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Abstract. In this paper, we study the number of real roots of random trigonometric polynomials with iid
coe�cients. When the coe�cients have zero mean, unit variance and some finite high moments, we show that
the variance of the number of real roots is asymptotically linear in terms of the expectation; furthermore the
multiplicative constant in this linear relationship depends only on the kurtosis of the common distribution of the
polynomial’s coe�cients. This result is in sharp contrast to the classical Kac polynomials whose corresponding
variance depends only on the first two moments. Our result is perhaps the first paper to establish the variance
for general distribution of the coe�cients including discrete ones, for a model of random polynomials outside the
family of the Kac polynomials. Our method gives a fine comparison framework throughout Edgeworth expansion,
asymptotic Kac-Rice formula and a detailed analysis of characteristic functions.
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1. Introduction

Universality for the distribution of roots of random polynomials is an exciting subject that has attracted the
attention of many generations. When the degree of a polynomial is very large, it is often challenging, even
numerically, to solve for the roots, and a very natural question is to obtain an accurate estimate for the number
of roots in a given region (in particular in R). There is a large body of studies in the past centuries dedicated to
this task, showing that the typical size of the number of roots depends mostly on the underlying symmetries of
the random polynomials and not on the particular distributions of the coe�cients. These studies often assume a
fairly minimal normalization condition, where the coe�cients are independent with fixed means and variances.
Results of this type are known in the literature as universality results for the number of (real) roots.

Among many statistics about the number of real roots of random polynomials, denoted by Nn (or Nn,R), the
following are often considered first by many authors: the expectation ENn, the variance Var(Nn), and the
limiting distribution of the standardization N⇤

n
= Nn�ENnp

Var(Nn)
. One of the most studied random polynomials in

the literature is perhaps the Kac polynomial,

Pn(x) = ⇠0 + ⇠1x+ · · ·+ ⇠nx
n

where ⇠j are iid copies of a common random variable ⇠, often assumed to have zero mean and unit variance. The
issue of estimating Nn for such polynomials was already raised by Waring as far back as 1782 ([59], [40]). In the
early 1940s, Kac [37] (see also [55]) developed a magnificent formula for the expectation of number of real roots

ENn =

Z 1

�1

Z 1

�1
|y|p(t, 0, y)dydt, (1)
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where p(t, x, y) is the probability density for Pn(t) = x and P 0
n
(t) = y. See for instance [1, 3, 19] for other

variants of this Kac-Rice formula. When ⇠ is standard Gaussian, one can easily evaluate the right-hand side of
(1) and obtain

E(Nn, G) =

✓
2

⇡
+ o(1)

◆
log n (2)

where the notation E(Nn, G) indicates the expectation of Nn when ⇠ is standard Gaussian. Similarly, one can
also show that

Var(Nn, G) =

✓
4

⇡
(1� 2

⇡
) + o(1)

◆
log n.

Evaluating the double integral in the Kac-Rice formula (1) is feasible only when the function p(t, x, y) is suf-
ficiently nice which often requires that the random variable ⇠ is continuous. It is thus of great interest to
understand what happens when ⇠ is discrete. A crucial example is when ⇠ is Rademacher, that is ⇠ takes
values ±1 with equal probability. Even though the Rademacher distribution is arguably the simplest looking
discrete distribution that one can think of, it is often the case in the study of random polynomials that a method
applicable to Rademacher distribution can be adapted to much more general distributions.

For the Kac polynomials with Rademacher coe�cients, the seminal results of Littlewood and O↵ord [42, 43,
44, 45] and Erdős and O↵ord [21] showed that ENn is universal in the sense that the Rademacher case behaves
asymptotically like the Gaussian case (2). In particular,

E(Nn, Ra) =

✓
2

⇡
+ o(1)

◆
log n (3)

where the left-hand side indicates the expectation of Nn with Rademacher coe�cients. Ibragimov and Maslova
[29, 30, 31, 32] (among others) generalized the method by Erdős and O↵ord to show that ENn is universal as
long as the random variable ⇠ has mean 0, variance 1, and belongs to the domain of attraction of the normal
distribution.

Beyond the Kac polynomials, proving universality for the roots of other classical random ensembles including

• elliptic polynomials,
• hyperbolic polynomials (which include the Kac polynomials),
• trigonometric polynomials,
• and Weyl polynomials,

has become an active direction of research in recent years [11, 12, 34, 36, 61, 17, 25, 26]. There is also a distinction
between local and global universality. The global universality concerns the limiting distribution of the empirical
measure of all complex roots and has been established in several papers for many random polynomials, see for
instance [36, 54, 15] and the references therein. The local universality concerns the distribution of the roots
(complex, real, or both) in smaller/thinner sets and is developed in a series of work by Tao, Vu, and the current
authors [61, 50, 17, 52].

Thanks to these results, the universality of ENn has been systematically established for all of the aforementioned
classical models of random polynomials, as done in [52]. On the other hand, understanding the universality of
Var(Nn) remains greatly challenging. It is known that for the Kac polynomials and their generalization, this
variance is universal [48, 53]. For other models of random polynomials, to the best of our knowledge, this
variance is only known for Gaussian distribution or for some cases, distributions with certain continuous-ness.
Our result would be the first to establish the variance outside the framework of Kac polynomials for discrete
distributions, including the Rademacher one.
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We study the random trigonometric polynomial

Pn(t, Y ) =
1p
n

nX

i=1

yi1 cos

✓
it

n

◆
+ yi2 sin

✓
it

n

◆
, (4)

where yij are independent random variables. Let Yi = (yi1, yi2) and Y = (Y1, . . . , Yn). In this note, we
are interested in the real roots of the periodic polynomial Pn(t, Y ) (although some other statistics of random
trigonometric polynomials also play crucial role in several recent interesting studies, such as [4] and [56]). We
now redefine Nn = Nn(Y ) to be the number of roots of Pn in one period, namely for t 2 [�n⇡, n⇡]. It is known
from a result of Qualls [57] in the 1970s that when the yij are iid standard Gaussian, we have

ENn = 2
p

(2n+ 1)(n+ 1)/6.

Confirming a striking heuristic by Bogomolny, Bohigas, and Leboeuf [14], about ten years ago, Granville and
Wigman [27] proved the following.

Theorem 1.1. When the yij are iid standard Gaussian, there exists an explicit positive constant cG such that

the variance satisfies

Var(Nn) = (cG + o(1))n.

Furthermore,

Nn � ENnp
cGn

d�! N(0, 1).

Here, asymptotically, cG ⇡ 0.55826. More precisely,

cG =
4

3⇡

Z 1

0

✓
1� g(t)2 � 3g0(t)2

(1� g(t)2)3/2

⇣p
1�R⇤2 +R⇤ arcsinR⇤

⌘
� 1

◆
dt+

2p
3
,

where

g(t) =
sin(t)

t
, and R⇤ = R⇤(t) =

g00(t)(1� g(t)2) + g(t)g0(t)2

1/3(1� g(t)2)� g0(t)2
.

Granville and Wigman established this beautiful result by a delicate method basing on the Kac-Rice formula.
More recently, Azäıs and León [6] provided an important alternative approach basing on Wiener chaos decompo-
sition. Roughly speaking, they showed that Pn(t, Y ) converges in certain strong sense to the stationary Gaussian
process of covariance r(t) = sin(t)/t, from which variance and CLT can be deduced.

More relevant to our current note, the above result has been extended recently by a ground-breaking result
of Bally, Caramellino, and Poly [8] to more general distributions where certain continuousness is assumed. To
discuss this extension, we first introduce some of their notions. We say that Yi satisfies the (two-dimensional)
Doeblin’s condition if there exists ai 2 R2 and r, ⌘ 2 (0, 1) such that for any A ⇢ Br(ai),

P(Yi 2 A) � ⌘�(A).

Let D(r, ⌘) denote the sequences of random variables Yk = (yk1, yk2) satisfying the Doeblin’s condition, with
Eykj1ykj2 = �j1j2 , and uniformly bounded moments of all orders

sup
k

E|Yk|p < 1 8p,

where the Yk are independent but not necessarily identically distributed.

Suppose that (Yk) 2 D(r, ⌘) and for all ↵ = (↵1, . . . ,↵m) 2 {1, 2}m with m = 3, 4, the following limits exist

lim
n!1

E
mY

i=1

yn↵i = y1(↵).



4 YEN DO, HOI H. NGUYEN, AND OANH NGUYEN

The following result from [8] was formulated for Nn([0, n⇡], Y ), the number of roots inside [0, n⇡] of Pn(t, Y )1.
Let Nn([0, n⇡], G) be the number of roots inside [0, n⇡] of Pn(nt,G) which is the random polynomial with
coe�cients yij being standard Gaussian.

Theorem 1.2. [8, Theorem 2.1] We have

lim
n

1

n
Var(Nn([0, n⇡], Y )) = lim

n

1

n
Var(Nn([0, n⇡], G)) +

1

60
y⇤

with

y⇤ = (y(1, 1, 2, 2)� 1) + (y(2, 2, 1, 1)� 1) + (y(1, 1, 1, 1)� 3) + (y(2, 2, 2, 2)� 3).

In particular, if the yij are iid copies of a random variable ⇠ of mean zero, variance one and satisfies the

(one-dimensional) Doeblin’s condition, then

lim
n!1

1

n
Var(Nn([0, n⇡], Y )) = lim

n

1

n
Var(Nn([0, n⇡], G)) +

1

30
E(⇠4 � 3). (5)

This result implies strong concentration around the mean of Nn. More crucially, it says that the variance is not
universal with respect to second order normalization of ⇠ (having mean zero and variance one). At the same
time, it also suggests a possible universal picture that in the limit, the ratio Vn/n asymptotically depends on y⇤,
and particularly on the fourth moment in the iid case.

In this paper, we confirm this phenomenon and completely remove the Doeblin’s condition.

Theorem 1.3 (main theorem). Assume that yij , 1  i  n, j = 1, 2 are iid copies a random variable ⇠ of mean

zero, variance one, and E|⇠|M0 < 1 for a su�ciently large positive number M0. Then

lim
n

1

n
Var(Nn) = cG +

2

15
E(⇠4 � 3),

where we recall that cG is the constant from Theorem 1.1.

We thus obtain that for the case where yi,j are Rademacher random variables,

lim
n

1

n
Var(Nn) = cG � 4

15
⇡ 0.29159.

Our numerical experiments appear to be in accordance with these results as shown in Figure 1.

Note that our result is stated for the number of roots over [�n⇡, n⇡], but the approach automatically works
for roots over [0, n⇡] as well. As a matter of fact, most of our arguments work for random variables |⇠| of
bounded (2+ "0)-moment, except at the Edgeworth expansion step (for instance Theorem 4.1) where we assume
boundedness of moments. Determining the minimum value of M0 seems to be an interesting problem.

We can view Theorem 1.2 and Theorem 1.3 as a mixture of universality and non-universality. The fact that the
variance is linear in n indicates that there is no correlation (repulsion and attraction) among su�ciently far apart
roots, and this phenomenon is universal in the sense that it su�ces to assume |⇠| to have bounded moments.
However, the multiplicative constant, which is determined by the correlation of nearby roots, is a↵ected by the
kurtosis as seen.

Finally, we also invite the reader to Theorem 8.1 which says that under a very general setting (including the
non-iid case) there is already a significant cancellation in the variance formula. More precisely, there exists a
positive constant c such that

Var(Nn) = O(n2�c). (6)
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Figure 1. Sample variance (divided by n) of the number of roots in [�n⇡, n⇡] for Gaussian
random variables (dashed line) and Rademacher random variables (solid line).

Figure 2. Sample variance (divided by n) of the number of roots in [0, n⇡] for Gaussian random
variables (dashed line) and Rademacher random variables (solid line).

2. Our methods

We first mention briefly the approach by Bally et al. to prove Theorem 1.2. Here, powerful tools such as
Malliavin calculus and Wiener chaos theory (see [6] and the references therein) do not apply under the Doeblin’s
condition. Instead, the authors above have developed a sophisticated method using the Edgeworth expansion
and approximate Kac-Rice formulas basing on their previous results in [7].

1The authors of [8] considered the number of roots inside [0,⇡] of Pn(nt, Y ), which is the same as our Nn([0, n⇡], Y ).
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Generally speaking, for Theorem 1.3, we will follow the same machinery. However, as we have to deal with
discrete random variables, none of the results from [7] and [8] could be applied. For instance, in our opinion, it
is a non-trivial problem to study the small ball probability for the random walks associated to Pn(t, Y ) without
Doeblin’s condition.

We would also like to point out that, broadly speaking, using the Edgeworth expansion to study the distribution
of normalized sums of independent random variables is a classical approach (see [9]) and this approach was also
used by Bally et al. [7, 8]. The novelty in our argument is a more refined estimate for characteristics functions
motivated by work of Konyagin-Schlag [41] that works for a large class of distributions (including the discrete
cases). This is where we deviate from Bally et al. [7, 8], who used a completely di↵erent approach to deal with
non-smooth distributions. More precisely, in their papers [7, 8], the authors use the Nummelin splitting (which
requires Doeblin’s condition) to decompose non-smooth distribution into two parts: a smooth part that can
be treated directly by Edgeworth expansion methods, and a noisy part that can be treated by Wiener chaos
techniques. Our modified approach circumvents the need for Nummelin’s splitting and therefore avoids the need
for anti-concentration conditions like the Doeblin condition in Bally et al. [7, 8].

One trade-o↵ that we need to face in order to obtain the generality of our result is that we necessarily rule out
a set of points that are well-approximated by the integer lattice (see Condition 2). To show that this set does
not contribute significantly to the whole picture, we utilize a universality result in [52] (Theorem 7.7) which,
roughly speaking, says that the di↵erence between the variance of the number of roots of Pn(·, Y ) and Pn(·, G)
over small intervals is negligible.

In what follows we sketch the highlights, some of which are of independent interest. (For instance, a variant of
Theorem 2.2 finds some applications in [51].)

2.1. Small ball estimates and characteristic functions. Here, we only assume ⇠ to have mean zero, variance
one and bounded (2 + "0)-moment for any "0 > 0.

For t 2 [�n⇡, n⇡], we define the vectors

ui(t) :=

✓
cos

✓
it

n

◆
,� i

n
sin

✓
it

n

◆◆
and u0

i
(t) :=

✓
sin

✓
it

n

◆
,
i

n
cos

✓
it

n

◆◆
. (7)

Assume that yij , 1  i  n, j = 1, 2, are iid copies of a random variable ⇠ of mean zero and variance one.
Consider the random walk in R2

Sn(Y, t) :=
nX

i=1

yi1ui + yi2u
0
i
. (8)

This random walk can also be written as Sn(t, Y ) =
P

n

i=1 Cn(i, t)Yi, where Yi = (yi1, yi2) and

Cn(i, t) =

✓
cos

�
it

n

�
sin

�
it

n

�

� i

n
sin

�
it

n

�
i

n
cos

�
it

n

�
◆
. (9)

Note that for some values of t such as t = o(1), the random walk does not spread out in the Radamacher case.
We will show that these are the only cases to cause this clustering.

Condition 1. Let ⌧ be a constant to be chosen su�ciently small. A number t 2 [�n⇡, n⇡] is said to satisfy

Condition 1 if there does not exist a non-zero integer l with |l|  n⌧
such that kl t

⇡n
kR/Z  n�1+8⌧

. In other
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words

80 < l  n⌧ ,

����l
t

⇡n

����
R/Z

> n�1+8⌧ .

Here k.kR/Z is the distance to the nearest integer. In other words, the above condition requires that t/⇡n cannot

be within a distance of n�1+o(1) from rational numbers of denominator no(1).

Theorem 2.2. Let C > 0 be a given constant. Assume that t satisfies Condition 1 with su�ciently small ⌧ .
Then for � = n�C

and for any open ball B(a, �), we have

P
✓

1p
n
Sn(t, Y ) 2 B(a, �)

◆
= O

�
�2
�
.

As mentioned before, our condition on t is almost optimal. Towards Theorem 1.3, as we will be dealing with
pair correlations, we will need to work with vectors in R4. Let s, t be given, define the vectors vi,v0

i
as follows

vi(s, t) :=

✓
cos

✓
it

n

◆
,� i

n
sin

✓
it

n

◆
, cos

✓
is

n

◆
,� i

n
sin

✓
is

n

◆◆
(10)

and

v0
i
(s, t) =

✓
sin

✓
it

n

◆
,
i

n
cos

✓
it

n

◆
, sin

✓
is

n

◆
,
i

n
cos

✓
is

n

◆◆
. (11)

These vectors are obtained by simply concatenating ui(t),ui(s) and u0
i
(t),u0

i
(s), respectively.

Here we are interested in the random walk

Sn(s, t, Y ) :=
nX

i=1

yi1vi + yi2v
0
i
. (12)

Using (9), if we let Cn(i, s, t) be the 4 ⇥ 2 matrix obtanied as a joint of Cn(i, t) and Cn(i, s), then we can see
that this random walk can also be written as Sn(s, t, Y ) =

P
n

i=1 Cn(i, s, t)Yi.

We will assume that s/⇡n and t/⇡n cannot be jointly well-approximated by rational numbers.

Condition 2. Let ⌧ be a constant to be chosen su�ciently small. Two numbers s, t 2 [�n⇡, n⇡] are said to

satisfy Condition 2 if there do not exist integers k, l with |k|, |l|  n⌧
, not both zero, such that

����k
s

⇡n
+ l

t

⇡n

����
R/Z

 n�1+8⌧ .

Note that if s, t satisfy Condition 2 then each of them satistifes Condition 1 separately. It is clear that the
measure of (s/n, t/n) 2 [�⇡,⇡]2 that does not satisfies the above condition is n�1+O(⌧). We will show the
following small ball probability.

Theorem 2.3. Let C > 0 be a given constant. Assume that s, t satisfy Condition 2 with su�ciently small ⌧ .
Then for � = n�C

and for any open ball B(a, �), we have

P
✓

1p
n
Sn(s, t, Y ) 2 B(a, �)

◆
= O

�
�4
�
.

To prove these small ball estimates, we will rely on the following results on the characteristic functions. First,
for the random walk Sn(t, Y ), let

�R2(x) =
nY

i=1

�i(x) =
nY

i=1

Ee(yi1hui, xi)
nY

i=1

Ee(yi2hu0
i
, xi), x 2 R2,
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where e(y) = eiy. We will show that this function decays very fast.

Theorem 2.4. Let C⇤ > 0 be any given constant, and t satisfies Condition 1 for some su�ciently small constant

⌧ . Then the following holds for su�ciently large n and su�ciently small ⌧⇤ (depending on C⇤ and ⌧). For any

n5⌧�1/2  kxk2  nC⇤ , we have

|�R2(x)|  exp(�n⌧⇤).

We note that this was also studied in [41] for the Radamacher case, covering up to kxk2  n1/2+o(1). This
result has been improved to kxk2  n1�o(1) in [51] recently for any ⇠ of variance one. Our current approach to
prove Theorem 2.4 goes deeper than those of [41, 51] where we need to solve certain inverse-type problems. (See
Sections 10 and 9 for more details.)

Similarly to the case of R2, to establish these results we will study the characteristic function

�R4(x) =
nY

i=1

�i(x) =
nY

i=1

Ee(yi1hvi, xi)
nY

i=1

Ee(yi2hv0
i
, xi), x 2 R4.

Theorem 2.5. Let C⇤ > 0 be any given constant, and assume that s, t satisfy Condition 2 for some su�ciently

small constant ⌧ . Then the following holds for su�ciently large n and su�ciently small ⌧⇤ (depending on C⇤
and ⌧). For any n5⌧�1/2  kxk2  nC⇤ , we have

|�R4(x)|  exp(�n⌧⇤).

We note that this result implies Theorem 2.4 because with t under Condition 1, there exists s 2 [�n⇡, n⇡] so
that s, t satisfies Condition 2. We then apply Theorem 2.5 with x = (x1, x2, 0, 0). However, we will present a
separate proof of Theorem 2.4 in Section 9 to serve as a preparation for our more technical treatment of Theorem
2.5 in Section 10.

2.6. Approximated Kac-Rice formula and proof conclusion. We next briefly recall the use of approxi-
mated Kac-Rice formula.

Consider a smooth function f on an interval [a, b] where for all t 2 [a, b], we have |f(t)| + |f 0(t)| > 0. Then
according to a celebrated formula of Kac and Rice, the number of roots of f in [a, b] is given by

lim
�!0

1

2�

Z
b

a

|f 0(t)|1|f(t)|<�dt.

We will use this approximated formula for our polynomial Pn(·, Y ) with the following choice of � 2

� := �n = n�5. (13)

We have

lim
n!1

1

n
Var(Nn(Y )) = lim

n!1

1

n
Var

✓
1

2�

Z
n⇡

�n⇡

|P 0
n
(t, Y )|1|Pn(t,Y )|<�

◆
dt.

After expanding out the integrals, we will need to compute

1

�2

Z
n⇡

�n⇡

Z
n⇡

�n⇡

Cov
�
|P 0

n
(t, Y )|1|Pn(t,Y )|<�, |P 0

n
(s, Y )|1|Pn(s,Y )|<�

�
dsdt.

2Here we slightly abuse the use of �: namely in other parts of the note we can have � = n�C where C can be any (large) constant,
while in the approximate Kac-Rice and Edgeworth-expansion sections we concretely picked � = n�5 for convenience.
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Let us introduce a few notations to simplify the discussion. We define the following even functions that appear
in the above formula

F�(x) :=
1

2�
1|x|<�, x 2 R (14)

and
��(x) := |x2|F�(x1), x = (x1, x2) 2 R2 (15)

and
 �(x) := ��(x1, x2)��(x3, x4) = |x2|F�(x1)|x4|F�(x3), x = (x1, x2, x3, x4) 2 R4. (16)

We have

��

✓
1p
n
Sn(t, Y )

◆
= |P 0

n
(t, Y )|⇥ 1

2�
1|Pn(t,Y )|� =: ��(t, Y )

and

 �

✓
1p
n
Sn(s, t, Y )

◆
= ��(s, Y )��(t, Y ).

Finally, for short we introduce

vn(s, t, Y ) : = Cov(P 0
n
(s, Y )1|Pn(s,Y )|<�, P

0
n
(t, Y )1|Pn(t,Y )|<�)

= E��(s, Y )��(t, Y )� E��(s, Y )E��(t, Y ). (17)

For a given " > 0, we will decompose the interval (�n⇡, n⇡) into subintervals of length "

Ik := [k", (k + 1)")] ⇢ [�n⇡, n⇡] (18)

and let
Dn," :=

[

(k,p)2D

Ik ⇥ Ip (19)

where D is the set consisting of all (k, p) with �n⇡/"  k < p  n⇡/" such that for all s 2 Ip and t 2 Ik, s and
t satisfy Condition (2). We refer the reader to Section 7 for further discussion on D.

Let Nn(G) and vn(s, t, G) be the statistics when the yij are standard Gaussian. In our next lemma, we show
that, in comparison with the Gaussian part, the contribution Rn from (s, t) /2 Dn," is negligible in the variance
computation.

Lemma 2.7. With � as in (13) we have

VarNn(Y ) = VarNn(G) + 2

Z

Dn,"

(vn(s, t, Y )� vn(s, t, G)) dsdt+Rn," (20)

where

lim
n

Rn,"

n
= 0.

Therefore, we will need to control
R
Dn,"

(vn(s, t, Y )�vn(s, t, G))dsdt from (20), for which we will use Proposition

2.10 to show the following (see also [8, Lemma 5.1]).

Proposition 2.8. For every " > 0 we have

lim
n

1

n

Z

Dn,"

�
vn(s, t, Y )� vn(s, t, G)

�
dsdt =

1

15
E(⇠4 � 3) + r"

with |r"| = O(").

Combining Lemma 2.7 and Proposition 2.8, with " ! 0, we obtain Theorem 1.3. We will prove Lemma 2.7 in
Section 7 and Proposition 2.8 in Section 6. Notice that for these results we will also need to incorporate other
existing results in the literature (notably [52]). We will also justify (6) by the same way (see Section 8).
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2.9. Edgeworth expansion. We now compare vn(s, t, Y ) with vn(s, t, G) by using Edgeworth expansion of
order three. This approach is originated from [8], but our proof is directly based on the study of characteristic
functions.

If Xi are iid real random variables of mean zero and variance one, the Central Limit Theorem says that, with �
being the C.D.F. of the standard Gaussian distribution, for any real number x, we have

lim
n!1

����P
✓
Snp
n
 x

◆
� �(x)

���� = 0

where Sn =
P

n

k=1 Xk.

The Edgeworth expansion by Edegworth [22], Chebyshev [63], and Cramér [16] says that under the so-called
Cramér condition, if the Xi has bounded s0 moments then there exist explicit polynomials P0, . . . , Ps0�1 with
coe�cients depending on the cumulants of Snp

n
such that

�����P
✓
Snp
n
 x

◆
�

s0�1X

r=0

n�r/2Pr(�D)(�(x))

����� = O(n�s0/2)

where D is the di↵erential operator.

To prove Proposition 2.8, we will carry out the Edgeworth expansion for E �

⇣
1p
n
Sn(s, t, Y )

⌘
as well as for

E��

⇣
1p
n
Sn(s, Y )

⌘
and E��

⇣
1p
n
Sn(t, Y )

⌘
, where we recall Sn(t, Y ) and Sn(s, t, Y ) from (8) and (12), and the

functions �� and  � from (15) and (16).

In what follows, we shall mention briefly our main contribution; we invite the reader to Section 4 and Section 5
for more details.

We let Xn(t, Y ) be the vector (Cn(k, t)Yk)nk=1 and Xn(s, t, Y ) be the vector (Cn(k, s, t)Yk)nk=1. We also let
Vn(t) =

1
n

P
n

k=1 Cn(k, t)Cn(k, t)⇤ and Vn(s, t) =
1
n

P
n

k=1 Cn(k, s, t)Cn(k, s, t)⇤ be the average covariance matri-
ces. Finally, we defer the technical definition of �n,2, which occurs in the following statement, to (44). We will
show the following CLT type estimates.

Proposition 2.10. Assume that ⇠ has mean zero, variance one, and E|⇠|M0 < 1 for su�ciently large M0.

Assume that s, t satisfy Condition 2. Let � be as in (13). Then we have

|EF�(Pn(t, Y ))� EF�(Pn(t, G))|  C

n1/2
, (21)

and

���E��

✓
1p
n
Sn(t, Y )

◆
� E��

✓
1p
n
Sn(t, G)

◆
� 1

n
E
⇥
��(I2(�)

1/2W2)�n,2
�
I2(�)

�1/2Xn(t, Y ),W2)
⇤���

 C

n3/2
+

1

n
rn(t,��), (22)

and

���E �

✓
1p
n
Sn(s, t, Y )

◆
� E �

✓
1p
n
Sn(s, t, G)

◆
� 1

n
E
⇥
 �(I4(�)

1/2W4)�n,2
�
I4(�)

�1/2Xn(s, t, Y ),W4

�⇤���

 C

n3/2
+

1

n
rn(s, t, �), (23)
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where I2(�) and I4(�) are any invertible diagonal matrices
3
and W2,W4 are standard Gaussian vectors in

R,R2
and R4

respectively, and where the implied constants are allowed to depend on the M0-moment of ⇠, on
the constants in Conditions 1 and 2, and on a lower bound of the least singular values of Vn(t), Vn(s, t) and

I2(�), I4(�). Furthermore we have the following bounds

rn(t,��) = O(kVn(t)� I2(�)k2) and rn(s, t, �) = O(kVn(s, t)� I4(�)k2).

We also refer the reader to [8, Section 3] where a better error bound was obtained under the Doeblin’s conditions.
In application (Section 6), we will choose I2(�) and I4(�) so that rn ! 0.

We will prove Proposition 2.10 by giving a general Edgeworth expansion result in Section 4, and then use it to
conclude the proof in Section 5. Roughly speaking, our approach here is based on the work of Bhattacharya
and Rao [9] (see also [2]) which relates Edgeworth expansion to the growth of characteristic functions of the
corresponding random walks.

Notations. Throughout the note n is the parameter to be sent to 1. We write X = O(Y ), Y = ⌦(X), X ⌧ Y ,
or Y � X if |X|  CY for some fixed C; this C can depend on other fixed quantities such as the M0-moment
of ⇠. If X ⌧ Y and Y ⌧ X, we say that Y = ⇥(X) or X ⇣ Y . We write !(1) for a number that tends to 1 as
n ! 1.

3. Small ball probability

In this section, we address the small ball probabilities, we will just prove the R4 case (i.e. d = 4) because the
R2 case can be proved similarly (by using Theorem 2.4 instead of Theorem 2.5).

Proof of Theorem 2.3. Let

t0 = ��1 = nC .

By a standard procedure (see for instance [2, Eq. 5.4]), we can bound the small ball probability by characteristic
functions as follows

P
 

1p
n

X

i

zivi + z0
i
v0
i
2 B(a, �)

!
 Cd

✓
n

t20

◆d/2 Z

Rd

Y

i

�i(u)e
�nkuk22

2t20 du.

Choose C⇤ to be su�ciently large compared to C. We break the integral into three parts, J1 when kuk2  r0 =
O(1), J2 when r0  kuk2  R = nC⇤ , and J3 for the remaining part.

For J1, recall that
���
Y

�i(u)
���  exp

 
�
X

i

khvi, uik2R/Z/2
!
.

So if kuk2  c for su�ciently small c, then we have khvi, uikR/Z = khvi, uik2, and so because of Condition 2
(where we would need that

P
i
he,vii2 � c0n for any unit vector e, see also Claim 9.2 with |I| ⇣ n) we have

X

i

khvi, uik2R/Z/2 =
X

i

khvi, uik22/2 � c0nkuk22.

3The vector parameter � stands for the diagonal entries, see (48).
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Thus,

J1 = Cd

⇣ n

t2

⌘d/2
Z

kuk2r0

Y

i

�i(u)e
�nkuk22

2t20 du  Cd

✓
n

t20

◆d/2 Z

kuk2r0

e
�nkuk22

2t20
�c

0
nkuk2

2du,

and so

J1  Cd

✓
n

t20

◆d/2 Z

kuk2r0

e
�( n

2t20
+c

0
n)kuk2

2du = Od

✓
1

(c00t20 + 1)d/2

◆
= Od

�
�d
�
.

For J2, recall by Theorem 2.5 that for r0  kuk2  R = nC⇤ , we have

|
Y

�i(u)|  e�n
�⌧⇤

.

Thus,

J2 = Cd

✓
n

t20

◆d/2 Z

r0kuk2R

Y

i

�i(u)e
�nkuk22

2t20 du  Cd

✓
n

t20

◆d/2 Z

r0kuk2R

e�n
⌧⇤
du,

and so,

J2  Od

 
nd

✓
n

t20

◆d/2

e�n
⌧⇤

!
= Od

⇣
e�n

⌧⇤/2
⌘
.

For J3, we have

J3 = Cd

✓
n

t20

◆d/2 Z

kuk2�nC⇤

Y

i

�i(u)e
�nkuk22

2t20 du = Od

�
e�n

�

as we chose C⇤ su�ciently large compare to C. ⇤

Before concluding this section, we introduce some useful corollaries of our small ball estimates. For short, let
G = G⌧ be the collection of t 2 [�n⇡, n⇡] that satisfies Condition 1.

We first deduce from Theorem 2.2 a small ball estimate for Pn(t, Y ) alone, which will be useful later.

Corollary 3.1. Let C > 1 be a given constant. Assume that yij are iid copies of a random variable ⇠ of mean

zero, variance one, and bounded E(|⇠|M0) < 1 for some even positive integer M0. Assume that t 2 G with

su�ciently small ⌧ . Then for � = n�C
and any open interval (a� �, a+ �) we have

P (Pn(t, Y ) 2 (a� �, a+ �)) = O
⇣
�

M0
M0+1

⌘
.

Proof. Since the random variables yi1, yi2 are uncorrelated with mean 0 and bounded M0 moments, we have

E
�
P 0
n
(t, Y )M0

�
= O(1).

Thus, by Markov’s inequality, for a positive constant A > 1 to be chosen,

P
�
|P 0

n
(t, Y )| � nA

�
= O(n�M0A).

We have

P (|Pn(t, Y )| < �)  P
�
|P 0

n
(t, Y )| � nA

�
+ P

�
|Pn(t, Y )| < �, |P 0

n
(t, Y )|  nA

�
.
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Since the latter event is a subset of a union of nA��1 events of the form Sn(Y, t) 2 B(a, �) for some a 2 C, we
apply Theorem 2.2 to get

P (|Pn(t, Y )| < �) = O(n�M0A + nA��1�2).

By choosing A = C

1+M0
, this proves Corollary 3.1. ⇤

Our next corollary is the following analog of [8, Eq. 3.40].

Theorem 3.2. Let ✓ and " < 1/2 be given constants. Assume that yij are iid copies of a random variable ⇠ of

mean zero, variance one, and bounded E(|⇠|M0) < 1 for su�ciently large M0 (in terms of ✓ and "). We have

P
✓

inf
|t|2G

����
1p
n
Sn(t, Y )

����  n�✓+"/2

◆
= O(n�✓+1+").

Proof. First of all, let Eb be the event that |yij |  n" for all i, j. Then as M0 is su�ciently large, by a union
bound and by Markov’s inequality, we have

P(Ec

b)  2nP(|⇠| > n")  2nE(|⇠|M0)/n"M0 = O(n�"M0+1) = O(n�"M0/2).

Hence it su�ces to condition on Eb. Next, for any fixed t we control the magnitude of

d

✓
1p
n
Sn(t, Y )

◆
/dt = (f1(t, Y ), f2(t, Y ))

where

f1(t, Y ) =
1p
n

nX

i=1

yi1

✓
� i

n
sin

✓
it

n

◆◆
+ yi2

✓
i

n
cos

✓
it

n

◆◆

and

f2(t, Y ) = � 1p
n

nX

i=1

yi1

✓
i

n

◆2

cos

✓
it

n

◆
+ yi2

✓
i

n

◆2

sin

✓
it

n

◆
.

For this, again as ⇠ has mean zero and variance one and E(|⇠|M0) < 1, a moment computation shows that as
long as |ci|, |di|  1 we have

E

0

@
�����
1p
n

nX

i=1

ciyi1 + diyi2

�����

M0
1

A = OM0(1).

Therefore for any fixed t we have

P
⇣
|f1(t, Y )| � n"/2

⌘
= O

⇣
n�"M0/2

⌘
and P

⇣
|f2(t, Y )| � n"/2

⌘
= O

⇣
n�"M0/2

⌘
. (24)

Notice that on Eb, we trivially have supt2[�n⇡,n⇡] |f 0
i
(t, Y )| = O(n1/2+"). By a standard net argument that

considers [�n⇡, n⇡] as a union of n2 equal intervals, we obtain from (24) and the union bound that

P
 

sup
t2[�n⇡,n⇡]

����d
✓

1p
n
Sn(t, Y )

◆
/dt

����
2

� n"/2

!
= O(n�"M0/4). (25)

We will condition the complement of this event. Decompose G into O(n1+✓) intervals of length n�✓ each, whose
midpoints satisfy Condition 1. For each such interval I, we estimate the probability that inft2I |Sn(t, Y )|  n�✓.
By (25), this implies that for the midpoint tI we have

1p
n
Sn(tI , Y )  n�✓ + n"/2n�✓ = O(n"/2�✓).
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However, by using Theorem 2.2, we can control this event by

P
✓����

1p
n
Sn(tI , Y )

����  n�✓+"/2

◆
= O(n�2✓+").

Taking union bounds over the midpoints of the O(n1+✓) intervals we obtain the bound O(n�✓+1+") as claimed,
provided that M0 is su�ciently large. ⇤

4. Edgeworth expansion involving trigonometric functions

Our goal in this section is to establish an Edgeworth expansion for several sums of random vectors that arise
from random trigonometric functions. The results are formulated under very mild assumptions on the coe�cient
distribution(s), which hold in discrete settings (such as the Rademacher distribution) beyond the scope of the
Cramér condition and known extensions [2].

Let s, t 2 R be given. Let d = 4. Consider the following sequence of random vectors in Rd

Xn,k := Cn(k)Yk, k = 1, . . . , n, (26)

where (i) Yk’s are random vectors in R2 and their coordinates are iid with mean zero and variance one (we’ll
actually assume in our result that furthermore EkYjk`+d+1

2 < 1 for some ` � 4), and (ii) the deterministic d⇥ 2
matrices Cn(k) are defined below. Recall from Subsection 2.1 that

Cn(k, t) =

✓
cos(kt

n
) sin(kt

n
)

� k

n
sin(kt

n
) k

n
cos(kt

n
)

◆
(27)

and

Cn(k) =

✓
Cn(k, t)
Cn(k, s)

◆
(28)

is the 4⇥ 2 matrix obtained as the joint of Cn(k, t) and Cn(k, s). Recall also Sn(s, t, Y ) from (12), and for short
let

Sn := Sn(s, t, Y ) =: Xn,1 + · · ·+Xn,n. (29)

Let the average covariance matrix be

Vn :=
1

n

nX

k=1

Cn(k)Cn(k)
⇤. (30)

This is the same as the covariance for Sn/
p
n. Let eQn denote the distribution of Sn/

p
n, and let eQn(x) denote

the cumulative distribution function for this distribution.

The main result of this section, stated below, shows that eQn is asymptotically eQn,1, where for ` � 2 let

eQn,` :=
`�2X

r=0

n�r/2Pr(��0,Vn , {�⌫}). (31)

and we will define the signed measure Pr(��0,Vn , {�⌫}) below after fixing a few notations. For convenience, the

density of eQn,` is denoted by Qn,` while the density of eQn is denoted by Qn.

First, letW be the standard Gaussian vector in Rd, then for any covariance matrix V , V 1/2W will be the Gaussian
random variable in Rd with mean zero and covariance V . Let �0,V denote the density of its distribution and
let �0,V denote the cumulative distribution function. If V is the identity matrix then we simply write � and �,
respectively. Note that this is consistent with our definition of � at the beginning Section 2.9.
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Secondly, recall that the cumulants of a random vector X in Rd are the coe�cients in the following (multiple)
power series expansion

logE[ez·X ] =
X

⌫2Nd

�⌫z⌫

⌫!
, z 2 Cd. (32)

Given that X has mean zero, it is standard that the cumulant �⌫ is bounded above by the |⌫|-th moment of X.
In our situation, using independence of Xn,1, . . . , Xn,n, it follows that the cumulants of Sn are the sum of the
corresponding cumulants of Xn,1, . . . , Xn,n. Let �⌫ := �⌫(Sn)/n, then �⌫ is also the average cumulant of Xn,1,
. . . , Xn,n.

Now, note that cumulants of V 1/2
n W match with the cumulants of Sn/

p
n for any |⌫|  2, at the same time the

higher order cumulants of V 1/2
n W vanish thanks to symmetries of centered Gaussian. Therefore,

logE
h
ez·(Sn/

p
n)
i

= logE[ez·(V
1/2
n W )] +

X

⌫2Nd:|⌫|�3

(n�⌫)
z⌫

⌫!
n�|⌫|/2

= logE[ez·V
1/2
n W ] +

X

`�1

0

@
X

⌫2Nd:|⌫|=`+2

�⌫

z⌫

⌫!

1

An�`/2.

Letting �`(z) := `!
P

⌫2Nd:|⌫|=`
�⌫z

⌫ for all z 2 Cd, we obtain

E
h
ez·(Sn/

p
n)
i
/E

h
ez·V

1/2
n W

i
= exp

2

4
X

`�1

�`+2(z)

(`+ 2)!
n�`/2

3

5

=
X

m�0

1

m!

0

@
X

`�1

�`+2(z)

(`+ 2)!
n�`/2

1

A
m

=
X

`�0

eP`n
�`/2,

where eP` is obtained by grouping terms of the same order n�`/2. It is clear that eP` depends only on z and
the average cumulants �⌫ , |⌫|  `+ 2. We’ll write eP`(z, {�⌫}) to stress this dependence. Replacing z by iz, we
obtain the following expansion for the characteristic function of Sn/

p
n:

E
h
eiz·(Sn/

p
n)
i

= E
h
eiz·V

1/2
n W

iX

`�0

eP`(iz, {�⌫})n�`/2.

Now, let D = (D1, . . . , Dn) be the partial derivative operator and let eP`(�D, {�⌫}) be the di↵erential op-
erator obtained by formally replacing all occurences of iz by �D inside eP`(iz, {�⌫}). The signed measure
P`(��0,Vn , {�⌫}) in the definition (31) of eQn,` now can be defined: it has the following density with respect to
the Lebesgue measure:

P`(��0,Vn , {�⌫})(x) :=
⇣
eP`(�D,�⌫)�0,Vn

⌘
(x).

For convenience of notation, for each ` > 0, let ⇢l :=
1
n

P
EkXikl2 and

M`(f) := sup
x2Rd

|f(x)|
1 + kxk`2

for any measurable function f .

Theorem 4.1. Let Sn be defined as above using (29) where we assume that the distribution of Yj satisfies

EkYjk`+d+1
2 < 1 for some ` � 4. Let f be measurable such that M`(f) < 1.
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Suppose that:

(1) all eigenvalues of Vn are larger than a constant � > 0 independent of n;

(2) the parameters s, t in the definition of Cn(1), . . . , Cn(n) satisfy Condition 2 for some su�ciently small

⌧ .

Then the following estimate holds for " = n�C⇤ where C⇤ is any given positive constant:
����
Z

f(x)d eQn �
Z

f(x)d eQn,`

����

 CM`(f)(n
�(`�1)/2 + e�n

�⌧⇤
+ e�cn) + !f

 
2" :

`+d�2X

r=0

n�r/2Pr(��0,Vn : {�⌫})
!

where

!f (" : �) =

Z  
sup

y2B(x,")
f(y)� inf

y2B(x,")
f(y)

!
d�(x),

and the implied constant C depends on {⇢k, k  `}, �, C⇤, and the implicit constants from Condition 2, but not

on f .

Notice that the verification of condition (1) in this theorem on the invertibility of Vn follows from [8, Appendix
C].

The general strategy of our proof follows the approach in [9], here we focus on the main di↵erences while trying
to keep the exposition self-contained. Here our goal is not about proving the sharpest possible version for
Theorem 4.1 in terms of the number of bounded moments for Yi, rather our aim is to present a simpler argument
(compared to [9]) at the sake of a more stringent moment assumption.

Before starting the proof, we include some estimates that will be useful in the proof.

Lemma 4.2. Let l, c0 > 0 be any given constants. Assume that EkXn,kk`+1
2 = O(1) uniformly over n and

k = 1, . . . , n. Then for some su�ciently small c1 > 0 the following holds for all k⌘k2 < c1n1/2
and all muti-

index ↵:

D↵

⌘

⇣
E[ei⌘·(Sn/

p
n)](E[ei⌘·V

1/2
n W ])�1 �

`�2X

r=0

ePr(i⌘, {�⌫})n�r/2
⌘

 Cn�(`�1)/2ec0k⌘k
2
2(k⌘k`+1�|↵|

2 + k⌘k3`+1�|↵|
2 ).

Here the implicit constant may depend on c0, `,↵ and �0, . . . ,�`+1

Proof. For brevity we will write ePr(i⌘) as a shortcut of eP`(i⌘, {�⌫}).

Let

f⌘,`(u) := exp(g⌘,`(u)) := exp

 
`�2X

m=1

�m+2(i⌘)

(m+ 2)!
um

!
.

We first show that for any multi-index ↵
�����D

↵

⌘

 
f⌘,`

✓
1p
n

◆
�

`�2X

r=0

ePr(i⌘)n
�r/2

!�����  Cn�(`�1)/2(k⌘k`+1�|↵|
2 + k⌘k3`�3�|↵|

2 )ec0k⌘k
2
2 (33)
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for all k⌘k2  c1n1/2 and c1 > 0 is su�ciently small.

Let u 2 R (that may depend on n). As a function of u 2 R, the polynomial
P

`�2
r=0

ePr(i⌘)ur is the Taylor
approximation of degree `� 2 for f⌘,`(u). Now, if k⌘k2u ⌧ 1 then

|g⌘,`(u)| = O(k⌘k32|u|) < c0k⌘k22

and similarly |g(k)
⌘,`

(u)| = O(k⌘kk+2
2 ). Thus, using the chain rule and the generalized Leibniz rule, we may bound

���f (`�1)
⌘,`

(u)
���  Ceg⌘,`(u)

0

@
X

j1+2j2+···=`�1

Y

k�1

|g(k)
⌘,`

(u)|jk
1

A

 Ceg⌘,`(u)

0

@
X

j1+2j2+···=`�1

Y

k�1

k⌘k(2+k)jk
2

1

A

= O
⇣
(k⌘k`+1

2 + k⌘k3`�3
2 )ec0k⌘k

2
2

⌘
.

(Here the implicit constant may depend on c0, `,↵ and �0, . . . ,�`+1.)

We obtain, assuming k⌘k2 < c1|u|�1,

���f⌘,`(u)�
`�2X

r=0

ePr(i⌘)u
r

���  C|u|`�1(k⌘k`+1
2 + k⌘k3`�3

2 )ec0k⌘k
2
2 .

We now let u = 1p
n
. Using analytic dependence on ⌘ of f⌘,`

⇣
1p
n

⌘
�
P

`�2
r=0

ePr(i⌘)n�r/2 and Cauchy’s theorem

for analytic functions, we obtain (33).

Now, it remains to show that
����D

↵

⌘

✓
f⌘,1

✓
1p
n

◆
� f⌘,`

✓
1p
n

◆◆����  Cn�(`�1)/2(k⌘k`+1�|↵|
2 + k⌘k3`+1�|↵|

2 )e2c0k⌘k
2
2 .

As before it su�ces to show the case ↵ = 0 of this estimate, and then the desired estimate follows from an

application of Cauchy’s theorem. Now, since |f⌘,`
⇣

1p
n

⌘
|  ec0k⌘k

2
2 as proved above, it su�ces to show that

�����f⌘,1
✓

1p
n

◆
f⌘,`

✓
1p
n

◆�1

� 1

�����  Cn�(`�1)/2(k⌘k`+1
2 + k⌘k3`+1

2 )ec0k⌘k
2
2 . (34)

Let u 2 (�2, 2) and let h(u) := gu⌘,1
⇣

1p
n

⌘
� gu⌘,`

⇣
1p
n

⌘
. It is clear that the first ` derivatives with respect to

u 2 R of h all vanish at u = 0. Thus, using the chain rule and the generalized Leibniz rule, it follows that the

first ` derivatives with respect to u of fu⌘,1
⇣

1p
n

⌘
fu⌘,`

⇣
1p
n

⌘�1
� 1 also vanish at u = 0. With |u| = O(1), we

obtain
�����fu⌘,1

✓
1p
n

◆
fu⌘,`

✓
1p
n

◆�1

� 1

�����  C

�����

✓
d

du

◆`+1
 
fu⌘,1

✓
1p
n

◆
fu⌘,`

✓
1p
n

◆�1

� 1

!�����

= eh(u)O

0

@
X

j1+2j2+···=`+1

Y

k�1

|h(k)(u)|jk
1

A (35)
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Now, as the first ` derivatives of h all vanish at u = 0, for any k  `+ 1 we have (with |u| = O(1))

|h(k)(u)|  C sup
|t||u|

|h(`+1)(t)| = C sup
|t||u|

�����

✓
d

dt

◆(`+1)

gt⌘,1

✓
1p
n

◆����� .

By definition we have

gu⌘,1

✓
1p
n

◆
= � log(Eei(⌘·V

1/2
n W )u) +

nX

j=1

log(Eei(⌘·Xn,j)u/
p
n)

Using EkXn,jk2 = O(1) we obtain

|Eei⌘·Xn,ju/
p
n � 1| = O(k⌘k2/

p
n),

therefore using the given assumption we obtain |Eei⌘·Xn,ju/
p
n| > 1/2. Consequently, using the chain rule and

the Leibniz rule we have
�����

✓
d

du

◆`+1

log(Eei⌘·Xn,ju/
p
n)

����� = O

0

@
X

j1+j2+···=`+1

Y

k�1

E[|n�1/2⌘ ·Xn,j |jk ]

1

A = O(n�(`+1)/2k⌘k`+1
2 ).

Since log(Eei(⌘·V 1/2
n W )u) is quadratic with respect to u and ` � 4, we obtain

�����

✓
d

du

◆`+1

gu⌘,1

✓
1p
n

◆����� = O(n�(`�1)/2k⌘k`+1
2 ).

Consequently,

|h(k)(u)|  Cn�(`�1)/2k⌘k`+1
2  Cc(`�1)/2

1 k⌘k22,
in particular by choosing c1 small we can ensure that |h(u)|  c0k⌘k22. Therefore, using (35), we obtain

�����fu⌘,1
✓

1p
n

◆
fu⌘,`

✓
1p
n

◆�1

� 1

�����  Cec0k⌘k
2
2

X

j1+2j2+···=`+1

Y

k�1

(n�(`�1)/2k⌘k`+1
2 )jk

 Cec0k⌘k
2
2(n�(`�1)/2k⌘k`+1

2 + (n�(`�1)/2k⌘k`+1
2 )`+1)

 Cec0k⌘k
2
2n�(`�1)/2k⌘k`+1

2 (1 + k⌘k2`2 )

We then set u = 1 to obtain the desired estimate. ⇤

As a corollary, we obtain

Corollary 4.3. Assume that E|Xn,k|`+1 = O(1) uniformly over n and k = 1, . . . , n. Assume that the eigenvalues

of Vn are bounded below by some positive constant independent of n. Then for some su�ciently small constants

c0, c1 > 0, the following holds for all k⌘k2 < c1n1/2
and all muti-index ↵:

D↵

⌘

⇣
E[ei⌘·(Sn/

p
n)]� E[ei⌘·V

1/2
n W ]

`�2X

r=0

ePr(i⌘)n
�r/2

⌘

 Cn�(`�1)/2e�c0k⌘k2
2(k⌘k`+1�|↵|

2 + k⌘k3`+1+|↵|
2 ).

This corollary follows from the fact that E[ei⌘·V 1/2
n W ] is e�ch⌘,V �1

n ⌘i for some c > 0, so with c0 > 0 su�ciently
small one has

|D↵

⌘
E[ei⌘·V

1/2
n W ]|  e�2c0k⌘k2

2(k⌘k|↵|2 + 1),

and combining these estimates with the Leibniz rule we obtain the desired conclusion.
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Proof of Theorem 4.1. We now begin the proof of the main estimate. Let

" = "n = n�C⇤ . (36)

For convenience, denote
eHn = eQn � eQn,`,

and let Hn be its density. As usual the characteristic function of Hn is cHn(⌘) =
R
Rd eit·⌘ eHn(dt).

Let eK be a probability measure supported inside the unit ball B(0, 1) = {x 2 Rd : kxk  1} (whose density is
denoted by K) such that its characteristic function bK(⌘) satisfies

|D↵ bK(⌘)| = O(e�k⌘k1/2
2 ), |↵|  `+ d+ 1. (37)

Such a measure could be constructed using elementary arguments, see for instance [9, Section 10]. We then let
eK✏ be the ✏-dilation of K, namely eK✏(A) = eK(✏�1A) and ✏�1A := {x/✏ : x 2 A} for all measurable A. Note
that eK✏ is a probability measure on B(0, ✏) and it satisfies the dilated version of (37).

We will be using the following simple identity: for any two measures µ1 and µ2 of bounded variation, |µ1|(Rd), |µ2|(Rd) <
1, and any bounded f , it holds that

Z Z
f(x+ y)dµ1(x)dµ2(y) =

Z
f(t)(dµ1 ⇤ dµ2)(t). (38)

Now, for each x 2 B(0, ✏) we have f(y)  supz2B(0,✏) f(x + y + z), therefore using nonnegativity of d eQn we
obtain Z

f(y)d eHn(y) =

Z

x2B(0,✏)

Z
f(y)d eHn(y)d eK✏(x)


Z ⇣Z

sup
z2B(0,✏)

f(x+ y + z)d eQn(y)�
Z

f(y)d eQn,`(y)
⌘
d eK✏(x)

=

Z Z
sup

z2B(0,✏)
f(x+ y + z)d eHn(y)d eK✏(x) +

+

Z Z  
sup

z2B(0,✏)
f(x+ y + z)� f(y)

!
d eQn,`(y)d eK✏(x).

Thus, by (38),
Z

f(y)d eHn(y) 
Z

sup
z2B(0,✏)

f(t+ z)(Hn ⇤K✏)(t)dt+

Z  
sup

z2B(0,✏)
f(x+ y + z)� f(y)

!
d eQn,`(y)d eK✏(x)

 M`(f)

Z
(1 + ktk2 + ✏)`|Hn ⇤K✏|(t)dt+

Z Z
( sup
B(y,2✏)

f(t)� inf
B(y,2✏)

f(t))|d eQn,`|(y)d eK✏(x)

 C`M`(f)

Z
(1 + ktk2)`|Hn ⇤K✏|(t)dt+ !̄f (2" : | eQn,`|).

By applying the above estimate for �f in place of f , it follows immediately that |
R
fd eHn| is bounded above by

the same right hand side. By standard Sobolev embedding estimates for Fourier transforms, we have
Z
(1 + ktk2)`|Hn ⇤K"|(t)dt = O

⇣
max

0|↵|d+`+1

Z
|D↵ \Hn ⇤K"(⌘)|d⌘

⌘

= O

✓
max

⇢Z
|D↵(cHn)(⌘)D

�(cK✏)(⌘)|d⌘ : |↵|+ |�|  `+ d+ 1

�◆
.
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Using (37) we have D↵cK✏(⌘) = O(1) for all |↵|  ` + d + 1. While this estimate is fairly generous, it is good
enough to control the contribution of small ⌘ in the integrals. More specifically, let B2

n
= V �1

n
, then by the given

assumption the eigenvalues of Bn are O(1), so EkBnXn,kk`+d+1
2 = O(1). For some c1 > 0 su�ciently small,

using Corolary 4.3, we obtain
Z

k⌘k2c1
p
n

|D↵ cHn(⌘)D
�cK✏(⌘)|d⌘ = O

 Z

k⌘k2c1
p
n

|D↵ cHn(⌘)|d⌘
!

= O(n�(`+d�1)/2).

We now consider the range k⌘k2 � c1
p
n. We estimate

Z

k⌘k2�c1
p
n

|D↵Ĥn(t)D
�K̂"|d⌘ 

Z

k⌘k2�c1
p
n

|D↵Q̂n(t)D
�K̂"|d⌘

+

Z

k⌘k2�c1
p
n

�����D
↵

 
`�2+dX

r=0

n�r/2Pr(i⌘ : {�⌫,n})
!
exp(�1/2h⌘, Bn⌘i)

����� d⌘,

and it is clear that the second term can be controlled byO(e�cn) thanks to the Gaussian decay of exp(�1/2h⌘, Bn⌘i).

Let �i(⌘) = Eei⌘·Xi . Then for |↵|  `+ d+ 1 we have D↵
⌘
(�i(⌘/

p
n)) = n�|↵|/2O(EkXn,ik|↵|2 ) = O(1). Thus,

|D↵ bQn(⌘)| =

�����D
↵

 
nY

i=1

�i(
⌘p
n
)

!����� = O

0

@
X

�1+···+�n=↵

������

nY

i=1,�i=0

�i

✓
⌘p
n

◆������

1

A ,

while we also have
|D�K̂"(⌘)| = O("|�|e�("k⌘k2)

1/2

) = O(e�("k⌘k2)
1/2

).

Thus, it remains to control, for each (�1, . . . , �n) with |�1|+ · · ·+ |�n|  `+ d+ 1 and each r > 0 independent
of n:

J�(n, ") =

Z

k⌘k2�r
p
n

������

nY

i=1,�i=0

�i(
⌘p
n
)

������
e�("k⌘k2)

1/2

d⌘

= nd/2

Z

k⌘k2�r

������

nY

i=1,�i=0

�i(⌘)

������
e�("

p
nk⌘k2)

1/2

d⌘

= nd/2

Z

k⌘k2�r

������

nY

i=1,�i=0

�i(⌘)

������
e�(n�C⇤+1/2k⌘k2)

1/2

d⌘.

Clearly it su�ces to consider r  k⌘k2  nC⇤�1/2+⌧ because the integral for k⌘k2 � nC⇤�1/2+⌧ is extremely
small. Again, because ↵ is fixed, by throwing away from the set {vi} a fixed number of elements, let us assume
that ↵ = 0 for simplicity 4. By Theorem 2.5 for su�ciently large n we have

|
Y

i

�i(⌘)|  e�n
�⌧⇤

.

Thus we just shown that, with " = n�C⇤ ,

J�(n, ") = O(e�n
�⌧⇤

).

4In the general case ↵ 6= 0 we use Theorem 10.6 instead of Theorem 2.5.
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Putting the bounds together, we obtain the desired estimate:
����
Z

fd eHn

����  CM`(f)(n
�(`�1)/2 + e�n

�⌧⇤
+ e�cn) + !̄f

 
2" :

`�2+dX

r=0

n�r/2Pr(��0,Vn : {�̄⌫}
!
.

⇤

4.4. A useful corollary. Below we consider a consequence of Theorem 4.1 that will be convenient for our proof
of Theorem 1.3 in subsequent sections.

With Yk = (yk1, yk2) where yij are iid with mean zero and variance one, we recall the definition of Pn(t, Y ) from
(4). Let Gk = (gk1, gk2) where gij are iid standard Gaussian. Recall the definition of Sn(Y, s, t) from (29) and
let Sn(G, s, t) be its Gaussian analogue.

Clearly eP0 = 1 and by explicit computation we have

eP1(z, {�⌫}) =
X

|⌫|=3

�⌫

⌫!
z⌫ , eP2(z, {�⌫}) =

�4(z)

24
+
�2
3(z)

72
. (39)

For convenience of notation, let ej = (. . . , 0, 1, 0, . . . ) 2 Rd where 1 is in the jth coordinate. Using (39) we
obtain

P1(��, {�⌫}) =
X

|⌫|=3

�⌫

⌫!
(�D)⌫�(x) =

=
h1
6

4X

j=1

�3ej (x
3
j
� 3xj) +

1

2

X

i 6=j

�2ei+ej
(x2

i
xj � xj) +

X

i<j<k

�ei+ej+ek
xixjxk

i
�(x)

=
h1
6

4X

j=1

�3ejh3(xj) +
1

2

X

i 6=j

�2ei+ej
h2(xi)h1(xj) +

X

i,j,k

�ei+ej+ek
h1(xi)h1(xj)h1(xk)

i
�(x),

where hk(x) = (�1)kex
2
/2 @

k

@xk e�x
2
/2(k = 0, 1, 2, . . . ) are the (one dimensional) Hermite polynomials.

Now for any multi-index ↵ = (↵1, . . . ,↵`) 2 {1, . . . , d}`, we let |↵| = ` and let nj(↵) = |{i : ↵i = j}| for each
j = 1, . . . , d. We then define

H↵(x1, . . . , xd) :=
Y

hn1(x1) . . . hnd(xd). (40)

For a random vector Z = (Z1, . . . , Zd) as usual let Z↵ =
Q

d

j=1 Z
↵j

j
. With X = (Xn,1, . . . , Xn,n) define

�↵(Xn,k) = EX↵

n,k
� EG↵

n,k
, (41)

cn(↵, X) :=
1

n

nX

k=1

�↵(Xn,k) (42)

�n,1(X,x) :=
1

6

X

|↵|=3

cn(↵, X)H↵(x). (43)

Note that if ↵0 is a permutation of ↵ then H↵0 = H↵. Furthermore using (32) and explicit computations it
follows that �⌫(X) = E[X⌫ ] for all |⌫| = 2, 3 if X is a random vector in Rd with mean EX = 0. Thus, for all
distinct i, j, k,

�3ej = cn((j, j, j), X), �2ei+ej
= 0 = cn((i, i, j), X), �ei+ej+ek = 0 = cn((i, j, k), X).
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Using these observations, we obtain

P1(��0,Vn , {�⌫}) = �n,1(X,x)�0,Vn(x).

We also define

�n,2(X,x) = �0
n,2 + �

00
n,2 (44)

where

�0
n,2(X,x) =

1

24

X

|�|=4

cn(�, X)H�(x)

and

�00
n,2(X,x) =

1

72

X

|⇢|=3

X

|�|=3

cn(�, X)cn(⇢, X)H�,⇢(x).

Via explicit computations, it can also be checked that

P2(��0,Vn , {�⌫}) = �n,2(X,x)�0,Vn(x).

Finally, recall the definition of eQn,2 from (31), which has density

Qn,2(X,x) = 1 + n�1/2P1(��0,Vn , {�⌫}) + n�1P2(��0,Vn , {�⌫}).

It follows that

Fact 4.5.

Qn,2(X,x) = 1 +
1p
n
�n,1(X,x) +

1

n
�n,2(BnX,x).

Now by applying Theorem 4.1 and then swallow higher order terms in the Edgeworth expansion into the error
terms (resulting into O(n�3/2), keeping the first three terms), we obtain the following corollary.

Theorem 4.6. With the same assumption as in Theorem 4.1 the following holds for " = n�C⇤ (and C⇤ is any

given positive constant):

|E(f(Sn(s, t, Y )))� E(f(V 1/2
n

W )Qn,2(X,W ))|

 Cn�3/2 + CM`(f)(n
�(`�1)/2 + e�n

�⌧⇤
+ e�cn) + !f

 
2" :

`+d�2X

r=0

n�r/2Pr(��0,Vn : {�⌫})
!
.

where W is the standard Gaussian vector in Rd
.

5. Proof of Proposition 2.10 : asymptotic Kac-Rice formula

We will show the following more precise statement.

Proposition 5.1. Let ` be a fixed positive integer. Let � be as in (13). Assume that ⌘ has mean zero and

variance one and E|⌘|M0 < 1 for su�ciently large M0. Assume that s, t satisfy Condition 2. Then for any

" = n�C⇤ (where C⇤ > 0 is any absolute constant), we have

|EF�(Pn(t, Y ))� EF�(Pn(t, G))|  C

n1/2
+ C��1(n�(`�1)/2 + e�n

⌧⇤
+ e�cn + ") (45)
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and

���E��

✓
1p
n
Sn(t, Y )

◆
� E��

✓
1p
n
Sn(t, G)

◆
� 1

n
E
⇥
��(I2(�)

1/2W2)�n,2
�
I2(�)

�1/2Xn(t, Y ),W2)
�⇤���

 C

n3/2
+

1

n
rn(t,��) + C��1(n�(`�1)/2 + e�n

⌧⇤
+ e�cn + ") (46)

and

���E �

✓
1p
n
Sn(s, t, Y )

◆
� E �

✓
1p
n
Sn(s, t, G)

◆
� 1

n
E
⇥
 �(I4(�)

1/2W4)�n,2
�
I4(�)

�1/2Xn(s, t, Y ),W4

�⇤���

 C

n3/2
+

1

n
rn(s, t, �) + C��2(n�(`�1)/2 + e�n

⌧⇤
+ e�cn + "), (47)

where I2 and I4 are any invertible diagonal matrices and W,W2,W4 are standard Gaussian vectors in R,R2
and

R4
respectively, and where the implied constants are allowed to depend on C⇤, on the M0-moment of ⌘, on the

constants in Conditions 1 and 2, and on a lower bound of the least singular values of Vn(t), Vn(s, t) and I2, I4.
Furthermore, we have the following bounds

rn(t,��) = O(kVn(t)� I2k2) and rn(s, t, �) = O(kVn(s, t)� I4k2).

Note that if we apply the above theorem for " = n�(`�1)/2 and for su�ciently large ` (for instance ` = 16 would
su�ce), then all the error bounds are absorbed into O( 1

n3/2 ), and hence proving Proposition 2.10.

We now discuss the proof. We first note that if f is an even function then using the fact that the standard
Gaussian distribution is symmetric and the fact that Hermite polynomials of odd degrees are odd functions we
obtain

E[f(V 1/2
n

W )�n,1(V
�1/2
n

X,W )] = 0.

In our applications below the functions f are indeed even therefore we could ignore the contribution of �n,1 in
the estimates.

Now, recall (29) and recall that � = n�5 and " = n�C⇤ for some given constant C⇤ > 0. Recall also the definitions
of the even functions F� : R ! R+, �� : R2 ! R+,  � : R4 ! R+ from Subsection 2.6. Now, using standard
integration by parts (for details see [8, Eq. 3.23]) we may rewrite the Gaussian part in a more canonical form:
with f being either F�, � or ��, and with W being either W2 or W4 we have

E(f(V 1/2
n

W )�n,2(V
�1/2
n

X,W )) = E(f(I1/2
d

W )�n,2(I
�1/2
d

X,W )) + rn(f) (48)

with Id being a diagonal matrix with diagonal entries at least � and here

|rn(f)|  CkVn � Idk2.
For this proof, we will only work with  � and prove (47) as (45) and (46) are similar and simpler. By Fact 4.5
and by (48), to prove Proposition 5.1 for this f =  � it su�ces to show
����Ef

✓
1p
n
Sn(s, t, Y )

◆
� E

⇣
f(V 1/2

n
W )Qn,2(X,W )

⌘����  Cn�3/2 + C��2(n�(`�1)/2 + e�n
�⌧⇤

+ e�cn + "). (49)

Proof of Proposition 5.1. Let � 2 (0, 1) and let '� : R ! [0, 1] be a C1(R) function with support inside [��, �]
such that

(i) '�(x) = ��1 for |x|  �(1� �).

(ii) |'(k)
�

(x)| = O(��(k+1)��k) for any k � 0.
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Let e'� : R4 ! R be defined by e'(x) = '�(x1)'�(x3). Let

f�(x1, x2, x3, x4) = |x2||x4|e'(x).

Then f� is locally Lipschitz, and its derivative (defined almost everywhere) satisfies

|rf�|  C
1

�2�
(1 + |x|)4.

Recall that !̄f (" : �) =
R
(supy2B(x,") f(y)� infy2B(x,") f(y))�(x)dx, and � is the density of a Gaussian vector.

Consequently, for any polynomial p(x) with bounded degree and bounded coe�cients we have

!̄f�(" : p(x)�0,Vn(x)) = O(��1��2").

Here we are implicitly using the fact that the the eigenvalues of Vn are bounded above by O(1), which should
follow from the fact that the singular values of Cn(k) are bounded: they are bounded by the Hilbert–Schmidt
norm, which is bounded since the entries of Cn(k) are bounded.

Note that one could write
`+d�2X

r=0

n�r/2Pr(��0,Vn : {�⌫}) = p(x)�0,Vn(x)

for some polynomial p with degree at most d + ` and coe�cients bounded by the first d + ` moments of the
random coe�cients Y1, . . . , Yn of Pn. Therefore

!̄f�(2" :
`+d�2X

r=0

n�r/2Pr(��0,Vn : {�⌫})) = O(��1��2"). (50)

We will also use the following elementary estimate: given any a1, . . . , an deterministic and ⌘1, . . . , ⌘n independent
with mean 0 and bounded 4th moment, the following holds

E|a1⌘1 + · · ·+ an⌘n|4  C(a21 + · · ·+ a2
n
)2.

Indeed, thanks to independent and the mean zero property, the left hand side is

E(
X

i,j,k,l

aiajakal⌘i⌘j⌘k⌘l) =
X

i

a4
i
E⌘4

i
+O(

X

i<j

a2
i
a2
j
E⌘2

i
⌘2
j
)

= O(a21 + · · ·+ a2
n
)2.

In particular,

E|P 0
n
(t, Y )|4 = n�2O((

nX

j=1

sin2(jt/n) + cos2(jt/n))2) = O(1).

We next proceed to conclude Proposition 5.1 for f =  �. Recall that �0,Vn denotes the density of V 1/2
n W . Then

using Hölder’s inequality and Theorem 2.2 we obtain

E(f � f�)

✓
1p
n
Sn(s, t, Y )

◆

 C��2E[|P 0
n
(t, Y )P 0

n
(s, Y )|1||Pn(t,Y )|��|��1||Pn(s,Y )|��|��]

 C��2(E|P 0
n
(t, Y )|4)1/4(E|P 0

n
(s, Y )|4)1/4P(||Pn(t, Y )|� �|  ��)1/4P(||Pn(s, Y )|� �|  ��)1/4

 C��2(n��)2/5 (assume bounded 4th moment for coe�cients of Pn and Corollary 3.1)

 C��2�2/5.



RANDOM TRIGONOMETRIC POLYNOMIALS 25

By Theorem 4.6 and (50), applying for "7/2 in place of ", we obtain

����Ef�
✓

1p
n
Sn(s, t, Y )

◆
� E(f�(V 1/2

n
W )Qn,2(X,W ))

����

= O(n�3/2) +M`(f�)O
⇣
n�(`�1)/2 + e�n

�⌧⇤
+ e�cn

⌘
+ !̄f�(2"

7/2 :
`+d�2X

r=0

n�r/2Pr(��0,Vn : {�⌫}))

= O(n�3/2) + ��2O(n�(`�1)/2 + e�n
�⌧⇤

+ e�cn) +O(��2��1"7/2),

where we note that M`(f�) = O(��2). Note that as a special case, this bound also holds for the Gaussian case.
Consequently,

����Ef
✓

1p
n
Sn(s, t, Y )

◆
� E(f(V 1/2

n
W )Qn,2(X,W ))

����


����E(f � f�)

✓
1p
n
Sn(s, t, Y )

◆����+ |E(f � f�)((V
1/2
n

W )Qn,2(X,W ))|+

+

����Ef�
✓

1p
n
Sn(s, t, Y )

◆
� E(f�(V 1/2

n
W )Qn,2(X,W ))

����

 Cn�3/2 + C��2(n�(`�1)/2 + e�n
�⌧⇤

+ e�cn + ��1"7/2 + �2/5)

We then take � = "5/2 and obtain the desired estimate as in (49). ⇤

6. Completing the proof of Proposition 2.8

Recall the definition of Dn," from (19).

In this proof, we follow the proof of [8, Lemma 5.1]; the only di↵erences are that the Lebesgue measure of our
set Dn," is 4+ o(1) times larger and that we use our version of the Edgeworth expansion, Proposition 2.10. The
proof consists of several steps which we use a similar enumeration as in [8].

Step 1: Making use of the Edgeworth expansion in Proposition 2.10. In this step, we shall apply the
formulas in Proposition 2.10. We shall choose the diagonal matrices I2 and I4 that appear in Proposition 2.10
to be the limit of Vn(t) and Vn(s, t). More precisely, by letting I2 be the 2 ⇥ 2 diagonal matrix with diagonal
entries �1 = 1, �2 = 1/3, and I4 be the 4⇥ 4 diagonal matrix with diagonal entries �1 = �3 = 1, �2 = �4 = 1/3,
one can check that for all s, t satisfying Condition 2,

lim
n!1

kVn(t)� I2k2 = 0 and lim
n!1

kVn(s, t)� I4k2 = 0.

Applying Proposition 2.10, we obtain the expansion

vn(s, t, Y )� vn(s, t, G) =
1

n
�n(s, t) + R̄n(s, t) (51)
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where the �n has the main terms and the R̄n contains all the error terms and their product with the main terms
in Proposition 2.10. In particular,

�n(s, t) = E
⇥
 �(I

1/2
4 W4)�n,2

�
I�1/2
4 Xn(s, t, Y ),W4

�⇤���

�E
h
��(I

1/2
2 W2)

i
E
h
��(I

1/2
2 W2)�n,2

⇣
I�1/2
2 Xn(t, Y ),W2

⌘i

�E
h
��(I

1/2
2 W2)

i
E
h
��(I

1/2
2 W2)�n,2

⇣
I�1/2
2 Xn(s, Y ),W2

⌘i

= E

 �n

⇣
I1/24 W4

⌘

⇥
h
�n,2

⇣
I�1/2
4 Xn(s, t, Y ),W4

⌘
� �n,2

⇣
I�1/2
2 Xn(t, Y ),W 0

2

⌘
� �n,2

⇣
I�1/2
2 Xn(s, Y ),W 00

2

⌘i �

where W 0
2,W

00
2 are independent standard Gaussian vectors in R2 and W4 = (W 0

2,W
00
2 ) is a standard Gaussian

vector in R4. We recall that
�n,2(X,x) = �0

n,2(X,x) + �00
n,2(X,x)

which is the sum of the following fourth moment corrector

�0
n,2(X,x) =

1

24

X

|�|=4

cn(�, X)H�(x)

and the following combined third moment corrector

�00
n,2(X,x) =

1

72

X

|⇢|=3

X

|�|=3

cn(�, X)cn(⇢, X)H�,⇢(x). (52)

We recall the definition of cn(·, X) in (42) and the polynomials H� , H�,⇢ in (40).

Denote by �0
n
(t, s) and �00

n
(t, s) the corresponding quantities when replacing �n,2(X,x) by �0

n,2(X,x) and �00
n,2(X,x),

respectively, in the definition of �n(t, s). Proposition 2.8 is reduced to showing the following:

lim
n

1

n2

Z

Dn,"

�00
n
(s, t)dsdt = 0, (53)

lim
n

1

n2

Z

Dn,"

�0
n
(s, t)dsdt =

E⇠4 � 3

15
+O("), (54)

and

lim
n

1

n

Z

Dn,"

R̄n(s, t)dsdt = 0. (55)

To see (55), we simply note that for almost every (s, t) 2 [0,⇡]2, R̄n(ns, nt) = o( 1
n
) as n ! 1. This is mainly

because (via examination), as n ! 1, the re-scaled covariance matrix Vn(nt, ns) converges to the diagonal
matrix (1, 1/3, 1, 1/3) if t

⇡
, s

⇡
, t�s

⇡
, t+s

⇡
are irrational.

The remaining identities will be established in the next steps. For convenience of notation, in the rest of the
section for each multi-index ↵ (of dimension 3 or 4) we let

cn(↵, s, t) = cn
⇣
↵, I�1/2

4 Xn(s, t, Y )
⌘
, cn(↵, t) = cn

⇣
↵, I�1/2

2 Xn(t, Y )
⌘
,

and define cn(↵, s) similarly. Also, we will denote by ↵� 2 the adjusted multi-index where each index in ↵ will
be subtracted by 2.

Step 2: Proving (53).
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For each multi-index ⇢,� 2 {1, 2, 3, 4}3, define �00
n,⇢,�

(s, t) = E
�
 �n(I

1/2
4 W4)�cn(�, ⇢, s, t)

 
where

�cn(�, ⇢, s, t) =

8
><

>:

cn (⇢, s, t) cn (�, s, t)H�,⇢ (W4)� cn (⇢, t) cn (�, t)H�,⇢ (W 0
2) , if �, ⇢ 2 {1, 2}3;

cn (⇢, s, t) cn (�, s, t)H�,⇢ (W4)� cn (⇢� 2, s) cn (� � 2, s)H�,⇢ (W 00
2 ) , if �, ⇢ 2 {3, 4}3;

cn (⇢, s, t) cn (�, s, t)H�,⇢ (W4) , otherwise.

It is clear that �00
n
(s, t) =

P
|�|=3

P
|⇢|=3 �

00
n,⇢,�

(s, t).

Step 2, the cancellations: We recall the following cancellations that were observed in [8].

• (First cancellation) If �, ⇢ 2 {1, 2}3 then by examination we have cn(�, s, t) = cn(�, t), cn(⇢, s, t) =
cn(⇢, t), and H�,⇢(W4) = H�,⇢(W 0

2). Consequently, �cn(�, ⇢, s, t) = 0 and thus

�00
n,⇢,�

(s, t) = 0.

Similarly, if �, ⇢ 2 {3, 4}3 then �cn(�, ⇢, s, t) = 0 and so �00
n,⇢,�

(s, t) = 0.
• (Second cancellation) We now consider those (�,↵) not part of above cancellation scenarios, i.e. where
there is a mixed of elements from {1, 2} and elements from {3, 4}. Then if an index j 2 {1, 2, 3, 4}
appears an odd number of times inside (�, ⇢) then

E
�
 �n(I

1/2
4 W4)H�,⇢(W4)

 
= 0,

since  �n(I
1/2
4 W4) is an even function of W4,j (the jth coordinate of W4) and H�,⇢(W4) is an odd

function of W4,j . Consequently, in this case we also have �00
n,⇢,�

(s, t) = 0.

For the remaining (�, ⇢), for almost every (s, t) 2 [0,⇡]2 (with respect to the Lebesgue measure) we have

cn(�, ns, nt)cn(⇢, ns, nt) ! 0, as n ! 1. (56)

Indeed, the “mixed” nature of (�, ⇢) implies that one of �, ⇢ will be mixed. Without loss of generality assume
that � is mixed, say � = {i, i, j} where i  2 < j. Then via examination cn(�, s, t) is an average (over k) of
term of the following type:

2X

`1,`2,`3=1

Ak(ns, nt, `1, `2, `3)E(Yk,`1Yk,`2Yk,`3)

where Ak(s, t, `1, `2, `3) is a product of two terms from Cn(k, t) and one term from Cn(k, s), and Yk,1, Yk,2 are
the coordinates of Yk. Now E(Yk,`1Yk,`2Yk,`3) is constant with respect to k (due to iid - although this is not
essential, it su�ces to assume convergence as k ! 1 of this term), the desired convergence follows from the
limit 1

n

P
k
Ak(ns, nt, `1, `2, `3) ! 0, which can be checked using elementary trigonometric identities, provided

that t

⇡
, s

⇡
, t+s

⇡
, t�s

⇡
are all irrational.

Now, since the cn are uniformly bounded, (56) and Lebesgue’s dominated convergence theorem imply that

lim
n

1

n2

Z

Dn,"

�00
n,⇢,�

(s, t)dsdt = lim
n

Z
⇡

0

Z
⇡

0
1Dn,"(nu, nv)�

00
n,⇢,�

(nu, nv)dudv = 0.

which completes the proof of (53).

Step 3: Proving (54). This follows from similar reasoning as in Step 2. First, using cancellations similar to
Step 2, we also obtain

�0
n
(s, t) =

1

24

X

↵

E
⇣
 �n(I

1/2
4 W )H↵(W )

⌘
cn (↵, s, t)
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where the sum runs over all mixed ↵ of the form ↵ = (i, i, j, j) with i 2 {1, 2} and j 2 {3, 4}, and their
permutations. It is clear that �0

n
(s, t) = O(1) uniformly over n and s, t.

Thus,
1

n2

Z

Dn,"

�0(s, t)dsdt = O(") +
1

n2

1

24

X

↵

E
⇣
 �n(I

1/2
4 W )H↵(W )

⌘Z

Dn,"

cn (↵, s, t) dsdt. (57)

Now, if ↵ is a permutation of (i, i, j, j) with i  2 < j, by examination and using trigonometric identities as
in Step 2, it follows that cn (↵, s, t) is an average of sums

P2
`1,`2,`3,`4=1 Ak(s, t, `1, . . . , `4)E(Yk,`1Yk,`2Yk,`3Yk,`4),

k = 1, . . . , n. Here Ak(s, t, `1, . . . , `4) is a product of two terms from Cn(k, s) and two terms from Cn(k, t). Via
examination, (for details see for instance the appendix in [8]), one could show that

Lemma 6.1. For almost every (s, t) 2 [0,⇡]2 (with respect to the Lebesgue measure) it holds that

lim
n

cn (↵, ns, nt) =
2 · 3i+j�4(E⇠4 � 3)

2i+ 2j � 4
(58)

On the other hand, it is clear that, for the same ↵,

lim
n

E
⇣
 �n(I

1/2
4 W )H↵(W )

⌘
=

1

3⇡2
(�1)i+j .

Plugging in these limits to (57), we obtain (54).

7. Proof of Lemma 2.7

We recall the definition of the sub-intervals Ik in (18) and the sets Dn," and D in (19). Let NIk(Y ) be the
number of roots in Ik.

Since Nn(Y ) =
P

k
NIk(Y ), we have

VarNn(Y )�VarNn(G) = 2V1 + V2 (59)

where

V1 :=
X

(k,p)2D

⇥
Cov(NIk(Y ), NIp(Y ))� Cov(NIk(G), NIp(G))

⇤
, (60)

and

V2 := 2
X

(k,p)/2D,k<p

⇥
Cov(NIk(Y ), NIp(Y ))� Cov(NIk(G), NIp(G))

⇤
+
X

k

[VarNIk(Y )�VarNIk(G)] . (61)

Therefore, Lemma 2.7 follows from the following two results concerning V1 and V2, respectively.

Lemma 7.1 (asymptotic estimate for V1). We have

V1 =

Z

Dn,"

(vn(t, s, Y )� vn(t, s,G)) dsdt+Rn," (62)

where

lim
n

Rn,"

n
= 0.
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We recall the definition of vn in (17):

vn(s, t, Y ) = Cov(P 0
n
(s, Y )1|Pn(s,Y )|<�n

, P 0
n
(t, Y )1|Pn(t,Y )|<�n

) = E �n

✓
1p
n
Sn(s, t, Y )

◆
�E��n(s, Y )E��n(t, Y ).

Lemma 7.2 (V2 is negligible). There exists a constant c such that

V2 ⌧ n1�c.

Remark 7.3. As we shall show in the proof, for Lemma 7.2, we only need to assume that the random variables yij
are independent (not necessarily identically distributed) with mean 0, variance 1, and bounded (2+ "0)-moment,

namely E|yij |2+"0 < C for some positive constants "0, C and for all i, j.

The rest of this section is devoted to the proof of these lemmas.

7.4. Proof of Lemma 7.1. For this proof, we adapt the proof of [8, Lemma 4.2] using the new inequalities
that we have obtained.

Recall that � = n�5 in this proof. Let

�a,b,Y := min
t2[a,b]

{|Pn(a, Y )|, |Pn(b, Y )|, |Pn(t, Y )|+ |P 0
n
(t, Y )|}.

By the Kac-Rice formula, for any interval [a, b], the number of zeros of Pn(·, Y ) in the interval [a, b] is given by

Nn([a, b], Y ) =

Z
b

a

|P 0
n
(t, Y )|1|Pn(t,Y )|�

dt

2�
if �  �a,b,Y . (63)

To prove Lemma 7.1, it su�ces to show that for any (k, p) 2 D,

ENIk(Y )NIp(Y ) =

Z

Ik⇥Ip

E��(t, Y )��(s, Y )dtds+O("k,p) (64)

and

ENIk(Y )ENIp(Y ) =

Z

Ik⇥Ip

E��(t, Y )E��(s, Y )dtds+O("k,p) (65)

where X

(k,p)2D

"k,p = o(n).

Since the proof of (64) and (65) are similar, we shall now only prove (64). By the Kac-Rice formula (63),

ENIk(Y )NIp(Y )1�min{�Ik,Y ,�Ip,Y } =

Z

Ik⇥Ip

E��(t, Y )��(s, Y )1�min{�Ik,Y ,�Ip,Y }dtds.

Thus, by setting
"0
k,p

= ENIk(Y )NIp(Y )1�>min{�Ik,Y ,�Ip,Y } (66)

and

"00
k,p

=

Z

Ik⇥Ip

E��(t, Y )��(s, Y )1�>min{�Ik,Y ,�Ip,Y }dtds, (67)

we are left to show that X

(k,p)2D

"0
k,p

= o(n) (68)
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and X

(k,p)2D

"00
k,p

= o(n). (69)

For (68), using the fact that the number of real roots inside [�n⇡, n⇡] is at most 2n deterministically, we get
that

"0
k,p

⌧ n2P
�
� > min{�Ik,Y , �Ip,Y }

�
 n2P (� > �Ik,Y ) + n2P

�
� > �Ip,Y

�
. (70)

Let a, b be the endpoints of Ik. We have

P (� > �Ik,Y )  P (|Pn(a, Y )| < �) + P (|Pn(b, Y )| < �) + P
✓
min
t2Ik

|Pn(t, Y )|+ |P 0
n
(t, Y )| < �

◆
. (71)

Observe that for any (s, t) that satisfies Condition 2, it is necessary that both s and t satisfy Condition 1. Thus,
for all (k, p) 2 D, we have Ik ⇢ G in Theorem 3.2. Applying this theorem, we get

P
✓
min
t2Ik

|Pn(t, Y )|+ |P 0
n
(t, Y )| < �

◆
⌧ n�4+" (72)

where we recall that in Theorem 3.2, 1p
n
Sn(Y, t) = (Pn(t, Y ), P 0

n
(t, Y )) as defined in (9).

Applying Corollary 3.1 with M0 = 4, for all t satisfying Condition 1, we have

P (|Pn(t, Y )| < �) ⌧ n�3�". (73)

Applying (73) for t = a, b, we get

P (|Pn(a, Y )| < �) + P (|Pn(b, Y )| < �) ⌧ n�3�".

Plugging this together with (72) to (71), we obtain

P (� > �Ik,Y ) ⌧ n�3�".

Similarly for Ip. Thus, from (70), we have "0
k,p

⌧ n�1�" which gives (68).

For (69), we argue similarly using the observation in [8, Inequality (4.2)] that, deterministically,
Z

Ik

��(t, Y )dt  1 +NIk(Y )  2n+ 1 and

Z

Ip

��(t, Y )dt  1 +NIp(Y )  2n+ 1.

7.5. Proof of Lemma 7.2. As in Remark 7.3, in this subsection, we only assume that the random variables yij
are independent (not necessarily identically distributed) with mean 0, variance 1, and bounded (2+"0)-moment.
To prove Lemma 7.2, we shall use the following result.

Lemma 7.6. There exists a constant c such that for all k, p that are not necessarily distinct,

ENIk(Y )NIp(Y )� ENIk(G)NIp(G) ⌧ n�2c, (74)

ENIk(Y )� ENIk(G) ⌧ n�2c, (75)

and

ENIk(Y ) ⌧ 1,ENIk(G) ⌧ 1. (76)
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Proof of Lemma 7.2. Assuming Lemma 7.6, we have for all k, p,

ENIk(Y ) · ENIp(Y )� ENIk(G) · ENIp(G) ⌧ n�2c

where we used the triangle inequality, (75), and (76). Combining this with (74), we obtain

Cov(NIk(Y ), NIp(Y ))� Cov(NIk(G), NIp(G)) ⌧ n�2c for all k, p, (77)

and in particular when k = p, we have

VarNIk(Y )�VarNIk(G) ⌧ n�2c.

Plugging these estimates into (61), we obtain

V2 ⌧ n�2c#{(k, p) /2 D}. (78)

Observe that for each k, the number of p such that (k, p) /2 D is O"(n11⌧ ). Indeed, by the definition of D and
Condition 2, for each l1, l2 6= 0 with |l1|, |l2|  n⌧ , it su�ces to show that the number of p such that there exist
t 2 Ik, s 2 Ip with ����

l1t+ l2s

n

����
R/⇡Z

 n�1+8⌧ (79)

is O"(n9⌧ ). The inequality (79) is equivalent to

l1t+ l2s 2 [na� n8⌧ , na+ n8⌧ ] for some a 2 ⇡Z, |a|  2⇡n⌧ ;

in other words,

s 2 1

l2

�
[na� n8⌧ , na+ n8⌧ ]� l1Ik

�
for some a 2 ⇡Z, |a|  2⇡n⌧ .

For each a, the right-hand side is contained in an interval of length O(n8⌧ ) which corresponds to O"(n8⌧ ) values
of p. Taking union bound over O(n⌧ ) choices of a gives the stated claim.

Using this observation, the right-hand side of (78) is O(n�2c+1+11⌧ ) = O(n1�c) by choosing ⌧ to be su�ciently
small compared to c. ⇤

To prove Lemma 7.6, we denote the roots of Pn(·, Y ) by ⇣1(Y ), . . . , ⇣n(Y ) and the roots of Pn(·, G) by ⇣1(G), . . . , ⇣n(G).
We shall use the following result in [52].

Theorem 7.7. [52, Theorem 3.3] There exist constants c, C 0
such that for any real numbers x1, x2 and for any

function F : R2 ! R supported on [x1 � 1, x1 + 1] ⇥ [x2 � 1, x2 + 1] with continuous derivatives up to order 8
and ||OaF ||1  1 for all 0  a  8, we have

���E
X

F (⇣i(Y ), ⇣j(Y ))� E
X

F (⇣i(G), ⇣j(G))
���  C 0n�c,

where the first sum runs over all pairs (⇣i(Y ), ⇣j(Y )) 2 R2
of the roots of Pn(·, Y ) and the second sum runs over

all pairs (⇣i(G), ⇣j(G)) 2 R2
of the roots of Pn(·, G).

Proof of Lemma 7.6. Let xk, xp be the midpoint of Ik, Ip, respectively. Let � = n�s for s = c/100 and c be the
constant in Theorem 7.7.

The inequalities in (76) follow from [52, Theorem 3.6]. For the rest of the proof, we show (74). The proof of
(75) is similar (and simpler).

We approximate the indicator function on the interval [�"/2, "/2] by a smooth function � satisfying

1[�"/2+�,"/2��]  �  1[�"/2,"/2]
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and
||Oa�||1 ⌧ ��a, 80  a  8.

Let
F (x, y) := �(x+ xk)�(y + xp).

Let

Mk(Y ) :=

 
nX

i=1

� (⇣i(Y )� xk)

!
, Mp(Y ) :=

 
nX

i=1

� (⇣i(Y )� xp)

!
.

Denote by Mk(G) and Mp(G) the corresponding terms for the Gaussian case, i.e., with ⇣i(G) in place of ⇣i(Y ).
Applying Theorem 7.7 to the function �8F , we obtain

���E
X

F (⇣i(Y ), ⇣j(Y ))� E
X

F (⇣i(G), ⇣j(G))
���  C 0n�c,

and so

|EMk(Y )Mp(Y )� EMk(G)Mp(G)|  C 0n�c/2, (80)

We shall show that

ENIk(Y )NIp(Y )� EMk(Y )Mp(Y ) = O
⇣
n�s/10

⌘
. (81)

The same argument applied to the Gaussian case will show that

ENIk(G)NIp(G)� EMk(G)Mp(G) = O
⇣
n�s/10

⌘
. (82)

Combining (80), (81), and (82), we obtain (74) as desired (by choosing the c in (74) to be s/10).

To prove (81), by Holder’s inequality, we have

(ENIk(Y )NIp(Y )� EMk(Y )NIp(Y ))2 ⌧ E(NIk(Y )�Mk(Y ))2EN2
Ip
(Y ). (83)

Let N�(Y ) be the number of roots of Pn(·, Y ) in the union of the intervals [xk+"/2��, xk+"/2], [xk�"/2, xk�
"/2��], [xp+"/2��, xp+"/2], and [xp�"/2, xp�"/2��]. We observe that N�(Y ) is at least |NIk(Y )�Mk(Y )|.

By [52, Formula (28), page 32], there exists an x 2 Ik such that

P
⇣
log |Pn(x, Y )|  �ns/10

⌘
⌧ n�100.

By [52, Lemma 9.4],

P
✓
log max

z2B(x,100")
|Pn(z, Y )| � ns/10

◆
⌧ n�100.

By Jensen’s inequality (see, for example, [52, Formula (8), page 22]), under the event that log |Pn(x, Y )| � �ns/10

and logmaxz2B(x,100") |Pn(z, Y )|  ns/10, we have NIk(Y )  ns/10. Thus,

P
⇣
NIk(Y ) � ns/10

⌘
⌧ n�100. (84)

And by [52, Lemma 8.6],

P (N�(Y ) � 2) ⌧ n�3s/2. (85)

When N�(Y ) < 2, we have N�(Y )2 = N�(Y ). Thus,

EN�(Y )2  EN�(Y ) + EN�(Y )212N�(Y )ns/10 + EN�(Y )21ns/10N�(Y )n

⌧ n�s/2 + EN�(Y )212N�(Y )ns/10 + EN�(Y )21ns/10N�(Y )n by [52, Corollary 3.7]

⌧ n�s/2 + n�s + n�90 ⌧ n�s/2 by (84) and (85).
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Similarly,

EN2
Ip
(Y )  EN2

Ip
(Y )1NIp (Y )ns/10 + EN2

Ip
(Y )1ns/10NIp (Y )n ⌧ ns/5 + n�90 ⌧ ns/5. (86)

Plugging (86) and (86) into (83), we get

(ENIk(Y )NIp(Y )� EMk(Y )NIp)
2 ⌧ n�s/2EN2

Ip
(Y ) ⌧ n�s/10.

Similarly,

(EMk(Y )NIp(Y )� EMk(Y )Mp(Y ))2 ⌧ n�s/2.

Combining these two inequalities gives (81) and completes the proof. ⇤

8. Variance estimate under the non-iid regime

Theorem 8.1. Assume that the coe�cients yij are independent (but not necessarily identically distributed) of

mean zero, variance one, and bounded (2 + "0)-moment: E|yij |2+"0 < C for some positive constants "0, C and

for all i, j. Then there exists a constant c > 0 such that

ENn =

✓
2p
3
+O(n�c)

◆
n (87)

and

Var(Nn) = O(n2�c), (88)

where the implied constants depend on C and "0.

Proof. Equation (87) is simply [52, Corollary 3.7] in which the ci are all 1 and un = 0.

For Equation (88), as in Section 7, we recall the definition of the sub-intervals Ik in (18) and we denote by
NIk(Y ) the number of roots of Pn(·, Y ) in Ik. By (77), there exists a constant c > 0 such that for all indices
k, p,

Cov(NIk(Y ), NIp(Y ))� Cov(NIk(G), NIp(G)) ⌧ n�2c.

As mentioned in Remark 7.3 and the beginning of Subsection 7.5, this inequality was proven under the more
general assumption that the yij are independent with mean zero, variance one, and bounded (2 + "0)-moment.

Since Nn(Y ) =
P

k2Z\[�n⇡/",n⇡/"] NIk(Y ) and similarly for Nn(G), we have

Var(Nn(Y ))�Var(Nn(G)) =
X

k,p2Z\[�n⇡/",n⇡/"]

Cov(NIk(Y ), NIp(Y ))� Cov(NIk(G), NIp(G)) ⌧ n2�2c.

By Theorem 1.1,

Var(Nn(G)) ⌧ n2�2c.

Combining these bounds gives (88). ⇤
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9. Characteristic functions in R2, proof of Theorem 2.4

Given a real number w and a random variable ⇠, we define the ⇠-norm of w by

kwk⇠ := (Ekw(⇠1 � ⇠2)k2R/Z)1/2,

where ⇠1, ⇠2 are two iid copies of ⇠. For instance if ⇠ is Bernoulli with P(⇠ = ±1) = 1/2 (which is our main
focus), then kwk2

⇠
= k2wk2R/Z/2.

The following works for general Rd: consider the random walk
P

i
yi1wi + yi2w0

i
, where wi,w0

i
are vectors in

Rd. Then its characteristic function can be bounded by (see [60, Section 5])
Y

|Ee(yi1hwi, xi)
Y

Ee(yi2hw0
i
, xi)| 

Y

i

[|Ee(yi1hwi, xi)|2/2 + 1/2]
Y

i

[|Ee(yi2hw0
i
, xi)|2/2 + 1/2]

 exp(�(
X

i

khwi, x/2⇡ik2⇠ + khw0
i
, x/2⇡ik2

⇠
)/2). (89)

Hence if we have a good lower bound on the exponent
P

i
khwi, x/2⇡ik2⇠ + khw0

i
, x/2⇡ik2

⇠
then we would have a

good control on |
Q
�i(x)|. Furthermore, by definition

X

i

khwi, x/2⇡ik2⇠ + khw0
i
, x/2⇡ik2

⇠
=
X

i

Ekhwi, x/2⇡i(⇠1 � ⇠2)k2R/Z + Ekhw0
i
, x/2⇡i(⇠1 � ⇠2)k2R/Z

= E(
X

i

khwi, x/2⇡i(⇠1 � ⇠2)k2R/Z +
X

i

khw0
i
, x/2⇡i(⇠1 � ⇠2)k2R/Z)

= Ey(
X

i

kyhwi, x/2⇡ik2R/Z +
X

i

kyhw0
i
, x/2⇡ik2R/Z), (90)

where y = ⇠1 � ⇠2. As ⇠ have mean zero, variance one and bounded (2 + "0)-moment, there exist positive
constants c1  c2, c3 such that P(c1  |y|  c2) � c3, and so

Ey

X

i

kyhwi, x/2⇡ik2R/Z +
X

i

kyhw0
i
, x/2⇡ik2R/Z � c3 inf

c1|y|c2

X

i

kyhwi, x/2⇡ik2R/Z +
X

i

kyhw0
i
, x/2⇡ik2R/Z.

(91)

Hence for Theorem 2.4 (and similarly for Theorem 2.5) it su�ces to show that for any D = (d1, d2) (which plays
the role of (y/2⇡)x) such that c1n5⌧�1/2  kDk2  c2nC⇤ we have

X

i

khui,Dik2R/Z + khu0
i
,Dik2R/Z � n2⌧ . (92)

For t 2 [�n⇡, n⇡], we define  i(t), i(t)0 by

 i = d1 cos(it/n)� d2
i

n
sin(it/n) and  0

i
= d1 sin(it/n) + d2

i

n
cos(it/n). (93)

In other words,

 i = hD,uii and  0
i
= hD,u0

i
i.

Let e be the unit vector in the direction of D, e = D
kDk2

. Define

T := n⌧⇤ .

Our key ingredient in the proof of Theorem 2.4 is the following refined analog of [41, Lemma 4.3].
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Proposition 9.1. Assume that t satisfies Condition 1. We have

X

j

k jk2R/Z +
X

j

k 0
j
k2R/Z � T.

It is clear this result implies Theorem 2.4 via (89). We note that [41] treated mainly with Bernoulli, and up to
kDk2 = n1/2+o(1). This was generalized to kDk2 = n1�o(1) in [51] for general ensembles. Our starting point is
similar to that paper, but the innovative of the current note is that we can also assume n ⌧ kDk2.

Before proving this main result of the section, we introduce a useful bound as follows.

Claim 9.2. Assume that ⌧⇤ is su�ciently small given ⌧ , and assume that t satisfies Condition 1. Let I ⇢ [n]
be any arithmetic progression of length n1�6⌧⇤ . Then

(1) For all "1, "2 2 {�1, 1}, and any positive integer A0 = O(n⌧⇤) there exists i 2 I so that

"1 sin(iA0s/n), "2 cos(iA0s/n) > 0.

(2) For any unit vector e 2 R2
we have

X

i2I

he,uii2 � n1�⌧
and

X

i2I

he,u0
i
i2 � n1�⌧ . (94)

Proof. See the proof of Claim 10.1. ⇤

For the rest of this section we prove Proposition 9.1 by contradiction: assume the opposite that we have
X

j

k jk2R/Z + k 0
j
k2R/Z  T. (95)

We will then show that this is impossible as long as t satisfy Condition 1. We will do so by many steps. First,
it follows from (95) that

|{j 2 [0, n) \ Z : k jkR/Z + k 0
j
kR/Z > 1/T}|  2T 3

and so for large n there exists an interval J = [a, b] ⇢ [n] of length n/T 6 so that for j 2 J

k jkR/Z + k 0
j
kR/Z < 1/T. (96)

Di↵erencing. Let A, k be chosen later so that

4kDk2
(4⇡)k

A(k�3)/2
+ 4⇥ 2k

1

T
< 1. (97)

By pigeonholing, we can find p0 2 Z, p0 6= 0 and t0 so that

p0
t

2⇡
� t0 2 Z, 1  |p0|  A, |t0| 

4

A
. (98)

From the approximation we infer that

|e
p
�1p0

t
n � 1| = |e�

p
�1(2⇡t0) � 1|  |2 sin(⇡t0)|  4⇡/A. (99)

Next, for a sequence {gj}j2[n] we define the discrete di↵erentials with step p0 by

�kgj,p0 :=
kX

i=0

✓
k

i

◆
(�1)igj+ip0 .
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Let mj and m0
j
be the integers closest to  j and  0

j
respectively. Thus for j 2 J by (117) we have | j�mj |  1/T

and | 0
j
�m0

j
|  1/T and

|mj |, |m0
j
|  2kDk2.

We show that

Lemma 9.3. We have

|�kmj,p0 |+ |�km0
j,p0

|  4kDk2
(4⇡)k

A(k�3)/2
+ 4⇥ 2k

1

T
(100)

provided that [j, j + kp0] ⇢ J .

Proof of Lemma 9.3. Recall that  j = d1 cos(jt/n)� d2
j

n
sin(jt/n) and k jkR/Z  1/T over j 2 J . Consider

�k j,p0 =
kX

i=0

✓
k

i

◆
(�1)i j+ip0 .

We first have
�����

kX

i=0

✓
k

i

◆
(�1)i cos

✓
ip0t

n
+

jt

n

◆����� =

�����Re
kX

i=0

✓
k

i

◆
(�1)ie

✓
ip0t

n
+

jt

n

◆�����

=

�����Re
" 

kX

i=0

✓
k

i

◆
(�1)ie(

ip0t

n
)

!
e

✓
jt

n

◆#�����

=

�����Re
"✓

1� e

✓
p0t

n

◆◆k

e

✓
jt

n

◆#�����

 (4⇡/A)k < (4⇡/
p
A)k (101)

where we used (99) in the last estimate. It also follows that
�����

kX

i=0

✓
k

i

◆
(�1)i

j + ip0
n

sin

✓
ip0t

n
+

jt

n

◆����� =

�����
@

@t

 
kX

i=0

✓
k

i

◆
(�1)i cos

✓
ip0t

n
+

jt

n

◆!�����

=

�����
@

@t

 
Re

 ✓
1� e

✓
p0t

n

◆◆k
!
e

✓
jt

n

◆!�����

=

����Re
✓
@

@t

�
(1� e

✓
p0t

n

◆
)k)e

✓
jt

n

◆�◆����

=

�����Re
 

� k
p
�1

p0
n

 ✓
1� e

✓
p0t

n

◆◆k�1

e

✓
jt

n

◆!

+
p
�1

j

n

 ✓
1� e

✓
p0t

n

◆◆k

e

✓
jt

n

◆!!�����

 A(4⇡/A)k�1 + (4⇡/A)k < (4⇡)k/A(k�3)/2. (102)

Putting the bounds together we obtain

|�k j,p0 | = |
kX

i=0

✓
k

i

◆
(�1)i j+ip0 |  |d1|(

4⇡p
A
)k + |d2|

(4⇡)k

A(k�3)/2
< 4kDk2

(4⇡)k

A(k�3)/2
.
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One can also obtain similarly estimates for |�k 0
j,p0

| where we recall that  0
i
= d1 sin(it/n) + d2

i

n
cos(it/n).

More precisely, as in (101)
�����

kX

i=0

✓
k

i

◆
(�1)i sin

✓
ip0t

n
+

jt

n

◆����� =

�����Im
kX

i=0

✓
k

i

◆
(�1)ie

✓
ip0t

n
+

jt

n

◆�����

=

�����Im
"✓

1� e

✓
p0t

n

◆◆k

e

✓
jt

n

◆#�����

 (4⇡/
p
A)k. (103)

Also, as in (102)
�����

kX

i=0

✓
k

i

◆
(�1)i

j + ip0
n

sin

✓
ip0t

n
+

jt

n

◆����� =

�����
@

@t

 
kX

i=0

✓
k

i

◆
(�1)i sin

✓
ip0t

n
+

jt

n

◆!�����

=

�����Im
 
@

@t

 ✓
1� e

✓
p0t

n

◆◆k

e

✓
jt

n

◆!!�����

< (4⇡)k/A(k�3)/2. (104)

It thus follows that

|�kmj,p0 |  |�k j+lp0 |+ |�k( j+lp0 �mj+lp0)|

 4kDk2
(4⇡)k

A(k�3)/2
+ 4⇥ 2k

1

T
,

and similarly for |�km0
j,p0

|. ⇤

Now, with a su�ciently small ⌧⇤ (given ⌧) and " (given ⌧⇤) we choose

A = n⌧⇤ and k = 16b log kDk2
" log n

c. (105)

We note that k = O(1) because kDk2  nC⇤ . (We restrict kDk2 to grow polynomially here so that k is bounded,
which significantly simplifies our later analysis). We also recall that p0  A  n⌧⇤ .

With these choices we see that (97) is fulfilled, and hence the RHS terms in Lemma 9.3 are strictly smaller than
1. But because the numbers mj ,m0

j
are integers, it follows that as long as {j, j + p0, . . . , j + kp0} ⇢ J = [a, b]

we must have
�kmj,p0 = 0 and �km0

j,p0
= 0. (106)

Now we consider the sequence of integers {mj+ip0,0i(b�j)/p0
}. By repeatedly applying (122) for j = j, j +

p0, j + 2p0, . . . we see the k-di↵erential of any k + 1 consecutive terms of this sequence is zero. We thus deduce
from here a crucial conclusion below.

Lemma 9.4. For given j 2 J , there exists a polynomial of degree at most k�1 so that for any 0  i  (b�j)/p0
we have

mj+ip0 = Pj,p0(i).

We also have a similarly conclusion for m0
j+ip0

where the polynomial can be di↵erent.

We note that this result holds for any j such that [j, j + kp0] ⇢ J . Now we will exploit these polynomial
properties furthermore by specifying the choices of parameters. We first consider the case that kDk2 is small.
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Case 1. Assume that kDk2  n1�4⌧ . It su�ces to work with the  j sequence, the treatment for  0
j
is identical.

Here we will show that Pj is a constant. Indeed, otherwise then as P 0
j
has at most k�2 roots, there is an interval

of length |J |/k where Pj is strictly monotone. But on this interval (of length |J |/k � n/kT 6 � n1�6⌧⇤�o(1) at
least), mj 2 [�2n1�4⌧ , 2n1�4⌧ ] because |mj |  2kDk2, so this is impossible if ⌧⇤ is su�ciently small compared
to ⌧ . Thus we have shown that the polynomials are constant,

mj+lp0 = mj , 8j, l 2 Z, [j + lp0, j + (l + k)p0] ⇢ J = [a, b].

Let’s next fix j, then the range for l is I = (a� j)/p0  l  (b� j)/p0 �O(1), which is an interval of length of
order n1�7⌧⇤ . On this range of l, the condition of t in 1 shows that  j+lp0 = d1 cos((j+ lp0)t)�d2

i

n
sin((j+ lp0)t)

changes size. But as mj+lp0 = m is the common integral part for all l, this is impossible unless mj+lp0 = 0 for
all l in the range I above.

Argue similarly for  0
j
, we have thus obtained in this case that all the integral parts are zero, and hence

sup
l2IL

| j+lp0 | = sup
l2I

| j+lp0 |R/Z, sup
l2I

| 0
j+lp0

| = sup
l2I

| 0
j+lp0

|R/Z  1/T = n�⌧⇤ .

It follows that
X

i

khui,Dik2R/Z + khu0
i
,Dik2R/Z �

X

l2I

khuj+lp0 ,Dik2R/Z +
X

l2I

khu0
j+lp0

,Dik22

=
X

l2I

khuj+lp0 ,Dik22 +
X

l2I

khu0
j+lp0

,Dik22

= kDk22
X

l2I

huj+lp0 , ei2 + hu0
j+lp0

, ei2 � r2n1�8⌧ > n2⌧ ,

where we used Claim 9.2. This bound clearly contradicts (95).

Case 2. Assume that n1�4⌧  kDk2  nC⇤ . Roughly speaking, our approach here is of inverse-type in the sense
that we will try to gain as much as possible information for t given the obtained bounds; and our final result on
t is almost optimal.

Recall that
P

j2J
k jk2R/Z + k 0

j
k2R/Z  T and by Cauchy-Schwarz we have

X

j2J

k jkR/Z + k 0
j
kR/Z  2

p
nT .

We will reapply the process from (101) and (102) with q0 = lp0 (for a given positive integer l). By the polynomial
properties of the mj+ip0 = P (i) for a polynomial P of degree at most k � 1, we also have that

kX

i=0

✓
k

i

◆
(�1)imj+iq0 =

kX

i=0

✓
k

i

◆
(�1)imj+ilp0 =

kX

i=0

✓
k

i

◆
(�1)iPj,p0(il) = 0.

Set
zq0 := z(t, q0) = e(q0t/n). (107)

We then write as follows

|�k j,q0 | = |
kX

i=0

✓
k

i

◆
(�1)i j+iq0 | = |

kX

i=0

✓
k

i

◆
(�1)i( j+iq0 �mj+iq0) +

kX

i=0

✓
k

i

◆
(�1)imj+iq0)|

= |
kX

i=0

✓
k

i

◆
(�1)i( j+iq0 �mj+iq0)|  2k

kX

i=0

k j+iq0kR/Z.
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Similarly,

|�k 0
j,q0

| = |
kX

i=0

✓
k

i

◆
(�1)i 0

j+iq0
| = |

kX

i=0

✓
k

i

◆
(�1)i( 0

j+iq0
�m0

j+iq0
) +

kX

i=0

✓
k

i

◆
(�1)im0

j+iq0
)|

= |
kX

i=0

✓
k

i

◆
(�1)i( 0

j+iq0
�m0

j+iq0
)|  2k

kX

i=0

k 0
j+iq0

kR/Z.

On the other hand,

�k j,q0 =
kX

i=0

✓
k

i

◆
(�1)i j+iq0 = d1

kX

i=0

✓
k

i

◆
(�1)i cos(

iq0t

n
+

jt

n
) + d2

kX

i=0

✓
k

i

◆
(�1)i

j + iq0
n

sin(
iq0t

n
+

jt

n
)

= d1Re
⇣
(1� zq0)

ke(jt/n)
⌘
+ d2Re

⇣
� k

p
�1

q0
n

�
(1� zq0)

k�1e(jt/n)
�
+
p
�1j/n

�
(1� zq0)

ke(jt/n)
⌘

and

�k 0
j,q0

=
kX

i=0

✓
k

i

◆
(�1)i 0

j+iq0
= d1

kX

i=0

✓
k

i

◆
(�1)i sin(

iq0t

n
+

jt

n
) + d2

kX

i=0

✓
k

i

◆
(�1)i

j + iq0
n

cos(
iq0t

n
+

jt

n
)

= d1Im
⇣
(1� zq0)

ke(jt/n)
⌘
+ d2Im

⇣
� k

p
�1

q0
n

�
(1� zq0)

k�1e(jt/n)
�
+

p
�1j/n

�
(1� zq0)

ke(jt/n)
⌘
.

By the triangle inequality, the above then implies that as long as [j, j + kq0] ⇢ J we have
���(1� zq0)

k�1
⇣
d1(1� zq0) +

p
�1d2

�kq0
n

+
p
�1d2(1� zq0)

j

n

⌘
|

 2k
kX

i=0

k j+iq0kR/Z + k 0
j+iq0

kR/Z. (108)

We recall that this holds for any j 2 J as long as [j, j + kq0] ⇢ J , and there is no Pj,p0(.) or mj+iq0 on the LHS.
Applying the estimate for j = j + L, and using triangle inequality we obtain the following.

Lemma 9.5. Assume that [j, j + L+ kq0] ⇢ J . We then have

��(1� zq0)
k
��d2L
n

 2k
kX

i=0

k j+iq0kR/Z + k 0
j+iq0

kR/Z + 2k
kX

i=0

k j+L+iq0kR/Z + k 0
j+L+iq0

kR/Z. (109)

Now we complete the proof of Proposition 9.1. We will work with q0 = lp0 so that kq0  |J |/2. Recall that
J = [a, b] with length |J | at least n/T 6 = n1�6⌧⇤ , and hence (a + b)/2 � |J |/2 � n1�6⌧⇤/2. We divide the
treatment into two cases depending on the parameters d1, d2.

Subcase 1. Assume that |d2| � n�⌧⇤ . We first fix q0 = lp0 such that

|q0|  |J |/8k. (110)

Choose any L 2 [|J |/8, |J |/4], say L = |J |/8. With this fixed L, it is clear that |d2L/n| � n�⌧⇤n1�7⌧⇤/n � n�8⌧⇤ .
We will then choose j in the interval j 2 [(a+ b)/2� |J |/8, (a+ b)/2 + |J |/8] such that the RHS of (109) is as
small as possible. (Clearly with these choices we have [j, j + L+ kq0] ⇢ J .) If we sum of the RHS of (109) for
j from the above range, then this sum is bounded by Ok(

P
i2J

k ikR/Z + k 0
i
kR/Z) = O(

p
nT ) = O(n1/2+⌧⇤)

because each term k ikR/Z appears a bounded number of times in the total sum. Hence by averaging, there
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exists j 2 [(a+ b)/2� |J |/8, (a+ b)/2 + |J |/8] such that the RHS of (109) is bounded by O(n1/2+⌧⇤/(|J |/4)) =
O(n�1/2+7⌧⇤).

Putting together, with such choice of L and j, the equation (109) implies that

|(1� zq0)
k|⇥ n�8⌧⇤  O(n�1/2+7⌧⇤).

Thus we have that |(1� zq0)
k|  n�1/2+15⌧⇤ in this case, and so with su�ciently small ⌧⇤

|1� zq0 |  n�1/3k. (111)

As of this point, recall that zq0 = e(q0t/n). Because (111) holds for any q0 = lp0 satisfying (110), we thus have
for all 1  l  n1�8⌧⇤  |J |/(8kp0)

|1� e(lp0t/n)|  n�1/3k. (112)

As of this point we then use the following elementary result to obtain more information on t.

Claim 9.6. Assume that z = e(✓), |✓|  ⇡/8 such that for all 1  l  M we have |1�zl|  1/32 for a su�ciently

large M . Then |✓| = O(1/M).

Proof. By assumption, |✓|  ⇡/8 and k2m✓kR/Z  ⇡/8 for all 1  m  logM , and so we can repeatedly estimate
|✓| to obtain |✓| = O(1/M). ⇤

Claim 9.6 and (112) then implies that for large enough n,

kp0t/⇡nkR/Z = O(n�1+8⌧⇤).

However this contradicts Condition 1 because p0  A = n⌧⇤ and ⌧⇤ is su�ciently small given ⌧ .

Subcase 2. Now we consider the remaining (very degenerate) case that |d2|  n�⌧⇤ . Then |d1| ⇣ kDk2 � n1�4⌧ .
In the case that d1|zq0 � 1|  n4⌧⇤ then we have

|zq0 � 1|  n�1+4⌧�4⌧⇤ .

In the other case that d1|zq0 � 1| � n4⌧⇤ , then this term dominates all other terms involving d2 on the LHS of
(108) (because each of which has order O(1) as d2 is small). So we have

|(1� zq0)
k|d1/2  2k

kX

i=0

k j+iq0kR/Z + 2k 0
j+iq0

kR/Z = O(1).

Hence,

|zq0 � 1| = O(1/d1/k1 )  n�1/2k.

Thus from both scenarios on the magnitude of d1|zq0 �1| we at least have |zq0 �1|  n�1/2k. We can then repeat
the argument as in the previous case to vary q0 and use Claim 9.6. It thus also follows that kp0t/⇡nkR/Z =
O(n�1+8⌧⇤), which is again impossible.

Before concluding this section, as our approach to prove Proposition 9.1 starts with (96), by considering subin-
tervals of J when needed (where we note that at least one of such subintervals still has length ⌦(n/T 6)), we
obtain the following analog of Theorem 2.4.
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Theorem 9.7. Let C⇤ and ` be given positive constants, and t satisfies Condition 1 for some su�ciently small

constant ⌧ . The following holds for su�ciently large n and su�ciently small ⌧⇤ (depending on C⇤, ⌧ and `). For

any n5⌧�1/2  kxk2  nC⇤ , for any set I ⇢ [n] of at most ` entries we have

|
Y

i/2I

�i(x)|  exp(�n⌧⇤).

10. Characteristic functions in R4, proof of Theorem 2.5

In this section we continue our “inverse-type” analysis of the characteristic functions, but now in R4. As there
are two parameters s, t from Condition 2, the situation is much more complicated, but we will call on the previous
sections whenever possible.

First we show the following analog of Claim 9.2.

Claim 10.1. Assume that ⌧⇤ is su�ciently small given ⌧ , and assume that s, t satisfy Condition 2. Let I =
{a+ lq, 0  l  L} ⇢ [n] be any arithmetic progression of length L = n1�6⌧⇤ . Then

(1) For all "1, "2, "3, "4 2 {�1, 1} and ✓ 2 [�⇡,⇡], and for any positive integer A0 = O(n⌧⇤) there exists

i 2 I so that

"1 sin(iA0s/n+ ✓), "2 cos(iA0s/n+ ✓), "3 sin(iA0t/n+ ✓), "4 cos(iA0t/n+ ✓) > 0.

(2) For any unit vector e 2 R4
we have

X

i2I

he,vii2 � n1�⌧
and

X

i2[n]

he,v0
i
i2 � n1�⌧ . (113)

Proof. Note that q  n/L  n6⌧⇤ , which is much smaller than n⌧ if ⌧⇤ is chosen su�ciently small. We first show
(113) for vi, given any unit vector e = (x1, x2, x3, x4). First, replacing s, t by qs, qt and rotate e if need, without
loss of generality we assume that I = [0, L]. Then

X

i2I

he,vii2 =
X

i

(x1 cos(it/n)� x2(i/n) sin(it/n) + x3 cos(is/n)� x4(i/n) sin(is/n))
2

The sum over the diagonal terms, under Condition 2 (and hence Condition 1) for s and t separately, is of order
L3/n2 � n1�⌧ . We thus need to work with the cross terms

A1 =
X

i2I

(i/n) sin(it/n) cos(it/n), B1 =
X

i2I

(i/n) sin(is/n) cos(is/n)

and

C1 =
X

i2I

cos(is/n) cos(it/n), D1 =
X

i2I

(i/n)2 cos(is/n) cos(it/n)

and

E1 =
X

i2I

sin(is/n) sin(it/n), F1 =
X

i2I

(i/n)2 sin(is/n) sin(it/n).
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We show that under the condition on s, t (and (qs, qt)) from the claim these terms are all of order o(n1�⌧ )
(actually we obtain a slightly stronger bound). First for A1 and B1, with t0 = t/n we write

|A1| = |
X

i2I

(i/n) sin(it0) cos(it0)| = |1
2

X

i2I

(i/n) sin(2it0)| = 1

4n
| @
@t0

(
X

i2I

cos(2it0))|

=
1

4n
| @
@t0

Re[
LX

i=0

e(2it0)]| = 1

4n
| @
@t0

Re[
e(2(L+ 1)t0)� 1

e(2t0)� 1
]|.

After some simplifications we obtain

|A1| = O
⇣L
n

1

| sin t0| +
1

n

1

(sin t0)2

⌘
= O(n1�8⌧ ),

where we used Condition 2 (more precisely Condition 1) that kt0/⇡kR/Z � n�1+8⌧ .

Let’s next work with the terms involving s, t, such as D1. We have

2D1 =
X

i2I

(i/n)2(cos(is/n� it/n) + cos(is/n+ it/n)) = (�
X

i2I

cos(ix/n))
00
|x=s�t + (�

X

i2I

cos(ix/n))
00
|x=s+t

= (
sin((L+ 1/2)x/n)

sin(x/2n)
� 1)

00
|x=s�t + (

sin((L+ 1/2)x/n)

sin(x/2n)
� 1)

00
|x=s+t = O

⇣ 1

| sin3((s� t)/2n)|
+

1

| sin3((s+ t)/2n)|

+
1

n

1

| sin2((s� t)/2n)|
+

1

n

1

| sin2((s+ t)/2n)|
+

1

n2

1

| sin((s� t)/2n)| +
1

n2

1

| sin2((s+ t)/2n)|

⌘
.

It thus follows that, because |(s� t)/⇡n|R/Z � n�1+8⌧ and |(s+ t)/⇡n|R/Z � n�1+8⌧ ,

|D1| = O(n1�8⌧ ).

The treatments for C1, E1, F1 are somewhat simpler, and hence we omit.

Now we focus on the first part. By the (quantitative) Weyl’s equi-distribution criterion on T2 (see for instance
[62, Proposition 9; Exercises 18, 19]) if the sequence {(i(qA0s/⇡n) + ✓, i(qA0t/⇡n) + ✓), 1  i  L} in the two
dimensional torus (R/Z)2, where A0 = O(n⌧⇤) and q  n6⌧⇤ , is not �-equidistributed 5 (for some fixed su�ciently
small constant � to guarantee the sign changes) then there exist positive integers k0, l0 = nO⌧⇤ (1) such that

kk0(A0qs/⇡n) + l0(A0qt/⇡n)kR/Z = O(
nO⌧⇤ (1)

L
) = O(

1

n1�8⌧
),

provided that ⌧⇤ is su�ciently small compared to ⌧ . This contradicts with our condition. ⇤

Let D = (d1, d2, d3, d4) 2 R4 be any non-zero vector and let e be the unit vector in the direction of D. For
s, t 2 [�n⇡, n⇡] we define

 i := hD,vii = d1 cos(it/n)� d2
i

n
sin(it/n) + d3 cos(is/n)� d4

i

n
sin(is/n) (114)

 0
i
:= hD,v0

i
i = d1 sin(it/n) + d2

i

n
cos(it/n) + d3 sin(is/n) + d4

i

n
cos(is/n). (115)

Define T = n⌧⇤ . Our key ingredient in the proof of Theorem 2.5 is the following analog of Proposition 9.1.

Proposition 10.2. Assume that s, t satisfy Condition 2. We have

X

j

k jk2R/Z +
X

j

k 0
j
k2R/Z � T.

5Actually we just need the points to appear in all four quadrants of the plane.
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It is clear this result implies Theorem 2.5 via (89), (90) and (91). For the rest of this section we prove Proposition
10.2 by contradiction: assume the opposite that we have

X

j

k jk2R/Z + k 0
j
k2R/Z  T. (116)

We will then show that this is impossible as long as s, t satisfy Condition 2. First, argue as in (96), it follows
from (116) that there exists an interval J = [a, b] ⇢ [n] of length n/T 6 so that for j 2 J

k jkR/Z + k 0
j
kR/Z < 1/T. (117)

Di↵erencing. Let A, k be chosen as in (97). We then can find p0 2 Z, p0 6= 0 and s0, t0 so that

p0
s

2⇡n
� s0 2 Z, p0

t

2⇡n
� t0 2 Z, 1  |p0|  A, |s0|2 + |t0|2  4

A
. (118)

Indeed, consider the sequence of pairs ({q(s/2⇡n)}, {q(t/2⇡n)}), 1  q  A in [0, 1]2. Using Dirichlet’s principle,
there exists q1, q2 such that the distance of the pairs is at most 2/

p
A. In other words,

|{q1(s/2⇡n)}� {q2(s/2⇡n)}|2 + |{q1(t/2⇡n)}� {q2(t/2⇡n)}|2  4

A
.

This implies that there exists integers p1, p2 such that

|(q1 � q2)(s/2⇡n)� p1|2 + |(q1 � q2)(t/2⇡n)� p2|2  4

A
.

Set s0 = (q1 � q2)(s/2⇡n)� p1 and t0 = (q1 � q2)(t/2⇡n)� p1 and p0 = q1 � q2 we obtain as claimed.

From the approximation we infer that

|e(p0
t

n
)� 1| = |e(2⇡t0)� 1|  |2 sin(⇡t0)|  4⇡/

p
A (119)

and
|e(p0

s

n
)� 1| = |e(2⇡s0)� 1|  |2 sin(⇡s0)|  4⇡/

p
A. (120)

Next, consider the di↵erential operation �kgj,pp as in the previous section. Let mj and m0
j
be the integers

closest to  j and  0
j
respectively. We then have

Lemma 10.3. We have

|�kmj,p0 |+ |�km0
j,p0

|  4kDk2
(4⇡)k

A(k�3)/2
+ 4⇥ 2k

1

T
(121)

provided that [j, j + kp0] ⇢ J .

Proof of Lemma 10.3. Argue similarly as in the proof of Lemma 9.3, by using (119) and (120) we can show that

|�k j | = |
kX

i=0

✓
k

i

◆
(�1)i j+ip0 |  (|d1|+ |d3|)(

4⇡p
A
)k + (|d2|+ |d4|)

(4⇡)k

A(k�3)/2
< 4kDk2

(4⇡)k

A(k�3)/2
.

One can also obtain similarly estimates for |�k 0
j
|. It thus follows that

|�kmj |  |�k j+lp0 |+ |�k( j+lp0 �mj+lp0)|

 4kDk2
(4⇡)k

A(k�3)/2
+ 4⇥ 2k

1

T
,

and similarly for |�km0
j
|. ⇤
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As of this point, we choose A and k as in (105). Then as long as {j, j + p0, . . . , j + kp0} ⇢ J = [a, b] we must
have

�kmj,p0 = 0 and �km0
j,p0

= 0. (122)

This results into the following analog of Lemma 9.4.

Lemma 10.4. For given j 2 J , there exists a polynomial of degree at most k so that for any 0  i  (b� j)/p0
we have

mj+ip0 = Pj,p0(i).

We also have a similarly conclusion for m0
j+ip0

.

We again note that this result holds for any j such that [j, j + kp0] ⇢ J . We next consider the case that kDk2
is small.

Case 1. Assume that kDk2  n1�4⌧ . Here our treatment is identical to Case 1. of the previous proof, that
we can deduce from here that mj+lp0 = mj , 8j, l 2 Z, [j + lp0, j + (l + k)p0] ⇢ J = [a, b] and as over the
interval I = (a � j)/p0  l  (b � j)/p0 � O(1), the condition of s, t in 2 shows that  j+lp0 = d1 cos((j +

lp0)t)� d2
i

n
sin((j + lp0)t) + d3 cos((j + lp0)s/n)� d4

(j+lp0)
n

sin((j + lp0)s/n) changes size and this implies that
mj+lp0 = 0 for all l in the range I above.

One will then have
X

i

khvi,Dik2R/Z + khv0
i
,Dik2R/Z �

X

l2I

khuj+lp0 ,Dik2R/Z +
X

l2I

khv0
j+lp0

,Dik22

=
X

l2I

khvj+lp0 ,Dik22 +
X

l2I

khv0
j+lp0

,Dik22

= kDk22
X

l2I

hvj+lp0 , ei2 + hv0
j+lp0

, ei2 � r2n1�8⌧ > n2⌧ ,

where we used the second point of Claim 10.1. This bound contradicts (116).

Case 2. Assume that n1�4⌧  kDk2  nC⇤ . In this case our “inverse” analysis is more complicated than that
of the previous section because there are two unknowns. Nevertheless, our final bounds are almost optimal.

Recall that
P

j2J
k jk2R/Z + k 0

j
k2R/Z  T and by Cauchy-Schwarz we have

X

j2J

k jkR/Z + k 0
j
kR/Z  2

p
nT .

By reapplying the di↵erential process as in Case 2 of Section 9 (this time for s and t) with q0 = lp0 for a given
positive integer l. Set

zq0,t = e(q0t/n) and zq0,s = e(q0s/n). (123)

By the polynomial properties of the mj+ip0 = P (i) for a polynomial P of degree at most k � 1, we the obtain
the following analog of (108).

���(1� zq0,t)
k�1e(jt/n)

⇣
d1(1� zq0,t) +

p
�1d2

�kq0
n

+
p
�1d2(1� zq0,t)

j

n

⌘

+ (1� zq0(s))
k�1e(js/n)

⇣
d3(1� zs) +

p
�1d4

�kq0
n

+
p
�1d4(1� zs)

j

n

⌘���

 2k
kX

i=0

k j+iq0kR/Z + k 0
j+iq0

kR/Z. (124)
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In what follows, for a fixed q0, we will take advantage of the above inequality by varying j and eliminate the
terms involving (1� zs). Let L be a parameter to be chosen, we show the following

Lemma 10.5. Assume that [j1, j1 + j + L+ kq0] ⇢ J = [a, b]. We then have

|(1� zq0,t)
k|⇥ (d2

j

n
)|(e(L(s� t)/n)� 1)|2

 2k
kX

i=0

k j1+iq0kR/Z + 2k j1+L+iq0kR/Z + k j1+2L+iq0kR/Z

+ 2k
kX

i=0

k 0
j1+iq0

kR/Z + 2k 0
j1+L+iq0

kR/Z + k 0
j1+2L+iq0

kR/Z

+ 2k
kX

i=0

k j1+j+iq0kR/Z + 2k j1+j+L+iq0kR/Z + k j1+j+2L+iq0kR/Z

+ 2k
kX

i=0

k 0
j1+j+iq0

kR/Z + 2k 0
j1+j+L+iq0

kR/Z + k 0
j1+j+2L+iq0

kR/Z.

We also have the same bound for |(1� zq0,s)
k|⇥ (d4

j

n
)|(e(L(s� t)/n)� 1)|2.

Proof. In what follows we note that if [j1, j1 + j + L+ kq0] ⇢ J then automatically [j1, j1 + kq0] [ [j1 + L, j1 +
L + kq0] [ [j1 + j, j1 + j + kq0] [ [j1 + j + L, j1 + j + L + kq0] ⇢ J , and so we can apply the followings as the
indices are all in J . First, multiply both side of (124) by e(Ls/n)

���(1� zq0,t)
k�1e(Ls/n)e(jt/n)

⇣
d1(1� zq0,t) +

p
�1d2

�kq0
n

+
p
�1d2(1� zq0,t)

j

n

⌘

+ (1� zq0,s)
k�1e((j + L)s/n)

⇣
d3(1� zq0,s) +

p
�1d4

�kq0
n

+
p
�1d4(1� zq0,s)

j

n

⌘���

 2k
kX

i=0

k j+iq0kR/Z + k 0
j+iq0

kR/Z.

One the other hand, (124) applied for j being replaced by j + L shows

���(1� zq0,t)
k�1e((j + L)t/n)

⇣
d1(1� zq0,t) +

p
�1d2

�kq0
n

+
p
�1d2(1� zq0,t)

j + L

n

⌘

+ (1� zq0,s)
k�1e((j + L)s/n)

⇣
d3(1� zq0,s) +

p
�1d4

�kq0
n

+
p
�1d4(1� zq0,s)

j + L

n

⌘���

 2k
kX

i=0

k j+L+iq0kR/Z + k 0
j+L+iq0

kR/Z.
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By the triangle inequality, it follows from these two inequalities that

���(1� zq0,t)
k�1e(Ls/n)e(jt/n)

⇣
d1(1� zq0,t) +

p
�1d2

�kq0
n

+
p
�1d2(1� zq0,t)

j

n

⌘

� (1� zq0,t)
k�1e((j + L)t/n)

⇣
d1(1� zq0,t) +

p
�1d2

�kq0
n

+
p
�1d2(1� zq0,t)

j + L

n

⌘

� (1� zq0,s)
k�1e((j + L)s/n)

p
�1d4(1� zq0,s)

L

n

���

 2k
kX

i=0

k j+iq0kR/Z + k 0
j+iq0

kR/Z + 2k
kX

i=0

k j+L+iq0kR/Z + k 0
j+L+iq0

kR/Z. (125)

Multiply both sides with e(Ls/n) again we obtain

���(1� zq0,t)
k�1e(2Ls/n)e(jt/n)

⇣
d1(1� zq0,t) +

p
�1d2

�kq0
n

+
p
�1d2(1� zq0,t)

j

n

⌘

� (1� zq0,t)
k�1e(Ls/n)e((j + L)t/n)

⇣
d1(1� zq0,t) +

p
�1d2

�kq0
n

+
p
�1d2(1� zq0,t)

j + L

n

⌘

� (1� zq0,s)
k�1e((j + 2L)s/n)

p
�1d4(1� zq0,s)

L

n

���

 2k
kX

i=0

k j+iq0kR/Z + k 0
j+iq0

kR/Z + 2k
kX

i=0

k j+L+iq0kR/Z + k 0
j+L+iq0

kR/Z.

Applying the triangle inequality once more, it follows from this inequality and from (125) applied for j being
replaced by j + L we can eliminate (1� zs)k�1e((j + 2L)s/n) and obtain

���(1� zq0,t)
k�1e(2Ls/n)e(jt/n)

⇣
d1(1� zq0,t) +

p
�1d2

�kq0
n

+
p
�1d2(1� zq0,t)

j

n

⌘

� (1� zq0,t)
k�1e(Ls/n)e((j + L)t/n)

⇣
d1(1� zq0,t) +

p
�1d2

�kq0
n

+
p
�1d2(1� zq0,t)

j + L

n

⌘

� (1� zq0,t)
k�1e(Ls/n)e((j + L)t/n)

⇣
d1(1� zq0,t) +

p
�1d2

�kq0
n

+
p
�1d2(1� zq0,t)

j + L

n

⌘

+ (1� zq0,t)
k�1e((j + 2L)t/n)

⇣
d1(1� zq0,t) +

p
�1d2

�kq0
n

+
p
�1d2(1� zq0,t)

j + 2L

n

⌘���

 2k
kX

i=0

k j+iq0kR/Z + k 0
j+iq0

kR/Z + 2k
kX

i=0

k j+L+iq0kR/Z + k 0
j+L+iq0

kR/Z

+ 2k
kX

i=0

k j+L+iq0kR/Z + k 0
j+L+iq0

kR/Z + 2k
kX

i=0

k j+2L+iq0kR/Z + k 0
j+2L+iq0

kR/Z.
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After pulling out the common factor (1� zq0,t)
k�1e(jt/n) and simplifying we then have

|(1� zq0,t)
k�1|⇥

���
�
d1(1� zq0,t) +

p
�1d2

�kq0
n

+
p
�1d2(1� zq0,t)

j

n

�
(e(Ls/n)� e(Lt/n))2

+
p
�1d2(1� zq0,t)

2L

n
(e(2Lt/n)� e(Ls/n)e(Lt/n))

���

 2k
kX

i=0

k j+iq0kR/Z + 2k j+L+iq0kR/Z + k j+2L+iq0kR/Z

+ 2k
kX

i=0

k 0
j+iq0

kR/Z + 2k 0
j+L+iq0

kR/Z + k 0
j+2L+iq0

kR/Z. (126)

Now if we apply (126) for j = j1 and j = j1 + j, and then use the triangle inequality once more we have

|(1� zq0,t)
k�1|⇥ (d2(1� zq0,t)

j

n
)|(e(L(s� t)/n)� 1)|2

 2k
kX

i=0

k j1+iq0kR/Z + 2k j1+L+iq0kR/Z + k j1+2L+iq0kR/Z

+ 2k
kX

i=0

k 0
j1+iq0

kR/Z + 2k 0
j1+L+iq0

kR/Z + k 0
j1+2L+iq0

kR/Z

+ 2k
kX

i=0

k j1+j+iq0kR/Z + 2k j1+j+L+iq0kR/Z + k j1+j+2L+iq0kR/Z

+ 2k
kX

i=0

k 0
j1+j+iq0

kR/Z + 2k 0
j1+j+L+iq0

kR/Z + k 0
j1+j+2L+iq0

kR/Z. (127)

The bound for |(1� zq0,s)
k�1|⇥ (d4(1� zq0,s)

j

n
)|(e(L(s� t)/n)� 1)|2 is identical, and we omit.

⇤

Using the obtained inequalities, we can conclude the section as follows.

Proof of Proposition 10.2. Recall the notation J = [a, b]. We will work with q0 so that kq0  |J |/2. We divide
the treatment into two cases depending on the parameters d1, d2, d3, d4.

Subcase 1. Assume that either |d2| � n�⌧⇤ or |d4| � n�⌧⇤ . Without loss of generality we assume the first case.
Notice that with j = n1�8⌧⇤ , then |jd2|/n � n�9⌧⇤ , while as by Condition 2, k(s� t)/nkR/Z � n�1+8⌧ , so there
exists 1  L  |J |/2 = n1�6⌧⇤/2 such that |e(L(s� t)/n)� 1| � n�⌧⇤ . Let us fix such an L.

We next observe that the RHS of (127), for some j1 from the interval a  j1  b� 2L� kq0 (there are at least
|J |/3 such j1), is at most O(n�1/2+7⌧⇤). Indeed, this is because the sum of the RHS of (127) for j1 from the
above range is bounded by O(

P
j2J

k jkR/Z+k 0
j
kR/Z) = O(

p
nT ) = O(n1/2+⌧⇤) (as each term k ikR/Z appears

a bounded number of times in the total sum).

Putting together, with such choice of L and j1, the equation (127) implies that

|(1� zq0,t)
k|⇥ n�9⌧⇤  O(n�1/2+7⌧⇤).
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Thus we have that |(1� zq0,t)
k|  n�1/2+16⌧⇤ in this case, and so with su�ciently small ⌧⇤

|1� zq0,t|  n�1/3k. (128)

Recall that zq0,t = e(q0t/n). Because (128) holds for any q0 = lp0 as long as kq0  |J |/2, we thus have for all
1  l  n1�8⌧⇤ ,

|1� e(lp0t/n)|  n�1/3k. (129)

As a consequence, by Claim 9.6 we then have

kp0t/⇡nkR/Z = O(n�1+8⌧⇤),

which contradicts Condition 2.

Subcase 2. Now we consider the remaining case that |d2|, |d4|  n�⌧⇤ . Without loss of generality we assume
|d1| ⇣ kDk2 � n1�4⌧ . In the case that d1|zq0 � 1|  n4⌧⇤ then we have

|zq0 � 1|  n�1+4⌧�4⌧⇤ .

In the other case that d1|zq0�1| � n4⌧⇤ , then with L so that |e(L(s�t)/n)�1| � n�⌧⇤ as in the previous subcase,
the factor d1|zq0 � 1|((e(L(s� t)/n)� 1)) is at least n3⌧⇤ , which clearly dominates all other terms involving d2
on the LHS of (126) (because each of which has order O(1) as d2 is small). So by (126) we have

|(1� zq0)
k|d1/2  2k

kX

i=0

k j+iq0kR/Z + 2k j+L+iq0kR/Z + k j+2L+iq0kR/Z

+ 2k
kX

i=0

k 0
j+iq0

kR/Z + 2k 0
j+L+iq0

kR/Z + k 0
j+2L+iq0

kR/Z

= O(1).

Hence,

|zq0 � 1| = O(1/d1/k1 ) = O(n�1/2k).

Thus from both cases we always have |zq0 � 1| = O(n�1/2k). Varying q0 and using Claim 9.6 we deduce that
kp0t/⇡nkR/Z = O(n�1+8⌧⇤), a contradiction. ⇤

Finally, similarly to Theorem 9.7, as our approach to prove Proposition 10.2 starts with (117), by passing to
subintervals of J when needed we obtain the following analog of Theorem 2.5.

Theorem 10.6. Let C⇤ and ` be given positive constants, and s, t satisfy Condition 2 for some su�ciently small

constant ⌧ . Then following holds for su�ciently large n and su�ciently small ⌧⇤ (depending on C⇤, ⌧ and `).
For any n5⌧�1/2  kxk2  nC⇤ , for any set I ⇢ [n] of at most ` entries we have

|
Y

i/2I

�i(x)|  exp(�n⌧⇤).
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