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ABSTRACT and algorithms (e.g., indexes [37, 38], filters [36], joins [8], partition-

Hashing is a fundamental operation in database management, play-
ing a key role in the implementation of numerous core database data
structures and algorithms. Traditional hash functions aim to mimic
afunction that maps a key to a random value, which can result in col-
lisions, where multiple keys are mapped to the same value. There are
many well-known schemes like chaining, probing, and cuckoo hash-
ing to handle collisions. In this work, we aim to study if using learned
models instead of traditional hash functions can reduce collisions
and whether such a reduction translates to improved performance,
particularly for indexing and joins. We show that learned models
reduce collisions in some cases, which depend on how the data is
distributed. To evaluate the effectiveness of learned models as hash
function, we test them with bucket chaining, linear probing, and
cuckoo hash tables. We find that learned models can (1) yield a 1.4x
lower probe latency, and (2) reduce the non-partitioned hash join
runtime with 28% over the next best baseline for certain datasets. On
the other hand, if the data distribution is not suitable, we either do
not see gains or see worse performance. In summary, we find that
learned models can indeed outperform hash functions, but only for
certain data distributions.
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1 INTRODUCTION

Hashing and hashing-based algorithms and data structures find
countless applications throughout computer science, such as in ma-
chine learning, computer graphics, bioinformatics, and compilers
(e.g., [13, 42, 52, 56]). Hashing is also a fundamental operation in
database management (e.g., [8, 37, 67]), including playing a key role
in the implementation of numerous core database data structures
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ing [64], and aggregation [26]). Due to its numerous applications,
considerable research efforts have focused on introducing efficient
hashing functions (e.g., [49, 52, 61, 67]).

Traditionally, hash functions aim to mimic a function that maps a
key to a random value in a specified output range. For typical cases
where the size of the output range is linear in the number of keys,
this random assignment results in colliding keys. A collision occurs
when multiple keys get mapped to the same output value. A typi-
cal hash index approach allocates a number of fixed size slots (the
number of slots generally being a constant times the expected num-
ber of keys) and maps incoming keys into these slots using a hash
function. The ideal case for indexes would have no keys collide, so
each key goes to its own separate slot. This would make key lookups
and updates faster, as one would simply check the corresponding
slot for the key. With truly random hash functions, collisions are
unavoidable, and one can readily calculate the expected number of
collisions given the number of slots and keys [55].

Naturally, there are many well-known schemes like chaining,
probing, and cuckoo hashing to handle collisions. As the name sug-
gests, chaining handles collisions by creating a chain of colliding
keys. Probing checks neighboring slots to find an empty slot to place
the key. Cuckoo hashing handles collisions by using multiple hash
functions to provide alternate slots for colliding keys. For each of
these schemes, more collisions reduces their performance.

Another approach to build hash indexes is to use perfect hash func-
tions instead of truly random hash functions. Perfect hash functions
have no collisions; however, they must be specially constructed for a
given dataset, and have other costs in storage and computation time.

In recent years, several works have utilized the idea of using ma-
chine learning to improve the performance of many database compo-
nents (e.g., [39, 54, 70]) and basic data structures (e.g., [24, 25, 43, 50]).
By using machine learning to explicitly capture trends in the under-
lying data, these methods can aim for instance-optimal performance.
For example, in a recent benchmarking study [53], it has been shown
that learned index structures (e.g., RMI [43], RadixSpline [40]), which
employ CDF-based learned models, can outperform traditional in-
dexes on practical workloads.

As one direction in this line of research, it was suggested in [43]
that such learned models can be used to obtain an efficient hash
function with fewer collisions. They also provided some empirical
evidence that a hash index with learned model as the hash function
can have better performance than using a truly random hash func-
tion. What is unclear, however, is when such learned models are
effective in replacing existing hash functions in applications. At one
end, traditional hash functions [29, 81] are fast to compute, but suffer


https://doi.org/XX.XX/XXX.XX
https://github.com/DominikHorn/hashing-benchmark
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

from collisions [78] that can reduce query performance. On the other
hand, perfect hash functions [52] avoid collisions, but are difficult
to construct [46], and are not scalable [21], in the sense that the size
of the function representation grows with the size of the input data.
As an alternative, learned models can potentially provide a better
tradeoff between computation and collisions. If the model learns
a good approximation of the empirical CDF of the input keys, we
may achieve few collisions; and if the data allows a compact learned
model, we may achieve a model size independent of or very slowly
growing with the input data size.

Surprisingly, though, we are not aware of a thorough experimental
study examining the learned models against both traditional and per-
fect hashing in query processing operations like indexing and joins.
We aim to remedy that here. We make the following contributions:

e We provide an analysis of the factors affecting collisions for
learned models, helping us to identify situations where they
can have fewer collisions than traditional hash functions.

o We perform an extensive benchmarking study for traditional,
perfect, and learned model based hash functions. We bench-
mark them through three different applications: hash table
probing/inserting, range querying, and joins. We test using
multiple synthetic and real-world datasets.

o Through the empirical study and analysis we find useful in-
sights on when to use learned models instead of traditional
and perfect hashing in various database applications.

e We provide a unified open-source implementation for the

baselines used in our experiments!.

In summary, our collisions analysis and experimental benchmark-
ing demonstrate that, for datasets with a well-ordered distribution of
gaps between their keys, learned models can result in lower collisions
than traditional hash functions. For these datasets, using learned
models can improve the probe and insert throughputs of hash tables.
Such improvement varies with the hashing scheme (strongest with
bucket chaining, and weakest with cuckoo hashing), the load factor,
and the bucket capacity. In many other cases, however, such as with
data from typical distributions (e.g., normal) or having string keys,
we do not see collision reduction using learned models. We also find
that using learned models with bucket chaining can support range
queries, and provides the best throughput in mixed workloads (point
and range queries) that have a majority of point queries. Finally, we
find that using learned models in non-partitioned hash join [45, 80]
results in improved performance for favourable datasets.

2 TRADITIONAL HASH FUNCTIONS

A uniform hash function h(x) : X + U attempts to map arbitrary
inputs to independent and identically distributed (i.i.d.) uniform
random outputs. Obtaining true randomness is not feasible in prac-
tice [42]. However, state-of-the-art hash functions appear to come
reasonably close to imitating true randomness in many practical set-
tings [60, 81]. The extent to which a hash function avoids collisions,
i.e., instances where two distinct inputs map to the same output, is
often referred to as the its” quality. There is a seemingly endless sup-
ply of different proposed hash functions to choose from [81]. Here,
we briefly give a background on some of the well-known functions
that we study in the paper.
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Multiplicative Hashing (MultiplyPrime). This method is promi-
nently described by Donald Knuth [42] as a family of hash functions
with great properties for practical applications. He explicitly adver-
tises their non-uniform random properties, i.e., sensitivity to the
data distribution, as a strength [42]. Let A be a constant, relatively
prime 2" with w being the machine word size. Then, the following
function produces outputs in [0,M).

o) )

The trick to make this efficient is to avoid fractional computations by
shifting the calculation by w;, i.e., to multiply with ZAW <w=Ainstead
of the complex decimal computation: h(x) = |_2—A(IV -(Ax mod 2W)J.
Neatly, this gets rid of the modulo since most physical machines with
aword size w will naturally compute everything mod2". According
to Knuth, M should be some power of the machine’s radix [42] to en-
sure that we are including the more significant bits in the final result.
Fibonacci Hashing (FibonacciPrime). It is an instance of mul-

tiplicative hashing, choosing % =¢71= (\/5—1) /2 based on the

golden ratio. It promises to inherit ®~’s neat scattering character-
istics, i.e., that each added consecutive element falls in the largest
remaining interval, dividing it by the golden ratio [6, 42, 75, 76, 83].
As in multiplicative hashing, we implement Fibonacci hashing us-
ing the integer multiplication trick. However, this time we choose
C=®-2" with w as the machine word size. Some implementations
also round C to the next closest prime.

Murmur Hashing (Murmur). It is a family of simple and fast hash
functions developed by Austin Appleby [3, 4], and has been studied
extensively in previous works (e.g., [2, 67]). Its name is derived from
the original idea for its implementation, i.e., repeatedly applying
multiply and rotate instructions to imitate true randomness. How-
ever, it ended up being implemented as a sequence of multiply, shift,
and xor operations. In particular, its 64-bits finalizer merely consists
of three xors, three shifts, and two multiplications [3, 67].
XXHash. Itis a widely used open-source uniform hash function with
support for many programming languages [18]. It targets RAM speed
limits for hashing large enough blobs of data, all while promising
decent performance on small inputs.

AquaHash. It is a uniform hash function that utilizes Advanced
Encryption Standard (AES) intrinsics [33], i.e., AES encryption prim-
itives implemented in hardware on many modern CPUs [69]. In a
previous study, AquaHash has shown promising results compared
to XXHash and Murmur for small keys [71].

3 LEARNED MODELS AS HASH FUNCTIONS

Learned index structures [43] approximate the cumulative distribu-
tion function (CDF) of the data to predict the position of a lookup key
in a sorted array. When the data has a learnable pattern, i.e., has low
entropy, learned indexes can be much smaller than the input data
itself. While initial proposals considered using neural networks to
approximate the CDF, state-of-the-art learned indexes use a collec-
tion of simple linear models, which we refer to as submodels; these
are fast to both learn and evaluate. Some indexes aim to minimize
the root-mean-squared-error (i.e., L2 loss) [43] and others bound
the maximum prediction error. Assuming a perfect modeling of the
CDF, a learned index would constitute a perfect order-preserving



hash function, i.e., a collision-free mapping from keys to positions.
For the rest of this paper, we refer to Learned Model based Hash
functions as LMH. Since real-world data contains many irregularities
that make it hard to approximate, a learned index inevitably needs
to trade off precision for space. With larger models, inference time
increases because of limited cache sizes [53]. We describe the three
main learned indexes we evaluate for hashing.

Recursive Model Indexes (RMI). The RMI index is a multi-stage
model combining simpler models [43]. When the data fits into mem-
ory, an RMI rarely has more than two stages. It is builtin a “top-down”
fashion. The stage-one model computes a rough approximation of
the CDF, which is scaled between 0 and the branching factor B. This
value is used to select a second-stage model, which approximates
the local distribution of the data and is used to produce the final
approximation. In other words, the stage-one model partitions the
data into B buckets and each second-stage model approximates the
data that falls into its corresponding bucket. A recent study [53]
showed that RMI, amongst other indexes, achieves the best tradeoff
between inference time and space.

Radix Spline Indexes (RadixSpline). It is another learned in-
dex variant [40], that is built “bottom up”, and consists of a linear
spline [59] to approximate the CDF and a radix lookup table that
indexes resulting spline points. Compared to RMI, RadixSpline can
be built in a single pass with constant cost per element. RadixSpline’s
spline-building algorithm [59] bounds the maximum prediction er-
ror. Besides the maximum error, RadixSpline is parameterized with
a certain number of radix bits that define the size of the radix table.
Lookups first consult the radix table, which indexes r-bit prefixes of
spline points and is used to narrow the search range over the spline
points. Then binary search is used on the narrowed range to identify
the two spline points surrounding the lookup key. Finally, linear
interpolation between the two spline points is used to obtain a predic-
tion. The necessity to search over the spline points make it somewhat
slower than RMI which does not require any search in inner nodes.
Piece-wise Geometric Model Indexes (PGM). Similar to RadixS-
pline, the PGM index [30] provides an error-bounded approximation
of the CDF. It consists of multiple levels where each level represents
an error-bounded piece-wise linear regression (PLR). In contrast
to a spline where consecutive spline points are connected, a PLR
additionally stores an intercept value with each point. Like RadixS-
pline, PGM is built “bottom up” but instead of using a radix layer it
recursively applies its PLR algorithm until a certain error threshold
has been met. PGM can also be built in a single pass with constant
amortized cost per element. Due to its multi-level structure, PGM
can have slightly higher inference cost than RadixSpline [53] but is
more robust when outliers are present. Note that we explore static
PGM only in our study.

4 PERFECT HASHING

Where traditional hash functions aim to produce (near)-i.i.d. uniform
random outputs, perfect hash functions provide an injective function
that maps a set of elements into a range. That is, for a given input set,
the function will produce no collisions [10, 28, 32, 52]. Here, we focus
on two types of perfect hash functions: minimal perfect (MPHF), and
order preserving minimal perfect (OMPHF). We first explain the cor-
responding definitions, and then describe the state-of-the-art MPHF
and OMPHEF algorithms we study.

Perfect. A hash function h(x) : X+ [0,N] is perfect for the domain
X if it is injective. Equivalently, it produces zero collisions in the
output domain (Vx1,x3 € X :h(x1) =h(x2) = x1=x2).

Minimal. A hash function h(x) : X+ [0,N] is minimal perfect if it is
perfect and a bijection; that is, each element of the output range has
a single corresponding domain element (Perfect, and additionally
Vy € [0,N] : 3x € X | h(x) =y). The information theoretical lower
bound for storing a minimal perfect hash function is Ige ~ 1.44 bits
per key [10, 15, 28, 32, 35] since key-related information is not re-
tained after construction. For this reason, querying with non-keys
(unknown keys) generally yields arbitrary results.

Order Preserving. Order preserving perfect hash functions order
their outputs according to the original relative order < of input el-
ements (Vx1,x2 € X : x1 <x9 = h(x1) <h(x2)). Being able to store
any arbitrary data order induces an Q(nlogn) space cost [10].
Comparison to Traditional Hashing. In general, building a MPHF,

h(x): X + [0,N], requires knowing the entire input set X a priori.
In many implementations, the set X is not stored or reconstructible
after the MPHF is built. Querying with a non-key x” ¢ X generally
yields some arbitrary output value; most often, h(x”) € [0,N], but
this is not guaranteed. MPHF are generally not easily updated in
place; often a full rebuild is performed if a new element is inserted, or
other expensive (non-constant) time work. Compared to traditional
hashing, where only constant work is necessary for initialization,
MPHF and OMPHEF generally require running a one time O(n) build
algorithm before they can be used.
Recursive Splitting (RecSplit). It isa MPHF which has been shown
to deliver state-of-the-art results in regards to space usage, lookup,
and build time [28]. Specifically, it comes close to achieving the the-
oretically optimal 1.44 bits per key in practice, while only requiring
expected linear and constant times for construction and lookups,
respectively [28]. RecSplit works by recursively partitioning inputs
into ever smaller buckets until brute force search for a MPHF, i.e.,
a bijection, is viable. The threshold for this search, called leaf size [,
as well as the average bucket size b for partitioning are parameters
of the construction algorithm. RecSplit utilizes an indexed family of
uniform random hash functions (examples in Section 2). This enables
efficiently encoding the tree of brute-force determined indexes using
an optimal Golomb-Rice instantaneous code [28, 72].
MWHLC. It was originally proposed as a family of OMPHFs with
expected O(n) construction and O(1) access time [52]. It has been
extended to provide a practical MPHF with constant access and re-
quiring 3 bits per key storage [10, 14]. We refer to our simplified im-
plementation of the latter approach as BitM WHC. Abstractly, MWHC
utilizes a hypergraph to efficiently find a solution for a randomly gen-
erated system of linear equations that is used to store the desired or-
der preserving hash function f(x) : X + U givenby f(x)=v(h1(x))¢
...0v(hy(x)), where each h; denotes a distinct uniform random hash
function, v(x) maps each hash function output to a value in U and
oreduces UXU to U. In practice, v(x) may, for example, be imple-
mented as a simple array of values, h; as a family of reasonably high
quality hash functions such as Murmur with seed values, and o as
xor or as addition with an additional modulo computation at the end.
The construction algorithm first builds a k-hypergraph with each
of the A|X| vertices corresponding to one entry of v(x) and one edge



[A1(x),....hr (x)] for each input, where k and A are user-defined pa-
rameters. All h; are randomly chosen from a suitable family of hash
functions as described above. A valid assignment for u(x) exists,
i.e., f(x) is solvable iff this hypergraph is acyclic. A simple peeling
scheme is used to both determine acyclicity and the order in which
we can safely assign values to each v(x) to yield the desired values
for f(x) for each x € X. We simply restart if the acyclicity test fails,
hence the expected O(n) construction time [52]. For k=3, we require
A >1.23 to efficiently find a suitable acyclic hypergraph [52, 57].

5 HASHING SCHEMES

When collisions occur in ahash table, they are resolved using hashing
schemes. In this section, we give a brief background on the hashing
schemes we study in this paper. In each scheme, we discuss how the
hash table is implemented and how collisions are handled.

5.1 Bucket Chaining (CHAIN)

Bucket chaining is a classic collision resolving scheme [8, 67, 71].
In this scheme, the hash table is implemented as an array of pre-
allocated buckets, where each bucket stores multiple tuples, with col-
lided keys, ata specific slotin the table. Toinsert a tuple, the key of this
tupleisfirsthashed to aslotin the hash table, and then the whole tuple
is first tried to be placed in the corresponding bucket at this slot. If the
current bucket is already filled up, a new one is created, pre-allocated
and chained to it. To query for a tuple, the query key is first hashed to
a slot in the table (similar to what happens in inserts), then the chain
of buckets at this slot is traversed until either the matching tuple is
found or the end of the chain is reached (i.e., the matching tuple is
not found). In general, bucketization improves the data locality, and
reduces the number of cache misses. That being said, choosing the
bucket size should be carefully tuned to avoid wasting large spaces.

5.2 Open-Addressing

In open-addressing, all tuples are inserted in the hash table slots
themselves, without extra chains to handle collisions. In case of a tu-
ple with a colliding key, the hash table slots are probed (i.e., searched),
until a slot is found to place the tuple [19, 67]. Typically, a probing
scheme decides the set of hash table slots to check, referred to as
a probing sequence, till a place is found to insert the tuple. Query
operations follow the same probe sequence. There are two main
categories of probing schemes: (1) schemes that probe for the first
available (i.e., empty) slot, and (2) schemes that evict the existing
tuple at the probe location (i.e., when a collision occurs) and replace
it with the new tuple. In this paper, we study an example of each of
these two categories (linear probing and cuckoo hashing).

Linear Probing (LP). This is the most basic probing scheme for colli-
sion handling in open-addressing. In this scheme, when inserting (or
querying) a tuple, the key of this tuple is first hashed to obtain a hash
table slot (i.e., initial probe location). Then, the hash table is sequen-
tially traversed starting from this slot. In case of insertion, the traver-
sal stops if an available slot is found. In case of querying, the traversal
stops if we find either the matching tuple or an empty slot (i.e., match-
ing tuple is not found). Linear probing has two main advantages:
(1) its simple design, and (2) cache efficiency due to the sequential
scan. In contrast, its performance degrades when large contiguous
blocks of hash table slots are occupied, referred to as primary clusters.

In this case, the number of nearby empty slots around each probe loca-
tion is significantly reduced, and the scheme tends to have long probe
sequences. Such performance issue can be avoided by either (1) in-
creasing the hash table size such that the percentage of its occupied
slots (a.k.a load factor) is always kept less than 60% [67] or (2) care-
fully tuning its update operations [11]. We note that there are two
other popular variants of linear probing: (1) quadratic [19, 42], and
(2) robinhood [17], which are efficient for write-heavy and high un-
successful lookup workloads, respectively. However, according to a
recent study [67], linear probing outperforms both of them using the
appropriate load factor. Therefore, we focus on linear probing here.
Cuckoo Hashing (CUCKOO). Cuckoo hashing [61] provides another
useful alternative hash table design. A simple variation of cuckoo
hashing uses two subtables, where each subtable has an independent
hash function. To insert a tuple, the key of this tuple is hashed with
the first (or primary) hash function to obtain a slot in the primary
table. If this primary slot is available, then the tuple is inserted and
the probe sequence ends. Otherwise, the tuple tries to be inserted in
the second (or secondary) subtable using the second hash function.
If the secondary slot is occupied as well, then a kicking strategy
is applied to evict the existing tuple in either the primary or the
secondary slot, and replace it with the current input tuple. After
that, the evicted tuple is reinserted again, following the same steps.
The eviction chain continues until either all evicted tuples are suc-
cessfully inserted or a maximum chain length is reached. This last
case is a failure; one solution is for all tuples in both hash tables
to be rehashed with two new hash functions.

With balanced kicking [61], the primary or the secondary slot is
randomly selected for eviction. In biased kicking [22, 38], the tuple
in the secondary slot is preferred for eviction, which has been shown
to improve performance for positive lookups. We experimentally
found that biased kicking performs better, so we use it throughout
all our experiments involving cuckoo hashing.

To probe for a tuple, we need only to check the primary and sec-
ondary slots, which yields at most two cache misses regardless of
the load factor. However, a major drawback of the simple variation
of cuckoo hashing is the failure case, where the maximum length of
the eviction chain is reached, happens at low loads. Higher loads can
be handled by generalizing to use more hash tables (e.g., 4 instead
of 2) [31, 67] or allowing multiple tuples per slot [2, 23, 71]. In this
paper, we employ the bucketized variant, where each hash table slot
allows more than one tuple, which again limits to two cache misses
when a bucket fits in a cache line.

6 COLLISIONS ANALYSIS FOR HASHING

Here, we identify and analyze the factors affecting collisions for
both LMH and traditional hash functions. This analysis helps us
to identify situations where LMH can have fewer collisions than
traditional hash functions. We specifically focus on LMH functions
with piece-wise linear submodels for this analysis.

Notation. For ease of analysis, we start by focusing on the task of
mapping N keys to N locations. This analysis readily generalizes,
and the high-level conclusions are independent of this assumption,
with the main difference being the number of locations increases,
the number of collisions decreases. Assume that we apply a hash
function f on the keys, where f could be a traditional hash (Section 2)
or a LMH function (Section 3). Let xp,x1,....xn—1 be the sorted array




of the N input keys, and let yo,y1,....yN—1 be the sorted array of the
hashing outputs f(xo), f(x1),....f(xn—-1) (note that y; = f(x;) for
some j, but y; is not necessarily f(x;)). For LMH functions, the y;’s
may be on the real-valued range [0,N), and we would then map each
key to the location corresponding to the value of y; rounded down to
an integer. For convenience, we let y_1 =0. The sorted output values

generate a set of gaps go,g1,92,... such that y; = (Zizogt).We assume

that g;’s are i.i.d, with probability density function f5(z) and CDF
Fg(2); this is a reasonable approximation for analysis. For example,
for uniformly randomly distributed outputs f(x;), the gaps between
y; are approximately exponentially distributed [55].
Characterizing Collisions. A collision occurs when two keys are
mapped to the same location. The key insight regarding collisions
is that they depend on the gaps between consecutive sorted hashing
output values (y; —y;—1). If the gap between two consecutive values
is greater than one (i.e., y; —y;—1 > 1), then the corresponding keys
would definitely be placed in separate locations. On the other hand,
if the gap is smaller than one (i.e., y; —y;—1 < 1), the corresponding
keys may be mapped to the same location; it depends where y; and
y;—1 relative to the integer boundary.

Ideally, we would want all the gaps to be more than one, to have
zero collisions. However, the gap values are constrained by the con-
dition that the sum of all the gaps should be less than the number of
locations which is N here.? Thus, the gap distribution would have
to be the trivial distribution that is always 1 to avoid collisions.

Let ¢ be the number of colliding keys (i.e., keys that are not alone in
alocation). Assuming that f is not a lattice distribution®, we can de-
scribe the expected number of colliding keys E [ c] with the following
lemma. In the below, recall {x}=x—|x].

LEmMMA 1. As N grows large, E[c] converges to

1 )
N(l_/u=o(/t=1_u“‘F G(l_{“'“}))'fc(t)dt)du),

We remark that the proof reveals that this formula is also a good
approximation for large N.

Proor. Let Z; be the indicator random variable that is 1 if y; is
alone in its own location. We first consider the position of y;—;. For
sufficiently large i, {y;—1}, the fractional part of y;_1, is known to
converge to the uniform distribution on [0,1] (see, e.g., Thm 5.8.4.
of [41]). We therefore treat {y;—1 } as being distributed uniformly on
[0,1]. Accordingly, the probability y; is in a different location from

yi—1 is given by
1 &)
/ ( fG(t)dt) du.
u=0\Jt=1-u

We also need, however, that y;,1 is also in a different location from
y;. This depends on the value of {y; }. Taking this into consideration
yields the following probability for Z;:

1 )
Pr(Zi=1)= (/ (l—F(l—{t+u}))-fG(t)dt)du.
t

u=0 =1-u
As N grows large, the approximation of uniformly distributed {y;—1 }
is arbitrarily accurate for almost all i, giving the convergence. O

: N-1
*Sum of gaps is: %7, (Yr ~yr-1) =yn-1-yYo <N.
3Lattice Distribution: A discrete probability distribution concentrated on a set of points
of the form a+nh, where h>0, a is a real number and n=0,+1,+2,.

Collisions for Traditional Hash Functions. In case of a truly ran-
dom hash function, the output values will be uniformly distributed
in the range [0,N] irrespective of the input distribution. Therefore,
the gap distribution of the output values is very well approximated
by the exponential distribution with mean 1. Most traditional hash
function displayed this behaviour in our evaluation.

Collisions for LMH Functions with Piece-wise Linear Submod-
els. To gain intuition, let us start by using a single linear model to
approximate the CDF of the input data xg,x1,..., and this will give us
our hash function f. Let the linear model be m* (x—x¢) where m is
(N—-1)/(xn-1—xp). Note that the slope would be approximately the
mean of the gap distribution of the input keys. The resulting hash
function would be h(x) = m* (x — xp) which maps the input keys
in the range [0,N). After applying this hash function to obtain the
output values yo,y1,..., we notice that the gaps between the output
values are simply the scaled version of the gaps between the input
keys: yi+1—yi = (xi+1—x;) *m. At a high level, if the input is evenly
spaced, then our outputs will similarly be evenly spaced, resulting
in fewer collisions. If the input gaps are high in variance, we would
expect more collisions. In LMH functions, this scaling would happen
at the submodels scale.

Accordingly, if the data is generated similarly to our theoretical
model, with a gap distribution g/ (x0,x1=x0+ g;),xg =x1 +g,1,..4.), the
gap distribution of the input keys determines the gap distribution of
the output keys and thus the amount of collisions. In certain cases,
like auto-generated keys (1,2,3,4,5.,...) perhaps with some deletions
or noise, the input gaps are mostly constant. In this scenario, a piece-
wise linear model can lead to fewer collisions than a traditional hash
function. However, if the input keys are generated by sampling from
a distribution instead of sequentially, multiplying the CDF value of
the key by the array size will behave as an order-preserving hash
function. A LMH function that approximates this underlying distri-
bution would behave essentially the same as a truly random hash
function in terms of collisions.

Increasing the number of submodels can improve the accuracy
of when using a piece-wise linear model to approximate a CDF. This
helps in the case of indexing an item, but from our argument above,
we see that this does not necessarily reduce the number of colli-
sions. We show this via an example. We mapped 100 million uniform
randomly and normally distributed keys to 100 million slots using
RMI with varying number of submodels. In Figure 1, we plot the
proportion of collisions as we increase the number of submodels
in RMI. We observe that for uniform randomly distributed keys in-
creasing the number of linear submodels does not affect collision
metric until we reach 50 million submodels. RMIs with 100 submod-
els and 100000 submodels are both able to approximate the CDF
of the distribution well and the output is approximately uniformly
randomly distributed in both cases. The larger RMI provides better
accuracy than the smaller one but essentially the same number of
collisions. The RMI with 50 million submodels essentially memorizes
the empirical CDF of the dataset and thereby results in lower colli-
sions. For the normal distribution, an initial increase in the number
of submodels reduces collisions as an RMI with only 1-2 submodels
fails to approximate the CDF of normal distribution well.
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wiki | fb | osm | book | gap_10 | uniform | norm | lognorm
RMI 10° | 107 [ 107 | 10° 10 107 10° 10°
RadixSpline | 10% | 10® | 10® | 107 10 102 10° 10

Table 1: Default numbers of submodels in LMH functions.
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Figure 2: Gap distribution of various datasets

7 EVALUATION

In this section, we present an empirical study for the performance of
LMH functions and compare them against both traditional and per-
fect hashing. Our main objective is to answer the following question:
what are the main workload characteristics, scenarios, and operations
where employing LMH functions would improve performance? We first
study the collisions and computation time tradeoffs (Section 7.2).
Then, we evaluate the performance of the various types of hash
functions in supporting the main hash table operations, lookup and
insertion, for different types of hash tables (Section 7.3). We also
provide more detailed experiments regarding issues such as how
collisions, key types, and payload size affect performance in practice,
as well as the impact of construction time for LMH (Section 7.4). Fi-
nally, we move to some higher-level operations that use hash tables,
and show cases where LMH can improve the performance of range
queries (Section 7.5) and non-partitioned hash join (Section 7.6).

7.1 Experimental Setup

Datasets. We use both real and synthetic key datasets in our exper-
iments. All keys are 64-bit integers®. For real keys, we use the four
datasets from the SOSD benchmark [53]. These datasets are (1) fb,
which has randomly sampled Facebook user IDs, (2) wiki, which
has timestamps of edits from Wikipedia, (3) osm, which has cell IDs
from Open Street Map, and (4) book, which has keys representing
the popularity of books from Amazon. Each dataset has 200 million
keys. In any experiment, we use either the whole dataset or a sample
from it (details are mentioned in each experiment separately).

For synthetic keys, we use four different key generation processes:
(1) gap_10, in which sequential keys are first generated at regular
intervals of 10 and then 10% of the keys are uniformly randomly
deleted (this represents the case of auto-generated IDs after removal

4We focus on integer keys in our study. However, for completeness, we provide a single
experiment in Section 7.4 to investigate the performance with string keys.

of certain users), (2) uniform, in which keys are generated uniformly
atrandom in the range [0,2°°], (3) normal and (4) lognormal, in which
keys are generated from normal (=100 and o =20) and lognormal
(1 =0 and o = 1) distributions, respectively, and then are linearly
scaled to the range [0,2°°].

As discussed in Section 6, the gaps between sorted hash outputs
determine collisions. In order to understand the distribution of these
gaps in our datasets, we use an RMI, with 1 million submodels, to map
100 million keys from each dataset to 100 million slots and then plot
the gaps between consecutive sorted output values. In Figure 2, x-axis
shows the gap value and y-axis shows the count of this gap for some
of the used datasets. We observe that gap_10 and wiki datasets have
gaps concentrated around 1. uniform, normal, and lognormal datasets
have very similar gap distributions concentrated around 0.25-0.35,
while fb, osm, and book datasets have significant counts of gaps
concentrated around 0.1 (fb and osm have higher counts than book).

In all hash table, range query, and join experiments, we generate
8-byte payloads chosen randomly from the range [0,264]°. All tuples
(or keys) are randomly shuffled before running any experiment.
Hardware. All experiments are conducted in the main memory
on a machine with 256 GB of RAM and an Intel(R) Xeon(R) Gold
6230 CPU @ 2.10GHz with Skylake micro-architecture (SKX) and
L3 cache of 55MiB. The operating system is Arch Linux with a
page size of 4KB (default page size). The implementation of all
hashing functions and schemes is our own and in C++. The bi-
naries are compiled with clang++ (12.0.1) using optimization -O3.
We have activated prefetching.

Default Settings. Unless otherwise mentioned, we set the number
of submodels in RMI and RadixSpline as stated in Table 1. Each value
represents the least number of submodels needed to give the least
amount of collisions in a specific dataset. For PGM models, we set the
error bound to 10. The number of tuples (or keys) in each synthetic
dataset is set to 100 million. We use a default bucket size of 1 in
bucket chaining. To support cuckoo hashing with a load factor up
to 90%, we use a bucket size of 4 as described in [2]. As mentioned
in Section 5, we use the biased kicking strategy as it performs better
than the balanced one. We set 50000 as a maximum number of kicks.
This value led to a suitably small number of insert failures.
Metrics. Throughput is the default metric in most of the experi-
ments. When studying the hash function itself, we use the compu-
tation throughput, which is the number of hash function operations
executed per second. In the hash table and range query experiments,
we use the number of completed queries (e.g., probe/insert queries
on hash tables) per second (i.e., queries throughput). For the join ex-
periments, we use the runtime instead of the throughput to perform
a breakdown for the join phases.

Measurement and Profiling. For all experiments, we report the
average of three independent runs, where we use a different random
seed for generating and shuffling synthetic and real data, respec-
tively, in each run. We use the PerfEvent library [51] to profile the
low-level hardware counters in Section 7.3. These counters include
L1 and LLC cache misses, branch misses and cycles.

Beyond Scope. Our study focuses only on the single-threaded setup
to fairly compare the performance of LMH functions with traditional

SWe focus on 8-byte payloads in our study. However, for completeness, we provide
a single experiment in Section 7.4 to investigate the effect of varying the payload size.



and perfect hashing, without parallelism optimizations. That being
said, we believe that multi-threaded implementations of these hash-
ing schemes should be evaluated in a standalone study, which we
currently plan as an extension for this work.

7.2 Computation Throughput vs Collisions

In this experiment, we are interested in studying the tradeoff be-
tween the hash function quality and its efficiency. We use the eleven
hash functions previously discussed and five from our datasets®.
In each dataset, we map a randomly-selected 100 million keys into
100 million hash table slots, and measure both the hash function
computation throughput, and the proportion of colliding keys.

Figure 3 shows the results of this experiment. Note that each tra-
ditional and perfect hash function is represented as a single point in
the scatter plot. However, in LMH functions, we vary (1) the number
of submodels in RMI and RadixSpline from 1 to 50 million and (2) the
error bound of PGM from 1 to 10000, yielding multiple points on the
plot. As expected, traditional hash functions have a significant num-
ber of collisions, and perfect hash functions are slow. All traditional
functions have similar throughput (90-100 million operations/sec)
and colliding keys proportion (0.63-0.65) across all datasets. This
proportion of colliding keys nearly matches that for truly random
hash function which is approximately (1-1/e~0.632). All perfect
hash functions have no collisions (by definition), but low throughput
(10-20 million operations/sec) due to the high computation overhead
coming from either an expensive traversal over the splitting tree in
RecSplit [28] or multiple random accesses to the array storing the
hypergraph-related values in MWHC [52].

The performance of LMH functions, however, depends on the gap
distribution of the input datasets as discussed in Section 6. The RMI
and RadixSpline hash functions, at their best configurations, can
achieve low collisions (0.2 and 0.3) and high throughput (80 to 120
million operations/sec) in two datasets, gap_10 and wiki. For these
datasets, the gaps are more or less evenly spaced, and hence LMH
functions yield a very low number of collisions. In addition, the num-
ber of submodels needed for these datasets is small, which makes the
LMH computation overhead efficient. For fb, the variance in the gap
distribution is very high, yielding a large number of collisions. Reduc-
ing these collisions requires using a large number of submodels (the
best proportion of colliding keys is 0.5), yielding low throughput.

In the case of uniform and normal datasets, we observe that LMH
and traditional functions have similar collision behavior, regardless
of the used number of submodels. This matches our understanding
that the CDF-based hashing of LMH for these datasets will lead to a
distribution of items in buckets that is nearly the same as traditional
hashing (as described in Section 6). In general, as discussed in Sec-
tion 6, increasing the number of submodels in LMH functions does
not necessarily decrease the collisions. For example, in wiki, the pro-
portion of colliding keys using RMI significantly drops from 0.9 to 0.3
after an initial increase in the number of submodels from 1 to 1000,
and then becomes stable regardless the number of submodels used.

For the rest of our experiments, we compare LMH functions with
the best traditional and perfect hash functions, in terms of both
computation time and collisions: Murmur and MultiplyPrime for
traditional hashing, and MWHC for perfect hashing.

5Tradeoffs in osm and book are similar to fb, and in lognormal are similar to normal.

7.3 Hash Table Performance

Here, we are interested in studying the performance of two main
hash table operations; probe and insert.

Probe Throughput. In this experiment, we first insert 100 million
tuples in a hash table with varying number of slots (i.e., buckets).
Then, we probe the hash table with all the inserted tuples (i.e., query
workload), after randomly shuffling them, and measure the through-
put. We generate different load factors by varying the number of slots.
Figure 4 shows the results for this experiment while using seven
input datasets (uniform and normal nearly have the same results).
For each hashing scheme, we use a different range of load factors
that are suitable for the scheme. For example, we use load factors
>100% in bucket chaining as it can support inserting tuples more
than the total slots in a hash table. Also, we only use high load factors
(=75%) with cuckoo hashing because, in smaller load factors, cuckoo
hashing is always dominated by other schemes [67].

For bucket chaining, RMI has the best throughput in gap_10, nor-
mal, lognormal, and wiki datasets, averaging 1.4x better throughput
than the second best function, whether it is MultiplyPrime or RadixS-
pline. This is because RMI has the fewest collisions in these four
datasets. Fewer collisions result in shorter chains that need to be
traversed during the probe queries, and hence fewer cache misses.
In addition, both PGM and MWHC have the worst throughput in
gap_10 and wiki datasets due to their high computation overhead’.
For RadixSpline, we observe an interesting variance in performance
in these datasets. It is competitive with RMI throughput in non-
skewed datasets (gap_10 and wiki), but becomes the worst in the
skewed datasets (normal and lognormal). This is because in skewed
datasets outlier keyslead to having a large radix table with a majority
of its entries being useless (i.e., more data structure overhead and
cache misses during lookups). This weakness of RadixSpline has been
noted in [53]. In fb, osm, and book datasets, we observe a clear rank-
ing among the different hash functions. Although MWHC still has
the highest computation overhead, LMH functions become the worst
options (except book in which RMI is slightly better than MWHC)
with an average throughput of only 2.5 million queries/sec. This is be-
cause of the high number of collisions for LMH functions when used
with these datasets that have high variance in their gaps distribution.

We also look at the throughput across different load factors. In-
creasing the load factor increases collisions because there are fewer
slots, which degrades the throughput. For example, Murmur has
throughputs of 16 and 8.5 million queries/sec at load factors of 25%
and 200%, respectively. However, we observe two exceptions to this
throughput trend when using: (1) RMI and RadixSpline at load factors
between 25% and 100% in gap_10 and wiki, where the throughput
actually increases, and (2) MWHC in all load factors, where the
throughput is fixed around 8 million queries/sec, regardless of the
dataset. The reason for the first exception is that collisions are already
close to zero in these two datasets, so increasing the load factor from
25% to 100% primarily reduces empty hash table slots, leading to
better caching behavior. The reason for the second exception is that
the MWHC computation overhead for each tuple is constant [52],
regardless of the used load factor.

For linear probing, the throughput depends on the length of the
sequential scan needed to handle collisions. We observe that the

7"Note that PGM has high inference cost because of its multi-level structure.
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Figure 3: Computation throughput and collisions tradeoffs for various hash functions and using different datasets.
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Figure 4: Probe throughput for combinations of 6 hash functions and 3 hashing schemes: (A) bucket chaining, (B) linear probing,
and (C) cuckoo hashing. Results are shown for 7 different datasets, and various load factors for each hashing scheme.

throughputs achieved by using Murmur, MultiplyPrime, and MWHC
have the same trend as in bucket chaining. In contrast, RMI and
RadixSpline have the following two notable changes. First, their
performance gain over traditional hashing in gap_10 decreases or
even vanishes (e.g., they yield 10% less throughput in normal and
lognormal). Although the number of collisions using LMH func-
tions is slightly smaller in these datasets (Section 7.2), the effect of
this difference can be hidden by the sequential scan benefits (e.g.,
prefetching) of linear probing, and hence the overhead of RMI and
RadixSpline hash computation becomes more significant. Second,
RMI and RadixSpline result in worse throughput than traditional
hashing in wiki (average 40% less throughput than MultiplyPrime).
This was a bit surprising as LMH functions result in significantly
fewer collisions than traditional hashing. However, we found thatina
few parts of the wiki dataset RMI maps up to 100 keys to the same slot,
creating clusters that result in long sequential scans during probing.

For cuckoo hashing, we observe that the throughputs achieved by
any hash function are pretty much similar within the same dataset,
regardless of the load factor used. This is expected as handling col-
lisions in cuckoo hashing is typically performed in constant time
(two cache misses at most). Even better, we employ a biased kicking
strategy, in which most of the tuples are placed in their primary hash
slots (i.e., one cache miss for most of the probes). This makes the hash
function computation (model prediction in case of LMH functions)
have a great impact on the probe latency in cuckoo hashing, and
explains why the throughput using LMH functions is worse than
using traditional hashing in all datasets, except in gap_10 and wiki
where RMI is almost similar to Murmur. Note that using RMI failed
to construct the cuckoo hash table for fb and osm (similarly, RadixS-
pline and PGM failed in fb, osm, and book at load factors > 90%)
because the resulting number of collisions is extremely high, and
the required number of kicks to handle them exceeds the maximum
threshold. For traditional hashing, we also noticed that Murmur
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Figure 5: Insert throughput for the same hash functions and

schemes used in Figure 4, yet for wiki and fb datasets only.

succeeded in constructing the hash tables in all datasets, while the
construction failed using MultiplyPrime at load factor 95% because
of high number of collisions. In general, cuckoo hashing significantly
reduces the impact of collisions, regardless of the hash function used,
and hence the performance improvement of LMH over traditional
hashing becomes negligible.

Insert Throughput. Here, we use the same setup in the probe
throughput experiment, while changing the query workload. To gen-
erate the insert workload, we first uniformly and randomly sample
101 million tuples from an input dataset. Then, we initialize the hash
table by bulk-inserting 100 million tuples from this sample as in the
probe throughput experiment, and use the remaining 1 million tuples
as the query workload. Figure 5 shows the results of this experiment
for two input datasets only, wikiand fb (the remaining datasets show
similar performance trends).

In general, the relative ranking and throughput trends remain the
same as in the probe throughput experiment (including the failure
cases in cuckoo hashing). We also observe that, in wiki, the per-
formance benefit that RMI offers over MultiplyPrime - when used
with bucket chaining - in insertion is not as high as in probing (only
an average of 10% throughput improvement in insertion compared
to 30% in probing). Probing time mainly depends on the length of
the chain to be traversed whereas insertion requires allocating and
adding new buckets to the chain, and hence the collision reduction
improves only a portion of the total insert time. Another interesting
observation is that at load factor 95% using cuckoo hashing with
MWHC is the best as the overhead of kicking operations becomes
higher than the complex computation of MWHC.

Performance Counters. To deeply understand what happens on
the hardware level, we investigate the following four performance
counters: cycles, L1 cache misses, last-level cache (LLC) misses, and
branch misses. Figure 6 shows the average values of these counters
per tuple when using RMI, MultiplyPrime and MWHC in the probe
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throughput experiment (Figure 4) at load factor 80% and only for two
datasets gap_10 (first row) and fb (second row). For MWHC, we only
show chained results as other schemes have similar performance.
For gap_10, the three RMI-based variants achieve the lowest per-
formance counter values (e.g., one L1/LLC miss per tuple for RMI-
CHAIN and RMI-LP) compared to other variants. This is because the
number of submodels needed for any LMH function is only 10 (as
shown in Table 1), which can totally fit in the cache. For fb, we found
that scanning very large clusters, as in RMI-LP or MULT-LP, signifi-
cantly increases both cache and branch misses, and in turn increases
cycles (high cache and branch misses lead to an excessive increase in
the amount of CPU stalls and wasted cycles, respectively). In contrast,
RMI-CHAIN significantly reduces the effect of the high collisions pro-
duced by RMIin fb (RMI-CHAIN has at least 3X less LLC misses and
cycles than RMI-LP). Evenin gap_10, RMI-CHAIN still has at least 2X
and 4Xless cycles than RMI-LP and RMI-CUCKOO, respectively. This
confirms our conclusion about the impact of hashing schemes on the
probe throughput using LMH functions. Another interesting obser-
vation in fb is that MULT-CHAIN and MULT-CUCKOO have close
values in all counters, yet MULT-CUCKOO is a bit better in cycles and
branch misses. This shows that bucket chaining can provide a com-
petitive performance at challenging datasets and high load factors.

7.4 More Performance Analysis

In this section, we study more parameters related to LMH functions
and their performance in hash tables.
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Gap Distribution. In this experiment, we vary the gap distribution
to display that gaps concentrated around the mean have lower colli-
sions. Assuming that the variance of the gap distribution of uniform
keys is X, we generate 4 different variations of the uniform dataset,
such that the gap distribution variances of their keys are 2X, 4X,
0.5X and 0.25X (i.e., scaled variances) 8. Then, we insert the keys
of each dataset variation in a hash table using RMI, and calculate
the proportion of colliding keys. The left part of Figure 7 shows the
proportion of colliding keys with varying load factors. As expected,
the amount of collisions can be decreased by decreasing either de-
creasing the gap variance or the load factor. Lower gap variance
cause the gap distribution to concentrate around the mean value
resulting in lower collisions.

Build Time. Unlike traditional hash functions, LMH and perfect
hash functions require a building stage. In the right part of Figure 7,
we show the building time for LMH and MWHC functions using the
uniform dataset, varying the number of keys between 10° and 108.
We see that the building time of MWHC is consistently 2.5 and 2
orders of magnitude slower than the building times of RMI (or PGM)
and RadixSpline, respectively. Although MWHC has an expected
O(n) construction time [52], its hypergraph building process re-
quires an excessive amount of random memory accesses, and hence
cache misses (check Section 4). In contrast, building LMH functions
requires only sorting the data once and doing multiple sequential
passes over it, which is a cache-friendly process.

Bucket Capacity. In this experiment, we study how increasing the
bucket capacity (i.e., number of tuples in the bucket) affects the probe
throughput. For each dataset, we build different hash tables with a
load factor of 50%, and are bulk-loaded with 100 million tuples. Note,
since we fix the load factor, increasing the bucket capacity by a factor
X reduces the number of buckets by a factor )—1( We use the same
inserted tuples as a probe workload, after randomly shuffling them,
and measure the throughput as in Figure 8.

In bucket chaining, increasing the bucket capacity reduces the
length of needed chains (i.e., extra buckets) to handle collisions, as
any colliding key now has a high probability to be in the main hash
table bucket. However, this increases the probe time as well because
finding a key in the bucket requires larger scan overhead as the
bucket becomes larger. In wiki, LMH functions already produce a
low number of collisions, and hence increasing the bucket capacity
will not benefit chaining, yet causes probes to scan unnecessary keys,
and hence the throughput significantly decreases (this is also true

8Each dataset variation is generated by scaling the gaps between the uniform keys
with the corresponding factor (e.g., the "2X Variance" dataset scales the gaps between
uniform keys by a factor of 2).
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for MWHC as it has no collisions by definition). We can see that
RMI and RadixSpline are affected more than PGM because their hash
computation is lighter, and hence the effect of collision handling,
with any extra overhead, becomes more obvious in the total probe
time. In fb, LMH produces a lot of collisions that result in longer
chains. In this case, increasing the bucket capacity improves the
probe throughput a bit. In the case of Murmur and MultiplyPrime,
they significantly suffer from the extra scan overhead within the
bucket only beyond size of 4.

Payload Size. Here, we study the effect of increasing the payload
size on the probe throughput of hash tables built with different hash
functions. In this experiment, we use the wiki dataset and a chaining
scheme with a 100% load factor. For each hash function, the hash
tables are built and probed as described in the bucket capacity ex-
periment, yet, with tuples of different payload sizes: 4, 8, 16 and 64
bytes. The left part of Figure 9 shows the probe throughput (x-axis
has alogscale). As expected, increasing the payload size significantly
reduces the probe throughput of all functions, except MWHC and
PGM, in which the overhead of cache misses (coming from accessing
payloads) does not affect their already high computation time until
the payloads become very large (e.g., 64 bytes).

String Keys. Workloads with string keys are common in the real-
world (e.g., [5, 16]). Unfortunately, learned models and indexes have
no efficient support for string keys. The most relevant work in this
area is RadixStringSpline (RSS) [77], which constructs a tree of radix
splines, each indexing a fixed number of bytes in the string. Here, we
investigate the robustness of RSS against Murmur, which is known
for its efficiency in hashing strings. We repeat the computation
throughput-collisions experiment (Section 7.2), while using two
string datasets: (1) Emails, which is a real-world email dataset used
in [12], and (2) URLs, which is a dataset of Wikipedia URL tails used
in [77]. The right part of Figure 9 shows the results of this experi-
ment. We can see that RSS, at its best configurations, can actually
achieve 28% lower collisions than Murmur but with extremely slow
computation throughputs. This slowness is because strings typically
have both long shared prefixes and relatively low discriminative
content per byte, which require a very large number of submodels
(i-e., tree nodes) in the RSS to capture the strings distribution.

7.5 Range Queries Performance

Hash tables support fast point queries only, and do not support range
queries. On the other hand, index structures like B-Tree, ART [47],
and RMI [43] support both point and range queries. However, the
performance of index structures in point queries is not as efficient as
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Figure 10: Effect of both point queries percentage (first row),
and range query size (second row) on the queries throughput.

hash tables. In case of having a mixed workload of point and range
queries, where range queries represent only a small proportion,
one cannot use a hash table and is forced to use an index to be
able to answer the range queries. This results in a huge performance
degradation for the majority of the point queries. Fortunately, we can
use "monotonic"” LMH functions, such as RMI and RadixSpline, along
with bucket chaining to build a hash table that supports range queries
in addition to its natural support for fast point queries. In this case, a
range query can be processed by scanning the buckets between the
locations corresponding to the query lower and upper bound keys.
This is possible as monotonic LMH functions are order-preserving,
and hence the target keys are bound to be within the bucket locations.
Point Queries Percentage. In this experiment, we study the through-
put of a mixed workload of point and range queries (the percentage
of point queries is variable) using (1) RMI-CHAIN and RadixSpline-
CHAIN hash tables (bucket size of 8 and load factor of 50%), which are
our proposed solutions, and (2) a sorted array of the input data witha
typical RMI on top of it (we refer to it here as RMI-SORT). We use wiki
and fb, where we sample 100 million tuples from each one of them as
input data. We generate a mixed query workload by first randomly
sampling X% of the input data to be used as point queries, and then
for the rest of the workload (i.e., 100-X %) we generate random range
queries that retrieve about 25-50 tuples. The upper part of Figure 10
shows the results for this experiment, where we vary X between 0 and
100. As expected, in both wiki and fb, RMI-CHAIN and RadixSpline-
CHAIN have faster throughput than RMI-SORT when the workload
has a majority of point queries, and vice versa. This is explainable as,
for a point query, they just need to scan the bucket pointed out by the
model, whereas RMI-SORT needs a local search to find the relevant
key. For a range query, RMI-CHAIN and RadixSpline-CHAIN scan
the buckets that fall within the range query and also the additional
chains associated with them. This leads to excessive random mem-
ory accesses, and hence a decrease in the throughput. In contrast,
RMI-SORT is more suitable for range queries as it only needs to
sequentially scan the relevant keys in the sorted range.

Range Query Size. Here, we reuse the setup of the previous experi-
ment, while focusing only on 100% range queries workload. We vary
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Figure 11: Runtime breakdown for the different implementa-
tions of non-partitioned hash join using various hash tables.

the range query size from 1 to 1024. The below part of Figure 10 shows
the results for this experiment (x-axis has alogscale). With increasing
the range size, RMI-CHAIN and RadixSpline-CHAIN become slower
than RMI-SORT as they need to scan additional chained buckets.

7.6 Hash-based Join Performance

In this experiment, we are interested in understanding the perfor-
mance of non-partitioned hash join (NPJ) over two input relations [45,
80], when implementing it using different combinations of hashing
functions and schemes. Note that we do not investigate the hashing
effect on partitioned hash join [73, 80] as it employs small cache-fit
hash tables. In this situation, using any traditional hash function to
build such small tables will be the best choice. In contrast, NPJ builds
alarge global hash table for the smaller input relation and the prob-
ability of having performance degradation, due to large number of
collisions, is high. Therefore, employing an efficient hash function is
crucial to improve the join performance. We use wiki and fb datasets,
where we uniformly and randomly sample two variations from each
dataset with 10M and 25M tuples. These variations will be used to
perform the NPJ on, using the best function in each hashing category.
Figure 11 shows the running time of the NP] build and probe phases.

Interestingly, we can observe that RMI-CHAIN and MULT-CHAIN
have the best join performance in both wiki and fb. Specifically, RMI-
CHAIN has 28% less total runtime (build and probe) than MULT-
CHAIN in wiki (e.g., in the 25Mx25M variant, the build times of
RMI-CHAIN and MULT-CHAIN are 3.2 and 4.3 sec, while their probe
times are 1.488 and 2.193 sec, respectively), and they both have the
same total runtime in fb. Looking at the build phase, we can see that
RMI-CHAIN and RMI-LP build the hash table more efficiently than
other solutions in most of the cases. This is mainly because RMI sorts
the data to build its submodels, and then uses them to insert each
tuple from the sorted data into the hash table. Although sorting the
data is a bit expensive, it helps the model-based insertion to happen
in a cache-friendly manner, and the overall overhead, including both
sorting and model-based insertion, is still significantly less than ran-
domly inserting tuples (i.e., more cache misses) using MultiplyPrime
and Murmur. This observation was confirmed in a previous study



before [44]. Due to the efficiency of RMI in building the hash table,
the total time of NPJ using RMI-CHAIN becomes more competitive
with MULT-CHAIN in a challenging dataset like fb because the per-
formance gain in building compensates for the performance degra-
dation in probing, and the total running time becomes very close.

8 RELATED WORK

Traditional Hashing. Traditional hash functions can be catego-
rized as either non-cryptographic [29] or cryptographic [1]. Non-
cryptographic hash functions [2, 18-20, 42, 67, 69, 71], which we
mainly focus on in our study, are mostly used in building data struc-
tures and algorithms due to their good balance between computation
time and collision rates. More recent work has focused on optimizing
the performance of non-cryptographic hashing on modern hard-
ware by either proposing new hash functions [81] (e.g., CLHash [48],
and tabulation hashing [65]) or customizing the existing ones to
utilize the underlying hardware (e.g., GPU [49] and SIMD vectoriza-
tion [9,34]). Cryptographic hash functions have the property of being
computationally hard to invert. These functions can still be used in
building data structures, yet their performance can be much slower
than non-cryptographic ones [18]. Examples of cryptographic hash
functions include MD5 [68], SHA1 [27] and SipHash [7].

Perfect Hashing. Perfect hashing has been widely studied; see, e.g.,
the survey in [52]. Perfect hashing solutions can be divided into two
categories: static and dynamic. When inserting new tuples to the
hash table, the static solutions (e.g., [14, 28, 52, 62]) reconstruct the
whole table from scratch, while the dynamic solutions (e.g., [21, 82])
reconstruct the table parts that are related to the update only. Another
interesting line of work is improving the perfect hashing computa-
tion using modern hardware, such as GPU (refer to a survey in [49]).
Learned Models for Indexing and Hashing. During the last few
years, the idea of using CDF-based learned models to replace tradi-
tional indexes has been investigated extensively including single-
dimension (e.g., [30, 40, 43]), multi-dimensional (e.g., 24, 58]), updat-
able (e.g., [25]), and spatial (e.g., [50, 63, 66]) indexes. Interestingly,
the authors of [43] also discussed the idea of using learned models
as order-preserving hash functions. A recent study [71] initially
investigated whether learned models are better than traditional
hash functions in performing hash table lookups or not. In contrast,
our proposed study is more comprehensive as it spans additional
hash function types, hashing schemes, workload types, and hash-
based operations. Another recent interesting work [36] employs an
entropy-learned approach to reduce the hashing overhead by choos-
ing how much and which parts of the input data we need to hash.
Hashing Experimental Studies. Previous experimental studies for
the performance of different hash functions and schemes have been
provided. SMHasher [81] is a widely-known test-suite for evaluating
non-cryptographic hash functions. [79] provided both theoretical
and experimental analysis for cryptographic hash functions. [2] did
a detailed experimental comparison between the performance of
two hashing schemes (cuckoo hashing and quadratic probing) and
two radix tree variations. [74] micro-benchmarked the performance
of SIMD-aware variations of different hashing schemes. [67] is an-
other recent comprehensive experimental study for the different
combinations of hash functions and schemes. However, it only fo-
cused on non-cryptographic traditional hash functions and hash
table operations. For learned models, they have been extensively

benchmarked in [53] for indexing only, and not for hashing. In this
paper, we try to fill this gap.

9 LESSONS LEARNED AND FUTURE WORK

Gaps distribution matters for LMH collisions. Assuming the in-
put keys are sorted, collisions of LMH functions (that employ linear
submodels) depend on the distribution of gaps between consecu-
tive sorted keys. The more evenly spaced these gaps are, the fewer
collisions LMH functions have; in fact there can be fewer collisions
than traditional hashing. When data is from typical distributions
(e.g.,normal), we observe that LMH functions have a similar (or even
higher) number of collisions compared to traditional hashing.
Number of submodels matters for LMH efficiency. Building an
LMH function with very few submodels (fewer than a certain thresh-
old) reduces its accuracy, as it will not capture the input distribution
effectively. On the other hand, significantly increasing the number of
submodels decreases the computation throughput. Accordingly, the
number of submodels should be carefully tuned. For datasets with
evenly spaced gaps, tuned LMH functions can achieve the best trade-
off between computation throughput and collisions, compared to
traditional and perfect hash functions, as shown in Section 7.2. Gen-
erally speaking, RMI is the best in achieving this tradeoff, while PGM
is the worst. For RadixSpline, it depends on the dataset skewness. The
more skewed the dataset is, the worse the RadixSpline performance.
Throughputs of building/probing hash tables using LMH func-
tions vary across different hashing schemes. Collision reduc-
tion due to LMH translates to improved hash table probe and insert
throughputs. However, such improvements become more evident
with bucket chaining, and diminish with cuckoo hashing, as shown
in Section 7.3. We also found that RMI and MultiplyPrime are the
best LMH and traditional hash functions, respectively, to use along
with bucket chaining in all load factors ranging from 20% to 200%.
For string keys, traditional hashing is better than LMH. Effi-
cient support for strings in learned models is still an open research
question. RadixStringSpline [77], which is a preliminary attempt to
support strings with radix splines, shows a significantly less hash
computation throughput than traditional hashing due to the diffi-
culty of modeling strings that typically have long shared prefixes
and relatively low discriminative content per byte.

Efficient support of LMH for mixed workloads of point and
range queries as well as non-partitioned hash join (NPJ). Any
monotonic (i.e., order-preserving) LMH function, along with bucket
chaining, can be used to build one hash table for efficiently answering
both point and range queries at the same time (i.e., mixed workloads).
In fact, using LMH functions along with chaining is also more ef-
ficient than other traditional options in building and probing the
shared hash table in NPJ. Among the different LMH-based variants,
RMI-CHAIN shows the most efficient and robust performance.
Future Directions. The multi-threaded implementations and eval-
uations of LMH, perfect hashing, and traditional hash tables remain
worthy of further exploration. Designing a loss function for LMH
that minimizes collisions while also suitably providing a tradeoff
with hash computation time would be an interesting direction. Also,
our study primarily focused on piece-wise linear models, and more
complex models like decision trees and neural networks may lead
to different and further interesting tradeoffs.
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