
HILBERT’S IRREDUCIBILITY THEOREM AND IDEAL

CLASS GROUPS OF QUADRATIC FIELDS

KAIVALYA R. KULKARNI AND AARON LEVIN

Abstract. We prove a version of Hilbert’s Irreducibility Theorem in
the quadratic case, giving a quantitative improvement to a result of
Bilu-Gillibert in this restricted setting. As an application, we give im-
provements to several quantitative results counting quadratic fields with
certain types of ideal class groups. The proof of the main theorem is
based on a result of Stewart and Top on values of binary forms modulo
squares.

1. Introduction

The Hilbert Irreducibility Theorem plays a key role in recent approaches
to constructing and counting number fields with a large ideal class group
(originating in work of the second author [13] and joint work of the second
author with Gillibert [9]). Recent applications of these techniques to study
ideal class groups include work of Bilu-Gillibert [1], A. Kulkarni [12], work
of the second author with Gillibert [10], and work of the second author with
Wiljanen and Yan [14].

LetH(α) denote the absolute multiplicative height of an algebraic number
α. If α = p/q ∈ Q is written in reduced form, then H(p/q) = max{|p|, |q|}.
Partially in pursuit of applications to ideal class groups, Bilu and Gillibert
[1, Th. 3.1] proved the following version of Hilbert’s Irreducibility Theorem
(building on an enumerative result of Dvornicich and Zannier [8]):

Theorem 1.1 (Bilu-Gillibert [1, Th. 3.1]). Let k be a number field of degree
ℓ over Q. Let C be a curve over k and ϕ : C → P1 a morphism (over k)
of degree d. Let S be a finite set of places of k, ϵ > 0, and ℧ a thin subset
of k [1, §3.1]. Then there exist constants B0 and c such that for all B ≥ B0,
among the number fields k(P ), where the point P ∈ C(k̄) satisfies

ϕ(P ) ∈ k \ ℧,
|ϕ(P )|v < ϵ, ∀v ∈ S,

H(ϕ(P )) ≤ B,

there exist at least cBℓ/ logB distinct fields of degree d over k.
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It was remarked by Bilu and Gillibert [1, Rem. 3.2] that Theorem 1.1
likely holds with a lower bound of the form cB2ℓ/(logB)A for some A > 0.
Our main result shows that this predicted lower bound holds (with A = 2)
when k = Q, ℓ = 1, and d = 2:

Theorem 1.2. Let C be a curve over Q and ϕ : C → P1 a morphism of
degree 2. Let S be a finite set of places of Q, ϵ > 0, and ℧ a thin subset
of Q. Then there exist constants B0 and c such that for all B ≥ B0, among
the number fields Q(P ), where the point P ∈ C(Q) satisfies

ϕ(P ) ∈ Q \ ℧,
|ϕ(P )|v < ϵ, ∀v ∈ S,

H(ϕ(P )) ≤ B,

there exist at least cB2/(logB)2 distinct quadratic fields over Q.

Using Theorem 1.2 in place of Theorem 1.1 allows us to recover and im-
prove on several enumerative results involving ideal class groups of quadratic
number fields. Given an integer m > 1, it has been known since Nagell [17]
that there are infinitely many imaginary quadratic number fields with class
number divisible by m, and the analogous result for real quadratic fields was
proved independently by Yamamoto [22] and Weinberger [21]. Quantitative
results giving a lower bound for the number of such fields were given by
Murty [16], Soundararajan [19], and Yu [23].

More generally, one can study the m-rank of the ideal class group. If A
is a finitely generated abelian group, we define the m-rank of A, rkmA, to
be the largest integer r such that A has a subgroup isomorphic to (Z/mZ)r.
For a number field k, we let Cl(k) denote its ideal class group and let dk
denote its (absolute) discriminant.

As an application of Theorem 1.2, we first state a general result counting
quadratic number fields with a large class group generated, via the technique
of [9], from a hyperelliptic curve with a rational Weierstrass point and a
large rational torsion subgroup in its Jacobian. The result is identical to [9,
Cor. 3.2], except that we improve the lower bound for an asymptotic count

of such fields, by discriminant, from X
1

2g+1 / logX to X
1

g+1 /(logX)2 (up to
a constant factor).

Theorem 1.3. Let C be a smooth projective hyperelliptic curve over Q
with a Q-rational Weierstrass point. Let g denote the genus of C and let
Jac(C)(Q)tors denote the rational torsion subgroup of the Jacobian of C.

Let m > 1 be an integer. Then there exist ≫ X
1

g+1

(logX)2
imaginary quadratic

number fields k with

rkmCl(k) ≥ rkm Jac(C)(Q)tors, |dk| < X,

and ≫ X
1

g+1

(logX)2
real quadratic number fields k with

rkmCl(k) ≥ rkm Jac(C)(Q)tors − 1, dk < X.
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We let N−(mr;X) and N+(mr;X) denote the number of imaginary qua-
dratic and real quadratic number fields k, respectively, with discriminant dk
satisfying |dk| ≤ X and such that rkmCl(k) ≥ r.

By noting (see [9, Lemma 3.3]) that for c ∈ Q \ {0,±1}, the smooth
projective hyperelliptic curve C with affine equation

y2 = x2m − (1 + c2)xm + c2

has genus m − 1, a rational Weierstrass point, and rkm Jac(C)(Q)tors ≥ 2,
we find as a corollary:

Corollary 1.4. Let m > 1 be an integer. Then

N−(m2;X) ≫ X
1
m /(logX)2,

N+(m;X) ≫ X
1
m /(logX)2.

Whenm is odd, this yields a small improvement to results of Byeon [2] and

Yu [23] (following results of Murty [16]), who proved N−(m2;X) ≫ X
1
m
−ϵ

andN+(m;X) ≫ X
1
m
−ϵ, respectively. Whenm is even, in the real quadratic

case Chakraborty, Luca, and Mukhopadhyay [6] (see also [15]) proved the

logarithmically better bound N+(m;X) ≫ X
1
m . When m is even and k is

imaginary quadratic, Corollary 1.4 appears to be new and fills a gap in the
literature, bringing this case in line with the other known results.

For small values of m better results are known (see results of Byeon [3, 4]
for m = 5, 7). We discuss the case m = 3, where Theorem 1.2 again allows
us to make quantitative improvements to some of the known results. In the
case of class number divisibility by 3, Heath-Brown [11] showed N±(3;X) ≫
X

9
10

−ϵ, improving on [5, 7, 23]. For 3-rank 2, Luca and Pacelli proved

N±(32;X) ≫ X
1
3 , and recently Yu [24] improved this in the imaginary

quadratic case, finding N−(32;X) ≫ X
1
2
−ϵ.

For higher 3-rank, it was shown by the second author and Wiljanen and

Yan [14] that N−(33;X) ≫ X
1
9 / logX, N+(34;X) ≫ X

1
30 / logX, and

N−(35;X) ≫ X
1
30 / logX. Using Theorem 1.2, we are able to improve

these results.

Theorem 1.5. We have

N−(33;X) ≫ X
1
5

(logX)2
,

N+(34;X) ≫ X
1
15

(logX)2
,

N−(35;X) ≫ X
1
15

(logX)2
.

The proof of our main theorem (Theorem 1.2), given in Section 3, is based
on a result of Stewart and Top [20] on the squarefree part of values of binary
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forms, which we describe in the next section. In the final section we briefly
describe the proofs of the applications to ideal class groups (Theorem 1.3
and Theorem 1.5).

2. Values of binary forms modulo kth powers

For a positive integer k and integer n, we say that n is k-free if n is not
divisible by the kth power of a prime. The main tool in proving Theorem 1.2
is a slight variation of a result of Stewart and Top [20, Th. 2].

Theorem 2.1 (Stewart-Top). Let A,B,M , and k be integers with M ≥ 1
and k ≥ 2. Let F be a binary form with integer coefficients and degree r
which is not a constant multiple of a power of a linear form and which is
not divisible over Q by the kth power of a non-constant binary form. Let

C(x) := {(a, b) ∈ N× N| 0 < a, b ≤ x1/r and (a, b) ≡ (A,B) mod M}.
Let Sk(x) denote the number of k-free integers t such that |t| ≤ x and
F (a, b) = tzk for some z ∈ Z, (a, b) ∈ C(x). Then,

Sk(x) ≫
x

2
r

(log x)2
.

Stewart and Top’s original result did not require the integers a and b
to be positive, and did not place a bound on a and b. Since the proof of
Theorem 2.1 only requires slight modifications to their original proof, we
give a sketch of the proof highlighting the necessary changes.

Proof. Following Stewart and Top, we may write F as a product F1F2 · · ·Fl

of binary forms with integer coefficients, such that Fi+1 divides Fi for all
1 ≤ i ≤ l − 1, and Fi has nonzero discriminant for i = 1, . . . , l. Then F1

may be written as a product of nonconstant forms G1 · · ·Gm where Gi is
irreducible in Q[x, y] for all i.

The proof of Theorem 2 in [20] is divided into three cases: (1) some Gi

is nonlinear, (2) G1, . . . , Gm are linear and m ≥ 3, and (3) G1, . . . , Gm are
linear and m = 2. In each case, we claim that the constructions used in [20]
may be modified so that the integers a and b used are positive.

In Case (1), a and b are positive integral linear combinations of integers
r0, s0, r1, s1, where for a certain given lattice Λp ⊂ Z2, (r0, s0) ∈ Λp is
chosen such that max{|r0|, |s0|} is minimal, and (r1, s1) is chosen such that
v0 = (r0, s0), v1 = (r1, s1) is a basis of Λp and max{|r1|, |s1|} is minimal.
Then we use the following lemma:

Lemma 2.2. Let Λ ⊂ Z2 be a lattice of rank 2. Let (r0, s0) ∈ Λ be chosen
such that max{|r0|, |s0|} is minimal, and (r1, s1) chosen such that v0 =
(r0, s0), v1 = (r1, s1) is a basis of Λ and max{|r1|, |s1|} is minimal. Let
M = max{|r0|, |s0|, |r1|, |s1|}. Then there exists a basis v′0 = (r′0, s

′
0), v

′
1 =

(r′1, s
′
1) ∈ Λ with r′0, s

′
0, r

′
1, s1 ≥ 0 such that

max{|r′0|, |s′0|, |r′1|, |s′1|} ≤ 3max{|r0|, |s0|, |r1|, |s1|} = 3M.(2.1)
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Proof. Suppose first that r0 and s0 have the same sign or that r0s0 = 0.
Then after possibly replacing v0 by −v0 and v1 by −v1, and after possibly
interchanging the coordinates, we may assume that r0 ≥ s0 ≥ 0 and r1 ≥ 0.
If s1 ≥ 0, then clearly we may take v′0 = v0 and v′1 = v0. So we may assume
s1 < 0.

Note that r0 ̸= 0 and let n = ⌈r1/r0⌉. Let v′0 = v0 and v′1 = nv0 − v1 =
(nr0−r1, ns0−s1). Then v′0, v′1 are a basis of Λ. Since r1/r0 ≤ n < r1/r0+1
and r0 ≥ s0, we have

0 ≤ nr0 − r1 < r0 ≤M

and

0 ≤ ns0 − s1 < r1 + s0 + |s1| ≤ 3M.

Thus, we see that v′0, v
′
1 satisfy the conclusions of the theorem. The same

proof, with the indices interchanged, works if r1 and s1 have the same sign
or if r1s1 = 0.

Suppose now that r0r1s0s1 ̸= 0 and the coordinates of vi have opposite
signs for i = 1, 2. Then after possibly replacing v0 by −v0 and v1 by −v1, we
may assume that r0, r1 > 0 and s0, s1 < 0. Then v1 − v0 = (r1 − r0, s1 − s0)
and |r1 − r0| < M , |s1 − s0| < M . Since v0, v1 − v0 is a basis of Λ, this
contradicts the minimality of v0 and v1, and this case is impossible. □

Then in Case (1), modifying the construction to use the nonnegative
integers r′0, s

′
0, r

′
1, s

′
1 in place of r0, s0, r1, s1 preserves the conclusions in this

case (with possibly slightly smaller constants).
In Case (2), the construction in [20] already uses positive integers a and

b.
In Case (3), a = A+kM, b = B+ lcM , and the parameters A,B, c, l,M, t

in the proof may all clearly be taken to be nonnegative. It only remains to
show that the parameter k in the proof may be constructed to be positive.
If d ≤ 0 then the existing proof already gives k = t − dl > 0. If d > 0
then we may replace k = t − dl with k = t + idl for some i ∈ {0, 1}
satisfying cf+ide ̸= 0, and the remainder of the proof remains substantially
unchanged.

Finally, we note that all of the constructions produce integers a and b
such that max{|a|, |b|} ≪ x1/r. Then replacing x by cx for an appropriately

small constant c > 0, we see that we may choose max{|a|, |b|} ≤ x1/r in the
constructions and, by the remainder of the proof in [20],

Sk(x) ≫
(cx)

2
r

(log cx)2
≫ x

2
r

(log x)2
.

□

3. Proof of Theorem 1.2

We need the following lemma for the proof of Theorem 1.2.
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Lemma 3.1. Let S be a finite set of places of Q, and let ϵ > 0. Then there
exists an invertible linear fractional transformation ψ ∈ Q(t) and integers
M , A, and B such that whenever ψ(t) = a/b, a, b > 0, a ≡ A (mod M), b ≡
B (mod M), we have |t|v < ϵ for all v ∈ S.

Proof. If S doesn’t contain the (unique) archimedean place ∞ of Q, then
this is straightforward (with ψ the identity). If S contains the archimedean
place, let N be an integer such that N > 1/ϵ and let

ψ(t) =
1−Nt

1 +Nt
.

Then it is easily verified that the inverse image of the real interval (0,+∞)
under ψ is (−1/N, 1/N) ⊂ (−ϵ, ϵ) and so if ψ(t) = a/b > 0, then |t|∞ < ϵ.
Since ψ−1(1) = 0, taking A = B = 1 and M divisible by sufficiently large
powers of the (finite) primes in S, we see that if a ≡ A (mod M), b ≡ B
(mod M) and ψ(t) = a/b, then |t|v < ϵ for all finite places v in S. □

We also need the following fact about thin sets [18, p. 133]:

Lemma 3.2. Let ℧ ⊂ Q be a thin set. Then for x > 0, there exist at most
O(x) rational numbers α such that α ∈ ℧ and H(α) < x.

We now prove Theorem 1.2.

Proof of Theorem 1.2. Let C, ϕ, S,℧, and ϵ be as in the statement of the the-
orem. Then ϕ induces a quadratic extension of function fields Q(C)/Q(t)

and we may write Q(C) = Q(
√︁
f(t)) for some nonconstant squarefree poly-

nomial f(t) ∈ Q[t]. Then C may be taken to have affine equation y2 = f(t),
where ϕ is induced by the projection onto the t-coordinate.

Let ψ,A,B, andM be as in Lemma 3.1 (with respect to ϵ and S). Let τ =
ψ−1 and write f(τ(X/Y )) = F (X,Y )R(X,Y )2 for some rational function
R(X,Y ) ∈ Q(X,Y ) and squarefree homogeneous polynomial F ∈ Z[X,Y ].
Since f is nonconstant squarefree, F is nonconstant, and looking at degrees
it follows easily that degF is even. Thus, degF ≥ 2. Then F satisfies the
hypotheses of Theorem 2.1 (with k = 2).

Let x be a positive real number. Let T (x) be the set of squarefree (i.e., 2-
free) integers t for which there exist positive integers a ≤ x and b ≤ x satisfy-
ing a ≡ A (mod M), b ≡ B (mod M), and F (a, b) = tz2 for some integer z.
Note that S2(x

degF ) gives a lower bound for the number of elements of T (x).
For each t ∈ T (x), let (at, bt) be a pair of positive integers satisfying the con-
ditions in the definition of t ∈ T (x), and let T ′(x) = {(at, bt) | t ∈ T (x)}.
Let

R(x) = {P ∈ C(Q) | ψ(ϕ(P )) = a/b, (a, b) ∈ T ′(x), ϕ(P ) ̸∈ ℧}.

Let P ∈ R(x). Then ψ(ϕ(P )) = at/bt = a/b, for some (at, bt) = (a, b) ∈
T ′(x) and t ∈ T (x). By construction, we have

ϕ(P ) = τ(a/b) ∈ Q \ ℧,(3.1)
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and by Lemma 3.1, we have

|ϕ(P )|v < ϵ(3.2)

for all v ∈ S. Note also that

Q(P ) = Q(
√︁
f(ϕ(P ))) = Q(

√︁
f(τ(at/bt))) = Q(

√︁
F (at, bt)R(at, bt)2)

= Q(
√︁
F (at, bt)) = Q(

√
t).

It follows that the fields Q(P ), P ∈ R(x), are all distinct. By elementary
properties of heights, for some positive constant c depending only on ψ,

H(ϕ(P )) ≤ cH(ψ(ϕ(P )))

and H(ψ(ϕ(P ))) = max{|a|, |b|} ≤ x. Rescaling, if P ∈ R(c−1x) then
H(ϕ(P )) ≤ x (and (3.1) and (3.2) hold). To finish the proof, it remains to
count the elements in R(c−1x).

Let ℧(x) = {α ∈ ℧ | H(α) < x}. By Lemma 3.2,

|℧(x)| ≪ x.

Then by Theorem 2.1,

|R(c−1x)| ≥ |T ′(c−1x)| − 2|℧(x)| ≥ S2((c
−1x)degF )− 2|℧(x)| ≫ x2

(log x)2
,

completing the proof.
□

4. Proof of Theorem 1.3 and Theorem 1.5

We take the following result from the proof of [9, Cor. 2.11]:

Theorem 4.1. Let C be a smooth projective curve over Q, and let m > 1.
Let S be the set of primes of bad reduction of C. Let ϕ : C → P1 be a
nonconstant morphism. Then there exists a thin set ℧ ⊂ Q such that if
P ∈ C(Q) and ϕ(P ) ∈ Q \ ℧, then [Q(P ) : Q] = deg ϕ and

rkmCl(Q(P )) ≥ rkm Jac(C)(Q)tors +#S − rkO∗
Q(P ),S ,

Here, O∗
Q(P ),S denotes the group of S′-units of Q(P ), where S′ consists of

the set of places of Q(P ) lying above S along with the archimedean places.
We now prove Theorem 1.3.

Proof of Theorem 1.3. Since C has a rational Weierstrass point, C is bira-
tional to an affine curve given by an equation y2 = f(x) with f ∈ Z[x] monic
and deg f = d odd. Let S be the set of primes of bad reduction of C and let
M =

∏︁
p∈S p. Let N be a large enough positive integer such that f(x) > 0 if

|x−N/M | < 1 and such that (M,N) = 1. Let ϕ : C → P1 be the morphism
induced by (x, y) ↦→ x − N/M and let ℧ be the thin set from Theorem
4.1 (for C, ϕ, and m). Let P ∈ C(Q) with ϕ(P ) ∈ Q \ ℧, |ϕ(P )|v < 1 for
all v ∈ S ∪ {∞}, and H(ϕ(P )) ≤ B. Let P = (x0, y0). Since ϕ(P ) ∈ Q,
we have x0 ∈ Q. For p ∈ S, by assumption |x0 − N/M |p < 1, and so
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ordp x0 = ordpN/M = −1. Since f ∈ Z[x] is monic, this implies that

ordp f(x0) = −d is odd and p ramifies in Q(P ) = Q(y0) = Q(
√︁
f(x0)). By

the choice of N , |ϕ(P )|∞ < 1 implies that f(x0) > 0 and Q(P ) is a real
quadratic field. Therefore, by Dirichlet’s unit theorem,

#S − rkO∗
Q(P ),S = − rkO∗

Q(P ) = −1.

Since ϕ(P ) ∈ Q \ ℧, by Theorem 4.1,

rkmCl(Q(P )) ≥ rkm Jac(C)(Q)tors − 1.

We now bound the discriminant of Q(P ). First note that H(ϕ(P )) ≤
B implies H(x0) ≤ cB for some constant c (depending on M and N).

If x0 = a/b, then Q(
√︁
f(x0)) = Q(

√︁
bd+1f(a/b)), where bd+1f(a/b) is a

homogeneous polynomial of degree d+1 = 2g+2 in a and b. It follows that
dQ(P ) ≤ c′B2g+2 for some constant c′ depending on f , M , and N . Setting

B = (X/c′)
1

2g+2 and using Theorem 1.2, we find ≫ X
1

g+1

(logX)2
distinct real

quadratic fields k = Q(P ) with dk < X and rkmCl(k) ≥ rkm Jac(C)(Q)tors−
1. Finally, choosing N to be a large enough positive integer such that
f(x) < 0 if |x + N/M | < 1 (and (M,N) = 1), and taking ϕ = x + N/M ,
the same proof yields the result for imaginary quadratic fields (with the
improvement over the real quadratic case coming from the difference in the
ranks of the unit groups O∗

Q(P )). □

Finally, we give the proof of Theorem 1.5.

Proof of Theorem 1.5. By [14, Th. 6.1], the genus 4 hyperelliptic curve

C : y2 = t9 + 2973t6 − 369249t3 + 11764900

satisfies rk3 Jac(C)(Q)tors ≥ 3. Then the statement for N−(33;X) follows
immediately from the existence of this curve and Theorem 1.3. The proof of
the statements involvingN+(34;X) andN−(35;X) are identical to the proof
of the main theorem in [14], except that one replaces the use of Theorem 1.1
in that proof with Theorem 1.2, providing the improvement in the bounds.

□
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