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Abstract. We give a new proof of a recent resolution [18] by Michelen and Sahasrabudhe

of a conjecture of Shepp and Vanderbei [19] that the moduli of roots of Gaussian Kac

polynomials of degree n, centered at 1 and rescaled by n2, should form a Poisson point

process. We use this new approach to verify a conjecture from [18] that the Poisson

statistics are in fact universal.

1. Introduction

Let ⇠0, . . . , ⇠n be i.i.d. random variables and consider the Kac polynomial

f(z) :=
nX

k=0

⇠kz
k
. (1.1)

This paper concerns the typical behavior of the random zero set Z(f) := {z 2 C : f(z) = 0}.
It is well known that if E log(1 + |⇠0|) < 1 then the roots of f concentrate uniformly
around the unit circle S1 := {|z| = 1} as the degree n tends to infinity [11], [20] (see also
[12] for a more modern perspective). Finer results on this convergence are also known:
typically, most roots lie inside an annulus of width O(n�1) around the unit circle (see
[19] for Gaussian coe�cients and [13] for more general choices of coe�cients). Microscopic
correlation functions for the Gaussian case (also, for multivariate systems of polynomials)
appear in [4]; see [8, 21] for a universality result in the case of non-Gaussian coe�cients.

In view of the above, the following question becomes quite natural: What is the typical
distance of the set of roots to the unit circle? Indeed, this question was already suggested
by Shepp and Vanderbei [19, Section 6], who conjectured that for Gaussian coe�cients,
the set {n2(1 � |z|) : z 2 Z(f)} (identified with its counting measure) converges to a
Poisson point process as n ! 1; their conjecture would imply in particular that the
closest root is typically at distance of order n

�2 from the unit circle. This conjecture was
recently confirmed by Michelen and Sahasrabudhe [18], using a reduction to a point process
determined by the polynomial on the unit circle and a high-order Kac–Rice formula.

Theorem 1.1 ([18, Theorem 1]). Assume that f is given by (1.1) with ⇠i i.i.d., real-valued
Gaussian of mean zero. Then

{n2(1� |z|) : z 2 Z(f)}

converges in distribution (with respect to the vague topology), as n ! 1, to a homogeneous
Poisson point process on R of intensity 1/12. In particular, for all x > 0,

lim
n!1

P
�
n
2 dist

�
S1, Z(f)

�
> x

�
= e

�x/6
.
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It is natural to guess that the phenomenon described in Theorem 1.1 is in fact universal
in the sense that the theorem holds true for a wide class of coe�cients distribution, and not
just for Gaussians. In this regard, it is natural (and also suggested in [18]) to conjecture
that Theorem 1.1 holds for random Littlewood polynomials, that is, when the ⇠i’s are i.i.d.
chosen uniformly at random from the set {±1}.

The goal of this paper is multifold. We will give a new proof of Theorem 1.1, based on
ideas appearing in our recent works [22], [7]. In this proof, and in contrast with [18], we do
not use the Kac–Rice formula, a powerful tool which is hard to apply outside the case of
Gaussian coe�cients (or, with considerably more e↵ort, coe�cients whose law possesses a
smooth density). Instead, we work directly with local linear approximations of f (see Section
1.1 for more details). Besides the intrinsic interest in a di↵erent proof, the main advantage
of our approach is that it is more suitable toward the study of universality problem, for
which our main result confirms the prediction. Namely, we show

Theorem 1.2. Theorem 1.1 continues to hold as long as the ⇠i are i.i.d. copies of a
non-degenerate, sub-Gaussian, real-valued, zero-mean random variable.

In particular, our result extends to random Littlewood polynomials.

Remark 1.3. By sub-Gaussian we mean that there exists a constant c > 0 so that

P(|⇠0| > t)  2 exp(�ct
2)

for all t > 0. A close investigation of the current method would enable us to allow |⇠i|
to have bounded k-th moment for some large constant k, however we will not elaborate
on this. As it has no bearing on the conclusion, in the rest of the paper we may and will
assume that the ⇠i’s are normalized to have unit variance.

Remark 1.4. Our methods allow one to consider other related point processes for statistics
near the unit circle, see Section 8.

1.1. Heuristics and proof method. We first explain briefly the Poisson heuristic behind
the Gaussian case, which is hinted at in [19, Section 6]. The computations of [19] and an
asymptotic analysis show that the expected number of roots at distance at most x/n2 from
the unit circle, denoted Nx(n), is asymptotic to x/6. (The expression in [13, Theorem 2],
based on the Kac–Rice formula, gives that immediately, and in fact the proof there can
be adapted to cover that asymptotic.) While computing higher moments of this quantity
via the Kac–Rice formula may be feasible, the computation quickly becomes cumbersome,
with a major obstacle being the need to deal with short-range correlations and their can-
cellations. Assuming however that such short-range correlations do not a↵ect the higher
order moments, one notes that for macroscopically separated points (z1, . . . , zk) on the unit
circle, the joint density of the random variables (f(zi), f 0(zi))ki=1 nearly factorizes; accept-
ing this factorization, one obtains from the Kac–Rice formula that the expectation of the
kth moment of Nx(n) converges to the corresponding one for a Poisson random variable of
parameter x/6. From this, the route to a Poisson heuristic is short. In fact, once spatial
separation between close roots is proved, the Poisson heuristic is standard.

There are two obstacles for making the heuristic precise, even in the Gaussian case.
First, one needs to get rid of short range correlations. This is achieved by noting, as was
done in [16, 18], that in a tubular neighborhood of z 2 S1 of diameter o(1/n), the pair
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(Ref(z), Imf(z)) can be approximated by linear curves, and the existence in this neigh-
borhood of a root of distance x/n

2 from the circle can be decided in terms of the 4-vector
W (z) := (Ref(z), Imf(z), Ref 0(z), Imf

0(z)), with the result that except for exceptional
values of this vector, only one root can possibly exist in the neighborhood. The second
obstacle involves long range correlations: while conditioning on a fixed number of values
W (zi)i�2 for macroscopically separated zi has only a small e↵ect on W (z1), by analyticity
the values {W (z)}z2S1:|z�z1|>1/2 already determine W (z1) and in particular the existence
of a root close to z1. This is a serious obstacle in applying methods of Poisson convergence
based on second moment methods, e.g. [2].

1.2. Structure of the paper. We can now explain our approach to Theorem 1.2 and
contrast it with the approach to the Gaussian case introduced in [18]. There are essentially
three major steps.

(1) As explained above, in the first step we show via (2.9) and Proposition 2.3 that
the statistics of n

2(1 � |z|), z 2 Z(f) near the unit circle can be deduced from
the behavior of (f(z↵), f 0(z↵)) on the unit circle, for z↵ = e

i✓↵ belonging to a
net of cardinality n

2
/ logK0 n (for some large constant K0), and that one needs

only consider good events, denoted A↵, where the linear approximation at z↵ is
precise enough. Towards the universality result (and in particular to allow discrete
distributions for ⇠0), for reasons described below we remove from consideration
certain “bad points” z↵ possessing bad arithmetic properties, leaving only under
consideration smooth points z↵, see Definition 2.1 and Proposition 2.2. (The latter
removal of bad points is not needed in the Gaussian case.) Further, we show (see
Proposition 2.4 and Lemma 7.1) that one needs only consider z↵’s that are separated
by distance at least n�1+" for some small " > 0.

(2) From Step 1, for points z↵ satisfying the good event, the location of the root close
to z↵ can be written as Z↵ = n

2
⇢↵ = n

2
⇢↵(f(z↵), f 0(z↵)), see (2.6) and (2.8). Then,

the kth moment of Nx(n) can be determined in terms of the joint distribution of
(Z↵j )

k

j=1 for well-separated, smooth z↵i . In the Gaussian case, these are almost
independent (see the computation in Section 3.2 for a quantitative estimate), and
the moments factor, see Lemma 3.5, yielding Theorem 1.2 in the Gaussian case. No
notion of smoothness of the z↵’s is needed for that computation.

(3) The key tool for obtaining universality is a result imported from [7] giving a quanti-
tative local CLT for the joint distribution of W (z1), . . . ,W (zk) for any fixed number
of points z1, . . . , zk 2 S1 that are both smooth and spread (see Theorem 3.9). Com-
bined with small ball estimates, also borrowed from [7] (see Theorem 3.7), this leads
to a comparison of probabilities between the Gaussian and general cases, culminat-
ing with Proposition 3.12.

We note in passing that the local CLT borrowed from [7], arguably the technically
most challenging component used in our proof, is in turn a significant generalization
of a result from [9] to the multivariate case.

1.3. Background. We compare our result with existing literature. Konyagin and Schlag
[15, 16] showed that, for random Kac polynomials as general as in Theorem 1.2, with
high probability the complex roots of f(z) cannot be within distance o(1/n2) of the unit
circle. This is consistent with our theorem, but the method of [16], on the other hand,
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cannot be used to study asymptotic statistics. More relevant to our universal statistics, [21,
Theorem 5.7] of Tao and Vu, or [8, Theorem 2.3] of Do et al. established universality for
the correlation functions of complex roots of f(z) within balls of radius ⇥(1/n) near the
unit circle; it seems that the techniques and results there cannot be applied to our problem
because the region under current consideration is at a finer scale and too close to the circle.

We already mentioned that Theorem 1.1, the Gaussian case of Theorem 1.2, was already
proved in [18], using a method based on the higher Kac–Rice formula, which seems ill-suited
to computations in the non-Gaussian case. It does not seem straightforward to apply the
local CLT comparison to their computation and obtain directly Theorem 1.2 from their
Theorem 1.1.

As discussed above, the method of proof of Theorem 1.2 borrows from the recent [7, 22],
that dealt with the variable m

⇤
n = minz2S1 |f(z)|; we refer to these articles for historical

background. (That the problems are related appears already in the work of Konyagin and
Schlag [16].) Step 1 in the sketch above is similar to the analogous step in [22], with the
variable Z↵ here di↵ering from the variable Z↵ in [22, 7] by a factor of 1/|f 0(z↵)|. In the
case of m⇤

n, with ⇠i Gaussian, the collection (Z↵j )
k

j=1 for separated z↵j has the property

that writing ⇠i =
p
1� ✏2⇠0

i
+ ✏⇠

00
i
with ⇠

0
i
, ⇠

00
i
independent and ✏ small (n dependent), one

has that Z↵j = Z
0
↵j

+ nj where Z
0
↵j

are the same as Z↵j except that ⇠0
i
are used instead of

⇠i, and the nj are (asymptotically) independent of each other and of the (Z 0
↵j
). From this,

an application of an invariance result due to Liggett [17] (see also [6]) gave the Poisson limit
in the Gaussian case. In the case considered in this paper, with the definition of Z↵ as in
(2.6) and (2.8), one can repeat the computation, but we cannot show a-priori that the nj ’s
are asymptotically independent of the Z

0
↵j
. Thus, Step 2 here di↵ers significantly from the

proof in [22] (which is used as basis for comparison in [7]).

Notation. We will assume n ! 1 throughout the paper. We write X = O(Y ), X ⌧ Y

or Y � X if |X|  C|Y | for some absolute constant C > 0 which does not depend on n.
We write X ⇣ Y or X = ⇥(Y ) if X ⌧ Y and Y ⌧ X. We write X = o(Y ) or Y = !(X)
if X/Y ! 0 as n ! 1. In what follows, k·kR/Z is the distance to the nearest integer
and dm = dmLeb is the Lebesgue measure. The volume of a direct product of intervals
Q = I1 ⇥ · · · ⇥ Id ⇢ Rd is denoted |Q| = |I1| ⇥ · · · ⇥ |Id|. We write N(a, b) for the real
Gaussian law with mean a and variance b.

For random variables X and Y , we write X
law
= Y if they are identically distributed. For

a sequence of random variables Xn, we write Xn

d��! X if Xn converges in distribution to
X as n ! 1. Finally, for N 2 N we write [N ] := {0, 1, . . . , N}.

Sometimes we write PN(0,1)(·),EN(0,1)(·) to emphasize that the model under considera-
tion is (standard) gaussian; in the general case we will drop these subscripts.

2. Reduction to the unit circle

For t 2 [0,⇡]1 we write

1p
n
f
�
(1 + ⇢)eit

�
= X(⇢, t) + iY (⇢, t)

1Because f(z) = f(z), it su�ces to work with the upper half plane.
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where

X(⇢, t) =
1p
n

nX

k=0

⇠k(1 + ⇢)k cos(kt), Y (⇢, t) =
1p
n

nX

k=0

⇠k(1 + ⇢)k sin(kt).

On the unit circle we denote

X(t) := X(0, t) and Y (t) := Y (0, t). (2.1)

For S ⇢ R, we define the point process (random measure) ⌫f of “close-roots” (counting
multiplicity) by the formula

⌫f (S) :=
���z 2 Z(f) | n2(|z|� 1) 2 S, Im (z) > 0

 �� .

In fact, Theorem 1.1 exactly states that ⌫f converges in distribution to a Poisson point
process on R. As mentioned in the introduction, the goal of this section is to introduce a
new point process that is equivalent to ⌫f but is easier to work with – this we do in what
follows.

We let

N :=

�
n
2

logK0 n

⌫

for an absolute constant K0 > 8 that will be taken su�ciently large over the course of the
proof, and let

✓↵ :=
⇡↵

N
, ↵ = 0, . . . , N. (2.2)

Also set I↵ := [✓↵�⇡/2N, ✓↵+⇡/2N ] to be a covering of [0,⇡] by intervals of equal length.
We consider annular domains

C↵ :=

⇢
z 2 C : (1� |z|) 2


� log n

n2
,
log n

n2

�
, arg(z) 2 I↵

�
.

Since mLeb(C↵) is small, we expect that f(z) ⇡ f(ei✓↵) + (z � e
i✓↵)f 0(ei✓↵) for all z 2 C↵.

(We will actually perform the linearization in the (⇢, t)-plane.) In particular, this linear
approximation will determine, with high probability, whether or not f has a root inside the
set C↵, and will also give an approximation to its location if it exists.

2.1. Linear approximation. For every ↵ 2 [N ] we sample the real and imaginary parts
of 1p

n
f and their radial derivatives at angle ✓↵, i.e.

�
X(✓↵), Y (✓↵), X

0(✓↵), Y
0(✓↵)

�
. (2.3)

By applying a 2-dimensional Taylor approximation in the variable z = (1+ ⇢)eit, we arrive
at the following linear system:

✓
X(⇢, t)
Y (⇢, t)

◆
=

✓
X(✓↵)
Y (✓↵)

◆
+

✓
X

0(✓↵) Y
0(✓↵)

Y
0(✓↵) �X

0(✓↵)

◆
·
✓
t� ✓↵

⇢

◆
+ error, (2.4)

where we expect the error term to be small inside C↵.
We will denote by

F↵(t, ⇢) :=

✓
X(✓↵)
Y (✓↵)

◆
+

✓
X

0(✓↵) Y
0(✓↵)

Y
0(✓↵) �X

0(✓↵)

◆
·
✓
t� ✓↵

⇢

◆
(2.5)

as the a�ne map that approximates 1p
n
f inside C↵. Sometimes for convenience we also

write F↵(z) for F↵(✓, ⇢).
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By setting f(z) = 0 and neglecting the error term, the system (2.4) gives a local candidate
for the closest root by

⇢↵ :=
X

0(✓↵)Y (✓↵)�X(✓↵)Y 0(✓↵)

X 0(✓↵)2 + Y 0(✓↵)2
(2.6)

⌧↵ := ✓↵ � X(✓↵)X 0(✓↵) + Y (✓↵)Y 0(✓↵)

X 0(✓↵)2 + Y 0(✓↵)2
.

Indeed, it is straightforward to check that F↵ (⌧↵ � ✓↵, ⇢↵) = 0, and so ⇢↵ given in (2.6) is
a linear prediction for the radial position of the closest root to the point ei✓↵ based on the
values of X(✓↵), Y (✓↵), X 0(✓↵), Y 0(✓↵).

Now, we define a new, thinned point process µf which retains points ⇢↵ provided that
some good event holds. Set

A↵ :=A0
↵ \A00

↵, where

A0
↵ :=

�
⌧↵ 2 I↵, n

2|⇢↵|  log n
 
=
�
(1 + ⇢↵)e

i⌧↵ 2 C↵

 
(2.7)

A00
↵ :=

n
|X(✓↵)|, |Y (✓↵)|  n

�2/3
, |X 0(✓↵)|, |Y 0(✓↵)| 2 [n log�2K0 n, n log2 n]

o
.

The event A0
↵ implies that the linear approximation predicts a root inside C↵, while the

event A00
↵ is just typical for such a prediction and tells us that the linear system (2.6) is

non-degenerate.
With the above notations, we now define our approximating point process as

µf :=
NX

↵=0

�Z↵ where Z↵ := n
2
⇢↵ · 1A↵ +1 · 1Ac

↵
. (2.8)

And so, µf is a point process in R whose values are determined only by the samples of
X,Y,X

0
, Y

0 on the points {✓↵}N↵=0. We will show that µf serves as a good approximation
to ⌫f . In particular, our argument shows that for any compact interval U ⇢ R,

lim
n!1

PN(0,1) (µf (U) = ⌫f (U)) = 1. (2.9)

2.2. Smooth points. To extend this comparison to general coe�cients we will need to
remove points Z↵ coming from certain “bad arcs”.

Definition 2.1 (Smooth points). For K > 0, we say a point t 2 [0,⇡] is K-smooth if
���
p0t

⇡

���
R/Z

>
K

n
8 p0 2 [1,K + 1] \ Z.

We say a tuple (t1, . . . , tm) is K-smooth if tr is K-smooth for each 1 6 r 6 m.

Letting

Ebad =
n
t 2 [0,⇡] : t is not n-smooth

o
(2.10)

for some su�ciently small  > 0 that we choose later, we note that mLeb(Ebad) = O(n2�1).
We now define modified point processes

µ
]

f
:=

X

↵:✓↵ /2Ebad

�Z↵ , µ
[

f := µf � µ
]

f
(2.11)

and

⌫
]

f
:=

X

↵:✓↵ /2Ebad

X

z2Z(f)\C↵

�n2(|z|�1) , ⌫
[

f := ⌫f � ⌫
]

f
. (2.12)
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The following lets us focus on potential angles that are smooth.

Proposition 2.2 (Ruling out bad arcs). With probability 1�O(n�/4) we have

µ
[

f (R) = 0. (2.13)

Furthermore,

P
⇣
9✓ 2 Ebad, z 2 Z(f) : |z � e

i✓| 6 n
�3/2

⌘
= O(n�/4). (2.14)

In particular, with probability 1�O(n�/4),

⌫
[

f (R) = 0.

We postpone the proof of Proposition 2.2 to Section 4. We can now state the modified
version of the comparison (2.9) allowing us to pass to the point process µ

]

f
in the general

case.

Proposition 2.3 (Passage to the unit circle). For any interval U ⇢ R we have

lim
n!1

P
⇣
µ
]

f
(U) = ⌫

]

f
(U)
⌘
= 1.

For x 2 R and k > 1 denote

(x)k := max{0, x(x� 1) · . . . · (x� k + 1)}.

Recall that for a random variable Z which has Poisson(�) distribution we have E[(Z)k] = �
k

for all k > 1. The following states that the factorial moments for µ]

f
match those of a Poisson

process in the limit.

Proposition 2.4 (Moments). Let U ⇢ R be a finite union of compact intervals. Then

lim
n!1

E
h⇣

µ
]

f
(U)
⌘

k

i
=

✓
|U |
12

◆k

for all k > 1. (2.15)

Assuming that Propositions 2.2, 2.3 and 2.4 holds we can prove our main result.

Proof of Theorem 1.2. By Propositions 2.2 and 2.3 it su�ces to show that µ]

f
has a limiting

Poisson distribution as n ! 1. Indeed, Proposition 2.4 together with the classical moment
theorem [10, Theorem 3.3.26] implies that for any finite union of compact intervals U ⇢ R

µ
]

f
(U)

d��! Poisson

✓
|U |
12

◆
.

Together with a theorem of Kallenberg [14, Theorem 4.7], this implies that the sequence of

point processes µ
]

f
converge in the vague topology to a Poisson point process of intensity

1/12, as desired. ⇤

2.3. Joint distribution over spread points. Expanding the factorial moments (2.15)
leads us to consider the joint events that k di↵erent samples of our polynomial f on the
unit circle contributed a point to µ

]

f
which lie in U . Since we already imposed a smoothness

assumption on the sample points, to compute the desired probabilities we will require all of
the points to be separated from one another, in the following sense:
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Definition 2.5 (Spread tuples). We say that t = (t1, . . . , tk) 2 [0,⇡]k is �-spread if

|ti � tj | >
�

n
8 � 1 6 i < j 6 k (2.16)

where we put t0 := 0, t�1 := ⇡. (We note that this is di↵erent from the definition in
[7] for general (t1, . . . , tk) 2 Rk, but when specialized to [0,⇡]k they are equivalent up to
modification of � by a constant factor.) Note this definition includes k = 1, with a single
point t 2 [0,⇡] being �-spread if it is distance at least �/n from 0 and ⇡. In particular, if t
is 1-smooth then it is 1-spread.

The main step towards the proof of Proposition 2.4 is the following:

Proposition 2.6 (Main term). Let U ⇢ R be a finite union of compact intervals and fix a
k-tuple of indices (↵1, . . .↵k) 2 [N ]k. Assume that for some , " > 0 the tuple (✓↵1 , . . . , ✓↵k)
is n

-smooth and n
"-spread, where ✓↵ is given by (2.2). Then,

P (Z↵1 2 U, . . . , Z↵k 2 U) =

✓
|U |
12N

◆k

+ o

⇣
N

�k

⌘

where the rate of convergence depends on k,, " and K0.

We will prove Proposition 2.6 in Section 5, and with it conclude Proposition 2.4 in
Section 7. Furthermore, some of the tools which we develop in Section 5 will be helpful for
us to prove Proposition 2.3, which is given in Section 6.

Remark 2.7 (Gaussian case). For the Gaussian case we can skip some steps above and in
the proofs of the assumed Propositions 2.2, 2.3, 2.4 and 2.6, and do not need all of the tools
gathered in Section 3. In particular:

• One does not need to modify the processes in (2.11), (2.12) – one only needs to
remove points coming from a small neighborhood of the real line. This means we
only need an easier version of Proposition 2.2 that only rules out any contribution
from almost-real zeros (which are covered by Ebad). See for instance [22, Lemma 4.3]
or [18, Lemma 13].

• In the proof of Proposition 2.6 we can skip the application of Proposition 3.12 giving
quantitative comparison between the Gaussian case and the general case (this is the
only place it is applied).

• The proofs of Propositions 2.3 and 2.4 remain essentially unchanged – we just need
small ball estimates, which in the Gaussian case are immediate from the bounded-
ness of the Gaussian density, whereas in the general case we apply Proposition 3.11.

We note that the only places in the paper where we deal specifically with the Gaussian
distribution are in the proof of Proposition 2.6 (specifically, Lemma 5.2) and in Lemma 3.5
on decorrelation of the field at large separations.

3. Some supporting lemmas

3.1. Control on derivatives. We first start with a standard result.

Lemma 3.1. Let A,A
0 be positive constants where A is su�ciently large. For any � >

A
p
log n, with probability at least 1� exp(�⇥(�2)) we have that

max
||z|�1|6A0/n

|f 0(z)|, |@f/@✓|, |@f/@⇢| 6 �n
3/2

.
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We also have similar bounds for second order derivatives that

max
||z|�1|6A0/n

|f 00(z)|, | @
2
f

@l✓@2�l⇢
| ⌧ �n

5/2
, l = 0, 1, 2.

In fact the above holds over |z| 6 1 +A
0
/n but we don’t need this fact here.

Before proving the result, recall that f(z) =
P

n

k=0 ⇠kz
k = f

�
(1 + ⇢)ei✓

�
=
P

n

k=0 ⇠k(1 +
⇢)k cos(k✓) + i

P
n

k=0 ⇠k(1 + ⇢)k sin(k✓) =
p
n(X(⇢, ✓) + iY (⇢, ✓)). Hence

|@
p
nX(⇢, ✓)

@✓
| = |

nX

k=0

k⇠k(1 + ⇢)k sin(k✓)| = |
nX

k=0

(k + 1)(k⇠k/(k + 1))(1 + ⇢)k sin(k✓)|

= |
nX

k=0

(k + 1)⇠0k+1(1 + ⇢)k sin(k✓)| = |Re(g0(z))|,

where ⇠
0
k+1 = k⇠k/(k + 1) and g(z) =

P
n

k=0 ⇠
0
k+1z

k+1, and similarly

|@
p
nX(⇢, ✓)

@⇢
| = |

nX

k=0

k⇠k(1 + ⇢)k�1 cos(k✓)| = | 1

1 + ⇢

nX

k=0

(k + 1)(k⇠k/(k + 1))(1 + ⇢)k cos(k✓)|

= | 1

1 + ⇢

nX

k=0

(k + 1)⇠0k+1(1 + ⇢)k sin(k✓)| = | 1

1 + ⇢
Im(g0(z))|.

One can also have similar expression for @
p
nY (⇢,✓)
@✓

,
@
p
nY (⇢,✓)
@⇢

. Furthermore, by the same way,

the second derivatives @
2
X(⇢,✓)

@l✓@2�l⇢
,
@
2
Y (⇢,✓)

@l✓@2�l⇢
can be related to h

00(z), where h is a polynomial of
degree n + 2 and the coe�cients are independent of mean zero, variance almost one, and
subgaussian. Hence it su�ces to establish Lemma 3.1 only for max||z|�1|6A0/n| |f 0(z)| and
max||z|�1|6A0/n |f 00(z)|.

Remark 3.2. One notes from the Cauchy–Riemann equations in polar form (or Taylor
expansion) that for f analytic in a neighborhood of z0 = r0e

i✓0 ,

| @
@r

f(rei✓0)|r=r0 ⇣ |f 0(r0e
i✓0)| , | @

@✓
f(r0e

i✓)|✓=✓0 ⇣ r0|f 0(r0e
i✓0)| .

In particular we have 1p
n
|f 0((1 + ⇢)ei✓| ⇣ (@X

@✓
(⇢, ✓)2 + @Y

@✓
(⇢, ✓))1/2 uniformly over (⇢, ✓) 2

[�1/2, 1/2]⇥ [0, 2⇡], say, and we have a similar equivalence for second derivatives.

Proof of Lemma 3.1. For the first derivatives, it su�ces to show that with probability at
least 1�exp(�⇥(�2)) we have max||z|�1|6A0/n |f 0(z)| 6 �n

3/2. By the maximum principle, it

thus su�ces to work with max |f 0(z)| on either {(1+A
0
/n)ei✓, ✓ 2 T} or {(1�A

0
/n)ei✓, ✓ 2

T}. Without loss of generality, let us focus only on the real part of f 0(z) on the larger
circle. In other words we will show that with probability at least 1� exp(�⇥(�2)) we have
max✓2T |

P
n

k=0 ⇠kk(1 +A
0
/n)k�1 cos((k� 1)✓)| 6 �n

3/2. For short denote just for the proof
by h(✓) := n

�3/2Pn

k=0 ⇠kk(1 + A
0
/n)k�1 cos((k � 1)✓). Denote khk1 := sup✓2T |h(✓)| and

let ✓̃ 2 T be such that

khk1 = |h(✓̃)|.
Since h is a trigonometric polynomial of degree n, we can apply the Bernstein inequality
and see that for all |✓ � ✓̃|  1/(4n)

|h(✓)| > |h(✓̃)|� |h(✓̃)� h(✓)| > khk1 � |✓ � ✓̃|kh0k1 > 1

2
khk1. (3.1)
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Furthermore, since the {⇠k} are assumed to be sub-Gaussian and independent, there exists
some C > 0 so that

E
h
e
sh(✓)

i
=

nY

k=1

E

e
sn

�3/2
⇠kk

⇣
1+A0

n

⌘k�1
cos((k�1)✓)

�
 e

Cs
2
n
�3 Pn

k=1 k
2  e

Cs
2

(3.2)

for all s 2 R.
Applying Markov’s inequality with (3.1) and (3.2) gives

P (khk1 > �)  e
�s�/2E

h
e
skhk1/2

i

 e
�s�/2E

"
2n

Z

|✓�✓̃|< 1
4n

⇣
e
sh(✓) + e

�sh(✓)
⌘
d✓

#

⌧ ne
��s/2

Z

✓2T
E(esh(✓) + e

�sh(✓))d✓

6 ne
��s/2

e
Cs

2
.

Choose s = �/4C and note that � > A
p
log n we obtain as desired.

Finally, for the second derivatives max||z|�1|6A0/n |f 00(z)|, after applying the maximum
principle it su�ces to focus only on the two circles,

n
|z| = 1 +

A
0

n

o
and

n
|z| = 1� A

0

n

o
,

over which the real and imaginary parts are trigonometric polynomials, and hence we can
use Bernstein inequality again, the details are left for the reader. ⇤

For convenience, denote by

G :=

⇢
max

||z|�1|=O(1/n)
|f (k)(z)|, | @

k
f

@l✓@k�l⇢
| 6 n

k+1/2 log2 n , k = 0, 1, 2; 0 6 l 6 k

�
.

Corollary 3.3. We have

P (Gc) 6 exp
�
�⇥(log4 n)

�
.

3.2. Control on covariances. Here we gather some results on the joint distribution of
X,Y and their derivatives at a fixed number of points. We begin with the distribution at
a single point. In the sequel we denote the matrix

⌃0 :=

0

BB@

1
2 0 0 1

4
0 1

2 �1
4 0

0 �1
4

1
6 0

1
4 0 0 1

6

1

CCA . (3.3)

Lemma 3.4. For any fixed " > 0 and t 2 [n�1+"
,⇡ � n

�1+"] the (centered) random vector

W (t) :=

✓
X(t), Y (t),

1

n
X

0(t),
1

n
Y

0(t)

◆
(3.4)

has covariance matrix

⌃(t) = EW (t)TW (t) = (Id+O(n�"))⌃0 .

where the error term is a matrix with entries of size O(n�").
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Proof. By applying simple trigonometric identities, we see that

⌃(t) =
1

n

nX

k=0

0

BBB@

cos2(kt) 1
2 sin(2kt) � k

2n sin(2kt) k

n
cos2(kt)

1
2 sin(2kt) sin2(kt) � k

n
sin2(kt) k

2n sin(2kt)

� k

2n sin(2kt) � k

n
sin2(kt) k

2

n2 cos2(kt) � k
2

2n2 sin(2kt)
k

n
cos2(kt) k

2n sin(2kt) � k
2

2n2 sin(2kt)
k
2

n2 sin
2(kt)

1

CCCA
.

It remains to note that (see for instance [3, Appendix B])
�����

nX

k=0

k
a sin(kt)

����� ,

�����

nX

k=0

k
a cos(kt)

����� = O(na+1�")

for a = 0, 1, 2 and t 2 [n�1+"
,⇡� n

�1+"], giving ⌃(t) = ⌃0 +O(n�"). Since ⌃0 is invertible
we can factor it out of the additive error, and the claim follows. ⇤

Now for t = (t1, . . . , tk) 2 Rk we denote the random vector

W (t) =
�
W (t1), . . . ,W (tk)

�
2 R4k

. (3.5)

with covariance matrix
⌃(t) = EW (t)TW (t).

Recall Definition 2.5 on spread points. When the points t1, . . . , tk are !(1)-spread it is
easily seen that the covariance matrix decouples into blocks, as shown in the following:

Lemma 3.5 (Decorrelation for Gaussian field). Fix t1, . . . , tk 2 [0,⇡] and non-negative mea-
surable functions '1, . . . ,'k : R4 ! R+ supported in B(0, na1). Assume t = (t1, . . . , tk) 2
Rk is n

a2-spread. Let W0 2 R4 be a centered Gaussian vector with covariance ⌃0. Then

EN(0,1)

kY

i=1

'i(W (ti)) = (1 +O(n2a1�a2))
kY

i=1

E'i(W0).

Proof. We have

⌃(t) =

0

BBB@

⌃0 0 . . . 0
0 ⌃0 . . . 0
...

...
. . .

...
0 . . . 0 ⌃0

1

CCCA
+ E (3.6)

where ⌃0 is given by (3.3), and all entries in the matrix E are O(n�a2). It is evident from
(3.6) that det(⌃(t)) = det(⌃0)k (1 +Ok(n�a2)) and that

⌃(t)�1 =

0

BBB@

⌃�1
0 0 . . . 0
0 ⌃�1

0 . . . 0
...

...
. . .

...
0 . . . 0 ⌃�1

0

1

CCCA
+ eE

where again all entries of eE are Ok(n�a2). Since det(⌃(t)) = det(⌃0)k (1 +Ok(n�a2)) we
see that

��| det⌃0|�k/2 � | det⌃(t)|�1/2
��

(2⇡)k

Z

(R4)k
e
� 1

2w
T (⌃(t)�1� eE)w

kY

i=1

'i(wi) dm(w)

⌧k n
�a2

kY

i=1

E'i(W0) . (3.7)
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Since '1, . . . ,'k are supported on B(0, na), using that 1� e
�x ⌧ x for x small we see that

Z

(R4)k

���e�
1
2w

T⌃(t)�1
w � e

� 1
2w

T (⌃(t)�1� eE)w
���

kY

i=1

'i(wi) dm(w)

⌧
Z

(R4)k
e
� 1

2w
T (⌃(t)�1� eE)w

���wT eEw

���
kY

i=1

'i(wi) dm(w)

⌧k n
2a1�a2

kY

i=1

Z

R4
e
� 1

2w
T
i ⌃�1

0 wi'i(wi) dm(wi) . (3.8)

Combining these bounds, we have

EN(0,1)

kY

i=1

'i(W (ti))�
kY

i=1

E'i(W0)

=
1

(2⇡)2k
p
| det⌃(t)|

Z

(R4)k
exp

✓
�1

2
w

T⌃(t)�1
w

◆ kY

i=1

'i(wi) dm(w)

� 1

(2⇡)2k
p
| det⌃0|k

Z

(R4)k
e
� 1

2w
T (⌃(t)�1� eE)w

kY

i=1

'i(wi) dm(w)

⌧k n
2a1�a2

kY

i=1

E'i(W0)

as claimed. ⇤

At separations t�t
0 = O(n�1) the vectors W (t),W (t0) become correlated. The following

shows that ⌃(t) is still reasonably well conditioned when t is only �-spread for � ⌧ 1 (fixed
or going to zero). Recall that for a symmetric matrix A of dimension m we order its
eigenvalues �1(A) > · · · > �m(A).

Lemma 3.6. [7, Lemma 3.6] If t = (t1, . . . , tk) 2 [0,⇡]k is �-spread for some 0 < � 6 1,
then

�4k(⌃(t)) �k �
6k�3

.

3.3. Small-ball estimates and CLTs. The following result from [7] gives a small ball
estimate for the distribution of W (t1, . . . , tk) at arbitrary polynomial scales.

Theorem 3.7. [7, Theorem 3.4] Let t = (t1, . . . , tk) 2 [0,⇡]k be n
-smooth and �-spread

for some  2 (0, 1) and !(n�1/8k) 6 � < 1. For any K < 1 and any ball B of radius
� > n

�K ,

P
�
W (t) 2 B

�
= OK,(�

�3k
�
4k).

While the above estimates are quite strong, we will also need bounds at non-smooth
points, especially near the edge. We have the following:

Lemma 3.8. Assume that �

n
6 t 6 ⇡ � �

n
. Then for any � � n

�1/2 we have

P(|f(eit)|/
p
n 6 �) = O(��2

�
2).
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We will present a proof of this result in Appendix A.
Next we recall the following result from [7] providing a fine-scale comparison of the

distribution of W (t) with a Gaussian vector, under the assumption that the points t1, . . . , tk
are both smooth and spread.

Theorem 3.9. [7, Theorem 3.2] Let t = (t1, . . . , tk) 2 [0,⇡]k be n
-smooth and 1-spread

for some  > 0. Fix K > 0 and let Q ⇢ R4k be a box (direct product of intervals) with side
lengths at least n�K . Then

��P
�
W (t) 2 Q

�
� PN(0,1)

�
W (t) 2 Q

���⌧ n
�1/2|Q|

where |Q| is the volume of Q, and the implied constant depends only on k,,K, and the
sub-Gaussian constant for ⇠.

The above results let us control the measure, under the law of W (t), of domains in
R4k that can be accurately approximated or covered by unions of cubes or balls of (any)
polynomially-small size.

Definition 3.10. Say a domain D ⇢ Rd with piecewise smooth boundary is (K,L)-good if
@D can be covered by a family of cubes Q with corners in the scaled lattice n

�KZd, with
total volume

P
|Q| 6 n

�L.

Note that if D1,D2 are (K,L)-good, then Dc
1, D1 [D2 and D1 \D2 are (K,L� 1)-good

(for all n su�ciently large). Theorem 3.7 and a covering argument yield the following:

Proposition 3.11. Let t 2 [0,⇡]k be as in Theorem 3.7 and let D ⇢ R4k be (K,L)-good
for some K,L > 0. Then

P(W (t) 2 D) ⌧K, �
�3k(m(D) + n

�L).

In particular, for k = 1 and t = t1 that is n
-smooth,

P(W (t) 2 D) ⌧K, m(D) + n
�L

.

Combining Theorem 3.9 and Lemma 3.5, we obtain that the joint law of (W (t1), . . . ,W (tk))
in phase space approximately factorizes into independent Gaussian measures as soon as the
times t1, . . . , tk are su�ciently spread.

Proposition 3.12. Fix n
-smooth points t1, . . . , tk 2 [0,⇡], and let W0 2 R4 be a centered

Gaussian with covariance matrix ⌃0 as in (3.3).

(a) If t1, . . . , tk are 1-spread, then for any (K,L)-good domain D ⇢ R4k,
����P
�
W (t) 2 D

�
� PN(0,1)

�
W (t) 2 D

�����⌧ n
�1/2

m(D) + n
�L

. (3.9)

(b) For any a1, a2 > 0, if t1, . . . , tk are n
a1-spread, then for any (K,L)-good domains

D1, . . . ,Dk ⇢ B(0, na2) in R4,

����P
�
W (t1) 2 D1, . . . ,W (tk) 2 Dk

�
�

kY

j=1

P(W0 2 Dj)

����⌧ n
�min( 12 ,a1�2a2)

kY

j=1

m(Dj) + n
�L

.

(3.10)

Here the implied constants depend on K,L,, k, and the sub-Gaussian moment of ⇠.
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Remark 3.13. By a routine approximation argument, the above result is equivalent with
the statement that for any nonnegative observables '1, . . . ,'k : R4 ! R supported on
B(0, na1) with first-order partial derivatives uniformly bounded by n

K ,
����E

kY

j=1

'j(W (tj))�
kY

j=1

E'j(W0)

����⌧ n
�min( 12 ,a2�2a1)

kY

j=1

Z

R4
'jdmLeb + n

�L
, (3.11)

(up to modification of parameters K,L).

4. Proof of Proposition 2.2

Recall that the measure of Ebad on the unit circle is bounded by O(n2�1). Both (2.13)
and (2.14) will follow once we prove that

P
✓

min
t2Ebad

|f(t)|  log4 n

◆
⌧ n

�/4 (4.1)

for su�ciently small  > 0. Indeed, denote by B := {mint2Ebad |f(t)|  log4 n}, and observe
that if there exist ✓↵ 2 Ebad such that A↵ hold, then we must have

p
|X(✓↵)|2 + |Y (✓↵)|2  2n�2/3 ⌧ log4 np

n
.

This implies the inclusion
�
µ
[(R) > 0

 
⇢ B and hence (2.13). For (2.14), observe that on

the event

{9✓ 2 Ebad, z 2 Z(f) : |z � e
i✓| 6 n

�3/2} \ G
we can Taylor expand around the root z 2 Z(f) and get that

|f(ei✓)|  |f(z)|+ n
3/2 log2 n|z � e

i✓| ⌧ log2 n.

Therefore, for n large enough, we get that

P
⇣
9✓ 2 Ebad, z 2 Z(f) : |z � e

i✓| 6 n
�3/2

⌘
 P (B \ G) + P (Gc) ⌧ n

�/4

where the last inequality follows from (4.1) and Corollary 3.3.
By the above reasoning, the proof of Proposition 2.2 will follow once we prove (4.1).

Proof of (4.1). Note that by Corollary 3.3 we may always assume that G holds. We first
show that |f | cannot be too small on the set Ebad \ [ 1

n1+ ,⇡ � 1
n1+ ]. Indeed, we cover this

set by non-overlapping interval {J�}B�=1 with |J� |  n
�7/4 and B ⌧ n

7/4
/n

1�2 = n
3/4+2.

Denote the mid-point of each J� by x� . By Taylor expansion, we have

|f(eix� )|  |f(z)|+ n
3/2 log2 n|z � e

ix� | ⌧ |f(z)|+ log2 n

n1/4

for all z 2 J� . Therefore, the event {minJ� |f |  log4 n} \ G is contained in {|f(x�)| 
log5 n}. By applying the union bound together with Lemma 3.8 (with � = n

�) we see that

P
 

min
t2Ebad\[ 1

n1+ ,⇡� 1
n1+ ]

|f(t)|  log4 n

!
⌧

BX

�=1

P
�
|f(eix� )|  log5 n

�
+ P(Gc)

⌧ B
n
2+o(1)

n
⌧ n

4+o(1)�1/4
. (4.2)

For the intervals [0, n�1�] and [⇡�n
�1�

,⇡] we argue similarly, but instead of Lemma 3.8
we use the classical Berry-Esseen bound. Dividing both [0, n�1�] and [⇡ � n

�1�
,⇡] into
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O(n1/2�/2) intervals Ij of length n
�3/2�/2. Under G, if |f(ei✓)|  log4 n for some ✓ 2 Ij ,

then |f(ei✓j )|  log6 n, where ✓j is the mid point of Ij . Next, by the Berry–Esseen theorem
[5, Theorem 12.4],

P(|f(ei✓j )| < log6 n) ⌧ log6 np
n

.

A union bound gives

P(9✓ 2 [Ij : |f(ei✓)| < log4 n) ⌧ n
1/2�/2 log

6
np

n
⌧ n

�/4
.

Together with (4.2) we get that P(B) ⌧ n
�/4, which is what we wanted. ⇤

5. Proof of Proposition 2.6

For intervals U, V ⇢ R and r > 0 we denote the domain

DU,V,r =

⇢
(x, y, x0, y0) 2 R4 :

yx
0 � xy

0

x02 + y02
2 1

n
U ,

xx
0 + yy

0

x02 + y02
2 n

N
V , x

02 + y
02
< r

2

�

=

⇢
(w, z) 2 R2 ⇥ R2 :

w · z?

|z|2 2 1

n
U ,

w · z
|z|2 2 n

N
V, |z| < r

�
(5.1)

where for z = (x0, y0) we denote z
? = (�y

0
, x

0). We have
n
n
2
⇢↵ 2 U, N(✓↵ � ⌧↵) 2 V , |X 0(✓↵)|2 + |Y 0(✓↵)|2 < r

2
n
2
o
=
n
W (✓↵) 2 DU,V,r

o
. (5.2)

One further sees that the events A↵,A0
↵,A00

↵ from (2.7), as well as {Z↵ 2 [a, b]} for any
interval [a, b], can all be expressed as events that W (✓↵) lies in a domain of the form

(DU,V,R \ DU,V,r) \ I ⇥ J ⇥ I
0 ⇥ J

0 (5.3)

for some (possibly infinite) intervals U, V, I, I
0
, J, J

0 ✓ R and 0 6 r < R 6 1. Recall the
notion of a (K,L)-good domain from Section 3.3. One easily sees the following:

Fact 5.1. For any A,L > 0, r > 0 and intervals U, V such that r, |U |, |V | 6 n
A, and

(possibly infinite) intervals I, J, I 0, J 0 ✓ R, the domain (5.3) is (K,L)-good for some K(A,L)
su�ciently large.

Indeed, the cross-section ofD obtained by fixing z is a rectangle in R2 of area |U ||V ||z|2/N
with corners that vary smoothly (with polynomially bounded derivatives) in z. Integrating
this expression over z we find

m(DU,V,r) =
|U ||V |
N

Z

|z|6r

|z|2dm(z) =
⇡r

4|U ||V |
2N

. (5.4)

Modulo Proposition 3.12, the proof of Proposition 2.6 essentially comes down to a compu-
tation of the measure of D[a,b],[�⇡

2 ,
⇡
2 ],1 under the Gaussian law of W (✓↵). In fact, in order

to control some bad events we will need the following more general result allowing finite
r = r(n) (in particular allowing r = o(1)).

Lemma 5.2. Fix an arbitrary " > 0 and let t 2 [n�1+"
,⇡�n

�1+"]. For any r > 0 (possibly
infinite or depending on n) and intervals U, V ⇢ [�n

0.1
, n

0.1],

PN(0,1)

⇣
W (t) 2 DU,V,r

⌘
=

✓
12

⇡2
+O(n�"/2)

◆
|U ||V |
N

·
Z

|z|6r

|z|2e�12|z|2dm(z) . (5.5)
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In particular, taking V = [�⇡

2 ,
⇡

2 ] and r = 1, we have that for ↵ so that ✓↵ 2 [n�1+"
,⇡ �

n
�1+"],

PN(0,1)

⇣
n
2
⇢↵ 2 U, ⌧↵ 2 I↵

⌘
=

✓
1

12
+O(n�"/2)

◆
|U |
N

. (5.6)

Proof of Lemma 5.2. By the monotone convergence theorem we may assume r is finite
(possibly, n dependent). Recall from Lemma 3.4 that (n�1

X
0(t), n�1

Y
0(t)) is a centered

Gaussian with covariance 1
6 Id + O(n�"), and for z 2 R2, the conditional distribution of

(X(t), Y (t)) given (n�1
X

0(t), n�1
Y

0(t)) = z is Gaussian with mean �3
2z

? +O(n�")|z| and
covariance matrix 1

8 Id+O(n�"), where we write O(n�") for a matrix or vector with entries
of size O(n�") (with implicit constants independent of z). Denoting by Pz the conditional
distribution of (X(t), Y (t)) given that (n�1

X
0(t), n�1

Y
0(t)) = z, we can express the left

hand side of (5.5) as

PN(0,1)

✓
Y X

0
/n�XY

0
/n

(X 0/n)2 + (Y 0/n)2
2 1

n
U,

XX
0
/n+ Y Y

0
/n

(X 0/n)2 + (Y 0/n)2
2 n

N
V, |X 0|2 + |Y 0|2 6 r

2
n
2

◆

=
3

⇡

Z

|z|6r

e
�(3+O(n�"))|z|2Pz

 ⌦
(X,Y ), z?

↵

|z|2 2 1

n
U,

h(X,Y ), zi
|z|2 2 n

N
V

!
dm(z) . (5.7)

Under Pz we can express

(X,Y ) = �3

2
z
? +O(n�")|z|+ (

1p
8
Id +O(n�"))G

for a standard Gaussian G = (G1, G2) 2 R2, and thus by the rotational invariance of G we
may re-express

Pz

 ⌦
(X,Y ), z?

↵

|z|2 2 1

n
U,

h(X,Y ), zi
|z|2 2 n

N
V

!
= P

✓⇣ 1p
8
Id +O(n�")

⌘
G 2 |z|(I ⇥ J)

◆

(5.8)

for the shifted intervals I = 3
2 +O(n�") + 1

n
U and J = O(n�") + n

N
V . By our assumptions

on U, V , the Gaussian density varies by a factor of at most

1 +O(|z|2max(
1

n
|U |, n

N
|V |)) = 1 +O(|z|2n�1/2),

say, on |z|(I ⇥ J), and the latter probability in (5.8) is thus

(1 +O(|z|2n�1/2))
4

⇡
|z|2 |U ||V |

N
e
�(9+O(n�"))|z|2

.

Combining with (5.7), we have shown that the left hand side of (5.5) is

(1 +O(n�1/4))
|U ||V |
N

12

⇡2

Z

|z|6r

e
�(12+O(n�"))|z|2 |z|2dm(z) (5.9)

uniformly for r 6 n
1/8. Now estimating

����
Z

|z|6r

e
�12|z|2 |z|2dm(z)�

Z

|z|6r

e
�(12+O(n�"))|z|2 |z|2dm(z)

����

6
Z

|z|6r

e
�12|z|2 |1� e

O(n�")|z|2 ||z|2dm(z)

⌧ n
�"/2

Z

|z|6r

e
�12|z|2 |z|2dm(z)
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uniformly for r 6 n
"/4, we obtain (5.5) for this range.

For larger r we bound the right hand side of (5.8) by O(|z|2|U ||V |/N), and so the
contribution to (5.7) from integration over n"/4 6 |z| 6 r is

⌧ |U ||V |
N

Z

|z|>n"/4
|z|2e�(3+O(n�"))|z|2dm(z) ⌧ |U ||V |

N
e
�n

"/4

uniformly in r > n
"/4. This is easily absorbed by the error term in (5.5), giving the

claim. ⇤

Proof of Proposition 2.6. We first assume that U = [a, b] is a compact interval. Fix a k-
tuple of indices (↵1, . . . ,↵k) 2 [N ]k as in the statement of Proposition 2.6. Recall that the
events {Z↵i 2 [a, b]} are of the form {W (✓↵i) 2 D} for a domain D ⇢ B(0, 10 log2 n) in R4

that is (K, 10)-smooth for some K > 0 su�ciently large (see Fact 5.1). Thus, the claim will
follow from an application of Proposition 3.12 once we show

PN(0,1) (Z↵ 2 [a, b]) =
1

12
· b� a

N
+ o

✓
1

N

◆
. (5.10)

for each ↵ = ↵1, . . . ,↵k. Since

n
Z↵ 2 [a, b]

o
=
n
n
2
⇢↵ 2 [a, b], ⌧↵ 2 I↵, A00

↵

o
,

from (5.6) and Corollary 3.3 we see that it su�ces to show

PN(0,1)

�
Z↵ 2 [a, b] , (A00

↵)
c
, G
�
= o(N�1). (5.11)

On {Z↵ 2 [a, b], G}, the projection of (X(✓↵), Y (✓↵)) in the directions (X 0(✓↵), Y 0(✓↵)) and
(X 0(✓↵), Y 0(✓↵))? are of size O(n�1 log2 n) and O(N�1

n log2 n) = n
�1+o(1), respectively, so

X(✓↵)
2 + Y (✓↵)

2 6 n
�2+o(1) = o(n�4/3).

Thus, on {Z↵ 2 [a, b], (A00
↵)

c
, G} we must have that either {|X 0(✓↵)| 6 n log�2K0 n} or

{|Y 0(✓↵)| 6 n log�2K0 n}. Hence,
n
Z↵ 2 [a, b], (A00

↵)
c
, G
o
⇢
n
W (✓↵) 2 D

U,[�⇡
2 ,

⇡
2 ],2 log

�2K0 n

o
.

From (5.5) the latter event has probability

⌧ 1

N

Z

|z|6log�2K0 n

|z|2e�12|z|2dm(z) = o(N�1) ,

which yields (5.11) and hence (5.10). Moving to consider U ⇢ R which is a finite union of
compact intervals, we note that

PN(0,1) (Z↵ 2 U) =
1

12
· |U |
N

+ o

✓
1

N

◆

follows from (5.10) by finite additivity. Combining the above display with Proposition 3.12
we complete the proof of Proposition 2.6. ⇤
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6. Proof of Proposition 2.3

For an interval U ⇢ R, denote the respective annular domain by

U↵ =
�
z 2 C | n2 (1� |z|) 2 U, arg(z) 2 I↵

 
.

Recall the definition F↵ from (2.5).

Claim 6.1. Fix an arbitrary compact interval U . There exists � ⌧ n
�5/2 such that for any

↵ 2 [N ], on the event A00
↵ \ G,

U
�
↵ ⇢ F

�1
↵ (

1p
n
f(U↵)) ⇢ U

+
↵

where U
+
↵ is the �-neighborhood of U↵, and U

�
↵ is the complement of the �-neighborhood of

U
c
↵.

The key point is that U
+
↵ \ U

�
↵ is small and (K,L)-good, and can hence be controlled

using Proposition 3.11.

Proof. We use Taylor expansion to bound the error term in (2.4). By the restriction to G
we have ����

1p
n
f(t, ⇢)� F↵(t, ⇢)

����⌧
n
2 log4 n

N2
⌧ 1

n2�o(1)
(6.1)

for all (t, ⇢) such that (1 + ⇢)eit 2 U↵. On the event A00
↵, the a�ne transformation F↵ is

invertible as
����det

✓
X

0(✓↵) Y
0(✓↵)

Y
0(✓↵) �X

0(✓↵)

◆���� = (X 0(✓↵))
2 + (Y 0(✓↵))

2 2
⇥
n
2 log�4K0 n, 2n2 log4 n

⇤
.

By applying F
�1
↵ to (6.1) and by observing that

k
✓
X

0(✓↵) Y
0(✓↵)

Y
0(✓↵) �X

0(✓↵)

◆�1

k2 =
1

(X 0(✓↵))2 + (Y 0(✓↵))2
k
✓
X

0(✓↵) Y
0(✓↵)

Y
0(✓↵) �X

0(✓↵)

◆
k2 ⌧

log6K0 n

n

(6.2)
we get that

����(1 + ⇢)eit � F
�1
↵ (

1p
n
f(t, ⇢))

����⌧
log6K0 n

n

����
1p
n
f(t, ⇢)� F↵(t, ⇢)

����⌧
1

n3�o(1)
.

Assuming n is su�ciently large this gives the desired result. ⇤

Claim 6.2. We have

P

0

@
[

↵:✓↵ /2Ebad

{|Z(f) \ C↵| � 2}

1

A = o(1).

Proof. Assume that there exist z1, z2 2 C↵ such that z1 6= z2 and f(z1) = f(z2) = 0. By
the mean value theorem there exist ⇣1 and ⇣2 on the line segment connecting z1 and z2 so
that

Re(f 0(⇣1)) = Re

✓
f(z1)� f(z2)

z1 � z2

◆
= 0

Im(f 0(⇣2)) = Im

✓
f(z1)� f(z2)

z1 � z2

◆
= 0.
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On the event G, we apply the mean value theorem again and see that

|f 0(ei✓↵)� f
0(⇣j)| ⌧

1

N
max

||z|�1|n�3/2
|f 00(z)| ⌧ n

1/2+o(1)
,

for j = 1, 2. With the above bound we can use Taylor expansion and get

|f(ei✓↵)| ⌧ |f(z1)|+
1

N
|f 0(ei✓↵)| ⌧ 1

n3/2�o(1)
.

Applying Corollary 3.3 we have

P

0

@
[

↵:✓↵ /2Ebad

{|Z(f) \ C↵| � 2}

1

A  P (Gc) +
X

↵:✓↵ /2Ebad

P ({|Z(f) \ C↵| � 2} , G)

⌧ e
� log2 n +

X

↵:✓↵ /2Ebad

P
✓
|f(ei✓↵)|  1

n3/2�o(1)
, |f 0(ei✓↵)| 6 n

◆
.

For each ↵ in the last sum, we can cover the range of possible outcomes for (X,Y,X
0
, Y

0) with
balls of radius n�2+o(1) and bounded overlap and apply the union bound and Theorem 3.7
(recall that points outside of Ebad are 1-smooth and hence 1-spread) to bound each term

by O(n�3) (with plenty of room). Summing this bound over the N = b n
2

logK0 n
c values of ↵

yields the claim. ⇤

Now we conclude the main result of the section.

Proof of Proposition 2.3. First, we will show that P
⇣
µ
]

f
(U) > ⌫

]

f
(U)
⌘
= o(1). Indeed we

have the inclusion
n
µ
]

f
(U) > ⌫

]

f
(U)
o
⇢

[

↵:✓↵ /2Ebad

{A↵, Z↵ 2 U, Z(f) \ U↵ = ?} .

On the event Z↵ 2 U we know that (1+⇢↵)ei⌧↵ 2 U↵, while on the event A↵ the a�ne map
F↵ is invertible and we get that

0 62 f(U↵) =) (1 + ⇢↵)e
i⌧↵ 62 F

�1
↵

✓
1p
n
f(U↵)

◆
.

Applying Claim 6.1 we get

P (A↵, Z↵ 2 U, Z(f) \ U↵ = ?, G)  P
✓
A↵, (1 + ⇢↵)e

i⌧↵ 2 U↵ \ F�1
↵

✓
1p
n
f(U↵)

◆
, G
◆

 P
�
(1 + ⇢↵)e

i⌧↵ 2 U
+
↵ \ U�

↵ , G
�
.

Recalling from Claim 6.1 that U
+
↵ \ U

�
↵ is the �-neighborhood of the boundary of U↵, we

can cover the corresponding set in the (⇢, t) by four rectangles I ⇥ J of area O(�n2). Thus,
on the last event we have that W (✓↵) 2 D

I,J,no(1) for one of four possibilities for (I, J), each

satisfying |I|⇥ |J | 6 �n
2 ⌧ n

�1/2. It follows from Proposition 3.11 and (5.4) that

P
�
(1 + ⇢↵)e

i⌧↵ 2 U
+
↵ \ U�

↵ , G
�
⌧ 1

n1/2�o(1)N
= o(N�1)

Summing over ↵ we get

P
⇣
µ
]

f
(U) > ⌫

]

f
(U)
⌘
 o(1) +

X

↵:✓↵ /2Ebad

P (A↵, Z↵ 2 U, Z(f) \ U↵ = ?, G) = o(1).
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The proof of the proposition will follow once we show that

P
⇣
µ
]

f
(U) < ⌫

]

f
(U)
⌘
= o(1). (6.3)

By Claim 6.2 and Corollary 3.3 the left hand side above is bounded by

P

0

@
[

↵:✓↵ /2Ebad

{A00
↵, Z↵ 62 U, |Z(f) \ U↵| = 1}

1

A

+ P

0

@
[

↵:✓↵ /2Ebad

{
�
A00

↵

�c
, |Z(f) \ U↵| = 1,G}

1

A+ o(1). (6.4)

Similar to the previous argument, on the event {A00
↵, Z↵ 62 U} the map F↵ is non-degenerate

and we have

(1 + ⇢↵)e
i⌧↵ 62 U↵,

while the assumption that |Z(f) \ U↵| = 1 implies that 0 2 f(U↵). This tells us that

(1 + ⇢↵)e
i⌧↵ 2 F

�1
↵

✓
1p
n
f(U↵)

◆
\ U↵ ⇢ U

+
↵ \ U�

↵ .

Arguing with Claim 6.1 as we did for the events {Z↵ 2 U,Z(f) \ U↵ = ?}, we get that

P

0

@
[

↵:✓↵ /2Ebad

{A00
↵, Z↵ 62 U, |Z(f) \ U↵| = 1}

1

A

6 o(1) +
X

↵:✓↵ /2Ebad

P
�
(1 + ⇢↵)e

i⌧↵ 2 U
+
↵ \ U↵, G

�
= o(1).

For the second probability in (6.4), consider ↵ 2 [N ] with ✓↵ /2 Ebad and suppose
{(A00

↵)
c
, |Z(f) \ U↵| = 1,G} holds. Let ⇠ 2 U↵ be the root of f . By Taylor expansion and

the restriction to G we have

|f(ei✓↵)| 6 |f(⇠)|+O(n3/2 log2 n)|⇠ � e
i✓↵ | ⌧ logK0+2

np
n

which implies |X(✓↵)|, |Y (✓↵)| 6 n
�1+o(1) = o(n�2/3). From this and the restriction to

G, if the event A00
↵ does not occur then we must have either |X 0(✓↵)| < n log�2K0 n or

|Y 0(✓↵)| < n log�2K0 n. Now, from Theorem 3.9 and the boundedness of the Gaussian
density (or Theorem 3.7 and a covering by balls of bounded overlap) we get

P
✓
|X(✓↵)|, |Y (✓↵)| 6

logK0+2
n

n
, |X 0(✓↵)| 6 n log�2K0 n

◆
6 log4 n

n2
= o

�
N

�1
�
,

and similarly

P
✓
|X(✓↵)|, |Y (✓↵)| 6

logK0+2
n

n
, |Y 0(✓↵)| 6 n log�2K0 n

◆
= o

�
N

�1
�
.

Taking the union bound over these two cases, we have thus shown

P((A00
↵)

c
, |Z(f) \ U↵| = 1,G) = o(N�1)

Applying the above and the union bound over the choices of ↵, we see that (6.4) is o(1),
giving (6.3) as desired. ⇤
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7. Proof of Proposition 2.4

In this section we argue similarly as in [7, Section 5] with some minor modifications.

Expanding the factorial moments E
h⇣

µ
]

f
(U)
⌘

k

i
we see that

E
h⇣

µ
]

f
(U)
⌘

k

i
=
X

↵2E
P (E(↵)) ,

where E :=
�
↵ = (↵1, . . . ,↵k) 2 [N ]k | ↵i 6= ↵j 8i 6= j, ✓↵i 62 Ebad

 
and

E(↵) := {Z↵1 2 U, . . . , Z↵k 2 U} .

For some su�ciently small " > 0 we consider the set E0 := {↵ 2 E | (✓↵1 , . . . , ✓↵k) is n
"-spread}.

Since |E0| = N
k(1 + o(1)), we can use Proposition 2.6 and get that

X

↵2E0

P (E(↵)) = N
k

✓
|U |
12N

◆k

+ o(1) =

✓
|U |
12

◆k

+ o(1)

so Proposition 2.4 will follow once we show that

lim
n!1

X

↵2E\E0

P (E(↵)) = 0. (7.1)

The next lemma shows that close roots are typically separated. The proof is a simple
modification of [22, Lemma 2.11] or [7, Lemma 2.2] and is deferred to Appendix B.

Lemma 7.1. On the event G, for (↵,↵0) 2 [N ]2 with ✓↵, ✓↵0 62 Ebad we have

(1) If A↵ and A↵+1 occur, then

|⌧↵ � ✓↵| 2


⇡

2N
� ⇡

2N logK0 n
,
⇡

2N

�
.

(2) A↵ and A↵0 cannot occur simultaneously as long as

|✓↵ � ✓↵0 | 2
✓
⇡

N
,

1

n log4K0 n

�
.

Proof of Proposition 2.4. By the discussion above, we only need to show that (7.1) holds.
By Corollary 3.3 we can assume that G holds. The second item in Lemma 7.1 implies that
we only need to consider tuples ↵ 2 E \ E0 of the form

↵ = (↵1, . . . ,↵k�`,↵1 + 1, . . . ,↵` + 1) (7.2)

consisting of ` tuples of the form (↵j ,↵j + 1) for some 0  `  k/2, while the k � ` points
✓↵1 , . . . , ✓↵k�` are pairwise separated by at least n�1 log�4K0 n in [0,⇡].

We divide the class of such ↵ into into two sets E1 and E2, where E1 consists of all
↵ 2 E \ E0 of the form (7.2) (possibly with ` = 0) such that |✓↵i � ✓↵j |  n

�1+" for some
1  i < j  k � `, and E2 is the set of all ↵ 2 E \ E

0 of the form (7.2) with ` > 1 and
|✓↵i � ✓↵j | > n

�1+" for all 1  i < j  k � `.

For the sum over E1, denote by E
`
1 the tuples ↵ 2 E1 with ` neighboring pairs as in

(7.2). We have |E`
1| = O(Nk�`

/n
1�"), as there are O(N/n

1�") choices for the close point
with all others fixed. Recalling the notation (5.1), we have

E(↵) ✓
�
W (✓↵i) 2 D

U,V,2 log2 n 81 6 i 6 k
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with V = [�⇡

2 ,
⇡

2 ]. Since the points ✓↵1 , . . . , ✓↵k�` are separated by at least n�1 log�4K0 n,
we can apply Proposition 3.11 (recalling Fact 5.1) along with (5.4) with r = 2 log2 n, to get

X

↵2E1

P (E(↵)) ⌧
bk/2cX

`=0

|E`

1|N�k+` logO(k)
n ⌧ logO(k)

n

n1�"
= o(1).

For the sum over E2, fix a tuple ↵ 2 E2 with ` neighboring pairs with ` > 1. By the
first item in Lemma 7.1, we have the containment of events

{Z↵j 2 U, Z↵j+1 2 U} ⇢
⇢
Z↵j 2 U, |⌧↵j � ✓↵j | 2


⇡

2N
� ⇡

2N logK0 n
,
⇡

2N

��
.

The event on the right hand side is contained in the event that

W (✓↵) 2 D
U,V�,2 log2 n [D

U,V+,2 log2 n

with V� = [�⇡

2 ,�
⇡

2 + ⇡

2 logK0 n
] and V+ = [⇡2 � ⇡

2 logK0 n
,
⇡

2 ]. As above, by Proposition 3.11,

Fact 5.1 and (5.4) we get that for ↵ 2 E2 with ` neighboring pairs,

P (E(↵)) ⌧ 1

Nk�`

✓
log8 n

logK0 n

◆k�`

.

Taking K0 > 8, since the number of such tuples is at most Nk�`, the above display implies
that

X

↵2E2

P (E(↵)) = o(1).

We have thus proved (7.1), and hence also the proposition. ⇤

8. Extensions

The method presented in the paper allows one to consider other point processes related
to µf of (2.8). Specifically, consider the 4-tuple

bZ↵ = (n2
⇢↵, N(✓↵ � ⌧↵), X

0(✓↵)/n, Y
0(✓↵)/n),

and introduce the point process

bµf :=
NX

↵=0

�(✓↵, bZ↵1A↵+(1,1,1,1)1Ac
↵
). (8.1)

Note that µf can be obtained from bµf by an appropriate contraction. We then have the
following.

Proposition 8.1. Under the assumptions of Theorem 1.2, the process bµf converges to a
Poisson point process on [0,⇡]⇥ R4 with intensity

(12/⇡2)((x0)2 + (y0)2)e�12((x0)2+(y0)2)1y2[0,⇡]d✓dxdydx
0
dy

0
.

Indeed, the proof of Proposition 8.1 follows that of Theorem 1.2. The main di↵erence
is in the computation of PN(0,1)(⇢↵ 2 U/n

2
, ✓↵ � ⌧↵ 2 V/N,X

0(✓↵) 2 nI1, Y
0(✓↵) 2 nI2).
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Following the lines of the proof of Lemma 5.2, for ✓↵ 2 [n�1+"
,⇡ � n

�1+"] this probability
is given by

PN(0,1)

✓
Y X

0
/n�XY

0
/n

(X 0/n)2 + (Y 0/n)2
2 1

n
U,

XX
0
/n+ Y Y

0
/n

(X 0/n)2 + (Y 0/n)2
2 n

N
V, X

0 2 nI1, Y
0 2 nI2

◆

=
3

⇡

Z

I1⇥I2

e
�(3+O(n�"))|z|2Pz

 ⌦
(X,Y ), z?

↵

|z|2 2 1

n
U,

h(X,Y ), zi
|z|2 2 n

N
V

!
dm(z), (8.2)

and the remainder of the proof proceeds along similar lines, with integration over z 2 B(0, r)
replaced by integration over z 2 I1 ⇥ I2. We omit details.

Proposition 8.1 allows one to compute, among other things, the joint law of n2 dist(S1, Z(f))
and nminz2S1 |f(z)|.

Acknowledgement We thank the referee for a careful reading of the first version and for
useful comments. We thank Ziv Huppert for pointing out a mistake in the original version
of Proposition 8.1.

Appendix A. Proof of Lemma 3.8

With aj = sin(jt) and bj = cos(jt) we have f(eit) =
P

n

j=1 ⇠j(aj , bj), viewed as a point

in R2. Set

t0 = �
�1

.

By a standard procedure (see for instance [1, Eq. 5.4]) we can bound the small ball proba-
bility using the characteristic function,

P( 1p
n
f(eit) 2 B(w, �)) 6 C

⇣
n

t20

⌘Z

R2

nY

j=1

|Eei⇠jh(aj ,bj),ui|e
�nkuk22

2t20 du =: J1 + J2

where in J1, J2 the integral is restricted to the ranges kuk2 6 r0 = O(1) and r0 6 kuk2.
Additionally, we can bound (see for instance [7, Eq. 9.2]),

nY

j=1

|Eei⇠jh(aj ,bj),ui| 6 exp(�c inf
c16|a|6c2

X

j

kah(aj , bj), u/2⇡ik2R/Z),

where c1 < c2 are positive constants depending on ⇠. Thus, if r0 is su�ciently small, then
we have kah(aj , bj), u/2⇡ikR/Z = |a|kh(aj , bj), u/2⇡ik2, and so from Lemma 3.6 we have that
for any unit vector e,

P
j
h(aj , bj), ei2 > c

0
�
2
n, yielding

X

j

kah(aj , bj), u/2⇡ik2R/Z > c
0
nkuk22�2

.

Hence

J1 = C

⇣
n

t20

⌘Z

kuk26r0

nY

j=1

|Eei⇠jh(aj ,bj),ui|e
�nkuk22

2t20 du 6 C

⇣
n

t20

⌘Z

kuk26r0

e
�nkuk22

2t20
�c

0
nkuk22�2

du

= C

⇣
n

t20

⌘Z

kuk26r0

e
�( n

2�t20
+c

0
n)kuk22�2

du = O(��2
�
2),

where we used change of variable v =
p
�nu and that

R
v
e
�ckvk22dv = O(1) in the last

estimate.
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For J2 we trivially have

J2 = C

⇣
n

t20

⌘Z

r06kuk2

nY

j=1

|Eei⇠jh(aj ,bj),ui|e
�nkuk22

2t20 du 6 C�
2
n

Z

r06kuk2
e
��

2
nkuk22/2du

6 C�
2
Z

r0
p
n6kvk2

e
��

2kvk22dv = O(�2)

provided that � � n
�1/2.

Appendix B. Proof of Lemma 7.1

Proof of part (1). Fix ↵ 2 [N ] with ✓↵ 62 Ebad and assume that the event A↵ holds. Re-
call that F↵ given by (2.5) is the a�ne transformation which locally approximates the
polynomial 1p

n
f inside C↵. It is evident from its definition up to the translation term

(X(✓↵), Y (✓↵)), it is an orthogonal transformation (in particular it maps disks to disks; in
fact this it not a coincidence, and can be seen as a consequence of the Cauchy–Riemann
equation for f in the polar coordinates.)

On the event G, we have the bound

|F↵(z)� F↵+1(z)| 
����F↵(z)�

1p
n
f(z)

����+
����F↵+1(z)�

1p
n
f(z)

����

⌧ n
2 log2 n

N2
⌧ log2K0+2

n

n2
(B.1)

valid for all z 2 C↵+1. On the event A↵, assume that
n
A↵, |⌧↵ � ✓↵|  ⇡

2N � ⇡

2N logK0 n

o
.

We have

dist
⇣
(1 + ⇢↵)e

i✓↵ , C↵+1

⌘
� 1

N logK0 n

which, together with the fact that F↵(⇢↵, ⌧↵) = 0 and the bound (6.2), implies that for all
z 2 C↵+1 we have

|F↵+1(z)| > |F↵(z)|� |F↵(z)� F↵+1(z)| �
n log�6K0 n

N logK0 n
� log2K0+2

n

n2
� n

N log7K0 n

where in the second inequality we used (B.1) and (6.2). In particular, we see that F↵+1

does not vanish in C↵+1 which implies that A↵+1 does not hold. ⇤

Proof of part (2). We argue similarly as in the proof of the first part, only that we do
not need to impose the extra separation within C↵. Fix distinct ↵,↵

0 62 Ebad such that
D := |✓↵ � ✓↵0 | 2 (⇡/N, n

�1 log�4K0 n]. Assuming A↵ \ G holds we have

|F↵(z)� F↵0(z)| 
����
1p
n
f(z)� F↵(z)

����+
����
1p
n
f(z)� F↵0(z)

����⌧ n
2(log2 n)D2

.

for all z 2 C↵0 . Furthermore, since 1p
n
|f 0(ei✓↵)| � n log�2K0 n (by the Cauchy–Riemann

equations in polar form – see Remark 3.2) we know that for all such z,

|F↵(z)| � |z � (1 + ⇢↵)e
i✓↵ || 1p

n
f
0(ei✓↵)| � Dn log�2K0 n

which implies that

|F↵0(z)| � Dn log�2K0 n�D
2
n
2 log2 n � Dn log�2K0 n (B.2)
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since D 6 n
�1 log�4K0 n. Since (B.2) holds for all z 2 C↵0 we see that F cannot vanish

there, and hence A↵0 does not hold. ⇤
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