
Can LearnedModels Replace Hash Functions?
Ibrahim Sabek∗

MIT CSAIL
sabek@mit.edu

Kapil Vaidya∗
MIT CSAIL

kapilv@mit.edu

Dominik Horn
TUM

dominik.horn@tum.de

Andreas Kipf
MIT CSAIL
kipf@mit.edu

Michael Mitzenmacher
Harvard University

michaelm@eecs.harvard.edu

Tim Kraska
MIT CSAIL

kraska@mit.edu

ABSTRACT
Hashing is a fundamental operation in database management, play-
ing a key role in the implementation of numerous core database data
structures and algorithms. Traditional hash functions aim to mimic
a function thatmaps a key to a random value, which can result in col-
lisions, wheremultiple keys aremapped to the same value. There are
many well-known schemes like chaining, probing, and cuckoo hash-
ing to handle collisions. In thiswork,we aim to study if using learned
models instead of traditional hash functions can reduce collisions
and whether such a reduction translates to improved performance,
particularly for indexing and joins. We show that learned models
reduce collisions in some cases, which depend on how the data is
distributed. To evaluate the e�ectiveness of learned models as hash
function, we test them with bucket chaining, linear probing, and
cuckoo hash tables. We �nd that learned models can (1) yield a 1.4x
lower probe latency, and (2) reduce the non-partitioned hash join
runtimewith 28% over the next best baseline for certain datasets. On
the other hand, if the data distribution is not suitable, we either do
not see gains or see worse performance. In summary, we �nd that
learned models can indeed outperform hash functions, but only for
certain data distributions.

PVLDBReference Format:
Ibrahim Sabek, Kapil Vaidya,
Dominik Horn, Andreas Kipf, Michael Mitzenmacher, and Tim Kraska. Can
Learned Models Replace Hash Functions?. PVLDB, 16(1): XXX-XXX, 2022.
doi:XX.XX/XXX.XX

PVLDBArtifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/DominikHorn/hashing-benchmark.

1 INTRODUCTION
Hashing and hashing-based algorithms and data structures �nd
countless applications throughout computer science, such as in ma-
chine learning, computer graphics, bioinformatics, and compilers
(e.g., [13, 42, 52, 56]). Hashing is also a fundamental operation in
database management (e.g., [8, 37, 67]), including playing a key role
in the implementation of numerous core database data structures

∗Both authors have equal contributions and their names are sorted alphabetically.
This work is licensed under the Creative Commons BY-NC-ND
4.0 International License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/
to view a copy of this license. For any use beyond
those covered by this license, obtain permission by emailing info@vldb.org. Copyright
is held by the owner/author(s). Publication rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

and algorithms (e.g., indexes [37, 38], �lters [36], joins [8], partition-
ing [64], and aggregation [26]). Due to its numerous applications,
considerable research e�orts have focused on introducing e�cient
hashing functions (e.g., [49, 52, 61, 67]).

Traditionally, hash functions aim to mimic a function that maps a
key to a random value in a speci�ed output range. For typical cases
where the size of the output range is linear in the number of keys,
this random assignment results in colliding keys. A collision occurs
when multiple keys get mapped to the same output value. A typi-
cal hash index approach allocates a number of �xed size slots (the
number of slots generally being a constant times the expected num-
ber of keys) and maps incoming keys into these slots using a hash
function. The ideal case for indexes would have no keys collide, so
each key goes to its own separate slot. This wouldmake key lookups
and updates faster, as one would simply check the corresponding
slot for the key. With truly random hash functions, collisions are
unavoidable, and one can readily calculate the expected number of
collisions given the number of slots and keys [55].

Naturally, there are many well-known schemes like chaining,
probing, and cuckoo hashing to handle collisions. As the name sug-
gests, chaining handles collisions by creating a chain of colliding
keys. Probing checks neighboring slots to �nd an empty slot to place
the key. Cuckoo hashing handles collisions by using multiple hash
functions to provide alternate slots for colliding keys. For each of
these schemes, more collisions reduces their performance.

Another approach to build hash indexes is to use perfect hash func-
tions instead of truly random hash functions. Perfect hash functions
have no collisions; however, theymust be specially constructed for a
given dataset, and have other costs in storage and computation time.

In recent years, several works have utilized the idea of using ma-
chine learning to improve the performance ofmany database compo-
nents (e.g., [39, 54, 70]) and basic data structures (e.g., [24, 25, 43, 50]).
By using machine learning to explicitly capture trends in the under-
lying data, thesemethods can aim for instance-optimal performance.
For example, in a recent benchmarking study [53], it has been shown
that learned index structures (e.g., RMI [43], RadixSpline [40]),which
employ CDF-based learned models, can outperform traditional in-
dexes on practical workloads.

As one direction in this line of research, it was suggested in [43]
that such learned models can be used to obtain an e�cient hash
function with fewer collisions. They also provided some empirical
evidence that a hash index with learned model as the hash function
can have better performance than using a truly random hash func-
tion. What is unclear, however, is when such learned models are
e�ective in replacing existing hash functions in applications. At one
end, traditional hash functions [29, 81] are fast to compute, but su�er

https://doi.org/XX.XX/XXX.XX
https://github.com/DominikHorn/hashing-benchmark
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

from collisions [78] that can reduce query performance. On the other
hand, perfect hash functions [52] avoid collisions, but are di�cult
to construct [46], and are not scalable [21], in the sense that the size
of the function representation grows with the size of the input data.
As an alternative, learned models can potentially provide a better
tradeo� between computation and collisions. If the model learns
a good approximation of the empirical CDF of the input keys, we
may achieve few collisions; and if the data allows a compact learned
model, we may achieve a model size independent of or very slowly
growing with the input data size.

Surprisingly, though,wearenotawareof a thoroughexperimental
study examining the learnedmodels against both traditional and per-
fect hashing in query processing operations like indexing and joins.
We aim to remedy that here. We make the following contributions:

• We provide an analysis of the factors a�ecting collisions for
learned models, helping us to identify situations where they
can have fewer collisions than traditional hash functions.

• Weperformanextensivebenchmarkingstudy for traditional,
perfect, and learned model based hash functions. We bench-
mark them through three di�erent applications: hash table
probing/inserting, range querying, and joins. We test using
multiple synthetic and real-world datasets.

• Through the empirical study and analysis we �nd useful in-
sights on when to use learned models instead of traditional
and perfect hashing in various database applications.

• We provide a uni�ed open-source implementation for the
baselines used in our experiments1.

In summary, our collisions analysis and experimental benchmark-
ing demonstrate that, for datasetswith awell-ordered distribution of
gapsbetween their keys, learnedmodels can result in lower collisions
than traditional hash functions. For these datasets, using learned
models can improve the probe and insert throughputs of hash tables.
Such improvement varies with the hashing scheme (strongest with
bucket chaining, and weakest with cuckoo hashing), the load factor,
and the bucket capacity. In many other cases, however, such as with
data from typical distributions (e.g., normal) or having string keys,
we do not see collision reduction using learned models. We also �nd
that using learned models with bucket chaining can support range
queries, and provides the best throughput inmixedworkloads (point
and range queries) that have a majority of point queries. Finally, we
�nd that using learned models in non-partitioned hash join [45, 80]
results in improved performance for favourable datasets.

2 TRADITIONALHASH FUNCTIONS
A uniform hash function ⌘(G) :- 7!* attempts to map arbitrary
inputs to independent and identically distributed (i.i.d.) uniform
random outputs. Obtaining true randomness is not feasible in prac-
tice [42]. However, state-of-the-art hash functions appear to come
reasonably close to imitating true randomness in many practical set-
tings [60, 81]. The extent to which a hash function avoids collisions,
i.e., instances where two distinct inputs map to the same output, is
often referred to as the its’ quality. There is a seemingly endless sup-
ply of di�erent proposed hash functions to choose from [81]. Here,
we brie�y give a background on some of the well-known functions
that we study in the paper.

1https://github.com/DominikHorn/hashing-benchmark

Multiplicative Hashing (MultiplyPrime). This method is promi-
nently described by Donald Knuth [42] as a family of hash functions
with great properties for practical applications. He explicitly adver-
tises their non-uniform random properties, i.e., sensitivity to the
data distribution, as a strength [42]. Let� be a constant, relatively
prime 2F withF being the machine word size. Then, the following
function produces outputs in [0,").

⌘(G)=
�
" ·

✓✓
�

2F
G

◆
mod 1

◆⌫

The trick tomake this e�cient is to avoid fractional computations by
shifting thecalculationbyF , i.e., tomultiplywith �

2F ⌧F =� instead
of the complex decimal computation: ⌘(G) =

⌅ "
2F · (�G mod 2F)

⇧
.

Neatly, this gets rid of themodulo sincemost physicalmachineswith
awordsizeFwillnaturallycomputeeverything mod2F .According
to Knuth," should be some power of the machine’s radix [42] to en-
sure that we are including themore signi�cant bits in the �nal result.
Fibonacci Hashing (FibonacciPrime). It is an instance of mul-
tiplicative hashing, choosing �

F = ��1 =
⇣p

5�1
⌘
/2 based on the

golden ratio. It promises to inherit ��1’s neat scattering character-
istics, i.e., that each added consecutive element falls in the largest
remaining interval, dividing it by the golden ratio [6, 42, 75, 76, 83].
As in multiplicative hashing, we implement Fibonacci hashing us-
ing the integer multiplication trick. However, this time we choose
⇠ =�·2F withF as the machine word size. Some implementations
also round⇠ to the next closest prime.
MurmurHashing (Murmur). It is a family of simple and fast hash
functions developed by Austin Appleby [3, 4], and has been studied
extensively in previous works (e.g., [2, 67]). Its name is derived from
the original idea for its implementation, i.e., repeatedly applying
multiply and rotate instructions to imitate true randomness. How-
ever, it ended up being implemented as a sequence of multiply, shift,
and xor operations. In particular, its 64-bits �nalizer merely consists
of three xors, three shifts, and two multiplications [3, 67].
XXHash. It is awidelyusedopen-sourceuniformhash functionwith
support formanyprogramming languages [18]. It targetsRAMspeed
limits for hashing large enough blobs of data, all while promising
decent performance on small inputs.
AquaHash. It is a uniform hash function that utilizes Advanced
Encryption Standard (AES) intrinsics [33], i.e., AES encryption prim-
itives implemented in hardware on many modern CPUs [69]. In a
previous study, AquaHash has shown promising results compared
to XXHash andMurmur for small keys [71].

3 LEARNEDMODELS ASHASH FUNCTIONS
Learned index structures [43] approximate the cumulative distribu-
tion function (CDF) of the data to predict the position of a lookup key
in a sorted array. When the data has a learnable pattern, i.e., has low
entropy, learned indexes can be much smaller than the input data
itself. While initial proposals considered using neural networks to
approximate the CDF, state-of-the-art learned indexes use a collec-
tion of simple linear models, which we refer to as submodels; these
are fast to both learn and evaluate. Some indexes aim to minimize
the root-mean-squared-error (i.e., L2 loss) [43] and others bound
the maximum prediction error. Assuming a perfect modeling of the
CDF, a learned index would constitute a perfect order-preserving

2

hash function, i.e., a collision-free mapping from keys to positions.
For the rest of this paper, we refer to Learned Model based Hash
functions asLMH . Since real-world data containsmany irregularities
that make it hard to approximate, a learned index inevitably needs
to trade o� precision for space. With larger models, inference time
increases because of limited cache sizes [53]. We describe the three
main learned indexes we evaluate for hashing.
RecursiveModel Indexes (RMI). The RMI index is a multi-stage
model combining simpler models [43]. When the data �ts into mem-
ory, anRMI rarelyhasmore than two stages. It is built in a “top-down”
fashion. The stage-one model computes a rough approximation of
the CDF, which is scaled between 0 and the branching factor ⌫. This
value is used to select a second-stage model, which approximates
the local distribution of the data and is used to produce the �nal
approximation. In other words, the stage-one model partitions the
data into ⌫ buckets and each second-stage model approximates the
data that falls into its corresponding bucket. A recent study [53]
showed that RMI, amongst other indexes, achieves the best tradeo�
between inference time and space.
Radix Spline Indexes (RadixSpline). It is another learned in-
dex variant [40], that is built “bottom up”, and consists of a linear
spline [59] to approximate the CDF and a radix lookup table that
indexes resulting spline points. Compared to RMI, RadixSpline can
be built in a single passwith constant cost per element. RadixSpline’s
spline-building algorithm [59] bounds the maximum prediction er-
ror. Besides the maximum error, RadixSpline is parameterized with
a certain number of radix bits that de�ne the size of the radix table.
Lookups �rst consult the radix table, which indexes A -bit pre�xes of
spline points and is used to narrow the search range over the spline
points. Then binary search is used on the narrowed range to identify
the two spline points surrounding the lookup key. Finally, linear
interpolation between the two spline points is used to obtain a predic-
tion. Thenecessity to search over the spline pointsmake it somewhat
slower than RMI which does not require any search in inner nodes.
Piece-wise Geometric Model Indexes (PGM). Similar to RadixS-
pline, the PGM index [30] provides an error-bounded approximation
of the CDF. It consists of multiple levels where each level represents
an error-bounded piece-wise linear regression (PLR). In contrast
to a spline where consecutive spline points are connected, a PLR
additionally stores an intercept value with each point. Like RadixS-
pline, PGM is built “bottom up” but instead of using a radix layer it
recursively applies its PLR algorithm until a certain error threshold
has been met. PGM can also be built in a single pass with constant
amortized cost per element. Due to its multi-level structure, PGM
can have slightly higher inference cost than RadixSpline [53] but is
more robust when outliers are present. Note that we explore static
PGM only in our study.

4 PERFECTHASHING
Where traditional hash functions aim to produce (near)-i.i.d. uniform
random outputs, perfect hash functions provide an injective function
that maps a set of elements into a range. That is, for a given input set,
the functionwill produce no collisions [10, 28, 32, 52]. Here,we focus
on two types of perfect hash functions:minimal perfect (MPHF), and
order preserving minimal perfect (OMPHF). We �rst explain the cor-
responding de�nitions, and then describe the state-of-the-art MPHF
and OMPHF algorithms we study.

Perfect. A hash function⌘(G) :- 7! [0,#] is perfect for the domain
- if it is injective. Equivalently, it produces zero collisions in the
output domain (8G1,G2 2- :⌘(G1)=⌘(G2) =) G1=G2).
Minimal. A hash function⌘(G) :- 7! [0,#] isminimal perfect if it is
perfect and a bijection; that is, each element of the output range has
a single corresponding domain element (Perfect, and additionally
8~ 2 [0,#] : 9G 2- | ⌘(G) =~). The information theoretical lower
bound for storing a minimal perfect hash function is lg4⇡1.44 bits
per key [10, 15, 28, 32, 35] since key-related information is not re-
tained after construction. For this reason, querying with non-keys
(unknown keys) generally yields arbitrary results.
Order Preserving. Order preserving perfect hash functions order
their outputs according to the original relative order � of input el-
ements (8G1,G2 2- :G1 �G2 =) ⌘(G1) ⌘(G2)). Being able to store
any arbitrary data order induces an ⌦(=log=) space cost [10].
Comparison to Traditional Hashing. In general, building a MPHF,
⌘(G) :- 7! [0,#], requires knowing the entire input set- a priori.
In many implementations, the set- is not stored or reconstructible
after the MPHF is built. Querying with a non-key G 08- generally
yields some arbitrary output value; most often, ⌘(G 0) 2 [0,#], but
this is not guaranteed. MPHF are generally not easily updated in
place; often a full rebuild is performed if a new element is inserted, or
other expensive (non-constant) time work. Compared to traditional
hashing, where only constant work is necessary for initialization,
MPHF and OMPHF generally require running a one time O(=) build
algorithm before they can be used.
RecursiveSplitting (RecSplit). It is aMPHFwhichhas been shown
to deliver state-of-the-art results in regards to space usage, lookup,
and build time [28]. Speci�cally, it comes close to achieving the the-
oretically optimal 1.44 bits per key in practice, while only requiring
expected linear and constant times for construction and lookups,
respectively [28]. RecSplit works by recursively partitioning inputs
into ever smaller buckets until brute force search for a MPHF, i.e.,
a bijection, is viable. The threshold for this search, called leaf size ; ,
as well as the average bucket size 1 for partitioning are parameters
of the construction algorithm. RecSplit utilizes an indexed family of
uniform randomhash functions (examples in Section 2). This enables
e�ciently encoding the tree of brute-force determined indexes using
an optimal Golomb-Rice instantaneous code [28, 72].
MWHC. It was originally proposed as a family of OMPHFs with
expected O(=) construction and O(1) access time [52]. It has been
extended to provide a practical MPHF with constant access and re-
quiring 3 bits per key storage [10, 14]. We refer to our simpli�ed im-
plementationof the latter approachasBitMWHC.Abstractly,MWHC
utilizes a hypergraph to e�ciently�nd a solution for a randomly gen-
erated system of linear equations that is used to store the desired or-
derpreservinghash function 5 (G) :- 7!* givenby 5 (G)=E (⌘1 (G))⇧
...⇧E (⌘: (G)), where each⌘8 denotes a distinct uniform random hash
function, E (G) maps each hash function output to a value in* and
⇧ reduces* ⇥* to* . In practice, E (G) may, for example, be imple-
mented as a simple array of values,⌘8 as a family of reasonably high
quality hash functions such as Murmur with seed values, and ⇧ as
xor or as additionwith an additional modulo computation at the end.

The construction algorithm �rst builds a :-hypergraph with each
of the _ |- | vertices corresponding to one entry of E (G) and one edge

3

[⌘1 (G),...,⌘: (G)] for each input, where : and _ are user-de�ned pa-
rameters. All⌘8 are randomly chosen from a suitable family of hash
functions as described above. A valid assignment for E (G) exists,
i.e., 5 (G) is solvable i� this hypergraph is acyclic. A simple peeling
scheme is used to both determine acyclicity and the order in which
we can safely assign values to each E (G) to yield the desired values
for 5 (G) for each G 2- . We simply restart if the acyclicity test fails,
hence the expected O(=) construction time [52]. For: =3, we require
_� 1.23 to e�ciently �nd a suitable acyclic hypergraph [52, 57].

5 HASHING SCHEMES
Whencollisions occur in ahash table, they are resolvedusinghashing
schemes. In this section, we give a brief background on the hashing
schemes we study in this paper. In each scheme, we discuss how the
hash table is implemented and how collisions are handled.

5.1 Bucket Chaining (CHAIN)
Bucket chaining is a classic collision resolving scheme [8, 67, 71].
In this scheme, the hash table is implemented as an array of pre-
allocated buckets, where each bucket storesmultiple tuples, with col-
lidedkeys, at a speci�c slot in the table.To insert a tuple, thekeyof this
tuple is�rsthashed toaslot in thehash table, and then thewhole tuple
is�rst tried to be placed in the corresponding bucket at this slot. If the
current bucket is already�lled up, a newone is created, pre-allocated
and chained to it. To query for a tuple, the query key is�rst hashed to
a slot in the table (similar to what happens in inserts), then the chain
of buckets at this slot is traversed until either the matching tuple is
found or the end of the chain is reached (i.e., the matching tuple is
not found). In general, bucketization improves the data locality, and
reduces the number of cache misses. That being said, choosing the
bucket size should be carefully tuned to avoid wasting large spaces.

5.2 Open-Addressing
In open-addressing, all tuples are inserted in the hash table slots
themselves, without extra chains to handle collisions. In case of a tu-
plewith a collidingkey, the hash table slots are probed (i.e., searched),
until a slot is found to place the tuple [19, 67]. Typically, a probing
scheme decides the set of hash table slots to check, referred to as
a probing sequence, till a place is found to insert the tuple. Query
operations follow the same probe sequence. There are two main
categories of probing schemes: (1) schemes that probe for the �rst
available (i.e., empty) slot, and (2) schemes that evict the existing
tuple at the probe location (i.e., when a collision occurs) and replace
it with the new tuple. In this paper, we study an example of each of
these two categories (linear probing and cuckoo hashing).
Linear Probing (LP). This is the most basic probing scheme for colli-
sion handling in open-addressing. In this scheme, when inserting (or
querying) a tuple, the key of this tuple is �rst hashed to obtain a hash
table slot (i.e., initial probe location). Then, the hash table is sequen-
tially traversed starting from this slot. In case of insertion, the traver-
sal stops if an available slot is found. In case of querying, the traversal
stops ifwe�nd either thematching tuple or an empty slot (i.e.,match-
ing tuple is not found). Linear probing has two main advantages:
(1) its simple design, and (2) cache e�ciency due to the sequential
scan. In contrast, its performance degrades when large contiguous
blocks of hash table slots are occupied, referred to as primary clusters.

In this case, thenumberofnearbyemptyslots aroundeachprobe loca-
tion is signi�cantly reduced, and the scheme tends tohave longprobe
sequences. Such performance issue can be avoided by either (1) in-
creasing the hash table size such that the percentage of its occupied
slots (a.k.a load factor) is always kept less than 60% [67] or (2) care-
fully tuning its update operations [11]. We note that there are two
other popular variants of linear probing: (1) quadratic [19, 42], and
(2) robinhood [17], which are e�cient for write-heavy and high un-
successful lookup workloads, respectively. However, according to a
recent study [67], linear probing outperforms both of them using the
appropriate load factor. Therefore, we focus on linear probing here.
Cuckoo Hashing (CUCKOO).Cuckoohashing [61]provides another
useful alternative hash table design. A simple variation of cuckoo
hashing uses two subtables, where each subtable has an independent
hash function. To insert a tuple, the key of this tuple is hashed with
the �rst (or primary) hash function to obtain a slot in the primary
table. If this primary slot is available, then the tuple is inserted and
the probe sequence ends. Otherwise, the tuple tries to be inserted in
the second (or secondary) subtable using the second hash function.
If the secondary slot is occupied as well, then a kicking strategy
is applied to evict the existing tuple in either the primary or the
secondary slot, and replace it with the current input tuple. After
that, the evicted tuple is reinserted again, following the same steps.
The eviction chain continues until either all evicted tuples are suc-
cessfully inserted or a maximum chain length is reached. This last
case is a failure; one solution is for all tuples in both hash tables
to be rehashed with two new hash functions.

With balanced kicking [61], the primary or the secondary slot is
randomly selected for eviction. In biased kicking [22, 38], the tuple
in the secondary slot is preferred for eviction, which has been shown
to improve performance for positive lookups. We experimentally
found that biased kicking performs better, so we use it throughout
all our experiments involving cuckoo hashing.

To probe for a tuple, we need only to check the primary and sec-
ondary slots, which yields at most two cache misses regardless of
the load factor. However, a major drawback of the simple variation
of cuckoo hashing is the failure case, where the maximum length of
the eviction chain is reached, happens at low loads. Higher loads can
be handled by generalizing to use more hash tables (e.g., 4 instead
of 2) [31, 67] or allowing multiple tuples per slot [2, 23, 71]. In this
paper, we employ the bucketized variant, where each hash table slot
allows more than one tuple, which again limits to two cache misses
when a bucket �ts in a cache line.

6 COLLISIONS ANALYSIS FORHASHING
Here, we identify and analyze the factors a�ecting collisions for
both LMH and traditional hash functions. This analysis helps us
to identify situations where LMH can have fewer collisions than
traditional hash functions. We speci�cally focus on LMH functions
with piece-wise linear submodels for this analysis.
Notation. For ease of analysis, we start by focusing on the task of
mapping # keys to # locations. This analysis readily generalizes,
and the high-level conclusions are independent of this assumption,
with the main di�erence being the number of locations increases,
the number of collisions decreases. Assume that we apply a hash
function 5 on the keys,where 5 could be a traditional hash (Section 2)
or a LMH function (Section 3). Let G0,G1,...,G#�1 be the sorted array

4

of the # input keys, and let~0,~1,...,~#�1 be the sorted array of the
hashing outputs 5 (G0), 5 (G1), ..., 5 (G#�1) (note that ~8 = 5 (G 9) for
some 9 , but~8 is not necessarily 5 (G8)). For LMH functions, the~8 ’s
may be on the real-valued range [0,#), andwewould thenmap each
key to the location corresponding to the value of~8 rounded down to
an integer. For convenience, we let~�1=0. The sorted output values
generate a set of gaps60,61,62,... such that~8 =

⇣Õ8
C=06C

⌘
. We assume

that 68 ’s are i.i.d, with probability density function 5⌧ (I) and CDF
�⌧ (I); this is a reasonable approximation for analysis. For example,
for uniformly randomly distributed outputs 5 (G8), the gaps between
~8 are approximately exponentially distributed [55].
Characterizing Collisions.A collision occurs when two keys are
mapped to the same location. The key insight regarding collisions
is that they depend on the gaps between consecutive sorted hashing
output values (~8�~8�1). If the gap between two consecutive values
is greater than one (i.e.,~8�~8�1 �1), then the corresponding keys
would de�nitely be placed in separate locations. On the other hand,
if the gap is smaller than one (i.e.,~8�~8�1  1), the corresponding
keys may be mapped to the same location; it depends where~8 and
~8�1 relative to the integer boundary.

Ideally, we would want all the gaps to be more than one, to have
zero collisions. However, the gap values are constrained by the con-
dition that the sum of all the gaps should be less than the number of
locations which is # here.2 Thus, the gap distribution would have
to be the trivial distribution that is always 1 to avoid collisions.

Let2 be thenumber of collidingkeys (i.e., keys that are not alone in
a location). Assuming that 5 is not a lattice distribution3, we can de-
scribe the expected number of colliding keys E[2] with the following
lemma. In the below, recall {G}=G�bGc .

L���� 1. As # grows large, E[2] converges to

#

✓
1�

π 1

D=0

✓π
1

C=1�D
(1��⌧ (1�{C+D})) · 5⌧ (C)3C

◆
3D

◆
.

We remark that the proof reveals that this formula is also a good
approximation for large # .

P����. Let /8 be the indicator random variable that is 1 if~8 is
alone in its own location. We �rst consider the position of~8�1. For
su�ciently large 8 , {~8�1}, the fractional part of ~8�1, is known to
converge to the uniform distribution on [0,1] (see, e.g., Thm 5.8.4.
of [41]). We therefore treat {~8�1} as being distributed uniformly on
[0,1]. Accordingly, the probability~8 is in a di�erent location from
~8�1 is given by π 1

D=0

✓π
1

C=1�D
5⌧ (C)3C

◆
3D .

Wealso need, however, that~8+1 is also in a di�erent location from
~8 . This depends on the value of {~8 }. Taking this into consideration
yields the following probability for/8 :

%A (/8 =1)=
π 1

D=0

✓π
1

C=1�D
(1�� (1�{C+D})) · 5⌧ (C)3C

◆
3D .

As# grows large, the approximation of uniformly distributed {~8�1}
is arbitrarily accurate for almost all 8 , giving the convergence. ⇤

2Sum of gaps is:
Õ#�1

C=1 (~C �~C�1) =~#�1�~0 # .
3Lattice Distribution: A discrete probability distribution concentrated on a set of points
of the form a+nh, where h>0, a is a real number and n=0,±1,±2,.

Collisions for TraditionalHash Functions. In case of a truly ran-
dom hash function, the output values will be uniformly distributed
in the range [0,#] irrespective of the input distribution. Therefore,
the gap distribution of the output values is very well approximated
by the exponential distribution with mean 1. Most traditional hash
function displayed this behaviour in our evaluation.
Collisions forLMH FunctionswithPiece-wiseLinear Submod-
els. To gain intuition, let us start by using a single linear model to
approximate the CDF of the input data G0,G1,..., and this will give us
our hash function 5 . Let the linear model be<⇤ (G�G0) where< is
(# �1)/(G#�1�G0). Note that the slopewould be approximately the
mean of the gap distribution of the input keys. The resulting hash
function would be ⌘(G) =< ⇤ (G �G0) which maps the input keys
in the range [0,#). After applying this hash function to obtain the
output values~0,~1,..., we notice that the gaps between the output
values are simply the scaled version of the gaps between the input
keys:~8+1�~8 = (G8+1�G8)⇤<. At a high level, if the input is evenly
spaced, then our outputs will similarly be evenly spaced, resulting
in fewer collisions. If the input gaps are high in variance, we would
expect more collisions. In LMH functions, this scalingwould happen
at the submodels scale.

Accordingly, if the data is generated similarly to our theoretical
model, with a gap distribution 6

0

(G0,G1=G0+6
0

0,G2=G1+6
0

1,....), the
gap distribution of the input keys determines the gap distribution of
the output keys and thus the amount of collisions. In certain cases,
like auto-generated keys (1,2,3,4,5,...) perhaps with some deletions
or noise, the input gaps are mostly constant. In this scenario, a piece-
wise linear model can lead to fewer collisions than a traditional hash
function. However, if the input keys are generated by sampling from
a distribution instead of sequentially, multiplying the CDF value of
the key by the array size will behave as an order-preserving hash
function. A LMH function that approximates this underlying distri-
bution would behave essentially the same as a truly random hash
function in terms of collisions.

Increasing the number of submodels can improve the accuracy
of when using a piece-wise linear model to approximate a CDF. This
helps in the case of indexing an item, but from our argument above,
we see that this does not necessarily reduce the number of colli-
sions.We show this via an example.Wemapped 100million uniform
randomly and normally distributed keys to 100 million slots using
RMI with varying number of submodels. In Figure 1, we plot the
proportion of collisions as we increase the number of submodels
in RMI. We observe that for uniform randomly distributed keys in-
creasing the number of linear submodels does not a�ect collision
metric until we reach 50 million submodels. RMIs with 100 submod-
els and 100000 submodels are both able to approximate the CDF
of the distribution well and the output is approximately uniformly
randomly distributed in both cases. The larger RMI provides better
accuracy than the smaller one but essentially the same number of
collisions. TheRMIwith 50million submodels essentiallymemorizes
the empirical CDF of the dataset and thereby results in lower colli-
sions. For the normal distribution, an initial increase in the number
of submodels reduces collisions as an RMI with only 1-2 submodels
fails to approximate the CDF of normal distribution well.

5

Figure 1: Proportion of collisions with increasing RMI size.

wiki fb osm book gap_10 uniform norm lognorm
RMI 103 107 107 106 10 102 102 104
RadixSpline 103 108 108 107 10 102 102 104

Table 1: Default numbers of submodels in LMH functions.

Figure 2: Gap distribution of various datasets

7 EVALUATION
In this section, we present an empirical study for the performance of
LMH functions and compare them against both traditional and per-
fect hashing. Ourmain objective is to answer the following question:
what are the main workload characteristics, scenarios, and operations
where employing LMH functionswould improve performance?We�rst
study the collisions and computation time tradeo�s (Section 7.2).
Then, we evaluate the performance of the various types of hash
functions in supporting the main hash table operations, lookup and
insertion, for di�erent types of hash tables (Section 7.3). We also
provide more detailed experiments regarding issues such as how
collisions, key types, and payload size a�ect performance in practice,
as well as the impact of construction time for LMH (Section 7.4). Fi-
nally, we move to some higher-level operations that use hash tables,
and show cases where LMH can improve the performance of range
queries (Section 7.5) and non-partitioned hash join (Section 7.6).

7.1 Experimental Setup
Datasets.We use both real and synthetic key datasets in our exper-
iments. All keys are 64-bit integers4. For real keys, we use the four
datasets from the SOSD benchmark [53]. These datasets are (1) fb,
which has randomly sampled Facebook user IDs, (2) wiki, which
has timestamps of edits fromWikipedia, (3) osm, which has cell IDs
from Open Street Map, and (4) book, which has keys representing
the popularity of books from Amazon. Each dataset has 200 million
keys. In any experiment, we use either the whole dataset or a sample
from it (details are mentioned in each experiment separately).

For synthetic keys,we use four di�erent key generation processes:
(1) gap_10, in which sequential keys are �rst generated at regular
intervals of 10 and then 10% of the keys are uniformly randomly
deleted (this represents the case of auto-generated IDs after removal

4We focus on integer keys in our study. However, for completeness, we provide a single
experiment in Section 7.4 to investigate the performance with string keys.

of certain users), (2) uniform, in which keys are generated uniformly
at random in the range [0,250], (3)normal and (4) lognormal, inwhich
keys are generated from normal (`=100 and f =20) and lognormal
(` = 0 and f = 1) distributions, respectively, and then are linearly
scaled to the range [0,250].

As discussed in Section 6, the gaps between sorted hash outputs
determine collisions. In order to understand the distribution of these
gaps in our datasets,weuse anRMI,with 1million submodels, tomap
100 million keys from each dataset to 100 million slots and then plot
thegapsbetweenconsecutive sortedoutputvalues. InFigure2, x-axis
shows the gap value and y-axis shows the count of this gap for some
of the used datasets. We observe that gap_10 andwiki datasets have
gaps concentrated around1.uniform,normal, and lognormal datasets
have very similar gap distributions concentrated around 0.25-0.35,
while fb, osm, and book datasets have signi�cant counts of gaps
concentrated around 0.1 (fb and osm have higher counts than book).

In all hash table, range query, and join experiments, we generate
8-byte payloads chosen randomly from the range [0,264]5. All tuples
(or keys) are randomly shu�ed before running any experiment.
Hardware. All experiments are conducted in the main memory
on a machine with 256 GB of RAM and an Intel(R) Xeon(R) Gold
6230 CPU@ 2.10GHz with Skylake micro-architecture (SKX) and
L3 cache of 55MiB. The operating system is Arch Linux with a
page size of 4KB (default page size). The implementation of all
hashing functions and schemes is our own and in C++. The bi-
naries are compiled with clang++ (12.0.1) using optimization -O3.
We have activated prefetching.
Default Settings. Unless otherwise mentioned, we set the number
of submodels in RMI and RadixSpline as stated in Table 1. Each value
represents the least number of submodels needed to give the least
amount of collisions in a speci�c dataset. For PGMmodels, we set the
error bound to 10. The number of tuples (or keys) in each synthetic
dataset is set to 100 million. We use a default bucket size of 1 in
bucket chaining. To support cuckoo hashing with a load factor up
to 90%, we use a bucket size of 4 as described in [2]. As mentioned
in Section 5, we use the biased kicking strategy as it performs better
than the balanced one. We set 50000 as a maximum number of kicks.
This value led to a suitably small number of insert failures.
Metrics. Throughput is the default metric in most of the experi-
ments. When studying the hash function itself, we use the compu-
tation throughput, which is the number of hash function operations
executed per second. In the hash table and range query experiments,
we use the number of completed queries (e.g., probe/insert queries
on hash tables) per second (i.e., queries throughput). For the join ex-
periments, we use the runtime instead of the throughput to perform
a breakdown for the join phases.
Measurement and Pro�ling. For all experiments, we report the
average of three independent runs, where we use a di�erent random
seed for generating and shu�ing synthetic and real data, respec-
tively, in each run.We use the PerfEvent library [51] to pro�le the
low-level hardware counters in Section 7.3. These counters include
L1 and LLC cache misses, branch misses and cycles.
Beyond Scope.Our study focuses only on the single-threaded setup
to fairly compare the performance of LMH functionswith traditional

5We focus on 8-byte payloads in our study. However, for completeness, we provide
a single experiment in Section 7.4 to investigate the e�ect of varying the payload size.

6

and perfect hashing, without parallelism optimizations. That being
said, we believe that multi-threaded implementations of these hash-
ing schemes should be evaluated in a standalone study, which we
currently plan as an extension for this work.

7.2 Computation Throughput vs Collisions
In this experiment, we are interested in studying the tradeo� be-
tween the hash function quality and its e�ciency. We use the eleven
hash functions previously discussed and �ve from our datasets6.
In each dataset, we map a randomly-selected 100 million keys into
100 million hash table slots, and measure both the hash function
computation throughput, and the proportion of colliding keys.

Figure 3 shows the results of this experiment. Note that each tra-
ditional and perfect hash function is represented as a single point in
the scatter plot. However, in LMH functions, we vary (1) the number
of submodels in RMI and RadixSpline from 1 to 50million and (2) the
error bound of PGM from 1 to 10000, yielding multiple points on the
plot. As expected, traditional hash functions have a signi�cant num-
ber of collisions, and perfect hash functions are slow. All traditional
functions have similar throughput (90-100 million operations/sec)
and colliding keys proportion (0.63-0.65) across all datasets. This
proportion of colliding keys nearly matches that for truly random
hash function which is approximately (1�1/4⇡0.632). All perfect
hash functions have no collisions (by de�nition), but low throughput
(10-20million operations/sec) due to the high computation overhead
coming from either an expensive traversal over the splitting tree in
RecSplit [28] or multiple random accesses to the array storing the
hypergraph-related values in MWHC [52].

The performance of LMH functions, however, depends on the gap
distribution of the input datasets as discussed in Section 6. The RMI
and RadixSpline hash functions, at their best con�gurations, can
achieve low collisions (0.2 and 0.3) and high throughput (80 to 120
million operations/sec) in two datasets, gap_10 andwiki. For these
datasets, the gaps are more or less evenly spaced, and hence LMH
functions yield a very low number of collisions. In addition, the num-
ber of submodels needed for these datasets is small, whichmakes the
LMH computation overhead e�cient. For fb, the variance in the gap
distribution is veryhigh, yielding a largenumber of collisions. Reduc-
ing these collisions requires using a large number of submodels (the
best proportion of colliding keys is 0.5), yielding low throughput.

In the case of uniform and normal datasets, we observe that LMH
and traditional functions have similar collision behavior, regardless
of the used number of submodels. This matches our understanding
that the CDF-based hashing of LMH for these datasets will lead to a
distribution of items in buckets that is nearly the same as traditional
hashing (as described in Section 6). In general, as discussed in Sec-
tion 6, increasing the number of submodels in LMH functions does
not necessarily decrease the collisions. For example, inwiki, the pro-
portion of colliding keys usingRMI signi�cantly drops from0.9 to 0.3
after an initial increase in the number of submodels from 1 to 1000,
and then becomes stable regardless the number of submodels used.

For the rest of our experiments, we compare LMH functions with
the best traditional and perfect hash functions, in terms of both
computation time and collisions: Murmur and MultiplyPrime for
traditional hashing, and MWHC for perfect hashing.

6Tradeo�s in osm and book are similar to fb, and in lognormal are similar to normal.

7.3 Hash Table Performance
Here, we are interested in studying the performance of two main
hash table operations; probe and insert.
Probe Throughput. In this experiment, we �rst insert 100 million
tuples in a hash table with varying number of slots (i.e., buckets).
Then, we probe the hash table with all the inserted tuples (i.e., query
workload), after randomly shu�ing them, and measure the through-
put.Wegenerate di�erent load factors byvarying thenumberof slots.
Figure 4 shows the results for this experiment while using seven
input datasets (uniform and normal nearly have the same results).
For each hashing scheme, we use a di�erent range of load factors
that are suitable for the scheme. For example, we use load factors
� 100% in bucket chaining as it can support inserting tuples more
than the total slots in a hash table. Also, we only use high load factors
(� 75%) with cuckoo hashing because, in smaller load factors, cuckoo
hashing is always dominated by other schemes [67].

For bucket chaining, RMI has the best throughput in gap_10, nor-
mal, lognormal, andwiki datasets, averaging 1.4x better throughput
than the second best function,whether it isMultiplyPrime or RadixS-
pline. This is because RMI has the fewest collisions in these four
datasets. Fewer collisions result in shorter chains that need to be
traversed during the probe queries, and hence fewer cache misses.
In addition, both PGM and MWHC have the worst throughput in
gap_10 andwiki datasets due to their high computation overhead7.
For RadixSpline, we observe an interesting variance in performance
in these datasets. It is competitive with RMI throughput in non-
skewed datasets (gap_10 and wiki), but becomes the worst in the
skewed datasets (normal and lognormal). This is because in skewed
datasets outlier keys lead to having a large radix tablewith amajority
of its entries being useless (i.e., more data structure overhead and
cachemissesduring lookups).ThisweaknessofRadixSplinehasbeen
noted in [53]. In fb, osm, and book datasets, we observe a clear rank-
ing among the di�erent hash functions. AlthoughMWHC still has
the highest computation overhead,LMH functions become theworst
options (except book in which RMI is slightly better thanMWHC)
with an average throughput of only 2.5million queries/sec. This is be-
cause of the high number of collisions for LMH functions when used
with these datasets that have high variance in their gaps distribution.

We also look at the throughput across di�erent load factors. In-
creasing the load factor increases collisions because there are fewer
slots, which degrades the throughput. For example, Murmur has
throughputs of 16 and 8.5 million queries/sec at load factors of 25%
and 200%, respectively. However, we observe two exceptions to this
throughput trendwhenusing: (1)RMIandRadixSpline at load factors
between 25% and 100% in gap_10 and wiki, where the throughput
actually increases, and (2) MWHC in all load factors, where the
throughput is �xed around 8 million queries/sec, regardless of the
dataset. The reason for the�rst exception is that collisions are already
close to zero in these two datasets, so increasing the load factor from
25% to 100% primarily reduces empty hash table slots, leading to
better caching behavior. The reason for the second exception is that
the MWHC computation overhead for each tuple is constant [52],
regardless of the used load factor.

For linear probing, the throughput depends on the length of the
sequential scan needed to handle collisions. We observe that the

7Note that PGM has high inference cost because of its multi-level structure.

7

Figure 3: Computation throughput and collisions tradeo�s for various hash functions and using di�erent datasets.

Figure 4: Probe throughput for combinations of 6 hash functions and 3 hashing schemes: (A) bucket chaining, (B) linear probing,
and (C) cuckoo hashing. Results are shown for 7 di�erent datasets, and various load factors for each hashing scheme.

throughputs achieved byusingMurmur,MultiplyPrime, andMWHC
have the same trend as in bucket chaining. In contrast, RMI and
RadixSpline have the following two notable changes. First, their
performance gain over traditional hashing in gap_10 decreases or
even vanishes (e.g., they yield 10% less throughput in normal and
lognormal). Although the number of collisions using LMH func-
tions is slightly smaller in these datasets (Section 7.2), the e�ect of
this di�erence can be hidden by the sequential scan bene�ts (e.g.,
prefetching) of linear probing, and hence the overhead of RMI and
RadixSpline hash computation becomes more signi�cant. Second,
RMI and RadixSpline result in worse throughput than traditional
hashing inwiki (average 40% less throughput thanMultiplyPrime).
This was a bit surprising as LMH functions result in signi�cantly
fewercollisions than traditionalhashing.However,we found that ina
fewparts of thewiki dataset RMImaps up to 100 keys to the same slot,
creating clusters that result in long sequential scans during probing.

For cuckoo hashing, we observe that the throughputs achieved by
any hash function are pretty much similar within the same dataset,
regardless of the load factor used. This is expected as handling col-
lisions in cuckoo hashing is typically performed in constant time
(two cache misses at most). Even better, we employ a biased kicking
strategy, inwhichmost of the tuples are placed in their primary hash
slots (i.e., one cachemiss formost of the probes). Thismakes the hash
function computation (model prediction in case of LMH functions)
have a great impact on the probe latency in cuckoo hashing, and
explains why the throughput using LMH functions is worse than
using traditional hashing in all datasets, except in gap_10 andwiki
where RMI is almost similar to Murmur. Note that using RMI failed
to construct the cuckoo hash table for fb and osm (similarly, RadixS-
pline and PGM failed in fb, osm, and book at load factors > 90%)
because the resulting number of collisions is extremely high, and
the required number of kicks to handle them exceeds the maximum
threshold. For traditional hashing, we also noticed that Murmur

8

Figure 5: Insert throughput for the same hash functions and
schemes used in Figure 4, yet forwiki and fb datasets only.

succeeded in constructing the hash tables in all datasets, while the
construction failed using MultiplyPrime at load factor 95% because
of highnumber of collisions. In general, cuckoohashing signi�cantly
reduces the impact of collisions, regardless of the hash function used,
and hence the performance improvement of LMH over traditional
hashing becomes negligible.
Insert Throughput. Here, we use the same setup in the probe
throughput experiment, while changing the queryworkload. To gen-
erate the insert workload, we �rst uniformly and randomly sample
101million tuples from an input dataset. Then, we initialize the hash
table by bulk-inserting 100 million tuples from this sample as in the
probe throughput experiment, anduse the remaining 1million tuples
as the query workload. Figure 5 shows the results of this experiment
for two input datasets only,wiki and fb (the remaining datasets show
similar performance trends).

In general, the relative ranking and throughput trends remain the
same as in the probe throughput experiment (including the failure
cases in cuckoo hashing). We also observe that, in wiki, the per-
formance bene�t that RMI o�ers over MultiplyPrime - when used
with bucket chaining - in insertion is not as high as in probing (only
an average of 10% throughput improvement in insertion compared
to 30% in probing). Probing time mainly depends on the length of
the chain to be traversed whereas insertion requires allocating and
adding new buckets to the chain, and hence the collision reduction
improves only a portion of the total insert time. Another interesting
observation is that at load factor 95% using cuckoo hashing with
MWHC is the best as the overhead of kicking operations becomes
higher than the complex computation of MWHC.
Performance Counters. To deeply understand what happens on
the hardware level, we investigate the following four performance
counters: cycles, L1 cache misses, last-level cache (LLC) misses, and
branch misses. Figure 6 shows the average values of these counters
per tuple when using RMI, MultiplyPrime andMWHC in the probe

Figure 6: Performance counters per tuple for the probe
experiment in Figure 4 using the gap_10 (�rst row) and fb
(second row) datasets at load factor 80%.

Figure 7: E�ect of (1) gap distribution on LMH collisions (left),
and (2) dataset size on building time (right).

throughput experiment (Figure 4) at load factor 80% and only for two
datasets gap_10 (�rst row) and fb (second row). ForMWHC, we only
show chained results as other schemes have similar performance.

For gap_10, the three RMI-based variants achieve the lowest per-
formance counter values (e.g., one L1/LLCmiss per tuple for RMI-
CHAIN and RMI-LP) compared to other variants. This is because the
number of submodels needed for any LMH function is only 10 (as
shown in Table 1), which can totally �t in the cache. For fb, we found
that scanning very large clusters, as in RMI-LP or MULT-LP, signi�-
cantly increases both cache and branchmisses, and in turn increases
cycles (high cache and branchmisses lead to an excessive increase in
theamountofCPUstalls andwasted cycles, respectively). In contrast,
RMI-CHAINsigni�cantly reduces thee�ectof thehighcollisionspro-
duced by RMI in fb (RMI-CHAIN has at least 3X less LLCmisses and
cycles thanRMI-LP). Even in gap_10, RMI-CHAIN still has at least 2X
and4X less cycles thanRMI-LPandRMI-CUCKOO, respectively.This
con�rms our conclusion about the impact of hashing schemes on the
probe throughput using LMH functions. Another interesting obser-
vation in fb is that MULT-CHAIN andMULT-CUCKOO have close
values in all counters, yetMULT-CUCKOOis a bit better in cycles and
branch misses. This shows that bucket chaining can provide a com-
petitive performance at challenging datasets and high load factors.

7.4 More Performance Analysis
In this section, we study more parameters related to LMH functions
and their performance in hash tables.

9

Figure 8: E�ect of increasing the bucket capacity on the probe
throughput of a chained hash table at load factor of 50%.

Gap Distribution. In this experiment, we vary the gap distribution
to display that gaps concentrated around the mean have lower colli-
sions. Assuming that the variance of the gap distribution of uniform
keys is- , we generate 4 di�erent variations of the uniform dataset,
such that the gap distribution variances of their keys are 2- , 4- ,
0.5- and 0.25- (i.e., scaled variances) 8. Then, we insert the keys
of each dataset variation in a hash table using RMI, and calculate
the proportion of colliding keys. The left part of Figure 7 shows the
proportion of colliding keys with varying load factors. As expected,
the amount of collisions can be decreased by decreasing either de-
creasing the gap variance or the load factor. Lower gap variance
cause the gap distribution to concentrate around the mean value
resulting in lower collisions.
Build Time. Unlike traditional hash functions, LMH and perfect
hash functions require a building stage. In the right part of Figure 7,
we show the building time for LMH andMWHC functions using the
uniform dataset, varying the number of keys between 106 and 108.
We see that the building time of MWHC is consistently 2.5 and 2
orders of magnitude slower than the building times of RMI (or PGM)
and RadixSpline, respectively. Although MWHC has an expected
O(=) construction time [52], its hypergraph building process re-
quires an excessive amount of randommemory accesses, and hence
cache misses (check Section 4). In contrast, building LMH functions
requires only sorting the data once and doing multiple sequential
passes over it, which is a cache-friendly process.
Bucket Capacity. In this experiment, we study how increasing the
bucket capacity (i.e., number of tuples in the bucket) a�ects the probe
throughput. For each dataset, we build di�erent hash tables with a
load factor of 50%, and are bulk-loaded with 100 million tuples. Note,
sincewe�x the load factor, increasing the bucket capacity by a factor
- reduces the number of buckets by a factor 1

- . We use the same
inserted tuples as a probe workload, after randomly shu�ing them,
and measure the throughput as in Figure 8.

In bucket chaining, increasing the bucket capacity reduces the
length of needed chains (i.e., extra buckets) to handle collisions, as
any colliding key now has a high probability to be in the main hash
table bucket. However, this increases the probe time as well because
�nding a key in the bucket requires larger scan overhead as the
bucket becomes larger. In wiki, LMH functions already produce a
low number of collisions, and hence increasing the bucket capacity
will not bene�t chaining, yet causes probes to scan unnecessary keys,
and hence the throughput signi�cantly decreases (this is also true

8Each dataset variation is generated by scaling the gaps between the uniform keys
with the corresponding factor (e.g., the "2- Variance" dataset scales the gaps between
uniform keys by a factor of 2).

Figure 9: (1) E�ect of payload size on the probe throughput
(left), and (2) Computation throughput and collisions tradeo�
when using string keys (right).

for MWHC as it has no collisions by de�nition). We can see that
RMI and RadixSpline are a�ectedmore than PGMbecause their hash
computation is lighter, and hence the e�ect of collision handling,
with any extra overhead, becomes more obvious in the total probe
time. In fb, LMH produces a lot of collisions that result in longer
chains. In this case, increasing the bucket capacity improves the
probe throughput a bit. In the case of Murmur andMultiplyPrime,
they signi�cantly su�er from the extra scan overhead within the
bucket only beyond size of 4.
Payload Size.Here, we study the e�ect of increasing the payload
size on the probe throughput of hash tables built with di�erent hash
functions. In this experiment, we use thewiki dataset and a chaining
scheme with a 100% load factor. For each hash function, the hash
tables are built and probed as described in the bucket capacity ex-
periment, yet, with tuples of di�erent payload sizes: 4, 8, 16 and 64
bytes. The left part of Figure 9 shows the probe throughput (x-axis
has a logscale). As expected, increasing the payload size signi�cantly
reduces the probe throughput of all functions, except MWHC and
PGM, inwhich the overhead of cachemisses (coming from accessing
payloads) does not a�ect their already high computation time until
the payloads become very large (e.g., 64 bytes).
String Keys.Workloads with string keys are common in the real-
world (e.g., [5, 16]). Unfortunately, learned models and indexes have
no e�cient support for string keys. The most relevant work in this
area is RadixStringSpline (RSS) [77], which constructs a tree of radix
splines, each indexing a �xed number of bytes in the string. Here, we
investigate the robustness of RSS against Murmur, which is known
for its e�ciency in hashing strings. We repeat the computation
throughput-collisions experiment (Section 7.2), while using two
string datasets: (1) Emails, which is a real-world email dataset used
in [12], and (2) URLs, which is a dataset of Wikipedia URL tails used
in [77]. The right part of Figure 9 shows the results of this experi-
ment. We can see that RSS, at its best con�gurations, can actually
achieve 28% lower collisions than Murmur but with extremely slow
computation throughputs. This slowness is because strings typically
have both long shared pre�xes and relatively low discriminative
content per byte, which require a very large number of submodels
(i.e., tree nodes) in the RSS to capture the strings distribution.

7.5 Range Queries Performance
Hash tables support fast point queries only, and do not support range
queries. On the other hand, index structures like B-Tree, ART [47],
and RMI [43] support both point and range queries. However, the
performance of index structures in point queries is not as e�cient as

10

Figure 10: E�ect of both point queries percentage (�rst row),
and range query size (second row) on the queries throughput.

hash tables. In case of having a mixed workload of point and range
queries, where range queries represent only a small proportion,
one cannot use a hash table and is forced to use an index to be
able to answer the range queries. This results in a huge performance
degradation for themajority of the point queries. Fortunately,we can
use "monotonic" LMH functions, such as RMI andRadixSpline, along
withbucket chaining tobuild ahash table that supports rangequeries
in addition to its natural support for fast point queries. In this case, a
range query can be processed by scanning the buckets between the
locations corresponding to the query lower and upper bound keys.
This is possible as monotonic LMH functions are order-preserving,
andhence the target keys are bound to bewithin the bucket locations.
PointQueriesPercentage. In thisexperiment,westudythe through-
put of a mixed workload of point and range queries (the percentage
of point queries is variable) using (1) RMI-CHAIN and RadixSpline-
CHAINhash tables (bucket size of 8 and load factor of 50%),whichare
our proposed solutions, and (2) a sorted array of the input datawith a
typical RMI on top of it (we refer to it here asRMI-SORT).Weusewiki
and fb, where we sample 100million tuples from each one of them as
input data. We generate a mixed query workload by �rst randomly
sampling-% of the input data to be used as point queries, and then
for the rest of the workload (i.e., 100--%) we generate random range
queries that retrieve about 25-50 tuples. The upper part of Figure 10
showstheresults for thisexperiment,wherewevary- between0and
100. As expected, in bothwiki and fb, RMI-CHAIN and RadixSpline-
CHAIN have faster throughput than RMI-SORT when the workload
has a majority of point queries, and vice versa. This is explainable as,
for a point query, they just need to scan the bucket pointed out by the
model, whereas RMI-SORT needs a local search to �nd the relevant
key. For a range query, RMI-CHAIN and RadixSpline-CHAIN scan
the buckets that fall within the range query and also the additional
chains associated with them. This leads to excessive randommem-
ory accesses, and hence a decrease in the throughput. In contrast,
RMI-SORT is more suitable for range queries as it only needs to
sequentially scan the relevant keys in the sorted range.
Range Query Size.Here, we reuse the setup of the previous experi-
ment, while focusing only on 100% range queries workload.We vary

Figure 11: Runtime breakdown for the di�erent implementa-
tions of non-partitioned hash join using various hash tables.

the rangequery size from1 to1024.Thebelowpart of Figure10 shows
the results for this experiment (x-axishas a logscale).With increasing
the range size, RMI-CHAIN and RadixSpline-CHAIN become slower
than RMI-SORT as they need to scan additional chained buckets.

7.6 Hash-based Join Performance
In this experiment, we are interested in understanding the perfor-
manceofnon-partitionedhash join (NPJ)over two input relations [45,
80], when implementing it using di�erent combinations of hashing
functions and schemes. Note that we do not investigate the hashing
e�ect on partitioned hash join [73, 80] as it employs small cache-�t
hash tables. In this situation, using any traditional hash function to
build such small tables will be the best choice. In contrast, NPJ builds
a large global hash table for the smaller input relation and the prob-
ability of having performance degradation, due to large number of
collisions, is high. Therefore, employing an e�cient hash function is
crucial to improve the join performance.We usewiki and fb datasets,
where we uniformly and randomly sample two variations from each
dataset with 10M and 25M tuples. These variations will be used to
perform theNPJ on, using the best function in each hashing category.
Figure 11 shows the running time of the NPJ build and probe phases.

Interestingly,wecanobserve thatRMI-CHAINandMULT-CHAIN
have the best join performance in bothwiki and fb. Speci�cally, RMI-
CHAIN has 28% less total runtime (build and probe) than MULT-
CHAIN in wiki (e.g., in the 25Mx25M variant, the build times of
RMI-CHAIN andMULT-CHAIN are 3.2 and 4.3 sec, while their probe
times are 1.488 and 2.193 sec, respectively), and they both have the
same total runtime in fb. Looking at the build phase, we can see that
RMI-CHAIN and RMI-LP build the hash table more e�ciently than
other solutions inmost of the cases. This ismainly because RMI sorts
the data to build its submodels, and then uses them to insert each
tuple from the sorted data into the hash table. Although sorting the
data is a bit expensive, it helps the model-based insertion to happen
in a cache-friendlymanner, and the overall overhead, including both
sorting and model-based insertion, is still signi�cantly less than ran-
domly inserting tuples (i.e., more cachemisses) usingMultiplyPrime
andMurmur. This observation was con�rmed in a previous study

11

before [44]. Due to the e�ciency of RMI in building the hash table,
the total time of NPJ using RMI-CHAIN becomes more competitive
with MULT-CHAIN in a challenging dataset like fb because the per-
formance gain in building compensates for the performance degra-
dation in probing, and the total running time becomes very close.

8 RELATEDWORK
Traditional Hashing. Traditional hash functions can be catego-
rized as either non-cryptographic [29] or cryptographic [1]. Non-
cryptographic hash functions [2, 18–20, 42, 67, 69, 71], which we
mainly focus on in our study, are mostly used in building data struc-
tures and algorithms due to their good balance between computation
time and collision rates.More recentwork has focused on optimizing
the performance of non-cryptographic hashing on modern hard-
ware by either proposing new hash functions [81] (e.g., CLHash [48],
and tabulation hashing [65]) or customizing the existing ones to
utilize the underlying hardware (e.g., GPU [49] and SIMD vectoriza-
tion [9, 34]).Cryptographic hash functionshave theproperty of being
computationally hard to invert. These functions can still be used in
building data structures, yet their performance can be much slower
than non-cryptographic ones [18]. Examples of cryptographic hash
functions include MD5 [68], SHA1 [27] and SipHash [7].
Perfect Hashing. Perfect hashing has beenwidely studied; see, e.g.,
the survey in [52]. Perfect hashing solutions can be divided into two
categories: static and dynamic. When inserting new tuples to the
hash table, the static solutions (e.g., [14, 28, 52, 62]) reconstruct the
whole table from scratch, while the dynamic solutions (e.g., [21, 82])
reconstruct the tableparts thatare related to theupdateonly.Another
interesting line of work is improving the perfect hashing computa-
tion using modern hardware, such as GPU (refer to a survey in [49]).
LearnedModels for Indexing andHashing.During the last few
years, the idea of using CDF-based learned models to replace tradi-
tional indexes has been investigated extensively including single-
dimension (e.g., [30, 40, 43]), multi-dimensional (e.g., [24, 58]), updat-
able (e.g., [25]), and spatial (e.g., [50, 63, 66]) indexes. Interestingly,
the authors of [43] also discussed the idea of using learned models
as order-preserving hash functions. A recent study [71] initially
investigated whether learned models are better than traditional
hash functions in performing hash table lookups or not. In contrast,
our proposed study is more comprehensive as it spans additional
hash function types, hashing schemes, workload types, and hash-
based operations. Another recent interesting work [36] employs an
entropy-learned approach to reduce the hashing overhead by choos-
ing howmuch and which parts of the input data we need to hash.
HashingExperimental Studies.Previous experimental studies for
the performance of di�erent hash functions and schemes have been
provided. SMHasher [81] is awidely-known test-suite for evaluating
non-cryptographic hash functions. [79] provided both theoretical
and experimental analysis for cryptographic hash functions. [2] did
a detailed experimental comparison between the performance of
two hashing schemes (cuckoo hashing and quadratic probing) and
two radix tree variations. [74] micro-benchmarked the performance
of SIMD-aware variations of di�erent hashing schemes. [67] is an-
other recent comprehensive experimental study for the di�erent
combinations of hash functions and schemes. However, it only fo-
cused on non-cryptographic traditional hash functions and hash
table operations. For learned models, they have been extensively

benchmarked in [53] for indexing only, and not for hashing. In this
paper, we try to �ll this gap.

9 LESSONS LEARNEDAND FUTUREWORK
Gaps distributionmatters for LMH collisions.Assuming the in-
put keys are sorted, collisions of LMH functions (that employ linear
submodels) depend on the distribution of gaps between consecu-
tive sorted keys. The more evenly spaced these gaps are, the fewer
collisions LMH functions have; in fact there can be fewer collisions
than traditional hashing. When data is from typical distributions
(e.g., normal), we observe that LMH functions have a similar (or even
higher) number of collisions compared to traditional hashing.
Number of submodels matters for LMH e�ciency. Building an
LMH functionwith very few submodels (fewer than a certain thresh-
old) reduces its accuracy, as it will not capture the input distribution
e�ectively. On the other hand, signi�cantly increasing the number of
submodels decreases the computation throughput. Accordingly, the
number of submodels should be carefully tuned. For datasets with
evenly spaced gaps, tuned LMH functions can achieve the best trade-
o� between computation throughput and collisions, compared to
traditional and perfect hash functions, as shown in Section 7.2. Gen-
erally speaking, RMI is the best in achieving this tradeo�, while PGM
is theworst. ForRadixSpline, it depends on thedataset skewness. The
more skewed the dataset is, the worse the RadixSpline performance.
Throughputsofbuilding/probinghash tablesusingLMH func-
tions vary across di�erent hashing schemes. Collision reduc-
tion due to LMH translates to improved hash table probe and insert
throughputs. However, such improvements becomemore evident
with bucket chaining, and diminish with cuckoo hashing, as shown
in Section 7.3. We also found that RMI and MultiplyPrime are the
best LMH and traditional hash functions, respectively, to use along
with bucket chaining in all load factors ranging from 20% to 200%.
For string keys, traditional hashing is better than LMH . E�-
cient support for strings in learned models is still an open research
question. RadixStringSpline [77], which is a preliminary attempt to
support strings with radix splines, shows a signi�cantly less hash
computation throughput than traditional hashing due to the di�-
culty of modeling strings that typically have long shared pre�xes
and relatively low discriminative content per byte.
E�cient support of LMH formixed workloads of point and
range queries as well as non-partitioned hash join (NPJ).Any
monotonic (i.e., order-preserving) LMH function, along with bucket
chaining, canbeused tobuild onehash table for e�ciently answering
both point and range queries at the same time (i.e., mixedworkloads).
In fact, using LMH functions along with chaining is also more ef-
�cient than other traditional options in building and probing the
shared hash table in NPJ. Among the di�erent LMH -based variants,
RMI-CHAIN shows the most e�cient and robust performance.
Future Directions. The multi-threaded implementations and eval-
uations of LMH , perfect hashing, and traditional hash tables remain
worthy of further exploration. Designing a loss function for LMH
that minimizes collisions while also suitably providing a tradeo�
with hash computation time would be an interesting direction. Also,
our study primarily focused on piece-wise linear models, and more
complex models like decision trees and neural networks may lead
to di�erent and further interesting tradeo�s.

12

REFERENCES
[1] Mohammad Alahmad and Imad Fakhri Taha Alshaikhli. Broad View of Cryp-

tographic Hash Functions. International Journal of Computer Science Issues, 2013.
[2] Victor Alvarez, Stefan Richter, Xiao Chen, and Jens Dittrich. A Comparison of

Adaptive Radix Trees and Hash Tables. In ICDE, pages 1227–1238, 2015.
[3] Austin Appleby. Murmurhash3 64-bit �nalizer. https://code.google.com/p/

smhasher/wiki/MurmurHash3.
[4] Austin Appleby. MurmurHash. https://sites.google.com/site/murmurhash/, 2011.
[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

Workload Analysis of a Large-Scale Key-Value Store. In Proceedings of the ACM
SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and
Modeling of Computer Systems, 2012.

[6] AudouinAudouin andBrongniart Brongniart. Annales des sciences naturelles-vol.
7 (series-2). In Annales des Sciences Naturelles, volume 7, pages 42–110. Crochard,
1837.

[7] Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: A Fast Short-Input
PRF. In Progress in Cryptology - INDOCRYPT, 2012.

[8] Cagri Balkesen, Jens Teubner, GustavoAlonso, andM. TamerÖzsu. Main-memory
hash joins on multi-core CPUs: Tuning to the underlying hardware. In ICDE,
pages 362–373, 2013.

[9] Tobias Behrens, Viktor Rosenfeld, Jonas Traub, Sebastian Breß, and Volker Markl.
E�cient SIMD Vectorization for Hashing in OpenCL. In EDBT, 2018.

[10] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Theory
and practice of monotone minimal perfect hashing. Journal of Experimental
Algorithmics (JEA), 16:3–1, 2008.

[11] Michael A. Bender, Bradley C. Kuszmaul, andWilliam Kuszmaul. Linear Probing
Revisited: TombstonesMark the Death of Primary Clustering. In IEEE Symposium
on Foundations of Computer Science, 2021.

[12] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. HOT:
A Height Optimized Trie Index for Main-Memory Database Systems. In SIGMOD,
2018.

[13] C++ Team Blog. Linker Throughput Improvement in Visual Studio 2019.
https://devblogs.microsoft.com/cppblog/linker-throughput-improvement-in-
visual-studio-2019/, 2019.

[14] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. Simple and Space-E�cient
Minimal Perfect Hash Functions. In Proceedings of the International Conference
on Algorithms and Data Structures, 2007.

[15] Fabiano C Botelho and Nivio Ziviani. External perfect hashing for very large key
sets. In Proceedings of the sixteenth ACM conference on Conference on information
and knowledge management, pages 653–662, 2007.

[16] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. Characterizing,
Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook. In
Proceedings of the USENIX Conference on File and Storage Technologies, 2020.

[17] Pedro Celis. Robin Hood Hashing. PhD thesis, University of Waterloo, CAN, 1986.
[18] Yann Collet. xxHash repository. https://cyan4973.github.io/xxHash/.
[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.

Introduction to Algorithms. The MIT Press, 2nd edition, 2001.
[20] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen.

A Reliable Randomized Algorithm for the Closest-Pair Problem. Journal of
Algorithms, 25(1):19–51, 1997.

[21] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der
Heide, Hans Rohnert, and Robert E. Tarjan. Dynamic Perfect Hashing: Upper
and Lower Bounds. SIAM J. Comput., 23(4):738–761, 1994.

[22] Martin Dietzfelbinger,MichaelMitzenmacher, andMichael Rink. Cuckoo hashing
with pages. In Camil Demetrescu andMagnúsM.Halldórsson, editors,Algorithms
- ESA 2011 - 19th Annual European Symposium, Saarbrücken, Germany, September
5-9, 2011. Proceedings, volume 6942 of Lecture Notes in Computer Science, pages
615–627. Springer, 2011.

[23] MartinDietzfelbinger andChristophWeidling. BalancedAllocationandDictionar-
ies with Tightly Packed Constant Size Bins. In Theortical Computer Science, 2007.

[24] Jialin Ding et al. Tsunami: A Learned Multi-Dimensional Index for Correlated
Data and SkewedWorkloads. In Proc. VLDB Endow., 2020.

[25] JialinDing,UmarFarooqMinhas, JiaYu,ChiWang, JaeyoungDo,YinanLi,Hantian
Zhang, BadrishChandramouli, JohannesGehrke,DonaldKossmann,David Lomet,
and Tim Kraska. ALEX: An Updatable Adaptive Learned Index. In SIGMOD, 2020.

[26] Kayhan Dursun, Carsten Binnig, Ugur Cetintemel, and Tim Kraska. Revisiting
Reuse in Main Memory Database Systems. In SIGMOD, 2017.

[27] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174, IETF,
9 2001.

[28] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. Recsplit:
Minimal perfect hashing via recursive splitting. In 2020 Proceedings of the
Twenty-SecondWorkshop on Algorithm Engineering and Experiments (ALENEX),
pages 175–185. SIAM, 2020.

[29] César Estébanez, Yago Saez, Gustavo Recio, and Pedro Isasi. Performance of
the Most Common Non-Cryptographic Hash functions. Softw. Pract. Exper.,
44(6):681–698, 2014.

[30] Paolo Ferragina and Giorgio Vinciguerra. The PGM-Index: A Fully-Dynamic
Compressed Learned Index with Provable Worst-Case Bounds. Proc. VLDB
Endow., 13(8):1162–1175, 2020.

[31] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space
E�cient Hash Tables with Worst Case Constant Access Time. In Proceedings
of the Annual Symposium on Theoretical Aspects of Computer Science, 2003.

[32] Michael L Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table
with 0 (1) worst case access time. Journal of the ACM (JACM), 31(3):538–544, 1984.

[33] Shay Gueron. Intel Advanced Encryption Standard (AES) New Instructions Set.
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-
standard-new-instructions-set-paper.pdf.

[34] Bala Gurumurthy, David Broneske, Marcus Pinnecke, Gabriel Campero Durand,
and Gunter Saake. SIMD Vectorized Hashing for Grouped Aggregation. In
Advances in Databases and Information Systems, 2018.

[35] Torben Hagerup and Torsten Tholey. E�cient minimal perfect hashing in nearly
minimal space. In Annual Symposium on Theoretical Aspects of Computer Science,
pages 317–326. Springer, 2001.

[36] Brian Hentschel, Utku Sirin, and Stratos Idreos. Entropy-Learned Hashing: 10x
Faster Hashing with Controllable Uniformity. In SIGMOD, 2022.

[37] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin Levandoski,
and Gor Nishanov. Exploiting Coroutines to Attack the "Killer Nanoseconds".
Proc. VLDB Endow., 11(11):1702–1714, 2018.

[38] Andreas Kipf, Damian Chromejko, Alexander Hall, Peter A. Boncz, and David G.
Andersen. Cuckoo Index: A lightweight secondary index structure. Proc. VLDB
Endow., 13(13):3559–3572, 2020.

[39] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. Learned Cardinalities: Estimating Correlated Joins with Deep
Learning. In CIDR, 2019.

[40] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. RadixSpline: A Single-Pass Learned Index.
In Proc. of aiDM@SIGMOD, 2020.

[41] Oliver Knill. Probability and stochastic processes with applications. Havard
Web-Based, page 5, 1994.

[42] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting
and Searching. AddisonWesley Longman Publishing Co., Inc., USA, 1998.

[43] Tim Kraska, Alex Beutel, Ed H. Chi, Je�rey Dean, and Neoklis Polyzotis. The
Case for Learned Index Structures. In SIGMOD, page 489–504, 2018.

[44] Ani Kristo, Kapil Vaidya, Ugur Çetintemel, Sanchit Misra, and Tim Kraska. The
Case for a Learned Sorting Algorithm. In SIGMOD, page 1001–1016, 2020.

[45] Harald Lang, Viktor Leis, Martina-Cezara Albutiu, Thomas Neumann, and Alfons
Kemper. Massively Parallel NUMA-Aware Hash Joins. In In-Memory Data
Management and Analysis, IMDM, 2015.

[46] Sylvain Lefebvre and Hugues Hoppe. Perfect Spatial Hashing. ACM Transactions
on Graphics., 25(3):579–588, 2006.

[47] Viktor Leis, Alfons Kemper, and Thomas Neumann. The Adaptive Radix Tree:
ARTful Indexing for Main-Memory Databases. In ICDE, 2013.

[48] Daniel Lemire and Owen Kaser. Faster 64-bit Universal Hashing Using Carry-less
Multiplications. Journal of Cryptographic Engineering, 6:171–185, 2015.

[49] Brenton Lessley and Hank Childs. Data-Parallel Hashing Techniques for GPU
Architectures. IEEE Transactions on Parallel and Distributed Systems, 31(1), 2020.

[50] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. LISA: A Learned
Index Structure for Spatial Data. In SIGMOD, 2020.

[51] PerfEvent Library. PerfEvent Library. https://github.com/viktorleis/perfevent,
2019.

[52] Bohdan S Majewski, Nicholas CWormald, George Havas, and Zbigniew J Czech.
A family of perfect hashing methods. The Computer Journal, 39(6):547–554, 1996.

[53] RyanMarcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,
Alfons Kemper, Thomas Neumann, and Tim Kraska. Benchmarking Learned
Indexes. In Proc. VLDB Endow., 2020.

[54] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad
Alizadeh, and Tim Kraska. Bao: Making Learned Query Optimization Practical.
In SIGMOD, 2021.

[55] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization
and probabilistic techniques in algorithms and data analysis. Cambridge university
press, 2017.

[56] Hamid Mohamadi, Justin Chu, Benjamin P. Vandervalk, and Inanc Birol. ntHash:
Recursive Nucleotide Hashing. Bioinformatics, 32(22):3492–3494, 2016.

[57] Michael Molloy. Cores in random hypergraphs and boolean formulas. Random
Structures & Algorithms, 27(1):124–135, 2005.

[58] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. Learning
Multi-Dimensional Indexes. In SIGMOD, 2020.

[59] Thomas Neumann and Sebastian Michel. Smooth interpolating histograms
with error guarantees. In Sharing Data, Information and Knowledge, 25th British
National Conference on Databases, BNCOD ’08, pages 126–138, 2008.

[60] Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and optimal
space. SIAM Journal on Computing, 38(1):85–96, 2008.

[61] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. Journal of
Algorithms, 51(2):122–144, 2004.

13

https://code.google.com/p/smhasher/wiki/MurmurHash3
https://code.google.com/p/smhasher/wiki/MurmurHash3
https://sites.google.com/site/murmurhash/
https://devblogs.microsoft.com/cppblog/linker-throughput-improvement-in-visual-studio-2019/
https://devblogs.microsoft.com/cppblog/linker-throughput-improvement-in-visual-studio-2019/
https://cyan4973.github.io/xxHash/
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://github.com/viktorleis/perfevent

[62] Shekhar Palit and Kevin A.Wortman. Perfect Tabular Hashing in Pseudolinear
Time. In IEEE Annual Computing and CommunicationWorkshop and Conference
(CCWC), 2021.

[63] Varun Pandey, Alexander van Renen, Andreas Kipf, Ibrahim Sabek, Jialin Ding,
and Alfons Kemper. The Case for Learned Spatial Indexes. In Proceedings of the
AIDBWorkshop @VLDB, 2020.

[64] Orestis Polychroniou and Kenneth A. Ross. A Comprehensive Study of
Main-Memory Partitioning and Its Application to Large-Scale Comparison- and
Radix-Sort. In SIGMOD, 2014.

[65] Mihai Punde�nedtraşcu and Mikkel Thorup. The Power of Simple Tabulation
Hashing. Journal of the ACM, 59(3), 2012.

[66] JianzhongQi, Guanli Liu, Christian S. Jensen, and Lars Kulik. E�ectively Learning
Spatial Indices. In VLDB, 2020.

[67] Stefan Richter, Victor Alvarez, and Jens Dittrich. A Seven-Dimensional Analysis
of Hashing Methods and Its Implications on Query Processing. Proc. VLDB
Endow., 9(3):96–107, 2015.

[68] Ronald L. Rivest. The MD5Message-Digest Algorithm. RFC, 1321:1–21, 1992.
[69] J. Andrew Rogers. AquaHash. https://github.com/jandrewrogers/AquaHash/.
[70] Ibrahim Sabek, Tenzin Samten Ukyab, and Tim Kraska. LSched: A Workload-

Aware Learned Query Scheduler for Analytical Database Systems. In SIGMOD,
page 1228–1242, 2022.

[71] Ibrahim Sabek, Kapil Vaidya, Dominik Horn, Andreas Kipf, and Tim Kraska.
When Are Learned Models Better Than Hash Functions? In Proceedings of the
AIDBWorkshop @VLDB, 2021.

[72] David Salomon. Data compression. In Handbook of massive data sets, pages
245–309. Springer, 2002.

[73] Stefan Schuh, Xiao Chen, and Jens Dittrich. An Experimental Comparison of
Thirteen Relational Equi-Joins in Main Memory. In SIGMOD, 2016.

[74] Dipti Shankar, Xiaoyi Lu, and Dhabaleswar K. DK Panda. SimdHT-Bench:
Characterizing SIMD-AwareHash Table Designs on Emerging CPUArchitectures.
In IEEE International Symposium onWorkload Characterization, IISWC, 2019.

[75] Malte Skarupke. Fibonacci Hashing: The Optimization that the
World Forgot (or: a Better Alternative to Integer Modulo). https:
//probablydance.com/2018/06/16/�bonacci-hashing-the-optimization-that-
the-world-forgot-or-a-better-alternative-to-integer-modulo/.

[76] Vera T Sós. On the theory of diophantine approximations. i 1 (on a problem of
a. ostrowski). Acta Mathematica Hungarica, 8(3-4):461–472, 1957.

[77] Benjamin Spector, Andreas Kipf, Kapil Vaidya, ChiWang, Umar FarooqMinhas,
and Tim Kraska. Bounding the Last Mile: E�cient Learned String Indexing. In
Proceedings of the AIDBWorkshop @VLDB, 2021.

[78] Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday
Paradox for Multi-Collisions. In Proceedings of the International Conference on
Information Security and Cryptology, 2006.

[79] Jacek Tchórzewski and Agnieszka Jakóbik. Theoretical and Experimental
Analysis of Cryptographic Hash Functions. Journal of Telecommunications and
Information Technology, 2019.

[80] JensTeubner,GustavoAlonso, Cagri Balkesen, andM.TamerOzsu. Main-Memory
Hash Joins onMulti-Core CPUs: Tuning to the Underlying Hardware. In ICDE,
2013.

[81] Reini Urban. Smhasher. https://github.com/rurban/smhasher.
[82] Yuhan Wu, Zirui Liu, Xiang Yu, Jie Gui, Haochen Gan, Yuhao Han, Tao Li, Ori

Rottenstreich, and Tong Yang. MapEmbed: Perfect Hashing with High Load
Factor and Fast Update. In SIGKDD, 2021.

[83] S. Świerczkowski. On successive settings of an arc on the circumference of a
circle. Fundamenta Mathematicae, 46(2):187–189, 1958.

14

https://github.com/jandrewrogers/AquaHash/
https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
https://github.com/rurban/smhasher

	Abstract
	1 Introduction
	2 Traditional Hash Functions
	3 Learned Models as Hash Functions
	4 Perfect Hashing
	5 Hashing Schemes
	5.1 Bucket Chaining (CHAIN)
	5.2 Open-Addressing

	6 Collisions Analysis for Hashing
	7 Evaluation
	7.1 Experimental Setup
	7.2 Computation Throughput vs Collisions
	7.3 Hash Table Performance
	7.4 More Performance Analysis
	7.5 Range Queries Performance
	7.6 Hash-based Join Performance

	8 Related Work
	9 Lessons Learned and Future Work
	References

