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Abstract Low nitrogen use efficiency (NUE) is
ubiquitous in agricultural systems, with mount-
ing global scale consequences for both atmospheric
aspects of climate and downstream ecosystems. Since
NUE-related soil characteristics such as water holding
capacity and organic matter are likely to vary at small
scales (<1 ha), understanding the influence of soil
characteristics on NUE at the subfield scale (<32 ha)
could increase fertilizer NUE. Here, we quantify NUE
in four conventionally managed dryland winter-wheat
fields in Montana following multiple years of sub-
field scale variation in experimental N fertilizer appli-
cations. To inform farmer decisions that incorporates
NUE, we developed a generalizable model to pre-
dict subfield scale NUE by comparing six candidate
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models, using ecological and biogeochemical data
gathered from open-source data repositories and from
normal farm operations, including yield and protein
monitoring data. While NUE varied across fields and
years, efficiency was highest in areas of fields with
low N availability from both fertilizer and estimated
mineralization of soil organic N (SON). At low levels
of applied N, distinct responses among fields suggest
distinct capacities to supply non-fertilizer plant-avail-
able N, suggesting that mineralization supplies more
available N in locations with higher total N, reducing
efficiency for any applied rate. Comparing model-
ling approaches, a random forest regression model of
NUE provided predictions with the least error relative
to observed NUE. Subfield scale predictive models
of NUE can help to optimize efficiency in agronomic
systems, maximizing both economic net return and
NUE, which provides a valuable approach for optimi-
zation of nitrogen fertilizer use.

Keywords Nitrogen use efficiency - Winter wheat -
Optimization modeling - Decision making - Soil
nitrogen analysis - Precision agriculture

Introduction
Haber’s 1909 discovery of an industrial nitrogen
(N) fixation process catalyzed a century of boom-

ing agricultural production and development, feed-
ing the rapidly growing world population and fueling

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10705-023-10263-3&domain=pdf
http://orcid.org/0000-0002-6288-4345
http://orcid.org/0000-0003-0713-4266
http://orcid.org/0000-0003-3688-6256
http://orcid.org/0000-0001-7775-9419
https://doi.org/10.1007/s10705-023-10263-3
https://doi.org/10.1007/s10705-023-10263-3

Nutr Cycl Agroecosyst (2023) 126:1-20

consumption of N fertilizer (Coleman and Dec 1989;
Gliessman and Engles 2014; Paul and Robertson
1989). Between 1940 and 1980, the amount of N fer-
tilizer applied in the United States increased from 9
to 47 million metric tons and reached 12 Tg N yr~!
as of 2015 (Gliessman 2016), furthering long-held
concerns about the ecological and environmental
implications of intensive fertilizer use (Gliessman
and Engles 2014; Vitousek et al. 1997). Studies to
date suggest that an amount of reactive N equal to at
least half of fertilizer N applied is lost each year to
N leaching and denitrification from soils (Bouwman
et al. 2013). Overapplication of inorganic fertiliz-
ers in the quest for maximizing current productivity
degrades soil through acidification, overloads water
resources with nutrients, and contributes to eutrophi-
cation, biodiversity loss and greenhouse gas emis-
sions (Allaire et al. 2018; Capel et al. 2008; DeLonge
et al. 2016; Weiner 2017).

Increasing the efficiency of agricultural inputs,
including N fertilizer, is a key step in transitioning
modern agriculture towards sustainability (Foley
et al. 2011; Gliessman 2016). Nitrogen use efficiency
(NUE) is typically measured as the percentage of crop
biomass N to soil available N (Ping and Dobermann
2003; Prey et al. 2019; Yin et al. 2020). The rela-
tionship between crop N and available N over time
depends on how available N is assessed, and here
we distinguish between NUE and fertilizer use effi-
ciency (FUE). Fertilizer use efficiency is the ratio of
crop N to fertilizer N, while NUE is the ratio of crop
N to total available N in the soil, including available
N produced from soil organic matter through miner-
alization. Using isotopically labeled N fertilizer FUE
has been measured up to 0.65 using the ratio of crop
N to fertilizer N (Sebilo et al. 2013). Typical NUE
estimates are around 0.3, though in semiarid regions
like Montana FUE is expected to be higher due to less
leaching and denitrification when drier (Guttieri et al.
2017; Macnack et al. 2014).

Here we focus on dryland small-grain agroecosys-
tems in Montana, where low NUE has been linked to
elevated nitrate levels in drinking water, acidification
of agricultural soils, and substantial loss to denitrifi-
cation with associated production of the greenhouse
gas N,O (Engel 2012; John et al. 2017; Sigler et al.
2018, 2022). Generally, the degree of NUE from
conventionally managed fields in dryland Mon-
tana agroecosystems reflects soil character, weather,
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and agronomic management (Sigler et al. 2020).
Efficiency is lowest when nitrogen loss is greatest,
which occurs with deep percolation of water follow-
ing substantial precipitation events and summer fal-
low, as well as with denitrification under related soil
conditions of elevated water content in the absence
of plant uptake (Sigler et al. 2020 2022). Not only
does summer fallow increase the potential for deep
percolation of soil water to an underlying aquifer, but
it may also stimulate mineralization of soil organic
matter, further increasing the risk of nitrate leaching
(Sigler et al. 2020). Previous work showed that while
heavy precipitation can cause “hot moments” of
nitrate leaching, soil character can dictate “hot spots”
of nitrate leaching within agricultural fields. These
spatial and temporal trends in N loss provide insight
about NUE dynamics as a function of management,
weather and soils.

Farmers who understand the controls and driv-
ers of NUE can alter decisions based on conditions
and practices that expose them to potential economic
loss due to low NUE. Understanding the variation in
soil character within fields represents an opportunity
to inform site-specific N fertilizer management that
maximizes NUE within fields. While farmers can-
not control the weather, advances in remote sensing
and modeling have improved the accuracy and spatial
scale of weather predictions, which provide farmers
with better weather forecasts to inform N fertilizer
management decisions. Moreover, the affordability of
personal weather stations gives farmers direct access
to their own weather data. Importantly, interactions
between weather, soils, and management interact with
each other to make N transport dynamics complex.
However, at a simple level, crop rotations and weather
influence N loss at the field scale and soil texture and
structure, and the resulting WHC influence N loss at
the sub-field scale. Therefore, linking subfield scale
variation in crop response to variation in soil charac-
ter is the starting point for making effective predic-
tions about NUE to achieve greater sustainability in
these systems.

The subfield variation in crop response to vari-
able N fertilizer (Hegedus and Maxwell 2022a) sug-
gests that NUE varies substantially within fields, at
a resolution higher than most farmers’ soil sampling
practices can reveal. Soil mapping and soil sampling
provide information on the WHC of soils yet current
soil maps may not provide the resolution needed for
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site-specific N fertilizer management (Kamilaris et al.
2017; Lokers et al. 2016; Wolfert et al. 2017). Addi-
tionally, soil sampling and analysis are expensive
and typically conducted in a sparse manner across
fields, making it difficult for farmers to acquire and
analyze soil data at spatial resolutions adequate for
site-specific N management decisions. In response to
this challenge, statistical models of the relationships
among NUE, spectral imagery and landscape char-
acteristics have been developed (Oelofse et al. 2015;
Pavuluri et al. 2015; Semenov et al. 2007). These esti-
mates of NUE have typically involved simple linear
models that require site-and-time-specific parameters,
and represent a first step towards developing tools to
estimate efficiency at subfield scales for informing N
fertilizer management decisions (Arnall et al. 2009;
Macnack et al. 2014; Van Sanford and MacKown
1986).

Precision agriculture has progressed over the last
few decades into a management approach for inputs
like N fertilizer that account for spatial variation at
relatively high resolution across fields (Bullock et al.
2019). At the same time, the recent revolution in
agricultural data acquisition has coincided with the
introduction of data science approaches into agro-
nomic research and development (Coble et al. 2018;
Pham and Stack 2018; Vinila Kumari et al. 2016).
The amount of farm data now available makes it pos-
sible for data science to aid in the management and
analysis of agronomic data and inform local within-
field decision making (Gibert et al. 2018; Provost and
Fawcett 2013). Investigating the benefit of generaliz-
able data science tools for modeling the relationship
of NUE with soil parameters, N fertilizer rates, and
other open-source data can inform precision agroeco-
logical approaches to N fertilizer management that
are conscious of economic and ecological outcomes
(Duff et al. 2022; Mittermayer et al. 2021). Identify-
ing areas of a field at risk of N loss using freely avail-
able remotely sensed data benefits farmers by provid-
ing information on where NUE is potentially low,
which can inform site-specific N fertilizer manage-
ment decisions.

The goal of this study was to introduce protocols
for utilizing empirical measurements to estimate
NUE and develop analytical tools that can aid farm-
ers in the application of N fertilizer that maximizes
profit and reduces the risk of pollution from applied
fertilizer N loss. The first objective of this study was

to evaluate the relationships of NUE with causal
variables derived from low-cost open-source and on-
farm data sources in conventional dryland Montana
agroecosystems cropped with winter wheat (7riti-
cum aestivum L.). To consider these relationships in
a hypothetical low-cost decision support system, the
second objective was prediction of NUE in similar
dryland winter-wheat systems without soil sampling,
using a suite of potential generalizable models. The
modelling objective was to estimate subfield NUE
for a given year without requiring producers to take
detailed soil samples or provide difficult to meas-
ure parameters for complex biogeochemical models.
While developed in dryland winter-wheat systems
of Montana, the methods outlined in this paper are
applicable to other crops and systems when simi-
lar procedures are used to generate information for
increasing agronomic input efficiency with simultane-
ous consideration for profitability.

Methods
Study sites

Four fields from farmers collaborating with the On-
Farm Precision Experiments (OFPE) project (https://
sites.google.com/site/ofpeframework/home) at Mon-
tana State University (MSU) were used. Four sepa-
rate fields from two regions of Montana (Fig. 1)
were sampled, two in 2020 and two in 2021 (Table 1)
where average statewide yields were 3362 kg ha™! in
2020 and 2084 kg ha™! in 2021. All fields have been
in a crop-fallow rotation since 2014. In the seasons
since 2016 when winter wheat was grown, each field
was subjected to spatially variable N experiments.
These experimental rates that encompassed the whole
field were designed based on stratified random sam-
pling to ensure representation of experimental rates
across previous yield, protein, and any prior N rate
experimentation to account for legacy effects. An
example experimental N rate design is shown in SI
Fig. 1 of the Online Resource.

Fields were chosen based on data availability,
data quality, and geographic location across Mon-
tana, in the interest of creating a general model for
estimating NUE within the predominant dryland
small-grain agroecosystems (Table 1). While in an
ideal world, field specific measurements to generate
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Fig. 1 Map showing 30-year mean (1991-2021) precipitation
at a 4 km resolution from the University of Orgeon PRISM
Climate Group. Symbols indicate fields sampled during 2020

field specific models would be available, offering a
generalizable NUE model for use in dryland small-
grain agroecosystems gives farmers access to NUE
information at a low cost.

The fields observed in this study were simi-
lar in management and environment to the fields
observed by Sigler et al. (2020) and John et al.
(2017). All fields used in our study were cropped
with winter wheat in alternate years with chemical
fallow, a practice where no crop is grown to con-
serve water in the soil. While the detailed charac-
ter of soils used in this study differed from those
in Sigler et al. (2020) and John et al. (2017), these
well-drained soils are on similar landforms with
similar climate, suggesting that inference about the
drivers of N loss from Sigler et al. (2020) and John
et al. (2017) pertain to the fields used in this study.

@ Springer

n r
- F

PRISM 30 Yr.(1991-2021) Mean Precipitation (mm)
Bl <= 346
T 346-376
376 -415
415 - 584
Bl >584

and 2021. Two fields were sampled from Farm B (BS and
BSE), one in each year, with a corresponding field in Farm W
(WH 2020) or M (MS, 2021)

Classification of water holding capacity

A high spatial density estimate of WHC was created
based on remotely sensed Normalized Difference
Vegetation Index (NDVI) data. Estimating WHC
from remotely sensed information has been a subject
of research for decades (Fuka and McBratney 2004;
McBratney and Pratley 2000). Greater soil WHC was
expected to result in productivity consistency over
time at a specific point in a field, while more variable
productivity may reflect moderate WHC and risk of
N loss. While we are aware of no studies that have
linked historical maps of sub-field-scale NDVI over
time to the corresponding NUE or WHC, Sigler et al.
(2020) used a single time point to estimate soil WHC
and depth of fine textured soils, and Araya et al.
(2016) used NDVI over time to estimate available
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water content, supporting the value of NDVT for esti-
mating soil properties.

The fields used in this study were classified into
WHC zones that were used to stratify soil and plant
biomass sampling. NDVI was derived from satellite
imagery from 2000 to 2021. Landsat imagery (https://
developers.google.com/earth-engine/datasets/catal
og/landsat) was collected on 3030 m raster grids,
a coarser resolution than satellites such as Sentinel-2
but with a longer history of data available. Depend-
ing on the year collected, Landsat images were from
Landsat 5, 7, or 8.

Imagery was downloaded from Google Earth
Engine (GEE), where image processing was per-
formed to correct images for clouds and other atmos-
pheric anomalies (Gorelick et al. 2017). The cloud
computing platform of GEE was used to calculate
NDVI as:

NIR — Red
NOVI= NIR T Red M
where ‘NIR’ is reflectance at the near-infrared wave-
length (~865 nm) and ‘Red’ corresponds to reflec-
tance at a visible red wavelength (~665 nm). Landsat
images for each field for 2000-2021 were compos-
ited via the greenest pixel across the calendar year to
reflect maximum crop biomass. Although data were
collected from 2000 to 2021, years in which average
NDVI across each field fell below 0.3 were omit-
ted because these represent fallow years in which no
crops were grown, and any productivity was due to
weeds growing in the fallow field. For each field, the
rasterized NDVI for each year was stacked, and WHC
was classified based on each pixel’s mean and coef-
ficient of variation (CV) to produce a single map with
classifications of high, medium, and low WHC. High,
medium, and low categories for the mean and CV for
each pixel were delineated via k-means classification
in one dimension to maximize between class variance
and minimizing within class variance. A matrix of
the mean and CV groups for NDVI were then derived
to estimate hypothesized WHC zones where; a low
mean NDVI and medium or low CV were labeled as
low WHC, a high mean NDVI and medium or low
CV were labeled as high WHC, and all other com-
binations were labeled as medium WHC. High and
low NDVI cells that also exhibit a high CV classifica-
tion were considered medium WHC because the high
CV classification indicates that NDVI is occasionally
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but not consistently high. An illustration of the clas-
sification matrix is shown in SI Table 1 of the Online
Resource.

Soil and plant biomass sampling

Calibration soil samples were taken at 75 locations
with a truck-mounted hydraulic probe in each field
twice per year, in March and August, at positions
randomly selected with stratification based on WHC
category and N application rate (Fig. 2). Samples
were taken in March and August for future research

Fig. 2 Water holding capacity classifications and sampling
locations for each field. A BS 2020, B MS 2021, C BSE 2021,
D WH 2020
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that measured inorganic N levels. Soil samples were
taken at depths of 0-15, 15-30, 30-60, 60-90, and
from 90 cm to as deep as possible. The depth of the
deepest sample corresponded to either gravel content,
rock layer or the limit of the probe (110 cm). The
maximum depth at each location was recorded dur-
ing sampling. Soil samples were taken within seven
days prior to fertilizer application and within seven
days post-harvest. Winter wheat biomass samples
were hand harvested in June at plant maturity at each
of the sampling locations. Samples were transported
in coolers on ice from the fields back to MSU where
soil and plant samples were weighed wet, oven dried
at 50 °C for 7-14 days, and then weighed dry to
determine water content. Plant samples were ground
using an UDY Cyclone Sample Mill (UDY Corpora-
tion, Fort Collins, CO, USA). Soil samples were gen-
tly crushed to break up peds and aggregates, sieved
(<2 mm) to remove rocks and roots, and milled with
a Dynacrush DC-5 soil crusher (Custom Laboratory,
Hodlen, MO, USA). Aliquots were taken from each
sample (plant and soil) and analyzed for total N with
a combustion analyzer (Costech analytical technolo-
gies Inc., Valencia, CA, USA) in the Environmental
Analytical Laboratory at Montana State University.

Derivation of nitrogen use efficiency

A mass balance approach was used to determine an
estimate for efficiency for each sample location. Prior
to assessing NUE, fertilizer use efficiency (FUE) was
calculated:

N, crop

FUE = — 2)
N fert

where N, was the N taken up by the crop in the

grain, stubble, and roots (kg ha™') and Ny, was the
input of N fertilizer (kg ha™') from the farmer, meas-
ured from the farmer’s fertilizer spraying equip-
ment. Farmers B and M both use a 2002 John Deere
4710 sprayer and farmer W uses a 2015 Case 4440
sprayer. All farmers applied 32% UAN which was
converted from gallons ac™! to kg N ac™!. Montana
wheat farmers typically apply one uniform N ferti-
lizer application, typically around 75 Ibs N ac™! in
spring (March—April). Grain N was estimated using
on-combine protein concentration and yield measure-
ments collected every 10 s and three seconds across

the field, respectively. As the data gathered depends
on the speed of travel, observations gathered where
the speed of the combine was outside the bounds of
two standard deviations from the mean speed were
omitted. Protein (g protein g~! grain) was divided
by a conversion of 5.83 (g protein g N7!) to esti-
mate g N g grain™' (Mariotti et al. 2008). To gener-
ate an area normalized estimate of grain N uptake,
the g N g grain™! estimates were multiplied by grain
yield measurements (g grain ha™'). Grain protein
and grain yield measurements were georeferenced to
corresponding sample point locations by calculating
the distance of each metric to the sample point and
selecting the closest measurement within 5 m. Stub-
ble N was estimated as 30% of grain N (Woyema
et al. 2012). Root N was estimated as 20% of above-
ground biomass N (Andersson et al. 2005; John et al.
2017), calculated as the sum of grain N and stubble
N. Crop N uptake was then calculated as the sum of
grain N, stubble N, and root N in kg ha~!.

Crop N, as-applied N fertilizer, and estimates of
mineralized N for each sample point were used to cal-
culate subfield NUE as:

crop

NUE = ——
Nmin +Ivfert

3

where N.,,, and Ny, where defined above and N,,;,
was estimated N mineralized in the top 15 cm of soil
(kg ha™!). Due to the nature of the crop-fallow rota-
tion, N fixation was likely negligible, so N fixation
was assumed to be zero. Total N deposition was esti-
mated to be 2.92 kg N ha~! year™! based on the mean
total N deposition from 2000 to 2018 recorded at the
closest EPA CASTNET station at Glacier National
Park. Compared to other inputs, this rate is negligible
and N deposition was omitted from further analysis.
Measured soil mass percent total N (TN) and bulk
density (g cm™>) were multiplied to generate a bulk
N concentration at each depth (g cm™) and multi-
plied by the depth (cm) of each interval to generate
an areal density of soil TN (kg ha™!). Bulk density
was calculated by dividing the dry weight of the soil
sample (g) by the volume of the soil sample (cm?).
Measured at the same georeferenced locations in
March and August with a 1-m resolution GPS, t-tests
comparing TN measures from the two seasons indi-
cated that the TN was equal within uncertainty for all
fields. Soil TN includes inorganic and organic pools

@ Springer



Nutr Cycl Agroecosyst (2023) 126:1-20

where the soil organic nitrogen (SON) is present at
much greater magnitudes than inorganic N (Wang
et al. 2009). Given the magnitude of TN compared to
the potential for change in a short study, TN was not
included in the calculation of NUE, and TN measure-
ments were only used to calculate N mineralization.

Assessment of NUE requires knowledge of N min-
eralization from soil organic nitrogen (SON) within
fields. Due to the decline of SON and hence miner-
alization with depth, as well as for consistency among
locations with variable sampling depths, soil samples
from the top 15 cm were used to calculate minerali-
zation and model NUE (Cassman and Munns 1980).
Mineralized N was estimated using a regression
model derived from a review of multiple mineraliza-
tion studies on the relationship between mineraliza-
tion rate and percent total N from 0 to 15 cm (Vigil
et al. 2002);

N, = 10.8 + 304.6TN @

where TN is the percent by mass total nitrogen in the
soil and N, ;, was in kg ha™! for the top 15 cm of soil.
Sample points that did not have corresponding TN
measurements at each depth interval to 15 cm in both
March and August were omitted to generate consist-
ent estimates of mineralized N at each point, yielding
observations at 67, 69, 60, and 75 out of 75 sample
locations in BS 2020, BSE 2021, WH 2020, and MS

2021, respectively.

Nitrogen use efficiency modeling

A set of six potential generalizable models for esti-
mating NUE at a subfield scale were compared to
explore the potential for low-cost methods of devel-
oping fertilizer application prescriptions. Devel-
opment of a general model for predicting subfield
NUE relied on environmental covariates gathered
from Google Earth Engine (GEE), which were
assumed to influence NUE (Table 2). All environ-
mental covariate data were gathered from pub-
lic domain GEE data repositories (Gorelick et al.
2017) and aggregated with soil sample data. Soil
characteristic data collected from OpenLandMap
were derived from internal OpenLandMap devel-
opers that utilized open-source data from organiza-
tions such as the European Space Agency, Coper-
nicus Program, National Aeronautics and Space
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Administration, United States Geologic Survey,
Natural Resources Conservation Service, Food and
Agriculture Organization, National Oceanic and
Atmospheric Administration, and others (https://
opengeohub.org/about-openlandmap/).

Information from each covariate was extracted to
each soil sample location to form the analysis dataset
(Hegedus et al. 2022; Hegedus and Maxwell 2022b).
Temporal data were gathered, delineated by year,
and constrained in a range to the point in time that a
farmer needs to make decisions on N fertilizer man-
agement of dryland winter-wheat in Montana (Hege-
dus and Maxwell 2022b). The covariates selected
for modeling were based on assumptions about envi-
ronmental variables that influence the components
of NUE and observed relationships from evaluation
of observed NUE (Table 2). SI Fig. 2 in the Online
Resource shows remotely sensed covariate data
included in the model selection process and their rela-
tion to components of the NUE calculation in Eq. (3).

Candidate models were chosen based on their
potential for predictive and not inferential modeling
because our objective was not to test direct causal-
ity between predictors and NUE, rather to make a
model useful for predicting NUE on a subfield scale.
Model candidates were selected to represent simple
to complex approaches with varying degrees of flex-
ibility and assumptions. The models tested included
(1) a baseline simple linear regression (SLR) model
that only included as-applied nitrogen as a covari-
ate, and (2) a non-linear regression model using an
exponential decay function with as-applied N (NLR).
The exponential decay function was selected based
on exploratory analysis of the relationship between
NUE and N sources, with the assumption that NUE
could be predicted solely based on as-applied nitro-
gen, as in the SLR model. Other models tested were
(3) a multiple linear regression model (MLR), (4) a
generalized additive model (GAM), (5) a random for-
est regression machine-learning model (RF) and (6)
a support vector regression machine-learning model
(SVR). Models 3-6 included all spatially variable
covariates from Table 2. Random forest regression
is an ensemble tree approach where covariates are
randomly sampled in each tree and used to classify
observations (Breiman 2001). Support vector regres-
sion mapped observations to the feature space gener-
ated by the covariate data (Lau and Wu 2008; Smola
and Scholkopf 2004).
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Table 2 Table of covariate data types gathered from Google Earth Engine to enrich the crop yield and protein datasets gathered

from on-farms

Data type Data source(s)  Resolution Years collected Description
Normalized difference veg-  Landsat 5/7/8 30 m L5: 1999-2011 Landsat is an ongoing USGS and NASA
etation index (NDVI) collaboration
L7:2012-2013 Bands (NIR, red)
L8: 2014—present ~ L5/L7: B4 and B3
L8: B5 and B4
Normalized difference water Landsat 5/7/8 30m L5: 1999-2011 Landsat is an ongoing USGS and NASA
index (NDWI) collaboration
L7:2012-2013 Bands (MIR, NIR)
L8:2014—present  L5/L7: B2 and B4
L8: B2 and BS
Elevation USGS NED ~10m (1/3 arc  1999-present USGS National Elevation Dataset. Meas-
second) ured in meters
Aspect USGS NED ~10m (1/3 arc  1999-present Direction the surface faces, function of
second) neighboring elevations, in radians. Also
calculated for each E/W and N/S direc-
tion as cosine and sine
Slope USGS NED ~10m (1/3 arc  1999-present Rate of change of height from neighboring
second) cells, in degrees. Measured in degrees
Topographic position index ~ USGS NED ~10m (1/3 arc  1999-present Measure of divots and low spots as a func-
(TPD) second) tion of neighboring elevation
Precipitation DaymetV3 1 km 1999-present Estimates from the NASA Oak Ridge
National Laboratory (ORNL). Measured
in mm
Growing degree days (GDD) DaymetV3 1 km 1999-present Estimates from the NASA Oak Ridge
National Laboratory (ORNL)
Bulk density OpenLandMap 250 m 1999-present Soil bulk density (fine earth) 10 xkg/
m3 averaged over 6 standard depths (0,
0.1,0.3,0.6, 1 and 2 m)
Clay content OpenLandMap 250 m 1999-present Clay content in % (kg/kg) averaged over
6 standard depths (0, 0.1, 0.3, 0.6, 1 and
2 m)
Soil water pH OpenLandMap 250 m 1999-present Soil pH in H,O averaged over 6 standard
depths (0, 0.1, 0.3, 0.6, 1 and 2 m)
Water content OpenLandMap 250 m 1999-present Soil water content (volumetric %) for
33 kPa and 1500 kPa suctions predicted
and averaged over 6 standard depths (0,
0.1,0.3,0.6, 1 and 2 m)
Soil organic carbon content ~ OpenLandMap 250 m 1999-present Soil organic carbon content in X5 g/kg

averaged over 6 standard depths (0, 0.1,
0.3,0.6, 1 and 2 m)

In some cases, multiple sources are used, however only one data source is used when aggregating to yield and protein

Landsat data was collected from; https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_CO1_T1_SR,
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LEO7_CO1_T1_SR, https://developers.google.com/earth-
engine/datasets/catalog/LANDSAT_LCO08_CO1_T1_SR, USGS NED was collected from; https://developers.google.com/earth-
engine/datasets/catalog/USGS_NED, Daymet V3 was collected from; https://developers.google.com/earth-engine/datasets/catalog/
NASA_ORNL_DAYMET_V3, and OpenLandMap data was collected from; https://developers.google.com/earth-engine/datasets/
catalog/OpenLandMap_SOL_SOL_BULKDENS-FINEEARTH_USDA-4A1H_M_v02, https://developers.google.com/earth-engine/
datasets/catalog/OpenLandMap_SOL_SOL_CLAY-WFRACTION_USDA-3A1A1A_M_v02, https://developers.google.com/earth-
engine/datasets/catalog/OpenLandMap_SOL_SOL_PH-H20_USDA-4C1A2A_M_v02, https://developers.google.com/earth-engine/
datasets/catalog/OpenLandMap_SOL_SOL_WATERCONTENT-33KPA_USDA-4B1C_M_vO0l1, https://developers.google.com/
earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_ORGANIC-CARBON_USDA-6A1C_M_v02
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https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C01_T1_SR
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C01_T1_SR
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR
https://developers.google.com/earth-engine/datasets/catalog/USGS_NED
https://developers.google.com/earth-engine/datasets/catalog/USGS_NED
https://developers.google.com/earth-engine/datasets/catalog/NASA_ORNL_DAYMET_V3
https://developers.google.com/earth-engine/datasets/catalog/NASA_ORNL_DAYMET_V3
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_BULKDENS-FINEEARTH_USDA-4A1H_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_BULKDENS-FINEEARTH_USDA-4A1H_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_CLAY-WFRACTION_USDA-3A1A1A_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_CLAY-WFRACTION_USDA-3A1A1A_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_PH-H2O_USDA-4C1A2A_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_PH-H2O_USDA-4C1A2A_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_WATERCONTENT-33KPA_USDA-4B1C_M_v01
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_WATERCONTENT-33KPA_USDA-4B1C_M_v01
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_ORGANIC-CARBON_USDA-6A1C_M_v02
https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_ORGANIC-CARBON_USDA-6A1C_M_v02
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Fig. 3 Crop N uptake (grain N+ stubble N+root N) vs. as-
applied nitrogen measured from the farmer’s fertilizer spraying
equipment. Colors represent measurements in each field and
the black line shows the trend smoothed across all fields

Spatial covariance structures were incorporated
into the models in varying ways to account for spa-
tial autocorrelation of NUE observations. The SLR,
MLR, and NLR models used a Gaussian process
spatial correlation structure (De Bastiani et al. 2015;
Diggle and Tawn 1998; Mardia and Marshall 1984;
Xia et al. 2008). The spatial covariance structure for
the GAM incorporated a Gaussian basis function on
spatial coordinates (Gotway and Stroup 1997; Guisan
et al. 2002; Holland et al. 2000; Zuur et al. 2012).
The RF and SVR models used approaches commonly
described for machine learning approaches which
incorporate the spatial data in the model (Janatian

z 35| Field
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z
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w
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Fig. 4 Fertilizer use efficiency (FUE) vs. as-applied nitrogen
measured from the farmer’s fertilizer spraying equipment.
Colors represent measurements in each field. Dashed line indi-
cates FUE=1. Note that at fertilizer rates of 0 kg ha~'fertilizer,
FUE was calculated with a fertilizer rate of 1 to visualize FUE
values approaching infinity at zero rates

@ Springer

et al. 2017; Langella et al. 2010; Walsh et al. 2017;
Wang et al. 2017).

All models except the SLR and NLR were sub-
jected to features selection during the fitting process
to optimize model performance. Top-down Akaike
information criterion (AIC) based feature selection
was performed for the MLR and GAM models, where
a reduction of two AIC units with the removal of a
covariate justified its omission. As AIC is not appro-
priate for machine learning methods, top-down root
mean square error (RMSE) based feature selection
was performed for the RF and SVR models. Fea-
ture selection was based on a reduction in RMSE to
determine whether withholding a covariate improved
model performance. All models, except the SLR and
NLR, that only used as-applied N fertilizer, began
feature selection with a full model that included the
WHC classification, and the covariates illustrated in
Fig. 4.

The initial candidate models were subjected to a
hold-one out cross validation (HOOCV) approach
using observed farm fields to initially assess the abil-
ity of the model to predict NUE. Each model was
subjected to four cases of HOOCV across all four
fields where they were independently trained on data
from three fields with performance tested by calculat-
ing the RMSE between the predicted and observed
NUE from the one field held out from training. The
HOOCYV scheme is visualized in SI Table 2 of the
Online Reference. The RMSE across the four test
datasets were averaged for each model and compared
to identify the two candidate models that generated
the lowest mean RMSE. The two models selected
from the HOOCV approach were then empirically
assessed using 5X2 cross validation (CV) (Dietter-
ich 1998). All the data from the fields were pooled
and randomly selected evenly into a training and test
dataset. Both models were trained on the training
dataset and RMSE was calculated based on predicted
and observed NUE in the test dataset. Then the train-
ing and testing datasets were swapped (2 folds), and
the process was repeated to generate four error met-
rics and calculate the variance of the difference in
the predictions. Beginning with randomly splitting
the data evenly, the process was repeated five times
(5 folds), and the error estimates and variance from
the five repetitions were used to calculate the 5x2
t-statistic (Dietterich 1998). Assuming a t-distribution
with five degrees of freedom, evidence against the
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null hypothesis that there was no difference in RMSE
between observations and predictions from the two
models was evaluated with a two-tailed significance
test with a 95% confidence threshold (a=0.05).

Results
Nitrogen use efficiency evaluation

Based on raw numbers and not statistical differences,
the field BSE 2021 had the highest average minerali-
zation and the highest mean experimental N fertilizer
rates (Table 3). The range of experimental fertilizer
rates were selected for associated research on the
development of crop response models but served the
purpose of gathering NUE responses across a range
of applied N fertilizer rates for this purpose. The lack
of zero N fertilizer rates in BSE 2021 were due to a
farmer B request made prior to 2021 to discontinue
the use of zero N rate experimental plots (Table 3).
Crop N uptake was highest on average in field BS
2020 (Table 3). However, NUE was highest on aver-
age in WH 2020 due to relatively high crop N uptake
and low mineralization and fertilization (Table 3).
Calculated NUE values greater than 1 were observed
in all fields, ranging from 1.17 to 2.14, indicating
that estimated crop N uptake in areas of these fields
exceeded total N inputs or that N availability—
likely from N mineralization—was underestimated
(Table 3).

Characterization of the relationship between crop
N uptake and N fertilizer using a GAM with cubic
shrinkage splines showed an asymptotic relation-
ship (Fig. 3), indicating that crop N uptake does not
increase past a threshold of N fertilization. Efficiency
was expected to decline with increasing N fertilizer
rates due to the asymptotic relationship of crop N
uptake and fertilizer (Fig. 5). A negative exponen-
tial relationship between FUE and as-applied N fer-
tilizer was observed, where low N rate locations
had the largest calculated FUE before approaching a
minimum, at higher N rates (Fig. 4). At zero N rates
FUE was undefined, indicating that winter-wheat was
taking up N contributed by other processes besides
fertilization, such as mineralization of SON. When
accounting for mineralization in calculations of

Table 3 Summary statistics for each component of nitrogen
use efficiency (NUE) calculated in Eq. (3)

NC["P (kg Nfc_ri (kg N"lii' (kg NUE (k_g1
ha™) ha™) ha™) NkgN™)

BS 2020

Min 3541 0 35.17 0.24
IstQ 75.83 55.82 45.83 0.63
Median 109.95 100.86 48.80 0.81
Mean  116.5 96.17 49.09 0.83
3rdQ  153.81 134.30 53.44 0.98
Max 253.89 163.06 59.54 1.85
BSE 2021

Min 28.74 60.64 39.74 0.12
1st Q 83.43 105.55 48.88 0.46
Median 103.27 131.77 50.40 0.56
Mean  100.82 129.58 50.11 0.59
3rdQ  121.39 154.12 51.92 0.72
Max 188.46 198.18 54.97 1.17
MS 2021

Min 21.58 0 38.21 0.38
1st Q 40.46 11.58 45.83 0.52
Median  51.70 23.81 47.35 0.65
Mean 52.49 31.87 47.13 0.71
3rd Q 61.38 41.11 48.88 0.88
Max 104.69 89.99 53.44 1.49
WH 2020

Min 19.55 5.1 29.08 0.18
1st Q 69.45 18.69 38.21 0.81
Median  94.22 36.56 39.74 1.07
Mean 94.69 54.76 40.70 1.09
3rdQ  124.63 77.24 4431 1.30
Max 155.12 137.96 53.44 2.14

Nop i8 the grain N +stubble N+root N, Ny, is the N applied by

crop
the farmer, and N, ;| is mineralized N in the top 15 cm of soil

min

efficiency, a negative relationship between NUE and
as-applied N fertilizer was observed as seen in the
black (observed) symbols of Fig. 5. Including miner-
alized N in the calculation for efficiency provides a
more realistic estimate of N inputs to the system, and
lowers efficiency values between FUE and NUE cal-
culations, as mineralization compensates for a lack of
N fertilizer at low or zero rates. An illustration of the
contributions of mineralization and fertilizer to the
total N inputs of the system can be referenced in SI
Fig. 3 in the Online Reference.
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Fig. 5 Observed nitrogen use efficiency (NUE) (black points)
across variable as-applied N rates, where shapes indicate each
field. Predicted NUE values are RF and SVR predictions from
the test sets performed in the 5x2 CV. Dashed line indicates
NUE=1

Model evaluation

In each of the fields, the HOOCV analysis indicated
different models reduced uncertainty in predictions of
NUE (Table 4). The SLR had the lowest mean RMSE
on average across hold-out cases, while the RF had
the second lowest mean RMSE on average across
hold-out cases, however there was little to no differ-
ence between the mean RMSE across fields for the
SLR, MLR, RF and SVR models (Table 4). Due to

the objective of creating a predictive model of sub-
field NUE that can be used across dryland winter-
wheat agroecosystems in Montana, the SLR was
compared to each of the MLR, RF, and SVR models
by 5x2 CV to test for significant differences between
RMSE.

There was little to no evidence against the null
hypothesis that RMSE did not differ between the
SLR and NLR models (t;=— 0.25, p-val=0.8143)
indicating that there was no statistical difference in
the uncertainty of NUE predictions between the two
models. Due to the lack of a difference between the
SLR and NLR, the SLR was retained as the best
model based on the mean RMSE from the HOOCV
and compared to the SVR model. There was strong
evidence against the null hypothesis that RMSE did
not differ between the RF and SVR models (t;=3.76,
p-val=0.0131) indicating that there was a statisti-
cal difference in the uncertainty of NUE predictions
between the two models and leading to the conclu-
sion that the SVR performed better than the SLR. The
mean RMSE across the 5 folds for the SLR model was
0.3229 compared to 0.2608 from the SVR. Based on
these results, the SVR overtook the SLR as the best
model and was compared to the RF for a final round
of 5x2 CV. There was little to no evidence against
the null hypothesis that RMSE did not differ between
the RF and SVR models (ts=0.32, p-val=0.7624)
indicating that there was no statistical difference in

Table 4 RMSE (kg N kg N7} calculated from the observed and predicted NUE from each model during the hold-one field out cross

validation
Test field Model tested
SLR? MLR® NLR® GAM! RF® SVRf

BS 2020 0.37 5.98 0.33 11.56 0.39 0.32
WH 2020 0.49 1.17 0.47 1.18 0.52 0.59
BSE 2021 0.19 0.27 0.21 0.63 0.23 0.36
MS M21 0.42 0.29 0.53 4.83 0.34 0.32
Mean 0.37 1.93 0.39 4.55 0.38 0.40

Bolded values indicate the model with the lowest RMSE for a field across models and italicized values indicate the model with the

second lowest RMSE for a field

4SLR: linear regression NUE predicted by as-applied nitrogen as a covariate

®MLR: multiple linear regression model using available spatially variable potential covariates

°NLR: non-linear model using an exponential decay function with as-applied N as a covariate

4GAM: generalized additive model with as-applied N and available spatially variable potential covariates

°RF: random forest regression model with as-applied N and available spatially variable potential covariates

fSVR: support vector regression model with as-applied N and available spatially variable potential covariates

@ Springer
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the uncertainty of NUE predictions between the two
models.

Both models indicated similar relationships
between NUE and as-applied fertilizer N (Fig. 5).
Although both the SVR and RF produced similar
predictions and there was no statistical difference
between them, the RF was selected as the final model

NUE ~ f(x,y,N, slope, aspect

sin?

ndwi

ndwi, oy

cy?

aspect s, prec.,, prec,,,

better than the SVR when making predictions in
fields unseen by the model during training. All the
sampled data were compiled as a training dataset to
fit a final RF model. After top-down features selec-
tion, the RF model that provided the best predictions
of NUE using environmental and management (e.g.,
N fertilizer rates) covariate data was:

ndvi ndvip

s ndvizpy,

cy’

®

ndwizpy, bulkdensity, claycontent, watercontentphw, carboncontent)

because it provided the lower mean RMSE based
on the HOOCV analysis. The lowest mean RMSE
from the HOOCYV indicated that the RF performed

where x and y were the spatial coordinates of each
sample point, and all other terms are defined in
Table 5 with descriptions of the data sources in
Table 2. The importance of each variable retained

Table 5 Parameter identifiers from final SVR NUE model with the corresponding data type and description

Description

Parameter ID  Data type

N N fertilizer

slope Slope

aspect, Aspect (exposure)

aspect,, Aspect (exposure)

prec,, Precipitation

prec,, Precipitation

ndvicy Normalized difference vegetation Index (NDVI)
ndvi,, Normalized difference vegetation Index (NDVI)
ndviy,, Normalized difference vegetation index (NDVI)
ndwicy Normalized Difference water index (NDVI)
ndwipy Normalized difference water index (NDWI)
ndwiy,, Normalized difference water index (NDWI)
bulkdensity Bulk density

claycontent Clay content

watercontent ~ Water content

phw Soil water pH

carboncontent Soil organic carbon

As-applied N fertilizer rate (kg ha™)

Slope in degrees, calculated from USGS NED (Table 2)

Aspect in N/S direction calculated from the USGS NED (Table 2)
Aspect in E/W direction calculated from the USGS NED (Table 2)
Precipitation (mm) measured from Daymet V3 (Table 2) across

November 1* of the previous year to March 30th of the year
samples were taken

Precipitation (mm) measured from Daymet V3 (Table 2) across
November 1* of two years prior to October 31st of the year prior
to when samples were taken

NDVI from a greenest pixel composite across Sentinel 2 images
(Table 2) from January 1st to March 30th of the year samples
were taken

NDVI from a greenest pixel composite across Sentinel 2 images
(Table 2) from January Ist to December 31st of the year prior to
when samples were taken

NDVI from a greenest pixel composite across Sentinel 2 images
(Table 2) from January 1st to December 31st two years prior to
when samples were taken

Median NDWI from Sentinel 2 (Table 2) from January 1st to
March 30th of the year samples were taken

Median NDWTI from Sentinel 2 (Table 2) across January 1st to
December 31st in the year prior to when samples were taken

Median NDWI from Sentinel 2 (Table 2) across January 1st to
December 31st two years prior to when samples were taken

Bulk density (kg m~>) from OpenLandMap data (Table 2)

Clay content (%) from OpenLandMap data (Table 2)

Water content (%) from OpenLandMap data (Table 2)

pH of soil water from OpenLandMap data (Table 2)

Soil organic carbon content (%) from OpenLandMap data
(Table 2)
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Fig.6 Variable importance from the final RF model fit with all
data, where importance is defined as the increase in predictive
performance of the model between permutations that indepen-
dently include and omit each variable of interest. Variables on
the y axis are defined in Table 5

in the final model was assessed by the difference in
predictive accuracy, defined by mean square error,
between permutations of the model that include and
omit each variable. The N fertilizer rate was the most
predictive variable, followed by the normalized dif-
ference water index (NDWI) from the previous year
(Fig. 6).

Discussion

Nitrogen use efficiency declined with increasing
nitrogen fertilizer inputs

This research demonstrates a novel methodology for
utilizing low-cost data to characterize within-field
variation in NUE to aid N fertilizer management
decisions. The approach is adaptable to any system
with any input that can be spatially varied and where
detailed sampling of representative fields across an
area of interest is conducted. Efficiency, defined as
FUE or NUE both declined with increasing N fer-
tilizer rates (Figs. 4, 5) and mirrors the relationship
between crop uptake and N fertilizer (Fig. 3) where
low crop uptake at low N fertilizer rates corresponds
to the highest efficiency. These results corroborate
many other studies that investigated the relationship
between NUE and fertilizer rates (Oztﬁrk et al. 2010;
Song et al. 2009; Zhang et al. 2009b). While farm-
ers are not expected to cease applying N fertilizer,

@ Springer

and have little control over mineralization of N, the
relationship of NUE and crop uptake with as-applied
N fertilizer provides an opportunity to infer where
TN is higher. Site-specific prescriptions can lower
N fertilizer rates based on knowing the TN distribu-
tion within a field, which can save producers money
on fertilizer and prevent the overapplication of N that
can contribute to pollution. This inference agrees with
other studies that show reducing N fertilizer rates in
areas of high TN (due to greater N mineralization) is
an economically viable management strategy (Paus-
tian et al. 1997; Zhang et al. 2009a, 2009b).

A few key relationships illustrate general con-
cepts that emerge from this NUE assessment. If the
crop N is of a similar magnitude to the fertilizer N,
one can assume that the total amount of available N is
likely to exceed the crop nitrogen needs due to likely
mineralization of organic N. When crop N is higher
than fertilizer N, the crop has likely tapped into min-
eralized N sources to satisfy its N requirements, and
greater efficiency is probable, depending on total
mineralization and immobilization. Conversely, if
crop N is lower than fertilizer N, one can assume the
presence of N inefficiencies resulting from N loss, or
that there were constraints on N uptake by the crop,
such as drought, resulting in amplified inefficiency
of N use. Montana is a semiarid region where water
often limits growth and N uptake by the crop, increas-
ing inefficiency of N use across all fields, and induc-
ing variability in efficiency within fields in areas with
different moisture conditions.

Need for methods on estimating nitrogen
mineralization

In Montana agroecosystems, with adequate mois-
ture and optimal temperatures, microbes mineral-
ize organic N into plant available forms, which
increases the amount of available N for crop uptake
(Hart and Firestone 1990). Mineralization of SON to
plant available forms is a function of organic matter,
moisture, and temperature (Booth et al. 2005; Sigler
et al. 2018); however, the estimate of mineralization
in this study used only percent soil TN to estimate
mineralized N, increasing uncertainty in the mass
balance approach (Vigil et al. 2002). Uncertainty
in the evaluation and modeling of NUE could be
reduced by improving estimates of N mineralization
and immobilization, or by using direct measures of N
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mineralization and immobilization. Mineralization is
important to account for in calculations of NUE for
these systems especially if low or zero N fertilizer
rates are applied in areas of the field, as seen in SI
Fig. 3 in the Online Reference. Possible avenues of
improving N mineralization estimates include use of
remotely sensed soil moisture interpolated for depth
effects, and upscaled modeling of soil climate based
on rainfall and temperature patterns, along with soil
mapping, and calibrated using growing soil climate
observation networks. Overall, methods of accu-
rately measuring N mineralization and immobiliza-
tion require additional research, a fact that has been
long recognized (Bremner and Mulvaney 1982; Wang
et al. 2009; Zhang et al. 2009a).

Inference from machine learning models reflects
biophysical controls on nitrogen use efficiency

We demonstrated methods drawing on modern data
science can contribute to developing NUE models
by providing a suite of tools from which the most
appropriate model for a given system can be selected.
Recognized as imperfect, the model that was statisti-
cally shown to outperform the other candidate mod-
els was the RF. However, due to the lack of differ-
ence between SLR, MLR, NLR, RF, and SVR in the
HOOCYV there is an argument that for practical usage
the RF model is more complex than needed. Despite
significant differences between SLR, MLR, or NLR
and either RF or SVR, the difference of 0.06 In NUE
may not be significant in practice. Using the SLR,
MLR, or NLR models that solely use as-applied N as
a covariate would provide farmers a simple method
for estimating NUE prior to making N fertilizer deci-
sions without requiring satellite imagery to be gath-
ered. Despite this, as the RF used spatially and tem-
porally varying covariates, it provides insight into
factors that were deemed predictive of NUE in these
fields.

As the medium that supplies N to plants, soil plays
a role in influencing N dynamics (Sigler et al. 2018
2020). The influence of fine textured soils on NUE
was captured in the RF model through the incor-
poration, and retention after feature selection, of
clay and soil organic carbon content estimates from
OpenLandMap [Eq. (5)]. Additionally, because fine
textured soils hold more water and N, but can limit
oxygen, NUE further decreases when denitrification

reduces nitrate to gaseous forms that are lost to the
atmosphere (Sigler et al. 2022).

Due to the linkage of water and temperature with
N mineralization, weather plays a significant role in
NUE (Thilakarathna et al. 2020). Unsurprisingly,
precipitation and water content estimated from Open-
LandMap were retained in the RF model as a covari-
ate that decreased variation between predicted and
observed NUE [Eq. (5)]. The combination of tem-
perature and precipitation also influence photosyn-
thesis of the crop, which in turn influences the water
retention and the N efficiency of crops (Michaletz
et al. 2016; Pearcy et al. 2005). Information on the
water status of the crop were derived from NDWI
data, which generated more accurate NUE predictions
when included in the RF model than when omitted
[Eq. (5)]-

Information on the productivity of the crop, meas-
ured by NDVI, was retained in the final RF model
post-feature selection [Eq. (5)]. This indicates that
the RF model utilized the measure of the crop green-
ness and indications of summer fallow to predict
NUE. The greenness of a crop is related to crop pro-
ductivity and biomass and can indicate when a field
was in summer fallow and provide information on the
amount of stubble post-harvest because a higher bio-
mass of a crop correlates with an increased amount
of stubble post-harvest after grain is harvested. Addi-
tional topographic parameters such as slope and
aspect were included in the final RF model [Eq. (5)],
likely due to the influence of site characteristics on
fine scale water and N transport, nutrient availability,
and microclimate conditions (Grant et al. 2016).

Future impacts of nitrogen use efficiency models

The models developed from NUE responses at sam-
pling locations and corresponding open-source data
from the four fields demonstrates potential for future
methods that can provide farmers with predictions
of NUE for identifying N rates that optimize crop N
uptake and NUE. The NUE of fields varied spatially
and in magnitude (Table 3), indicating that manage-
ment of NUE would be suited for OFPE, where data
from a field is used to make decisions on that field
(Hegedus and Maxwell 2022a). Maps of predicted
NUE that show the spatial variation of NUE across
the fields are shown in SI Fig. 4 in the Online Ref-
erence. However, the cost and time expenditures to
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gather and analyze the data to develop field specific
NUE models is not feasible for a farmer to accom-
plish in addition to their normal operations. Thus,
there is a need for a generalized model of NUE.
The fields in this work showed similar relationships
between as-applied N fertilizer and crop N uptake,
FUE, or NUE (Figs. 3, 4, 5) suggesting the potential
for these models to be applied across fields with simi-
lar soils, weather, and management in MT.
Evaluating and modeling NUE not only informs
spatial N fertilizer management but has potential
for temporal N management as well. Mineralization
or fertilizer applications early in the growing sea-
son contribute to lower NUE or FUE because the
supply exceeds demand, leaving N vulnerable to
leaching as nitrate or denitrification (Ravier et al.
2017; Yin et al. 2020). Applying N fertilizer early
in the growing season thus further reduces NUE
due to the lack of demand by the crop. When ferti-
lizer is applied at a rate equivalent to plant needs,
any mineralized N contributes to a lower NUE as N
saturation in the crop leads to excess N available in
the soil, thus systems with significant mineraliza-
tion require less supplemental N from fertilizer.
Although technology will improve, the coarse res-
olution of open-source satellite imagery potentially
hinders it’s use in precision agriculture. Developing
site-specific farming approaches with the level of
resolutions currently available provides farmers and
crop managers initial tools that will improve with
advancements in satellite imagery collection. Addi-
tionally, usage of open-source satellite imagery is an
important avenue of research in precision agriculture
to avoid burdening farmers with any extra costs asso-
ciated with gaining information about their fields.
Increased effort in the downscaling and ground truth-
ing of remote sensing data can decrease uncertainty
in NUE predictions. Knowledge of the spatial varia-
tion of NUE across fields can highlight areas of fields
that require differing management strategies to maxi-
mize NUE. Thus, models that adequately predict the
spatial variation of NUE are crucial to decision sup-
port systems. When applying NUE models in data-
driven decision making, users must be willing to
accept current uncertainties in N mineralization and
remote sensing covariate data to begin shifting con-
ventional N management towards greater sustainabil-
ity in terms of both economic gains and efficiency.
Improvements in these arenas warrant future research

@ Springer

and updating of initial methods that incorporate effi-
ciency into decision making, yet the pressing global
need to increase production without detriment to the
agricultural resource base requires increasing agro-
nomic input efficiency with the tools and technology
available now.

Conclusion

It is important to understand subfield scale N
dynamics and NUE as the agricultural industry
grapples with becoming more efficient with N fer-
tilizer usage while advancing the ability for prac-
ticing site-specific N management. Agriculture’s
technological revolution has led to an abundance of
data available at a low cost on the subfield scale but
translating that data into insights relevant to man-
agement requires data science, which is the nexus of
computer science, statistics, and agronomic under-
standing. Applying machine learning approaches to
open-source subfield scale data resulted in a NUE
model that aligns with assumptions about biophysi-
cal processes that drive N dynamics. Subfield infor-
mation on NUE informs farmers about where apply-
ing N fertilizer decreases NUE and does not improve
crop N uptake, which results in an increased poten-
tial for N pollution. The development of a subfield
scale model for predicting NUE demonstrates an
avenue for including information about efficiency
into a farmer’s decision matrix for variable N fer-
tilizer rates. Future research will be required on
how NUE models can coexist with crop models to
develop N fertilizer management recommendations
that balance the tradeoff between reducing potential
N pollution and profit maximization. Additionally,
due to the inherent spatial and temporal variability
of field and crop conditions, a model acting as a “sil-
ver bullet” across space and time for predicting NUE
is unlikely, and so efficient methods for developing
NUE models that consider field and farm level spec-
ificity will need to be addressed by future research.
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