SageDB: An Instance-Optimized Data Analytics System

Jialin Ding, Ryan Marcus®, Andreas Kipf,
Vikram Nathan, Aniruddha Nrusimha, Kapil Vaidya, Alexander van Renen', Tim Kraska

Massachusetts Institute of Technology *University of Pennsylvania 'Friedrich-Alexander-Universitit Erlangen-Niirnberg

ABSTRACT

Modern data systems are typically both complex and general-purpose.
They are complex because of the numerous internal knobs and pa-
rameters that users need to manually tune in order to achieve good
performance; they are general-purpose because they are designed to
handle diverse use cases, and therefore often do not achieve the best
possible performance for any specific use case. A recent trend aims
to tackle these pitfalls: instance-optimized systems are designed to
automatically self-adjust in order to achieve the best performance
for a specific use case, i.e., a dataset and query workload. Thus far,
the research community has focused on creating instance-optimized
database components, such as learned indexes and learned cardi-
nality estimators, which are evaluated in isolation. However, to the
best of our knowledge, there is no complete data system built with
instance-optimization as a foundational design principle.

In this paper, we present a progress report on SageDB, our effort
towards building the first instance-optimized data system. SageDB
synthesizes various instance-optimization techniques to automat-
ically specialize for a given use case, while simultaneously exposing
a simple user interface that places minimal technical burden on the
user. Our prototype outperforms a commercial cloud-based analytics
system by up to 3x on end-to-end query workloads and up to 250x
on individual queries. SageDB is an ongoing research effort, and we
highlight our lessons learned and key directions for future work.

PVLDB Reference Format:

JialinDing, Ryan Marcus, AndreasKipf, Vikram Nathan, AniruddhaNrusimha,
Kapil Vaidya, Alexander van Renen, Tim Kraska. SageDB: An Instance-
Optimized Data Analytics System. PVLDB, 15(13): 4062 - 4078, 2022.
d0i:10.14778/3565838.3565857

1 INTRODUCTION

Most modern data management systems fall on a spectrum be-
tween general-purpose and application-specific. For example, Post-
greSQL [8] is extremely general purpose, and powers a diverse range
of analytical and transactional workloads. Apache Spark is slightly
specialized towards analytic tasks, but can still handle a wide variety
of use cases (e.g., batch reporting, ad-hoc interactive queries, data
science, and ML) and low-level workloads (e.g., I/O-bound, CPU-
bound, in-memory, on-disk, in the cloud). On the other hand, systems
like Google’s Mesa [30] and Napa [10] were custom-built to power
Google Ads, and are not suitable for any other application. While
these systems improve efficiency, these bespoke systems require

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 13 ISSN 2150-8097.
doi:10.14778/3565838.3565857

4062

years of intense engineering effort and are only achievable by large
corporations with significant resources.

Ideally, users should be able to have the efficiency of special-
ized systems along with the flexibility of general-purpose systems.
Tuning configuration options ("knobs") is easier than building an
entirely new system, and can bridge some of the performance gap.
However, experienced engineers and database administrators still
go through the time-consuming and error-prone tuning process for
each application. Recent research proposes techniques for automatic
knob tuning [15]; however, the performance impact of tuning such
knobs is still limited. For example, users can only adjust the size
of a data block, not how data is laid out on disk. Fundamentally,
general-purpose systems are designed to be task agnostic, so for
most tasks a tuned general-purpose system will perform worse than
a custom-tailored system.

Recent work has shown that existing system components can be
replaced with instance-optimized or learned components, which are
able to automatically adjust to a specific use case and workload (see
[5] for an overview). For example, learned index structures [24, 37]
offer the same read functionality as traditional index structures (e.g.
B+ trees) while providing better performance in both latency and
space consumption. Instance-optimized data storage layouts [63]
are able to improve scan performance by skipping data with greater
effectiveness than traditional sorting-based partitioning techniques.

However, these instance-optimized components have largely been
designed and evaluated in isolation, and there have only been a few
efforts to integrate them into an end-to-end system. Bourbon [19]
replaces block indexes in an LSM-tree with learned indexes and
demonstrates latency improvements. Google integrated learned in-
dexes into BigTable [9] with similar findings, mainly due to a smaller
index footprint and fewer cache misses when traversing the index.
While these are useful initial studies, it is still unclear how multiple
instance-optimized components would work together in concert. In
fact, it is easy to imagine a number of learned components destruc-
tively interfering with each other. Is it possible to build a system that
autonomously custom-tailors its major components to the user’s
requirements, approaching the performance of a bespoke system
but with similar ease of use as a general-purpose system?

To the best of our knowledge, there is no end-to-end data system
built with instance-optimization as a foundational design principle.
We previously presented our vision and blueprint for such a system,
called SageDB [36]. In this paper, we present our first prototype of
SageDB, and show how two carefully selected components can work
together in practice. These instance-optimized components are (1)
(multi-dimensional) data layouts and data replication and (2) partial
materialized views. These techniques minimize I/O when scanning
data from disk and maximize computation reuse through intelligent
pre-materialization of partial results. While the ultimate goal is to
automatically trigger self-optimization whenever necessary, for the

https://doi.org/10.14778/3565838.3565857
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3565838.3565857

current prototype we decided to expose a single easy-to-use com-

mand to the user — OPTIMIZE — with a user-given space budget.

Doing so gives the user control over when SageDB should start to

instance-optimize the internal components to improve performance

for the user’s workload while respecting the space constraint.
Building a usable database takes years and several attempts (e.g.,

Oracle took until version 7 to become stable), so this paper should

largely be regarded as a progress report on how to integrate learned

components and the potential benefits they can provide when com-
bined. As such, this paper aims to inform the research and industry
communities about the potentials, limitations, and future research
challenges of learned instance-optimization.

In summary, we make the following contributions:

(1) We introduce two new instance-optimized techniques: partial
materialized views (PMVs), which is a generalization of tradi-
tional materialized views with more degrees of freedom, and
replicated data layouts, which combines the idea of instance-
optimized data layouts with partial table replication.

(2) We introduce a global optimization algorithm that jointly and au-
tomatically configures partial materialized views and replicated
data layouts given the user’s data and workload. As a result, a
user only needs to decide when to issue the OPTIMIZE command,
and SageDB will automatically decide how to simultaneously
configure all instance-optimized components.

(3) We present an evaluation of our prototype implementation of
SageDB against other systems, including a commercial cloud-
based data warehouse product, which SageDB outperforms by
up to 3X on end-to-end query workloads and up to 250X on
individual queries.

2 SAGEDB

In this section, we provide a brief overview of the state of research
on instance-optimized systems. Then we describe our motivations
and design principles for building SageDB.

Background. Instance-optimization (a term inspired by the defi-
nition of instance-optimal algorithms [55]) refers to specializing a
system based on the dataset and workload to achieve performance
close to specialized solutions [36]. While there exists many possible
ways to create instance-optimized components, a common approach
is to tightly couple a model of the user’s workload with a novel data
structure designed to take advantage of that model. Sometimes, this
approach is also referred to as learned systems or algorithms with
predictions/oracles [32]. For example, learned indexes [37] model the
user’s data to accelerate searches on that dataset. Instance-optimized
data layout techniques [48, 63] create workload-specific physical
designs that minimize I/O during query execution. Past work tended
to improve performance for a single instance-optimized component
in isolation, but not for the entire database. For example, learned
indexes were evaluated on single-key lookup workloads instead
of complete transactional workloads, and data layouts were evalu-
ated on selective scan-heavy queries. Note that instance-optimized
systems are fundamentally different from automatic knob-tuning
approaches. Knob-tuning optimizes the hyperparameters of a sys-
tem and is agnostic to the underlying data distribution. Instance-
optimization designs systems that take advantage of knowledge
about the specific data and/or workload distribution.

4063

Motivation and Design Principles. We had two motivations for

building SageDB. First, we aim to show that instance-optimization

can provide benefits for end-to-end workloads with diverse query
patterns instead of just database components evaluated in isolation.

Second, we hoped that building and evaluating SageDB on real data

and workloads would identify the most important pain points and

roadblocks and guide us towards the most impactful directions for fu-
ture work in instance-optimized systems. Like many existing learned
components [37, 44, 63], we focus on analytic workloads as well. We
leave investigation of instance-optimization for transactional work-
loads to future work.

We used several general principles to guide our design:

(1) Avoid regression. One of the biggest deterrents to the adoption
of instance-optimized techniques in practice is the fear that they
might result in catastrophic failures or performance regressions
under changing or even adversarial workloads. This fear of re-
gression often outweighs the promise of potential performance
improvements. In SageDB, we err on the side of caution: we must
consider acomponent’s downsides just as carefully as its upsides,
and it must be simple to disable the component if necessary. The
worst case should be no impact—not negative impact.

(2) Minimize the burden on the user. Configuring the compo-
nents should require as little as possible from the user, both in
terms of interaction and understanding. The complexity of in-
corporating new instance-optimized components into SageDB
should be completely hidden from the user—they should not need
to read more documentation or issue new commands in order
to make use of those new components. Accordingly, SageDB is
designed such that the user only needs to issue a single OPTIMIZE
command to trigger all optimizations.

(3) Avoid negative interference. When combining a number of
learned components, it is natural to worry that optimizing each
component individually might not lead to an optimal global
configuration. In the worst case, different learned components
might “step on each other,” degrading system performance. We
must carefully consider how each component affects the others.

3 DESIGN OVERVIEW

In this section, we provide a high-level overview of SageDB as a sys-
tem and its instance-optimized components. Section 4 describe the
instance-optimized components in more detail, and Section 5 covers
the global optimization procedure. Fig. 1 provides an overview.

3.1 System

3.1.1 Storage Layer. SageDB stores data and performs query exe-
cution on a single node. SageDB by default stores data in columnar
format, although row-store format is also available. The records of a
table are divided into horizontal partitions. Each partition is stored as
a separate file; each column of each partition can be accessed individ-
ually, without reading other columns. String columns are dictionary
encoded, and integer columns are compressed using bit-packing.
For each horizontal partition, we store statistics used for execution-
time data skipping, including the minimum value, maximum value,
and number of distinct values for each column. In addition, we op-
tionally store a predicate for each partition, with the property that all
records in the partition are guaranteed to satisfy the predicate (see

select B.W, sum(A.X)
from A, B

,[

Use PMVs

Partial
aggregation

Execution Engine

£

}

Grouped aggregation

where A.key = B.key
and A.Y > 2 and B.Z = 5
group by B.W

Substitute replicas

Hash join
Build hash table on B.key
Filter ALY > 2

Filter BZ=5
Scan B

User optimize with memory budget 10MB Determine intersecting & Remainder Scan A
and disk budget 10GB subsumed partitions Query
7 . Pipeline 2 Pipeline 1
. ; Query Optimizer
Default physical design
i Yy e —————— I e et |
,___________________—————————I ‘ | TableA TableB Table C : : Table A1 Table B1 Table B2 |
| |
| ﬁ | Querylog | | | Hpart 1 | | Hpart4 | | Hpart 6 | 11 | Hpart 7 | | Hpart 10 | | Hpart 12 | :
I I [& |
|
: Optimize PMVs Optimize replicas/layouts | | : 11 | | | I '
| (under memory budget) (under disk budget) | Sto ra ge Layer | 1 :
| | | 1
I Y J | I I |
I [I T e e e) - : I
L ______ | Catalo Hpart | Stats Predicate L Partial Materialized Views (PMVs)
| g I |
| ores metadata for 1 X:[4,10]Y:.. | X>0andY<0 || | (@ls0cachedinmemory) I
X |+ pasetables 7 A oy | |
‘ Optimized physical design }—» : . ::;'lfj:s‘a‘ L ki : | | PMV for template 1 | | PMV for template 3 :
* PMVs I
| I |

Figure 1: A user query passes through the rule-based optimizer, which determines if and how to use SageDB’s instance-optimized
components, then runs on SageDB’s vectorized execution engine. When users issue an OPTIMIZE command, SageDB automatically
configures its instance-optimized components to maximize performance based on the user’s query history.

Section 4.2 for details). When a query scans from a table, SageDB com-
paresthe query’s filter with the per-column statistics and the optional
predicates to determine the set of horizontal partitions that can be
skipped, i.e., the partitions for which the statistics and predicate guar-
antee that no row can match the filter. SageDB uses memory-mapped
file I/O for data files stored on local SSD or disk. For long-term per-
sistence, data files are stored on AWS S3 or other cloud object stores.

3.1.2 Query Optimizer and Execution Engine. SageDB has a vector-
ized execution engine that processes a chunk of data at a time. SageDB
uses non-compiled pipelines with push-based execution (see Fig. 1
for an example). The first pipeline for each table involves scanning
data from disk, for which the granularity of a chunk is a horizontal
partition. Each pipeline may involve a projection over the columns or
afilter over the rows. SageDB supports lazy materialization by main-
taining a bitmap of relevant rows and passing the bitmap through the
pipeline. SageDB uses multi-threaded parallel execution of pipelines.

SageDB has a rule-based query optimizer that determines the
minimal set of columns that need to be read from each table, deter-
mines which horizontal partitions to scan from each table by using
per-partition statistics and predicates to skip irrelevant partitions,
orders tables for hash joins so that the largest table is the probe side,
and constructs the execution pipelines.

3.1.3 Usage and SQL Support. We assume that queries issued by
the user contain meaningful patterns and are not completely ad-
hoc. More formally, we assume that user queries can be categorized
into templates (also referred to as prepared statements), which are
queries whose filters contain changeable parameters. For example,
the template in Fig. 2 has parameters which are represented in the
SQL text by ?. SageDB gives users the ability to explicitly create
these templates and issue queries by specifying the template ID and
the parameter values, as shown in Fig. 2.

4064

SageDB supports a command-line SQL interface as well as a
Python connector library. Users can load data into tables from ei-
ther CSV files or Parquet files. SageDB returns query results to the
user in JSON format. SageDB currently supports select-project-join-
aggregate queries that can contain GROUP BY, ORDER BY, HAVING,
LIMIT, DISTINCT, and analytic functions. Supported aggregation
functionsinclude COUNT, COUNT DISTINCT,COUNT APPROX DISTINCT
(using HyperLogLog [27]), SUM, AVG, MIN, and MAX, including multi-
attribute aggregations. SageDB supports nested queries through
through unnesting [50] and treats CTEs as temporary tables. SageDB
only supports inner equijoins, implemented as hash joins. SageDB
also supports INSERT, but it is not a focus of the current design.

3.2 Instance-Optimization

What distinguishes SageDB from traditional systems is the degree to
which it is able to customize its design for a specific use case. Many of
the techniques that traditional analytic systems use to optimize for
a given dataset and workload fall in two categories. First, users are
allowed to create materialized views, which are used at query time to
substitute a subquery or the entire query itself. This can result in seri-
ous performance improvements—some systems’ performance relies
almost entirely on aggressive use of materialized views [10]—and sig-
nificant commercial effort has been put on automating materialized
view selection [2, 6], maintenance [4], and matching [28].

Second, users are allowed to specify how the records of a table
should be sorted. Classically, each table can be sorted by a specified
column (i.e., the sort key), and some systems aim to automate sort
key selection [1], but newer systems now also support multi-column
sort orders such as the Z-order [3, 64]. Contiguous chunks of the
sorted records are grouped into blocks, and systems traditionally
store per-block metadata, such as the minimum and maximum value

Query Template e ————

Partial Materialized View

select A, sum(X)

where Tl.id = T2.id
and B = ? and Y < ?
group by A order by A

|
|
from T1, T2 | Y<10 10SY<25 25SY<40 40SY<50 50<Y
|
|

execute query (‘c’, 30)

|
Original Query l
|
|

Base Tables & Replicas

Remainder Query {
| Ti(id, A, B) id, X,
|
|

select A, sum(X)

from T1, T2

Hpart 1 Hpart 3

|

|

|

|

| where Tl.id = T2.id

| and B = ‘¢’ and Y < 30
|
|
|
|
o

Hpart 2 Hpart 4

and Y >= 25

N
E
x
=

group by A order by A

Hpart 5

T2R1(id, X, Y) T2R2(id, X)

Result |« [Sort]4 [Aggregate]<~[Join

Execution Engine

select A, sum(X) Hpart 6 Hpart9
from T1l, T2R1
where Tl.id = T2R1.id

|
|
|
|
|
|
|
|
|
|
|
Hpart 7
and B = ‘¢’ andY<30<_} i
|
|

Hpart 10

and Y >= 25
group by A order by A

Hpart 8 Hpart 11

Figure 2: The example query takes advantage of the partial materialized view (PMV) to produce a remainder query with a more
selective filter. It then reads from a replica instead of the base table in order to reduce scan cost.

for each column [16, 21, 46, 51], which are used to skip irrelevant
blocks during query processing.

Materialized views and data layouts can have a significant impact
on performance. However, in traditional systems they are used in-
dependently of each other, and furthermore, they are limited in com-
plexity, which can limit their effectiveness. SageDB takes both com-
ponents, expands their scope to go far beyond the capabilities of tradi-
tional systems, and combines them under a single global optimization
objective. In particular, SageDB introduces the concept of partial ma-
terialized views, and SageDB uses instance-optimized block-based
data layouts in combination with data replication. We explain these
components in depth in Section 4, but we first briefly provide high-
level intuition by presenting an example of their usage (Fig. 2).

3.2.1 Anlllustrative Example. Assume there are two tables: a small
table T1 with columns (id, A, B);andalarge table T2 with columns
(id, X, Y).Assume that the user creates a query template:

select A, sum(X) from T1, T2

where T1.id =T2.idandB=?and Y <?

group by A order by A

Assume that A and B are a low-cardinality categorical columns, while
Y isahigh-cardinality column whose values are unique floating-point
numbers. A traditional materialized view for answering queries fol-
lowing this template would look like:

select A, B, Y, sum(X) as sumX from T1, T2

where T1.id = T2.id

group by A, B, Y

When the user issues a query using this template by specifying val-
ues for the parameters, the engine would answer the query directly
from this materialized view instead of scanning the base tables, T1

and T2, with a query such as:

select A, sum(sumX) from MaterializedView

where B =7 and Y < ?

However, since column Y has unique values, the materialized view
has as many rows as the base table T2. This makes the materialized
view expensive to store and also greatly reduces its performance
benefits. In fact, executing using the materialized view might be
slower than scanning the base tables. In this example, the engine
would need to scan four columns from the materialized view and
apply filters to two of those columns, whereas the original query

would only need to read three columns from T2 and apply filters
to one column (the cost of reading and filtering the smaller T1 are
negligible) and perform a potentially inexpensive join.

To avoid the limitations of traditional materialized views, SageDB
introduces the concept of partial materialized views (PMVs). APMV
is associated with a specific query template. Each cell in the grid
(Fig. 2) represents a filtered subset of the joint data distribution of
the base tables. For example, the top-left cell represents the data of
T1and T2 (joined by id) that satisfies the predicateB="a’ and Y<10.
Note that a PMV’s grid is specific to a certain join pattern, namely,
the join pattern observed in the template.

Each cell stores the result of the template’s aggregation over only
the data that it represents. For example, the top-left cell would store
arelation that is equivalent to the result of executing

select A, sum(X) from T1, T2
where T1.id = T2.id and B='a' and Y<30
group by A

When executing a query following this template (Fig. 2), the SageDB
query optimizer will find the cells that are subsumed by (i.e., entirely
contained within) the query’s filter, which for the example query
in the figure are the two cells highlighted. We then produce the
remainder query, which is the query whose filter has removed the
parts that are already subsumed by the PMV (details in Section 4.1)
and is therefore much more selective.

Furthermore, unlike traditional systems which allow users to
specify a sort order for each table, SageDB has the ability to create
multiple partial replicas for each base table (i.e., a replica containing
a subset of the columns but all of the records of the base table), each
with their own instance-optimized data layout. Before executing
the remainder query, SageDB’s optimizer considers whether to scan
from the base table or a replica. Fig. 2 shows that there are two repli-
cas of T2, namely T2R1 with columns (id, X, Y) and T2R2 with
columns (id, X).Imagine that the data layout for T2R1 has specif-
ically been optimized for the template (Section 4.2 presents more
details), so that we would only need to read one horizontal partition
from T2R1 (highlighted in blue), whereas we would need to read
all horizontal partitions from T2. Therefore the SageDB optimizer
would substitute T2R1 into the query. Note that we cannot use T2R2
because it does not contain all the necessary columns.

4065

Finally, the modified remainder query is fed to the execution en-
gine, and the partial aggregations from the two subsumed PMV grid
cells are merged during the aggregation step.

This example shows how SageDB’s instance-optimized compo-
nents work to reduce query execution cost: first, the PMV eliminates
part of the query filter, which reduces the cost of joins (because the
joininputs are smaller) and aggregation (because we aggregate fewer
records). Second, substitution of base tables with replicas reduces
scan cost by reducing the number of horizontal partitions scanned.
The former technique is not easily supported in traditional systems;
the latter is supported in traditional systems but is limited to simple
data layouts (e.g., sort keys) and requires the user to manually specify
replicas and layouts, whereas SageDB uses automatically-configured
instance-optimized data layouts.

An important part of our contribution is not only supporting
these techniques in SageDB, but also automatically optimizing their
configuration. In particular, the performance of each component is
dependent on the other. In Section 5, we describe our algorithm for
co-optimizing these components given the user’s data and workload.

4 INSTANCE-OPTIMIZED COMPONENTS

In this section, we more formally introduce SageDB’s instance-
optimized components, which we gave intuition for in Section 3.2.1.
First, partial materialized views (PMVs) are a novel technique for
generalizing traditional materialized views with more degrees of
freedom. Second, although the idea of combining instance-optimized
datalayouts with datareplication has been proposedin [60], SageDB’s
replicated data layouts applies them to the novel context of disk-
resident datasets composed of multiple tables, and we introduce a
novel optimization algorithm (Section 5.4).

4.1 Partial Materialized Views

A partial materialized view (PMV) is associated with a specific query
template. For a given query template (see Section 3.1.3), a templated
column is a column that is directly involved in a filter predicate that
includes a parameter. For the template in Fig. 2, the two templated
columns are B and Y. A partial materialized view (PMV) for a given
query template is logically defined as a grid over the templated
columns. If a templated column is used twice in the same template
(e.g., thefilterincludesY > ? AND Y < ?), the column s only used once
in the grid. For each grid cell, the PMV stores the result of executing
the query template over only the data represented by the grid cell.

In concept, several templates can share the same PMV. For exam-
ple, two templates that have the same filter and group-by clauses
but have different aggregations (e.g., template 1 computes SUM(A)
but template 2 computes MIN(B)) can share the same grid. However,
this reduces our flexibility to adjust the amount of resources (i.e.,
memory budget, see Section 5.3) allocated to each template. For ex-
ample, it is inefficient for a infrequently-queried low-cost template
and a frequently-queried high-cost template to share the same grid;
instead, the former should have a coarse-grained grid with fewer
cells that uses low memory and the latter should have a fine-grained
grid with more cells that uses more memory. It is therefore unlikely
that two templates have the same optimal PMV grid. Therefore, we
decide in SageDB to limit each PMV to a single template.

4066

4.1.1 Construction. GivenaPMV grid definition, we construct PMV
in a single pass over the data. In fact, the construction can be posed
as a SQL query. For example, the PMV in Fig. 2 is constructed as:
select A, [CASE WHEN B='a' AND Y<10@ THEN 1 ELSE WHEN...J, sum(X)
from T1, T2 where T1.id = T2.id

group by A, [CASE WHEN B='a' AND Y<1@ THEN 1 ELSE WHEN...]

where the CASE expression will output a cell number based on the
record’s value in the templated columns!. Note that in the construc-
tion query, we remove the parameterized filter predicates, but leave
remaining filter predicates as-is (e.g., if there were an additional
predicate AND X>0 in the template).

4.1.2 Usage. Touse PMVsat query time, we firstlogically determine
which cells are subsumed by the query filter. We then exclude those
regions of the data space from the filter. To determine which cells are
subsumed, we break down the filter into its atomic components by
splitting apart ANDs and ORs. The example query in Fig. 2 has one AND,
and therefore two atomic components. Any atomic component that
only references a single templated column can be checked against
the corresponding grid dimension. For the query in Fig. 2, the atomic
componentB=’c’ is checked against the partitions of grid dimension
B, and we see that only one partition is subsumed, and the atomic
component Y<30 subsumes the two partitions that, when combined,
represent Y<25. An expression describing the subsumed cells can
then be constructed by re-combining the atomic components, e.g.,
B="c’ AND Y < 25.

To modify the query filter, we add a NOT of an expression de-
scribing the subsumed regions. For the example query in Fig. 2, the
remainder query is
select A, sum(X) from T1, T2
where T1.id = T2.id and B="'a' and Y<30 and not (B='a' and Y<25)
group by A
Note that the expression in parentheses describes the subsumed
cells. This may result in an overly complicated filter, but the SageDB
optimizer uses an SMT solver [22] to simplify filters into conjunctive
normal form (CNF) before passing it to the execution engine.

SageDB caches partial materialized views in memory but they are
also persisted to disk and cloud storage.

4.1.3 Strengths and Limitations. The scope of PMVs is quite broad.
PMVs can be used for nearly any query template with parameterized
filters, since the usage technique is very generic. This idea extends
to multiple templated columns, and also to queries with joins (such
as the one in Fig. 2), for arbitrary filter predicates (containing both
ANDs and ORs).

However, there are some scenarios in which PMVs are unlikely
to help (see Section 6.3 for experiments). For templates that produce
large aggregations (i.e., group by high-cardinality columns), the PMV
becomes expensive to store and has limited benefits?, similar to the
limitation of traditional materialized views presented in Section 3.2.1.
Also, if there are many templated columns, the high-dimensional
PMV grid is less effective at isolating subsumed cells due to the curse
of dimensionality (e.g., Gaming Q4, Section 6.3).

!nstead of having a case for every cell, an optimization is have a CASE expression for
each grid dimension individually, and then combine them to form a unique cell number.
2Typically, these types of queries include a LIMIT clause (e.g., TPC-H Q10). Unfortu-
nately, we cannot simply take take a LIMIT within each cell of the PMV grid, because
a global top-K is not equivalent to merging the top-K of each cell.

4.2 Replicated Data Layouts

Prior work on instance-optimized data layouts [23, 25, 48, 63] has
already shown that more complex data layouts perform better than
traditional single-column or multi-column sort orders. However,
these prior instance-optimized techniques assume that they modify
the original copy of the data. In SageDB, we want to avoid this be-
cause it violates our design principle of avoiding regressions, because
an unexpected future query may execute slower on the “optimized”
layout than the original layout.

In SageDB, we do not modify the layout of the original copy, which
we refer to as base tables. Instead, we use a user-provided additional
disk space budget to create partial replicas of tables. A partial replica
contains a subset of the columns from the base table (which may be
the full set). The data layout for each replica is independent. For each
query, the query optimizer chooses to read from the replica (or the
base table) that minimizes scan cost. The challenge is to determine
which subset of the workload to optimize each replica for in order to
achieve the best performance, since it does not make sense to opti-
mize multiple replicas for the same query/template if the execution
engine only uses one replica at execution time—we examine this
optimization problem in Section 5.4.

4.2.1 Construction. For a given replica (i.e., a subset of columns
from a base table) and a set of queries to optimize the replica’s data
layout for, we use the same algorithm as in [63] to create a set of
horizontal partitions. SageDB defines a target number of records per
horizontal partition, which by default is set to 2M rows based on the
latencies we observed for Amazon S3. Each block is associated with
a predicate, with the property that all records in the block satisfy the
predicate, and also all records that satisfy the predicate are in the
block, i.e., blocks do not “overlap.” For brevity, we omit the details
of the algorithm, which can be found in [63] and is summarized in
Section 2.1 of [23].

4.2.2 Usage. For each table referenced in the query, the SageDB
optimizer iterates over the replicas, first checks whether the replica
contains all the necessary columns, and checks the per-horizontal
partition metadata to determine the number of files and rows that
need to be read from each, and picks the replica with the lowest
cost (see Section 5.1). This procedure is done for each table inde-
pendently, because substituting replicas purely improves scan cost.
Downstream operators that introduce dependencies between tables,
just as joins, are not affected.

4.2.3 Strengths and Limitations. Replicated layouts have the great-
est impact on reducing cost for scan-heavy queries with selective
filters. However, replicated data layouts only help reduce scan cost
(by skipping irrelevant data blocks) but cannot reduce the cost of
other parts of query execution, such as joins, and are therefore less
effective for queries where joins dominate execution time (see Sec-
tion 6.3 for examples). Furthermore, if the query filter is extremely
complex (e.g., composed of many conjunctions and disjunctions over
many columns), then even instance-optimized data layouts may not
be able to meaningfully outperform a full table scan, due to the curse
of dimensionality.

4067

5 THE OPTIMIZE COMMAND

The user can issue the OPTIMIZE command to trigger automatic
configuration of SageDB’s instance-optimized components. The
command has two arguments, a budget for the amount of mem-
ory space that SageDB can use to store PMVs, and a budget for the
amount of disk space that SageDB can use to store replicated data
layouts. The user is allowed to set either budget to zero, though this
would of course limit the effectiveness of the optimization.

The user’s only responsibility is to decide when to issue the
OPTIMIZE command. We envision that the user runs the command
during a time of low system load, so that the optimization process
does not affect performance of concurrently running queries; this is
the same advice that data warehouse providers typically give to users
when suggesting knob tuning recommendations. Ideally, the user
should have already issued a representative set of queries on SageDB,
because the optimization will require examining and modeling the
user’s query history. For example, if the user uses SageDB to run a
daily batch reporting job, then they may want to run the first day’s
batch, then issue the OPTIMIZE command overnight, so that the next
day’s batch can take advantage of performance improvements.

When the user triggers the OPTIMIZE command, SageDB needs to
automatically configure its instance-optimized components simul-
taneously. Why not simply optimize PMVs and replicated layouts
independently, each on the full query workload? The choice of PMVs
affects the optimal replicated layouts, because PMVs produce remain-
der queries and in some cases answer the entire query, so the layout
should only be optimized for the remainder queries. The choice of
replicated layouts also affects the optimal PMVs; depending on how
effective the layouts are at processing a template’s remainder queries,
we may want to allocate more or less memory budget for that tem-
plate’sPMV (e.g., a PMV is useless if the remainder query would any-
way require scanning all of the data because of a poor data layout).

SageDB uses an iterative algorithm that optimizes PMVs and lay-
outs, dependent on the other, in a loop until convergence. We now
describe the cost model which forms the optimization objective, then
the global optimization procedure.

5.1 Cost Model

SageDB uses an analytic cost model. The cost of a query is the sum
of scan cost, join cost, and aggregation cost:

ScanCost=wy (# horizontal partitions scanned)
+w1 (# scanned records) (# columns read)
JoinCost=wy (# build side records)+ws (# probe side records)
+w4 (# output records) (# output columns)

AggCost=ws(# aggregated records)

Scan cost and (hash) join cost are evaluated for each table/join, while
aggregation cost is computed for the post-join relation. The weights
w; are tuned based on the hardware. To estimate the features, we use
asimple cardinality estimator which assumes independence between
columns and uniform data distributions of the values in each column.
We could use a more complex cost model, or even a learned cost
model, but that is orthogonal to the core optimization technique.

5.2 Global Optimization

The optimization objective is to minimize total workload cost, i.e.,
the sum of costs, according to the cost model, for all queries in the
workload. The algorithm is as follows:

(1) The catalog stores a log of all past user queries. We examine
that history and cluster queries into templates. A template is a
query for which constant literals in the query filter are replaced
by placeholders. Within each template, if a certain placeholder
always has the same constant value, we remove the placeholder
and simply use the value. We expect that many real workloads
(e.g., daily batch reporting jobs, dashboard queries) have repeated
query patterns and are naturally composed of templates.

(2) Starting from the default physical configuration, which only
contains the base tables in their original layout and has no PMVs
and no replicas, perform the following steps in a loop, until the
relative cost decrease from the previous iteration of the loop is
less than a certain threshold, by default 1%:

(a) Optimize the PMVs, using an objective function that takes
the current replicated layout configuration into account (see
Section 5.3).

(b) Feed all queries through the optimized PMVs to construct
a workload consisting only of remainder queries.

(c) For each remainder query with joins, push down all single-
table predicates to their respective tables and create a single-
table query for each table.

(d) Optimize the replicas and data layouts on the single-table
remainder queries (see Section 5.4). Each table is optimized
only for the queries that filter on that table.

The intuition behind the loop is to incrementally optimize each com-

ponent given the currently-optimized configuration of the other

component. For example, the first time that PMVs are created, some

PMVs may be rejected because the remainder queries would any-

ways be very expensive on the default layout. However, after the

layouts are optimized once, it is likely that those PMVs are selected in
the next iteration, because the layout is now optimized. This way, the
dependencies between PMVs and replicated layouts are captured.

There are no regressions from one iteration to the next (i.e., cost
can only decrease) because the algorithm can always select to choose
the same PMVs or replicated layouts as the previous iteration.

5.3 Optimizing Partial Materialized Views

Given a memory budget and a set of templates T, we need an algo-
rithm to decide how much memory to allocate to building a PMV
for each template, and also what the PMV grid should be given that
memory allocation. We first describe the latter, since it is used as a
subroutine in the former.

5.3.1 Optimizing the PMV grid. If a query template t has n templated
columns, then a PMV for t is a grid with n dimensions, one represent-
ing each templated column (see Fig. 2 for an example). The domain of
each dimension’s values are logically divided into equally-sized buck-
ets, much like an equi-depth histogram: for each dimension i € [0,n),
we create b; buckets by setting the boundary values between buckets
in such a way that 1/b; of all records fall in each bucket. For templated
columns involved in equality filters (i.e., =, ! =, IN), we ensure that
each bucket only contains one unique value of that column, since a

4068

100 Template A Template B Template C
75 A b 1
I ver o
50 1 B 4 =7 .
8 ez U=0.8 o
25 A B 1 U=0 =2
0 T T T T T T T T T
0 50 100 0 50 100 O 50 100
Memory Memory Memory

Figure 3: Optimizing PMVs for three templates with a total
memory budget of 100 and step size of 25. Utility is visualized
as the slope of the lines. Red stars represent the selected
configurations. Dotted lines would not actually be considered
in the optimization.

bucket is only useful if the filter is able to subsume it; if there are more
unique values than buckets, we only use the b; most frequent values.

Given a query template ¢ and a space budget s, we want to con-
figure a PMV grid, i.e., set b; for i € [0,n), that minimizes the total
cost, according to our cost model, of executing all queries in the
workload that come from ¢. (Note that scan cost of the remainder
query depends on the current replicated layout configuration, in the
context of the global optimization algorithm in Section 5.2.) We use
Bayesian optimization to determine the b; for each dimension that
minimizes cost, under the space budget constraint s. Throughout this
process, we make use of SageDB’s ability to simulate a PMV without
physically creating it, by only storing the PMV metadata (i.e., the
grid definition), which is used to generate remainder queries as if the
PMV actually existed and to estimate the memory usage of the PMV.

5.3.2 Allocating memory to templates. Given a total memory bud-
get B and a set of templates T = {t1,...,t, }, our algorithm aims to
minimize }};C;(s;), under the constraint that };s; < B, where C;(s)
is the total cost of executing the queries from template ¢; if we could
create a PMV for t; with space s, as described above. While solving
this optimization problem, we would like to minimize the number of
times we compute C; (s), since PMV simulation, while cheaper than
physically creating the PMV, is still expensive.

We make the following observation: allocating more space to a
template’s PMV generally has diminishing marginal returns. That is,
for a template t; € T, the cost function C;(s) is convex. For intuition,
consider a simple template, SELECT SUM(A) FROM T WHERE B < ?,
where column B contains numeric values. A PMV for this template
would essentially divide the domain of column B into n equally-sized
cells. By using the PMV, a query from this template would only ever
need to scan/aggregate the data corresponding to one cell, because
all cells to the “left” would be subsumed. Each cell contains around
1/n of the data, so the cost as a function of the number of cell is ap-
proximately C(n) =1/n, which is convex. This intuition also roughly
extends to higher-dimensional grids.

Therefore, the intuition behind the optimization algorithm is that
instead of allocating the total memory budget across the different
templates in one shot, we take an iterative approach where we in-
crementally allocate more space to the template with the highest
impact on cost. Essentially, we do not know the cost functions C;(s)

Generated Candidate Replica-Sets

T1+T2+T3+T4

Hierarchical Agglomerative Clustering

TL+T2+T3+T4]

T2+T3+T4

)
T2+T3

Template 1 Template 2 Template 3 Template 4

[00001] [11000] [11100] [01010]

Figure 4: Hierarchical clustering of four query templates on
a table with five columns, which produces four candidate
replica-sets (blue) over seven distinct replicas (gray).

upfront, so we incrementally explore these cost functions, starting
from s=0. We now formalize this algorithm.

Our algorithm works by incrementally allocating b memory bud-
get ata time, where b < B. We refer to b as the “step size” If a template
t; currently has aPMV that uses memory space s, we define the (mar-
ginal) utility U; (s,b) of allocating another b space as as (C; (s) —C;i(s+
b)) /b. Throughout the optimization algorithm, we maintain a memo
that stores, for each template ¢;, three pieces of data: (1) the amount
of space currently allocated to that template s;, (2) the cost C;(s;),
and (3) the utility U; (s;,b) of allocating b more space to the template.
The algorithm proceeds as follows (Fig. 3 shows an example):

(1) The memo is initially empty, i.e., zero space is allocated to each
template. We begin by computing the utility U;(0,b) for each
template. This requires computing C; (b) for each template ¢;.
Pick the template with the highest utility: argmax; U;(s;, b).
Change that template’s entry in the memo. That is, if the en-
try was previously (s;,C;(s;),U;(si,b)), we now replace it with
(si+b,Ci(si+b),U;(si+b,b)). This requires computing Cj(s;+b).
In case the PMV has reached its maximum size (i.e., we have done
the equivalent of a traditional materialized view that groups by
the templated columns), we do not consider this template further.
(3) Repeat step 2 until the space budget is filled.

In general, a smaller step size b means a closer-to-optimal solution.
By default, we set b=B/n, where n is the number of templates. This
is small enough to guarantee that every template can get a PMV; if
that is indeed optimal. Furthermore, this means that the complexity
of the algorithm (i.e., the number of invocations of a cost function)
is O(n): we perform O(n) cost function calls to initialize the memo,
and we perform O(B/b)=0(n) additional cost function calls before
the budget is filled.

@

5.4 Optimizing Replicated Layouts

Assume the dataset is composed of m tables, Ti,...,Tr,. Given a total
disk budget B and a set of single-table remainder queries Q; for each
table T;, our algorithm aims to find the set of replicas, along with the
data layout for each replica, that minimizes the total scan cost of all
remainder queries. Note that we do not need to consider join cost or
aggregation cost, since the amount of data scanned does not affect
the inputs to downstream operators like joins and aggregations. Our
algorithm has two steps: finding a collection of candidate replica-sets
for each table, then selecting the optimal set of replica-sets.

4069

54.1
each table T;. Given |Q;| remainder queries, there are 2 1Q: 1 possi-
ble replicas we could create, i.e., we could create a replica whose
data layout is optimized for any subset of the queries. For simplicity,
we consider each query template as one atomic unit, but nonethe-
less, given n templates, there are an exponential number of possible
replicas, so a brute force search is infeasible. Instead, we generate
a collection of promising replica-sets, i.e., a set of replicas along with
their optimized data layouts.

Our insight is that we should only consider replicas whose layouts
are optimized for a set of similar query templates. More concretely,
we generate a embedding for each query template, in two different
ways that represent two different notions of similarity:

(1) Abinary embedding (i.e.,composed only of 0’sand 1’s) of columns
that appear in the query filter (in both parameterized and con-
stant predicates). Templates with similar embeddings will benefit
from similar layouts. As an extreme example, three templates
that all only filter on colA will both benefit from a replica that
sorts records by colA, whereas a replica optimized for three tem-
plates that filter on three different columns would not do a great
job for any template.

A binary embedding of columns that appear anywhere in the
query template, i.e., the columns that the execution engine needs
to read when processing this query. By placing templates with
similar embeddings in the same cluster, we minimize the number
of columns we would need to include in a replica for that cluster
(recall that a replica does need to include all columns from the
base table, only the columns necessary for execution).

There is a fundamental trade-off between space and cost: having a
different replica for every different template will achieve the lowest
scan cost, but will take the most disk storage space, while optimizing
a single replica for all the templates takes the least space but will not
reduce scan cost as much. The candidate replica-sets that we generate
should form a Pareto frontier that spans this space-cost tradeoff.

Specifically, use hierarchical agglomerative clustering [59] over
the embedded space to separate the n templates into anywhere from
1 cluster to n clusters (see Fig. 4 for an example). For each cluster, we
generate a replica whose data layout is optimized (using the algo-
rithm from [63]) for only the templates in its cluster, containing only
the columns from the base table needed to execute the templates in
its cluster. This results in n replica-sets for each type of embedding,
and since we use two types of embeddings, we have up to 2n —2
unique replica sets (since the replica-sets corresponding to 1 cluster
and n clusters will be the same for both embeddings). Due to the
nature of hierarchical clustering, these replica-sets are built from up
to 3n—3 unique replicas. Therefore, the time complexity of this step
is O(n). For each replica-set, we compute the scan cost of executing
the queries Q;, according to the cost model.

Generating candidate replica-sets. This step is repeated for

@)

5.4.2 Selecting replica-sets. After generating a collection of candi-
date replica-sets for each table, we need to select a global configu-
ration of replicas, i.e., select zero or one replica-set for each table,
that minimizes total scan cost under the space budget B. This opti-
mization problem is almost identical to the 0-1 knapsack problem,
so we use the standard dynamic programming solution to find the
optimal collection of replica-sets. The only difference is that if we

Table 1: Dataset and workload characteristics.

Gaming Stack Overflow TPC-H

num tables 5 1 8
num rows in largest table 3.06B 507M 600M
uncompressed size (GB) 426 52 100
num templates 13 13 15

select multiple replica-sets corresponding to the same table, we only
use the one that reduces scan cost the most.

Ifthe query workload has n templates and m tables, we generate up
to nm candidate replica-sets, so the standard dynamic programming
algorithm for the 0-1 knapsack problem takes O((nm)?) time. In
practice, this is very fast, for several reasons: first, the time-intensive
optimization steps (i.e., simulating PMVs and replicated layouts and
feeding estimated statistics through the cost model) have already
been done. Second, n is typically small (e.g., TPC-H has 22 templates).
Third, even if there are many tables in the dataset, most of these
tables are small; we do not even need to consider creating replicas
for tables that only have enough records for one horizontal partition.

6 EVALUATION

In this section, we present the results of an experimental study that

compares SageDB with other data analytics systems on both real and

synthetic datasets and workloads. Overall, this evaluation shows:

(1) SageDB outperforms a commercial cloud-based analytics system
by up to 3% on end-to-end query workloads and up to almost
250x on individual query templates (Section 6.2).

(2) SageDB’sinstance-optimized componentsbenefit different types
of queries to different degrees, but almost all queries benefit from
at least one instance-optimized component (Section 6.3).

(3) SageDB’s optimizations rarely result in regressions for individ-
ual queries, and the OPTIMIZE command can easily be completed
as a nightly job (Section 6.4).

6.1 Setup

We run SageDB on a EC2 machine with 4 vCPUs and 32GB RAM
(i3en.xlarge), with data on an attached EBS volume with 4000
IOPS. We compare against a popular cloud data warehousing prod-
uct, which we call System X, running on a single node with the same
number of cores and memory. We also compare against Umbra [49],
a high-performance on-disk analytics research prototype which in-
corporates many state-of-the-art techniques such as just-in-time
code compilation, though it currently doesn’t support indexes and
cannot be tuned for a particular workload.

We evaluate using three datasets and workloads (Table 1). We
include full dataset schema and workload specifications in Appendix
A of our extended report [7].

(1) Gaming is a real-world dataset from the gaming division of a
major technology company, donated to us under the condition
of anonymity. There are two fact tables, with roughly 2B and 3B
rows respectively, and three smaller dimension tables. We use
a real workload provided by the company.

(2) Stack Overflow is a single-table dataset with 500M records,
each of which represents a post on Stack Overflow.

4070

(3) TPC-H is a standard analytics benchmark. We use scale factor
100 to generate the data.

All experiments that involve running a query workload will first
deterministically shuffle the order of queries (i.e., we want to avoid
caching effects of running all queries of the same template sequen-
tially). We then run the workload three times and report the median
time for each query.

6.2 Overall Results

We first compare SageDB directly against System X and Umbra on
the three datasets and workloads. We show two different config-
urations for SageDB: (1) unoptimized, the out-of-the-box version
of SageDB before the user has issued the OPTIMIZE command, (2)
optimized, the state of SageDB after the user has issued the OPTIMIZE
command with a memory budget of 1GB (which is a small fraction
of overall memory) and a disk budget equal to the size of the original
dataset (which we believe to be reasonable since datasets are often
fully replicated for fault tolerance anyway, especially on the cloud).

We show two different versions of System X: (1) the out-of-the-
box configuration, after the data has been loaded. (2) A tuned version,
in which we enable System X’s ability to automatically select a sort
key for each table, as well as automatically select materialized views.
We believe that these capabilities represent the state-of-the-art in au-
tomated physical design in a large-scale commercial analytic system.
To ensure we maximize System X’s performance, we performed addi-
tional hand-tuning: we included hand-picked materialized views for
each dataset, and for Stack Overflow, the tuned version also sorts the
table using an interleaved sort key (i.e., Z-order) over the post_date
and score columns, which improves performance because score is
correlated with many of the commonly filtered columns. In summary,
the tuned System X reflects the combination of automatic tuning
and hand tuning. The disk storage cost of our manually-tuned mate-
rialized views are 40%, 2%, and 100% of the size of the original dataset
for the Gaming, Stack Overflow, and TPC-H datasets respectively,
which is higher than SageDB’s 1GB budget for PMVs but smaller
than its budget for replicated data layouts; System X does not allow
users to access automatically-created materialized views, so the total
storage cost of all materialized views is likely higher. Umbra does
not use any extra storage space because it does not support indexes.

Fig. 5 shows that across the three workloads, SageDB outperforms
the other systems on average query runtime by up to 3X. As evidence
of the effectiveness of SageDB’s instance-optimized components,
SageDB optimized outperforms the unoptimized version of itself by
between 3-6X, whereas System X tuned, which uses a combination
of manual tuning and state-of-the-art automatic tuning, achieves
between 25% and 3x performance gain over the default version of
itself. Umbra performs best when the working set fits in memorys;
otherwise it is bottlenecked by disk since it doesn’t use any indexes
or layouts, which is why it performs poorly on TPC-H. Umbra was
unable to complete all queries in the workload for Gaming, which is
why we do not include it in the plot.

For each workload, Fig. 5 also shows a per-template breakdown
of speedups achieved by the optimized version of SageDB compared
to the tuned version of System X. For individual query templates,
median speedups are as high as 250X (Gaming Q8). In general, tem-
plates for which SageDB performs worse than System X are ones for

SageDB unoptimized BN SageDB optimized System X B System X tuned BN Umbra
(a) Gaming (b) Stack Overflow (c) TPC-H
5)
& 250 oD _ ° =
s 082 8 | B g s 5 2
@ v 4 o 5] =3 =
E 200 £ = o o al £ |1.| Q e
B o b= FxzT10 &.B1 T 3 L
5 150] |I] of 23 T =T ‘113 2 - °
£ 0 ~0 o 3 ; ogl & o
o 100 Il'I [} nl o? 2 E o = EJ =
g 5 g i T L[' © o| & e T o=
g 50 5 1 [
3 T ° 232 T E °.
ol W BWl L Q ; ————— ol MM Bl L ——
1234567 8910111213 1234567 80910111213 1234567 810111214151718
Template Template Template

Figure 5: For each dataset, we show average query time on each system for the end-to-end workload, as well as a per-template
breakdown of speedups achieved by SageDB optimized compared to System X tuned. SageDB outperforms other systems by

up to 3x on end-to-end query workloads and achieves up to almost 250x speedup for individual templates.

which SageDB’s instance-optimized components do not make an
impact (e.g., TPC-H Q18, see Section 6.3), ones for which the tuned
System X has sort keys and materialized views that achieve the same
purpose as SageDB’s instance-optimized components (e.g., Gaming
Q12), or ones for which System X’s raw execution engine is simply
more efficient than SageDB’s (e.g., some TPC-H templates). The
variability in speedups is simply due to the fact that the effectiveness
of SageDB’s instance-optimization depends not only on the query
template, but also the specific parameter values of the template; for
example, a parameter value that results in a non-selective filter may
not benefit as much from replicated layouts as a selective filter.

While the performance numbers of SageDB are promising com-
pared to System X and Umbra, it has to be pointed out that SageDB
is still a prototype and is not yet feature-complete like System X (e.g.,
we do not support outer joins). Rather, there are two takeaways: first,
SageDB as an out-of-the-box system, ignoring instance-optimized
components, has roughly comparable performance to System X and
Umbra when evaluated on the same hardware in a single-node set-
ting. Second, and arguably more importantly, optimization allows
SageDB to outperform the out-of-the-box version of itself by up to
6x. Next, we dive deeper in which how each instance-optimized
component contributes to that performance gain.

6.3 Ablation Study

How much do each of SageDB’s individual instance-optimized com-
ponents contribute to the overall performance? In Table 2, we break
down the effect of each instance-optimized components on each
template of each workload. Overall, there are several takeaways.

First, different components help more for different types of queries.
For example, replicated data layouts are especially helpful for queries
that either filter on a single table (e.g., Stack Overflow queries, TPC-H
Q1) or have inexpensive joins (e.g., TPC-H Q14). PMVs are helpful
whenever they are applicable, and especially if it fully answers the
query so that the remainder query is empty (e.g., Gaming Q8 and
Stack Overflow Q1).

Second, SageDB’s performance when all components are com-
bined is sometimes better than any individual component on its own.
For example, Stack Overflow Q4 and Q11 benefit from some synergy
between PMVs, which answer most of the query, and then using the
replicated data layouts to speed up the remainder query.

Third, there are some types of queries for which PMVs or repli-
cated data layouts make no impact, as we alluded to in Sections 4.1.3
and 4.2.3. For example, TPC-H Q18 produces extremely large aggre-
gations (since it groups by the primary key of a table with 150M rows
before applying a LIMIT), so a PMV is unhelpful and would exceed
the memory budget anyway.

Fourth, occasionally using instance-optimized componentis worse
than not using it. For example, on Stack Overflow Q8, using PMVs de-
creases performance compared to the default. Thisis because SageDB
always uses PMVs if they exist, but in this particular case, the query
itself ran relatively quickly, and the extra optimizer overhead from
computing subsumed cells in the PMV ate into the performance gains.
This points to a direction for future work, which is to automatically
determine, for each query, whether a certain instance-optimized
component should be disabled.

6.4 Microbenchmarks

6.4.1 Regressions. SageDB improves overall performance, but we
also want to ensure that individual queries do not regress. Table 2
showed that on a query template level, performance does not regress.
Fig. 6 takes this a step further by breaking down individual query
performance for each template, comparing the speedup in query
runtime between the optimized and unoptimized configurations
of SageDB. In general, regressions are rare, and when regressions
do occur, they are minor compared to performance gains. Often,
regressions are due to extra query optimization overheads for very
short-running queries.

6.4.2 Space Budget. Fig. 5 showed SageDB’s performance when
optimized with 1GB memory budget and disk budget equal to the
size of the original dataset. To show how performance would change
if the budgets were set differently, we hold one budget constant while
varying the other budget, on the Gaming dataset. Fig. 7 shows the
overall workload cost as each budget varies, compared to the cost
of having zero budget (i.e., if the corresponding component were
disabled). As more space is given, cost decreases and performance
improves. Note that the cost curve is convex for PMV optimization
(note the log scale for the x-axis), confirming our intuition from
Section 5.3. For replicated layout optimization, there is a significant
decrease in cost at 70% disk space because that is the boundaries past
which an especially important replica fits within the space budget.

4071

Table 2: Ratio of average query time on the unoptimized SageDB vs. when the specified components is enabled. Higher is better.
Highlighted is the component that makes the most impact on each template.

Gaming Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12 Q13
PMVs only 1.7 1.68 172 1.0 519 99.7 1.28e+03 243 1.12 77.5 1.01 1.36
Replicated layoutsonly ~ 1.25 1.32 1.33 165 1.14 1.05 1.06 1.0 1.1 112 1.0 1.21
All 3.1 3.76 3.11 1.65 519 1.17e+02 1.05e+02 1.33e+03 2.96 1.17 855 1.02 181
Stack Overflow Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12 Q13
PMVs only 10.5 136 155 216 19 1.39 0.648 139 63 1.2 2.78 2.04
Replicated layouts only 7.0 153 195 319 338 433 243 3.61 136 1.09 221 153
All 17.1 1.6 224 478 3.66 433 2.44 382 142 1.71 278 15.6
TPC-H Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Qi1 Q12 Q14 Q15 Q17 QI8
PMVs only 3.17 259 1.0 1.18 2.04 1.0 2.47e+02 63.3 246 1.78e+02 1.08 1.09 1.02 273 1.0
Replicated layoutsonly = 56.7 1.03 1.02 1.05 1.03 | 5.18 1.04 1.05 1.07 642 1.69 312 104 1.05
All 80.1 273 1.03 126 213 6.02 2.54e+02 67.2 332 2.02e+02 797 212 315 29.1 1.05
Gaming Stack Overflow TPC-H
3] [€) =
10 = o o o =) & =g L 8
oo 0 8 i : U : :
1 P 1
2 10?4 g g 10 . 8 8 8 R R
g0 3 e2o LI8eTgmgl %
R R g o g T 9 101 4 8 <)
& 105) »n 100 4 | A & I]_J 0 W |I|
) 2y lI| = o III LJ
d =] oo I
10° 4 g = 10%4 =T =
12345678 910111213 1234567 82910111213 1234567 810111214151718
Template Template Template

Figure 6: Per-query speedups for SageDB compared to its unoptimized configuration. Regressions are rare. The orange line
represents the median; the box represents first and third quartiles; whiskers extend from the box by 1.5X the inter-quartile

range; dots are those past the end of the whiskers.

(a) PMV optimization (b) Replicated layout optimization

1.0
o

0 8
208 LT e D il N
a S=~a s ~
c 0.6 e T 2075 S~
< CSememme 2 »>—-—-9
404 ‘g 0.50
% =
§oz2 H 0.25

0.0 0.00

10KB 100KB 1MB 10MB 100MB 1GB 0.0 0.2 0.4 0.6 0.8

Memory space Disk space (fraction of original data)

Figure 7: Gaming dataset: cost decreases as more space is
provided to the OPTIMIZE command.

Table 3: Optimization Time (in seconds).

Gaming Stack Overflow TPC-H
Optimization algorithm 107 117 143
PMV construction 4340 265 4150
Replicated layout construction 16100 1280 2400
Total 20500 1660 6690

6.4.3 Optimization Time. We expect that users should trigger the
OPTIMIZE command during a time of low system load, similar to
what popular data warehouse products advise their customers to do
when following recommended optimizations. Therefore, optimiza-
tion should not interfere with normal workload execution.

4072

Table 3 breaks down the time that SageDB spends on each step
of optimization for each dataset. Overall, optimization finishes in
less than 6 hours for the largest dataset, which reasonably fits into
periods of low system load (e.g., overnight). Even if the optimiza-
tion is performed while queries are running, this quickly pays off in
terms of saved query time. For example, on the Gaming workload,
since the benefit from optimization is around 200 seconds per query
(Fig. 5), we recoup the time “lost” to optimization after executing
only around 100 queries.

7 LESSONS LEARNED AND FUTURE WORK

In this section, we take a step back and consider how the current
SageDB design compares to our original design principles (Section 2).
We also highlight important directions for future work.

Avoid regression. Due to SageDB’s design, for any particular query
we can always fall back to the default out-of-the-box configuration
without instance-optimization. For example, the optimizer can al-
ways choose to read from the base table instead of from the replicas.
Indeed, we show in Section 6.4 that we avoid regressions on all
templates.

The implication is that the burden of avoiding regressions (e.g.,
deciding to not use the PMV for a certain query) falls on the query op-
timizer, which may make mistakes due to inaccurate cost models or
cardinality estimates. Besides integrating a more sophisticated query
optimizer, one way to guard more aggressively against regression

is to allow the optimizer to use the instance-optimized components
only when cost reduction is greater than a certain threshold.

Minimize the burden on the user. SageDB places minimal tech-
nical burden on the user: their only responsibility is to issue an
OPTIMIZE command, with a space budget, during times of low system
load. However, our longer-term vision is to remove all responsibility
altogether by automatically deciding when to perform optimization
and which components to re-optimize. This will require detecting
when the data or the workload have shifted enough to merit a re-
optimization, and can incorporate ideas from [23]. It will also require
considering the cost of re-optimization itself, as well as forecasting
the future workload—even if the workload has shifted, we may not
want to optimize if the workload will shift again soon anyway.

Inserts. Allowing SageDB and other instance-optimized systems
to adapt to inserts is a key area of future work. The main chal-
lenge behind inserts is that they may invalidate optimizations con-
structed based on a static snapshot of the data. Replicas with instance-
optimized data layouts can avoid invalidation through delta buffer-
ing. For example, new data is inserted into a special horizontal par-
tition. Existing horizontal partitions remain unchanged, and when
scanning, SageDB can still take advantage of data skipping over
existing partitions, but may need to always read the new partition.
When the user again triggers the OPTIMIZE command, the buffered
data in the new partitions are incorporated into the new data layout.

Likewise, PMVs are not necessarily invalidated when data is in-
serted into a new horizontal partition, especially if data is only chang-
ing in one base table (e.g., users append data to a fact table but the
dimension tables are stable); we essentially execute two separate
queries, one over the data over which the PMV was constructed
and another over the new/buffered data, and merge the results. At
a later time, we can perform incremental maintenance on the PMV,
by essentially building a new PMV over the new/buffered data, with
the same grid definition as the existing PMV, and then merging each
cell with its counterpart in the existing PMV.

Expanding Components. Since SageDB so far has focused primar-
ily on physical design, good candidates for components to add next
are ones that improve the logical side, e.g., alearned query optimizer
or a learned cost model. We believe the main challenge will be to
keep these components “in sync.” For example, the physical design
optimization depends on the query optimizer (especially its ability to
simulate PMVs and layouts) and cost model. If the optimizer or cost
model changes due to retraining, then some pieces of the physical
design might no longer be selected by the optimizer.

8 RELATED WORK

Automatic database tuning. Modern data system have an increas-
ing number of knobs and configuration options to be tuned by data-
base administrators or by (semi-)automatic tools. There have been
efforts to automatically tune a DBMSs’ configuration since the early
2000s. Much of the previous work on automatic database tuning has
focused on optimizing the physical design of the database [14], such
as selecting indexes [11, 31], partitioning schemes [12, 17, 54], or ma-
terialized views [11]. Based on the method used to find the ideal con-
figuration, the previous work can be divided into two categories: rule-
based methods [18, 39] and ML-based methods [26, 41, 42, 53, 62, 65].

4073

Cosine [13] focuses on self-designing key-value stores. Both ap-
proach performance optimization differently, with SageDB using
learned components while Cosine essentially creates more knobs to
tune. NoisePage [52] focuses on designing a self-optimizing database
like SageDB by defining an objective function and action space. A
centralized service learns to optimize the objective through the ac-
tions. NoisePage learns how to take standard actions in the database,
such as adding/dropping indices, configuring knobs, and scaling
hardware resources. Compared to instance-optimized components
or systems, automatic database tuning has fewer degrees of freedom
and is typically performed in a black-box manner.

Instance-optimized components. Further research has expanded
the breadth and depth of instance-optimized components. More so-
phisticated learned indexes use multivariate data distributions to
create multidimensional indexes [25, 48, 63]. There are now instance-
optimized versions of bloom filters [20, 47, 61] and hash tables
[57]. New use cases, from caching [34, 40] to query optimization
[38, 44, 45] to scheduling [43], have leveraged learning to improve
performance. SageDB aims to take this to the next step: where
prior work designed components to adapt to the data and work-
load, SageDB intends to design an entire system with that capability.

Computation Reuse. PMVs can be considered a form of compu-
tation reuse, in which we pre-materialize certain results that will
be used multiple times in the future. Other forms of computation
reuse are multi-query optimization [56, 58] (which aims to find a
globally optimal execution plan for a batch of queries), materialized
views [35], data cubes [29], and sub-expression materialization [33].
These techniques all assume that (sub)queries must be fully pro-
cessed using pre-computed or cached results, whereas PMVs have
the flexibility of partially answering the query, while the cheaper
remainder query scans the base data.

Replication and Data Layouts While there have many works on
instance-optimized data layouts [23, 25, 48, 63], the only other work
to consider the combination of partial replication with instance-
optimized data layouts is CopyRight [60]. However, their optimiza-
tion algorithm makes assumptions that are specialized for grid-based
data layouts for in-memory data over a single table, while SageDB
handles multi-table disk-based datasets.

9 CONCLUSION

In this paper, we presented a progress report on SageDB, a first
instance-optimized data system, focused on analytics. SageDB incor-
porates two instance-optimized components into one system that
exposes a simple interface to the user. While our prototype system al-
ready achieves impressive results, our aspirations for SageDB are far
from complete. Our roadmap for future work includes implementing
techniques to eliminate performance regressions, gracefully han-
dling data changes, and incorporating further instance-optimized
components. We hope that this report leads us a step closer towards
making the vision for instance-optimized systems a reality.

ACKNOWLEDGMENTS

This research is supported by the MIT Data Systems and Al Lab
(DSAIL), NSFIIS 1900933, and a Meta Research PhD Fellowship.

REFERENCES

(1]
(2]
(3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[n.d.]. Amazon Redshift Automatic Table Optimization.
//docs.aws.amazon.com/redshift/latest/dg/t_Creating_tables.html
[n.d.]. Amazon Redshift AutoMV. https://docs.aws.amazon.com/redshift/latest/
dg/materialized-view-auto-mv.html

[n.d.]. Databricks Delta Lake Z-Ordering. https://docs.databricks.com/delta/
optimizations/file-mgmt.html#z- ordering-multi- dimensional- clustering

[n.d.]. Materialize. https://materialize.com/

[n.d.]. ML for Systems Papers. http://dsg.csail. mit.edu/mlforsystems/papers/
[n.d.]. Oracle Automatic Materialized Views. https://docs.oracle.com/en/
database/oracle/oracle-database/21/tgdba/auto_material views.html

[n.d.]. SageDB Extended Report. ([n.d.]). https://jialinding.github.io/sagedb.pdf
[n.d.]. PostgreSQL Database, http://www.postgresql.org/. ([n.d.]).

Hussam Abu-Libdeh, Deniz Altinbiiken, Alex Beutel, Ed H. Chi, Lyric Doshi,
Tim Kraska, Xiaozhou Li, Andy Ly, and Christopher Olston. 2020. Learned
Indexes for a Google-scale Disk-based Database. CoRR abs/2012.12501 (2020).
arXiv:2012.12501 https://arxiv.org/abs/2012.12501

Ankur Agiwal, Kevin Lai, Gokul Nath Babu Manoharan, Indrajit Roy, Jagan
Sankaranarayanan, Hao Zhang, Tao Zou, Jim Chen, Min Chen, Ming Dai, Thanh
Do, Haoyu Gao, Haoyan Geng, Raman Grover, Bo Huang, Yanlai Huang, Adam Li,
Jianyi Liang, Tao Lin, Li Liu, Yao Liu, Xi Mao, Maya Meng, Prashant Mishra, Jay
Patel, Rajesh Sr, Vijayshankar Raman, Sourashis Roy, Mayank Singh Shishodia,
Tianhang Sun, Justin Tang, Jun Tatemura, Sagar Trehan, Ramkumar Vadali,
Prasanna Venkatasubramanian, Joey Zhang, Kefei Zhang, Yupu Zhang, Zeleng
Zhuang, Goetz Graefe, Divy Agrawal, Jeffrey F. Naughton, Sujata Kosalge, and
Hakan Hacigtimiis. 2021. Napa: Powering Scalable Data Warehousing with
Robust Query Performance at Google. Proc. VLDB Endow. 14, 12 (2021), 2986-2998.
http://www.vldb.org/pvldb/vol14/p2986-sankaranarayanan.pdf

Sanjay Agrawal, Surajit Chaudhuri, and Vivek R Narasayya. 2000. Automated
selection of materialized views and indexes in SQL databases. In VLDB, Vol. 2000.
496-505.

Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. 2004. Integrating vertical and
horizontal partitioning into automated physical database design. In Proceedings of
the 2004 ACM SIGMOD international conference on Management of data. 359-370.
Subarna Chatterjee, Meena Jagadeesan, Wilson Qin, and Stratos Idreos. 2021. Co-
sine: a cloud-cost optimized self-designing key-value storage engine. Proceedings
of the VLDB Endowment 15, 1 (2021), 112-126.

Surajit Chaudhuri and Vivek Narasayya. 2007. Self-tuning database systems:
a decade of progress. In Proceedings of the 33rd international conference on Very
large data bases. 3-14.

Surajit Chaudhuri and Gerhard Weikum. 2018. Self-Management Technology
in Databases. In Encyclopedia of Database Systems, Second Edition, Ling Liu and
M. Tamer Ozsu (Eds.). Springer. https://doi.org/10.1007/978-1-4614-8265-9_334
Zach Christopherson. 2016. Amazon Redshift Engineering’s Ad-
vanced Table Design Playbook: Compound and Interleaved Sort Keys.
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-
advanced-table-design-playbook-compound- and-interleaved- sort-keys/

Carlo Curino, Evan Philip Charles Jones, Yang Zhang, and Samuel R Madden. 2010.
Schism: a workload-driven approach to database replication and partitioning.
(2010).

Benoit Dageville and Mohamed Zait. 2002. SQL memory management in Oracle9i.
In VLDB’02: Proceedings of the 28th International Conference on Very Large
Databases. Elsevier, 962-973.

Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian
Kroth, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2020. From
WiscKey to Bourbon: A Learned Index for Log-Structured Merge Trees. In
14th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2020, Virtual Event, November 4-6, 2020. USENIX Association, 155-171.
https://www.usenix.org/conference/osdi20/presentation/dai

ZhenweiDaiand Anshumali Shrivastava. 2019. Adaptive learned Bloom filter (Ada-
BF): Efficient utilization of the classifier. arXiv preprint arXiv:1910.09131(2019).
Databricks. 2020. Data skipping index. https://docs.databricks.com/spark/latest/
spark-sql/dataskipping-index.html

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS 08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337-340.
Jialin Ding, Umar Farooq Minhas, Badrish Chandramouli, Chi Wang, Yinan Li, Ying
Li, Donald Kossmann, Johannes Gehrke, and Tim Kraska. 2021. Instance-Optimized
Data Layouts for Cloud Analytics Workloads. Association for Computing Machin-
ery, New York, NY, USA, 418-431. https://doi.org/10.1145/3448016.3457270
Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Han-
tian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, David B.
Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned Index. In
Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David
Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini,

https:

4074

[26]

[27

[28

[29

[30

[31

[32

[34

(35]

(36]

(37]

[38

(39]

[40

[42

[43]

and Hung Q. Ngo (Eds.). ACM, 969-984. https://doi.org/10.1145/3318464.3389711
Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020. Tsunami:
A Learned Multi-dimensional Index for Correlated Data and Skewed Workloads.
CoRR abs/2006.13282 (2020). arXiv:2006.13282 https://arxiv.org/abs/2006.13282
Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning database
configuration parameters with ituned. Proceedings of the VLDB Endowment 2,
1(2009), 1246-1257.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007.
HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm.
In AofA: Analysis of Algorithms (DMTCS Proceedings), Philippe Jacquet (Ed.),
Vol. DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms
(AofA 07). Discrete Mathematics and Theoretical Computer Science, Juan les Pins,
France, 137-156. https://hal.inria.fr/hal-00406166

Jonathan Goldstein and Per-Ake Larson. 2001. Optimizing Queries Using
Materialized Views: A Practical, Scalable Solution. SIGMOD Rec. 30, 2 (may 2001),
331-342. https://doi.org/10.1145/376284.375706

J. Gray, A. Bosworth, A. Lyaman, and H. Pirahesh. 1996. Data cube: a relational
aggregation operator generalizing GROUP-BY, CROSS-TAB, and SUB-TOTALS.
In Proceedings of the Twelfth International Conference on Data Engineering.
152-159. https://doi.org/10.1109/ICDE.1996.492099

Ashish Gupta, Fan Yang, Jason Govig, Adam Kirsch, Kelvin Chan, Kevin Lai,
Shuo Wu, Sandeep Govind Dhoot, Abhilash Rajesh Kumar, Ankur Agiwal, Sanjay
Bhansali, Mingsheng Hong, Jamie Cameron, Masood Siddiqi, David Jones, Jeff
Shute, Andrey Gubarev, Shivakumar Venkataraman, and Divyakant Agrawal. 2014.
Mesa: Geo-Replicated, near Real-Time, Scalable Data Warehousing. Proc. VLDB
Endow. 7,12 (aug 2014), 1259-1270. https://doi.org/10.14778/2732977.2732999
Michael Hammer and Arvola Chan. 1976. Index selection in a self-adaptive data
base management system. In Proceedings of the 1976 ACM SIGMOD International
Conference on Management of data. 1-8.

Piotr Indyk, Yaron Singer, Ali Vakilian, and Sergei Vassilvitskii. [n.d.]. STOC’20
Workshop on Algorithms with Predictions. https://www.mit.edu/~vakilian/stoc-
workshop.html

Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. 2018.
Selecting Subexpressions to Materialize at Datacenter Scale. Proc. VLDB Endow.
11, 7 (March 2018), 800-812. https://doi.org/10.14778/3192965.3192971

Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky, and Ramesh K. Sitaraman.
2020. RL-Cache: Learning-Based Cache Admission for Content Delivery.
IEEE Journal on Selected Areas in Communications 38, 10 (2020), 2372-2385.
https://doi.org/10.1109/JSAC.2020.3000415

Yannis Kotidis and Nick Roussopoulos. 1999. DynaMat: A Dynamic View
Management System for Data Warehouses. In Proceedings of the 1999 ACM
SIGMOD International Conference on Management of Data (Philadelphia,
Pennsylvania, USA) (SIGMOD °99). Association for Computing Machinery, New
York, NY, USA, 371-382. https://doi.org/10.1145/304182.304215

Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Jialin Ding, Ani Kristo,
Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019.
SageDB: A Learned Database System. In CIDR.

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis.
2018. The Case for Learned Index Structures. In Proceedings of the 2018
International Conference on Management of Data (Houston, TX, USA) (SIGMOD
’18). Association for Computing Machinery, New York, NY, USA, 489-504.
https://doi.org/10.1145/3183713.3196909

Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein,
and Ion Stoica. 2018. Learning to Optimize Join Queries With Deep Re-
inforcement Learning. = CoRR abs/1808.03196 (2018). arXiv:1808.03196
http://arxiv.org/abs/1808.03196

Eva Kwan, Sam Lightstone, Adam Storm, and Leanne Wu. 2002. Automatic config-
uration for IBM DB2 universal database. Proc. of IBM Perf Technical Report (2002).
Thodoris Lykouris and Sergei Vassilvitskii. 2021. Competitive Caching
with Machine Learned Advice. J. ACM 68, 4, Article 24 (jul 2021), 25 pages.
https://doi.org/10.1145/3447579

Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew
Pavlo, and Geoffrey J. Gordon. 2018. Query-based Workload Forecasting
for Self-Driving Database Management Systems. In Proceedings of the 2018
International Conference on Management of Data (SIGMOD ’18). 631-645.
https://doi.org/10.1145/3183713.3196908

Lin Ma, William Zhang, Jie Jiao, Wuwen Wang, Matthew Butrovich, Wan Shen
Lim, Prashanth Menon, and Andrew Pavlo. 2021. MB2: Decomposed Behavior
Modeling for Self-Driving Database Management Systems. In Proceedings of
the 2021 International Conference on Management of Data (SIGMOD/PODS ’21).
1248-1261. https://doi.org/10.1145/3448016.3457276

Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.
Resource Management with Deep Reinforcement Learning. In Proceedings
of the 15th ACM Workshop on Hot Topics in Networks (Atlanta, GA, USA)
(HotNets '16). Association for Computing Machinery, New York, NY, USA, 50-56.
https://doi.org/10.1145/3005745.3005750

https://docs.aws.amazon.com/redshift/latest/dg/t_Creating_tables.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Creating_tables.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-auto-mv.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-auto-mv.html
https://docs.databricks.com/delta/optimizations/file-mgmt.html#z-ordering-multi-dimensional-clustering
https://docs.databricks.com/delta/optimizations/file-mgmt.html#z-ordering-multi-dimensional-clustering
https://materialize.com/
http://dsg.csail.mit.edu/mlforsystems/papers/
https://docs.oracle.com/en/database/oracle/oracle-database/21/tgdba/auto_material_views.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/tgdba/auto_material_views.html
https://jialinding.github.io/sagedb.pdf
https://arxiv.org/abs/2012.12501
http://www.vldb.org/pvldb/vol14/p2986-sankaranarayanan.pdf
https://doi.org/10.1007/978-1-4614-8265-9_334
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://www.usenix.org/conference/osdi20/presentation/dai
https://docs.databricks.com/spark/latest/spark-sql/dataskipping-index.html
https://docs.databricks.com/spark/latest/spark-sql/dataskipping-index.html
https://doi.org/10.1145/3448016.3457270
https://doi.org/10.1145/3318464.3389711
https://arxiv.org/abs/2006.13282
https://hal.inria.fr/hal-00406166
https://doi.org/10.1145/376284.375706
https://doi.org/10.1109/ICDE.1996.492099
https://doi.org/10.14778/2732977.2732999
https://www.mit.edu/~vakilian/stoc-workshop.html
https://www.mit.edu/~vakilian/stoc-workshop.html
https://doi.org/10.14778/3192965.3192971
https://doi.org/10.1109/JSAC.2020.3000415
https://doi.org/10.1145/304182.304215
https://doi.org/10.1145/3183713.3196909
http://arxiv.org/abs/1808.03196
https://doi.org/10.1145/3447579
https://doi.org/10.1145/3183713.3196908
https://doi.org/10.1145/3448016.3457276
https://doi.org/10.1145/3005745.3005750

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[60]

[61]

[62]

[63]

[64]

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad
Alizadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization
Practical. Association for Computing Machinery, New York, NY, USA, 1275-1288.
https://doi.org/10.1145/3448016.3452838

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Al-
izadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A
Learned Query Optimizer. CoRR abs/1904.03711 (2019). arXiv:1904.03711
http://arxiv.org/abs/1904.03711

Microsoft. 2019. Columnstore indexes - Query performance. https:
//docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-
indexes-query-performance

Michael Mitzenmacher. 2018. A Model for Learned Bloom Filters and Optimizing
by Sandwiching. In Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),
Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/
0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf

Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020.
Learning Multi-Dimensional Indexes. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 985-1000.
https://doi.org/10.1145/3318464.3380579

Thomas Neumann and Michael J Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance.. In CIDR.

Thomas Neumann and Alfons Kemper. 2015. Unnesting Arbitrary Queries. In
Datenbanksysteme fiir Business, Technologie und Web (BTW), 16. Fachtagung des
GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS), 4.-6.3.2015 in
Hamburg, Germany. Proceedings (LNI), Thomas Seidl, Norbert Ritter, Harald
Schoéning, Kai-Uwe Sattler, Theo Harder, Steffen Friedrich, and Wolfram
Wingerath (Eds.), Vol. P-241. GI, 383-402. https://dl.gi.de/20.500.12116/2418
Oracle. 2020. Database Data Warehousing Guide: Using Zone Maps.
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm

Andrew Pavlo, Matthew Butrovich, Ananya Joshi, Lin Ma, Prashanth Menon,
Dana Van Aken, Lisa Lee, and Ruslan Salakhutdinov. 2019. External vs.
Internal: An Essay on Machine Learning Agents for Autonomous Database
Management Systems. [EEE Data Engineering Bulletin (June 2019), 32-46.
https://db.cs.cmu.edu/papers/2019/pavlo-icde-bulletin2019.pdf

Andrew Pavlo, Matthew Butrovich, Lin Ma, Wan Shen Lim, Prashanth Menon,
Dana Van Aken, and William Zhang. 2021. Make Your Database System Dream of
Electric Sheep: Towards Self-Driving Operation. Proc. VLDB Endow. 14, 12 (2021),
3211-3221. https://db.cs.cmu.edu/papers/2021/p3211-pavlo.pdf

Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP systems. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data. 61-72.
Moni Naor Ronald Fagin, Amnon Lotem. 2003. Optimal aggregation algorithms
for middleware. Journal of computer and system sciences 66, 4 (2003), 614-656.
Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. 2000. Efficient and
Extensible Algorithms for Multi Query Optimization. In Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data (Dallas, Texas,
USA) (SIGMOD °00). Association for Computing Machinery, New York, NY, USA,
249-260. https://doi.org/10.1145/342009.335419

Ibrahim Sabek, Kapil Vaidya, Dominik Horn, Andreas Kipf, and Tim Kraska. 2021.
When Are Learned Models Better Than Hash Functions? CoRR abs/2107.01464
(2021). arXiv:2107.01464 https://arxiv.org/abs/2107.01464

Timos K. Sellis. 1988. Multiple-Query Optimization. ACM Trans. Database Syst.
13, 1 (March 1988), 23-52. https://doi.org/10.1145/42201.42203

R. Sibson. 1973. SLINK: An optimally efficient algorithm for the
single-link cluster method. ~ Comput. J. 16, 1 (01 1973), 30-34. https:
//doi.org/10.1093/comjnl/16.1.30 arXiv:https://academic.oup.com/comjnl/article-
pdf/16/1/30/1196082/160030.pdf

Sivaprasad Sudhir, Michael Cafarella, and Samuel Madden. 2021. Replicated
Layout for In-Memory Database Systems. Proc. VLDB Endow. 15, 4 (dec 2021),
984-997. https://doi.org/10.14778/3503585.3503606

Kapil Vaidya, Eric Knorr, Tim Kraska, and Michael Mitzenmacher. 2020.
Partitioned Learned Bloom Filter. CoRR abs/2006.03176 (2020). arXiv:2006.03176
https://arxiv.org/abs/2006.03176

Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.
Automatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM international conference on management
of data. 1009-1024.

Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan
Li, Umar Farooq Minhas, Per-Ake Larson, Donald Kossmann, and Rajeev
Acharya. 2020. Qd-tree: Learning Data Layouts for Big Data Analytics. CoRR
abs/2004.10898 (2020). arXiv:2004.10898 https://arxiv.org/abs/2004.10898

Zack Slayton. 2017. Z-Order Indexing for Multifaceted Queries in Amazon
DynamoDB. https://aws.amazon.com/blogs/database/z-order-indexing-for-
multifaceted-queries-in-amazon-dynamodb-part-1/.

4075

[65] Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. 2020. Database meets

artificial intelligence: A survey. IEEE Transactions on Knowledge and Data
Engineering (2020).

A DATA SCHEMAS AND WORKLOADS

Here, we define the schemas for the three datasets by displaying
their CREATE TABLE commands. We also define the three workloads
by displaying the prepared statements. All of these use SageDB’s
SQL dialect, which is similar to but not entirely the same as any
commercial SQL dialect.

A.1 Gaming

Al

Schema.

create table dim1 (

);

d1_label text,
d1_id int64 UNIQUE

create table dim2 (

);

d2_type text,
d2_duration int64,
d2_label text,
d2_d1_id int64,
d2_id int64 UNIQUE

create table dim3 (

);

d3_label text,
d3_joined int64,
d3_loc text,

d3_p1 float64,
d3_p2 float64,
d3_p3 float64,
d3_p4 float64,
d3_p5 float64,
d3_id int64 UNIQUE

create table fact (

)5

f_time INT64,
f_d3_id INT64,
f_d1_id INT64,
f_amt INT64,
f_type TEXT,
f_p1 INT64,
f_p2 INT64,
f_p3 INT64,
f_p4 INT64,
f_p5 INT64,
f_p6 INT64,
f_p7 INT64,
f_p8 float64,
f_p9 float64,
f_p10 float64,
f_p11 float64,
f_p12 float64,
f_id int64 UNIQUE

create table attrib (

https://doi.org/10.1145/3448016.3452838
http://arxiv.org/abs/1904.03711
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-query-performance
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-query-performance
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-query-performance
https://proceedings.neurips.cc/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
https://doi.org/10.1145/3318464.3380579
https://dl.gi.de/20.500.12116/2418
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
https://db.cs.cmu.edu/papers/2019/pavlo-icde-bulletin2019.pdf
https://db.cs.cmu.edu/papers/2021/p3211-pavlo.pdf
https://doi.org/10.1145/342009.335419
https://arxiv.org/abs/2107.01464
https://doi.org/10.1145/42201.42203
https://doi.org/10.1093/comjnl/16.1.30
https://doi.org/10.1093/comjnl/16.1.30
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/16/1/30/1196082/160030.pdf
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/16/1/30/1196082/160030.pdf
https://doi.org/10.14778/3503585.3503606
https://arxiv.org/abs/2006.03176
https://arxiv.org/abs/2004.10898
https://aws.amazon.com/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1/
https://aws.amazon.com/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1/

attrib_f_id int64,

attrib_d2_id int64,

attrib_share float64
);

A.1.2 Workload. Q1: SELECT d1_label, COUNT(x) as cnt FROM
fact, diml WHERE d1_id = f_d1_id AND f_p1 < ?:INT64 AND
f_p8 < ?:FLOAT64 GROUP BY d1_label ORDER BY cnt;

Q2:SELECT d1_label, COUNT(*) as cnt FROM fact, dim1 WHERE
d1_id = f_d1_id AND f_p2 < ?:INT64 AND f_p9 < ?:FLOAT64
GROUP BY d1_label ORDER BY cnt;

Q3:SELECT d1_label, COUNT(*) as cnt FROM fact, dim1 WHERE
d1_id = f_d1_id AND f_p3 < ?:INT64 AND f_p10 < ?:FLOAT64
GROUP BY d1_label ORDER BY cnt;

Q4:SELECT d1_label, COUNT(*) as cnt FROM fact, dim1 WHERE
di_id = f_d1_id AND (f_p4 < ?:INT64 OR f_p5 < ?:INT64)
AND (f_p6 < ?:INT64 OR f_p7 < ?:INT64) AND (f_pl11 <
?7:FLOAT64 OR f_p12 < ?:FLOAT64) GROUP BY d1_label ORDER
BY cnt;

Q5: select d3_loc, sum(f_amt) as total from fact, dim3
where d3_id = f_d3_id and f_type=?:TEXT group by d3_loc
order by total desc limit 20;

Q6: Select d2_label, sum(attrib_share * f_amt) as total
from attrib, fact, dim2 where d2_id = attrib_d2_id and
f_id = attrib_f_id and f_amt > ?:INT64 group by d2_label
order by total desc;

Q7: Select d2_type, sum(attrib_share * f_amt) as total
from fact, attrib, dim2 where d2_id = attrib_d2_id and
f_id = attrib_f_id and f_amt > ?:INT64 group by d2_type
order by total desc;

Q8: Select d2_label, d2_type, sum(attrib_share * f_amt)
as total from fact, attrib, dim2, dim3 where d2_id =
attrib_d2_id and f_id = attrib_f_id and f_d3_id = d3_id
and d3_loc IN (?:TEXT, ?:TEXT, ?:TEXT, ?:TEXT, ?:TEXT,
?:TEXT) group by d2_label, d2_type order by total desc;

Q9: Select d3_loc, sum(f_amt) as total from fact, dim3
where f_d3_id = d3_id and (d3_p1 > ?:FLOAT64 or d3_p2 >
?:FLOAT64) group by d3_loc order by total desc;

Q10: Select d3_loc, sum(f_amt) as total from fact, dim3
where f_d3_id = d3_id and (d3_p3 > ?:FLOAT64 or d3_p4 >
?:FLOAT64) and d3_p5 > ?:FLOAT64 group by d3_loc order
by total desc;

Q11: Select d2_type, sum(attrib_share * f_amt) as total
from fact, attrib, dim2 where d2_id = attrib_d2_id and
f_id = attrib_f_id and f_amt > ?:INT64 and attrib_share
> 0.10 and f_p4 - 5500 > f_p7 group by d2_type order by
total desc;

4076

Q12:Select d3_loc, sum(f_p9) from fact, dim3 where f_d3_id
= d3_id and (f_p2 = ?:INT64 or f_p4 = ?:INT64) group by
d3_loc order by d3_loc;

Q13:Select d3_loc, sum(f_p9) from fact, dim3 where f_d3_id
= d3_id and f_p2 > ?:INT64 and f_p2 < ?:INT64 and f_p4
> ?:INT64 and f_p4 < ?:INT64 group by d3_loc order by
d3_loc;

A.2 Stack Overflow
A2.1

create table stack_overflow (
id UINT64,
site_name TEXT,
post_date DATE,
poster_name TEXT,
poster_reputation INT32,
poster_join_date DATE,
score INT32,
view_count UINT64,
favorite_count UINT64,
answered UINT8,
highest_score_answer INT32,
comment_count UINT32,
comment_max_score INT32,
tag_count UINT32,
tag_top25 UINTS,
tag_top20 UINTS,
tag_top15 UINTS,
tag_top10 UINTS,
tag_top5 UINTS,
tag_rust UINTS,
tag_cpp UINTS,
tag_gpu UINTS8

Schema.

A.2.2 Workload. Q1: SELECT EXTRACT(YEAR FROM post_date)
AS post_year, COUNT(*) FROM denorm_so WHERE answered = 1
AND comment_count <= ?:UINT32 GROUP BY EXTRACT(YEAR FROM
post_date) ORDER BY post_year;

Q2: SELECT EXTRACT(YEAR FROM post_date) AS post_year,
COUNT(*) FROM denorm_so WHERE answered = 1 AND score
>= ?:INT32 GROUP BY EXTRACT(YEAR FROM post_date) ORDER
BY post_year;

Q3: SELECT EXTRACT(YEAR FROM post_date) AS post_year,
COUNT (*) FROM denorm_so WHERE

highest_score_answer >= score AND view_count >= ?:UINT64
AND comment_max_score >= ?:INT32 AND answered = 1 AND
comment_count >= @ GROUP BY EXTRACT (YEAR FROM post_date)
ORDER BY post_year;

Q4: SELECT EXTRACT(YEAR FROM post_date) AS post_year,

COUNT (%) FROM denorm_so WHERE answered = @ AND comment_max_score

>= ?7:INT32 GROUP BY EXTRACT(YEAR FROM post_date) ORDER
BY post_year;

Q5: SELECT EXTRACT(YEAR FROM post_date) AS post_year,
COUNT(*) FROM denorm_so WHERE view_count >= ?:UINT64
AND comment_count >= ?:UINT32 GROUP BY EXTRACT (YEAR FROM
post_date);

Q6: SELECT poster_name, COUNT(*) FROM denorm_so WHERE

tag_rust =1 AND poster_join_date <= ?:FLOAT64 AND view_count

>= ?:UINT64 GROUP BY poster_name;

Q7: SELECT EXTRACT(YEAR FROM post_date) AS post_year,
COUNT (*) FROM denorm_so WHERE

favorite_count <= ?:UINT64 AND post_date >= ?:FLOAT64
GROUP BY EXTRACT (YEAR FROM post_date) ORDER BY post_year;

Q8:SELECT COUNT (*) FROM denorm_so WHERE poster_reputation
>= 7:INT32 AND score >= ?:INT32 AND tag_top5 = 1;

Q9: SELECT EXTRACT(YEAR FROM post_date) AS post_year,

n_nationkey and n_regionkey = r_regionkey and p_size
?:INT32 and region.r_name = ?:TEXT and ps_supplycost
(select min(ps_supplycost) from partsupp, supplier,
nation, region where p_partkey = ps_partkey and s_suppkey
= ps_suppkey and s_nationkey = n_nationkey and n_regionkey
=r_regionkey and region.r_name = ?:TEXT) group by s_name
order by balance limit 100;

Q3:select sum(l_extendedpricex(1-1_discount)) as revenue,
o_orderdate, o_shippriority fromlineitem, orders, customer
where c_custkey = o_custkey and 1_orderkey = o_orderkey
and c_mktsegment = ?:TEXT and o_orderdate < ?:DATE and
1_shipdate > ?:DATE group by o_orderdate, o_shippriority
order by revenue, o_orderdate limit 10;

Q4: select o_orderpriority, count(*) from orders where
o_orderdate >= ?:DATE and o_orderdate < ?:DATE and exists
(select * from lineitem where 1_orderkey = o_orderkey and
1_commitdate < 1_receiptdate) group by o_orderpriority
order by o_orderpriority;

COUNT (*x) FROM denorm_so WHERE score >= ?:INT32 AND favorite_cou¥5:select n_name, sum(1l_extendedprice * (1 - 1_discount))

>= ?7:UINT64 GROUP BY EXTRACT(YEAR FROM post_date) ORDER
BY post_year;

Q10: SELECT EXTRACT(YEAR FROM post_date) AS post_year,

as revenue from lineitem, orders, customer, supplier,
nation, region where c_custkey = o_custkey and 1_orderkey
= o_orderkey and 1_suppkey = s_suppkey and c_nationkey
=s_nationkey and s_nationkey = n_nationkey and n_regionkey

COUNT (*) FROM denorm_so WHERE score <= ?:INT32 AND comment_count r_regionkey and r_name = ?:TEXT and o_orderdate >=

<= ?:UINT32 GROUP BY EXTRACT(YEAR FROM post_date);

Q11: SELECT EXTRACT(YEAR FROM post_date) AS post_year,
COUNT(*) FROM denorm_so WHERE answered = @ AND score >=
?7:INT32 AND tag_count >= 4 GROUP BY EXTRACT(YEAR FROM
post_date) ORDER BY post_year;

(QQ12: SELECT COUNT(*) FROM denorm_so WHERE answered = 1
AND post_date >= ?:FLOAT64;

(Q13: SELECT COUNT(*) FROM denorm_so WHERE view_count >=
?7:UINT64 AND (tag_rust = ?:UINT8 OR tag_cpp = ?:UINT8 OR
tag_gpu = ?:UINT8);

A3 TPC-H

A.3.1 Schema. We use the same TPC-H schema in the official spec-
ification.

?:DATE and o_orderdate < ?:DATE group by n_name order by
revenue desc;

Q6:select sum(1_extendedprice*1l_discount) from lineitem
where 1_shipdate >= ?:DATE and 1_shipdate < ?:DATE and
1_discount >= ?:FLOAT64 and 1_discount <= ?:FLOAT64 and
1_quantity < ?:FLOAT64;

Q7:select n1.n_name as supp_nation, n2.n_name as cust_nation,

sum(1l_extendedprice * (1 - 1l_discount)) from lineitem,
orders, supplier, customer, nation nl1, nation n2 where
s_suppkey = 1_suppkey and o_orderkey = 1_orderkey and
c_custkey = o_custkey and s_nationkey = n1.n_nationkey
and c_nationkey = n2.n_nationkey and ((n1.n_name = ?:TEXT
and n2.n_name = ?:TEXT) or (n1.n_name = ?:TEXT and n2.n_name
= ?:TEXT)) and 1_shipdate >= 19950101 and 1_shipdate

<=19961231 group by n1.n_name, n2.n_name order by supp_nation,

cust_nation;

A.3.2 Workload. Q1:select 1_returnflag, 1_linestatus, sum(l_quantity)

as sum_qty, sum(l_extendedprice) as sum_base_price, sum(l_extedpfedptiece* G- _cbswowadt)pation, sum(l_extendedprice *
as sum_disc_price, sum(l_extendedprice*(1-1_discount)*(1+1_té%))_discount)) from lineitem, orders, part, supplier,
as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedpricedustomer, nation n1, nation n2, region where p_partkey

as avg_price, avg(l_discount) as avg_disc, count(*) as
count_order from lineitem where 1l_shipdate <= ?:DATE
group by 1_returnflag, 1_linestatus order by 1_returnflag,
1_linestatus;

Q2: select s_name, sum(s_acctbal) as balance from part,
supplier, partsupp, nation, region where part.p_partkey
= ps_partkey and s_suppkey = ps_suppkey and s_nationkey

4077

= 1_partkey and s_suppkey = 1_suppkey and 1_orderkey
o_orderkey and o_custkey = c_custkey and c_nationkey
= nl.n_nationkey and nl1.n_regionkey = r_regionkey and
r_name = ?:TEXT and s_nationkey = n2.n_nationkey and
o_orderdate >= 19950101 and o_orderdate <= 19961231 and
p_type = ?:TEXT group by n2.n_name;

Q10: select c_custkey, n_name, sum(l_extendedprice *x (1 -

1_discount)) as revenue from lineitem, orders, customer, * (1 - 1_discount) else 0.0 end), sum(l_extendedprice *
nation where c_custkey = o_custkey and 1_orderkey = (1 - 1_discount)) from lineitem, part where 1_partkey
o_orderkey and o_orderdate >= ?7:DATE and o_orderdate = p_partkey and 1_shipdate >= ?:DATE and 1l_shipdate <
<?:DATE and 1_returnflag ="R’ and c_nationkey = n_nationkey ?:DATE;

group by c_custkey, n_name order by revenue desc limit

20; Q15:select 1_suppkey, sum(1l_extendedprice * (1 - 1_discount))
as total_revenue from lineitem where 1_shipdate >= ?:DATE

Q11:select ps_partkey, sum(ps_supplycost * ps_availqty) and 1_shipdate < 7?:DATE group by 1_suppkey order by

as value from partsupp, supplier, nation where ps_suppkey total_revenue desc limit 10;

= s_suppkey and s_nationkey = nation.n_nationkey and

n_name = ?:TEXT group by ps_partkey order by value limit Q17: select sum(@.7 * 1_extendedprice) from lineitem,

10; part where p_partkey = lineitem.l_partkey and p_brand =
?:TEXT and p_container = ?:TEXT and 1_quantity < (select

Q12: select 1_shipmode, sum(case when o_orderpriority = 0.2 * avg(l_quantity) from lineitem where 1_partkey =

’1-URGENT’ or o_orderpriority = ’2-HIGH’ then 1 else 0 p_partkey);

end) as high_line_count, sum(case when o_orderpriority

I= ?’1-URGENT’ and o_orderpriority != ’2-HIGH’ then 1 Q18: select c_name, c_custkey, o_orderkey, o_orderdate,

else @ end) as low_line_count from orders, lineitem o_totalprice, sum(l_quantity) from customer, orders, lineitem

where o_orderkey = 1_orderkey and 1_shipmode = ?:TEXT where c_custkey = o_custkey and o_orderkey = 1_orderkey

and 1_commitdate <1_receiptdate and 1_shipdate <1_commitdate and o_orderkey in (select 1l_orderkey from lineitem

and 1_receiptdate >= ?:DATE and l_receiptdate < ?:DATE group by 1_orderkey having sum(l_quantity) > ?:FLOAT64

group by 1_shipmode order by 1_shipmode;) group by c_name, c_custkey, o_orderkey, o_orderdate,
o_totalprice order by o_totalprice, o_orderdate limit

Q14:select sum(case when p_size <=5 then 1_extendedprice 100;

4078

