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UNIVERSALITY OF POISSON LIMITS FOR MODULI OF ROOTS OF
KAC POLYNOMIALS

NICHOLAS A. COOK, HOI H. NGUYEN, OREN YAKIR, AND OFER ZEITOUNI

ABSTRACT. We give a new proof of a recent resolution [I8] by Michelen and Sahasrabudhe
of a conjecture of Shepp and Vanderbei [I9] that the moduli of roots of Gaussian Kac
polynomials of degree n, centered at 1 and rescaled by n?, should form a Poisson point
process. We use this new approach to verify a conjecture from [18] that the Poisson
statistics are in fact universal.

1. INTRODUCTION

Let &, ...,&, be ii.d. random variables and consider the Kac polynomial
flz) =) &2" (1.1)
k=0

This paper concerns the typical behavior of the random zero set Z(f) := {z € C: f(z) = 0}.
It is well known that if Elog(1 + |£]|) < oo then the roots of f concentrate uniformly
around the unit circle S' := {|z| = 1} as the degree n tends to infinity [11], [20] (see also
[12] for a more modern perspective). Finer results on this convergence are also known:
typically, most roots lie inside an annulus of width O(n~!) around the unit circle (see
[19] for Gaussian coefficients and [13] for more general choices of coefficients). Microscopic
correlation functions for the Gaussian case (also, for multivariate systems of polynomials)
appear in [4]; see |8} [21] for a universality result in the case of non-Gaussian coefficients.
In view of the above, the following question becomes quite natural: What is the typical
distance of the set of roots to the unit circle? Indeed, this question was already suggested
by Shepp and Vanderbei [19, Section 6], who conjectured that for Gaussian coefficients,
the set {n%(1 — |z|) : z € Z(f)} (identified with its counting measure) converges to a
Poisson point process as n — o00; their conjecture would imply in particular that the
closest root is typically at distance of order n™2 from the unit circle. This conjecture was
recently confirmed by Michelen and Sahasrabudhe [18], using a reduction to a point process
determined by the polynomial on the unit circle and a high-order Kac—Rice formula.

Theorem 1.1 ([18, Theorem 1]). Assume that f is given by (1.1)) with & i.i.d., real-valued
Gaussian of mean zero. Then

{n?(1—z]) « z € Z(£)}

converges in distribution (with respect to the vague topology), as n — oo, to a homogeneous
Poisson point process on R of intensity 1/12. In particular, for all x > 0,

: 2 Jiet (QL _ /6
nlg]gOIF’(n dist (S', Z(f)) 2 z) = e */°.
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It is natural to guess that the phenomenon described in Theorem is in fact universal
in the sense that the theorem holds true for a wide class of coefficients distribution, and not
just for Gaussians. In this regard, it is natural (and also suggested in [18]) to conjecture
that Theorem holds for random Littlewood polynomials, that is, when the &;’s are i.i.d.
chosen uniformly at random from the set {£1}.

The goal of this paper is multifold. We will give a new proof of Theorem based on
ideas appearing in our recent works [22], [7]. In this proof, and in contrast with [18], we do
not use the Kac—Rice formula, a powerful tool which is hard to apply outside the case of
Gaussian coefficients (or, with considerably more effort, coefficients whose law possesses a
smooth density). Instead, we work directly with local linear approximations of f (see Section
for more details). Besides the intrinsic interest in a different proof, the main advantage
of our approach is that it is more suitable toward the study of universality problem, for
which our main result confirms the prediction. Namely, we show

Theorem 1.2. Theorem continues to hold as long as the & are i.i.d. copies of a
non-degenerate, sub-Gaussian, real-valued, zero-mean random variable.

In particular, our result extends to random Littlewood polynomials.

Remark 1.3. By sub-Gaussian we mean that there exists a constant ¢ > 0 so that
P(|%| > t) < 2exp(—ct?)

for all t > 0. A close investigation of the current method would enable us to allow ||
to have bounded k-th moment for some large constant k, however we will not elaborate
on this. As it has no bearing on the conclusion, in the rest of the paper we may and will
assume that the &;’s are normalized to have unit variance.

Remark 1.4. Our methods allow one to consider other related point processes for statistics
near the unit circle, see Section

1.1. Heuristics and proof method. We first explain briefly the Poisson heuristic behind
the Gaussian case, which is hinted at in [19] Section 6]. The computations of [19] and an
asymptotic analysis show that the expected number of roots at distance at most x/n? from
the unit circle, denoted N (n), is asymptotic to /6. (The expression in [13, Theorem 2],
based on the Kac—Rice formula, gives that immediately, and in fact the proof there can
be adapted to cover that asymptotic.) While computing higher moments of this quantity
via the Kac—Rice formula may be feasible, the computation quickly becomes cumbersome,
with a major obstacle being the need to deal with short-range correlations and their can-
cellations. Assuming however that such short-range correlations do not affect the higher
order moments, one notes that for macroscopically separated points (z1, ..., zx) on the unit
circle, the joint density of the random variables (f(z;), f'(z:))F_, nearly factorizes; accept-
ing this factorization, one obtains from the Kac—Rice formula that the expectation of the
kth moment of N, (n) converges to the corresponding one for a Poisson random variable of
parameter x/6. From this, the route to a Poisson heuristic is short. In fact, once spatial
separation between close roots is proved, the Poisson heuristic is standard.

There are two obstacles for making the heuristic precise, even in the Gaussian case.
First, one needs to get rid of short range correlations. This is achieved by noting, as was
done in [16, [18], that in a tubular neighborhood of z € S' of diameter o(1/n), the pair
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(Ref(z),Imf(z)) can be approximated by linear curves, and the existence in this neigh-
borhood of a root of distance z/n? from the circle can be decided in terms of the 4-vector
W(z) := (Ref(z),Imf(z), Ref'(z),Imf’(z)), with the result that except for exceptional
values of this vector, only one root can possibly exist in the neighborhood. The second
obstacle involves long range correlations: while conditioning on a fixed number of values
W (z)i>2 for macroscopically separated z; has only a small effect on W (z1), by analyticity
the values {W(2)}.est: 2z |>1/2 already determine W (z1) and in particular the existence
of a root close to z;. This is a serious obstacle in applying methods of Poisson convergence
based on second moment methods, e.g. [2].

1.2. Structure of the paper. We can now explain our approach to Theorem and
contrast it with the approach to the Gaussian case introduced in [18]. There are essentially
three major steps.

(1) As explained above, in the first step we show via and Proposition that
the statistics of n?(1 — |z|),z € Z(f) near the unit circle can be deduced from
the behavior of (f(za), f'(24)) on the unit circle, for z, = e belonging to a
net of cardinality n?/log°n (for some large constant Ky), and that one needs
only consider good events, denoted A,, where the linear approximation at z, is
precise enough. Towards the universality result (and in particular to allow discrete
distributions for &), for reasons described below we remove from consideration
certain “bad points” z, possessing bad arithmetic properties, leaving only under
consideration smooth points z,, see Definition and Proposition (The latter
removal of bad points is not needed in the Gaussian case.) Further, we show (see
Proposition and Lemma that one needs only consider z,’s that are separated
by distance at least n~'*¢ for some small € > 0.

(2) From Step 1, for points z, satisfying the good event, the location of the root close
to z4 can be written as Z, = n?pa = n%pa(f(2a), f'(24)), see and (2.8)). Then,
the kth moment of N,(n) can be determined in terms of the joint distribution of
(Za, );?:1 for well-separated, smooth z,,. In the Gaussian case, these are almost
independent (see the computation in Section for a quantitative estimate), and
the moments factor, see Lemma[3.5] yielding Theorem [1.2]in the Gaussian case. No
notion of smoothness of the z,’s is needed for that computation.

(3) The key tool for obtaining universality is a result imported from [7] giving a quanti-
tative local CLT for the joint distribution of W (z1), ..., W(z) for any fixed number
of points 21, ..., 2; € S! that are both smooth and spread (see Theorem . Com-
bined with small ball estimates, also borrowed from [7] (see Theorem [3.7)), this leads
to a comparison of probabilities between the Gaussian and general cases, culminat-
ing with Proposition

We note in passing that the local CLT borrowed from [7], arguably the technically
most challenging component used in our proof, is in turn a significant generalization
of a result from [9] to the multivariate case.

1.3. Background. We compare our result with existing literature. Konyagin and Schlag
[15) [16] showed that, for random Kac polynomials as general as in Theorem with
high probability the complex roots of f(z) cannot be within distance o(1/n?) of the unit
circle. This is consistent with our theorem, but the method of [16], on the other hand,
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cannot be used to study asymptotic statistics. More relevant to our universal statistics, |21,
Theorem 5.7] of Tao and Vu, or |8, Theorem 2.3] of Do et al. established universality for
the correlation functions of complex roots of f(z) within balls of radius ©(1/n) near the
unit circle; it seems that the techniques and results there cannot be applied to our problem
because the region under current consideration is at a finer scale and too close to the circle.

We already mentioned that Theorem [L.1], the Gaussian case of Theorem[1.2] was already
proved in [18], using a method based on the higher Kac—Rice formula, which seems ill-suited
to computations in the non-Gaussian case. It does not seem straightforward to apply the
local CLT comparison to their computation and obtain directly Theorem from their
Theorem [1.1]

As discussed above, the method of proof of Theorem [1.2{ borrows from the recent |7, 22|,
that dealt with the variable m} = min_ cq1 |f(2)]; we refer to these articles for historical
background. (That the problems are related appears already in the work of Konyagin and
Schlag [16].) Step 1 in the sketch above is similar to the analogous step in [22], with the
variable Z, here differing from the variable Z, in [22, [7] by a factor of 1/|f/(z4)]. In the
case of my,, with ¢ Gaussian, the collection (Z,, )?:1 for separated z,, has the property
that writing & = V1 — €2¢, + €€/ with &/, independent and e small (n dependent), one
has that Zo; = Z,, +n; where Z;, are the same as Z,,; except that & are used instead of
&, and the n; are (asymptotically) independent of each other and of the (Z&j). From this,
an application of an invariance result due to Liggett [17] (see also [6]) gave the Poisson limit
in the Gaussian case. In the case considered in this paper, with the definition of Z, as in
and , one can repeat the computation, but we cannot show a-priori that the n;’s
are asymptotically independent of the Z(’lj. Thus, Step 2 here differs significantly from the
proof in [22] (which is used as basis for comparison in [7]).

Notation. We will assume n — oo throughout the paper. We write X = O(Y), X <Y
or Y > X if | X| < C|Y| for some absolute constant C' > 0 which does not depend on n.
We write X <Y or X =0(Y)if X < Y and Y < X. We write X = o(Y) or Y = w(X)
if X/Y — 0 as n — oo. In what follows, [|-[|g,; is the distance to the nearest integer
and dm = dmrep is the Lebesgue measure. The volume of a direct product of intervals
Q =1I x---x Iy C R?is denoted |Q| = |I1| x --- x |I4]. We write N(a,b) for the real
Gaussian law with mean a and variance b.

For random variables X and Y, we write X Iy they are identically distributed. For
a sequence of random variables X,,, we write X, —d—> X if X,, converges in distribution to
X as n — oo. Finally, for N € N we write [N] :={0,1,...,N}.

Sometimes we write PN(071)(~),EN(071)(-) to emphasize that the model under considera-
tion is (standard) gaussian; in the general case we will drop these subscripts.

2. REDUCTION TO THE UNIT CIRCLE

For t € [0, 7] we write

\}ﬁf ((1+p)e) = X(p,1) +iY (p,1)

1Because f(Z) = f(2), it suffices to work with the upper half plane.
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where

n

Ln F cos _ L ¥ sin
\/ﬁkzo&c(lﬂ) (kt),  Y(p,t) \/ﬁkzofk(1+P) (kt).

On the unit circle we denote

X(t) == X(0,t) and Y (t) := Y (0,1). (2.1)

X(p,t) =

For S C R, we define the point process (random measure) v¢ of “close-roots” (counting
multiplicity) by the formula

vi(S) == [{z € 2(f) | n?(|z| —1) € S, Tm (2) > 0}

In fact, Theorem exactly states that vy converges in distribution to a Poisson point
process on R. As mentioned in the introduction, the goal of this section is to introduce a
new point process that is equivalent to vy but is easier to work with — this we do in what
follows.

We let

2
e |
log™on

for an absolute constant Ky > 8 that will be taken sufficiently large over the course of the
proof, and let

a=0,...,N. (2.2)
Also set I := [0 — 7/2N,0, + 7/2N] to be a covering of [0, ] by intervals of equal length.
We consider annular domains

Ca::{ze(c:(l—z\)e[

logn logn

- ] , arg(z) € Ia}.

Since mye,(Cy) is small, we expect that f(z) = f(e') 4 (z — e¥a) f'(e0*) for all z € C,.
(We will actually perform the linearization in the (p,t)-plane.) In particular, this linear
approximation will determine, with high probability, whether or not f has a root inside the
set Cy, and will also give an approximation to its location if it exists.

n2 ’

2.1. Linear approximation. For every a € [N] we sample the real and imaginary parts
of % f and their radial derivatives at angle 6, i.e.

(X(0a), Y (6a), X'(6), Y (60)) . (2.3)

By applying a 2-dimensional Taylor approximation in the variable z = (1 + p)e®, we arrive
at the following linear system:

X(pt)\ _ (X(6a)\ , (X'(6a) Y'(8a) \ (t—ba
<Y<pv t>> N (Y 6.)) " \v'(6.) —x'(62) P R (2.4)
where we expect the error term to be small inside C,,.
We will denote by

X (0,) X'(6,) Y'(604) t— 0,
F.(t,p) := . 2.
o= (o) + (e o) () (25)
as the affine map that approximates ﬁ f inside C,. Sometimes for convenience we also
write Fy(z) for F, (0, p).
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By setting f(z) = 0 and neglecting the error term, the system (2.4 gives a local candidate
for the closest root by
_ X'(02)Y (6a) — X(00)Y" ()
Pa: X' (00)2 + Y'(0,)2
X(02)X'(00) + Y (02)Y'(0)
X'(00)% +Y"(04)?
Indeed, it is straightforward to check that Fy (74 — 04, pa) = 0, and so p, given in (2.6) is
a linear prediction for the radial position of the closest root to the point e?®> based on the
values of X (6,),Y (0a), X'(04),Y"(04).
Now, we define a new, thinned point process iy which retains points p, provided that

(2.6)

To = 04 —

some good event holds. Set
Ay i=AL, N AL where
Al = {74 € I, n®|pa| <logn} = {(1+ pa)e™ € Cu} (2.7)
A= {IX (61, [Y (0)] < 1%, |X(02)]. Y/ (60)] € [nlog ™0 n,nlog?n] |

The event A/, implies that the linear approximation predicts a root inside C,, while the
event A is just typical for such a prediction and tells us that the linear system is
non-degenerate.

With the above notations, we now define our approximating point process as

N
pf = Zéza where Z, :==n’py - 14, +00- Lac. (2.8)
a=0

And so, py is a point process in R whose values are determined only by the samples of
X,Y, X' Y' on the points {GQ}gZO. We will show that pf serves as a good approximation
to vy. In particular, our argument shows that for any compact interval U C R,

Jim Pro,p) (g (U) = v (U)) = 1. (2.9)

2.2. Smooth points. To extend this comparison to general coefficients we will need to
remove points Z, coming from certain “bad arcs”.

Definition 2.1 (Smooth points). For K > 0, we say a point t € [0, 7] is K -smooth if

t K
HPLH >=  Vpe[l,K+1nZ.
7 IRz " n

We say a tuple (t1,...,ty) is K-smooth if ¢, is K-smooth for each 1 < r < m.
Letting
Epag = {t € 0,7 : tis not n”—smooth} (2.10)

for some sufficiently small x > 0 that we choose later, we note that myep(Epaq) = O(n?%71).
We now define modified point processes

pho= > 6z, ph = pup — (2.11)
a:0a¢Ebad

1/30 = Z Z On2(|2|—1) » I/Jb: =vp— I/fp. (2.12)

a:gaéEbad ZEZ(f)ﬂCa

and
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The following lets us focus on potential angles that are smooth.
Proposition 2.2 (Ruling out bad arcs). With probability 1 — O(n="/*) we have
15 (R) = 0. (2.13)
Furthermore,

1@(39 € Brad, 2 € Z(f) : |2 — €] < n_3/2) = O(n="4). (2.14)

In particular, with probability 1 — O(n=r/%),
Vi(R) = 0.

We postpone the proof of Proposition to Section [4, We can now state the modified
version of the comparison (2.9)) allowing us to pass to the point process ,ugc in the general

case.

Proposition 2.3 (Passage to the unit circle). For any interval U C R we have

lim P (@(U) - yfc(U)) =1

n—oo

For x € R and k£ > 1 denote
() :=max{0,z(x —1)-...- (z —k+1)}.

Recall that for a random variable Z which has Poisson()) distribution we have E[(Z)z] = A
for all k > 1. The following states that the factorial moments for ,u%c match those of a Poisson
process in the limit.

Proposition 2.4 (Moments). Let U C R be a finite union of compact intervals. Then

n—o0

U\
lim E [(44(0)) | = 11 > 1. 2.1
im 1 (U) i B for all k (2.15)
Assuming that Propositions and [2.4] holds we can prove our main result.

Proof of Theorem[1.2 By Propositions|2.2|and [2.3|it suffices to show that ,u%c has a limiting
Poisson distribution as n — oo. Indeed, Proposition [2.4] together with the classical moment
theorem |10, Theorem 3.3.26] implies that for any finite union of compact intervals U C R

4 ., po; U]
py (U) — 01sson<12 .

Together with a theorem of Kallenberg |14, Theorem 4.7], this implies that the sequence of
point processes ,u,ﬁf converge in the vague topology to a Poisson point process of intensity

1/12, as desired. O

2.3. Joint distribution over spread points. Expanding the factorial moments
leads us to consider the joint events that k different samples of our polynomial f on the
unit circle contributed a point to ,ugc which lie in U. Since we already imposed a smoothness
assumption on the sample points, to compute the desired probabilities we will require all of
the points to be separated from one another, in the following sense:
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Definition 2.5 (Spread tuples). We say that t = (t,...,t;) € [0, 7]* is y-spread if

ti—t]>1 V-ol<i<j<k (2.16)
n

where we put t9 := 0, t_1 := 7. (We note that this is different from the definition in

[7] for general (t1,...,t;) € R¥, but when specialized to [0,7]* they are equivalent up to

modification of v by a constant factor.) Note this definition includes k& = 1, with a single

point ¢t € [0, 7] being ~y-spread if it is distance at least v/n from 0 and 7. In particular, if ¢

is 1-smooth then it is 1-spread.

The main step towards the proof of Proposition |2.4]is the following:

Proposition 2.6 (Main term). Let U C R be a finite union of compact intervals and fix a
k-tuple of indices (a,...ax) € [N]¥. Assume that for some k,e > 0 the tuple (0n,, - .-, 0,)
is n-smooth and n®-spread, where 0, is given by (2.2). Then,

U k
P(Za, €U,..., Zo, €U)= <1‘2]l7> —i—o(N_k’)

where the rate of convergence depends on k,k,e and K.

We will prove Proposition in Section [b| and with it conclude Proposition in
Section [7} Furthermore, some of the tools which we develop in Section [5| will be helpful for
us to prove Proposition which is given in Section [6]

Remark 2.7 (Gaussian case). For the Gaussian case we can skip some steps above and in
the proofs of the assumed Propositions and and do not need all of the tools
gathered in Section [3l In particular:

e One does not need to modify the processes in , — one only needs to
remove points coming from a small neighborhood of the real line. This means we
only need an easier version of Proposition that only rules out any contribution
from almost-real zeros (which are covered by Ey.q). See for instance [22, Lemma 4.3]
or |18, Lemma 13].

e In the proof of Proposition [2.6] we can skip the application of Proposition [3.12|giving
quantitative comparison between the Gaussian case and the general case (this is the
only place it is applied).

e The proofs of Propositions and remain essentially unchanged — we just need
small ball estimates, which in the Gaussian case are immediate from the bounded-
ness of the Gaussian density, whereas in the general case we apply Proposition

We note that the only places in the paper where we deal specifically with the Gaussian
distribution are in the proof of Proposition (specifically, Lemma and in Lemma
on decorrelation of the field at large separations.

3. SOME SUPPORTING LEMMAS
3.1. Control on derivatives. We first start with a standard result.

Lemma 3.1. Let A, A’ be positive constants where A is sufficiently large. For any \ >
Ay/Togn, with probability at least 1 — exp(—O(A\?)) we have that

'(2),10.£/061,10.f /0p| < An®/2.

max
|z -1]<A"/n
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We also have similar bounds for second order derivatives that

’ An®21=0,1,2.
[z 1|<A’/n‘f (2, ’algag I | < An .1,

In fact the above holds over |z| < 14 A’/n but we don’t need this fact here.
Before proving the result, recall that f(z) = Y1 &2" = f (1 + p)e?) = > 4o &(1 +
p)*cos(kO) +i > p_o k(1 + p)Fsin(k0) = /n(X(p,0) +iY (p,0)). Hence

OISO 5™ k(1 + ) sin(ko)] = |'S 0k + 1)/ (5 + 1)1+ )" sin(o)

k=0 k=0
=Y (k+ D&y (1 +p)*sin(k6)| = [Re(g(2))],
k=0
where & | = k&/(k+1) and g(2) = Y1, {,’C+1zk+1, and similarly

Pvﬁ{f’ |§:k&1+m ‘%muﬂﬂz|1ip}:unknwgmk+1»u+pﬁcwwm\
k=0
= I 0+ Vel 1+ ) snl10)] = i )

oYY (p9) O/nY (p,0)
20 > op

One can also have similar expression for

’X(ph) %Y (p,9)
81052=1p 910521 p
degree n + 2 and the coefficients are independent of mean zero, variance almost one, and

subgaussian. Hence it suffices to establish Lemma only for max)|.|_1j<ar/n| |f'(2)| and
max||,|—1j<ar/n | f(2)]-

. Furthermore, by the same way,

the second derivatives

can be related to h”(z), where h is a polynomial of

Remark 3.2. One notes from the Cauchy—Riemann equations in polar form (or Taylor
expansion) that for f analytic in a neighborhood of zy = rge®,
0 , 0 -
|§f(7“6w°)|r:m | (roe’®)], aef(roe NVo=go = rolf'(roe™®)] .
In particular we have ﬁ\f’((l +p)e| < (%X (p,0)% + 2 (p,0))'/? uniformly over (p,0) €
[—1/2,1/2] x [0, 2], say, and we have a similar equivalence for second derivatives.

Proof of Lemma|3.1]. For the first derivatives, it suffices to show that with probability at
least 1—exp(—O(A?)) we have max||,|_1j<a//n | f'(2)| < An3/2. By the maximum principle, it
thus suffices to work with max |f’(z)| on either {(1+A4’/n)e? 6 € T} or {(1— A"/n)e?,0 €
T}. Without loss of generality, let us focus only on the real part of f’(z) on the larger
circle. In other words we will show that with probability at least 1 — exp(—©()\?)) we have
maxger | o h_o Exk(1 4+ A’/n)E1 cos((k — 1)8)| < An®/2. For short denote just for the proof
by h(6) := n=3/2 30 &k(1 + A’ /n)k1 cos((k — 1)0). Denote ||h||s := supger |h(0)| and
let 0 € T be such that
[12]loe = |A(0)].

Since h is a trigonometric polynomial of degree n, we can apply the Bernstein inequality
and see that for all |§ — 0] < 1/(4n)

1(0)] = ()] — [1(8) — A(8)] = [IAlloc — 10 = OI[IF ]l > %HhHoo- (3.1)
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Furthermore, since the {{;} are assumed to be sub-Gaussian and independent, there exists
some C' > 0 so that

n I\ k-1
E [esh(e)} ~[I® |:65n3/2§kk(1+‘2) cos((k—l)@)} £ PN R O (3.2)
k=1

for all s € R.
Applying Markov’s inequality with (3.1)) and (3.2) gives

P(||hllsc = N) < e *M2E [es\\huw/ﬂ

2n/ <esh(9) +€—sh(e)) 40
0—0|<

< ne)‘s/2/ E(eSh(e) + efSh(e))dQ
0eT

é e—S)\/QE

—\s/2 _Cs?
< ne /2057,

Choose s = A/4C and note that A\ > A+/logn we obtain as desired.
Finally, for the second derivatives max|,|_ij<ar/n |f”(2)], after applying the maximum
principle it suffices to focus only on the two circles,

{|z|:1+1:} and {]z|:1—i/},

over which the real and imaginary parts are trigonometric polynomials, and hence we can
use Bernstein inequality again, the details are left for the reader. 0

For convenience, denote by

oF f
_ k kt1/27 2 _ _
G:= {|z|ﬁ1:ac))((1/n)|f( )(Z)"'Wk—lp' <n**1login, k=0,1,20<1 < k}

Corollary 3.3. We have
P(G°) < exp (—@(log4 n)) .
3.2. Control on covariances. Here we gather some results on the joint distribution of

X,Y and their derivatives at a fixed number of points. We begin with the distribution at
a single point. In the sequel we denote the matrix

2 00 3
0 5 —3 0
EOI: 21 14 (33)
0 h o
i 0 0 3

Lemma 3.4. For any fized e > 0 and t € [n~17, 7 — n=17¢] the (centered) random vector

W(t) = <X(t),Y(t), Ly, 1Y’(t)) (3.4)

n n

has covariance matrix
Y(t)=EW @)W (t) = (Id+ O(n¢))%.

where the error term is a matriz with entries of size O(n™¢).
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Proof. By applying simple trigonometric identities, we see that

cos?(kt) $sin(2kt)  —£ sin(2k:t) k % cos?(kt)
1< 3 sin(2kt) sin?(kt) % sin?(kt) 2ﬁ in(2kt)
() = n Z — ~ sin(2kt) —E gin?(kt) 4 cos?(kt) > sin(2kt)
k=0 n n22 2
2 cos 2(kt) % sin(2kt) —2"’? sin(2kt) '% 2(kt)
It remains to note that (see for instance [3, Appendix B])
Z k% sin(kt)|, Z k% cos(kt)| = O(n*t179)
k=0 k=0
for a =0,1,2 and t € [n~1+% 7 — n~1+¢] giving X(t) = Xg + O(n~¢). Since ¥ is invertible
we can factor it out of the additive error, and the claim follows. O
Now for t = (t1,...,t) € R¥ we denote the random vector
W(t) = (W(t),...,W(ty)) € R™. (3.5)

with covariance matrix
S(t) = EW(t)TW(¢).
Recall Definition on spread points. When the points t1,...,%; are w(1)-spread it is
easily seen that the covariance matrix decouples into blocks, as shown in the following:

Lemma 3.5 (Decorrelation for Gaussian field). Fiztq,...,t; € [0, 7] and non-negative mea-
surable functions @1, ..., : RY — Ry supported in B(0,n%). Assume t = (t1,...,t) €
RF s no2 -spread. Let Wy € R* be a centered Gaussian vector with covariance Xo. Then

Eno,1) H% t) = (1 +0(n**7%) HE% (Wo).

=1
Proof. We have
o 0 0
0 % ... 0
=\ . . .| +E (3.6)
0 ... 0

where ¥ is given by ({3.3), and all entries in the matrix E are O(n™?). It is evident from
(3.6) that det(X(t)) = det(X0)* (1 + Or(n™?2)) and that

' 0 ... 0
. 0o ' ... 0 -
) =1 . . | tE
0o ... 0 %!

where again all entries of E are Ogx(n=92). Since det(2(t)) = det(Zo)* (1 4+ Op(n=2)) we
see that

|| det So| /2 — | det £(£)| /2| LTS By T
e 2% w i(w;) dm(w
@) - };[190( ) dm(w)
k
< 17 [ [ Beps (W) - (3.7)

i=1
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Since ¢1, ..., ¢k are supported on B(0,n%), using that 1 —e™* < z for x small we see that

emaw BB e _ o—gwT (5() ‘ H @i (w;) dm(w

< / e—%wT(E(t)*l_E)w ‘U)TEU}‘ H@z(wz) dm(w)
(R4)k i=1

< n24- @H / =30l %0 Wi g () dm(w;) - (3.8)
Combining these bounds, we have
k k
Eno,n) | [0i(W () = [ Beos(W0)
i=1 i=1
k
1 L 7 -1 )
exp | —=w X(t)" w i (w;) dm(w
_ ﬁdetz(t)\ e (—5ume [T (o))
k

_7wT(2 “1_E)yw H (Pz’(wi) dm(w)

(2m)? \/|det Yolk /R4)k Pl

< na—az HE% Wo)
i=1

as claimed. O
At separations t —t' = O(n~1) the vectors W (t), W (t') become correlated. The following
shows that 3(t) is still reasonably well conditioned when ¢ is only «-spread for v < 1 (fixed

or going to zero). Recall that for a symmetric matrix A of dimension m we order its
eigenvalues A\ (A) > --- = A (A4).

Lemma 3.6. |7, Lemma 3.6] If t = (t1,...,tx) € [0,7]¥ is y-spread for some 0 < v < 1,
then

)\4k(2(t)) > "YGk 3

3.3. Small-ball estimates and CLTSs. The following result from |[7] gives a small ball
estimate for the distribution of W (t1,...,t;) at arbitrary polynomial scales.

Theorem 3.7. [7, Theorem 3.4] Let t = (t1,...,tx) € [0,7]* be n"-smooth and ~-spread
for some k € (0,1) and w(n='/%%) < v < 1. For any K < co and any ball B of radius
o> n*K,

P(W(t) € B) = Ok (7~ **6%).

While the above estimates are quite strong, we will also need bounds at non-smooth
points, especially near the edge. We have the following:

Lemma 3.8. Assume that % <t nm— % Then for any 6 > n~12 we have

P(|f(e")]/vn < 8) = O(A7%6%).
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We will present a proof of this result in Appendix [A.

Next we recall the following result from [7] providing a fine-scale comparison of the
distribution of W (t) with a Gaussian vector, under the assumption that the points ¢1, ...,
are both smooth and spread.

Theorem 3.9. [7, Theorem 3.2] Lett = (t1,...,tx) € [0,7]* be n"-smooth and 1-spread
for some k> 0. Fiz K >0 and let Q C R* be a box (direct product of intervals) with side
lengths at least n™ . Then

[P(W(t) € Q) — Pniony (W(t) € Q)| < n™ Q)]

where |Q| is the volume of Q, and the implied constant depends only on k,k, K, and the
sub-Gaussian constant for &.

The above results let us control the measure, under the law of W (t), of domains in
R* that can be accurately approximated or covered by unions of cubes or balls of (any)
polynomially-small size.

Definition 3.10. Say a domain D C R? with piecewise smooth boundary is (K, L)-good if
0D can be covered by a family of cubes Q with corners in the scaled lattice n=%7Z¢, with
total volume > |Q| < n~ L.

Note that if D1, Dy are (K, L)-good, then D§, D1 U Dy and Dy NDy are (K, L — 1)-good
(for all n sufficiently large). Theorem and a covering argument yield the following:

Proposition 3.11. Let t € [0, 7" be as in Theorem and let D C R* be (K, L)-good
for some K, L > 0. Then
P(W(t) € D) <k v F(m(D) +n1).
In particular, for k =1 and t = t1 that is n"-smooth,
P(W(t) € D) <k, m(D) +n"L.

Combining Theorem 3.9 and Lemmal[3.5] we obtain that the joint law of (W (t1), ..., W (tx))
in phase space approximately factorizes into independent Gaussian measures as soon as the
times t1,...,t; are sufficiently spread.

Proposition 3.12. Fiz n"-smooth points t1,...,t; € [0,7], and let Wy € R* be a centered
Gaussian with covariance matriz o as in (3.3)).

(a) If t1,...,ty are 1-spread, then for any (K, L)-good domain D C R,
']P’(W(t) € D) —Pneo1)(W(t) € D)‘ <n V2m(D)+n . (3.9)

(b) For any aj,a > 0, if t1,...,tx are n®™ -spread, then for any (K, L)-good domains
Dy,...,D C B(0,n%) in R4,
k
‘P(W(tl) €Dy,...,W(t) € D) — [[P(Wo € D)
j=1

k
< p~min(g,01-202) H m(D;) +n L.
j=1

(3.10)

Here the implied constants depend on K, L, k,k, and the sub-Gaussian moment of €.
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Remark 3.13. By a routine approximation argument, the above result is equivalent with
the statement that for any nonnegative observables ¢1,..., ¢, : R* — R supported on
B(0,n%) with first-order partial derivatives uniformly bounded by n’,

k
EHgoj( HE% Wo)| < n™ min(,az-— 2“1)1_[/ @idmpe, +n 1, (3.11)
, i

(up to modification of parameters K, L).

4. PROOF OF PROPOSITION [2.2]

Recall that the measure of Ejp,q on the unit circle is bounded by O(n?~1). Both (2.13)
and ([2.14) will follow once we prove that

P < log? —r/4 4.1
(tgnEg;dw )] < log n) <n (4.1)

for sufficiently small x > 0. Indeed, denote by B := {minscp,_, | f(t)| < log* n}, and observe
that if there exist 0, € Ey,q such that A, hold, then we must have

log*n
\/ﬁ

This implies the inclusion { 1’ (R) > 0} C B and hence (2.13). For (2.14), observe that on
the event

VIX(Oa)P+ 1Y (0 < 2072 <

{30 € Boaa, 2z € Z(f) : |z — €| <n™?2 NG
we can Taylor expand around the root z € Z(f) and get that
£ < |f(2)] +n3?log? n|z — €| < log? n.
Therefore, for n large enough, we get that
P (30 € Brad, 2 € Z(f) : |2 — €Y < n*3/2> <P(BNG)+P(G°) < n "/

where the last inequality follows from (4.1)) and Corollary
By the above reasoning, the proof of Proposition will follow once we prove (4.1)).

Proof of . Note that by Corollary - we may always assume that G holds. We first
show that | f| cannot be too small on the set Epag N [ e, T — 1+H] Indeed, we cover this
set by non-overlapping interval {Jg}le with |Jg| < n_7/4 and B < n'/*/nl=28 = p3/4+2s,
Denote the mid-point of each Jg by xg. By Taylor expansion, we have

log?n

()] < 1)+ log? nlz — €72] < |f(2)] + ~

for all z € Jg. Therefore, the event {miny, |f| < log?n} N G is contained in {|f(xs)| <
log® n}. By applying the union bound together with Lemma [3.8] (with A = n™") we see that

B
P min [F(t)] <log*n | <> P(|f(e™?)] < log®n) +P(G°)
t€BpadN—1r% 1+m 1%{% =1
2k+0(1)
<« B o pAsto()-1/4, (4.2)
n

11—k
)

For the intervals [0,n~!=*] and [r —n~ 7| we argue similarly, but instead of Lemma

we use the classical Berry-Esseen bound. Dividing both [0,n717%] and [r — n~17% 7] into
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O(n!/?>=#/2) intervals I, of length n=3/2=%/2_ Under G, if | f(e??)| < log*n for some 6 € I,
then | f(e?)| < log®n, where 6; is the mid point of I;. Next, by the Berry—Esseen theorem

[5, Theorem 12.4],

log®n

P(|f ()] < log®n) < o

A union bound gives

, log®
P(30 € UL : |f(e")] < log'n) < nlﬂ_ﬁﬂ% < n 4

Together with (&.2)) we get that P(B) < n~*/4, which is what we wanted. O

5. PROOF OF PROPOSITION [2.6]

For intervals U,V C R and r > 0 we denote the domain

yr' —xy 1 zx' + gy

n
DU7MT N {(ﬂj, y’ -/LJ, y,) € R4 : € NV’ xlz + y/2 < T2}

22 + o2 no 0 2 +y2
1
9 9 W-2Z 1 w-z _n

where for z = (2/,y’) we denote 2+ = (—/, ). We have
{n%a U, N(fla—7a) €V, | X' (02 + [Y'(00)[2 < r2n? } - {W(Ga) € DU,V,T}. (5.2)

One further sees that the events A,, AL, A” from (2.7), as well as {Z, € [a,b]} for any
interval [a, b], can all be expressed as events that W (6,) lies in a domain of the form

(Puyv,r \ Duvy) NI x Jx I'x J' (5.3)

for some (possibly infinite) intervals U, V,I, I’ J,J' C R and 0 < r < R < co. Recall the
notion of a (K, L)-good domain from Section One easily sees the following;:

Fact 5.1. For any A,L > 0, r > 0 and intervals U,V such that r,|U|,|V| < n?, and
(possibly infinite) intervals I, J, I', J" C R, the domain (5.3)) is (K, L)-good for some K (A, L)
sufficiently large.

Indeed, the cross-section of D obtained by fixing z is a rectangle in R? of area |U||V||z|? /N
with corners that vary smoothly (with polynomially bounded derivatives) in z. Integrating
this expression over z we find

UiV 2 mr|U||V]

m(Du,v,r) N e |z|“dm(z) oN

Modulo Proposition [3.12, the proof of Proposition essentially comes down to a compu-
tation of the measure of Do), [-Z,2],00 under the Gaussian law of W(6,). In fact, in order

(5.4)

to control some bad events we will need the following more general result allowing finite
r =r(n) (in particular allowing r = o(1)).

Lemma 5.2. Fiz an arbitrary e > 0 and let t € [n~14¢, w1 —n~1%¢]. For any r > 0 (possibly
infinite or depending on n) and intervals U,V C [-n%1 n01]

12 _ Ul||V 1202
PN(o,1) (W(t) € DU,V,T) = <7T2 +O(n E/2)>|]’VH./I< 122712 dm () | (5.5)
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In particular, taking V = [—%,%] and r = oo, we have that for o so that 0, € [N~ 11, m —
nflJrEL
P01 (nzpa eU, 1, € Ia> ~ (L +0(n~/?) M (5.6)
@1) ’ 12 N

Proof of Lemmal5.2. By the monotone convergence theorem we may assume r is finite
(possibly, n dependent). Recall from Lemma that (n='X’(t),n"'Y’(t)) is a centered
Gaussian with covariance %Id + O(n~¢), and for z € R?, the conditional distribution of
(X(t),Y(t)) given (n1X'(t),n~1Y'(t)) = z is Gaussian with mean —3z+ + O(n™)|z| and
covariance matrix $Id + O(n~¢), where we write O(n~¢) for a matrix or vector with entries
of size O(n™¢) (with implicit constants independent of z). Denoting by P, the conditional
distribution of (X (t),Y(t)) given that (n='X'(¢t),n"'Y’(t)) = z, we can express the left
hand side of as
YX'/n—XY'/n 1 XX'/n+YY'/n

n "2 112 2 2
- — <
Pno,1) <(X’/n)2+ V7 /n)? € nU’ X7 /n)2 & (V)2 € NV, | X'|*+ [Y']" < rn )

3 O(n—))2I2 <(X, Y),ZL> 1 (X,Y),z) n
-2 B0 NPp (N 2% [ o 2 W DA o Ny
/z|<r€ Z( EE € ) EE € N dm(z). (5.7)

Under P, we can express
1
V8

for a standard Gaussian G = (G1,G3) € R?, and thus by the rotational invariance of G we

(X,Y) = fgzj‘ O3] + (—=Td + O(n <)@

may re-express

<<X7Y)7ZJ_> 1 <(X7Y)7z> n _ 1 —&
P, (W LU S e Nv) —P <(\/§Id—|—0(n ))G e |2|(I x J)>

(5.8)

for the shifted intervals I = 3 + O(n™°) 4+ 21U and J = O(n™%) + £ V. By our assumptions
on U,V , the Gaussian density varies by a factor of at most

1
1+ O(a max( U], VD) = 1+ O(1=n 7).
n
say, on |z|( x J), and the latter probability in (5.8)) is thus
_ 4. L|UV| _ —e (a2
14+ O(l212n-1/2)) 2152 (9+0(n=9))lz*
(1 4+ 0(=Pn ) = IV
Combining with (5.7]), we have shown that the left hand side of ([5.5) is

_ U||v]12 _ a2
(14+0(n 1/4))|]‘V|‘7r2/|< e~ U240 DER 2 12dm,(2) (5.9)

uniformly for r < n!/8. Now estimating
‘ / 6712|z|2‘2‘2dm(z) . / 67(12+O(n*5))\z|2’Z‘Qdm(z)
|z|<r z|<r

</||< e 121271 — O TR 12 12dm(2)
z|<r

< n_5/2/||< e_lzlz‘2\2|2dm(z)
z|<r
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uniformly for r < n/4, we obtain (5.5) for this range.
For larger r we bound the right hand side of (5.8) by O(|z]?|U||V|/N), and so the
contribution to (5.7) from integration over n®/* < |z| < r is

UV |Z|2e—(3+0(n_5))|z|2dm(z) < |U||V|6—n5/4

<
N ‘Z|>na/4 N

uniformly in 7 > n®/*. This is easily absorbed by the error term in (5.5), giving the
claim. O

Proof of Proposition|[2.6. We first assume that U = [a, b] is a compact interval. Fix a k-
tuple of indices (aq,...,a;) € [N]* as in the statement of Proposition Recall that the
events {Z,, € [a,b]} are of the form {W(f,,) € D} for a domain D C B(0,10log?n) in R*
that is (K, 10)-smooth for some K > 0 sufficiently large (see Fact[5.1]). Thus, the claim will
follow from an application of Proposition once we show

1 b—-a 1
PN(o,1) (Za € [a,b]) = o N +o0 (N) . (5.10)

for each o = oy, ..., . Since
{za € [a,b]} - {nQpa € [a,b], T € Lo, Ag},
from (j5.6)) and Corollary we see that it suffices to show
Pno1) (Za € [a,b], (AL), G) = o(N 7). (5.11)

On {Z, € [a,b], G}, the projection of (X (6,),Y (6)) in the directions (X'(0,),Y'(6,)) and
(X'(,),Y"(8,))* are of size O(n~'log?n) and O(N~'nlog?n) = n~1+°M) respectively, so

X(0a)? + Y (02)2 < 020 = o(n~1/3),

Thus, on {Z, € [a,b], (A”)¢, G} we must have that either {|X’(f,)| < nlog=?%0n} or
{IY"(64)] < nlog=2%0n}. Hence,

{Zo € [a,b], (A0 G} < {W(0) € Dy s )10y -2x0 |-

From ([5.5)) the latter event has probability
1 / 2 —12|z|? -1
< = |z|?e™ " dm(z) = o(N ),
N Jjz1<10g~250

which yields ((5.11) and hence (5.10). Moving to consider U C R which is a finite union of
compact intervals, we note that

1 U 1
P01 (Za €U) = 3 ’N| To <N)

follows from ([5.10) by finite additivity. Combining the above display with Proposition
we complete the proof of Proposition O



18 NICHOLAS A. COOK, HOI H. NGUYEN, OREN YAKIR, AND OFER ZEITOUNI

6. PROOF OF PROPOSITION [2.3]
For an interval U C R, denote the respective annular domain by
Oé—{ze((:]n(l—\zDEU arg(z) € I} .
Recall the definition F, from .

Claim 6.1. Fiz an arbitrary compact interval U. There exists § < n=/2 such that for any

a € [N], on the event A2 NG,

1
—f(U, Ul
=1 Ua) € U
where U} is the §-neighborhood of Uy, and U, is the complement of the §-neighborhood of
UsS.

U, c F;Y

The key point is that U} \ U; is small and (K, L)-good, and can hence be controlled
using Proposition (3.11.

Proof. We use Taylor expansion to bound the error term in (2.4)). By the restriction to G
we have A

n?log* n 1
‘ Fa(t, p)’ e < n2—o()

(6.1)

for all (¢,p) such that (1 + p)e’ € U,. On the event A”, the affine transformation F, is
invertible as

det (;(:éz:; _ﬁ(i;i))l = (X/(Qa))Q + (Y/(ea))Q € [n2 log*4KO n, o2n? log4 n] .

By applying F; ! to lj and by observing that

(X6 Y0 N 1 (X0 Y0 Tog
Y'(bo) ~X'(62)) 77 (X(0a)? 4+ (V/(62))" \Y'(6a) ~X'(60))
(6.2)
we get that
; 1, 1 logf%on | 1 1
it 10 = - _ [
(U )t = P it )| < ) = Faltn) <
Assuming n is sufficiently large this gives the desired result. O

Claim 6.2. We have

Pl U {2(/HnCal =2} | =0(1).

@:00¢ Evad

Proof. Assume that there exist 21,29 € C, such that z; # 22 and f(z1) = f(22) = 0. By
the mean value theorem there exist (; and (2 on the line segment connecting z; and zo so
that

Z1 — 29

f(z1) — f(22)> _o

21— R2

Re(f(1)) = Re <f(21) - f(Zz)) _0

Im(f(G)) = I (
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On the event G, we apply the mean value theorem again and see that

f(e) = f(G)l < o (@] <2,

N |- 1\<

for j = 1,2. With the above bound we can use Taylor expansion and get

10 1 1( i0a 1
|f(6 )| < if(zl)i + N|f (6 )i < n3/2—o(1)"

Applying Corollary we have

Pl U {Z(HnCal =2} <PE)+ Y. PHIZ(f)NCal > 2}, G)

a:9a¢Ebad a39a¢Ebad
1 .
1 O O
<oty 5 P (If)S g ) <0 )
a9a¢Ebad

For each « in the last sum, we can cover the range of possible outcomes for (X, Y, X', Y”) with
balls of radius n=2°() and bounded overlap and apply the union bound and Theorem
(recall that points outside of Ej,q are 1-smooth and hence 1-spread) to bound each term
by O(n=3) (with plenty of room). Summing this bound over the N = LIO;TQOHJ values of «
yields the claim. O

Now we conclude the main result of the section.

Proof of Proposition [2.3. First, we will show that P (,ugc(U) > Vﬁ(U)) = 0(1). Indeed we
have the inclusion
() >vopc U (A ZacU 2()NU =2},
a:0a¢ Epad

On the event Z,, € U we know that (1+ p,)e™ € U,, while on the event A, the affine map
F,, is invertible and we get that

- 1
0 Ua 1+ pa)e™ ¢ F ( —=f(Us) ) -
¢ = (g™ ¢ 5 (S p(0)
Applying Claim [6.1] we get
. 1
P(Ay, Za €U, Z(f)NUy =2, G) <P (.Aa, (14 pa)e™ € Uy \ F;t <\/ﬁf(Ua)> ) g>
<P((1+pa)e™ €U \U,, G).
Recalling from Claim that U \ U, is the d-neighborhood of the boundary of U,, we

can cover the corresponding set in the (p,t) by four rectangles I x J of area O(6n?). Thus,
on the last event we have that W (0,) € Dy ; ,001) for one of four possibilities for (1, J), each

satisfying |I| x |J| < 6n? < n~/2. It follows from Proposition and (5.4) that

P((1+pa)e™ € UF\US , G) < =o(N71)

nl/2—o(1) N
Summing over « we get

P(5(0) > vj(U)) <o)+ > P(Aa Zu €U, Z(f)NUs =2, §) = o(1).

Oé:@a gEbad
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The proof of the proposition will follow once we show that

P (ugc(U) < ufc(U)) — o(1). (6.3)
By Claim [6.2] and Corollary [3.3] the left hand side above is bounded by

P U {A/oln Za¢U7 ’Z(f)mUa‘:l}

a:00¢Fpaq
+P [ (A5 12(HNUsl = 1,6} | +0(1). (6.4)
a:0a¢FEpaq

Similar to the previous argument, on the event {A”, Z, ¢ U} the map F, is non-degenerate
and we have

(1+ pa)eim ¢ Ua,
while the assumption that |Z(f) N Uy| = 1 implies that 0 € f(U,). This tells us that

(1+ pa)e™ € F! <\}ﬁf(Ua)> \U, CU\U, .

Arguing with Claim [6.1] as we did for the events {Z, € U, Z(f) N U, = @}, we get that

Pl U (AL ZagU 12(Hnlal =1}
a:0a ¢ Epaa
<o)+ > P(L+pa)e™ €US\Us, G) =o().
a:0a ¢ Epaq
For the second probability in , consider a € [N] with 0, ¢ FEp,q and suppose
{(A2)¢,1Z(f) N Uyl = 1,G} holds. Let & € U, be the root of f. By Taylor expansion and
the restriction to G we have

logHo+2

vn
which implies | X (64)],]Y (6s)] < n=11°) = o(n=2/3). From this and the restriction to
G, if the event A’ does not occur then we must have either |X’(6,)| < nlog=2%0n or

[Y'(0,)| < nlog=2%0n. Now, from Theorem and the boundedness of the Gaussian
density (or Theorem and a covering by balls of bounded overlap) we get

|£(e™)| <€)+ O(n*?log?n)¢ — | <

1 Ko+2 1 4
P (1XOLY(02)] < 2 0] < nlog #n ) < P = o (),
n n
and similarly
l Ko+2
P (1001 1Y 0a)] < 5 V(00)] < nlog 20 ) o (7).
n

Taking the union bound over these two cases, we have thus shown
P((A)%1Z(f) NUal = 1,G) = o(N 1)

Applying the above and the union bound over the choices of «, we see that (6.4) is o(1),
giving (6.3)) as desired. O
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7. PROOF OF PROPOSITION [2.4]

In this section we argue similarly as in [7, Section 5] with some minor modifications.
Expanding the factorial moments E [(,ut}(U ))k] we see that

E[(14W) | = D P(E@),
acE
where EF := {a = (ai,...,o1) € [N]F | a; # a; Vi#j, 0a, & Ebad} and

Ela) ={Zy, €U,...,Z,, €U}.

For some sufficiently small e > 0 we consider the set E' := {a € E'| (0, ..., 04,) is n°-spread}.
Since |E’'| = N¥(1 + o(1)), we can use Proposition [2.6{ and get that

> P(&(a)) = N* <1|2U]\|[>k +0(1) = <|1U2|>k +0(1)

acl!
so Proposition will follow once we show that
Tim > P(E(a) =0. (7.1)
QEE\E'

The next lemma shows that close roots are typically separated. The proof is a simple
modification of [22, Lemma 2.11] or |7, Lemma 2.2] and is deferred to Appendix

Lemma 7.1. On the event G, for (o, ') € [N]? with 04,04 & Ebaq we have
(1) If A, and An41 occur, then

70 — Oa € L_LK7L _
2N 2Nlog"on 2N

(2) Ay and Ay cannot occur simultaneously as long as

s 1
O, — 0y — .
| ] a|€ <N’7’L10g4K07’L:|

Proof of Proposition [2.4. By the discussion above, we only need to show that ((7.1) holds.
By Corollary [3.3] we can assume that G holds. The second item in Lemma [7.1] implies that
we only need to consider tuples a € E'\ E’ of the form

a=(ay,...,qp_p00+1,...,a,+1) (7.2)

consisting of ¢ tuples of the form («j, a; 4+ 1) for some 0 < ¢ < k/2, while the k — ¢ points
Oays- -+ 0a,_, are pairwise separated by at least n~! log=4&0 p, in [0, 7).

We divide the class of such « into into two sets Ey and FEs, where E; consists of all
a € E\ E' of the form (possibly with ¢ = 0) such that [6a, — a,| < n~ 1€ for some
1<i<j<k-—1{ and F; is the set of all « € E'\ E’ of the form (7.2) with £ > 1 and
00, — Oa;| >n e forall 1 <i<j<k—/

For the sum over Fp, denote by Ef the tuples @ € E; with ¢ neighboring pairs as in
(7:2). We have |Ef| = O(N*~¢/n'=¢), as there are O(N/n'~¢) choices for the close point
with all others fixed. Recalling the notation , we have

E(a) € {W(0a,) € Dyygiopzn V1 <i <k}
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m™ T

with V' = [-F, §]. Since the points 0q,,...,0a,_, are separated by at least n~'log
we can apply Proposition (recalling Fact along with (5.4) with r = 2log?n, to get

[k/2] 10g@®) p,
Y PE(@) < > BN 10g%M n « — =oll).
acF, =0

—4Ko
M

For the sum over Fs, fix a tuple @ € E5 with £ neighboring pairs with ¢ > 1. By the
first item in Lemma we have the containment of events

™ s ™
{Zaj GU, Zaj+1 GU}C {Za]- GU, ’Taj—eaj’ S w—m)gl(on,m]} .

The event on the right hand side is contained in the event that

W(ea) € DU,V_,2 log? n U DU,V+,210g2 n

with V_ = [-3, -5 + m] and Vy = [§ — 517k~ 5]. As above, by Proposition

) log¥o0

Fact and (5.4) we get that for a € Ey with ¢ neighboring pairs,

P(&(a)) <<# log” n -
NE=£\ loghon '

Taking Ky > 8, since the number of such tuples is at most N*~¢, the above display implies
that

> P(E(a) = o(1).

acFE>
We have thus proved ([7.1)), and hence also the proposition. O

8. EXTENSIONS

The method presented in the paper allows one to consider other point processes related
to us of (2.8). Specifically, consider the 4-tuple

~

Zo = (n2p047 N(Oa — 7a), X’(Ga)/n,Y'(Ha)/n),

and introduce the point process

N
iy = Z5(9a72a1Aa+(00700700’00)1A3)' (8.1)

a=0

Note that py can be obtained from iy by an appropriate contraction. We then have the
following.

Proposition 8.1. Under the assumptions of Theorem the process Jif converges to a
Poisson point process on [0, 7] x R* with intensity

(12/7%)((2')? + (y)2)e X HOIL o dbdadyda’ dy’

Indeed, the proof of Proposition follows that of Theorem The main difference
is in the computation of Pxo1)(pa € U/n?,00 — 7o € V/N,X'(0a) € nl1,Y'(0,) € nly).
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Following the lines of the proof of Lemma for 0, € [n~17¢, 1 — n=1%¢] this probability
is given by

Preo) < YX'/n—XY'/n c 1 : XX'/n+YY'/n
YAX )2+ (Y n)? T (X’/n) (Y// )?

3 _ ey [ (X > (X,Y),2) _n
_2 (B+0(n=9)) |z’ p (XY)z n 2
7_(_/[1><126 z ( |Z|2 U |Z|2 € NV dm(z)7 (8 )

and the remainder of the proof proceeds along similar lines, with integration over z € B(0, r)

%V, X' enl,Y' e n[2>

replaced by integration over z € I X Is. We omit details.
Propositionallows one to compute, among other things, the joint law of n? dist(S', Z(f))
and nmin,cg1 |f(2)].

Acknowledgement We thank the referee for a careful reading of the first version and for
useful comments. We thank Ziv Huppert for pointing out a mistake in the original version

of Proposition

APPENDIX A. PROOF OF LEMMA [3.§

With a; = sin(jt) and b; = cos(jt) we have f(e') = > i=18j(aj,bj), viewed as a point
in R2. Set
to = 5L
By a standard procedure (see for instance |1, Eq. 5.4]) we can bound the small ball proba-
bility using the characteristic function,

A

1 . n . -
B(—=f(e") € B(w,8)) < C(33) /R [] B @t e 8 qu = Jy + Jo
0 j=1

vn

where in Ji, Jo the integral is restricted to the ranges ||ull2 < ro = O(1) and ro < ||ul|2.
Additionally, we can bound (see for instance |7, Eq. 9.2]),

[ [Ee® @t < exp(—c  inf ZH af(aj, by), u/2m)|IR 7).
=1

c1<|a\<02

where ¢; < ¢ are positive constants depending on { . Thus, if rg is sufficiently small, then
we have [|a((aj,b;), u/27)|lr/z = |al[[{(a;,b;),u/27)[]2, and so from Lemmawe have that
for any unit vector e, >_.((aj, b)), e)? > ¢ \?n, yielding

ZHCL (a5, b), u/2m) Rz, > ¢/nllul]3A%.

Hence
n n ) _”HuH% n n|\u||2 cn||u||2)\2
j1:C<2)/ H|Eez§j<(aj,bj)7u)‘e 2t2 du<C<2>/ e ECE du
£/ Jljullasro i 7 Jijulla<ro
+ 2)\2
:C(Z)/ e (2/\152 c'n)llull3 du:O()\_252),
7 Jjjulla<ro

where we used change of variable v = v Anu and that [ e~clvlzgy = O(1) in the last
estimate.
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For Js we trivially have

2
_nllul3

Jy = C(%) / H |Eeii{(aibiul e 23 gy < 052n/ e 0%nllull3/2 gy,
B/ Jro<iullz 15 ro<|full2

< 052/ e~ II3 gy = O(5?)
rov/n<|lvll2
provided that § > n~1/2.

ApPPENDIX B. PROOF OF LEMMA [7.1]

Proof of part (1). Fix a € [N] with 6, ¢ Epaq and assume that the event A, holds. Re-
call that F, given by is the affine transformation which locally approximates the
polynomial ﬁ f inside C,. It is evident from its definition up to the translation term
(X(04),Y(04)), it is an orthogonal transformation (in particular it maps disks to disks; in
fact this it not a coincidence, and can be seen as a consequence of the Cauchy—Riemann
equation for f in the polar coordinates.)

On the event G, we have the bound

1
vn
21 2
n-lo 1
gn<<og
N2 n2

|Fa(2) — Fat1(2)] < +

Fa(2) = —=f(2)

Fa+1(z) (Z)

2Kp+2

n

(B.1)
valid for all z € Cyy1. On the event A,, assume that {.Aa, 1Ta = 0a] < 55 — m}
We have )

Nlogfon

which, together with the fact that F,(pa, 7o) = 0 and the bound (6.2), implies that for all
z € Cyt1 we have

dist ((1 + pa)eife, Ca+1) >

2Ko+2 n

nlog=%%0n  log n
Fana ()] 1) = 1) = Fon (2 > S0l - 2B Ty
where in the second inequality we used (B.1) and (6.2). In particular, we see that Fi11
does not vanish in Cy41 which implies that A,4+1 does not hold. g

Proof of part (2). We argue similarly as in the proof of the first part, only that we do
not need to impose the extra separation within C,. Fix distinct o, o’ € F.q such that
D =10, — O] € (m/N,n" log=*%0 n]. Assuming A, N G holds we have

MM@—%@MSx%ﬂd—&&)

for all z € C,. Furthermore, since ﬁ| f'(e?)| > nlog=2%0n (by the Cauchy Riemann

+ ’\;ﬁf(z) — Fy(2)| < n*(log®n)D?.

equations in polar form — see Remark we know that for all such z,

Fa(2)] > |2 — (14 pa)é /(e/%)] > Dnlog < n

104 L
H\/ﬁf

Wth]l .“ l) ieS ‘ 14
o n g n n g n :
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since D < n~tlog~ %% n. Since (B.2) holds for all z € C,s we see that F cannot vanish
there, and hence A, does not hold. ]

1]
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