,w) ' FIE( — £ (VW)@ 2 (X, W))| +
+ e (jﬁsn@,t,m) CE(A(VPW)Qua(X, W))\

< Cn_3/2 +C(5—2(n—(€—1)/2 +e—n77* +€_cn+)\_157/2+)\2/5)

We then take A = £5/2 and obtain the desired estimate as in . O

6. COMPLETING THE PROOF OF PROPOSITION [2.§

Recall the definition of D,, . from .

In this proof, we follow the proof of [8, Lemma 5.1]; the only differences are that the Lebesgue measure of our
set Dy, . is 4+ o(1) times larger and that we use our version of the Edgeworth expansion, Proposition The
proof consists of several steps which we use a similar enumeration as in [§].

Step 1: Making use of the Edgeworth expansion in Proposition In this step, we shall apply the
formulas in Proposition We shall choose the diagonal matrices I and I that appear in Proposition [2.10
to be the limit of V;,(¢t) and V;,(s,t). More precisely, by letting Iy be the 2 x 2 diagonal matrix with diagonal
entries A\; = 1, Ay = 1/3, and I, be the 4 x 4 diagonal matrix with diagonal entries A\; = A3 =1, Ao = Ay = 1/3,
one can check that for all s, ¢ satisfying Condition

lim ||V, (t) — Izl =0 and lim ||V,(s,t) — I4|]2 = 0.
n—oo n—oo

Applying Proposition we obtain the expansion

Un(8,6,Y) —v,(s,t,G) = %'yn(s,t) + Ry (s,t) (51)
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where the v, has the main terms and the R,, contains all the error terms and their product with the main terms

in Proposition P10} In particular,
lst) = E[Us(L Walaa (I Xu(s,,Y), Wa)] |
—E{@J(I;/QWQ)}E[ o5 (12 *Wy)T,, (Iz_l/QXn(uY),Wg)]
“E [cbg( 1/212[/2)} E [cba(lg/gwg)rm (1;1/2Xn(s, Y), Wg)]

_ E[%n (Ii/ 2W4)
x [rmg (14‘1/2Xn(s,t,y),w4> B (12_1/2Xn(t,Y),W2'> ~Ths (1;1/2Xn(s,y),w2”)”

where W}, W) are independent standard Gaussian vectors in R? and W, = (W3, WY/) is a standard Gaussian
vector in R%. We recall that

Fn,Q(X7 l‘) = F:L,Q(X7 l’) + FZ,2(X5 ‘T)
which is the sum of the following fourth moment corrector

1
T a(X,2) = 52 3 ea(B, X) Hala)
|B]=4
and the following combined third moment corrector

I o(X, ) Z Z en (B, X)en(p, X)Hg p(2). (52)

\p\ 3181=3
We recall the definition of ¢, (-, X) in and the polynomials Hg, Hg , in (40).

Denote by 7,,(t, s) and 7, (¢, 5) the corresponding quantities when replacing I'y, 2 (X, ) by T, (X, ) and Ty 5(X, z),
respectively, in the definition of v, (¢, s). Proposition is reduced to showing the following:

1
lim — / vl (s, t)dsdt = 0, (53)
n n D’Vl €
1 E&t —3
lim — g = 4
im /D bl st = =5 1000, (54)
and )
lim — R, (s,t)dsdt = 0. (55)
nn Dn,s

To see (55)), we simply note that for almost every (s, t) € [0,7]?, R, (ns,nt) = o(1) as n — oco. This is mainly
because (via examination), as n — oo, the re-scaled covariance matrix V;,(nt,ns) converges to the diagonal
matrix (1,1/3,1,1/3) if £, 2 =5 2 are irrational.

R

The remaining identities will be established in the next steps. For convenience of notation, in the rest of the
section for each multi-index « (of dimension 3 or 4) we let

en(ays,t) = ¢y (a,IZI/QXn(s,t,Y)) , cnl(a,t) =cy (a I_l/QXn(t,Y)> ,

and define ¢, (a, s) similarly. Also, we will denote by a — 2 the adjusted multi-index where each index in a will
be subtracted by 2

Step 2: Proving .
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For each multi-index p, 8 € {1,2,3,4}3, define ’y;{’p’ﬁ(s,t) = E{\I/(;n (Ii/2W4)Acn(5, 0, s,t)} where

Cn (p,S,t) (/678 t)Hﬁp( _Cn( t) (ﬂ )Hﬂp(Wé) if67p€{172}3§
Acn(B,p,5,t) = S cnlp,s,t)en(Bys,t)Hg,p(Wa) —cn(p—2,8)cn (B—2,8) Hg, (WH), if B,p € {3,4}%;
cn (p,s,t) cn (B, 5,) HBp( 1), otherwise.

It is clear that v, (s, ) = > 5123 22| p=3 Vn,p,5(5: 1)

Step 2, the cancellations: We recall the following cancellations that were observed in [§].

o (First cancellation) If 3,p € {1,2}3 then by examination we have c,(,s,t) = c,(3,t), ca(p,s,t) =
cn(p,t), and Hg ,(Wa) = Hp, ,(W3). Consequently, Ac, (8, p,s,t) =0 and thus

7g7p7ﬁ(5; t) =0.

Similarly, if 8, p € {3,4}> then Ac,(8,p,s,t) = 0 and so Y pp(8:1) = 0.

e (Second cancellation) We now consider those (3, &) not part of above cancellation scenarios, i.e. where
there is a mixed of elements from {1,2} and elements from {3,4}. Then if an index j € {1,2,3,4}
appears an odd number of times inside (ﬂ, p) then

E{¥;, ( VPW)Hg, (Wi} =0,

since s, (Ii/2W4) is an even function of Wy ; (the jth coordinate of Wy) and Hpg ,(Wy4) is an odd
function of Wy ;. Consequently, in this case we also have fy;{)p)ﬁ(s, t)=0.

For the remaining (3, p), for almost every (s,t) € [0,7]? (with respect to the Lebesgue measure) we have
en(B,ns,nt)en(p,ns,nt) — 0, as n — oo. (56)

Indeed, the “mixed” nature of (8, p) implies that one of 3, p will be mixed. Without loss of generality assume
that £ is mixed, say § = {4,4,j} where i < 2 < j. Then via examination ¢, (8, s,t) is an average (over k) of

term of the following type:
2

Z Ak(ns,nt,ﬂl,ég,ﬁg)E(kalYk,ngh%)
0,03,03=1
where A(s,t,01,42,¢3) is a product of two terms from C,,(k,t) and one term from C,(k,s), and Yy 1, Y% 2 are
the coordinates of Y. Now E(Yj ¢, Yi ¢, Yie,) is constant with respect to k (due to iid - although this is not
essential, it suffices to assume convergence as k — oo of this term), the desired convergence follows from the
limit + = Ak (ns nt, l1,0s,03) — 0, which can be checked using elementary trigonometric identities, provided
s t+s t—

that =, 2, == === are all irrational.

Now, since the ¢, are uniformly bounded, (56|) and Lebesgue’s dominated convergence theorem imply that
1 s s
lim — / Vn.p.p(8; t)dsdt = lim/ / 1p, . (nu,nv)y, , s(nu, nv)dudv = 0.
5 P, w Jo o , P,

n n2

n,e

which completes the proof of .

Step 3: Proving . This follows from similar reasoning as in Step 2. First, using cancellations similar to
Step 2, we also obtain

v (s,t) 242153(\1/5 11/2 )HQ(W)) cn (@, 8,t)
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where the sum runs over all mixed a of the form « = (i,4,7,7) with ¢« € {1,2} and j € {3,4}, and their
permutations. It is clear that ~, (s,¢) = O(1) uniformly over n and s, 1.

Thus,

1 , 11 1/2
) (s, t)dsdt = O(e) + — o ZE (s, (12 W) Hu (W) /D e (cv, 5,t) dsdt. (57)
Now, if « is a permutation of (4,4, 7,j) with ¢ < 2 < j, by examination and using trigonometric identities as
in Step 2, it follows that ¢, («, s,t) is an average of sums Z?Mz’é&&:l Ap(syt, b1, o L) EYe 0, Yie oy Y0 Yot
k=1,...,n. Here Ag(s,t,¢1,...,¢4) is a product of two terms from C,,(k, s) and two terms from C,(k,t). Via
examination, (for details see for instance the appendix in [8]), one could show that

Lemma 6.1. For almost every (s,t) € [0,7]? (with respect to the Lebesgue measure) it holds that

2. 3i+j_4(]E€4 _ 3)
2 +2j — 4

lim ¢, (a, ns,nt) =
n

On the other hand, it is clear that, for the same «,
1

" 32

imE (% (Ij/QW)Ha(W)) (—1)1+,

Plugging in these limits to (57), we obtain (54).

7. PROOF OF LEMMA 2.7

We recall the definition of the sub-intervals I in and the sets D,, . and D in . Let N;, (Y) be the
number of roots in I}.

Since Ny, (Y) = >, N, (Y), we have

VarN,,(Y) — VarN,(G) = 2V; + Vs (59)
where
Vii= Y [Cov(Np, (Y), Ny, (Y)) = Cov(Ny, (G), N5, (G))] (60)
(k,p)eD
and
Vii=2 3 [Cov(Ny (V), Ny, (V) — Cov(N3, (G), Ny, (G))] + 3 [VarNy, (V) — VarNy, (G)]. (1)
(k,p)¢D,k<p k

Therefore, Lemma, follows from the following two results concerning V; and Vs, respectively.

Lemma 7.1 (asymptotic estimate for V). We have

Vi = / (U (t,8,Y) —vn(t,s,G))dsdt + Ry, (62)
D

n,e
where
. Ry,
lim —=
n o n

=0.
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We recall the definition of v, in (17):

1
vn(s,t,Y) = Cov (P, (s, Y )1 p,(s,v)|<s0s Prn(t; Y)1|p, 1,v)]<5,) = E¥s, (

ﬁSn(s, t, Y)) — ]E(ﬁgn (S, Y)E¢5n (t7 Y)

Lemma 7.2 (V; is negligible). There exists a constant ¢ such that
Vo K nt—e,

Remark 7.3. As we shall show in the proof, for Lemma@, we only need to assume that the random variables y;;
are independent (not necessarily identically distributed) with mean 0, variance 1, and bounded (2 + €g)-moment,
namely E|yl-j|2+5° < C for some positive constants g, C and for all i,j.

The rest of this section is devoted to the proof of these lemmas.

7.4. Proof of Lemma For this proof, we adapt the proof of [8, Lemma 4.2] using the new inequalities
that we have obtained.

Recall that 6 = n~° in this proof. Let
Oab,y 1= tgi%]{an(a, V)L 1Pa(b, V)], [Pa(t,Y)] + [P (2, V)

By the Kac-Rice formula, for any interval [a, b], the number of zeros of P,(-,Y") in the interval [a, b] is given by

b
dt .
Np([a,0],Y) = / \Pﬁ(t,y)ﬂwﬂ(t,yngé% if 6 <dapy. (63)

To prove Lemma [7.1} it suffices to show that for any (k,p) € D,

ENy, (YN, (Y) = /I Eo5(t.Y)ds(s,Y)dtds + (e, (64)
and
ENy, (Y)ENIP (Y) = / E¢5(t, Y)IE(;S(;(S, Y)dtds + O(Elw,) (65)
I xI,
where

Z €rp = o(n).

(k,p)eD
Since the proof of and are similar, we shall now only prove (64). By the Kac-Rice formula ,
ENp, (V)N (Y)ls<mingsr, v .61,v} = /kafp E¢s(t,Y)¢s(s,Y ) Ls<mins, v 61, v }dlds.
Thus, by setting

agc,p = Ele (Y)pr (Y)16>min{51k,y,51p,y} (66)
and

6%4} = ‘/I , Egbg(t, Y)gbg(& Y)15>min{51k,y,(5Ip,Y}dtdS7 (67)
kX1p

we are left to show that

Y chp=oln) (68)
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and

Z Epp = 0(n). (69)

(k,p)eD
For , using the fact that the number of real roots inside [—nm,nx] is at most 2n deterministically, we get
that

E?C’p < n’P ((5 > min{&;k,y, (5[p’y}) < n’P (5 > (S]k,y) + n’P (5 > (S]p’y) . (70)

Let a,b be the endpoints of I;. We have
P >dr.y) < P(P.(a,Y)| <d)+P(|P,(bY) <) +P <£1€111n |P.(t,Y)| + |PL(t,Y)] < 5) . (T
k

Observe that for any (s,t) that satisfies Condition [2] it is necessary that both s and ¢ satisfy Condition |1l Thus,
for all (k,p) € D, we have Iy C G in Theorem Applying this theorem, we get

P ({niln |P.(t,Y)|+ |PL(t,Y)] < 6) < n e (72)
€l
where we recall that in Theorem ﬁSn(Y, t) = (Pu(t,Y),P,(t,Y)) as defined in ().

Applying Corollary [3.1] with M, = 4, for all ¢ satisfying Condition [I} we have
P(|P.(t,Y)| < 8) <n 37c. (73)

Applying for t = a, b, we get

P(|Pu(a,Y)] < 8) +P(|P(b,Y)| < 0) < n 3.
Plugging this together with to 7 we obtain
3—¢

P >dny)<n™
Similarly for I,. Thus, from (70)), we have €p.p < 17 '7¢ which gives (68).

For , we argue similarly using the observation in [8 Inequality (4.2)] that, deterministically,

¢s5(t,Y)dt <1+ Np (Y)<2n+1 and / ¢s5(t,Y)dt <14 Np (V) <2n+1.
Ik IP

7.5. Proof of Lemma As in Remark[7.3] in this subsection, we only assume that the random variables y;;
are independent (not necessarily identically distributed) with mean 0, variance 1, and bounded (24 €g)-moment.
To prove Lemma [7.2] we shall use the following result.

Lemma 7.6. There exists a constant ¢ such that for all k,p that are not necessarily distinct,

ENy, (Y)N, (Y) — ENp, (G)Np, (G) < n™ 2, (74)

EN;, (Y) — ENp, (G) < n™2, (75)
and
EN;, (V) < 1,ENy, (G) < 1. (76)
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Proof of Lemma([7.2l Assuming Lemma 7.6, we have for all k, p,
EN;, (Y)-EN; (Y) —EN;, (G) -ENp (G) < n™ %

where we used the triangle inequality, , and . Combining this with , we obtain

Cov(Np, (Y),Np, (Y)) — Cov(Np, (G), N, (G)) < n™?¢ for all k, p, (77)
and in particular when k = p, we have

VarNy, (Y) — VarNy, (G) < n~%.
Plugging these estimates into , we obtain
Vo < n”*#{(k,p) ¢ D}. (78)

Observe that for each k, the number of p such that (k,p) ¢ D is O.(n''7). Indeed, by the definition of D and
Condition [2} for each 1,1z # 0 with |l1],|l2] < n", it suffices to show that the number of p such that there exist
t € l,s €I, with

l1t + las

- < n—1+87- (79)

R/7Z

is O.(n°7). The inequality is equivalent to
it +lys € [na —n®,na +n®7] for some a € 7Z,|a| < 27n";
in other words,

1
€~ ([na —n®",na+n®] —111};)  for some a € 7Z, |a| < 27n”.
2
For each a, the right-hand side is contained in an interval of length O(n87) which corresponds to O, (n®7) values
of p. Taking union bound over O(n") choices of a gives the stated claim.

Using this observation, the right-hand side of is O(n=2¢t1+1T) = O(n'=¢) by choosing 7 to be sufficiently
small compared to c. O

To prove Lemmal7.6] we denote the roots of P,,(+,Y) by (1(Y),..., (. (Y) and the roots of P, (-, G) by (1(G), ..., (u(G).
We shall use the following result in [52].

Theorem 7.7. [52) Theorem 3.3] There exist constants ¢, C’ such that for any real numbers x1,x2 and for any
function F : R? — R supported on [x1 — 1,21 + 1] X [z2 — 1,22 + 1] with continuous derivatives up to order 8
and ||VOF||s <1 for all 0 < a < 8, we have

EYFGO),G0) ~EY FG(G),G(@)| < Cn,

(Y)) € R? of the roots of P,,(-,Y) and the second sum runs over
,G).

where the first sum runs over all pairs (¢;(Y), ¢;
all pairs (¢;(G), ¢;(G)) € R? of the roots of Py (-

Proof of Lemma[7.6, Let xy,x, be the midpoint of Ij, I,, respectively. Let v = n~* for s = ¢/100 and ¢ be the
constant in Theorem [T.71

The inequalities in follow from [52, Theorem 3.6]. For the rest of the proof, we show . The proof of
(75) is similar (and simpler).

We approximate the indicator function on the interval [—e/2,e/2] by a smooth function ¢ satisfying

1 c/oirye/2—n] SO < 1209
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and

[[Ved|lc <77 VO<a<8.
Let

F(z,y) = ¢(x + w1)9(y + xp)-
Let

M (Y) := <Z¢(Ci(y) - xk)) o Mp(Y) = <Z¢(gi(y) —xp)> :
i=1 =1

Denote by My (G) and M,(G) the corresponding terms for the Gaussian case, i.e., with ¢;(G) in place of ¢;(Y).
Applying Theorem to the function 48 F, we obtain

BYF(GOD.GO) —EYF(GG).G(G)] < 07,

and so

[EMy,(Y)M,(Y) — EMy(G)My(G)| < C'n~¢/?, (80)
We shall show that

ENG, (Y) Ny, (Y) = EM(Y) M, (Y) = O (n=10). (81)
The same argument applied to the Gaussian case will show that

ENy, (G)N1, (G) — EMy(G)M,(G) = O (n—s/ 10) . (82)

Combining , , and , we obtain as desired (by choosing the ¢ in to be s/10).
To prove (81)), by Holder’s inequality, we have

(EN7, (Y)N1,(Y) = EMy(Y)N, (Y))? < E(Np, (Y) = My(Y))’ENE (Y). (83)
Let N, (Y') be the number of roots of P, (-,Y") in the union of the intervals [z +¢/2 -, 2 +¢/2], [z —€/2, 1 —
e/2—7], [xp+e/2—,2p+¢/2], and [z, —€/2, 2, —c/2—~]. We observe that N, (Y) is at least [N, (Y') — My (Y)|.
By [52, Formula (28), page 32|, there exists an = € I} such that

P (log| Pu(a, V)| < —n*/10) <01

By [52, Lemma 9.4],

P (log max  |P,(z,Y)| > ns/w) < n 10,
z€B(x,100¢)

By Jensen’s inequality (see, for example, [52, Formula (8), page 22]), under the event that log | P, (z,Y)| > —n®/10
and log max, e p(z,1000) | Pn (2, Y)| < n*/10, we have Ny, (V) < n*/10. Thus,

P (ka (Y) > n/ 10) < n100, (84)

And by [52, Lemma 8.6],
P(N,(Y) > 2) < n=3%/2, (85)
When N, (Y) < 2, we have N, (Y)? = N, (Y). Thus,
EN,(Y)? < EN,(Y)+ ]ENW(Y)leng(Y)SnS/w + ENW(Y)anS/mSNW(Y)Sn
< TP ENY(Y) Locn, (vy<neio + ENS (V)10 00 (vy<n by [52, Corollary 3.7]
< n P en 4P <« nm? by and .
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Similarly,

IENIQP(Y) < EN,?p (Y)1n, (v)<nosio + IENIQP (Y)Ler0an, (v)<n < ns/5 4 =90 & s/, (86)

Plugging and into 7 we get

(EN7, (Y)N1, (Y) = EM(Y)N,)?* < n~*?ENE (V) < n=*/10.

Similarly,
(EMy(Y)N7 (Y) — EMp(Y)M,(Y))* < n™%/2.
Combining these two inequalities gives and completes the proof. O

8. VARIANCE ESTIMATE UNDER THE NON-IID REGIME

Theorem 8.1. Assume that the coefficients y;; are independent (but not necessarily identically distributed) of
mean zero, variance one, and bounded (2 + 9)-moment: Ely;;|*T0 < C for some positive constants g9, C and
for alli,j. Then there exists a constant ¢ > 0 such that

EN, — (\% + O(n_c)> n (87)

and
Var(N,,) = O(n?7°), (88)

where the implied constants depend on C and €.

Proof. Equation is simply |52, Corollary 3.7] in which the ¢; are all 1 and u,, = 0.

For Equation , as in Section |7} we recall the definition of the sub-intervals I in and we denote by
Np,(Y) the number of roots of P,(-,Y) in I. By (77), there exists a constant ¢ > 0 such that for all indices

k,p,
Cov(Ny, (Y), Ny, (Y)) — Cov(Ny, (G), N, (G)) < n™>°.

As mentioned in Remark and the beginning of Subsection this inequality was proven under the more
general assumption that the y;; are independent with mean zero, variance one, and bounded (2 + ¢)-moment.

Since Ni(Y) = 3 1ezn(—nn/enn/e) N1 (Y) and similarly for N, (G), we have
Var(N,(Y)) — Var(N,,(G)) = Z Cov(Np, (Y), N, (Y)) — Cov(Ny, (G), Np, (G)) < n?72e,
k,pEZN[—nm /e,nm /€]
By Theorem (1.1}
Var(N,,(G)) < n*72%.
Combining these bounds gives . O
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9. CHARACTERISTIC FUNCTIONS IN R?, PROOF OF THEOREM [2.4

Given a real number w and a random variable £, we define the {-norm of w by

lwlle := Ellw(&r — &)lR/2)">

where &;,&; are two iid copies of £. For instance if { is Bernoulli with P(§ = £1) = 1/2 (which is our main
focus), then [[w(| = [[2w]|§ 5 /2-

The following works for general R<: consider the random walk 21 Yi1W; + y;0w5, where w;, w} are vectors in
R?. Then its characteristic function can be bounded by (see [60, Section 5])

TT eetusa wi o) TT Eetwiatwl o)) < [TUEetosa twsooh/2-+ 1/2 [TUEeCtialol, /2 + 172

i

< exp(— Z (wi, &/2m) 1 + (Wi, 2/2m)[[2) /2). (89)

Hence if we have a good lower bound on the exponent Y, [[(wi, z/2m)|Z + [[(wj,z/2m)||Z then we would have a
good control on |[] ¢i(z)|. Furthermore, by definition

5 w2 + /2 = 3 Bl a/2m)(6r = €0z + B v/ 20} 61— )l
=B wioa/2n)(6 ~ Rz + 3 Koo/ 20} 61— €2l
E, Z lutws,/2m) B+ D o z/2m) 1312, (90)

where y = & — &. As & have mean zero, variance one and bounded (2 4 £¢)-moment, there exist positive
constants ¢; < cg, ¢z such that P(c; < |y| < ¢2) > ¢3, and so

Ey ) llywi o/2m) IRz + Y ly(wh, 2/2m) |7z > s o D llybwise/2m)llR g + Y ly(wi,z/2m) |1} /2
i i Slise2 i

(91)
Hence for Theorem [2.4] (and similarly for Theorem it suffices to show that for any D = (dy,ds) (which plays
the role of (y/2m)x) such that ¢;n°" =12 < ||D||y < con®* we have

Z I(u, D)1z + | (uf, D)z > ™" (92)

For t € [—nm, nr], we define 1;(t),1;(t)’ by
Y; = dj cos(it/n) — dg% sin(it/n) and ] = d; sin(it/n) + dg% cos(it/n). (93)

In other words,
¥; = (D,w;) and ¢ = (D, u}).

Let e be the unit vector in the direction of D, e = D ” Define

T:=n"

Our key ingredient in the proof of Theorem is the following refined analog of [41, Lemma 4.3].
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Proposition 9.1. Assume that t satisfies Condition[I. We have
Do lsliRsz + D IR = T
J J

It is clear this result implies Theorem via . We note that [41] treated mainly with Bernoulli, and up to
|ID||2 = n'/?2t°(M) . This was generalized to | D] = n'=°(") in [51] for general ensembles. Our starting point is
similar to that paper, but the innovative of the current note is that we can also assume n < ||D|2.

Before proving this main result of the section, we introduce a useful bound as follows.
Claim 9.2. Assume that T, is sufficiently small given 7, and assume that t satisfies Condition |Z Let I C [n]
be any arithmetic progression of length n'=67. Then
(1) For all e1,e2 € {—1,1}, and any positive integer Ag = O(n™) there exists i € I so that
g1 8in(iAgs/n), ez cos(iAgs/n) > 0.
(2) For any unit vector e € R? we have

Z<e7ui>2 >n'"" and Z(e, u)? >nl". (94)

iel iel
Proof. See the proof of Claim O

For the rest of this section we prove Proposition by contradiction: assume the opposite that we have
D sliEz + 19 IR/z < T (95)
J

We will then show that this is impossible as long as ¢ satisfy Condition |1} We will do so by many steps. First,
it follows from that

{5 € 10,0) NZ: [§jllryz + 1] llr/z > 1/T} < 2T°
and so for large n there exists an interval J = [a, b] C [n] of length n/T*° so that for j € J

I1¥illr/z + 145wz < 1/T. (96)

Differencing. Let A, k be chosen later so that

(4m)* k1
By pigeonholing, we can find pg € Z,pg # 0 and tg so that
t 4
— —tg€Z,1< <At < —. 98
1)027T 0 €Z,1< |po| < 7\0|_A (98)

From the approximation we infer that

eV =10 — 1| = e~ V=170) _ 1| < |2sin(wtg)| < 4 /A. (99)

Next, for a sequence {g;};c[,) we define the discrete differentials with step po by

k
B\
Akgj,Po = Z (Z) (_1) Gj+ipo-

=0
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Let m; and m/; be the integers closest to 1; and v} respectively. Thus for j € J by (117) we have |¢; —m;| < 1/T

and | —m}| <1/T and

We show that
Lemma 9.3. We have
k (4m)* L1
|A TrL]PO|—'_|A jp0|<4HD||2W+4X2 T

provided that [j,7 + kpo] C J

Proof of Lemma[9.3. Recall that ¢; = dy cos(jt/n) —

Akd]]ﬁpo =

g(?)(—l)icos (”:ft + )‘

We first have

gt
n

k

D

(k
; )
=0

IR
) e
e (5))

< (4r/AVF < (4m )/ A)F

Dot

n

jt
n

Re

where we used in the last estimate. It also follows that

k

>

=0

ij—l—ipo .
—— =i
n

ipot
n

it
Lt
n

(e

)

Putting the bounds together we obtain

Ak | = |Z ( )i

w]-HPo' = |dl|(

(o

< A(4r /AR 4 (4m/AYE

pot

(4m)*

) +|de| =572 A(k—3)/2

VA

it
Lt

< 4||DJ[2

(100)

Zsin(jt/n) and ||¢;||r/z < 1/T over j € J. Consider

n

)
)
)]

jt
n

))

(101)

kjAk=3)/2, (102)

(4m)*
Ak—3)/2"
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One can also obtain similarly estimates for |A*)
More precisely, as in (101])

B (42)

=0

| where we recall that ¢ = dy sin(it/n) + do cos(it/n).

S (e (22|
[ (12" ()]

< (4m/VA)*. (103)

L))

/.
J,Po

Also, as in (102)

k ; t t
Z <.>(_1)z;7+7fp0 sin <2p0 +]>
—\i n n n

< (4m)kjAR=3)/2, (104)
It thus follows that

[N o | < AR i |+ 1A (Y 41p0 — Mitipo)|

(4m)" k1L
< 4||DH2W +dx 2o,
and similarly for |[A*m/  |. O

Now, with a sufficiently small 7. (given 7) and € (given 7.) we choose

log | Dl

A=n" and k = 16|
elogn

. (105)

We note that k = O(1) because | D|| < n®. (We restrict ||D||2 to grow polynomially here so that k is bounded,
which significantly simplifies our later analysis). We also recall that pp < A < nT.

With these choices we see that is fulfilled, and hence the RHS terms in Lemma are strictly smaller than
1. But because the numbers m;, m; are integers, it follows that as long as {j,7 + po,...,5 + kpo} C J = [a, b]
we must have

AFm;p, =0 and A*m) = 0. (106)
Now we consider the sequence of integers {1 p,.0<i<(b—j)/po}- By repeatedly applying (122) for j = j,j +
Po,J + 2po, - .. we see the k-differential of any k£ + 1 consecutive terms of this sequence is zero. We thus deduce

from here a crucial conclusion below.

Lemma 9.4. For given j € J, there exists a polynomial of degree at most k—1 so that for any 0 < i < (b—3)/po
we have
Mjtipy = Pjpo (i)

! where the polynomial can be different.

We also have a similarly conclusion for m’_

We note that this result holds for any j such that [j,7 + kpo] C J. Now we will exploit these polynomial
properties furthermore by specifying the choices of parameters. We first consider the case that |D]|2 is small.
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Case 1. Assume that ||Dl]y <n'~*7. It suffices to work with the ; sequence, the treatment for ¢} is identical.
Here we will show that P; is a constant. Indeed, otherwise then as PJ( has at most k — 2 roots, there is an interval
of length |J|/k where P; is strictly monotone. But on this interval (of length |J|/k > n/kT® > n!=67=0() at
least), m; € [—2n'7*7,2n1=47] because |m;| < 2||D||2, so this is impossible if 7, is sufficiently small compared
to 7. Thus we have shown that the polynomials are constant,

Mjyip, = mj, V5,1 € Z,[j + Ipo,j+ (14 k)po] C J = [a,b].

Let’s next fix j, then the range for lis I = (a — j)/po <1 < (b — j)/po — O(1), which is an interval of length of
order n'~7™. On this range of I, the condition of ¢ inshows that 1) 1p, = dy cos((j+1po)t) —da L sin((j+1po)t)
changes size. But as mj4yp, = m is the common integral part for all [, this is impossible unless m;4,, = 0 for
all [ in the range I above.

Argue similarly for 1/1;-, we have thus obtained in this case that all the integral parts are zero, and hence
SUD [V 1po | = SUD [ 41p0 [R /2, SUD [¢] 41 | = SUD [9% 40 [R/Z < 1/T =077
€l ler lel lel

It follows that

Z 1{ai DYz + 110l DYz = D im0, DRz + D €01, D)3

lel eI
= 2 {10 D3 + D 14 44 D)3
lel lel
= IDIE D (wji1pp, €)% + (0] 4y, €07 > 1201757 > 0T,
lel

where we used Claim This bound clearly contradicts .

Case 2. Assume that n!=%7 < ||D||z < n®*. Roughly speaking, our approach here is of inverse-type in the sense
that we will try to gain as much as possible information for ¢ given the obtained bounds; and our final result on
t is almost optimal.

Recall that ZjeJ H%‘H%@/Z + Hw;’”]%a/z < T and by Cauchy-Schwarz we have
Z v;llr/z + Hw;”R/Z <2vnT.

jeJ
We will reapply the process from (101 and (102)) with go = Ipo (for a given positive integer ). By the polynomial
properties of the m;4,,, = P(7) for a polynomial P of degree at most k — 1, we also have that

i <]:)(—1)imj+iqo = i <]:)(_1)imj+ilpo = Zk: (’j) (=1)! P, (il) = 0

i=0 i=0 i=0
Set

Zq 1= 2(t,q0) = e(qot/n). (107)
We then write as follows

2 k
|Ak1/’J a0l = |Z < ) ¢J+1qo| |Z < ) ¢J+1qo Mjtige) + Z < > m]ﬂqo)‘

=
k

k . k
= | <> (1) (Y tigy — Mytige)| < 2F Z 19 g0 Iz

7
=0 =0
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Similarly,
Ny . ulye* , ko k ,
18560 =13 () 0 = 1 () 0 Wiy = i) + 3 () 0
1=0 =0 =0
S [SUTFNSNELD ol
On the other hand,
k .
Akwj,qo—z:(?)( ) ;i tiqo = dlZ( > Ye (sz Jt +d22< ) z]"‘z(]o sin (chi)t+]7]t)
=0
= diRe((1 = z)"e(jt/m) ) + daRe( = kv =1L (1 = 20,)*e(jt/n)) +v/=1j/n((1 = 250)"e(jt/n))
and
k1 . k a i . iqot b k -7+ 1qo iqot  jt
A ’Q[Jj,qg :Z(l>(_ ]Jrzqo = Z( ) ( + )+d22(z)(—1)ln COS ( + )

i=0 i=0 i=0

q _ . . .
= diIm((1 = 2, e(jt/m) ) + dotm = kv =1L (1 = 2,,)* " e(jt/m)) + V=Tj/n((1 - z%)ke(ﬂ/m).
By the triangle inequality, the above then implies that as long as [4,j + kqo] C J we have
(0= 2005 (011 = 2,) + VT o Ty (1~ 240) )|

k

< 2k Z 1% +iqo IR/ + H1/);'+iq0HR/Z~ (108)
i=0

We recall that this holds for any j € J as long as [j, j + kqo] C J, and there is no P; p,(.) or mj44q, on the LHS.
Applying the estimate for j = j + L, and using triangle inequality we obtain the following.

Lemma 9.5. Assume that [j,j + L + kqo] C J. We then have

do L
|(1 - qu)k o
k k
<28 1 4igo lryz + 19 a0 lryz + 28D Wi Ltvigo lryz + 194 11ig0 IR/2- (109)
=0 i=0

Now we complete the proof of Proposition We will work with go = Ipg so that kg < |J|/2. Recall that
J = [a,b] with length |J| at least n/T% = n'=5™ and hence (a + b)/2 > |J|/2 > n'=6™ /2. We divide the
treatment into two cases depending on the parameters di, ds.

Subcase 1. Assume that |dz| > n~". We first fix go = Ipy such that
lgo| < |J|/8k. (110)

Choose any L € [|J|/8,|J|/4], say L = |J|/8. With this fixed L, it is clear that |doL/n| > n="n!=7™ /n > n =87,
We will then choose j in the interval j € [(a +b)/2 —|J|/8, (a + b)/2 + |J|/8] such that the RHS of (109) is as
small as possible. (Clearly with these choices we have [j,j + L + kqo] C J.) If we sum of the RHS 0 for
j from the above range, then this sum is bounded by Ok (Y, [[¥ilr/z + 1¥}r/z) = O(VnT) = O(nt/*+7)
because each term |[¢;||r/z appears a bounded number of times in the total sum. Hence by averaging, there



40 YEN DO, HOI H. NGUYEN, AND OANH NGUYEN

exists j € [(a+b)/2 — |J|/8, (a+ b)/2 + |J|/8] such that the RHS of (109) is bounded by O(n!/2*7 /(|J|/4)) =
O(n_1/2+7T*).

Putting together, with such choice of L and j, the equation (L09]) implies that
‘(1 7 Zqo)k| % n78‘r* < O(n71/2+7r*).
Thus we have that |(1 — z,,)¥| < n~/2+157 in this case, and so with sufficiently small 7,

11— 24| < n7Y/3k (111)

As of this point, recall that z4, = e(qot/n). Because (111) holds for any gy = lpo satisfying (110, we thus have
for all 1 <1 < n'=8™ < |J|/(8kpo)

11— e(lpot/n)| < n~=Y/3k (112)
As of this point we then use the following elementary result to obtain more information on t.

Claim 9.6. Assume that z = e(),|0| < 7/8 such that for all 1 <1 < M we have |1 —2!| < 1/32 for a sufficiently
large M. Then |0] = O(1/M).

Proof. By assumption, 0] < 7/8 and [|2"0]|g/z < 7/8 for all 1 < m < log M, and so we can repeatedly estimate
|6] to obtain |8| = O(1/M). O

Claim and ([112)) then implies that for large enough n,

[pot/mn|lr/z = O(n~'187).

However this contradicts Condition [1| because pg < A = n" and 7, is sufficiently small given 7.

Subcase 2. Now we consider the remaining (very degenerate) case that |da| < n~". Then |d;| < ||D|2 > n'=*".
In the case that di|zy, — 1| < n?™ then we have

|Zqo _ 1| < n71+4774m'

In the other case that di|z,, — 1| > n?™, then this term dominates all other terms involving ds on the LHS of
(108) (because each of which has order O(1) as ds is small). So we have

k

(1 = 260)*[d1/2 < 25~ [$54igollr/z + 201¥j4ig, sz = O(1).
1=0

Hence,
200 = 1 = O(1/dy*) < n™ /2,

Thus from both scenarios on the magnitude of dy|z,, — 1| we at least have |z,, — 1| < n~'/2k. We can then repeat
the argument as in the previous case to vary qp and use Claim M It thus also follows that ||pot/7n|r/z =
O(n=1*87) which is again impossible.

Before concluding this section, as our approach to prove Proposition starts with , by considering subin-
tervals of J when needed (where we note that at least one of such subintervals still has length Q(n/T°)), we
obtain the following analog of Theorem



RANDOM TRIGONOMETRIC POLYNOMIALS 41

Theorem 9.7. Let C. and { be given positive constants, and t satisfies Condition[I for some sufficiently small
constant 7. The following holds for sufficiently large n and sufficiently small T, (depending on Cy, T and £). For
any n®™~12 < |z|ly < nC, for any set I C [n] of at most £ entries we have

T ¢ < exp(-n™).
i¢l

10. CHARACTERISTIC FUNCTIONS IN R*, PROOF OF THEOREM [2.5

In this section we continue our “inverse-type” analysis of the characteristic functions, but now in R*. As there
are two parameters s, t from Condition[2] the situation is much more complicated, but we will call on the previous
sections whenever possible.

First we show the following analog of Claim
Claim 10.1. Assume that 7. is sufficiently small given T, and assume that s,t satisfy Condition[2. Let I =
{a+1q,0 <1< L} C [n] be any arithmetic progression of length L = n'=67. Then
(1) For all €1,e3,e3,64 € {—1,1} and 0 € [—m, 7], and for any positive integer Ay = O(n™) there exists
1 €1 so that
e1sin(iAos/n + 0),excos(iAgs/n + 6),e3sin(iAot/n + 0), €4 cos(iApt/n + 0) > 0.

2) For any unit vector e € R* we have
( y

D evi)? =0 and Y (e, vi)? =n' T, (113)

i€l 1€[n]

Proof. Note that ¢ < n/L < n°®™ which is much smaller than n7 if 7, is chosen sufficiently small. We first show
(113) for v;, given any unit vector e = (z1, x2, 3, x4). First, replacing s,t by gs, gt and rotate e if need, without
loss of generality we assume that I = [0, L]. Then

Z(e, vi)? = Z(xl cos(it/n) — xo(i/n) sin(it/n) + w3 cos(is/n) — x4(i/n)sin(is/n))?

i€l i

The sum over the diagonal terms, under Condition [2| (and hence Condition [1)) for s and ¢ separately, is of order
L3/n? > n'~7. We thus need to work with the cross terms

A = Z(z/n) sin(it/n) cos(it/n), By = Z(z/n) sin(is/n) cos(is/n)

iel iel
and
Cy = Zcos(z’s/n) cos(it/n), Dy = Z(z/n)2 cos(is/n) cos(it/n)
el iel
and

E, = Z sin(is/n)sin(it/n), Fy = Z(z/n)2 sin(is/n) sin(it/n).

iel iel
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We show that under the condition on s,t (and (gs,qt)) from the claim these terms are all of order o(n!~T)
(actually we obtain a slightly stronger bound). First for A; and By, with ¢/ = t/n we write

|A| = |;(z/n) sin(it") cos(it’)| = \% ;( i/n)sin(2it")] =50 Zcos (2it")

L
1,0 e@L+1)t)-1
T at'Re;e “ et eam -1 I

After some simplifications we obtain

|A1| =

(L 1 1 1
n|sint’|  n (sint’)?

) — O(nl—ST)’
where we used Condition [2{ (more precisely Condition [1) that ||¢//7||g/z > n~1+57.

Let’s next work with the terms involving s, ¢, such as D;. We have

2Dy = Z(z/n) (cos(is/n —it/n) + cos(is/n + it/n)) Zcos iz /1) pms—t + (— Zcos(ix/n))”|w:s+t

iel iel iel

_ sin((L+1/2)z/n) v sin((L +1/2)z/n) _ 1 1
-y Vet Y e = Ot Tt s o7
i1 ! i1 ! + 4 . +— ! ).
n (s~ py/2m)]  n s (G + 0z T (s — 072 R s (s + 0)/2m)
It thus follows that, because |(s —t)/mn|r/z > n '8 and |(s +t)/7n|r/z > n 1187,
|D1| = O(n'=87).

The treatments for Cy, Fq, F1 are somewhat simpler, and hence we omit.

Now we focus on the first part. By the (quantitative) Weyl’s equi-distribution criterion on T? (see for instance
[62, Proposition 9; Exercises 18, 19]) if the sequence {(i(qAos/mn) + 0,i(qAot/mn) + 6),1 < i < L} in the two
dimensional torus (R/Z)?, where Ag = O(n™) and q < n57™ is not 5—equidistributedE| (for some fixed sufficiently
small constant § to guarantee the sign changes) then there exist positive integers ko, lg = n® () such that

2O (1) 1
o Aags/mn) + lo(Aogt/mn) sz = O(*——) = O(—=),

provided that 7, is sufficiently small compared to 7. This contradicts with our condition. O

Let D = (dy,dy,ds,dy) € R* be any non-zero vector and let e be the unit vector in the direction of D. For
s,t € [—nm, nm] we define

;= (D, v;) = dj cos(it/n) — dg% sin(it/n) 4+ ds cos(is/n) — d4% sin(is/n) (114)
Ul = (D, V) = d sin(it/n) + da— cos(it/n) + ds sin(is/n) + da— cos(is/n). (115)
n n
Define T'= n"*. Our key ingredient in the proof of Theorem is the following analog of Proposition
Proposition 10.2. Assume that s,t satisfy Condition[2. We have

Do Islze + D 15k = T
J J

5Actually we just need the points to appear in all four quadrants of the plane.
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It is clear this result implies Theorem [2.5] via (89)), and (91). For the rest of this section we prove Proposition
by contradiction: assume the opposite that we have

S I3 o+ 15132 < T (116)
J

We will then show that this is impossible as long as s,t satisfy Condition [2| First, argue as in , it follows
from (116]) that there exists an interval J = [a,b] C [n] of length n/T° so that for j € J

lillrsz + 1¥jllryz < 1/T. (117)

Differencing. Let A, k be chosen as in . We then can find pg € Z,py # 0 and sq, ty so that

s t 4
— — S50 €L, po— —ty €Z,1 < < A, lsol? + |to]? < =. 118
Pog— = %0 o5 —to 1 < pol < A, [s0]” + [to]” < A (118)

Indeed, consider the sequence of pairs ({q(s/27n)},{q(t/2mn)}),1 < ¢ < A in [0, 1]?. Using Dirichlet’s principle,
there exists g1, g2 such that the distance of the pairs is at most 2/ V/A. In other words,

{ar(s/2mn)} = {q2(s/2mn)}? + Hau (t/27n) } — {ga(t/2mn) }|* < %

This implies that there exists integers p1, ps such that

a1 = aa)(s/2m) = i+ (a1 — ) 4/27) — paf? < .

Set so = (g1 — q2)(s/2mn) — p1 and to = (q1 — ¢2)(t/27n) — p1 and pg = g1 — g2 we obtain as claimed.
From the approximation we infer that
t
|e(poﬁ) — 1| = |e(27ty) — 1] < [2sin(ntg)| < 4n/VA (119)

and
|e(p0%) — 1| = |e(2ms0) — 1] < |2sin(wso)| < 47/ VA (120)

Next, consider the differential operation Akgj,pp as in the previous section. Let m; and m;- be the integers
closest to 1; and 1/); respectively. We then have

Lemma 10.3. We have

k k, 1 (477)k !
|A M po| + [ATm] | < 4HD”2W +4x2 T (121)

provided that [j,7 + kpo] C J.

Proof of Lemma[10.3, Argue similarly as in the proof of Lemma by using (119)) and (120) we can show that

(4"

47
N A(k=3)/2"

VA

One can also obtain similarly estimates for |Ak1/);»|. It thus follows that

A ] < (AR |+ AR (V54190 — My,

(4m)" k1
A(k—3)/2 +4x2 T

and similarly for [A*m/]. O

7'('k
Vet (1] + da)) =P < 4D,

ko _
Al =13 (5) 1000l < ] + s

< 4|D|2
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As of this point, we choose A and k as in (105]). Then as long as {j,7 + po,-.-,7 + kpo} C J = [a,b] we must
have

AFm;p, =0 and A*m) = 0. (122)
This results into the following analog of Lemma [9.4
Lemma 10.4. For given j € J, there exists a polynomial of degree at most k so that for any 0 <i < (b—j)/po
we have

Mjtipy = Pjpo(i)-

We also have a similarly conclusion for m;Hpo.
We again note that this result holds for any j such that [j,7 + kpo] C J. We next consider the case that |D||2
is small.

Case 1. Assume that |[Dlj2 < n!=%7. Here our treatment is identical to Case 1. of the previous proof, that
we can deduce from here that mji;, = m;,Vj,l € Z,[j + Ipo,j + ({ + k)po] C J = [a,b] and as over the
interval I = (a — j)/po <1 < (b—j)/po — O(1), the condition of s,t¢ in |2| shows that ¢4, = dicos((j +
Ipo)t) — da L sin((j + Ipo)t) + ds cos((j + Ipo)s/n) — d4@ sin((j + Ipo)s/n) changes size and this implies that
Mjyip, = 0 for all [ in the range I above.

One will then have
SOV Dz + 1V DRz = > Wi DYz + Y V410 DYI3

lel lel
=D 1kt DY+ D1V DI
lel lel
= IDIE Y (Vitipe: €)° + (Vi @)® = 120! =57 > 0T,
leI

where we used the second point of Claim m This bound contradicts (116]).

Case 2. Assume that n'~%" < |D|z < n%. In this case our “inverse” analysis is more complicated than that
of the previous section because there are two unknowns. Nevertheless, our final bounds are almost optimal.

Recall that - ;¢ ; 1912 + [¥ll%,z < T and by Cauchy-Schwarz we have

> lsllesz + 1% llrjz < 2vnT.
jeJ
By reapplying the differential process as in Case 2 of Section |§| (this time for s and t) with go = Ipy for a given
positive integer [. Set
Zg0.t = €(qot/n) and zg4,,s = e(qgos/n). (123)
By the polynomial properties of the m;i,, = P(4) for a polynomial P of degree at most k — 1, we the obtain

the following analog of ([L08]).
. —k
(1= 240,00 et /m) (A (1 = 2g0,0) + V=Tdo = /T (1 = 240, )
(1= 20 (5))* e /) (da (1 = 2,) + V=Tda )|
k

n
nqo +V1da(1 - 2,)
< iqollryz + 19 4igo vz (124)
1=0

SIS 3 |~
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In what follows, for a fixed qg, we will take advantage of the above inequality by varying j and eliminate the
terms involving (1 — z,). Let L be a parameter to be chosen, we show the following

Lemma 10.5. Assume that [j1,j1 +j + L + kqo] C J = [a,b]. We then have

J
(1 = zgy,0)"] x (dzﬁ)\(e(L(S —t)/n) = 1)[?
k
< 2k Z %51 +ig0 IR/Z + 20|Ps1+ LtigoIR/Z + 1¥51 4204100 IR/2Z
=0
k
+2* Z 195, tigo IRz + 2097 1 1 tigeIR/Z + 195, 121 4iq0 IR/Z
=0
k
+ 25 1 tsvio lryz + 2085 44 Lviao Rz + (185, 4420400 12 /2
=0
k
+ 2¢ Z ||¢;1+j+iqo ”R/Z + 2||¢;1+j+L+i40 ||R/Z + ||w;1+j+2L+iq0 HR/Z'
1=0

We also have the same bound for |(1 — z4, s)¥| x (d4%)|(e(L(s —t)/n) —1)|%.
Proof. In what follows we note that if [j1,71 + j + L + kqo] C J then automatically [j1, 71 + kqo] U [j1 + L, j1 +

L+kelUli+4,71+J+ka)Ulji+7+L,j1+5+ L+ kgl CJ, and so we can apply the followings as the
indices are all in J. First, multiply both side of (124) by e(Ls/n)

(1= za) " e(Lis/m)e(it/n) (A (1 = 240,) + VTl =2 4+ /=Tda(1 - zqo,t)%>

+ (1 — zqms)k*le((‘j + L)s/n) (dg(]. — Zqo,s) + \/j1d4 _nQO + \/j1d4(1 B Zqo,s)%>’
k

<2k Z %5 1iqollRyz + 195 1igelIR/Z-
i=0

One the other hand, (124)) applied for j being replaced by j + L shows

‘(1 - Zqo,t>k_1e(<j + L>t/n) (dl(l - Zqo,t) + \/jldQ _nqo + \/j1d2<1 - Zqo,t)j - L)

<. S

(U= 200G+ L)s/m) (51 = 20,0) 4V Tds o 4 Ty (1= 24,,) )|

k
k
<28 s Lriaollr/z + 194 L vigo Iz
=0
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By the triangle inequality, it follows from these two inequalities that

(1= 20, (L m)e(t/m) (1 = z00) + VT =2 /7Ty (1 = 20000 )
VT (1~ 20 )

—-(1- zqoyt)k—le((j + L)t/n) (dl( — Zgo,t) T \/7d2
(U 2 e + LV Tds (1~ z,) |

k k
<28 " tigo lryz + 19 a0 lryz + 28D Wi Ltvigo Iryz + €4 11ig0 IR/2- (125)
1=0 =0

Multiply both sides with e(Ls/n) again we obtain

(1= 20" " e(@Ls/m)e(jt/m) (d(1 = 2g0.1) + V=1ds _’:lq“ + v/~ Tds(1 — zqoyt)%)

— (1= 200 ) e fm)e(( + D)/m) (11 = z000) + VT /Ty (1 - 2,2
(U 20 el 20)s/m)V T (1~ 2,0) |
k k

<28 1 tige lryz + 19 a0 lryz + 28D Wi Ltigo lryz + 194 11ig0 IR/2-
=0 =0

Applying the triangle inequality once more, it follows from this inequality and from (125 applied for j being
replaced by j + L we can eliminate (1 — z,)¥~te((j + 2L)s/n) and obtain

(1~ 2q00) (2L /m)e(it/m) (41 (1~ 240) + VT 4\ “Ta(1 — 2404) L)
— (1= 2g0,0)* " e(Ls/n)e((j + L)t/n) (dl( — Zgo,t) + \/7(12 kg0 +V—=1d»(1 Zqo,t)#)
(U 20 ) e L m)el(G 4+ D) (1~ 2q0) VT T Ty (1~ 2,0 )

+(1— qu’t)k_le((j +2L)t/n) (dl( — Zgot) + \/7d2 ko + \/7d2( Z%,t)#) ’

k k
k k
<28 10 4igo lryz + 18 a0 llryz + 28D Wi L4vigo lrsz + 194 11igo IR/2
=0 i=0
k k

k k
+ 28 1t rrigo sz + 1)1 prigo sz + 25> 1sarvigollr/z + 1V 4 ar yigIr/z-
1=0 1=0
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After pulling out the common factor (1 — z,, +)*"te(jt/n) and simplifying we then have

_I:qu + V= 1da(1 — Zqo,t)%)(e(l’s/n) —e(Lt/n))*

(1= 20" ¢ [ (A1 (1 = 240.0) + V= Tda

V(1 — zqmt)%(e(QLt/n) ~ e(Ls/m)e(Lt/n)|
k

<2k Z %j+igollR/Z + 25+ L+igolIR/Z + V5420 +i00 IR /Z
=0
k
+ 28 1 g lryz + 201 L pigo IRz + W)t 0r pigoIR/2- (126)
=0

Now if we apply (126) for j = j; and j = j1 + j, and then use the triangle inequality once more we have

(1= 29,6) 1 % (do(1 — Zqo,t)%)l(e(L(S —t)/n) = 1)?
k

<28 |1, tigo sz + 20185+ Lviao lryz + 1851 2L 4igo IR /2
=0
k

+ 2" Z %%, 1igo IRz + 2005, 4 LvigolR/Z + 19, 421 4iq0 IR/2Z
i=0
k

+ 25 05, 4 tiao lR/z + 2085 154 Ltigo IRy + 195 15420 +igolIRyz
1=0
k

+2F Z ||¢;‘1+j+iq0 lr/z + 2||¢;‘1+j+L+iqo Ir/z + H¢31+j+2L+iqo Ir/z- (127)
i=0

The bound for |(1 — zg,s)* | x (da(1 — zqows)%)|(e(L(s —t)/n) — 1)|? is identical, and we omit.

Using the obtained inequalities, we can conclude the section as follows.

Proof of Proposition Recall the notation J = [a,b]. We will work with go so that kqgy < |J|/2. We divide
the treatment into two cases depending on the parameters di, ds, ds3, d4.

Subcase 1. Assume that either |dz| > n~" or |d4| > n~ ™. Without loss of generality we assume the first case.
Notice that with j = n!=8™ then |jda|/n > n=9, while as by Condition (s —t)/n|lr/z = n~1*87, so there
exists 1 < L < |J]/2 = n'=67 /2 such that |e(L(s —t)/n) — 1| > n~ ™. Let us fix such an L.

We next observe that the RHS of , for some j; from the interval a < j; < b — 2L — kqo (there are at least
|J|/3 such j1), is at most O(n~'/2*77). Indeed, this is because the sum of the RHS of for j; from the
above range is bounded by O(3_ ¢ ; [¥llr/z + 1V} lr/z) = O(VnT) = O(n'/?*7) (as each term ||1);||r 7 appears
a bounded number of times in the total sum).

Putting together, with such choice of L and ji, the equation (127)) implies that

|(1 7 Zqo,t)k| % 71797—* < O(n71/2+7r*).
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Thus we have that |(1 — z4,.+)*| < n™1/2+167 in this case, and so with sufficiently small 7,
11— 2490 <73k, (128)
Recall that z,,;. = e(got/n). Because (128) holds for any gy = Ipo as long as kgo < |J|/2, we thus have for all
1 < l < nl—ST*’
11 — e(lpot/n)| < n~=Y/3k, (129)
As a consequence, by Claim [9.6] we then have

Ipot/mn|r/z = O(n~"+57)

)

which contradicts Condition 2

Subcase 2. Now we consider the remaining case that |dz|, |ds] < n~ ™. Without loss of generality we assume
|d1| < |Dl]2 > n'=%7. In the case that di|z4, — 1| < n*™ then we have

|Zq0 _ 1| S 7’L—1+4T_4T*.

In the other case that dy|z,, —1| > n*™, then with L so that |e(L(s—t)/n)—1| > n~™* as in the previous subcase,
the factor dq|zq, — 1|((e(L(s —t)/n) — 1)) is at least n37, which clearly dominates all other terms involving ds
on the LHS of (126) (because each of which has order O(1) as ds is small). So by (126]) we have

k

(1= 2g0)*1d1/2 < 28 ) " |15 igo IRz + 20155 Ltigollryz + (95 4+2L+igo vz
=0
k

+ 2" Z ||¢§+iqo r/z + 2H¢;‘+L+iqo Ir/z + ||¢;’+2L+iqo r/z
i=0
=0(1).
Hence,
20 = 11 = O(1/dy*) = O(n™"2%).
Thus from both cases we always have |z,, — 1| = O(n~'/2¥). Varying ¢y and using Claim we deduce that
|pot/mn|lr/z = O(n=1+87), a contradiction. O

Finally, similarly to Theorem as our approach to prove Proposition starts with (117), by passing to
subintervals of J when needed we obtain the following analog of Theorem [2.5

Theorem 10.6. Let C. and { be given positive constants, and s,t satisfy Condition[2 for some sufficiently small
constant 7. Then following holds for sufficiently large n and sufficiently small T, (depending on Cy,7 and £).
For any n®™ Y2 < ||z|ly < n®*, for any set I C [n] of at most £ entries we have

[T ¢:(@)] < exp(—n").
i¢I
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