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Abstract  Low nitrogen use efficiency (NUE) is 
ubiquitous in agricultural systems, with mount-
ing global scale consequences for both atmospheric 
aspects of climate and downstream ecosystems. Since 
NUE-related soil characteristics such as water holding 
capacity and organic matter are likely to vary at small 
scales (< 1  ha), understanding the influence of soil 
characteristics on NUE at the subfield scale (< 32 ha) 
could increase fertilizer NUE. Here, we quantify NUE 
in four conventionally managed dryland winter-wheat 
fields in Montana following multiple years of sub-
field scale variation in experimental N fertilizer appli-
cations. To inform farmer decisions that incorporates 
NUE, we developed a generalizable model to pre-
dict subfield scale NUE by comparing six candidate 

models, using ecological and biogeochemical data 
gathered from open-source data repositories and from 
normal farm operations, including yield and protein 
monitoring data. While NUE varied across fields and 
years, efficiency was highest in areas of fields with 
low N availability from both fertilizer and estimated 
mineralization of soil organic N (SON). At low levels 
of applied N, distinct responses among fields suggest 
distinct capacities to supply non-fertilizer plant-avail-
able N, suggesting that mineralization supplies more 
available N in locations with higher total N, reducing 
efficiency for any applied rate. Comparing model-
ling approaches, a random forest regression model of 
NUE provided predictions with the least error relative 
to observed NUE. Subfield scale predictive models 
of NUE can help to optimize efficiency in agronomic 
systems, maximizing both economic net return and 
NUE, which provides a valuable approach for optimi-
zation of nitrogen fertilizer use.

Keywords  Nitrogen use efficiency · Winter wheat · 
Optimization modeling · Decision making · Soil 
nitrogen analysis · Precision agriculture

Introduction

Haber’s 1909 discovery of an industrial nitrogen 
(N) fixation process catalyzed a century of boom-
ing agricultural production and development, feed-
ing the rapidly growing world population and fueling 
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consumption of N fertilizer (Coleman and Dec 1989; 
Gliessman and Engles 2014; Paul and Robertson 
1989). Between 1940 and 1980, the amount of N fer-
tilizer applied in the United States increased from 9 
to 47 million metric tons and reached 12 Tg N yr−1 
as of 2015 (Gliessman 2016), furthering long-held 
concerns about the ecological and environmental 
implications of intensive fertilizer use (Gliessman 
and Engles 2014; Vitousek et  al. 1997). Studies to 
date suggest that an amount of reactive N equal to at 
least half of fertilizer N applied is lost each year to 
N leaching and denitrification from soils (Bouwman 
et  al. 2013). Overapplication of inorganic fertiliz-
ers in the quest for maximizing current productivity 
degrades soil through acidification, overloads water 
resources with nutrients, and contributes to eutrophi-
cation, biodiversity loss and greenhouse gas emis-
sions (Allaire et al. 2018; Capel et al. 2008; DeLonge 
et al. 2016; Weiner 2017).

Increasing the efficiency of agricultural inputs, 
including N fertilizer, is a key step in transitioning 
modern agriculture towards sustainability (Foley 
et al. 2011; Gliessman 2016). Nitrogen use efficiency 
(NUE) is typically measured as the percentage of crop 
biomass N to soil available N (Ping and Dobermann 
2003; Prey et  al. 2019; Yin et  al. 2020). The rela-
tionship between crop N and available N over time 
depends on how available N is assessed, and here 
we distinguish between NUE and fertilizer use effi-
ciency (FUE). Fertilizer use efficiency is the ratio of 
crop N to fertilizer N, while NUE is the ratio of crop 
N to total available N in the soil, including available 
N produced from soil organic matter through miner-
alization. Using isotopically labeled N fertilizer FUE 
has been measured up to 0.65 using the ratio of crop 
N to fertilizer N (Sebilo et  al. 2013). Typical NUE 
estimates are around 0.3, though in semiarid regions 
like Montana FUE is expected to be higher due to less 
leaching and denitrification when drier (Guttieri et al. 
2017; Macnack et al. 2014).

Here we focus on dryland small-grain agroecosys-
tems in Montana, where low NUE has been linked to 
elevated nitrate levels in drinking water, acidification 
of agricultural soils, and substantial loss to denitrifi-
cation with associated production of the greenhouse 
gas N2O (Engel 2012; John et al. 2017; Sigler et al. 
2018, 2022). Generally, the degree of NUE from 
conventionally managed fields in dryland Mon-
tana agroecosystems reflects soil character, weather, 

and agronomic management (Sigler et  al. 2020). 
Efficiency is lowest when nitrogen loss is greatest, 
which occurs with deep percolation of water follow-
ing substantial precipitation events and summer fal-
low, as well as with denitrification under related soil 
conditions of elevated water content in the absence 
of plant uptake (Sigler et  al. 2020 2022). Not only 
does summer fallow increase the potential for deep 
percolation of soil water to an underlying aquifer, but 
it may also stimulate mineralization of soil organic 
matter, further increasing the risk of nitrate leaching 
(Sigler et al. 2020). Previous work showed that while 
heavy precipitation can cause “hot moments” of 
nitrate leaching, soil character can dictate “hot spots” 
of nitrate leaching within agricultural fields. These 
spatial and temporal trends in N loss provide insight 
about NUE dynamics as a function of management, 
weather and soils.

Farmers who understand the controls and driv-
ers of NUE can alter decisions based on conditions 
and practices that expose them to potential economic 
loss due to low NUE. Understanding the variation in 
soil character within fields represents an opportunity 
to inform site-specific N fertilizer management that 
maximizes NUE within fields. While farmers can-
not control the weather, advances in remote sensing 
and modeling have improved the accuracy and spatial 
scale of weather predictions, which provide farmers 
with better weather forecasts to inform N fertilizer 
management decisions. Moreover, the affordability of 
personal weather stations gives farmers direct access 
to their own weather data. Importantly, interactions 
between weather, soils, and management interact with 
each other to make N transport dynamics complex. 
However, at a simple level, crop rotations and weather 
influence N loss at the field scale and soil texture and 
structure, and the resulting WHC influence N loss at 
the sub-field scale. Therefore, linking subfield scale 
variation in crop response to variation in soil charac-
ter is the starting point for making effective predic-
tions about NUE to achieve greater sustainability in 
these systems.

The subfield variation in crop response to vari-
able N fertilizer (Hegedus and Maxwell 2022a) sug-
gests that NUE varies substantially within fields, at 
a resolution higher than most farmers’ soil sampling 
practices can reveal. Soil mapping and soil sampling 
provide information on the WHC of soils yet current 
soil maps may not provide the resolution needed for 
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site-specific N fertilizer management (Kamilaris et al. 
2017; Lokers et al. 2016; Wolfert et al. 2017). Addi-
tionally, soil sampling and analysis are expensive 
and typically conducted in a sparse manner across 
fields, making it difficult for farmers to acquire and 
analyze soil data at spatial resolutions adequate for 
site-specific N management decisions. In response to 
this challenge, statistical models of the relationships 
among NUE, spectral imagery and landscape char-
acteristics have been developed (Oelofse et al. 2015; 
Pavuluri et al. 2015; Semenov et al. 2007). These esti-
mates of NUE have typically involved simple linear 
models that require site-and-time-specific parameters, 
and represent a first step towards developing tools to 
estimate efficiency at subfield scales for informing N 
fertilizer management decisions (Arnall et  al. 2009; 
Macnack et  al. 2014; Van Sanford and MacKown 
1986).

Precision agriculture has progressed over the last 
few decades into a management approach for inputs 
like N fertilizer that account for spatial variation at 
relatively high resolution across fields (Bullock et al. 
2019). At the same time, the recent revolution in 
agricultural data acquisition has coincided with the 
introduction of data science approaches into agro-
nomic research and development (Coble et al. 2018; 
Pham and Stack 2018; Vinila Kumari et  al. 2016). 
The amount of farm data now available makes it pos-
sible for data science to aid in the management and 
analysis of agronomic data and inform local within-
field decision making (Gibert et al. 2018; Provost and 
Fawcett 2013). Investigating the benefit of generaliz-
able data science tools for modeling the relationship 
of NUE with soil parameters, N fertilizer rates, and 
other open-source data can inform precision agroeco-
logical approaches to N fertilizer management that 
are conscious of economic and ecological outcomes 
(Duff et al. 2022; Mittermayer et al. 2021). Identify-
ing areas of a field at risk of N loss using freely avail-
able remotely sensed data benefits farmers by provid-
ing information on where NUE is potentially low, 
which can inform site-specific N fertilizer manage-
ment decisions.

The goal of this study was to introduce protocols 
for utilizing empirical measurements to estimate 
NUE and develop analytical tools that can aid farm-
ers in the application of N fertilizer that maximizes 
profit and reduces the risk of pollution from applied 
fertilizer N loss. The first objective of this study was 

to evaluate the relationships of NUE with causal 
variables derived from low-cost open-source and on-
farm data sources in conventional dryland Montana 
agroecosystems cropped with winter wheat (Triti-
cum aestivum L.). To consider these relationships in 
a hypothetical low-cost decision support system, the 
second objective was prediction of NUE in similar 
dryland winter-wheat systems without soil sampling, 
using a suite of potential generalizable models. The 
modelling objective was to estimate subfield NUE 
for a given year without requiring producers to take 
detailed soil samples or provide difficult to meas-
ure parameters for complex biogeochemical models. 
While developed in dryland winter-wheat systems 
of Montana, the methods outlined in this paper are 
applicable to other crops and systems when simi-
lar procedures are used to generate information for 
increasing agronomic input efficiency with simultane-
ous consideration for profitability.

Methods

Study sites

Four fields from farmers collaborating with the On-
Farm Precision Experiments (OFPE) project (https://​
sites.​google.​com/​site/​ofpef​ramew​ork/​home) at Mon-
tana State University (MSU) were used. Four sepa-
rate fields from two regions of Montana (Fig.  1) 
were sampled, two in 2020 and two in 2021 (Table 1) 
where average statewide yields were 3362 kg ha−1 in 
2020 and 2084 kg ha−1 in 2021. All fields have been 
in a crop-fallow rotation since 2014. In the seasons 
since 2016 when winter wheat was grown, each field 
was subjected to spatially variable N experiments. 
These experimental rates that encompassed the whole 
field were designed based on stratified random sam-
pling to ensure representation of experimental rates 
across previous yield, protein, and any prior N rate 
experimentation to account for legacy effects. An 
example experimental N rate design is shown in SI 
Fig. 1 of the Online Resource.

Fields were chosen based on data availability, 
data quality, and geographic location across Mon-
tana, in the interest of creating a general model for 
estimating NUE within the predominant dryland 
small-grain agroecosystems (Table 1). While in an 
ideal world, field specific measurements to generate 

https://sites.google.com/site/ofpeframework/home
https://sites.google.com/site/ofpeframework/home
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field specific models would be available, offering a 
generalizable NUE model for use in dryland small-
grain agroecosystems gives farmers access to NUE 
information at a low cost.

The fields observed in this study were simi-
lar in management and environment to the fields 
observed by Sigler et  al. (2020) and John et  al. 
(2017). All fields used in our study were cropped 
with winter wheat in alternate years with chemical 
fallow, a practice where no crop is grown to con-
serve water in the soil. While the detailed charac-
ter of soils used in this study differed from those 
in Sigler et al. (2020) and John et al. (2017), these 
well-drained soils are on similar landforms with 
similar climate, suggesting that inference about the 
drivers of N loss from Sigler et al. (2020) and John 
et al. (2017) pertain to the fields used in this study.

Classification of water holding capacity

A high spatial density estimate of WHC was created 
based on remotely sensed Normalized Difference 
Vegetation Index (NDVI) data. Estimating WHC 
from remotely sensed information has been a subject 
of research for decades (Fuka and McBratney 2004; 
McBratney and Pratley 2000). Greater soil WHC was 
expected to result in productivity consistency over 
time at a specific point in a field, while more variable 
productivity may reflect moderate WHC and risk of 
N loss. While we are aware of no studies that have 
linked historical maps of sub-field-scale NDVI over 
time to the corresponding NUE or WHC, Sigler et al. 
(2020) used a single time point to estimate soil WHC 
and depth of fine textured soils, and Araya et  al. 
(2016) used NDVI over time to estimate available 

Fig. 1   Map showing 30-year mean (1991–2021) precipitation 
at a 4  km resolution from the University of Orgeon PRISM 
Climate Group. Symbols indicate fields sampled during 2020 

and 2021. Two fields were sampled from Farm B (BS and 
BSE), one in each year, with a corresponding field in Farm W 
(WH 2020) or M (MS, 2021)
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water content, supporting the value of NDVI for esti-
mating soil properties.

The fields used in this study were classified into 
WHC zones that were used to stratify soil and plant 
biomass sampling. NDVI was derived from satellite 
imagery from 2000 to 2021. Landsat imagery (https://​
devel​opers.​google.​com/​earth-​engine/​datas​ets/​catal​
og/​lands​at) was collected on 30 × 30  m raster grids, 
a coarser resolution than satellites such as Sentinel-2 
but with a longer history of data available. Depend-
ing on the year collected, Landsat images were from 
Landsat 5, 7, or 8.

Imagery was downloaded from Google Earth 
Engine (GEE), where image processing was per-
formed to correct images for clouds and other atmos-
pheric anomalies (Gorelick et  al. 2017). The cloud 
computing platform of GEE was used to calculate 
NDVI as:

where ‘NIR’ is reflectance at the near-infrared wave-
length (~ 865  nm) and ‘Red’ corresponds to reflec-
tance at a visible red wavelength (~ 665 nm). Landsat 
images for each field for 2000–2021 were compos-
ited via the greenest pixel across the calendar year to 
reflect maximum crop biomass. Although data were 
collected from 2000 to 2021, years in which average 
NDVI across each field fell below 0.3 were omit-
ted because these represent fallow years in which no 
crops were grown, and any productivity was due to 
weeds growing in the fallow field. For each field, the 
rasterized NDVI for each year was stacked, and WHC 
was classified based on each pixel’s mean and coef-
ficient of variation (CV) to produce a single map with 
classifications of high, medium, and low WHC. High, 
medium, and low categories for the mean and CV for 
each pixel were delineated via k-means classification 
in one dimension to maximize between class variance 
and minimizing within class variance. A matrix of 
the mean and CV groups for NDVI were then derived 
to estimate hypothesized WHC zones where; a low 
mean NDVI and medium or low CV were labeled as 
low WHC, a high mean NDVI and medium or low 
CV were labeled as high WHC, and all other com-
binations were labeled as medium WHC. High and 
low NDVI cells that also exhibit a high CV classifica-
tion were considered medium WHC because the high 
CV classification indicates that NDVI is occasionally 

(1)NDVI =
NIR − Red

NIR + Red

but not consistently high. An illustration of the clas-
sification matrix is shown in SI Table 1 of the Online 
Resource.

Soil and plant biomass sampling

Calibration soil samples were taken at 75 locations 
with a truck-mounted hydraulic probe in each field 
twice per year, in March and August, at positions 
randomly selected with stratification based on WHC 
category and N application rate (Fig.  2). Samples 
were taken in March and August for future research 

Fig. 2   Water holding capacity classifications and sampling 
locations for each field. A BS 2020, B MS 2021, C BSE 2021, 
D WH 2020

https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/landsat
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that measured inorganic N levels. Soil samples were 
taken at depths of 0–15, 15–30, 30–60, 60–90, and 
from 90 cm to as deep as possible. The depth of the 
deepest sample corresponded to either gravel content, 
rock layer or the limit of the probe (110  cm). The 
maximum depth at each location was recorded dur-
ing sampling. Soil samples were taken within seven 
days prior to fertilizer application and within seven 
days post-harvest. Winter wheat biomass samples 
were hand harvested in June at plant maturity at each 
of the sampling locations. Samples were transported 
in coolers on ice from the fields back to MSU where 
soil and plant samples were weighed wet, oven dried 
at 50  °C for 7–14  days, and then weighed dry to 
determine water content. Plant samples were ground 
using an UDY Cyclone Sample Mill (UDY Corpora-
tion, Fort Collins, CO, USA). Soil samples were gen-
tly crushed to break up peds and aggregates, sieved 
(< 2 mm) to remove rocks and roots, and milled with 
a Dynacrush DC-5 soil crusher (Custom Laboratory, 
Hodlen, MO, USA). Aliquots were taken from each 
sample (plant and soil) and analyzed for total N with 
a combustion analyzer (Costech analytical technolo-
gies Inc., Valencia, CA, USA) in the Environmental 
Analytical Laboratory at Montana State University.

Derivation of nitrogen use efficiency

A mass balance approach was used to determine an 
estimate for efficiency for each sample location. Prior 
to assessing NUE, fertilizer use efficiency (FUE) was 
calculated:

where Ncrop was the N taken up by the crop in the 
grain, stubble, and roots (kg ha−1) and Nfert was the 
input of N fertilizer (kg ha−1) from the farmer, meas-
ured from the farmer’s fertilizer spraying equip-
ment. Farmers B and M both use a 2002 John Deere 
4710 sprayer and farmer W uses a 2015 Case 4440 
sprayer. All farmers applied 32% UAN which was 
converted from gallons ac−1 to kg N ac−1. Montana 
wheat farmers typically apply one uniform N ferti-
lizer application, typically around 75 lbs N ac−1 in 
spring (March–April). Grain N was estimated using 
on-combine protein concentration and yield measure-
ments collected every 10 s and three seconds across 

(2)FUE =
Ncrop

Nfert

the field, respectively. As the data gathered depends 
on the speed of travel, observations gathered where 
the speed of the combine was outside the bounds of 
two standard deviations from the mean speed were 
omitted. Protein (g protein g−1 grain) was divided 
by a conversion of 5.83 (g protein g N−1) to esti-
mate g N g grain−1 (Mariotti et al. 2008). To gener-
ate an area normalized estimate of grain N uptake, 
the g N g grain−1 estimates were multiplied by grain 
yield measurements (g grain ha−1). Grain protein 
and grain yield measurements were georeferenced to 
corresponding sample point locations by calculating 
the distance of each metric to the sample point and 
selecting the closest measurement within 5 m. Stub-
ble N was estimated as 30% of grain N (Woyema 
et al. 2012). Root N was estimated as 20% of above-
ground biomass N (Andersson et al. 2005; John et al. 
2017), calculated as the sum of grain N and stubble 
N. Crop N uptake was then calculated as the sum of 
grain N, stubble N, and root N in kg ha−1.

Crop N, as-applied N fertilizer, and estimates of 
mineralized N for each sample point were used to cal-
culate subfield NUE as:

where Ncrop and Nfert where defined above and Nmin 
was estimated N mineralized in the top 15 cm of soil 
(kg ha−1). Due to the nature of the crop-fallow rota-
tion, N fixation was likely negligible, so N fixation 
was assumed to be zero. Total N deposition was esti-
mated to be 2.92 kg N ha−1 year−1 based on the mean 
total N deposition from 2000 to 2018 recorded at the 
closest EPA CASTNET station at Glacier National 
Park. Compared to other inputs, this rate is negligible 
and N deposition was omitted from further analysis.

Measured soil mass percent total N (TN) and bulk 
density (g cm−3) were multiplied to generate a bulk 
N concentration at each depth (g cm−3) and multi-
plied by the depth (cm) of each interval to generate 
an areal density of soil TN (kg ha−1). Bulk density 
was calculated by dividing the dry weight of the soil 
sample (g) by the volume of the soil sample (cm3). 
Measured at the same georeferenced locations in 
March and August with a 1-m resolution GPS, t-tests 
comparing TN measures from the two seasons indi-
cated that the TN was equal within uncertainty for all 
fields. Soil TN includes inorganic and organic pools 

(3)NUE =
Ncrop

Nmin + Nfert
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where the soil organic nitrogen (SON) is present at 
much greater magnitudes than inorganic N (Wang 
et al. 2009). Given the magnitude of TN compared to 
the potential for change in a short study, TN was not 
included in the calculation of NUE, and TN measure-
ments were only used to calculate N mineralization.

Assessment of NUE requires knowledge of N min-
eralization from soil organic nitrogen (SON) within 
fields. Due to the decline of SON and hence miner-
alization with depth, as well as for consistency among 
locations with variable sampling depths, soil samples 
from the top 15 cm were used to calculate minerali-
zation and model NUE (Cassman and Munns 1980). 
Mineralized N was estimated using a regression 
model derived from a review of multiple mineraliza-
tion studies on the relationship between mineraliza-
tion rate and percent total N from 0 to 15 cm (Vigil 
et al. 2002);

where TN is the percent by mass total nitrogen in the 
soil and Nmin was in kg ha−1 for the top 15 cm of soil. 
Sample points that did not have corresponding TN 
measurements at each depth interval to 15 cm in both 
March and August were omitted to generate consist-
ent estimates of mineralized N at each point, yielding 
observations at 67, 69, 60, and 75 out of 75 sample 
locations in BS 2020, BSE 2021, WH 2020, and MS 
2021, respectively.

Nitrogen use efficiency modeling

A set of six potential generalizable models for esti-
mating NUE at a subfield scale were compared to 
explore the potential for low-cost methods of devel-
oping fertilizer application prescriptions. Devel-
opment of a general model for predicting subfield 
NUE relied on environmental covariates gathered 
from Google Earth Engine (GEE), which were 
assumed to influence NUE (Table  2). All environ-
mental covariate data were gathered from pub-
lic domain GEE data repositories (Gorelick et  al. 
2017) and aggregated with soil sample data. Soil 
characteristic data collected from OpenLandMap 
were derived from internal OpenLandMap devel-
opers that utilized open-source data from organiza-
tions such as the European Space Agency, Coper-
nicus Program, National Aeronautics and Space 

(4)Nmin = 10.8 + 304.6TN

Administration, United States Geologic Survey, 
Natural Resources Conservation Service, Food and 
Agriculture Organization, National Oceanic and 
Atmospheric Administration, and others (https://​
openg​eohub.​org/​about-​openl​andmap/).

Information from each covariate was extracted to 
each soil sample location to form the analysis dataset 
(Hegedus et al. 2022; Hegedus and Maxwell 2022b). 
Temporal data were gathered, delineated by year, 
and constrained in a range to the point in time that a 
farmer needs to make decisions on N fertilizer man-
agement of dryland winter-wheat in Montana (Hege-
dus and Maxwell 2022b). The covariates selected 
for modeling were based on assumptions about envi-
ronmental variables that influence the components 
of NUE and observed relationships from evaluation 
of observed NUE (Table 2). SI Fig. 2 in the Online 
Resource shows remotely sensed covariate data 
included in the model selection process and their rela-
tion to components of the NUE calculation in Eq. (3).

Candidate models were chosen based on their 
potential for predictive and not inferential modeling 
because our objective was not to test direct causal-
ity between predictors and NUE, rather to make a 
model useful for predicting NUE on a subfield scale. 
Model candidates were selected to represent simple 
to complex approaches with varying degrees of flex-
ibility and assumptions. The models tested included 
(1) a baseline simple linear regression (SLR) model 
that only included as-applied nitrogen as a covari-
ate, and (2) a non-linear regression model using an 
exponential decay function with as-applied N (NLR). 
The exponential decay function was selected based 
on exploratory analysis of the relationship between 
NUE and N sources, with the assumption that NUE 
could be predicted solely based on as-applied nitro-
gen, as in the SLR model. Other models tested were 
(3) a multiple linear regression model (MLR), (4) a 
generalized additive model (GAM), (5) a random for-
est regression machine-learning model (RF) and (6) 
a support vector regression machine-learning model 
(SVR). Models 3–6 included all spatially variable 
covariates from Table  2. Random forest regression 
is an ensemble tree approach where covariates are 
randomly sampled in each tree and used to classify 
observations (Breiman 2001). Support vector regres-
sion mapped observations to the feature space gener-
ated by the covariate data (Lau and Wu 2008; Smola 
and Schölkopf 2004).

https://opengeohub.org/about-openlandmap/
https://opengeohub.org/about-openlandmap/
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Table 2   Table of covariate data types gathered from Google Earth Engine to enrich the crop yield and protein datasets gathered 
from on-farms

In some cases, multiple sources are used, however only one data source is used when aggregating to yield and protein
Landsat data was collected from; https://​devel​opers.​google.​com/​earth-​engine/​datas​ets/​catal​og/​LANDS​AT_​LT05_​C01_​T1_​SR, 
https://​devel​opers.​google.​com/​earth-​engine/​datas​ets/​catal​og/​LANDS​AT_​LE07_​C01_​T1_​SR, https://​devel​opers.​google.​com/​earth-​
engine/​datas​ets/​catal​og/​LANDS​AT_​LC08_​C01_​T1_​SR, USGS NED was collected from; https://​devel​opers.​google.​com/​earth-​
engine/​datas​ets/​catal​og/​USGS_​NED, Daymet V3 was collected from; https://​devel​opers.​google.​com/​earth-​engine/​datas​ets/​catal​og/​
NASA_​ORNL_​DAYMET_​V3, and OpenLandMap data was collected from; https://​devel​opers.​google.​com/​earth-​engine/​datas​ets/​
catal​og/​OpenL​andMap_​SOL_​SOL_​BULKD​ENS-​FINEE​ARTH_​USDA-​4A1H_M_​v02, https://​devel​opers.​google.​com/​earth-​engine/​
datas​ets/​catal​og/​OpenL​andMap_​SOL_​SOL_​CLAY-​WFRAC​TION_​USDA-​3A1A1A_​M_​v02, https://​devel​opers.​google.​com/​earth-​
engine/​datas​ets/​catal​og/​OpenL​andMap_​SOL_​SOL_​PH-​H2O_​USDA-​4C1A2A_​M_​v02, https://​devel​opers.​google.​com/​earth-​engine/​
datas​ets/​catal​og/​OpenL​andMap_​SOL_​SOL_​WATER​CONTE​NT-​33KPA_​USDA-​4B1C_M_​v01, https://​devel​opers.​google.​com/​
earth-​engine/​datas​ets/​catal​og/​OpenL​andMap_​SOL_​SOL_​ORGAN​IC-​CARBON_​USDA-​6A1C_M_​v02

Data type Data source(s) Resolution Years collected Description

Normalized difference veg-
etation index (NDVI)

Landsat 5/7/8 30 m L5: 1999–2011 Landsat is an ongoing USGS and NASA 
collaboration

L7: 2012–2013 Bands (NIR, red)
L8: 2014—present L5/L7: B4 and B3

L8: B5 and B4
Normalized difference water 

index (NDWI)
Landsat 5/7/8 30 m L5: 1999–2011 Landsat is an ongoing USGS and NASA 

collaboration
L7: 2012–2013 Bands (MIR, NIR)
L8: 2014—present L5/L7: B2 and B4

L8: B2 and B5
Elevation USGS NED ~ 10 m (1/3 arc 

second)
1999-present USGS National Elevation Dataset. Meas-

ured in meters
Aspect USGS NED ~ 10 m (1/3 arc 

second)
1999-present Direction the surface faces, function of 

neighboring elevations, in radians. Also 
calculated for each E/W and N/S direc-
tion as cosine and sine

Slope USGS NED ~ 10 m (1/3 arc 
second)

1999-present Rate of change of height from neighboring 
cells, in degrees. Measured in degrees

Topographic position index 
(TPI)

USGS NED ~ 10 m (1/3 arc 
second)

1999-present Measure of divots and low spots as a func-
tion of neighboring elevation

Precipitation DaymetV3 1 km 1999-present Estimates from the NASA Oak Ridge 
National Laboratory (ORNL). Measured 
in mm

Growing degree days (GDD) DaymetV3 1 km 1999-present Estimates from the NASA Oak Ridge 
National Laboratory (ORNL)

Bulk density OpenLandMap 250 m 1999-present Soil bulk density (fine earth) 10 × kg/
m3 averaged over 6 standard depths (0, 
0.1, 0.3, 0.6, 1 and 2 m)

Clay content OpenLandMap 250 m 1999-present Clay content in % (kg/kg) averaged over 
6 standard depths (0, 0.1, 0.3, 0.6, 1 and 
2 m)

Soil water pH OpenLandMap 250 m 1999-present Soil pH in H2O averaged over 6 standard 
depths (0, 0.1, 0.3, 0.6, 1 and 2 m)

Water content OpenLandMap 250 m 1999-present Soil water content (volumetric %) for 
33 kPa and 1500 kPa suctions predicted 
and averaged over 6 standard depths (0, 
0.1, 0.3, 0.6, 1 and 2 m)

Soil organic carbon content OpenLandMap 250 m 1999-present Soil organic carbon content in × 5 g/kg 
averaged over 6 standard depths (0, 0.1, 
0.3, 0.6, 1 and 2 m)

https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C01_T1_SR
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C01_T1_SR
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR
https://developers.google.com/earth-engine/datasets/catalog/USGS_NED
https://developers.google.com/earth-engine/datasets/catalog/USGS_NED
https://developers.google.com/earth-engine/datasets/catalog/NASA_ORNL_DAYMET_V3
https://developers.google.com/earth-engine/datasets/catalog/NASA_ORNL_DAYMET_V3
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_BULKDENS-FINEEARTH_USDA-4A1H_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_BULKDENS-FINEEARTH_USDA-4A1H_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_CLAY-WFRACTION_USDA-3A1A1A_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_CLAY-WFRACTION_USDA-3A1A1A_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_PH-H2O_USDA-4C1A2A_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_PH-H2O_USDA-4C1A2A_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_WATERCONTENT-33KPA_USDA-4B1C_M_v01
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_WATERCONTENT-33KPA_USDA-4B1C_M_v01
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_ORGANIC-CARBON_USDA-6A1C_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_ORGANIC-CARBON_USDA-6A1C_M_v02
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Spatial covariance structures were incorporated 
into the models in varying ways to account for spa-
tial autocorrelation of NUE observations. The SLR, 
MLR, and NLR models used a Gaussian process 
spatial correlation structure (De Bastiani et al. 2015; 
Diggle and Tawn 1998; Mardia and Marshall 1984; 
Xia et al. 2008). The spatial covariance structure for 
the GAM incorporated a Gaussian basis function on 
spatial coordinates (Gotway and Stroup 1997; Guisan 
et  al. 2002; Holland et  al. 2000; Zuur et  al. 2012). 
The RF and SVR models used approaches commonly 
described for machine learning approaches which 
incorporate the spatial data in the model (Janatian 

et  al. 2017; Langella et  al. 2010; Walsh et  al. 2017; 
Wang et al. 2017).

All models except the SLR and NLR were sub-
jected to features selection during the fitting process 
to optimize model performance. Top-down Akaike 
information criterion (AIC) based feature selection 
was performed for the MLR and GAM models, where 
a reduction of two AIC units with the removal of a 
covariate justified its omission. As AIC is not appro-
priate for machine learning methods, top-down root 
mean square error (RMSE) based feature selection 
was performed for the RF and SVR models. Fea-
ture selection was based on a reduction in RMSE to 
determine whether withholding a covariate improved 
model performance. All models, except the SLR and 
NLR, that only used as-applied N fertilizer, began 
feature selection with a full model that included the 
WHC classification, and the covariates illustrated in 
Fig. 4.

The initial candidate models were subjected to a 
hold-one out cross validation (HOOCV) approach 
using observed farm fields to initially assess the abil-
ity of the model to predict NUE. Each model was 
subjected to four cases of HOOCV across all four 
fields where they were independently trained on data 
from three fields with performance tested by calculat-
ing the RMSE between the predicted and observed 
NUE from the one field held out from training. The 
HOOCV scheme is visualized in SI Table  2 of the 
Online Reference. The RMSE across the four test 
datasets were averaged for each model and compared 
to identify the two candidate models that generated 
the lowest mean RMSE. The two models selected 
from the HOOCV approach were then empirically 
assessed using 5 × 2 cross validation (CV) (Dietter-
ich 1998). All the data from the fields were pooled 
and randomly selected evenly into a training and test 
dataset. Both models were trained on the training 
dataset and RMSE was calculated based on predicted 
and observed NUE in the test dataset. Then the train-
ing and testing datasets were swapped (2 folds), and 
the process was repeated to generate four error met-
rics and calculate the variance of the difference in 
the predictions. Beginning with randomly splitting 
the data evenly, the process was repeated five times 
(5 folds), and the error estimates and variance from 
the five repetitions were used to calculate the 5 × 2 
t-statistic (Dietterich 1998). Assuming a t-distribution 
with five degrees of freedom, evidence against the 

Fig. 3   Crop N uptake (grain N + stubble N + root N) vs. as-
applied nitrogen measured from the farmer’s fertilizer spraying 
equipment. Colors represent measurements in each field and 
the black line shows the trend smoothed across all fields

Fig. 4   Fertilizer use efficiency (FUE) vs. as-applied nitrogen 
measured from the farmer’s fertilizer spraying equipment. 
Colors represent measurements in each field. Dashed line indi-
cates FUE = 1. Note that at fertilizer rates of 0 kg ha−1fertilizer, 
FUE was calculated with a fertilizer rate of 1 to visualize FUE 
values approaching infinity at zero rates
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null hypothesis that there was no difference in RMSE 
between observations and predictions from the two 
models was evaluated with a two-tailed significance 
test with a 95% confidence threshold (α = 0.05).

Results

Nitrogen use efficiency evaluation

Based on raw numbers and not statistical differences, 
the field BSE 2021 had the highest average minerali-
zation and the highest mean experimental N fertilizer 
rates (Table  3). The range of experimental fertilizer 
rates were selected for associated research on the 
development of crop response models but served the 
purpose of gathering NUE responses across a range 
of applied N fertilizer rates for this purpose. The lack 
of zero N fertilizer rates in BSE 2021 were due to a 
farmer B request made prior to 2021 to discontinue 
the use of zero N rate experimental plots (Table  3). 
Crop N uptake was highest on average in field BS 
2020 (Table 3). However, NUE was highest on aver-
age in WH 2020 due to relatively high crop N uptake 
and low mineralization and fertilization (Table  3). 
Calculated NUE values greater than 1 were observed 
in all fields, ranging from 1.17 to 2.14, indicating 
that estimated crop N uptake in areas of these fields 
exceeded total N inputs or that N availability—
likely from N mineralization—was underestimated 
(Table 3).

Characterization of the relationship between crop 
N uptake and N fertilizer using a GAM with cubic 
shrinkage splines showed an asymptotic relation-
ship (Fig. 3), indicating that crop N uptake does not 
increase past a threshold of N fertilization. Efficiency 
was expected to decline with increasing N fertilizer 
rates due to the asymptotic relationship of crop N 
uptake and fertilizer (Fig.  5). A negative exponen-
tial relationship between FUE and as-applied N fer-
tilizer was observed, where low N rate locations 
had the largest calculated FUE before approaching a 
minimum, at higher N rates (Fig. 4). At zero N rates 
FUE was undefined, indicating that winter-wheat was 
taking up N contributed by other processes besides 
fertilization, such as mineralization of SON. When 
accounting for mineralization in calculations of 

efficiency, a negative relationship between NUE and 
as-applied N fertilizer was observed as seen in the 
black (observed) symbols of Fig. 5. Including miner-
alized N in the calculation for efficiency provides a 
more realistic estimate of N inputs to the system, and 
lowers efficiency values between FUE and NUE cal-
culations, as mineralization compensates for a lack of 
N fertilizer at low or zero rates. An illustration of the 
contributions of mineralization and fertilizer to the 
total N inputs of the system can be referenced in SI 
Fig. 3 in the Online Reference.

Table 3   Summary statistics for each component of nitrogen 
use efficiency (NUE) calculated in Eq. (3)

Ncrop is the grain N + stubble N + root N, Nfert is the N applied by 
the farmer, and Nmin is mineralized N in the top 15 cm of soil

Ncrop (kg 
ha−1)

Nfert (kg 
ha−1)

Nmin (kg 
ha−1)

NUE (kg 
N kg N−1)

BS 2020
Min 35.41 0 35.17 0.24
1st Q 75.83 55.82 45.83 0.63
Median 109.95 100.86 48.80 0.81
Mean 116.5 96.17 49.09 0.83
3rd Q 153.81 134.30 53.44 0.98
Max 253.89 163.06 59.54 1.85
BSE 2021
Min 28.74 60.64 39.74 0.12
1st Q 83.43 105.55 48.88 0.46
Median 103.27 131.77 50.40 0.56
Mean 100.82 129.58 50.11 0.59
3rd Q 121.39 154.12 51.92 0.72
Max 188.46 198.18 54.97 1.17
MS 2021
Min 21.58 0 38.21 0.38
1st Q 40.46 11.58 45.83 0.52
Median 51.70 23.81 47.35 0.65
Mean 52.49 31.87 47.13 0.71
3rd Q 61.38 41.11 48.88 0.88
Max 104.69 89.99 53.44 1.49
WH 2020
Min 19.55 5.1 29.08 0.18
1st Q 69.45 18.69 38.21 0.81
Median 94.22 36.56 39.74 1.07
Mean 94.69 54.76 40.70 1.09
3rd Q 124.63 77.24 44.31 1.30
Max 155.12 137.96 53.44 2.14
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Model evaluation

In each of the fields, the HOOCV analysis indicated 
different models reduced uncertainty in predictions of 
NUE (Table 4). The SLR had the lowest mean RMSE 
on average across hold-out cases, while the RF had 
the second lowest mean RMSE on average across 
hold-out cases, however there was little to no differ-
ence between the mean RMSE across fields for the 
SLR, MLR, RF and SVR models (Table  4). Due to 

the objective of creating a predictive model of sub-
field NUE that can be used across dryland winter-
wheat agroecosystems in Montana, the SLR was 
compared to each of the MLR, RF, and SVR models 
by 5 × 2 CV to test for significant differences between 
RMSE.

There was little to no evidence against the null 
hypothesis that RMSE did not differ between the 
SLR and NLR models (t5 = −  0.25, p-val = 0.8143) 
indicating that there was no statistical difference in 
the uncertainty of NUE predictions between the two 
models. Due to the lack of a difference between the 
SLR and NLR, the SLR was retained as the best 
model based on the mean RMSE from the HOOCV 
and compared to the SVR model. There was strong 
evidence against the null hypothesis that RMSE did 
not differ between the RF and SVR models (t5 = 3.76, 
p-val = 0.0131) indicating that there was a statisti-
cal difference in the uncertainty of NUE predictions 
between the two models and leading to the conclu-
sion that the SVR performed better than the SLR. The 
mean RMSE across the 5 folds for the SLR model was 
0.3229 compared to 0.2608 from the SVR. Based on 
these results, the SVR overtook the SLR as the best 
model and was compared to the RF for a final round 
of 5 × 2 CV. There was little to no evidence against 
the null hypothesis that RMSE did not differ between 
the RF and SVR models (t5 = 0.32, p-val = 0.7624) 
indicating that there was no statistical difference in 

Fig. 5   Observed nitrogen use efficiency (NUE) (black points) 
across variable as-applied N rates, where shapes indicate each 
field. Predicted NUE values are RF and SVR predictions from 
the test sets performed in the 5 × 2 CV. Dashed line indicates 
NUE = 1

Table 4   RMSE (kg N kg N−1) calculated from the observed and predicted NUE from each model during the hold-one field out cross 
validation

Bolded values indicate the model with the lowest RMSE for a field across models and italicized values indicate the model with the 
second lowest RMSE for a field
a SLR: linear regression NUE predicted by as-applied nitrogen as a covariate
b MLR: multiple linear regression model using available spatially variable potential covariates
c NLR: non-linear model using an exponential decay function with as-applied N as a covariate
d GAM: generalized additive model with as-applied N and available spatially variable potential covariates
e RF: random forest regression model with as-applied N and available spatially variable potential covariates
f SVR: support vector regression model with as-applied N and available spatially variable potential covariates

Test field Model tested

SLRa MLRb NLRc GAMd RFe SVRf

BS 2020 0.37 5.98 0.33 11.56 0.39 0.32
WH 2020 0.49 1.17 0.47 1.18 0.52 0.59
BSE 2021 0.19 0.27 0.21 0.63 0.23 0.36
MS M21 0.42 0.29 0.53 4.83 0.34 0.32
Mean 0.37 1.93 0.39 4.55 0.38 0.40



13Nutr Cycl Agroecosyst (2023) 126:1–20	

1 3
Vol.: (0123456789)

the uncertainty of NUE predictions between the two 
models.

Both models indicated similar relationships 
between NUE and as-applied fertilizer N (Fig.  5). 
Although both the SVR and RF produced similar 
predictions and there was no statistical difference 
between them, the RF was selected as the final model 

better than the SVR when making predictions in 
fields unseen by the model during training. All the 
sampled data were compiled as a training dataset to 
fit a final RF model. After top-down features selec-
tion, the RF model that provided the best predictions 
of NUE using environmental and management (e.g., 
N fertilizer rates) covariate data was:

where x and y were the spatial coordinates of each 
sample point, and all other terms are defined in 
Table  5 with descriptions of the data sources in 
Table  2. The importance of each variable retained 

(5)
NUE ∼ f (x, y,N, slope, aspectsin, aspectcos, preccy, precpy, ndvicy, ndvipy, ndvi2py,

ndwicy, ndwipy, ndwi2py, bulkdensity, claycontent,watercontentphw, carboncontent)

Table 5   Parameter identifiers from final SVR NUE model with the corresponding data type and description

Parameter ID Data type Description

N N fertilizer As-applied N fertilizer rate (kg ha−1)
slope Slope Slope in degrees, calculated from USGS NED (Table 2)
aspectsin Aspect (exposure) Aspect in N/S direction calculated from the USGS NED (Table 2)
aspectcos Aspect (exposure) Aspect in E/W direction calculated from the USGS NED (Table 2)
preccy Precipitation Precipitation (mm) measured from Daymet V3 (Table 2) across 

November 1st of the previous year to March 30th of the year 
samples were taken

precpy Precipitation Precipitation (mm) measured from Daymet V3 (Table 2) across 
November 1st of two years prior to October 31st of the year prior 
to when samples were taken

ndvicy Normalized difference vegetation Index (NDVI) NDVI from a greenest pixel composite across Sentinel 2 images 
(Table 2) from January 1st to March 30th of the year samples 
were taken

ndvipy Normalized difference vegetation Index (NDVI) NDVI from a greenest pixel composite across Sentinel 2 images 
(Table 2) from January 1st to December 31st of the year prior to 
when samples were taken

ndvi2py Normalized difference vegetation index (NDVI) NDVI from a greenest pixel composite across Sentinel 2 images 
(Table 2) from January 1st to December 31st two years prior to 
when samples were taken

ndwicy Normalized Difference water index (NDVI) Median NDWI from Sentinel 2 (Table 2) from January 1st to 
March 30th of the year samples were taken

ndwipy Normalized difference water index (NDWI) Median NDWI from Sentinel 2 (Table 2) across January 1st to 
December 31st in the year prior to when samples were taken

ndwi2py Normalized difference water index (NDWI) Median NDWI from Sentinel 2 (Table 2) across January 1st to 
December 31st two years prior to when samples were taken

bulkdensity Bulk density Bulk density (kg m−3) from OpenLandMap data (Table 2)
claycontent Clay content Clay content (%) from OpenLandMap data (Table 2)
watercontent Water content Water content (%) from OpenLandMap data (Table 2)
phw Soil water pH pH of soil water from OpenLandMap data (Table 2)
carboncontent Soil organic carbon Soil organic carbon content (%) from OpenLandMap data 

(Table 2)

because it provided the lower mean RMSE based 
on the HOOCV analysis. The lowest mean RMSE 
from the HOOCV indicated that the RF performed 
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in the final model was assessed by the difference in 
predictive accuracy, defined by mean square error, 
between permutations of the model that include and 
omit each variable. The N fertilizer rate was the most 
predictive variable, followed by the normalized dif-
ference water index (NDWI) from the previous year 
(Fig. 6).

Discussion

Nitrogen use efficiency declined with increasing 
nitrogen fertilizer inputs

This research demonstrates a novel methodology for 
utilizing low-cost data to characterize within-field 
variation in NUE to aid N fertilizer management 
decisions. The approach is adaptable to any system 
with any input that can be spatially varied and where 
detailed sampling of representative fields across an 
area of interest is conducted. Efficiency, defined as 
FUE or NUE both declined with increasing N fer-
tilizer rates (Figs.  4, 5) and mirrors the relationship 
between crop uptake and N fertilizer (Fig.  3) where 
low crop uptake at low N fertilizer rates corresponds 
to the highest efficiency. These results corroborate 
many other studies that investigated the relationship 
between NUE and fertilizer rates (Öztürk et al. 2010; 
Song et  al. 2009; Zhang et  al. 2009b). While farm-
ers are not expected to cease applying N fertilizer, 

and have little control over mineralization of N, the 
relationship of NUE and crop uptake with as-applied 
N fertilizer provides an opportunity to infer where 
TN is higher. Site-specific prescriptions can lower 
N fertilizer rates based on knowing the TN distribu-
tion within a field, which can save producers money 
on fertilizer and prevent the overapplication of N that 
can contribute to pollution. This inference agrees with 
other studies that show reducing N fertilizer rates in 
areas of high TN (due to greater N mineralization) is 
an economically viable management strategy (Paus-
tian et al. 1997; Zhang et al. 2009a, 2009b).

A few key relationships illustrate general con-
cepts that emerge from this NUE assessment. If the 
crop N is of a similar magnitude to the fertilizer N, 
one can assume that the total amount of available N is 
likely to exceed the crop nitrogen needs due to likely 
mineralization of organic N. When crop N is higher 
than fertilizer N, the crop has likely tapped into min-
eralized N sources to satisfy its N requirements, and 
greater efficiency is probable, depending on total 
mineralization and immobilization. Conversely, if 
crop N is lower than fertilizer N, one can assume the 
presence of N inefficiencies resulting from N loss, or 
that there were constraints on N uptake by the crop, 
such as drought, resulting in amplified inefficiency 
of N use. Montana is a semiarid region where water 
often limits growth and N uptake by the crop, increas-
ing inefficiency of N use across all fields, and induc-
ing variability in efficiency within fields in areas with 
different moisture conditions.

Need for methods on estimating nitrogen 
mineralization

In Montana agroecosystems, with adequate mois-
ture and optimal temperatures, microbes mineral-
ize organic N into plant available forms, which 
increases the amount of available N for crop uptake 
(Hart and Firestone 1990). Mineralization of SON to 
plant available forms is a function of organic matter, 
moisture, and temperature (Booth et al. 2005; Sigler 
et al. 2018); however, the estimate of mineralization 
in this study used only percent soil TN to estimate 
mineralized N, increasing uncertainty in the mass 
balance approach (Vigil et  al. 2002). Uncertainty 
in the evaluation and modeling of NUE could be 
reduced by improving estimates of N mineralization 
and immobilization, or by using direct measures of N 

Fig.6   Variable importance from the final RF model fit with all 
data, where importance is defined as the increase in predictive 
performance of the model between permutations that indepen-
dently include and omit each variable of interest. Variables on 
the y axis are defined in Table 5
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mineralization and immobilization. Mineralization is 
important to account for in calculations of NUE for 
these systems especially if low or zero N fertilizer 
rates are applied in areas of the field, as seen in SI 
Fig.  3 in the Online Reference. Possible avenues of 
improving N mineralization estimates include use of 
remotely sensed soil moisture interpolated for depth 
effects, and upscaled modeling of soil climate based 
on rainfall and temperature patterns, along with soil 
mapping, and calibrated using growing soil climate 
observation networks. Overall, methods of accu-
rately measuring N mineralization and immobiliza-
tion require additional research, a fact that has been 
long recognized (Bremner and Mulvaney 1982; Wang 
et al. 2009; Zhang et al. 2009a).

Inference from machine learning models reflects 
biophysical controls on nitrogen use efficiency

We demonstrated methods drawing on modern data 
science can contribute to developing NUE models 
by providing a suite of tools from which the most 
appropriate model for a given system can be selected. 
Recognized as imperfect, the model that was statisti-
cally shown to outperform the other candidate mod-
els was the RF. However, due to the lack of differ-
ence between SLR, MLR, NLR, RF, and SVR in the 
HOOCV there is an argument that for practical usage 
the RF model is more complex than needed. Despite 
significant differences between SLR, MLR, or NLR 
and either RF or SVR, the difference of 0.06 In NUE 
may not be significant in practice. Using the SLR, 
MLR, or NLR models that solely use as-applied N as 
a covariate would provide farmers a simple method 
for estimating NUE prior to making N fertilizer deci-
sions without requiring satellite imagery to be gath-
ered. Despite this, as the RF used spatially and tem-
porally varying covariates, it provides insight into 
factors that were deemed predictive of NUE in these 
fields.

As the medium that supplies N to plants, soil plays 
a role in influencing N dynamics (Sigler et  al. 2018 
2020). The influence of fine textured soils on NUE 
was captured in the RF model through the incor-
poration, and retention after feature selection, of 
clay and soil organic carbon content estimates from 
OpenLandMap [Eq.  (5)]. Additionally, because fine 
textured soils hold more water and N, but can limit 
oxygen, NUE further decreases when denitrification 

reduces nitrate to gaseous forms that are lost to the 
atmosphere (Sigler et al. 2022).

Due to the linkage of water and temperature with 
N mineralization, weather plays a significant role in 
NUE (Thilakarathna et  al. 2020). Unsurprisingly, 
precipitation and water content estimated from Open-
LandMap were retained in the RF model as a covari-
ate that decreased variation between predicted and 
observed NUE [Eq.  (5)]. The combination of tem-
perature and precipitation also influence photosyn-
thesis of the crop, which in turn influences the water 
retention and the N efficiency of crops (Michaletz 
et  al. 2016; Pearcy et  al. 2005). Information on the 
water status of the crop were derived from NDWI 
data, which generated more accurate NUE predictions 
when included in the RF model than when omitted 
[Eq. (5)].

Information on the productivity of the crop, meas-
ured by NDVI, was retained in the final RF model 
post-feature selection [Eq.  (5)]. This indicates that 
the RF model utilized the measure of the crop green-
ness and indications of summer fallow to predict 
NUE. The greenness of a crop is related to crop pro-
ductivity and biomass and can indicate when a field 
was in summer fallow and provide information on the 
amount of stubble post-harvest because a higher bio-
mass of a crop correlates with an increased amount 
of stubble post-harvest after grain is harvested. Addi-
tional topographic parameters such as slope and 
aspect were included in the final RF model [Eq. (5)], 
likely due to the influence of site characteristics on 
fine scale water and N transport, nutrient availability, 
and microclimate conditions (Grant et al. 2016).

Future impacts of nitrogen use efficiency models

The models developed from NUE responses at sam-
pling locations and corresponding open-source data 
from the four fields demonstrates potential for future 
methods that can provide farmers with predictions 
of NUE for identifying N rates that optimize crop N 
uptake and NUE. The NUE of fields varied spatially 
and in magnitude (Table 3), indicating that manage-
ment of NUE would be suited for OFPE, where data 
from a field is used to make decisions on that field 
(Hegedus and Maxwell 2022a). Maps of predicted 
NUE that show the spatial variation of NUE across 
the fields are shown in SI Fig.  4 in the Online Ref-
erence. However, the cost and time expenditures to 
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gather and analyze the data to develop field specific 
NUE models is not feasible for a farmer to accom-
plish in addition to their normal operations. Thus, 
there is a need for a generalized model of NUE. 
The fields in this work showed similar relationships 
between as-applied N fertilizer and crop N uptake, 
FUE, or NUE (Figs. 3, 4, 5) suggesting the potential 
for these models to be applied across fields with simi-
lar soils, weather, and management in MT.

Evaluating and modeling NUE not only informs 
spatial N fertilizer management but has potential 
for temporal N management as well. Mineralization 
or fertilizer applications early in the growing sea-
son contribute to lower NUE or FUE because the 
supply exceeds demand, leaving N vulnerable to 
leaching as nitrate or denitrification (Ravier et  al. 
2017; Yin et al. 2020). Applying N fertilizer early 
in the growing season thus further reduces NUE 
due to the lack of demand by the crop. When ferti-
lizer is applied at a rate equivalent to plant needs, 
any mineralized N contributes to a lower NUE as N 
saturation in the crop leads to excess N available in 
the soil, thus systems with significant mineraliza-
tion require less supplemental N from fertilizer.

Although technology will improve, the coarse res-
olution of open-source satellite imagery potentially 
hinders it’s use in precision agriculture. Developing 
site-specific farming approaches with the level of 
resolutions currently available provides farmers and 
crop managers initial tools that will improve with 
advancements in satellite imagery collection. Addi-
tionally, usage of open-source satellite imagery is an 
important avenue of research in precision agriculture 
to avoid burdening farmers with any extra costs asso-
ciated with gaining information about their fields. 
Increased effort in the downscaling and ground truth-
ing of remote sensing data can decrease uncertainty 
in NUE predictions. Knowledge of the spatial varia-
tion of NUE across fields can highlight areas of fields 
that require differing management strategies to maxi-
mize NUE. Thus, models that adequately predict the 
spatial variation of NUE are crucial to decision sup-
port systems. When applying NUE models in data-
driven decision making, users must be willing to 
accept current uncertainties in N mineralization and 
remote sensing covariate data to begin shifting con-
ventional N management towards greater sustainabil-
ity in terms of both economic gains and efficiency. 
Improvements in these arenas warrant future research 

and updating of initial methods that incorporate effi-
ciency into decision making, yet the pressing global 
need to increase production without detriment to the 
agricultural resource base requires increasing agro-
nomic input efficiency with the tools and technology 
available now.

Conclusion

It is important to understand subfield scale N 
dynamics and NUE as the agricultural industry 
grapples with becoming more efficient with N fer-
tilizer usage while advancing the ability for prac-
ticing site-specific N management. Agriculture’s 
technological revolution has led to an abundance of 
data available at a low cost on the subfield scale but 
translating that data into insights relevant to man-
agement requires data science, which is the nexus of 
computer science, statistics, and agronomic under-
standing. Applying machine learning approaches to 
open-source subfield scale data resulted in a NUE 
model that aligns with assumptions about biophysi-
cal processes that drive N dynamics. Subfield infor-
mation on NUE informs farmers about where apply-
ing N fertilizer decreases NUE and does not improve 
crop N uptake, which results in an increased poten-
tial for N pollution. The development of a subfield 
scale model for predicting NUE demonstrates an 
avenue for including information about efficiency 
into a farmer’s decision matrix for variable N fer-
tilizer rates. Future research will be required on 
how NUE models can coexist with crop models to 
develop N fertilizer management recommendations 
that balance the tradeoff between reducing potential 
N pollution and profit maximization. Additionally, 
due to the inherent spatial and temporal variability 
of field and crop conditions, a model acting as a “sil-
ver bullet” across space and time for predicting NUE 
is unlikely, and so efficient methods for developing 
NUE models that consider field and farm level spec-
ificity will need to be addressed by future research.
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