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Plant litter strengthens positive
biodiversity–ecosystem functioning
relationships over time
Wei-Ping Zhang,1 Dario Fornara,2 Hao Yang,1 Rui-Peng Yu,1 Ragan M. Callaway,3 and Long Li 1,*
Highlights
Nitrogen (N) inputs from legume residues
over the long-term contribute to improve
soil N cycling and the productivity of
succeeding plants in species-diverse
ecosystems.

Litter mixtures enhance soil fertility,
thus enhancing biomass production,
which in turn creates positive diversity–
productivity feedback in the long-term.

Positive effects of litter diversity on the
composition and diversity of soil organ-
isms increase over time.
Plant biodiversity–productivity relationships become stronger over time in grass-
lands, forests, and agroecosystems. Plant shoot and root litter is important
in mediating these positive relationships, yet the functional role of plant litter
remains overlooked in long-term experiments. We propose that plant litter
strengthens biodiversity–ecosystem functioning relationships over time in four
ways by providing decomposing detritus that releases nitrogen (N) over time
for uptake by existing and succeeding plants, enhancing overall soil fertility,
changing soil community composition, and reducing the impact of residue-
borne pathogens and pests. We bring new insights into how diversity–
productivity relationshipsmay change over time and suggest that the diversifica-
tion of crop residue retention through increased residue diversity from plant mix-
tures will improve the sustainability of food production systems.
Residue-borne pathogens and pests
gradually accumulate through litter
input from monocultures, whereas di-
verse plant-litter mixtures reduce the in-
cidence and spread of residue-borne
pathogens and pests in the long-term.

Plant litter can strengthen biodiversity–
ecosystem functioning relationships in
both natural and managed ecosystems.

Appropriate management of residues
from plant mixtures across multiple
growing seasons can promote the
sustainability of food production
systems.
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Biodiversity effects on productivity increase over time
Positive plant diversity–productivity relationships become stronger over time in grasslands [1],
forests [2–4], and agroecosystems [5,6]. A meta-analysis of 44 biodiversity experiments showed
that species mixtures produced an average of 1.7 times more biomass compared with species
monocultures; moreover, the impacts of plant diversity on biomass production became signifi-
cantly stronger over the duration of the experiments [7]. One such example comes from two
long-term (≥13 years) grassland experiments established in Minnesota, USA. Here, in statistical
terms, the exponent from the power function of the relative yield (i.e., dividing plot-level values by
the mean monoculture yield) of total biomass in relation to species richness increased from 0
toward 1 over time in both experiments. This indicated that the effects of species diversity on
plant biomass increased and became less saturating over time [1]. Similarly, in subtropical forests,
the net biodiversity effect on stand volume increased through time for mixtures of all species-
richness levels [2,3]. Urgoiti et al. [4] found that the positive effects of tree species diversity on
temperate forest productivity were only observed after 9 years. In agroecosystems, the yield
advantages of intercropping (see Glossary) maize (Zea mays L.)/soybean (Glycine max L.) and
maize/peanut (Arachis hypogaea L.) increased over time, but only in the absence of N fertilization
[5]. Identifying why the effects of plant diversity strengthen over time helps us to understand the
fundamental mechanisms of how biodiversity drives ecosystem function in general.

The mechanisms thought to underlie the development of stronger biodiversity effects on ecosys-
tem function over time mainly involve the role of living plants and their interactions with the soil
environment. These might drive increases in the functioning of high-diversity communities or
decreases in the functioning of low-diversity communities, or both [8]. Mechanistically, the effects
of complementarity in resource acquisition and use, as well as positive ecosystem feedbacks
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on soil N cycling, tend to accumulate over time in high-diversity communities [1]. Concurrently,
the accumulation of natural enemies and the high pressure from species-specific pathogens
limit productivity in low-diverse communities [9]. Thus, strengthened biodiversity effects could
result from lower pathogen accumulation over time (compared with monocultures) or from in-
creasingly complementary resource use and nutrient accumulation in plant mixtures [1,9,10].
In addition, long-term intercropping can enhance soil fertility via increases in soil organic matter,
total N, and soil macroaggregates compared with monocultures, all of which contribute to
increasing yield advantages in intercropping over time [6].

Regardless of the mechanism involved, the remarkably consistent increase in positive diversity–
ecosystem functioning over time indicates that the cumulative transformation of the biotic and
abiotic environment by vegetation is a key process by which biodiversity regulates ecosystem
function. One of the primary ways that plants transform their environments is through the long-
term accumulation of plant litter. Plant litter (or crop residues), which originate from living plants
(temporal link), remain in close contact with the soil (spatial link) for long periods [11] and, thus,
can have a significant role in mediating plant–soil interactions in the long-term. Terrestrial ecosys-
tems produce a large amount of plant litter, and litter effects on ecosystem functioning are gen-
erally well known. Approximately half the organic carbon (C) produced by terrestrial plants
contributes to the global plant-litter residue pool [12]. Globally, an estimated 3758 × 106 Mg of
residue is produced annually by 27 main food crops [13]. The decomposition of litter can pro-
foundly influence key ecological processes, such as the formation of soil organic matter [14], nu-
trient cycling [15], energy flow, and plant growth [16,17]. In addition, litter decomposition may
directly or indirectly influence plant–plant interactions [18], community succession [19], the diver-
sity and activity of microorganisms [17,20], and biodiversity–ecosystem function (BEF) rela-
tionships [21]. For example, litter decomposition is closely linked to direct (e.g., nutrient
enrichment) and indirect (e.g., altered soil biodiversity) facilitation, which can contribute to
positive BEF relationships [22]. Greater plant species diversity significantly affects the quantity,
quality, and chemical diversity of plant litter [23,24]. After plants die, their diversity still has sub-
stantial effects on ecosystem functioning (i.e., litter decomposition) in forests, grasslands, and
wetlands [25]. Plant diversity increases productivity and further enhances aboveground litterfall
and root litter inputs to soils [26,27]. Changes in the quantity and quality of litter mixtures can
greatly influence decomposition processes, thus potentially altering ecosystem functioning
[25,28]; however, the potential roles of plant litter in mediating positive diversity–productivity rela-
tionships in the long-term remain poorly understood.

The role of plant litter in strengthening the plant diversity–productivity
relationship over time
We suggest that diversity-induced changes in plant litter further enhance and strengthen positive
biodiversity effects on ecosystem functioning over time in four different ways (Figure 1).

Decomposition of plant litter contributes to N uptake of succeeding plants
N fixation by legumes and N transfer to nonlegumes contribute to overyielding and higher N use
efficiency in species mixtures [5,29], a process most closely linked mechanistically to facilitation
[22]. Using 15N natural abundance-based techniques, an estimated 30–83% of nonlegume N
is derived from legume-fixed N, thus representing up to 30–40 kg N ha−1 [29]. Belowground N
transfer from legumes to nonlegumes can occur through three pathways (Figure 1, arrow a;
Figure 2): (i) exudation of soluble N compounds from legumes and direct uptake by nonlegumes
[30]; (ii) direct transfer of N mediated by plant-associated mycorrhizal fungi [31]; and (iii) decom-
position of legume root tissues and nodules and subsequent uptake of mineralized N by neigh-
boring plants [32]. N transfer through the senescence and decomposition of roots and nodules
474 Trends in Ecology & Evolution, May 2023, Vol. 38, No. 5

CellPress logo


Glossary
Biodiversity-ecosystem function
(BEF): effect of species, genetic, and
functional diversity on ecosystem
functioning.
Biofumigation: use of plant material
and naturally produced compounds to
control pests.
Complementarity effect: more
efficient use of available resources
deriving from interspecific facilitation and/
or niche partitioning in species mixtures.
Continuous cropping obstacle:
abnormal growth and development of
crops caused by the continuous
cultivation of the same crop species or its
relatives in the same field.
Cover crop: any living ground cover
that is planted with or after a main crop
to protect the soil from erosion; it is
usually killed before the next crop is
planted.
Crop diversification: intentional
addition of functional biodiversity to
cropping systems at multiple spatial
(e.g., crop mixture, intercropping, and
cover crops) and/or temporal scales
(e.g., crop rotation).
Crop mixture: two or more different
crop species or varieties are grown
simultaneously on the same field in
alternative rows or mixture with no
distinct row pattern.
Crop residues: decaying parts of the
crop plant that are not harvested.
Crop rotation: agricultural practice of
growing a series of different crop species
in the same field across multiple growing
seasons.
Direct facilitation: one plant benefits
neighboring plants by habitat
amelioration or resource enrichment.
Facilitation: direct and indirect positive
effects of plants on each other.
Indirect facilitation: one plant benefits
neighboring plants such as by removing
potential competitors, introducing
beneficial organisms, or protecting its
neighbors from pathogens, pests,
herbivores, or parasites.
Intercropping: simultaneous growth of
at least two crop species within the
same field.
No-tillage: agricultural practice of
growing crops or pasture without
disturbing the soil.
Plant litter: dead plant material (such
as leaves, needles, twigs, and root) that
decomposes in the field.
Plant mixture: different plant species
or varieties are grown simultaneously, or
partly so, in the same field.
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is generally a slower process than N transfer via root exudates or mycorrhizal fungal networks,
and the former mostly contributes to N uptake during the later stages of plant growth within a
growing season or in subsequent growing seasons [33]. Previous studies of N transfer focused
on either species mixtures within a growing season or rotations across growing seasons. The
contribution of legumes to BEF relationships is well recognized in both short- and long-term bio-
diversity experiments [1,10,34]. However, long-term N effects including, for example, the contri-
bution of legume residues to the N uptake of succeeding nonlegumes have received less
attention.

Belowground N transfer from legume residues to succeeding plants can contribute to enhance
the diversity effect over time (Figure 2). Legume root and nodule decomposition contribute
large amounts of N to cover crop and crop rotation systems and to legume–grass forage
mixtures [32,35]. Roots of legume-based cover crops can represent 31–50% of total plant
N (153–226 kg N ha−1), which can contribute to the yield of succeeding crops [36]. The main
pathway of belowground N transfer from the legume Stylosanthes guianensis to the associated
grass Brachiaria decumbens was via decaying roots rather than via root exudates or mycorrhizal
fungal networks between the legume and the grass [37]. In a 2-year field intercropping experiment,
the maize partial land equivalent ratio (PLER) of maize/soybean and maize/peanut intercropping
systems not receiving N fertilization increased and resulted in higher total LERs of intercropping
systems during the second year of cultivation [5]. Moreover, the number of ears per unit area or
grains per ear of maize was very low in monocultures without N fertilization, but remained relatively
high in intercropping during the second year of the experiment. The decomposition of legume roots
and nodules in the long-term can contribute to N uptake of succeeding maize plants [33], possibly
explaining the overyielding of intercropping over time without N fertilization [5].

Several meta-analyses and long-term experimental studies have shown how the mechanisms
underlying the increasingly positive effect of diversity on biomass productivity shifted from selec-
tion to complementarity effects as the experiments progressed [1,2,7,38]. The decomposition of
shoot and root litter (including legumes and nonlegumes) can provide extra N to plants in the
succeeding year [36]. This extra N supply, together with complementary N use in time and
space, and N transfer within a growing season in species mixtures [1,5,7,38] could help explain
the stronger biodiversity effect on productivity over time (Figure 2). In addition to root litter, above-
ground litter may also be an important source for N transfer. For example, two-thirds of biologi-
cally fixed N transferred from Faidherbia trees (Faidherbia albida; Fabaceae) into the leaves of
surrounding maize plants was attributed to N release from the decomposition of tree leaf litter
[31]. The decomposition of nonleguminous litter is also an important N source in unfertilized eco-
systems. A positive relationship between plant species richness and productivity emerged during
the second year and strengthened with time in a 4-year biodiversity experiment without legumes
[38], possibly because of increasedN input due to litter decomposition and increased nutrient use
efficiency under high species richness conditions [1,7,34,38].

In addition to N, the transfer of phosphorous (P), potassium (K), and other elements from remaining
litter residues is an important potential source of nutrients for subsequent crops. The percentage of
P contained in wheat-derived residue ranged from 9% to 44% in a dual-labeling experiment [39].
Moreover, the addition of root residues from a mixture of maize and faba bean (Vicia faba L.)
enhanced intercropping advantages in terms of total P content in a P-deficient soil [40].

Changes in the quantity and quality of litter mixtures enhance soil fertility
Higher plant diversity increases plant biomass production, which, in turn, can contribute to other
properties of soil fertility (besides Nmentioned previously) as shoot and root biomass are returned
Trends in Ecology & Evolution, May 2023, Vol. 38, No. 5 475
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Reduced tillage: tillage practice of
minimizing soil disturbance and allowing
crop residue or stubble to remain in the
field.
Residue retention: crop residues left
on the soil surface or incorporated into
the soil by tillage.
Residue-borne or stubble-borne
disease: crop diseases, which are
mainly caused by pathogens that can
overwinter on plant residues by carrying
out a specific part of their life cycles,
leading to the production of primary
inoculum.
Selection effect: increased probability
of having a species adapted to the given
environmental conditions when more
species are present in species mixtures.
Soil biodiversity: variety of life that
exists within the soil, from genes to
species and communities, as well as the
ecological complexes of which they are
part from soil microhabitats to land-
scapes.
Soil fertility: capability of soil to support
plant biomass production by providing
essential nutrients and favorable soil
physical, chemical, and biological envi-
ronmental conditions for plant growth.
Soil-borne pathogens: plant diseases
caused by pathogens, which infect the
host from the soil environment, rather
than air or water.
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to the soil to decompose. Greater soil fertility may also result from lower nutrient-leaching losses
from species-rich communities. Greater soil fertility enhances plant biomass production during
the following year, creating a positive feedback loop with greater biomass inputs being added
to the soil [15,41], thus strengthening the positive biodiversity–ecosystem productivity relation-
ships over time.

Soil organic C (SOC) is a key indicator of soil fertility and soil quality and is linked to multiple pro-
cesses, such as the retention and release of nutrients, and soil structure formation [42,43]. Plant
litter in the form of dead shoots and roots is an important source of SOC in terrestrial ecosystems
[14]. Increased productivity in species-diverse plant communities can enhance plant above-
ground litterfall and root inputs to soils [26]. Greater plant diversity can increase soil C and N
accumulation [41,44] through enhanced litter inputs, increasing microbial growth and turnover,
and entombment of necromass [27,45,46].

Litter species diversity can also alter SOC accumulation, the retention and release of nutrients via
diversity effects on litter quality, and decomposition processes (Figure 1, arrow b). Plant litter
inputs and the decomposition process are two primary controls over C and N accumulation
and nutrient release in soils [23,24]. Mixing litter from different species can accelerate (synergistic
effects) or inhibit (antagonistic effects) decomposition compared with the average decomposition
of the mixture components [23,28,47]. Various studies have suggested that non-additive effects
(e.g., synergistic) are more common compared with additive effects in the decomposition of litter
mixtures [24,25,48]. Synergistic effects might result from: (i) N transfer from species that produce
high-quality litter to plants that produce low-quality litter; (ii) improvement in microenvironmental
conditions; and (iii) complementary resource use among microbial decomposers or detritivores
[24,48]. Conversely, antagonistic effects are often induced by the effect of specific components
(e.g., polyphenols in one litter component), which inhibit microbial growth and activity of the
whole community, and consequently impede decomposition of both litter types [48,49]. The soil
C and N accumulation potential of a species mixture via enhanced litter input is partly counteracted
by faster decomposition of litter mixtures. However, high-quality (i.e., rapidly decomposing) plant
litter mixture inputs could enhance C storage through increased microbial growth, turnover, and
microbial necromass accumulation over time [50]. Litter quality may bemore important thanmicro-
bial physiological traits in enhancing SOC storage in temperate forests [51].

Experimental evidence across four long-term intercropping experiments showed that intercropping
enhanced soil C and N content, especially in infertile soils [6]. During the second period (13–22
years) of a grassland biodiversity experiment, the active restoration of high-diversity late-
successional plant communities accelerated soil C accrual, with C storage accumulating at a rate
200% greater than the rate observed in a natural succession at the same site, and 70% greater
than in monocultures [52]. A global meta-analysis indicated that positive plant diversity effects on
SOC also increase over time [26]. Another meta-analysis showed that species diversity effects on
soil N become more positive with the number of species in the mixture and with stand age because
of enhanced feedback between litter inputs, decomposition rates, and soil biota, as well as reduced
N leaching [34].

In addition to soil C and N, greater plant species diversity across very different ecosystems can
contribute to the amelioration of soil biogeochemical properties through the greater input of soil
K, calcium (Ca), and magnesium (Mg) [41], the enhancement of the soil total P bank and avail-
able soil P [53], and the formation of soil macroaggregates [6]. Changes in the quantity and
quality of litter mixtures can directly or indirectly affect soil fertility properties in highly diverse
plant mixtures.
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Figure 1. The role of plant litter in strengthening biodiversity and ecosystem functioning relationships over time via four pathways. (A) contribution of plant
residue (especially from legumes) to the nitrogen (N) requirements of following plants (B) enhancing soil fertility; (C) changing soil community composition; and (D) controlling
residue-borne pathogens and pests.
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Altered soil community composition by diverse plant litter
The higher diversity of plant litter can increase the diversity of soil biota and change the compo-
sition of soil communities (Figure 1, arrow c; Figure 3A). In turn, soil biodiversity (bacteria, fungi,
protists, and invertebrates) contributes significantly to shaping aboveground biodiversity and
multiple ecosystem functions [54–56]. Plant species diversity can influence the soil food web
via microhabitat diversity and the quantity and quality of plant litter returned to the soil
(Figure 3A) [57–61]. Plant litter provides food, nutrients, and habitat for soil biota, thus influencing
soil biodiversity and community structure [62,63]. A higher diversity of plant litter increases the di-
versity of soil decomposers, which in turn promotes the diversity of higher trophic levels within the
soil food web [54,64]. Experimental studies using living plants and associated plant litter usually
show positive effects of plant species diversity on the abundance, biomass, and activity of soil
biota [20,65–67]. Multi-species litter mixtures had higher microbial abundance and fungal diver-
sity than predicted from single-species litter in a Mediterranean shrubland [67]. Other studies
Trends in Ecology & Evolution, May 2023, Vol. 38, No. 5 477
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Figure 2. Belowground nitrogen (N) transfer from plant litter to succeeding plants can contribute to enhance the diversity effect over time. The
decomposition of shoot and root litter (including legumes and nonlegumes) can provide extra N to plants in the following year. This extra N supply, together with
complementary N use in time and space, and N transfer within a growing season in species mixtures, could help explain the stronger biodiversity effect on productivity
over time.
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suggest that litter diversity also influences soil community composition [68,69]. For example,
mixing broad-leaf sassafras [Sassafras tzumu (Hemsl.) Hemsl.] with coniferous larch [Larix
kaempferi (Lamb.) Carr.] litter decreased the abundance of the bacterial classes Acidobacteriia
and Solibacteres while increasing that of the fungal class Dothideomycetes compared with
larch litter [69]. Plant species identity or functional groups (e.g., legumes) are also important in
influencing soil biota composition and functions [70]. Increasing evidence suggests that plant spe-
cies or genotypic diversity has strong bottom-up effects on soil multitrophic interaction networks, in
particular on primary consumers (microbes and plant feeders) rather than on secondary (microbe
feeders) or tertiary consumers (predators) [58,71].

Studies that found weak or no plant diversity effects on soil organisms have been largely based on
short-term experiments in which species richness effects may be due to the soil legacy effects of
previous plant communities [64,72]. By contrast, long-term studies (≥6 years) found that the den-
sity and diversity of soil organisms showed a positive response to plant species richness after a
time-lag of ~4 years [64,72]. Moreover, the effects of plant species diversity on nematode commu-
nity composition and diversity increased over time, indicating time-lags of nematode responses to
changes in plant diversity [64,66]. Changes in soil biodiversity and community composition in
species-rich communities are largely due to microhabitat diversity, the accumulation of litter layers,
478 Trends in Ecology & Evolution, May 2023, Vol. 38, No. 5
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Figure 3. The role of diverse plant litter on the soil food web and biodiversity (A) and slowing the spread of
residue-borne diseases and pests (B).
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and inputs of root-derived resources [57–59,61]. We suggest that the effects of plant litter diversity
on community composition and diversity of soil organisms increase over time, and this may con-
tribute to strengthening BEF relationships over time.
Trends in Ecology & Evolution, May 2023, Vol. 38, No. 5 479
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The application of crop residues is the most effective practice for enhancing soil biodiversity in in-
tensively managed agroecosystems [73,74]. For example, maize straw mulch is an important fac-
tor enhancing the abundance and diversity of soil mesofauna [74]. By increasing the quantity,
quality, and chemical diversity of residues, high-diversity plant species rotations in agroecosystems
can increase microbial community diversity and the relative abundance of fungi versus bacteria
[75]. Intercropping can alter soil microbial community composition, as shown in three long-term
field experiments [76]. Long-term maize/greenleaf desmodium (Desmodium intortum) and maize/
silver-leaf desmodium (Desmodium uncinatum) intercropping diversified fungal microbiomes and
favored taxa associated with plant productivity [77]. Since aboveground plant residues are gener-
ally removed from arable fields, more attention should be paid to the role of root residues, which
might accumulate through time in long-term intercropping experiments and affect ecosystem func-
tioning. We predict that diversified crop residue retention (including both shoot and root parts)
contributes to increase soil biodiversity and influence soil community composition, with conse-
quences for ecosystem functioning in diversified cropping systems (Box 1).

Diverse plant residues from species-rich ecosystems can control residue-borne pathogens and
pests
Crop residues are the primary source of infection of many diseases for succeeding crops [11].
Thus, the conservation of crop residues in the field after harvest with reduced- or no-tillage
practices may increase the risk of ‘residue-borne’ or ‘stubble-borne’ disease epidemics
[78]. Diverse necrotrophic leaf-, stem-, and inflorescence-attacking fungal pathogens are
known to survive on crop residues in the form of reproductive and spore-dissemination structures
between cropping seasons [11]. For example, wheat pathogens, such as Fusarium graminearum
andMycosphaerella graminicola, survive on wheat residues and are likely to infect the next crop if
the residues are left in the field after harvest [79]. Residues and old stems of sorghum and maize
Box 1. Optimizing plant residue retention in managed ecosystems

In-field retention of crop residues affects both crop productivity and soil fertility [74]. Straw (e.g., frommaize, wheat, or rice)
is often used for residue retention in monocultures, but our understanding of how to manage diverse straw retention in
diversified cropping systems (e.g., intercropping) is limited. Integrated residue retention and crop diversification and soil
tillage might better support agroecosystem functions over time.

Monoculture intensification can have detrimental effects on ecosystem functioning, whereas agricultural diversification can
enhance ecosystem function [90,91], and some studies have indicated that crop residue management has an important
role in ecosystem functions in diversified systems. For example, cover crops are usually killed and incorporated in soils by
tillage, which can increase soil organic matter content [92]. In addition, the residues of some cover crops (e.g., brassicas)
release volatile and toxic isothiocyanates during decomposition, and can suppress soil pests as biofumigations [93].
Furthermore, cover crop mixtures caused greater increases in SOC compared with mono-species cover crops, while
adding legumes led to greater SOC increases compared with including only grass species [92].

Optimizing residue management aims to minimize negative impacts of the residue-borne disease while maximizing the
benefit of residue nutrient to the following plants. Some crop residues are colonized by pathogens or can release autotoxic
substances and may contribute to soil sickness [94]; removing these residues from fields is an important way to alleviate
soil sickness. Crop residues affect pathogen control either directly or through associated soil tillage. A cropping system
that includes zero tillage, crop rotations, and crop residue retention resulted in increased populations of soil microflora that
promote plant growth and suppress diseases [95]. Thus, diversifying crop residue retention via residue mixtures (spatial
scale) or sequential crop residue diversity (temporal scale) could reduce residue-borne pathogens in diversified cropping
systems.

Agroecosystem diversification with legumes or nonlegumes improves ecosystem functions differently [96]. Legume-based
crop residue retention in plant mixture can improve N uptake of succeeding crops in long-term diversified systems [36].
However, it is important to manage the timing of nutrient release from residue mixtures with the timing of succeeding crop
nutrient demand, otherwise nutrients become vulnerable to loss through leaching [97]. Mixing legume with nonlegume
residues is a potential strategy to regulate the rate of nutrient release rate [49].
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Outstanding questions
How can we quantify the short- and
long-term role of plant-litter mixtures
in influencing ecosystem functioning
through litter-removal experiments?
The role of plant-litter mixtures needs
to be demonstrated through imple-
mentation of litter-removal and/or
addition experiments. Crop residue
management is widely practiced
across agroecosystems, but large-
scale litter manipulations through litter
removal or addition remain experimen-
tally challenging in natural ecosystems.

How can we separate the ecosystem
effects of plant litter from those of
living plants and the soil environment?
Litter-mediated mechanisms may op-
erate simultaneously with short-term
mechanisms associated with living
plants and the soil environment in the
long-term biodiversity experiments.
Thus, biodiversity experiments should
focus simultaneously on both short-
and long-term mechanisms.

How can we quantify the contribution
of root residues to strengthened
ecosystem functions in species-
diverse communities in the long-term?
So far, most studies have focused on
the role of aboveground litter on eco-
system functioning, while root decom-
position may be more important in
driving ecological processes, such as
soil C and N cycling and soil biodiver-
sity. Compared with shoot residues,
the role of diverse root residues is
often overlooked in long-term diversi-
fied cropping systems.

How do litter mixtures affect soil
community composition and residue-
borne pathogens over time? Plant di-
versity can influence soil food web
and biodiversity via microhabitat diver-
sity, and the quantity and quality of
plant litter. In addition, plant diversity
effects on soil biota diversity and path-
ogen suppression strengthen over
time. We still lack direct experimental
evidence of these potential long-term
effects of diverse litter from plant mix-
tures on soil community composition
and residue-borne pathogens.

How can we manage diverse
plant residues and design more
productive and sustainable cropping
(e.g., intercropping and agroforestry)
and seminatural systems (e.g., managed
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left in the field contain large numbers of live larvae and constitute an important reservoir for infes-
tation of lepidopterous stemborers [80]. Residue-borne pathogens and pests are different from
soil-borne pathogens and pests in terms of overwintering habitat and possible pathogen
control methods.

Diverse plant litter can help control residue-borne diseases and pests via: (i) decreases in host
density; (ii) changes in the microenvironment and reduced transmission; (iii) interactions between
plant-beneficial microbes and pathogens; and (iv) the effects of trophic regulation of the patho-
gens by their predators (Figure 1, arrow d; Figure 3B).

The host plant and litter density tends to decrease with increasing plant species richness, diluting
pathogens and pests in high-diverse plant communities (Figure 3B, arrow a) [9,81]. Using soils
collected from a 10-year crop-diversified field experiment, it was shown that faba bean monocul-
tures accumulated more pathogens, whereas maize/faba bean intercropping increased the rela-
tive abundance of mutualistic rhizobia [82].

Diverse plant litter also changes the microenvironment in ways that physically block the dispersal
and transmission of pathogens and pests (Figure 3B, arrow b) [83,84]. Plant litter from continuous
monoculture cropping is conducive for pathogens and pests to continue their life cycle with no
break, leading to rapid multiplication of pathogens, pests, and increased disease severity
(i.e., continuous cropping obstacle). By contrast, residue-borne pathogens and pests can be
controlled by appropriate intercropping or rotations with nonhost crops [78,85].

Competitive and antagonistic interactions between microbial communities and pathogens
harbored in species-diverse litter mixtures tend to prevent the outbreak of pathogens (Figure 3B,
arrow c) [11,86]. For example, incorporation of pineapple residues in the soil alleviated pathogen
pressure by increasing the relative abundance of antagonistic fungal taxa that suppressed patho-
gen growth and Fusarium wilt disease incidence [87].

Finally, increased plant species and litter diversity can reduce the abundance of patho-
gens, pests, and their damage by promoting predator and parasitoid abundance
(Figure 3B, arrow d) [54,64,88]. Specific residue-borne pathogens gradually accumulate
in monocultures, with negative consequences for plant growth, whereas diverse plant-litter
mixtures reduce the incidence and spread of residue-borne pathogens and pests in the
long-term.

Concluding remarks
Plant diversity–productivity relationships become more positive over time; however, potential
explanations for this have mainly focused on short-term interactions between living plants and
the soil environment, and less on the long-term accumulation and decomposition of plant litter.
We suggest four litter-mediated mechanisms that might contribute to these increasing positive
effects (Figure 1). These four mechanisms may operate simultaneously with other ecological
mechanisms and can vary greatly with climate, ecosystem, soil type, species identity, and field
management (Box 2). There is also evidence that initial strong effects of species loss on biomass
production in natural ecosystems may actually decrease and not increase over time [89]. A key
challenge remains to disentangle long-term effects of litter-mediated processes from short-
term effects of living plants and the soil environment across different ecosystems (see
Outstanding questions). This will provide new insights into how plant diversity–productivity
relationships may change over time in the face of environmental change. We suggest that the
diversification of crop residue retention (including shoot and root parts) by varying either residue
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Box 2. Role of plant litter in the short- and long-term

The role of plant litter in biodiverse plant communities can be relatively small in the short-term compared with the effects of
living plants on ecosystem processes. However, plant litter is likely to have larger effects on ecosystem functions in the
long-term (Figure I). The ‘subsequent uptake of previous N inputs’ is a gradual process [98]; for example, only 8.3% of
wheat residue N was recovered in the succeeding wheat plants in a 2-year field experiment [99]. The only long-term tracer
study available showed that the cumulative 15N recovery by crops could still increase even 28 years after 15N fertilization
(Figure IA) [100]. In addition, the average annual nutrient release by previous plant residues tends to be negligible com-
pared with the annual N fertilizer inputs over a long period [98]. Variations in soil fertility occur slowly, and significant
changes in soil organic matter composition can only be detected through long-term observations (Figure IB) [45,52].
Previous studies have demonstrated that living plant diversity effects on soil biota diversity [64,72] and pathogen suppres-
sion [81] strengthen over time. In addition, diverse plant-litter mixtures are important in mediating living plant diversity
effects on soil biodiversity [57–61] and residue-borne pathogen [78,85,87]. These results implied that the role of diverse
plant-litter mixtures contributed to increasing soil biodiversity (Figure IC) and slowing the spread of residue-borne
diseases increases over time in the long-term (Figure ID).

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Plant litter-mediated processes in long-term plant diversity experiments. The fraction of
harvested nitrogen (N) derived from the initial δ15N input by crops (A), change in soil C concentration (B), soil
biodiversity (C), and incidence of residue-borne pathogens (D) in monocultures and diverse plant communities
over time. Abbreviation: C, carbon.

forests and sown grasslands)? Residue
management is widely practiced in
monocultures using aboveground crop
residue (i.e., straw) of a single species
(e.g., maize, wheat, or rice). Diverse
cropping systemswill produce diversified
crop residues (including shoot and root
parts), which could be managed to
make agroecosystemsmore sustainable
and resilient to environmental change.

Trends in Ecology & Evolution
mixtures (spatial scale) or sequential crop residue diversity (temporal scale) will be crucial to
improve the sustainability of food production (e.g., intercropping and agroforestry) and seminatural
systems (e.g., managed forests and sown grasslands).
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