
CONCENTRATION OF THE NUMBER OF INTERSECTIONS OF RANDOM

EIGENFUNCTIONS ON FLAT TORI

HOI H. NGUYEN

Abstract. We show that in two dimensional flat torus the number of intersections between random eigen-
functions of general eigenvalues and a given smooth curve is almost exponentially concentrated around its
mean, even when the randomness is not gaussian.

1. Introduction

Let T2 be the two dimensional flat tori R2/Z2. Let F be a real-valued eigenfunction of the Laplacian on
T2 with eigenvalue �2,

��F = �2F.

It is known that all eigenvalues �2 have the form 4⇡2m where m = a2 + b2 for some a, b 2 Z. Let E� be the
collection of µ = (µ1, µ2) 2 Z2 such that

µ2
1 + µ2

2 = m.

Denote N = #E�. Note that if we express m in the form m = m2
1m2 with m1 = 2r

Q
qk⌘3 mod 4 q

bk
k

and

m2 = 2c
Q

pj⌘1 mod 4 p
aj

j
(c = 0, 1), where pk, qk are primes, and ak, bk 2 N, then

N =
Y

j

(aj + 1). (1)

Notice that for any " > 0 we have N = O(�").

The toral eigenfunctions F (x) = e2⇡ihµ,xi, µ 2 E� form an orthonormal basis in the eigenspace corresponding
to �2. For a given toral eigenfunction F the nodal set NF is defined to be the zero set of F ,

NF :=
�
x 2 T2 : F (x) = 0

 
.

The nodal set NF has been studied intensively in analysis and di↵erential geometry. In this note we will
be focusing on the intersection between NF and a given smooth reference curve C ⇢ T2 parametrized by
� : [0, 1] ! T2 with the following properties.

Condition 1 (Assumption on �). C has unit length and �(t) is real analytic with positive curvature. More

specifically, there exists a positive constant c such that

k�0(t)k2 = 1 and k�00(t)k2 > c for all t.

The number of nodal intersections Z(F ) between F and C is defined to be the cardinality of the intersection
NF \ C

Z(F ) := #{x 2 T2 : x 2 C ^ F (x) = 0}.
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1.1. Deterministic results. About ten years ago Bourgain and Rudnick provided uniform upper and lower
bounds for the L2-norm of the restriction of F to C as follows.

Theorem 1.2. [7, Main Theorem, Theorem 1.1] Assume that C is as in Condition 1. We have

Z

C
|F |2d� �

✓Z

T2

|F (x)|2dx
◆
. (2)

Also, for any " > 0,
�1�" ⌧ Z(F ) ⌧ �,

where the implicit constants depend only on C and " but not on �.

Here we say that f = O(g), or f ⌧ g, if there exists a positive constant C such that |f |  C|g|.

It was then conjectured by Bourgain and Rudnick that the lower bound is of order �.

Conjecture 1.3. [7] We have

Z(F ) � �.

In a subsequent paper, to support this conjecture they showed

Theorem 1.4. [8, Theorem 1.1] Assume that C is as in Condition 1, then

Z(F ) � �

B5/2
�

where B� denote the maximal number of lattice points which lie on an arc of size
p
� on the circle kxk2 = �,

B� := max
kxk2=�

#
n
µ 2 E� : kx� µk2 

p
�
o
.

In particular, as one can show that B� ⌧ log � (see [8]), we have

Z(F ) � �/ log5/2 �.

The link in Theorem 1.4 between Z(F ) and B� yields another interesting relationship between Bourgain-
Rudnick conjecture 1.3 and Cilleruelo-Granville conjecture [13] which predicts that B� = O(1) uniformly.
This is known to hold for almost all �2, see for instance [6, Lemma 5]. It is worth noting that when the
curvature of C is zero, it could happen that lim inf� Z(F ) = 0 (see for instance the construction in [8].)

Notations. We consider � as an asymptotic parameter going to infinity and allow all other quantities to
depend on � unless they are explicitly declared to be fixed or constant. As mentioned earlier, we write
X = O(Y ), Y = ⌦(X), X ⌧ Y , or Y � X if |X|  CY for some fixed C; this C can depend on other fixed
quantities such as the the parameter C0 in the condition of ⇠ and the curve �. If X ⌧ Y and Y ⌧ X, we
say that Y = ⇥(X) or X ⇣ Y . Also, for sequences of positive numbers (Xk), (Yk), we write Xk = o(Yk) if
Yk/Xk ! 1 as k ! 1.

Throughout the note, if not specified otherwise, a property p(m) holds for almost all m if the set of m up
to T that p(m) does not hold has cardinality much smaller than that of the set of m for which p(m) holds,
i.e. |{m  T, p̄(m)}| = o(|{m  T, p(m)}|) as T ! 1. Finally, the norm k.k2 (or d2(.)) in this note, if not
specified otherwise, will be the usual L2-norm.

1.5. Arithmetic random wave model. Recall that N = #E� is the dimension of the eigenspace corre-
sponding to the eigenvalue �2. A probabilistic approach to the study of Z(F ) was introduced in the pioneer
paper of Rudnick and Wigman [32]. Consider the random eigenfunction

F (x) =
1p
N

X

µ2E�

"µe
2⇡ihµ,xi, (3)
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for all x 2 T2, where "µ are iid standard complex Gaussian with a saving

"�µ = "̄µ.

This saving ensures that F is real-valued. The random function F (called arithmetic random wave [2]) is a
centered Gaussian field over T2 which is stationary because the correlation E(F (x)F (y)) is invariant under
translation. As we can also see, the law of this model is independent of the choice of the orthonormal basis
of the eigenspaces.

Rudnick and Wigman showed that for all eigenvalues, “almost all” 1 eigenfunctions satisfy Conjecture 1.3.
More specifically, they showed the following.

Theorem 1.6. [32, Theorems 1.1, 1.2] Let C ⇢ T2
be a smooth curve on the torus, with nowhere vanishing

curvature and of total length one. Then

(1) The expected number of nodal intersections is precisely

EgZ(F ) =
p
2m.

(2) The variance is bounded from above as follows

Varg(Z(F )) ⌧ m

N
.

(3) Furthermore, let {m} be a sequence such that Nm ! 1 and the Fourier coe�cient {c⌧m(4)} do not

accumulate at ±1, then

Varg(Z(F )) =
m

N

Z

C

Z

C

0

@
X

µ2E�

4
1

N

⌧
µ

|µ| , �̇(t1)
�2⌧ µ

|µ| , �̇(t2)
�2

� 1

1

A dt1dt2 +O
⇣ m

N3/2

⌘
.

Here the subscript g is used to emphasize standard Gaussian randomness, and ⌧m is the probability measure
on the unit circle S1 ⇢ R2 associated with E�,

⌧m :=
1

N

X

µ2E�

�µ/pm,

where � is the Diract delta measure.

We also refer the reader to [34, Proposition 2.2] by Rudnick et.al. where general estimates were given when
the condition on {c⌧m(4)} is lifted, and to [29, Theorem 1.3] by Rossi and Wigman for further extension when
the first term in Varg(Z(F )) vanishes. We also refer the reader to [22] by Ma↵ucci where nodal intersections
with segments were considered.

1.7. Our main results. The magnitude m/N of the variance in Theorem 1.6 suggests that Z(F ) is con-
centrated around its mean. Indeed, by Markov’s bound, for any " > 0 we have that

Pg(|Z(F )� EZ(F )| � "�) ⌧ 1

N"2
. (4)

Furthermore, the aforementioned work [29] showed that the fluctuation of Z(F ) satisfies Central Limit
Theorem (as long as � is non-static, see [29, Theorem 1.1] for the definition). Perhaps it is natural to ask

Question 1.8. How well is Z(F ) concentrated around its mean for the gaussian model?

As far as we are concerned, despite of significant breakthroughs regarding the statistics of Z(F ) for the
gaussian model mentioned above, there has been no attempt to study this simple question. Relatedly, there
has been a few results in the literature to study concentration for various models, including [1, 23, 24, 28, 30],
but unfortunately none of those works seem to be applicable here. With this note we hope to provide a
robust method for these types of questions. In the first step we show

1As ("µ/
qP2

µ)µ2E�
is random uniform over the sphere S|E�|, we can interpret F (x) as a random uniform eigenfunction.
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Theorem 1.9 (Concentration of the gaussian case). Assume that � satisfies Conditions 1. Then there exist

positive constants c, c0 such that for N�c
0  "  c0/ logN we have

Pg(|Z(F )� EZ(F )| � "�) = O(e�c"
9
N ).

Our next focus is to show that Z(F ) is very well concentrated even for non-gaussian distributions. Here

F (x) =
1p
N

X

µ2E�

"µe
2⇡ihµ,xi, (5)

where "µ = "1,µ + i"2,µ and "1,µ, "2,µ, µ 2 E� are iid copies of a common random variable ⇠ of mean zero and
variance one, and "�µ = "̄µ. We will denote by P"µ ,E"µ , and Var"µ the probability, expectation, and variance
with respect to the random variables ("µ)µ2E� . We will focus on two extreme families of randomness: either
on bounded ⇠, or on ⇠ satisfying the log-Sobolev inequality: that is there is a positive constant C0 such that
for any smooth, bounded, compactly supported functions f we have

Ent⇠(f
2)  C0E|rf(⇠)|2, (6)

where Ent⇠(f) = E(f(⇠) log f(⇠)) � Ef(⇠) logE(f(⇠)). The general model (5) of random function was first
considered in [11] by the current author with Chang, O. Nguyen and Vu where it was shown that the moments
of Z(F ) are asymptotically universal.

Theorem 1.10 (Universality of moment statistics). Let C0 be a given positive constant, and suppose that

either

• 1/C0 < |⇠| < C0 with probability one,

• or ⇠ is continuous with density bounded by C0 and satisfies the logarithmic Sobolev inequality with

parameter C0 in (6).

Assume that � satisfies Condition 1. Then for almost all m we have

• E"µZ(F ) = EgZ(F ) +O
⇣
�/N c

0
⌘
;

• More generally, for any fixed k 2 N, E"µZ(F )k = EgZ(F )k +O
⇣
�k/N c

0
⌘
,

where c0 depends on the implicit constants in Conditions 1 and C0. Furthermore, if ⇠ is continuous and have

bounded density function, then the above holds for all m. In particular, we have

E"µZ(F ) =
p
2m+O

⇣
�/N c

0
⌘

and Var"µ(Z(F )) ⌧ �2

N c0
.

One crucial corollary of this result is that Z(F ) is already concentrated around its mean via Markov’s bound

P"µ(|Z(F )� EZ(F )| � "�) ⌧ 1

N c0"2
. (7)

In this note we upgrade this polynomial concentration to exponential.

Theorem 1.11 (Concentration of the non-gaussian case). With the same conditions on ⇠ and � as in

Theorem 1.10, then for almost all m there exist positive constants c, c0 > 0 such that for N�c
0  "  c0/ logN

we have

P"µ(|Z(F )� EZ(F )| � "�)  e�c"
9
N .

Furthermore, the above is true for all m when ⇠ is continuous.

For " > c0/ logN , we can certainly bound

P"µ(|Z(F )� EZ(F )| � "�)  P"µ(|Z(F )� EZ(F )| � (c0/ logN)�) = O(e�cN/(logN)9),
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which also seems non-trivial. However, we suspect that the logarithmic power can be removed when " has
order 1. Our bound on c0 (where " � N�c

0
) and the growth of "9 in the exponent are far from being optimal,

however the problem to obtain optimal bounds for these parameters seems to be highly non-trivial, even
in the gaussian case. Relatedly, in the gaussian setting is seems interesting to obtain moderate deviation
principle for (Z(F )� EZ(F ))/

p
Var(Z(F )).

We notice that in the Bernoulli case (i.e. Rademacher case, when ⇠ takes value ±1 with probability 1/2) one
cannot obtain anything better than exp(�⇥(N)). The main technical reason preventing us from covering
for all m is that in general we cannot rely on Theorem 1.6. We will use Theorem 1.10 instead, which in turn
is known only for almost all m for general ensembles.

We remark that Theorem 1.11 can also be extended for almost all m to other types of ⇠ not necessarily
bounded nor satisfying the logarithmic Sobolev inequality. For instance our result also covers the following
cases.

• When |⇠| > 1/C0 with probability one and |⇠| has sub-exponential tail. Then our method, by taking
C0 = N �

0
in Theorem 2.5 with an appropriate �0, yields a sub-exponential concentration of type

P"µ(|Z(F )� EZ(F )| � "N) = O(e�("N)�) for some constant 0 < � < 1.

• Additionally, by the same argument, when |⇠| > 1/C0 with probability one for given C0 > 0 and
when E(|⇠|C0

) < 1 for some su�ciently large C 0, then P"µ(|Z(F )� EZ(F )| � "n) = O(("N)�C) as

long as N�c
0  "  1/ logN .

Finally, our result can be seen as a continuation of [28] where exponential concentration of the number of
real roots of random trigonometric polynomials was shown. Although our general approach is similar to that
of [28], the technical details are very di↵erent. More specifically we have to incorporate various non-trivial
results such as Theorem 1.2, Theorem 2.1, Theorem 2.3, Theorem 1.10, Theorem 3.3, Proposition 5.1 for the
current model, all seem to be of their own interest.

2. Supporting lemmas and proof method

We first cite here one of the key technical ingredients by Bourgain and Rudnick in their proof of Theorem
1.4 above.

Theorem 2.1. [8, Lemma 4.1] For each µ 2 E let hµ(t) 2 C1[0, 1] and "µ 2 C with
P

µ
|"µ|2 = 1. Let

H(t) =
X

µ2E�

"µhµ(t)e
ihµ,�(t)i.

Then there exists a constant C0 depending on C such that

Z 1

0
|H(t)|2dt  2max

µ

Z 1

0
|hµ(t)|2dt+ C0

N

�1/6

⇣
max
µ

max
t

|hµ(t)|2 +max
µ

max
t

|hµ(t)|max
µ

Z 1

0
|h0

µ
(t)|dt

⌘
.

We also refer the reader to [3, 9] for related results for deterministic eigenfunctions, which were obtained by
passing to randomized ones. Next, for t 2 [0, 1], consider the following deterministic function

F (t) =
X

µ2E�

"µe
ihµ,�(t)i =

X

µ

"µe
i�hµ/�,�(t)i (8)

with "µ = "̄�µ and
P

µ
|"µ|2 = 1.

For each positive integer d = 1, 2, 3 let

Hd(t) =
@d

@dt
F (t) =:

X

µ

"µ�
dhd,µ(t)e

i�hµ/�,�(t)i.
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We first show that

Claim 2.2. There exists a constant C depending on � such that

|hd,µ(t)|  C, d = 1, 2, 3.

Proof. When d = 1, |h1,µ(t)| = |hµ/�, �0(t)i|  kµ/�k2k�0(t)k2  1. When d = 2,

|h2,µ(t)| = |��1hµ/�, �00(t)i+ hµ/�, �0(t)i2|  |��1hµ/�, �00(t)i|+ |hµ/�, �0(t)i2|  C.

The case d = 3 is similar, noting that � is real analytic. ⇤
Theorem 2.3 (Restricted large sieve inequality). Assume that F (t) and Hd(t) are as above, where d = 1, 2.
Then for any M 2 N and any 0  t1 < t2 < · · · < tM  1, with � being the minimum of the gaps between

ti, ti+1, we have

MX

i=1

|Hd(ti)|2  Cd

1�
2d(�+ ��1),

where C1 depends on �.

Proof. (of Theorem 2.3) It su�ces to assume that �  t1 and tM  1� �. We follow the classical approach
by Gallagher [16] with the important input of Theorem 2.1.

Claim 2.4. Let g be a di↵erentiable function on I = [a� h, a+ h]. Then

g(a)  1

2h

Z

I

|g(t)|dt+ 1

2

Z

I

|g0(t)|dt.

Proof. Let ⇢(t) = t� (a� h) if t 2 (a� h, a) and ⇢(t) = t� (a+ h) if t 2 (a, a+ h). Partal intergrals (over
(a� h, a) and (a, a+ h)) give Z

I

⇢(t)g0(t)dt = 2hg(a)�
Z

I

g(t)dt.

Note that |⇢(.)|  h, so the claim follows by triangle inequality. ⇤

By this claim,

MX

i=1

|Hd(ti)|2  1

�

X

i

Z
ti+�/2

ti��/2
|Hd(t)|2dt+

X

i

Z
ti+�/2

ti��/2
|Hd(t)H

0
d
(t)|dt  1

�

Z 1

0
|Hd(t)|2dt+

Z 1

0
|Hd(t)H

0
d
(t)|dt.

Note that by Cauchy-Schwarz,
R 1
0 |Hd(t)H 0

d
(t)|dt 

qR 1
0 |Hd(t)|2dt

qR 1
0 |H 0

d
(t)|2dt. Recall that Hd(t) =

P
µ
"µ�dhd,µ(t)ei�hµ/�,�(t)i, where the hd,µ can be bounded as in Claim 2.2. The L2-bound from Theorem

2.1 yields (where we use the fact from the formula of N from (1) that N ⌧ �" for any ")
Z 1

0
|Hd(t)|2dt = O(�2d).

Similarly, as Hd(t)0 = Hd+1(t) =
P

µ
"µ�dhd+1,µ(t)ei�hµ/�,�(t)i, Theorem 2.1 also yields
Z 1

0
|H 0

d
(t)|2dt = O(�2d+2).

Putting the bounds together, we thus obtain
P

M

i=1 |Hd(ti)|2O(�2d(�+ ��1)), d = 1, 2.

⇤

On the probability side, for bounded random variables we will rely on the following consequence of McDi-
armid’s inequality.
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Theorem 2.5. Assume that ⇠ = (⇠1, . . . , ⇠n), where ⇠i are iid copies of ⇠ of mean zero, variance one, taking

values in ⌦, a subset of [�C0, C0]. Let A be a set of ⌦n
. Then for any t > 0 we have

P(⇠ 2 A)P(d2(⇠,A) � t
p
n)  4 exp(�t4n/16C4

0 ).

For random variables ⇠ satisfying the log-Sobolev inequality (6), we use the following.

Theorem 2.6. Assume that ⇠ = (⇠1, . . . , ⇠n), where ⇠i are iid copies of ⇠ satisfying (6) with a given C0. Let

A be a set in Rn
. Then for any t > 0 we have

P
�
d2(⇠, A) � t

p
n
�
 2 exp

�
� P2(⇠ 2 A)t2n/4C0

�
.

In particularly, if P(⇠ 2 A) � 1/2 then P(d2(⇠, A) � t
p
n)  2 exp(�t2n/16C0). Similarly if P(d2(⇠, A) �

t
p
n) � 1/2 then P(⇠ 2 A)  2 exp(�t2n/16C0).

These results are standard, whose proof can be found for instance in [28, Appendix B].

Now we discuss the proof method for Theorem 1.11. Broadly speaking, the approach follows a perturbation
framework (see also [23, 28, 30] for recent adaptions) with detailed steps as follows:

(1) Our starting point is an input from [11] which shows that EZ(F ) is close to EgZ(F ) and Z(F ) is
moderately concentrated around its mean.

(2) We then show that it is highly unlikely that there is a small set of intervals where both |F | and |F 0|
are small. We justify this by relying on a strong repulsion estimate (Theorem 3.3) and on a variant
of large sieve inequality (Theorem 2.3). This step is carried out in Section 4.

(3) Furthermore, we will show in Section 5 via Jensen’s bound that the number of roots over these
intervals (called unstable, where |F | and |F 0| are small simultaneously) is small.

(4) In addition to these results, we will show that the number of roots of F + g is close to the number
of roots of F over the stable intervals as long as kgk2 is small. Basing on these results, geometric
tools such as Theorem 2.5 and 2.6 can be invoked to show that indeed Z(F ) satisfies exponential
concentration.

3. proof of Theorem 1.11: preparation

Here and later, to ease our presentation, instead of P"µ and E"µ we will only write P,E, assuming that all of
these statistics are with respect to the underlying iid random variables "µ, µ 2 E�.

One of our key ingredients, Theorem 3.3 below, is a repulsion-type estimate which shows that at any point
it is unlikely that the function and its derivative vanish simultaneously.

First, for t 2 [0,�], we consider the rescaled function

J(t) := F (t/�) =
1p
N

X

µ2E�

"1,µ cos(2⇡hµ, �(t/�)i) + "2,µ sin(2⇡hµ, �(t/�)i) (9)

and

J 0(t) =
1p
N

X

µ2E�

�"1,µ2⇡hµ/�, �0(t/�)i sin(2⇡hµ, �(t/�)i) + "2,µ2⇡hµ/�, �0(t/�)i cos(2⇡hµ, �(t/�)i), (10)

where µ,�µ 2 E� and "̄µ = "�µ.

We prove our repulsion result via the study of small ball probability of the random walk 1p
N

P
µ
"1,µuµ +

"2,µvµ where

uµ(t) =
⇣
cos(2⇡hµ, �(t/�)i),�2⇡hµ/�, �0(t/�)i sin(2⇡hµ, �(t/�)i)

⌘
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and
vµ(t) =

⇣
sin(2⇡hµ, �(t/�)i), 2⇡hµ/�, �0(t/�)i cos(2⇡hµ, �(t/�)i)

⌘
.

We first show that these vectors are asymptotically isotropic.

Claim 3.1. For each t 2 [0,�], and for all (a, b) 2 S1
we have

X

µ

huµ(t), (a, b)i2 + hvµ(t), (a, b)i2 ⇣ N.

Proof. We have
X

µ

huµ(t), (a, b)i2 + hvµ(t), (a, b)i2 =
X

µ

[a cos(2⇡hµ, �(t/�)i)� bhµ/�, �0(t/�)i sin(2⇡hµ, �(t/�)i)]2

+ [a sin(2⇡hµ, �(t/�)i) + bhµ/�, �0(t/�)i cos(2⇡hµ, �(t/�)i)]2

= Na2 + b2
X

µ

hµ/�, �0(t/�)i2 ⇣ N,

where we used the fact that if µ = (µ1, µ2) 2 E� then (±µ1,±µ2), (±µ2,±µ1) 2 E�, noting that

h(µ1, µ2)/�, �
0(t/�)i2 + h(�µ2, µ1)/�, �

0(t/�)i2 = k�0(t/�)k22 = 1.

⇤

Notice that kuµ(t)k2, kvµk2(t) ⌧ 1. The above claim implies that a positive portion of the {|huµ, (a, b)i|, |hvµ, (a, b)i|}
are of order 1. Using this information we obtain the following key bound.

Lemma 3.2. Assume that "1,µ, "2,µ are iid copies of ⇠ as in Theorem 1.11. For any r � 1/
p
N we have

sup
a2R2

P
 

1p
N

X

µ

"1,µuµ + "2,µvµ 2 B(a, r)

!
= O(r2),

where B(a, r) is the open ball of center a and radius r, and where the implied constant is allowed to depend

on C0.

Proof. This is [18, Theorem 1] where we cover a ball of radius r by Nr2 balls of radius 1/
p
N . ⇤

We also refer the reader to [27, 33] for further developments of similar anti-concentration estimates. We
deduce from Lemma 3.2 the following corollary.

Theorem 3.3 (Repulsion estimate). Assume that the coe�cients "1,µ, "2,µ of J(t) are iid copies of ⇠ as in

Theorem 1.11. Then as long as ↵ > 1/
p
N , � > 1/

p
N , for every t 2 [��,�] we have

P
�
|J(t)|  ↵ ^ |J 0(t)|  �

�
= O(↵�).

In application we just choose ↵,� to be at least N�c for some small constant c.

4. Exceptional eigenfunctions

This current section is motivated by the treatment in [23, Section 4.2] and [28, Section 4]. Let C > 4 be a
su�ciently large number and choose

R = C logN. (11)

Cover [0, 1] by b �

R
c open intervals Ii of length (approximately) R/� each. Let 3Ii be the interval of length

3R/� having the same midpoint with Ii. Given some parameters ↵,�, we call an interval Ii stable for a
function f if there is no point in x 2 3Ii such that |f(x)|  ↵ and |f 0(x)|  ��. In other words, there is no
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x 2 3Ii where |f(x)| and |f 0(x)|/� are both small. Let � be another small parameter (so that �R < 1/4), we
call f exceptional if the number of unstable intervals is at least ��. We call f not exceptional otherwise.

For convenience, for each F (x) = 1p
N

P
µ2E�

aµ cos(2⇡hµ, �(x)i) + bµ sin(2⇡hµ, �(x)i) we assign a unique

(unscaled) vector vF = (aµ, bµ)µ2E� in R2N . Note that when F is random, that is when aµ, bµ (playing
the role of "1,µ, "2,µ) are iid copies of ⇠ as in Theorem 1.11 then the components of F are iid copies of ⇠.
Let Ee = Ee(R,↵,�; �) denote the set of vectors vF associated to exceptional functions F . Our goal in this
section is the following.

Theorem 4.1. Assume that ↵,�, � satisfy �  1/4R and

↵ ⇣ �3/2,� ⇣ �3/4, � > N�2/5. (12)

Let vF = (aµ, bµ)µ2E� be a random vector, where "iµ are iid copies of ⇠ as in Theorem 1.11. Then we have

P
⇣
vF 2 Ee

⌘
 e�c�

8
N ,

where c is absolute.

We now discuss the proof. First assume that f (playing the role of F ) is exceptional, then there are K =
b��/3c unstable intervals that are R/�-separated (and hence 4/�-separated as N is su�ciently large). Now
for each unstable interval in this separated family we choose xj 2 3Ij where |f(xj)|  ↵ and |f 0(xj)|  ��
and consider the interval B(xj , �/�) for some � < 1 chosen su�ciently small (given �, see (14)). Let

Mj := max
x2B(xj ,�/�)

|f 00(x)|.

By Theorem 2.3 we have

KX

j=1

M2
j
 2�+ (4/�)�1

2⇡

Z

x2[0,1]
f 00(x)2dx  �5

P
µ
"21,µ + "22,µ
N

.

On the other hand, in both the boundedness and the log-Sobolev cases of ⇠ in Theorem 1.11 we haveP
µ a

2
µ+b

2
µ

N
� 4 with exponentially small probability, so without loss of generality it su�ces to focus on the

event P
µ
a2
µ
+ b2

µ

N
 4.

We thus infer from the above that the number of j for which Mj � C2��1/2�2 is at most 2C�2
2 ��. Hence

for at least (1/3� 2C�2
2 )�� indices j we must have Mj < C2��1/2�2.

Consider our function over B(xj , �/�) where Mj < C2��1/2�2, then by Taylor expansion of order two around
xj , we obtain for any x in this interval

|f(x)|  ↵+ �� + C2�
�1/2�2/2 and |f 0(x)|  (� + C2�

�1/2�)�.

Now consider a function g of the form g(x) = 1p
N

P
µ2E�

a0
µ
cos(2⇡hµ, �(x)i) + b0

µ
sin(2⇡hµ, �(x)i), for which

kgk2 = (
P

µ
a02

µ
+ b02

µ
)/N  ⌧ , where ⌧ is another parameter to be chosen (such as it satisfies (14)). Then as

the intervals B(xj , �/�) are 4/�-separated, by Theorem 2.3 we have

X

j

max
x2B(xj ,�/�)

g(x)2  8�

P
µ
a02

µ
+ b02

µ

N
 8�⌧2

and
X

j

max
x2B(xj ,�/�)

g0(x)2  8�

P
µ
a02

µ
+ b02

µ

N
 8�3⌧2.

9



Hence, again by an averaging argument, the number of intervals where either maxx2B(xj ,�/�) |g(x)| �
C3��1/2⌧ or maxx2B(xj ,�/�) |g0(x)| � C3��1/2⌧� is bounded from above by (1/3� 2C�2

2 )��/2 if C3 is su�-

ciently large. On the remaining at least (1/3� 2C�2
2 )��/2 intervals, with h = f + g, we have simultaneously

that

|h(x)|  ↵+ �� + C2�
�1�2/2 + C3�

�1/2⌧ and |h0(x)|  (� + C2�
�1� + C3�

�1/2⌧)�.

For short, let

↵0 = ↵+ �� + C2�
�1�2/2 + C3�

�1/2⌧ and �0 = � + C2�
�1/2� + C3�

�1/2⌧.

It follows that vh belongs to the set U = U(↵,�, �, �, ⌧, C1, C2, C3) in R2N of the vectors corresponding to
h, for which the measure of x with |h(x)|  ↵0 and |h0(x)|  �0� is at least (1/3� 2C�2

2 )�� (because this set
of x contains (1/3� 2C�2

2 )��/2 intervals of length 2�/�). Putting together we have obtained the following
claim.

Claim 4.2. Assume that vf 2 Ee. Then for any g with kgk2  ⌧ we have vf+g 2 U . In other words,

n
v 2 R2N , d2(Ee,v)  ⌧

p
N
o
⇢ U .

We next show that P(vf 2 U) is smaller than 1/2. Indeed, for each F , let B(f) be the measurable set of
x 2 T such that {|f(x)|  ↵0} ^ {f 0(x)|  �0�}. Then the Lebesgue measure of B(f), µ(B(f)), is bounded
by

Eµ(B(f)) =

Z

x2T
P({|f(x)|  ↵0} ^ {|f 0(x)|  ��0})dx = O(↵0�0),

where we used Theorem 3.3 for each x. It thus follows that Eµ(B(f)) = O(↵0�0). So by Markov inequality,

P(vf 2 U)  P
�
µ(B(f)) � (1/3� 2C�2

2 )��
�
= O(↵0�0/��) < 1/2 (13)

if ↵,� are as in (12) and then �, ⌧ are chosen appropriately, for instance as

� ⇣ �5/4, ⌧ ⇣ �2. (14)

Proof. (of Theorem 4.1) By Theorems 2.5 and 2.6, and by Claim 4.2 and (13) we have

P(v 2 Ee)  e�c⌧
4
N ,

completing the proof with ⌧ from (14). ⇤

5. Roots over unstable intervals

To start with, consider a (deterministic) function F (t) of type

F (t) =
X

µ

aµe
ihµ,�(t)i.

This is a realization of our random eigenfunction. One of the main goals in this section is the following
lemma.

Proposition 5.1. Let " be given as in Theorem 1.11. Assume that the parameters R,↵,�, ⌧ are chosen as

in (11), (12) and (14). Assume that there are �� disjoint intervals I of length R/� over which F (t) has at

least "�/2 roots, then there exists a measurable set A ⇢ [0, 1] of measure at least c"/4 over which

max
t2A

|F (t)|  ↵ and max
t2A

|F 0(t)|  ��.

Before proving this result, we deduce that non-exceptional polynomials cannot have too many roots over the
unstable intervals.

10



Corollary 5.2. Let the parameters R, ",↵,�, ⌧ and � be as in Proposition 5.1. Then a non-exceptional F
cannot have more than "�/2 roots over any �� intervals Ii from Section 4. In particularly, F cannot have

more than "�/2 roots over the unstable intervals.

Proof. (of Corollary 5.2) If F has more than "�/2 roots over some �� intervals Ii, then Proposition 5.1 implies
the existence of a set A = A(F ) that intersects with the set of stable intervals (because the total size of the
unstable intervals is at most ��R/� = �R < c"/8), so that maxx2A |F (x)|  ↵ and maxx2A |F 0(x)|  ��.
However, this is impossible because for any x in the union of the stable intervals we have either |F (x)| > ↵
or |F 0(x)| > ��. ⇤

We now discuss the proof of Proposition 5.1. We first recall the following Jensen’s bound (see for instance
[31] and [26, Appendix A1]) on the number of roots of an analytic function  (w) over the closed ball of
center z and radius R (denoted by B̄(z,R)) in C

#{w 2 B(z, r) :  (w) = 0} 
log M

m

log R2+r2

2Rr

where 0 < r < R and M = maxw2B̄(z,R) | (w)|,m = maxw2B̄(z,r) | (w)|. Next, by Condition 1, the curve
� has an analytic continuation to [0, 1] + B(0, "�) ⇢ C for a su�ciently small "� . In what follows F (z) isP

µ
aµeihµ,�(z)i, where �(z) is the extension of �(t).

Lemma 5.3. Let I be any interval in [0, 1] with length � = |I|  "�/2. Assume furthermore that
P

µ
|aµ| 

N . Then there exists a constant c (depending on �) such that

# {z 2 I +B(0, �) : F (z) = 0}  c�� + logN � logmax
t2I

|F (t)|

and

# {z 2 I +B(0, �) : F 0(z) = 0}  c�� + log(2N)� logmax
t2I

| 1
�
F 0(t)|.

Proof of Lemma 5.3. We first work with roots of F (z). For z 2 I + B(0, 2�), 9t 2 R such that |z � t| < 2�,
and by analyticity

|�(z)� �(t)|  c�,

for some constant c depending on �. Hence for µ 2 E�,
���eihµ,�(z)i

��� =
���eihµ,�(z)��(t)i

���  ec��.

Therefore by the triangle inequality

|F (z)|  (
X

µ2E�

|aµ|)ec��  Nec��.

Jensen’s inequality (applied to B(zI , 2�), B(zI , �), where zI is the midpoint of I) implies

# {z 2 I +B(0, �), F (z) = 0}  log
�
Nec��

�
� logmax

t2I

|F (t)|

 c�� + logN � logmax
t2I

|F (t)| .

We next work with roots of F 0(z), where the argument is similar. For z 2 I + B(0, 2�), 9t 2 R such that
|z � t| < 2�, and hence by analyticity |�(z) � �(t)|  c� and also |�0(z) � �0(t)|  c� for some constant c
depending on �. Hence for µ 2 E�, as before we have

��eihµ,�(z)i
��  ec�|I|, as well as |�0(z)|  |�0(t)|+ c0� =

1 + c0�. This implies that

| 1
�
F 0(z)| = |

X

µ

aµhµ/�, �0(z)ieihµ,�(z)i|  (1 + c0�)(
X

µ2E�

|aµ|)ec��  2Nec��.
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By Jensen’s inequality (again applied to B(zI , 2�), B(zI , �)),

#

⇢
z 2 I +B(0, �),

1

�
F 0(z) = 0

�
 log

�
2Nec��

�
� logmax

t2I

| 1
�
F 0(t)|.

⇤

As a consequence we obtain the following

Corollary 5.4. Assume that I is any interval in [0, 1] with length

2 log(2N)

c�
 |I|  "�/2.

Assume furthermore that
P

µ
|aµ|  N and one of the following holds,

• maxt2I |F (t)| � exp(�c�|I|/2),

• maxt2I |F 0(t)| � � exp(�c�|I|/2).

Then we have

#{t 2 I, F (t) = 0}  2c|I|�.

Proof. (of Corollary 5.4)It is clear that if maxt2I |F (t)| � exp(�c�|I|/2) then the first part of Lemma 5.3
implies the claim. In the second case that maxt2I |F 0(t)| � � exp(�c�|I|/2), by the mean value theorem one
has #{t 2 I, F (t) = 0}  #{t 2 I, F 0(t) = 0}+1, and we can bound the latter by the second part of Lemma
5.3. ⇤

We next provide an overview of the proof of Proposition 5.1. By Corollary 5.4, if there is an interval I
over which F has many roots, then over the entire I both |F (t)| and |F 0(t)| are small. As such, if there are
many intervals over which F has many roots, the measure of t for which |F (t)| and |F 0(t)| are both small is
non-negligible.

Proof. (of Proposition 5.1) Among the �� intervals we first throw away those of less than "��1/4 roots,
hence there are at least "�/4 roots left from the original set of "�/2 roots. For convenience we denote the
remaining intervals by J1, . . . , JM , where M  ��, and let m1, . . . ,mM denote the number of roots over each
of these intervals respectively.

In the next step we expand each interval Jj by consecutively adding nearby intervals of length R/� (at the
beginning of Section 4) of Jj to form a larger interval J̄j of length dcmj/Re⇥(R/�) for some small constant c
(and we recall from (11) that R = C log n). Furthermore, if the expanded intervals J̄ 0

i1
, . . . , J̄ 0

ik
of J̄i1 , . . . , J̄ik

form an intersecting chain, then we create a longer interval J̄ 0 of length dc(mi1 + · · · + mik)/Re ⇥ (R/�),
which contains them and therefore contains at least mi1 + · · ·+mik roots.

After the merging process, we obtain a collection J̄ 0
1, . . . , J̄

0
M 0 with the number of roots m0

1, . . . ,m
0
M 0 re-

spectively, so that
P

m0
i
� "�/2. Note that now J̄ 0

i
has length dcm0

i
/Re ⇥ (R/�) ⇡ cm0

i
/� (because "��1

is su�ciently large compared to R) and these intervals are R/�-separated. Now over each J 0
i
of length

cm0
i
/� � c(C logN)/� there are m0

i
roots, by Corollary 5.4 we must have

max
t2J 0

i

|F (t)|  exp(�cm0
i
/2) and max

t2J 0
i

|F 0(t)|  � exp(�cm0
i
/2). (15)

As ↵,� from (12) are of order at least N�O(1), while C from (11) is su�ciently large, so we automatically
have in this case that maxt2J 0

i
|F (t)|  ↵ and maxt2J 0

i
|F 0(t)|  ��.
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Letting A denote the union of all such intervals J 0
i
. Then we have maxx2A |F (x)|  ↵ and maxx2A |F 0(x)| 

�� and its Lebesgue measure satisfies

�Leb(A) �
X

i

cm0
i
/� � c"/4.

⇤

We conclude the section by a quick consequence of our lemma. For each F that is not exceptional we let
S(F ) be the collection of intervals over which F is stable. Let Ns(F ) denote the number of roots of F over
the set S(F ) of stable intervals.

Corollary 5.5. With the same parameters as in Corollary 5.2, we have

P
⇣
Ns(F )1F2Ec

e
 EZ(F )� "�

⌘
= o(1)

and

E
⇣
Ns(F )1F2Ec

e

⌘
� EZ(F )� 2"�/3.

Proof. (of Corollary 5.5) For the first bound, by Corollary 5.2, ifNs(F )1F2Ec
e
 EZ(F )�"� then Z(F )1F2Ec

e


EZ(F )� "�/2. Thus

P
�
Ns(F )1F2Ec

e
 EZ(F )� "�

�
 P

�
Z(F )(F )1F2Ec

e
 EZ(F )� "�/2

�

 P
�
Ec

e
^ Z(F )  EZ(F )� "�/2

�
+ P(Ee) = o(1),

where we used (4) and Theorem 4.1. For the second bound regarding E(Z(F )1F2Ec
e
) , let Nus(F ) denote the

number of roots of F over the set of unstable intervals. By Corollary 5.2, for non-exceptional F we have that
Nus(F )  "�/2, and hence trivially E(Nus(F )1F2Ec

e
)  "�/2. Because each F has O(�) roots by Theorem

1.2, we then obtain

E(Ns(F )1F2Ec
e
) � EZ(F )� E(Nus(F )1F2Ec

e
)� E(Z(F )1F2Ee)

� EZ(F )� "�/2�O(�⇥ e�c⌧
4
�) � EZ(F )� 2"�/3.

⇤

6. proof of Theorem 1.11: completion

We first give a few deterministic results to control the number of roots under perturbation.

Lemma 6.1. Fix strictly positive numbers µ and ⌫. Let I = (a, b) be an interval of length greater than

2/⌫, and let f be a C1
-function on I such that at each point x 2 I we have either |f(x)| >  or |f 0(x)| > ⌫.

Then for each root xi 2 I with xi � a > /⌫ and b� xi > /⌫ there exists an interval I(xi) = (a0, b0) where
f(a0)f(b0) < 0 and |f(a0)| = |f(b0)| = , such that xi 2 I(xi) ⇢ (xi � /⌫, xi + /⌫) and the intervals I(xi)
over the roots are disjoint.

As a consequence we obtain

Corollary 6.2. Fix positive  and ⌫. Let I = (a, b) be an interval of length at least 2/⌫, and let f be a

C1
-function on I such that at each point x 2 I we have either |f(x)| >  or |f 0(x)| > ⌫. Let g be a function

such that |g(x)| <  over I. Then for each root xi 2 I of f with xi � a > /⌫ and b� xi > /⌫ we can find

a root x0
i
of f + g such that x0

i
2 (xi � /⌫, xi + /⌫), and also the x0

i
are distinct.

The proof of Lemma 6.1 above is elementary, we refer the reader to [23, Claim 4.2] and more specifically to
[28, Lemma 6.1] for a complete proof.

Now we prove Theorem 1.11 by considering the two tails separately.
13



6.3. The lower tail. We need to show that

P(Z(F )  EZ(F )� "�)  e�c"
9
�. (16)

With the parameters ↵,�, �, ⌧, R chosen as in Corollary 5.2, consider a non-exceptional eigenfunction F . Let
g be an eigenfunction with kgk2  ⌧ , where ⌧ is chosen as in (14). Consider a stable interval Ij with respect
to F (there are at least ( 2⇡

R
� �)� such intervals). We first notice that the number of stable intervals Ij over

which maxx23Ij |g(x)| > ↵ is at most O(��). Indeed, assume that there are M such intervals 3Ij . Then we
can choose M/6 such intervals that are R/�-separated. By Theorem 2.3 we have (M/6)↵2  �⌧2, which
implies M  6�(⌧↵�1)2 = O(��). From now on we will focus on the stable intervals with respect to F on
which |g| is smaller than ↵.

By Corollary 6.2 (applied to I = 3Ij with µ = ↵ and ⌫ = �n, note that ↵/� ⇣ �3/4 < R), because
maxx23Ij |g(x)| < ↵, the number of roots of F + g over each interval Ij is at least as that of F . Hence if F
is such that Z(F ) � EZ(F ) � "�/2 and also F has at least EZ(F ) � 2"�/3 roots over the stable intervals,
then by Corollary 5.2, with appropriate choice of the parameters, F has at least EZ(F )� "� roots over the
stable intervals Ij above where |g|  ↵, and hence Corollary 6.2 implies that F + g has at least EZ(F )� "�
roots over these stable intervals Ij . In particularly F + g has at least EZ(F )� "� roots over T. Let U lower

be the collection of vF from such F (where Z(F ) � EZ(F )� "�/2 and F has at least EZ(F )� 2"�/3 roots
over the stable intervals). Then by Corollary 5.5 and (7)

P(vF 2 U lower) � 1� P
�
Z(F )  EZ(F )� "�/2

�
� P

�
Ns(F )1F2Ec

e
 EZ(F )� 2"�/3

�
� 1/2. (17)

Proof. (of Equation (16)) By our application of Corollary 6.2 above, the set {v, d2(v,U lower)  ⌧
p
2�} is

contained in the set of having at least EZ(F )�"� roots. Furthermore, (17) says that P(vF 2 U lower) � 1/2.
Hence by Theorems 2.5 and 2.6

P(Z(F ) � EZ(F )� "�) � P
⇣
vF 2

�
v, d2(v,U lower)  ⌧

p
�
 ⌘

� 1� exp(�c"9�),

where we used the fact that ⌧ ⇣ �2 from (14). ⇤

6.4. The upper tail. Our goal here is to justify the upper tail

P(Z(F ) � EZ(F ) + "�)  e�c"
9
�. (18)

Let Uupper denote the set of vF for which Z(F ) � EZ(F ) + "�. By Theorem 4.1 it su�ces to assume that
F is non-exceptional.

Proof. (of Equation (18)) Assume that for a non-exceptional F we have Z(F ) � EZ(F ) + "�. Then by
Corollary 5.2 the number of roots of F over the stable intervals is at least EZ(F ) + 2"�/3. Let us call the
collection of vF of these eigenfunctions by Supper. Then argue as in the previous subsection (with the same
parameters of ↵,�, ⌧, �), Corollary 5.2 and Corollary 6.2 imply that any h = F + g with kgk2  ⌧ has at
least EZ(F ) + "�/2 roots. On the other hand, we know by (4) that the probability that F belongs to this
set of functions is smaller than 1/2. It thus follows by Theorems 2.5 and 2.6 that

P(vF 2 Uupper)  e�c"
9
�,

where we again used that ⌧ ⇣ �2. ⇤
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