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ABSTRACT. We prove a version of Hilbert’s Irreducibility Theorem in
the quadratic case, giving a quantitative improvement to a result of
Bilu-Gillibert in this restricted setting. As an application, we give im-
provements to several quantitative results counting quadratic fields with
certain types of ideal class groups. The proof of the main theorem is
based on a result of Stewart and Top on values of binary forms modulo
squares.

1. INTRODUCTION

The Hilbert Irreducibility Theorem plays a key role in recent approaches
to constructing and counting number fields with a large ideal class group
(originating in work of the second author [13] and joint work of the second
author with Gillibert [9]). Recent applications of these techniques to study
ideal class groups include work of Bilu-Gillibert [I], A. Kulkarni [12], work
of the second author with Gillibert [10], and work of the second author with
Wiljanen and Yan [14].

Let H(«) denote the absolute multiplicative height of an algebraic number
a. If a =p/q € Q is written in reduced form, then H(p/q) = max{|p|,|q|}
Partially in pursuit of applications to ideal class groups, Bilu and Gillibert
[1, Th. 3.1] proved the following version of Hilbert’s Irreducibility Theorem
(building on an enumerative result of Dvornicich and Zannier [g]):

Theorem 1.1 (Bilu-Gillibert [I, Th. 3.1]). Let k be a number field of degree
¢ over Q. Let C be a curve over k and ¢ : C — P! a morphism (over k)
of degree d. Let S be a finite set of places of k, € > 0, and U a thin subset
of k [1l, §3.1]. Then there exist constants By and ¢ such that for all B > By,

among the number fields k(P), where the point P € C(k) satisfies

¢(P) € K\,
|o(P)|y < e, Yv € S,
H(¢(P)) < B,

there exist at least cB*/log B distinct fields of degree d over k.
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It was remarked by Bilu and Gillibert [I, Rem. 3.2] that Theorem
likely holds with a lower bound of the form ¢B%/(log B)* for some A > 0.
Our main result shows that this predicted lower bound holds (with A = 2)
when k=Q, /=1, and d = 2:

Theorem 1.2. Let C be a curve over Q and ¢ : C — P! a morphism of
degree 2. Let S be a finite set of places of Q, € > 0, and U a thin subset
of Q. Then there exist constants By and c such that for all B > By, among

the number fields Q(P), where the point P € C(Q) satisfies
o(P) € Q\ 0,
|p(P)]y < e, Vv € S,
H(¢(P)) < B,
there exist at least cB?/(log B)? distinct quadratic fields over Q.

Using Theorem in place of Theorem allows us to recover and im-
prove on several enumerative results involving ideal class groups of quadratic
number fields. Given an integer m > 1, it has been known since Nagell [17]
that there are infinitely many imaginary quadratic number fields with class
number divisible by m, and the analogous result for real quadratic fields was
proved independently by Yamamoto [22] and Weinberger [21]. Quantitative
results giving a lower bound for the number of such fields were given by
Murty [16], Soundararajan [19], and Yu [23].

More generally, one can study the m-rank of the ideal class group. If A
is a finitely generated abelian group, we define the m-rank of A, rk,, A, to
be the largest integer r such that A has a subgroup isomorphic to (Z/mZ)".
For a number field k, we let Cl(k) denote its ideal class group and let dj,
denote its (absolute) discriminant.

As an application of Theorem we first state a general result counting
quadratic number fields with a large class group generated, via the technique
of [9], from a hyperelliptic curve with a rational Weierstrass point and a
large rational torsion subgroup in its Jacobian. The result is identical to [9}
Cor. 3.2], except that we improve the lower bound for an asymptotic count
of such fields, by discriminant, from XTIH/logX to Xgiil/(log X)? (up to
a constant factor).

Theorem 1.3. Let C' be a smooth projective hyperelliptic curve over Q

with a Q-rational Weierstrass point. Let g denote the genus of C and let

Jac(C)(Q)ors denote the rational torsion subgroup of the Jacobian of C.
1

Let m > 1 be an integer. Then there exist > % imaginary quadratic
number fields k with
rky, CI(k) > rky, Jac(C)(Q)tors,  |di| < X,
1
and > X5 real quadratic number fields k with

(log X)
rky, Cl(k) > rky, Jac(C)(Q)tors — 1,  di < X.
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We let N~ (m"; X) and N (m"; X) denote the number of imaginary qua-
dratic and real quadratic number fields k, respectively, with discriminant dj
satisfying |dx| < X and such that rk,, Cl(k) > r.

By noting (see [9 Lemma 3.3]) that for ¢ € Q\ {0,£1}, the smooth
projective hyperelliptic curve C with affine equation

y2 :me_ (1_1_62)1,771_1_02

has genus m — 1, a rational Weierstrass point, and rk,, Jac(C)(Q)tors > 2,
we find as a corollary:

Corollary 1.4. Let m > 1 be an integer. Then
N~ (m?* X) > X /(log X)?,
Nt (m; X) > X /(log X)2.

When m is odd, this yields a small improvement to results of Byeon [2] and
Yu [23] (following results of Murty [16]), who proved N’ (m?; X) > X e

and Nt (m; X) > X i_e, respectively. When m is even, in the real quadratic
case Chakraborty, Luca, and Mukhopadhyay [6] (see also [15]) proved the

logarithmically better bound Nt (m; X) > X . When m is even and k is
imaginary quadratic, Corollary appears to be new and fills a gap in the
literature, bringing this case in line with the other known results.

For small values of m better results are known (see results of Byeon [3] 4]
for m = 5,7). We discuss the case m = 3, where Theorem again allows
us to make quantitative improvements to some of the known results. In the
case of class number divisibility by 3, Heath-Brown [I1] showed N *(3; X) >>

X 1%_6, improving on [0, [7, 23]. For 3-rank 2, Luca and Pacelli proved
NEBZLX) > X %, and recently Yu [24] improved this in the imaginary
quadratic case, finding N~ (3%; X) > X3,

For higher 3-rank, it was shown by the second author and Wiljanen and
Yan [14] that N—(3%X) > X5/logX, N*(3%4X) > X3 /log X, and
N=(3%X) > X £ /log X. Using Theorem we are able to improve
these results.

Theorem 1.5. We have

The proof of our main theorem (Theorem , given in Section is based
on a result of Stewart and Top [20] on the squarefree part of values of binary
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forms, which we describe in the next section. In the final section we briefly
describe the proofs of the applications to ideal class groups (Theorem
and Theorem [1.5)).

2. VALUES OF BINARY FORMS MODULO KTH POWERS

For a positive integer k and integer n, we say that n is k-free if n is not
divisible by the kth power of a prime. The main tool in proving Theorem
is a slight variation of a result of Stewart and Top [20, Th. 2].

Theorem 2.1 (Stewart-Top). Let A, B, M, and k be integers with M > 1
and k > 2. Let F be a binary form with integer coefficients and degree r
which is not a constant multiple of a power of a linear form and which is
not divisible over Q by the kth power of a non-constant binary form. Let

C(z) :={(a,b) e Nx N| 0 < a,b < z'/" and (a,b) = (A, B) mod M}.

Let Si(z) denote the number of k-free integers t such that |t| < z and
F(a,b) = tz* for some z € Z,(a,b) € C(x). Then,

2
xTr

(log z)?’
Stewart and Top’s original result did not require the integers a and b
to be positive, and did not place a bound on a and b. Since the proof of

Theorem only requires slight modifications to their original proof, we
give a sketch of the proof highlighting the necessary changes.

Proof. Following Stewart and Top, we may write F' as a product F1Fs - - - Fj
of binary forms with integer coefficients, such that F;y; divides F; for all
1 <i <1l-—1, and F; has nonzero discriminant for ¢ = 1,...,l. Then F;
may be written as a product of nonconstant forms Gj - - - G,, where G; is
irreducible in Q[z,y| for all 1.

The proof of Theorem 2 in [20] is divided into three cases: (1) some G;
is nonlinear, (2) Gy,...,Gy, are linear and m > 3, and (3) Gy,...,G,, are
linear and m = 2. In each case, we claim that the constructions used in [20]
may be modified so that the integers a and b used are positive.

In Case (1), a and b are positive integral linear combinations of integers
70, 80,71, 51, where for a certain given lattice A, C Z2, (rg,s0) € A, is
chosen such that max{|rg|, |so|} is minimal, and (71, 1) is chosen such that
vo = (r0,50),v1 = (r1,51) is a basis of A, and max{|ri],[s1|} is minimal.
Then we use the following lemma:

Lemma 2.2. Let A C Z? be a lattice of rank 2. Let (ro,s0) € A be chosen
such that max{|rol,|so|} is minimal, and (r1,s1) chosen such that vo =
(ro,s0),v1 = (r1,81) is a basis of A and max{|ri|,|s1|} is minimal. Let
M = max{|rol, |so|, 1], |s1|}. Then there exists a basis v, = (r(,s;), v} =
(ry,s1) € A with (), sy, ), s1 > 0 such that

(2.1) max{|rg|, so: [r1], [s1]} < 3max{|rol, |sol, [, [s1]} = 3M.
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Proof. Suppose first that rg and sy have the same sign or that rgsg = 0.
Then after possibly replacing vg by —vg and v; by —wv1, and after possibly
interchanging the coordinates, we may assume that rg > sg > 0 and 1 > 0.
If s; > 0, then clearly we may take v, = vy and v{ = vg. So we may assume
51 < 0.

Note that ro # 0 and let n = [r1/ro]. Let v, = v and v} = nvy —v1 =
(nro—r1,nso—s1). Then vj, v} are a basis of A. Since r1/ro <n <ry/ro+1
and rg > sg, we have

0<nro—m<ro<M
and
0 <mnsy—s1 <ri+so+|s1] <3M.

Thus, we see that v(, v] satisfy the conclusions of the theorem. The same
proof, with the indices interchanged, works if r; and s; have the same sign
or if r1s1 = 0.

Suppose now that rgrisgs; # 0 and the coordinates of v; have opposite
signs for 4 = 1,2. Then after possibly replacing vy by —vg and v; by —v1, we
may assume that 79,71 > 0 and sg,s1 < 0. Then vy —vg = (r1 — ro, 51 — So)
and |r; —ro] < M, |s1 — so| < M. Since vg,v; — vg is a basis of A, this
contradicts the minimality of vg and v, and this case is impossible. O

Then in Case (1), modifying the construction to use the nonnegative
integers (), s(, 7, s in place of rg, so, 71, $1 preserves the conclusions in this
case (with possibly slightly smaller constants).

In Case (2), the construction in [20] already uses positive integers a and
b.

In Case (3),a = A+ kM,b = B+1cM, and the parameters A, B, ¢, 1, M,t
in the proof may all clearly be taken to be nonnegative. It only remains to
show that the parameter k in the proof may be constructed to be positive.
If d < 0 then the existing proof already gives k =t —dl > 0. If d > 0
then we may replace k = t — dl with k = ¢ + idl for some i € {0,1}
satisfying cf +ide # 0, and the remainder of the proof remains substantially
unchanged.

Finally, we note that all of the constructions produce integers a and b
such that max{|al,|b|} < z!/". Then replacing x by cz for an appropriately
small constant ¢ > 0, we see that we may choose max{|al,|b|} < 2/ in the
constructions and, by the remainder of the proof in [20],

(cx)% T

Sk(@) > (logex)?2 = (logx)?’

3. PROOF OF THEOREM [[.2]

We need the following lemma for the proof of Theorem
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Lemma 3.1. Let S be a finite set of places of Q, and let € > 0. Then there
exists an invertible linear fractional transformation 1p € Q(t) and integers
M, A, and B such that whenever ¥ (t) = a/b, a,b > 0,a=A (mod M),b=
B (mod M), we have |t|, < € for allv € S.

Proof. If S doesn’t contain the (unique) archimedean place oo of @, then
this is straightforward (with v the identity). If S contains the archimedean
place, let N be an integer such that N > 1/e and let

1— Nt
vl =5 + Nt
Then it is easily verified that the inverse image of the real interval (0, 400)
under ¢ is (—1/N,1/N) C (—e¢,€) and so if ¥(t) = a/b > 0, then |t|o < €.
Since 1~1(1) = 0, taking A = B = 1 and M divisible by sufficiently large
powers of the (finite) primes in S, we see that if a = A (mod M),b = B
(mod M) and ¥(t) = a/b, then |t|, < € for all finite places v in S. O

We also need the following fact about thin sets [I8] p. 133]:

Lemma 3.2. Let U C Q be a thin set. Then for x > 0, there exist at most
O(z) rational numbers « such that o € U and H(a) < x.

We now prove Theorem

Proof of Theorem[1.3 Let C, ¢, S, U, and € be as in the statement of the the-
orem. Then ¢ induces a quadratic extension of function fields Q(C)/Q(t)
and we may write Q(C) = Q(1/f(t)) for some nonconstant squarefree poly-
nomial f(t) € Q[t]. Then C may be taken to have affine equation y? = f(t),
where ¢ is induced by the projection onto the t-coordinate.

Let ¢, A, B, and M be as in Lemma[3.1] (with respect to € and S). Let 7 =
Y~ and write f(7(X/Y)) = F(X,Y)R(X,Y)? for some rational function
R(X,Y) € Q(X,Y) and squarefree homogeneous polynomial F' € Z[X,Y].
Since f is nonconstant squarefree, F' is nonconstant, and looking at degrees
it follows easily that deg F' is even. Thus, deg F' > 2. Then F satisfies the
hypotheses of Theorem (with k = 2).

Let x be a positive real number. Let T'(z) be the set of squarefree (i.e., 2-
free) integers ¢ for which there exist positive integers a < x and b < x satisfy-
inga=A (mod M),b= B (mod M), and F(a,b) = tz? for some integer z.
Note that Sy (98 ) gives a lower bound for the number of elements of T'(z).
For each t € T'(x), let (a¢, by) be a pair of positive integers satisfying the con-
ditions in the definition of ¢t € T'(x), and let T'(z) = {(at, bi) | t € T(z)}.
Let

R(z) ={P € C(Q) | ¥(¢(P)) = a/b,(a,b) € T'(x), $(P) & U}

Let P € R(z). Then ¢(¢(P)) = ar/bs = a/b, for some (at, b;) = (a,b) €
T'(z) and t € T'(z). By construction, we have

(3.1) ¢(P) = 7(a/b) € Q\T,
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and by Lemma we have
(32) [P(P)o <€
for all v € S. Note also that
Q(P) = QW F(8(P)) = Q(V/ f(7(ar /b)) = Q(V/ F(ar, br) R(at, br)?)
= Q(V/Fl(at, b)) = Q(V1).

It follows that the fields Q(P), P € R(z), are all distinct. By elementary
properties of heights, for some positive constant ¢ depending only on 1),

H(¢(P)) < cH(¥(o(P)))

and H(w(gb(P))) = max{\a| |b]} < x. Rescaling, if P € R(c 'z) then
H(¢(P)) <z (and ( and . hold). To finish the proof, it remains to
count the elements in R(

Let O(z) ={a € U | H(x )<3:} By Lemma [3.2]

Then by Theorem
2

T
(log x)*’

[R(c™2)| > [T'(c )| = 2[0(2)] = Sa((c™ )8 T) — 2[0(a)| >

completing the proof.
O

4. PROOF OF THEOREM [[.3] AND THEOREM
We take the following result from the proof of [9, Cor. 2.11]:

Theorem 4.1. Let C be a smooth projective curve over Q, and let m > 1.
Let S be the set of primes of bad reduction of C. Let ¢ : C — P! be a
nonconstant morphism. Then there exists a thin set O C Q such that if

P e C(Q) and ¢p(P) € Q\ U, then [Q(P) : Q] = deg ¢ and
tky, CHQ(P)) > ki Jac(C) (Q)rors + #5 — 1k Oy p) 5.

Here, O py ¢ denotes the group of S’-units of Q(P), where S’ consists of

the set of places of Q(P) lying above S along with the archimedean places.
We now prove Theorem

Proof of Theorem[1.3, Since C has a rational Weierstrass point, C' is bira-
tional to an affine curve given by an equation y? = f(x) with f € Z[z] monic
and deg f = d odd. Let S be the set of primes of bad reduction of C' and let
M = Hpesp. Let N be a large enough positive integer such that f(x) > 0 if
|z — N/M| < 1 and such that (M, N) = 1. Let ¢ : C — P! be the morphism
induced by (z,y) — = — N/M and let U be the thin set from Theorem
(for C, ¢, and m). Let P € C(Q) with ¢(P) € Q\ U, |¢(P)|, < 1 for
all v € SU{oo}, and H(¢(P)) < B. Let P = (x0,y0). Since ¢(P) € Q,
we have zp € Q. For p € S, by assumption |zg — N/M|, < 1, and so
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ordyxg = ord, N/M = —1. Since f € Z[z] is monic, this implies that
ord, f(xzp) = —d is odd and p ramifies in Q(P) = Q(yo) = Q(v/f(x0)). By
the choice of N, |¢(P)|s < 1 implies that f(zp) > 0 and Q(P) is a real
quadratic field. Therefore, by Dirichlet’s unit theorem,

#S — rkO:@(P),S = —rkO@(P) =—1.
Since ¢(P) € Q\ U, by Theorem
rkp, CQ(P)) > 1tk Jac(C)(Q)tors — 1.
We now bound the discriminant of Q(P). First note that H(¢(P)) <

B implies H(xzg) < ¢B for some constant ¢ (depending on M and N).
If 2o = a/b, then Q(y/f(x0)) = Q(\/b¥ 1 f(a/b)), where b f(a/b) is a
homogeneous polynomial of degree d4+1 = 2g+ 2 in a and b. It follows that
do(py < ¢B?912 for some constant ¢’ depending on f, M, and N. Setting

1
X 9+1

B = (X/d )ﬁ and using Theorem we find > ooy distinct real
quadratic fields k£ = Q(P) with di < X and rk,, Cl(k) > rky, Jac(C)(Q)tors—
1. Finally, choosing N to be a large enough positive integer such that
f(z) <0if |x + N/M| <1 (and (M,N) = 1), and taking ¢ = =z + N/M,
the same proof yields the result for imaginary quadratic fields (with the
improvement over the real quadratic case coming from the difference in the
ranks of the unit groups (’)(a( P)). O

Finally, we give the proof of Theorem
Proof of Theorem[1.5. By [14, Th. 6.1], the genus 4 hyperelliptic curve
C :y? =7 4+ 297315 — 369249¢% + 11764900

satisfies rk3 Jac(C)(Q)tors > 3. Then the statement for N/~ (33; X) follows
immediately from the existence of this curve and Theorem The proof of
the statements involving N7 (3%; X) and A~ (3%; X) are identical to the proof
of the main theorem in [I4], except that one replaces the use of Theorem (1.1
in that proof with Theorem providing the improvement in the bounds.

O
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