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ABSTRACT

We present Sparse Numerical Array-Based Range Filters (SNARF),
a learned range filter that efficiently supports range queries for
numerical data. SNARF creates a model of the data distribution to
map the keys into a bit array which is stored in a compressed form.
The model along with the compressed bit array which constitutes
SNAREF are used to answer membership queries.

We evaluate SNARF on multiple synthetic and real-world datasets
as a stand-alone filter and by integrating it into RocksDB. For range
queries, SNARF provides up to 50x better false positive rate than
state-of-the-art range filters, such as SuRF and Rosetta, with the
same space usage. We also evaluate SNARF in RocksDB as a filter
replacement for filtering requests before they access on-disk data
structures. For RocksDB, SNARF can improve the execution time
of the system up to 10x compared to SuRF and Rosetta for certain
read-only workloads.
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1 INTRODUCTION

Filters are space efficient, but approximate, data structures that are
used to answer membership queries on a set S. Filters allow signifi-
cant improvements in the performance for an array of applications,
including big data systems [44] and networking [4]. For example
RocksDB [15], a Log-Structure-Merge Tree (LSM) [39] based key-
value store, stores data onto disks in blocks (called SST’s). However,
because of the LSM structure, RocksDB often needs to load several
blocks from disk into main memory to determine which block con-
tains the data for a given search key. To avoid loading disk blocks
that do not contain the search key, RocksDB creates a filter per
block for all keys stored in the block.

Point filters, such as Bloom Filters, support point queries of the
form: "Is x in the set S?". Range membership filters answer more
general queries of the form "Is there a key in the set S in between
values p and g?" [1, 34, 47]. Here we are focused on approximate
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filters that guarantee that there are no false negatives. This is an
important property many applications/systems require. There may,
however, be false positives. For point queries, if the filter returns
true for a search key, the key might or might not be contained in
the block, but if it returns false it is guaranteed that the key is not
in the set/block; and this extends similarly to range queries. The
probability of a false positive for a key not in the set is the false
positive rate (FPR) of the filter; the FPR can be defined similarly for
range queries.

In RocksDB, filters are usually orders of magnitude smaller than
the blocks and are cached in main memory. Before loading a disk
block into main memory, the filters are checked if the key might be
contained in the block. A filter with low false positive rate helps
to significantly reduce the number of unnecessary I/O requests to
disk blocks to find the key. The benefit a filter can provide depends
on the trade-off between its false positive rate and the size of the
filter; the smaller and the more precise, the better it is. Interestingly,
the latency of a filter to process a query normally matters less as
they tend to protect against very expensive operations (e.g., disk
or other cold storage access) that are often orders of magnitude
slower (see also Experiment 6.2.1).

Range Filters: Range queries are often used in social web appli-
cations [9], distributed key-value storage replication [43], statistics
aggregation for time series workloads [27], and SQL table accesses
[32]. For example, from a table of customer orders, one might ask
the following SQL query to retrieve all the orders between two
particular dates: SELECT * FROM Orders WHERE Order_Date BE-
TWEEN "07-14-2014" AND "07-21-2014" . Past work has shown
that range filters can significantly improve the performance of sys-
tems for synthetic and real-world workloads. For example, [34, 47]
showed that workloads on RocksDB can benefit from range filters,
whereas [1] showed the advantages of range filters for Hekaton,
which is part of the MS SQL Server.

Existing Range Filter Designs: Past efforts to provide range
filtering resulted in the current state-of-the-art filters Succinct
Range Filter (SuRF) [47] and Rosetta [34]. SuRF utilizes a com-
pact trie-like data structure which can filter arbitrary range queries,
whereas Rosetta utilizes a different approach by using a Bloom filter
(a point query filter) [3] for range queries along with the help of a
hierarchy of prefix Bloom filters. Unfortunately, which of the two
filters is better depends highly on the workload. For the same filter
size, Rosetta has a lower false positive rate for very short range
sizes because of its clever combination of Bloom and prefix filters,
whereas SuRF has a lower FPR otherwise.

SNAREF: In this paper, we introduce an entirely new approach
to range filters, called Sparse Numerical Array-Based Range Filters
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Figure 1: SNARF Idea: Given a set of keys S, SNARF builds a model
MCDF(x) to estimate the empirical cdf of the keys, which it then
uses to set corresponding bits in a large bit array B for all x € S.
This sparse bit array which encodes key information is then com-
pressed. The model and the compressed bit array are the main parts
of SNARF data structure.

(SNARF). SNAREF is a learning enhanced range filter! that models
the data distribution of the underlying key set S. SNARF then uses
the model to encode partial information of the data in a sparse bit
array. SNARF controls the false positive rate by changing the size of
the bit array. The sparse bit array is then compressed to store it effi-
ciently. SNARF answers range queries by using the model to extract
the relevant information from the compressed bit array. Exploiting
the data distribution and using effective compression schemes al-
low SNAREF to encode the data set more effectively than previous
schemes, leading to better space/false positive rate tradeoffs, while
being competitive in terms of query latency.

SNAREF Results: We evaluate SNARF on multiple synthetic and
real-world numerical datasets against state-of-the-art range filters,
such as SuRF and Rosetta, and also against point filters, such as
Bloom filters [3] and Cuckoo filters [16]. We use a variety of query
workloads, such as uniform, sampled from real-world, skewed (cer-
tain part of data is queried more often), and correlated (query end-
point is close to existing key) to test the effectiveness of the filters.
For range queries on both real-world and synthetic datasets, SNARF
is consistently able to provide up to a 50x better FPR than SuRF
under the same space budget, and SNARF has up to 100x better FPR
than Rosetta under same space budget. We do note, however, that
performance depends on the dataset and query structure; for exam-
ple, we have found that Rosetta is better than SNARF specifically
in the case where the query workload has very short range queries
and high correlation between queries and keys. Moreover, for point
queries, SNARF can empirically provide FPRs that are better than
Bloom filters and slightly better than Cuckoo filters under the same
space budget across a diversity of query workloads.

Finally, we measured SNARF’s impact on performance of an
end-to-end system by integrating it with RocksDB. Here we found
that SNARF can improve the workload execution time by up to 10x
compared to SuRF and Rosetta for certain read only workloads.

In summary, we make the following contributions:

e We introduce SNARF, a novel range filter which combines
models and compression schema (Section 2).

e We provide a heuristic theoretical analysis of SNARF that
matches our empirical experiments well (Section 3).

!We acknowledge that the term "learned" range filter might be a misnomer as we use
simplistic modelling of the data using linear splines. However, the name is in line with
previous works [14, 17, 29, 30].
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e We discuss possible extensions of SNARF, including sup-
port for updates and support for approximate count queries
(Section 4).

e We evaluate SNARF against state-of-the-art baselines and
test the impact SNARF can have on a real system like RocksDB
(Section 6).

2 SNARF: A LEARNED FILTER

We first explain the idea behind SNARF (see Sec.2.1). Later, we
describe the details of the model (see Sec.2.2) and the compressed
bit arrays (see Sec.2.3.1).

2.1 SNAREF Description

2.1.1 SNARF Construction: GivenasetofkeysS = {x1, x3, ..
we want to build a filter that answers range queries on this set.
SNARF maps the keys into a bit array B, which has [B| = K x n
bits for a suitably large K2, via a monotonic function f. Initially, all
bits are 0, but bit position f(x;) is set to 1 for all x; € S. The exact
mapping function f is f(x) = [ MCDF(x) x nK], where MCDF is
a monotonic estimate of the empirical CDF (eCDF) of the keys in
S. Storing an entire sparse bit array directly is not space-efficient,
so SNAREF stores a compressed version of the bit array. The com-
pressed bit array (CBA) encodes the locations of the one bits in the
array. Fig.1 illustrates the idea of SNARF.

Alg.1 has the pseudo-code for SNARF construction. Given a set
of keys S and scale factor K for the bit array, the construction
algorithm outputs a model of the eCDF of the keys in S and the
compressed bit array. The first step is to train a model to estimate
the eCDF of the keys. In the next step, this model is used to generate
the set of bit positions in the bit array that are set to one. The bit
array is then compressed into the CBA.

2.1.2  SNARF Range Query: To answer a range query [p,q],
SNAREF uses the model to get the bit positions f(p) and f(q) corre-
sponding to the query endpoints. The data structure then returns
true if a one bit is found in the range [ f(p), f(¢)] of B and false oth-
erwise. Alg.2 shows the pseudo-code for SNARF range query. Note
that we want our CBA structure to efficiently support queries of the
form: "Is there a one bit between bit positions a and b (inclusive)?".
Standard rank-select structures [21, 24, 40, 49] can provide com-
pressed bit arrays with an efficient predecessor query which can
be used to answer such queries. (One can check if the first one bit
preceding b is before or after a.) Such a structure is naturally more
efficient than decompressing the entire array and checking all bits
between a and b. While rank-select structures could be used to
speed up the computation of the a predecessor operation, we find
they take more space than alternatives to do so. In our case, space
is the primary resource we want to optimize for. This is because
the latency of a filter to process a query normally matters less in
RocksDB (see Sec.6.2.1). Also, with exponentially growing data,
it is important to be able to filter more data with smaller filters.
Thus, SNARF uses encoding schemes which provide near-optimal
compression rather than fast query responses. We discuss simple
techniques to optimize query response times in Sec.2.3.2.

2We use K to control the FPR of the structure which we discuss in detail later on
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Algorithm 1 SNARF Construction:

Input S - set of keys

Input n - number of keys

Input K - Scaling factor for the bit array size

Output MCDF - Monotonic CDF estimate of keys

Output CBA - Compressed bit array

Function Train(S) - function that returns a model to estimate the cdf of keys in set S
Function Encode(S) - function that encodes the numbers in the set S

: procedure CONSTRUCTION(S, K)
: //Building the monotonic CDF model for set of keys
MCDF « Train(S)

: //Get Bit positions that are set to one
BitPositionList «— {}
for key in S do
BitPositionList.add(| MCDF (key) X nK |)

PN N W

10: //Compress the Bit Positions that are set to one
11: CBA « Encode(BitPositionList)

13: return MCDF, CBA

Algorithm 2 SNARF Range Query

Input 1 - number of keys
Input K - Scaling factor for the bit array size
Input MCDF - Monotonic CDF estimate of keys
Input CBA - Compressed bit array
Input p, q - the range query endpoints
Output 7 - boolean answer of the range query
Function CheckOneBit (a, b) - function that returns true if there is a 1 bit between bit
locations [a, b] else false.
1: procedure RANGEQUERY(MCDF, K, n, CBA, p, q)
2: //Get the bit location of the query endpoints
LowerBitLoc «— |[MCDF(p) xKn|
UpperBitLoc «— |[MCDF(q) x Kn|

: //Check if 1 bit exists in the range.
r « CBA.CheckOneBit(LowerBitLoc, UpperBitLoc)
return r

PN W

2.1.3 Essential properties of Mapping Function f.
Monotonicity: The monotonicity of the mapping function, so that
p <q = f(p) £ f(q), is an essential property that ensures
no false negatives in SNARF. Monotonicity ensures that for any
range query [p, q] with p < g, any key from S between the query
endpoints will be mapped to a position between the bit positions of
these endpoints. That is, if x; € [p, q], then f(p) < f(xi) < f(q);
there is a bit set in the range [f(p), f(q)]. Note, however, that it is
possible that x; ¢ [p, q], but either f(x;) = f(p) or f(xi) = f(q),
leading to false positives.

Uniform Mapping: SNARF aims for a uniform mapping into the
bit array B for performance reasons; that is, we desire the bits
set in the array to be as equally spaced as possible. Mapping the
keys approximately uniformly allows the range filter to be robust
to skewed query workloads (workloads where certain part of the
range is queried more often) as we discuss in detail in Sec.3. The
empirical cumulative distribution function of a (discrete) set S has
the property that it maps the keys uniformly over the range [0, 1].
Hence, SNARF makes use of a monotonic CDF model of the set S
to achieve a monotonic and approximately uniform mapping of the
keys. The details of the model we utilize are presented in Sec.2.2.

2.2 Model Details

As discussed before, the model needed for SNARF must be mono-
tonic and provide an estimate of the empirical CDF. Further, we
want the space overhead added by the model to be small. Here,

we present models for fixed size numerical values such as doubles,
floats, and 32/64/128 bit signed/unsigned integers. Recently, a hier-
archy of linear models have been used for indexing numerical keys
[14, 17, 25, 29]. This ensemble of linear models is both small in size
and provides fast evaluation for numerical values.> However, these
models do not always guarantee monotonicity.

Inspired by them, we use linear spline models for CDF estimation.
Given a set S, the idea is to use a small sample of keys from the
input set and build linear models between consecutive keys in the
sample to estimate the CDF as shown in Fig.2. This sample is stored
in a sorted order, and we refer to it as the key array. The size of the
sample determines how large the model is and the quality of the
CDF estimation. Larger samples lead to better CDF approximation
and larger models which increase the space used by SNARF.

Set (S): ’3 ’5 |12’13’25|35’47’57|67’72’75|80‘

eCDF: [.08 .47 [25[.33 ] .41 [.50 | .58 | .66 | .75 | .83 | .91 [ 1.0 |
KeyArray (T) | 12 | 35 | 67 | 80 CDF
Model
Array of L1 L2 L3 L4

LS‘

Linear Models| s1,y1 s2,y2 s3,y3 s4,y4 s5,y5

025 1 L1

Key (x)
Figure 2: SNARF Numerical Model

Querying the Model: The number of keys stored by the model is
one less than the number of linear models. The first step is to binary
search in the sorted array of keys (MCDF.keys). The number of
keys in the array that are less than the query point x gives the index
to the linear model parameters that are supposed to be used. We
then use the corresponding line’s slope and intercept to obtain the
final estimated CDF value for the value. If the computed CDF is
outside the range [0, 1], we correct the value to 0 or 1 as appropriate.
Training the Model: During training, we sort the input set S and
compute the empirical CDF. We then choose keys at regular in-
tervals (every (N/R)!" key for a suitable R) and these keys form
endpoints for linear spline models. Between every pair of consec-
utive sample points, we compute the slope and y-intercept of the
line segment connecting the two points.

The number of line segments we use in our model can be tuned to
improve the tradeoff between the CDF estimate and overall model
size. The more lines the better one can potentially approximate the
CDF, but the more space used as well. A good value for number of
line segments will depend on the dataset. We empirically found that
using |S|/1000 line segments generally gives good CDF estimates
along with small model size. The space overhead of model when
using |S[/1000 line segments is approximately 0.2 bits per key.

3We experimented with monotonic cubic splines [18] but found them to be slightly
worse than a series of linear models
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2.3 Managing the Bit Array

We describe compression schemes for bit arrays and simple tech-
niques to make range queries faster on the compressed bit array.

2.3.1 Compressing the Bit Array. The main idea for space effi-
cient encoding of a sparse bit arrays is to simply encode the posi-
tions of the one bits. We discuss two such specific techniques.
Golomb Coding: Golomb coding is a form of lossless delta com-
pression which is the optimal lossless compression scheme for a
sparse bit array with uniformly randomly spread one bits [20].4

In general delta compression schemes, the values to be encoded
are sorted and then the differences, or deltas, between consecutive
values are stored efficiently. In Golomb coding, for each delta value
X to encode, X is divided by a fixed constant M to obtain a quotient
| X/M] and a remainder X%M. The remainder is stored in a fixed
length binary format using log, (M) bits, whereas the quotient,
which is expected to be small, is encoded in unary. The choice
of the fixed constant is important in determining the size of the
compressed array. For uniformly randomly generated values, the
average delta value is the optimal constant. In our case, the average
delta value will be the bit array size nK divided by number of one
bits, which is approximately n. We therefore use K as the constant
for our Golomb coding. Fig.3 describes an example of Golomb
encoding a sparse bit array.

1 2 3 4 5 6 7 8 9 10 1
BitArray: [0 [0 [1]0[1]ofofofoJo]1]

Bit Positions: |3 |5 |‘|1 |16|24|25|28|32|35|41 |43

47‘

53 11-5 16-11 24-16

EN ENEN CN N ENEN N CNENEN

47-43

Delta Values:

Golomb Coding:
(M=4)

110

0110 I 0101 l 001 00 I

Final Compressed : 1100110010100100....0100
it Array

101..1

G

Log,(M) bits

R=X%M =
Binary
Encoding

Golomb Coding: Q=Lxml = 000.01

Of value X
Encoding
Q zero’s
Q+1 bits

Figure 3: Golomb coding

In order to check if a bit is one in the range of bit positions [a, b],
one needs to decode the array from the start by adding the deltas
one by one. This process continues until you either find a 1 after a
and before b or you go past b. Decoding the array for each query
can be slow; we discuss better approaches shortly.

Elias-Fano Encoding: Elias-Fano is a form of entropy encoding
to represent a monotone non-decreasing sequence of N integers.
The bit positions in our case form the non-decreasing sequence. In
Elias-Fano encoding, the integers are first binary encoded using
log, (M) bits if [0, M) is the universe range. This representation
is split into two parts: an upper log,(N) bits and the remaining
lower log, (M/N) bits. The lower bits are trivially stored by con-
catenating them and this uses N log, (M/N) bits. The higher part
is represented by a bit vector of 2N bits as follows. We first create
a count of occurrences of upper bit values for all values between
[0, N — 1]. We then put this count vector in unary notation; that
is, each count is represented in unary (a sequence of 1s) with 0

4We expect nearly uniform randomly place one bits in our case.

1635

stop bit between values. This leads to 2N total bits, with one bit
set to 1 for each of the N elements and one 0 bit for each possible
values for the upper bits. Finally, the Elias-Fano representation is
the concatenation of these two vectors. Fig.4 describes a Elias-Fano
encoding for a set of integers. In our case, we will be encoding the
bit positions so M = nK and N = n. Thus, we will binary encode
the log, (K) lower bits and unary encode the upper log, (n) bits for
each bit position.

1.2 3 4 5 6 7 8 9 101
[of+Ta o1 o 1o o o 1]

Bit Array
(M=32):

Bit Positions. |2 |3 |5 |7 |11|13|24|29|

Elias Fano
Coding :
(M=32,N=8)

| 000 10 | 000 11 | 00101 | 00111 | | 111 01 |
Lower 2 bits
Upper 3 bits \ '

o 11 [w]u]ufn]... o]

|oon|oo1 |010 |n11|1on |101 |11D |111 |

Count: 2

| concatenate

l Unary Encode 10110111 ... 01

110110101000101

Final Compressed : 110110101000101 10110111 ... 01
Bit Array

Figure 4: Elias Fano Encoding

While checking if a bit is one in the range [a, b], one can decode
the upper bit array from the start (similar to Golomb coding) but
accessing the lower part is not always necessary. Any bit position

with upper bit value less than |-2ML—NJ will definitely be smaller

than a. This is because the value of the lower part can be at max
2M=N _ 1 and that is not enough for it to be greater than a. Thus,
we only need to check the lower bits if the upper bits are relevant.
This property greatly reduces the amount memory accessed during
a range query compared to Golomb coding. On the other hand,
Elias-Fano coding uses slightly more space (= 0.4-0.5 bits per key)
than Golomb coding. Thus, Elias-Fano coding has a faster query
time compared to Golomb coding but with a slightly higher space
overhead.

232 Making Compressed Bit Arrays Efficient: Asnoted ear-
lier, simply decoding from the beginning is an expensive approach;
in the worst case, we might need to decode the entire bit array.
To avoid this, we split the bit array into equal sized segments and
then compress them separately. If nK is the bit array size and n
is the number of keys, we divide the bit array into Kf sized seg-
ments generating n/f segments. Now to perform a range query
[p, q] for S we only need to decode the corresponding segments
that overlap the range [ f(p), f(¢)] in the CBA. On an average each
segment has around f one bits. While answering the range query
[p. q], one only needs to consider segments from segment number
Lf(p)B/n] to | f(q)f/n]. The first value greater then f(p) either
exists in segment number | f(p)f/n] or in the next non-empty seg-
ment. Generally, decoding segment number | f(p)f/n] is sufficient
as we find a number greater than p in it or the next segment.

Even though the uncompressed bit array size is the same, the
compressed size of each segment differs. Hence, we need to store the
starting point of each compressed segment. This creates a tradeoff
between space used by SNARF and the range query response time
provided by SNARF. Using more segments would lead to faster
queries but larger metadata space overhead. Empirically, we found
that f ~ 50 — 100 provides good range query response times and
has negligible memory overhead (shown in Sec.6.1.6).



3 ANALYSIS

In the following section, we provide an analysis regarding the trade-
off between the space used by SNARF and the corresponding false
positive rate. We show that for point queries SNARF is competitive
with Bloom filter variants. The results extend to queries over small
ranges in the natural way. While this analysis is only for certain
workloads, it provides understanding for why SNARF works well
in many scenarios.

We start by showing that SNARF for uniformly distributed queries
(point queries and small ranges) provides an FPR of approximately
1/K while using 2.4 + log, (K) bits per key.

Initial Assumptions: We assume all key values are in the range
[0, z] for some suitably large z with z >> nK.>

Notation: Our set S of n keys S = x1, x2, .., x,. We use a model with
t linear models and thus, we have one linear model per n/t points.
Recall we use a bit array of size n X K and divide it into blocks of
size K3 bits for faster queries; we assume also a per block metadata
of ¢ bits.

Analysis: Our goal is to show that for uniform workload SNARF
provides a false positive rate of 1/K for point and small range
queries, while using around 2.4 + log, (K) bits per key. For uniform
point queries, we have z total queries out of which z—n are negatives.
We proceed by showing that SNARF only gives false positive for
(z — n)/K point queries.

We divide the key range into ¢ segments of size Az1, Azy, ...Az;,
where Zle Az; = z and each segment has a separate linear model.
Let the corresponding segment endpoints be zg, z1, . . ., z;. For each
segment the following holds:

e The number of keys from S in the segment [z;_1, z;) is n/t
as we build separate linear model for every n/t keys.

e Over each segment [z;_1, z;), we have a total of z; — z;_1
distinct possible point queries out of which ((z; —zi—1) —n/t)
are negative queries.

e The keys of S in the segment [z;_1,z;) are evenly spread
over the range [(i — 1)(nK/t),i(nK/t)) in the bit array.

An implication of these statements is that for a non-key in the range
[zi-1, zi), the probability of false positive is at most the number of 1
bits in the range, which is at most n/t, divided by the corresponding
size of the range in the bit array, which is nK/t. It follows that the
number of keys that give false positives is

Z((zz_zz 1) - Yl/l’))X K/t__

Z«azm%wm

But since Zle (zi — zi—1) = z the summation collapses, giving the
total number of false positives is (z — n) /K. Since, we have z — n
negatives in the range the false positive rate turns out to be 1/K
for the uniform distribution. This shows that for uniform workload
using a bit array that is K times larger than the number of keys
yields a false positive rate of approximately 1/K for point queries.
Extending to small ranges: Here, we perform a similar analysis
for uniform range queries of size R. The main idea is to show that
the total number of false positive range queries is at most the total

5If z < nK, then each value in the domain would likely map to a different bit position.
If each value has a different bit position then false positive rate would be zero.
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number of false positive point queries. We show this for a region
and then aggregate across the entire domain.

Consider a region [p, q] of the domain such that all points in the
region map to a one bit and values just outside the region map to
zero bits. That is, the bit at location f(p — 1)) is 0, and the bit at
location f(gq + 1)) is 0, but for all x € [p, q], the bit at f(x) is 0. Let
I be the number of keys in this region. The number of false positive
point queries is (g + 1 — (p +1)). The total number of range queries
of size R intersecting with the region would be (g + 1+ R — p). Out
of the these, the number of true positive range queries is at least
(I + R) as we show later. Thus, the false positive range queries end
up being at most (g+1+R—p) — (I+R) = (q+1— (I +p)) which
is exactly equal to the number of false positive point queries in the
region. Now, we can simply sum up the queries in each such region
to get the total number. Thus, we can conclude that total number
of false positive range queries is at most the total number of false
positive point queries.

We argue that the number of true positive range queries is at
least I + R in a region. Let ky, k2, ...k;, be the keys in the region
[p, q] in sorted order For the smallest key k; in the region, we
have R + 1 true positive ranges of size R as enumerated by set
{(k1 =R, k1), (k1 =R+ 1, k1 +1),...(k1 — R+ R, k1 + R) }. Now, if we
consider kz, then we can add a unique true positive range query
(k2, k2 + R) to the set. Similarly, every subsequent addition of a key
increases the size of the set by at least one. Earlier, we showed that
the total number of false positive point queries is z/K. The number
of negative range queries is at least z — nR. Thus, the false positive
rate for range queries is at most

1

/K 1

z-nR K
Here the approximation holds for small ranges R, so that nR << z,
yielding a false positive rate close to 1/K.

Extending to skewed workloads: We assume there is a distri-
bution with cdf w(x) that generates a point query, such that over
suitably small intervals [z;-1, z;], the probability of querying any
point in the range is approximately uniform. Each segment would
independently have a false positive rate of approximately 1/K, thus
it follows that the false positive rate for point queries is:

n/t
nK/t

¢ ¢
FPR= 35 (w(z0) = wlzi-)))x =%g¥mm—wwqm.

The ratio in the summation is approximately 1/K, giving an
approximate false positive rate of 1/K.

We indeed observe that the false positive rate is approximately

1/K for point queries as well as range queries over various query
distributions for SNARF empirically for synthetically generated
datasets and workloads, as we discuss in Sec. 6.1.1.
Model Size: The size of the model is dependent on the number of
keys and linear models it stores. We assume the linear models utilize
2 double values and hence we use 128 bits per linear model. For
uint64 integers, we need 64 bits to store each key in the key array.
In our experiments, for example, we stored n/1000 models and thus,
the space used by model is around 192n/1000. This accounts to
approximately 0.2 bits per key.



Compressed Bit array Size: Given that the bit array is Kn bits
long, the compressed version of the bit array using Golomb and
Elias Fano coding takes no more than 2n + nlog, (K) bits in total®.
This is because the unary code for both Golomb and Elias Fano
coding takes no more than 2n bits and the binary representations
take log, K bits per key . The space overhead due to dividing the
compressed bit array into blocks of size SK bits is approximately
nc/ B, bits where c is the number of bits per block needed to store
the metadata. In our experiments, c is around 20 bits and we fix
to be around 100. Thus, the space used by SNARF per key is around
(2 +log, (K) + ¢/ B +192n/1000) ~ (2.4 +log, (K)) bits.

Recall that our heuristic analysis gives a false positive rate for
point queries of 1/K. This is close to the theoretical space lower
bound of log, (K) bits per key for Bloom filter variants [4]. Empir-
ically we observed that SNARF gives a similar false positive rate
for point queries as cuckoo filters with the same space usage on
synthetic datasets and workloads as shown in Sec.6.1.1.

4 DISCUSSION

We discuss here various aspects of SNARF behavior, including
performance on workloads with high key-query proximity, SNARF
use for other queries, and handling updates.

4.1 Key-Query Correlation in Workloads

For the purpose of range filters, we say that a workload is correlated
with the data, if the end point of a query is consistently close to
some key. Assume a data set contains all multiples of 10 from 1 to
1000 (e.g., 10, 20, 30,...,1000). A correlated workload would be one
which consistently ask for ranges close to these keys (e.g., 10.01-
11.01, 28.99-29.99, etc.). When a query end point is consistently
close to an actual key but the query does not include a key, it may
yield a false positive in SNARF and SuRF. Meanwhile, Rosetta is
relatively unaffected by correlated queries as it is uses Bloom filters
which are robust towards correlation.

The fact that performance degrades for SURF and SNARF for
correlated queries in these ways is not surprising based on the
lower bound result in [22]. The lower bound shows that a range
filter that supports range queries up to size R and guarantees a
false positive rate of FPR will take at least log, (R) + log, (1/FPR)
bits per key. Hence, for a fixed memory budget, a range filter data
structure cannot handle large ranges and a low false positive rate
simultaneously without making further assumptions about the data
set or workload.

Due to this FPR degradation in SNARF with correlation, Rosetta
turns out to be the better filter for workloads with highly correlated
and very short range queries. We demonstrate these behaviors
empirically in Sec.6.1.1. In big data systems like RocksDB, data is
stored in multiple blocks (called SST’s in RocksDB) with each block
having its own filter. Even if a query is correlated to a key in a
certain block, SNAREF is still useful for the rest of the blocks (as
shown in Sec.6.2).

©Note this is the worst case space used. Golomb coding generally uses less space than
2n + nlog, (K) bits.
"In practice, we do even better than (2.0 +log, (K)) bits per key
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4.2 Handling Updates

A variety of systems like LSM-based key-value stores use immutable
files and thus do not need filters that support updates. On the other
hand, OLTP systems which are not based on log structured storage
schemes would benefit from an updatable range filter. SNARF is
able to naturally support updates owing to its design. To support
updates, we keep the mapping function static and only modify the
bit array. Because we divide SNARF into small blocks for query
efficiency, incremental updates only affect the corresponding block
without affecting other blocks.

Update Procedure: To perform an insertion/deletion of a key,
we use the mapping function to get the bit location of that key. The
bit location is used to identify the corresponding block. We simply
add/remove the bit location from the block depending on whether
it was an insert/delete. In our basic implementation, we allocate
a new block and copy all the bit locations from the old block to
the new one after adding/removing the bit location corresponding
to the update. Updates to a block can be made faster by using the
standard technique of over-allocating memory for that block.

Particularly with deletes, removing a bit location might lead to
inconsistency as multiple keys might be mapping to the same bit
location. A simple workaround for this is to store duplicates of
the bit location. If d keys map to the same bit location, we store
precisely d — 1 duplicates.® We show some experiments with our
basic implementation of updatable SNARF in Sec.6.1.8.

Effect of Updates on SNARF’s FPR: We modify the bit array
but the mapping function(CDF(x) X nK) remains static during
updates. Updates can lead n and CDF (x) of the mapping function to
diverge from the ideal values. We refer to updates that do not change
the distribution of the data as in-distribution updates whereas the
ones who do as out-of distribution updates.

In-distribution updates do not change the data distribution but
may affect the number of keys. Let the final number of keys after
updates be n’. After the updates, the ideal mapping function would
have been CDF(x) X n’K to achieve an FPR of 1/K, whereas we
use CDF(x) X nK. The FPR for SNARF thus ends up being n’/(nK)
instead of 1/K. If the in-distribution updates are dominated by
inserts, then the FPR becomes worse, and similarly with deletions
it gets better.

Out-of-distribution updates may change the data distribution
and the number of keys. For out-of distribution updates, predicting
the FPR is more complex and it also depends on distribution of
queries. We expect the combined effect of change in n and CDF (x)
to worsen the FPR of SNARF more than in-distribution updates.

The above discussion also applies to the case of append-only
databases. In this setting, when a series of updates significantly
reduces the FPR sufficiently, the model should be re-trained and a
complete rebuild of the structure would be necessary.

5 RELATED WORK

Filter Data Structures: There is a long history of using compact
filters to represent sets that are deemed too expensive to store and
query explicitly, for reasons including memory limitations, speed,
hardware amenability, and others. Indeed, there are now many
variants of the canonical Bloom filter [3] that use various hashing

8Duplication adds small space and query latency overhead for small values of K and
the impact is not significant for larger K’s.



schemes to encode the key set (e.g., Cuckoo filters, Quotient filters,
Xor filters, Ribbon filters [2, 13, 16, 23]). These filtering schemes are
limited to testing a single key at a time. In some ways, our technique
resembles compressed Bloom filters [37] and Golomb coded sets
[41]. However, these structures do not handle range queries nor do
they take advantage of the data distribution.

We note that theoretical results from [22] show that in the worst
case, a data structure that can answer a range query of size up
to R with a false positive rate of FPR needs to store Q(log,(R) +
log, (1/FPR)) bits per key. Their lower bound suggests looking for
structures that may not have worst case guarantees, which can
obtain better performance in practical scenarios by focusing on the
data and query distributions.

Learning Enhanced Data Structures and Algorithms: We uti-
lize the incorporation of learned models into traditional struc-
tures and algorithms. This technique has been applied for indexing
[11, 14, 17, 19, 25, 28] and sorting [30, 31]. However, while both like
SNAREF leverage a model of the eCDF, those structures cannot be
used as range filters unless they store all keys, which would not
make them space efficient (e.g., one should consider how a B-Tree
could be used as a space efficient Range or Bloom filter, which
is equally hard/impossible). Learning-enhanced approaches also
have been proposed for Bloom filters design [35, 38, 45] but again
they are not designed for range queries. Moreover, existing ml-
enhanced bloom filters are actually based on classification models,
not empirical CDFs.

LSM based Key Value Stores: An important application of fil-
ter structures are key-value store data systems [26] based on log-
structured merge trees (LSM) [39]. Numerous workloads served by
key-value stores (social media, networking, security) include heavy
portions of both point and range queries. LSM-based key-value sys-
tems store data in multiple immutable files on a disk. Retrieving a
particular item or set of items in a particular range leads to multiple
expensive I/O’s to look up the items in these immutable files. In
many settings, the item may not be present in the files, leading to
unnecessary 1/O’s that degrade total query response time. Modern
LSM-based key-value systems have extended the basic LSM struc-
ture with in-memory filters to address this problem: if a query has
no corresponding item, the filter most likely returns false and saves
expensive I/O.

Adaptive Range Filter: The Adaptive Range Filter (ARF) [1] uses
a binary trie to encode integer key spaces. ARF only stores a number
of prefixes of the key set and range queries are then processed by
searching the trie for any prefixes of the given range. If a leaf node
results in a false-positive, then it is extended until it would no longer
do so and, if needed, an old branch is pruned to maintain memory
constraints. ARF is not a space efficient data structure for many
workloads and in some cases 1300x bigger than SuRF while having
a worst FPR (see [47]). Hence, we do not consider ARF further here.
SuRF: The Succinct Range Filter (SuRF) [47] utilizes a compact
trie-like data structure which can filter arbitrary range queries. The
trie is culled at certain prefix lengths. The basic version of SuRF
stores minimum-length prefixes such that all keys can be uniquely
represented and identified. Other SuRF variants store additional
information such as hash bits of the keys (SuRF-Hash) or extra bits
of the key suffixes (SuRF-Real). A weakness of SuRF is that for point
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queries, SuRF can provide up to 100x worse FPR compared to Bloom
filter variants such as Cuckoo filters under the same space budget.
Rosetta: Rosetta utilizes a different approach that performs better
for point queries, correlated workloads, and very short ranges.
Rosetta essentially uses a Bloom filter for range queries along with
the help of a hierarchy of prefix Bloom filters that form an implicit
segment tree. Empirically, this design helps Rosetta achieve little
to no degradation for point queries compared to Bloom filters. On
the other hand, the FPR for Rosetta, while good for small ranges,
becomes worse with increasing range query size. For large range
queries, Rosetta provides almost no filtering.

LSM Range Queries: ElasticBF [33] proposes a method to adapt
Bloom filters in LSMs to query workload. The idea is to use larger
filters for hot regions which can be used with SNARF or any other
range filter as well. BloomRF [42] is another proposed filter which
uses the idea of implicit segment tree with hierarchy of filters
similar to Rosetta. It also suffers from FPR degradation with range
size like Rosetta. Orthogonal to our approach, REMIX [48] focuses
on making range queries faster by creating an alternative path on
top of an LSM tree that maintains range indexing info.
Compression Schemes: SNARF needs to compress a sparse bitmap
of size nK with n one bits. Assuming a uniform random spread of
the one bits, the asymptotic information theoretic lower bound for
lossless compression of such a bit array would be log, (K) bits per
key (log,(K) — O((log nK)/n) bits per key to be precise ). Golomb
Coding and Elias Fano Coding are near optimal coding schemes as
they use at most 2 bits per key over this lower bound (2n+nlog, (K)).
Other compression techniques such as WAH[12], CONCISE[8], and
Roaring[5] are less space efficient for our particular task, though
they can be somewhat faster, so if speed was a concern they could
be substituted for our compression approach.

6 EXPERIMENTAL EVALUATION

We now demonstrate that SNARF can bring more than one order of
magnitude improvement when compared to state-of-the-art filters.
We evaluate SNARF both as a standalone filter as well as part of
RocksDB. ?

6.1 Standalone Analysis
Our experiments comparing SNARF against other baselines aim to
support the following key claims:
SNAREF offers a better FPR-space tradeoff curve than other

baselines on various synthetic and real world datasets/workloads.

The FPR provided by SNAREF is robust to increasing query
range sizes as well as skew in query workload (certain part
of data queried more often).

SNARF performance drops with correlation (as discussed in
Sec. 4.1) resulting in Rosetta being better for very short and
highly correlated range queries.

SNARF has a reasonable construction time and its query
response time can be tuned as needed. SNARF with Elias
Fano encoding has a faster query response time than with
Golomb Coding at a slightly higher space cost.

SNAREF supports updates at reasonable throughput.

For our experimental design, we follow the evaluation setup as done in SuRF and
Rosetta as much as possible.



We now provide experiment details.

Baselines:We evaluate SNARF against three other baselines:
SuRF: We use the SuRF implementation from [7] with real
suffixes as they provided the best performance. 0
Rosetta: We use the original Rosetta implementation [34].
Cuckoo Filter: For our point queries, we compare against the
Cuckoo Filter implementation from [6] in the semi-sorted setting
as it achieved the best FPR-space tradeoft.

Datasets: For our experiments, we build a filter on 100 million
keys chosen from the following datasets.!! We use two synthetic
datasets and three real world datasets from [36]:

Uniform Random: Keys are generated uniformly at random
in the range [0, 2°°].

Normal: Keys are generated from normal distribution (N (y =
100, o = 20)) and are linearly scaled to range [0, 25°].

wiki: Keys represent the time an edit was made on Wikipedia.

osm: cell IDs from Open Street Map representing a location.

fb: unique Facebook user IDs [46].

Workload: We use 100 million queries for our experiments. The
queries are of the type [left,left+range_size]. If range_size=0, then
the query is a point query. We first generate the left endpoint(left)
of the range query from a certain distribution and then the right
endpoint of the query is calculated by adding the left endpoint and
the range_size. The range query workloads use a range size of 256
while the mixed-query workloads use range sizes of 0, 16, 64 and
256 in equal proportion. We generate the left endpoint(left) of the
queries in following manner:

Uniform Random: left endpoint chosen uniformly at random
in the range [0, 2°°].

Exponential: We use an exponential distribution(p(x) = Ae™ M) =

10) which results in certain part of the data being queried more
often. We then scale them to range [0, 2°°].

Correlated: This distribution generates queries which are close
to the keys. A key is chosen uniformly at random from the dataset
and then left endpoint is chosen uniformly at random from [key,
key+230#(1-corr_degree)| Hijgher corr_degree implies increased prox-
imity between keys and queries, so that corr_degree = 1 generates
extremely correlated queries (left end point being key + 1) whereas
corr_degree = 0 generates queries independent of the key value.

Sampled Data: This is used to generate range queries for real
world datasets (as previously done in SuRF). We first divide the
dataset into two equally sized parts by choosing keys uniformly at
random. A filter is built on one half of the dataset and the other half
is used as the left endpoints for queries in the respective workload.
SNAREF parameters: The CDF model uses (N/1000) linear models
unless stated otherwise. By default, we choose f = 100 and thus
divide the bit array into (N/100) equally sized segments. We use
Golomb coding for SNARF unless specified.

1%Note, SuRF has a limited range of operation as the implementation starts with
minimum of 10 bits per key (0 bits as the suffix length).
1We evaluate on integer keys but would also work for floats. Floats are numerical
keys, the current CDF model for SNARF works for them. We expect minimal change
in the performance of SNARF for floating point values.
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6.1.1 FPR vs Space Tradeoff for Synthetic Dataset/Workloads:
In Fig.5(A), each subfigure corresponds to a particular key and query
distribution along with a particular query workload. Each subfigure
shows the space used by the baselines in bits per key and the FPR
achieved by them on the corresponding query workload. For point
queries, SNARF achieves performance similar to Cuckoo filters
for all cases. For range queries, SNARF consistently has a better
Pareto curve than all other baselines. When using 16 bits per key,
SNARF and SuRF provide false positive rates of 6.2 x 10~ and
1.1x 1073, respectively. Rosetta is competitive for point queries but
its performance degrades as query range size increases.

Even with exponentially distributed data, SNARF maintains its
performance as the CDF model can capture this skew in data dis-
tribution. As discussed in Sec.3, mapping the keys evenly across
the bit array results in a robust false positive rate and consistent
performance across different skewed query distributions.

6.1.2 FPR vsSpace Used Tradeoff for Real Dataset/Workloads:
In Fig.5(B), each subfigure corresponds to a particular dataset along
with a particular query workload. Each dataset is divided into two
equal parts. One part forms the set of keys and the other half forms
the left endpoint of the query. The right endpoint is decided by the
range query size.

SNAREF has a better Pareto curve than other baselines for all cases.
SNAREF is able to perform particularly well on real-world datasets
due to certain patterns present in them. A common pattern we ob-
served in our real-world datasets is that they have large empty con-
tiguous ranges; for example, S:{10,78,95,10045,10052,10089,30011, ..... },
where the sorted keys suddenly jump by large amounts. While we
do not have a clear global reason for such behavior, it is natural
for settings such as when the set is a collection of numerical IDs;
different ID subranges may be assigned by different entities. Both
SNARF and SuRF effectively model large empty ranges in a way
that is both succinct and avoids false positives.

In some cases, while keys may be from a large domain, they may
be concentrated in a small range. For example, the keys may lie in
the domain [0, 232) but all appear in the small range [21°, 212]. The
modelling step of SNARF automatically takes advantage of this type
of pattern to benefit performance!?. For most cases, SNARF is able
to achieve a low FPR (below 10™*) using less than 10 bits per key. For
the osm dataset, SURF also achieves a FPR below 10~% but still uses
more memory (= 15— 16 bits per key). Similar to our previous exper-
iments on synthetic data, Rosetta is competitive for point queries
but its performance degrades as query range size increases.

6.1.3 Correlated Workload: As discussed in Sec.4.1, the corre-
lated workloads are when the query endpoint is close to a key, which
is more likely to lead to a false positive in SNARF and SuRF. In Fig.6,
we show the FPR vs key-query correlation degree tradeoff for vari-
ous baselines for a fixed memory budget of 15 bits per key. Higher
the key-query correlation degree closer the queries are to the keys.
As expected, FPR of both SNARF and SuRF degrades with increasing
correlation. Both SNARF and SuRF provide virtually no filtering for
uniform dataset when workload is highly correlated. On the other

12This is similar to the case when z < nK and all values are mapped to distinct bit
positions leading to no false positives.
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and SuRF become worse and Rosetta turns out to be the better filter for very short and highly correlated range queries.

hand, Rosetta is unaffected by this correlation and performs the
best for very short range queries and highly correlated workloads.

6.1.4 FPR vs Range Size: In Fig.7(A), we vary the range query
size from 1 to 10° and report the FPR of various range filters under
a memory budget of 15 bits per key. We use uniformly randomly
distributed keys and workloads for this experiment. As discussed
in Sec.3, the FPR of SNAREF stays constant with the range query
size. SURF also maintains its FPR with increasing range query size
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but has a 17x worse FPR than SNARF. Rosetta becomes worse with
increasing range size and provides almost no filtering for range
sizes greater than 1000.

6.1.5 Filter Query Latency vs Space Used: In Fig.8, we show
the query latency of various filters with increasing filter sizes for
uniform random and FB datasets for mixed range queries. We skip
other datasets/workloads as we observed similar trends for them.
For this experiment, we fix the size of the dataset to 100 million
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keys and vary the filter parameters that control its size. In both of
the subfigures, both variants of SNARF are slower than SuRF but
faster than Rosetta. SNARF with Elias Fano encoding is consistently
faster than SNARF with Golomb coding. This is because Golomb
coding (a form of delta coding) requires decoding of the first key
and the following delta values to retrieve a key, which is not the
case for Elias Fano coding. For SNAREF, filter query time increases
slightly with increasing filter size. This is because as the filter size
increases, the model size remains constant but the encoded bit array
size increases, so SNARF then has to parse more data to decode the
bit array. The filter query latency increases drastically for Rosetta as
its filter size increases, as larger internal Bloom filters mean Rosetta
has to perform a greater number of random accesses.

6.1.6 Effect of Bit Array Division on Space and Query La-
tency: As discussed in Sec.2.3.2, for SNARF we can improve the
query latency by reducing the segment size. Recall we use small seg-
ments of size K in the bit array, and using smaller § can improve
latency at the cost of extra space overhead. The overhead arises
because when we have a larger number of segments in the bit array
there is more associated metadata. Fig.7(B) shows the query latency
and the space used by the various baselines to achieve a FPR of 2713
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on uniform random keys and uniform randomly generated mixed
sized queries. We show multiple configurations for SNARF with
B values 10, 20, 50, and 100 (increasing marker size representing
larger f values). The results show that with decreasing  we get
better query latency. Elias Fano coding is faster than Golomb coding
for the same number of segments. By varying f, Golomb coding
and EF coding with SNARF are able to achieve a query latency of
890 ns and 746 ns, respectively. SuRF is the fastest baseline with
latency of 480ns, but uses around 19.4 bits per key.

6.1.7 Build Time: In Fig.7(C), we vary the number of the keys
from 10° to 10® and report the build times of various range filters.
We use a uniformly random distribution for the keys. The build
times of all the filters grow linearly with the number of keys. The
build time for learned range filters is around 5x faster than Rosetta
and around 2x slower than SuRF. Depending on the application,
filter construction might play a more or less important role. For
example, for LSM trees, filter construction only plays a minor role
as part of the merge phase as shown in Sec.6.2.3.

6.1.8 Updates: InFig.7(D), we vary the percentage of updates(50%
insertions and 50% deletions) in the query workload (the rest of the
workload is range queries) and report the throughput. SuRF and
Rosetta do not support both inserts and deletes, so we only analyze
SNARF here. We use the SNARF variant with duplication in order
to support deletes. We use a uniform random distribution for the
keys. The workload contains 1 million operations overall and is also
uniformly randomly distributed. Since, the updates do not change
the distribution of the data, the FPR stays constant. On average an
update takes around 12k ns whereas a range query takes around
1898 ns. The throughput of the filter decreases with increase in
proportion of updates as updates are slower than range queries.

6.2 RocksDB Experiments

Our experiments on RocksDB integrated with SNARF aim to sup-
port the following key claims:

e RocksDB with SNARF offers better read performance than
other baselines on various synthetic and real world datasets
and workloads.

e SNARF’s as well as other filters impact reduces as the pro-
portion of empty range queries in the workload decreases.
This leads to SNARF’s performance improvement over other
filters to reduce as well.

e In RocksDB with SNAREF, read performance drops with cor-
relation (as discussed in Sec. 4.1) resulting in Rosetta being
better for very short (range size less than 16) and highly
correlated range queries.

o SNAREF adds little overhead to RocksDB

o SNARF improves end-to-end performance of RocksDB for a
typical read-write workload.

Integration with RocksDB: We use a RocksDB integration and
workload generation setup identical to that of Rosetta [34]. We
utilized an API of filter functionalities such as populating, querying,
serializing, and deserializing the filter to integrate SNARF. RocksDB
stores its data in multiple immutable tables called SST (Sorted String
Tables). A SNAREF instance is created for each SST file. We store the
filter on disk as a character array and the process of converting the
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Figure 9: SNARF outperforms other baselines when fully integrated
in RocksDB.

filter to char array is called serialization. In order to use the filter
we need to read it to memory from the disk and deserialize it'>. We
enable the block cache and allow the caching of filters.14
Implementation Overview of a Range Query: For a range query
[P, q], RocksDB probes filter instances of all levels for existence
of keys within this range. If all filter instances return negative,
an empty result is returned. If one or more filters return positive,
RocksDB seeks the lower end (p) incurring an I/0. When RocksDB
get a valid pointer, it reads data until q is reached and incurs as
much I/O’s needed to reach gq.
Setup and Workloads: We use 14 bits per key for all the filter base-
lines(as previously done in SuRF)'>. We first populate RocksDB with
50 million 64-bit keys from a distribution and 512 byte values. Each
experiment has a description of the workload. After population,
we run the workload on this populated RocksDB instance. Total
execution time of this workload is usually the metric of interest.
We use uniform random distribution for keys/workload genera-
tion by default and we have 100k queries in a workload as default.
We used the same distributions of dataset and workload mentioned
in Sec.6.1. The workloads are primarily read only to highlight the
impact of filters, but we also have a few experiments with a mixture
of reads and writes. Each workload is run with read queries of
various range sizes (1, 16, 64, 256).

6.2.1 SNARF improves RocksDB Performance: For this ex-
periment, we generate YCSB key-value workloads that are varia-
tions of Workload E, a majority range scan workload modeling a
web application use case [10]. The quality of the filter is best judged

3To reduce the deserialization overhead we maintain a dictionary that has the deseri-
alized bits for each filter instance and its corresponding SST similar to [34]
Ycache_index_and_filter_blocks=true. We also ensure that the fence
pointers and filter blocks have a higher priority than data blocks when block
cache is used cache_index _and_filter_blocks_with_high_priority=true,
pin_l0_filter_and_index_blocks_in_cache=true.

1514 bits per key allows reasonable performance with fpr below 10% for all filters
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with empty range queries as filters enhance performance by iden-
tifying empty queries for which an unnecessary seek can be avoided.
Thus, we compose our workload with 100,000 empty range queries.
Fig.9(A) shows the workload execution time of various baselines.
The workload execution time consists of two parts, time spent by
the CPU and time spent on I/O. We observe that I/O time dominates
the CPU time. SNARF’s workload execution time is consistently
one order of magnitude less than the other baselines. SNARF has a
better FPR than SuRF and Rosetta leading to fewer I/O’s and hence
lower workload execution time. As shown in Fig.9(B), SuRF has a
FPR 40x worse than that of SNARF across all range sizes. Rosetta’s
FPR becomes worse with increasing range size. Worse FPR leads
to more block I/O’s as shown in Fig.9(C). In summary, Rosetta and
SuRF have significantly high I/O time due to their worse FPR.
SNAREF adds little CPU overhead In the previous experiment,
we further break down the total CPU time for various baselines in
Fig.9(D). The CPU time is further divided into deserialization time,
filter probing time, and residual seek time. The residual seek time
is the time taken for routine jobs performed by RocksDB iterators —
looking for checksum mismatch and I/O errors; going forward and
backward over the data, filters and fence pointers; and creating and
managing database snapshots for each query. The filter probe time
is time taken to probe the filters and deserialization time is the time
taken for filter deserialization. The filter probe time accounts for at
most 20% of the total CPU time for even the slowest filter (Rosetta).
Residual seek time accounts for the dominant portion of the CPU
time. Thus, a CPU intensive filter does not affect the performance
of RocksDB much.
SNARF improves RocksDB Performance on real world datasets
For this experiment, we populate RocksDB with 50 million keys
from real world datasets and use sampled-data workload consisting
of 100k empty range queries. Fig.10(A) shows the workload execu-
tion latency of this workload in RocksDB. SNARF exhibits a lower
workload latency than other baselines for all three datasets. Same
as previous experiment, this is due to the better FPR that SNARF
delivers compared to other filters.
As range size increases, SNARF improves RocksDB Perfor-
mance for correlated workloads As discussed in Sec.4.1, SNARF
and SuRF become worse with increased correlation between queries
and keys. For this experiment, we use a correlated workload consist-
ing of 100k empty range queries. In Fig.10(B), we vary the key-query
correlation degree of the queries and measure the workload execu-
tion latency. The execution time of SNARF and SuRF increases with
correlation but not beyond a certain level. This is because even if a
query is highly correlated to a key in a particular SST file, SNARF
and SuRF are still useful for the rest of the SST files. Rosetta is
the better filter for range size equal to one and a highly correlated
workload otherwise SNARF is the better filter.

6.2.2 SNARF performance for mixed workload (empty and
non-empty range queries): Here, we measure the workload ex-
ecution latency on a mixed read-only workload of empty and non-
empty range queries by varying the percentage of empty range
queries from 10 to 100. As shown in Fig.10(C), the workload execu-
tion time of all filters decreases with an increase in the proportion
of empty range queries. This is because filters are more effective
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on empty queries than non empty queries. Notice, even with ma-
jority non-empty workload filters are still useful. This is because
non-empty range queries will return a true positive for one SST but
other SST’s might still return a false positive leading to additional
unnecessary scans. The decrease in execution time is faster for
SNARF than other baselines because SNARF has better FPR than
others and thus, is more effective in reducing unnecessary I/O’s.

6.2.3 SNARF performance for read-write mixed workload:
In order to simulate real working of RocksDB, we used a majority
write workload (only 1 percent reads) with 10 million operations
similar to YCSB workload A(majority updates). Read and writes are
performed in an interleaved manner. We first start with a RocksDB
instance that already has 50 million uniform randomly distributed
keys . Reads and writes are generated using the uniform random
distribution. Each write operation is a point write which inserts
a unique key into the RocksDB instance with a corresponding
randomly generated value. All the read queries are empty range
queries and we evaluate 4 different workloads for read queries with
4 different range sizes: 1, 16, 64 and 256.

Writing keys to RocksDB leads to compaction and creation of
new SST files. Creation of new SST files involves constructing the
filter and thus filter construction time gets accounted for in the over-
all execution time. While performing reads, the query response time
of the filter gets accounted for in the execution time. Thus, this ex-
periment evaluates the end-to-end filter performance as it accounts
for reduced I/Os due to filtering, filter query response time and filter
construction time. In Fig.10(D), we show the workload execution
time of the workload for various range sizes. Owing to its lower
FPR, SNARF has a lower workload execution latency than SuRF and
Rosetta. SNARF’s slightly slower filter query time and construction
time compared to SuRF is offset by gains produced in lower I/Os.

6.24 SNARF impact with increasing range query size: In
Figure 10(E), we show the workload execution time as we increase
query range size for uniformly randomly generated keys and work-
loads. The impact of filters decreases with increasing range size. For
range sizes around ~ 10° — 104 most queries are empty; accordingly,
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filters have a large impact and here SNARF outperforms other filters
by an order of magnitude. For range sizes around ~ 107 — 102 most
queries are non-empty, touching a few SSTs, and filter have less
impact. For range sizes around ~ 10° — 101° most queries touch
most SSTs and filters have negligible impact.

7 CONCLUSION

We introduce Sparse Numerical Array-Based Range Filters (SNARF),
a learning-enhanced range filter supporting both point and range
queries for numerical data. We have shown that SNARF appears
highly beneficial for point and range queries, both via an analysis
and empirically across various synthetic and real world datasets. For
future goals, we would like to extend this approach to other types of
data, most notably strings. Finding better learning models or prov-
ing via a theoretical framework that linear spline model is a near-
optimal model also remain open questions. Finally, making SNARF
workload dependent is an interesting direction for future work.
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