
RESISTANCE SCALING ON 4N-CARPETS

CLAIRE CANNER, CHRISTOPHER HAYES, SHINYU HUANG, MICHAEL ORWIN, AND LUKE G. ROGERS.

Abstract. The 4N carpets are a class of infinitely ramified self-similar fractals with a large group
of symmetries. For a 4N -carpet F , let {Fn}n≥0 be the natural decreasing sequence of compact
pre-fractal approximations with ∩nFn = F . On each Fn, let E(u, v) =

∫
FN

∇u · ∇v dx be the

classical Dirichlet form and un be the unique harmonic function on Fn satisfying a mixed boundary
value problem corresponding to assigning a constant potential between two specific subsets of the
boundary. Using a method introduced by Barlow and Bass [2], we prove a resistance estimate of
the following form: there is ρ = ρ(N) > 1 such that E(un, un)ρ

n is bounded above and below
by constants independent of n. Such estimates have implications for the existence and scaling
properties of Brownian motion on F .

1. Introduction

The 4N carpets are a class of self-similar fractals related to the classical Sierpiński Carpets.
They are defined by a finite set of similitudes with a single contraction ratio, are highly symmetric,
and are post-critically infinite. Two examples, the octacarpet (N = 2) and dodecacarpet (N = 3)
are shown in Figure 1. We do not consider the case N = 1 which is simply a square.

The construction of 4N carpets is as follows; illustrations forN = 2 are in Figure 2. FixN ≥ 2, let

Λ(N) = {0, . . . , 4N−1} and Cj(N) = exp (2j−1)iπ
4N ∈ C. Let F0 denote the convex hull of {Cj(N), j ∈

Λ(N)}. Consider contractions ϕj(x) = r(x−Cj)+Cj where the ratio r = r(N) = (1+cot(π/4N))−1

is chosen so ϕj(F0) ∩ ϕk(F0) is a line segment. For a set A define Φ(A) = ∪4N−1
j=0 ϕj(A) and let Φn

denote the n-fold composition. Φ is a contraction on the space of non-empty compact sets in C
with the Hausdorff metric ([20], pg. 11). Then let Fn = Φn(F0) and F = ∩nFn be the unique
non-empty compact set such that Φ(F ) = F (see [15]). We call F the 4N -carpet. Since one may
verify the Moran open set condition is valid for the interior of F0, [15, Theorem 5.3(2)] implies its
Hausdorff dimension is df = − log 4N/ log r(N) = log 4N/ log(1 + cot(π/4N)).

2020 Mathematics Subject Classification. Primary: 28A80, 31C25, 31E05. Secondary: 31C15, 60J65.
Key words and phrases. Resistance, Fractal, Fractal carpet, Dirichlet form, Walk dimension, Spectral dimension.
Work supported by NSF DMS REU 1659643.

Figure 1. The octacarpet (N = 2) and dodecacarpet (N = 3) are 4N -Carpets.
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Figure 2. The pre-carpets F0, F1 and F2 for the octacarpet (N = 2).

Am Bm

Figure 3. The thick lines indicate Am and Bm for the dodecacarpet (N = 3)).

This paper is concerned with a physically-motivated problem connected to the resistance of the
4N carpet, and is closely related to well-known results of Barlow and Bass [2]. To state it we need
some further notation. Writing subindices modulo 4N , let Lj be the line segment from Cj to Cj+1

(these are shown for the case N = 2 in the left diagram in Figure 8). Then define

An = Fn ∩
(
∪N−1
k=0 L4k

)
Bn = Fn ∩

(
∪N−1
k=0 L4k+2

)
(1.1)

These sets are shown for the case of the dodecacarpet (N = 3) in Figure 3.
Supposing Fn to be constructed from a thin, electrically conductive sheet let Rn = Rn(N) be the

effective resistance (as defined in (2.2) below) when the edges of An are short-circuited at potential
0 and those of Bn are short-circuited at potential 1.

Bounds for Rn have a well-known connection to crossing time estimates for Brownian Motion
(see, for example, [4, Theorem 2.7]). In the case of the Sierpiński Carpet such estimates play a
significant role in the Barlow-Bass approach to establishing properties of the Brownian motion
constructed in [5]. Specifically, these estimates are used to establish the behavior of the resulting

heat kernel pt(x, y) under space rescaling and hence prove existence of the limit limt→0+
ln pt(x,x)

ln t ,
which is used to define the spectral dimension. See [2, 6] for details and [3] for numerical estimates
of the spectral dimension via estimation of the resistance scaling.

There have been considerable developments regarding the Dirichlet form on the Sierpiński carpet,
among which we note the proof of uniqueness [8], more general results on the geometry of the
spectral dimension [17], and a proof of existence of the form by a non-probabilistic method [13].
The original results of Barlow and Bass [2] on scaling of the resistance for the Sierpiński carpet
were extended to more general types of carpets in [7, 21], and further improved using a different
approach in [18]. Resistance estimates for the Strichartz hexacarpet are in [19].

With regard to the 4N carpets considered here, there are few results in the literature. For the
case N = 2, which is called either the octacarpet or octagasket, there are some results regarding
features one might expect the spectrum of a Laplacian to have, provided that one exists: [9] contains
numerical data and results from Strichartz’s “outer approximation” method, and [22] has results
from a method involving approximation of the set by a Peano curve. The results most closely
connected to the present work are in the PhD thesis of Ulysses Andrews [1], where the Barlow-Bass
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method is used to prove the existence of a local regular Dirichlet form on 4N carpets under several
assumptions, one of which is a resistance estimate that follows readily from Theorem 1.1 below.

Our main result is the following theorem.

Theorem 1.1. For fixed N ≥ 2 there is a constant ρ = ρ(N) such that:

9

44N
R0ρ

n ≤ Rn ≤ 44N

9
R0ρ

n

Proof. The majority of the work is to establish (in Theorem 4.1 below) that there are constants
c, C so cRnRm ≤ Rn+m ≤ CRnRm. Then Sn = log cRn is superadditive and S′

n = logCRn is
subadditive, so Fekete’s lemma implies limn→∞ 1

nSn = supn
1
nSn and limn→∞ 1

nS
′
n = infn

1
nS

′
n.

However limn→∞ 1
n(Sn − S′

n) = 0, so defining log ρ to be the common limit we conclude 1
nSn ≤

log ρ ≤ 1
nS

′
n and thus cRn ≤ ρn ≤ CRn.

□

2. Resistance, flows and currents

We recall some necessary notions regarding Dirichlet forms on graphs and on Lipschitz domains.
Our treatment generally follows [2], which in turn refers to [11] for the graph case.

2.1. Graphs. On a finite set of points G suppose we have g : G×G→ R satisfying for all x, y ∈ G
that g(x, y) = g(y, x), g(x, y) ≥ 0 and g(x, x) = 0. We call g a conductance. It defines a Dirichlet
form by

EG(u, u) =
1

2

∑

x∈G

∑

y∈G
g(x, y)

(
u(x)− u(y)

)2
.

For disjoint subsets A, B from G the effective resistance between them is RG(A,B) defined by

(2.1) RG(A,B)−1 = inf{EG(u, u) : u|A = 0, u|B = 1}.
The set of functions in (2.1) are called feasible potentials. Viewing G as the vertex set of a graph
with an edge from x to y when g(x, y) > 0 we note that if G is connected then the infimum is
attained at a unique potential ũG.

A current from A to B is a function I on the edges of the conductance graph, meaning I : {x, y :
g(x, y) > 0} → R, with properties: I(x, y) = −I(y, x) for all x, y and

∑
y∈G I(x, y) = 0 if x ̸∈ A∪B.

It is called a feasible current if it has unit flux, meaning:
∑

x∈B

∑

y∈G
I(x, y) = −

∑

x∈A

∑

y∈G
I(x, y) = 1

Note that the first equality is a consequence of the definition of a current. The energy of the
current is defined by

EG(I, I) =
1

2

∑

x∈G

∑

x∈G
g(x, y)−1I(x, y)2.

Theorem 2.1 ([11, Section 1.3.5]).

RG(A,B) = inf{EG(I, I) : I is a feasible current}.
This well-known result, often called Thomson’s Principle, is proven by showing that for the

optimal potential ũG one may define a current by ∇uG(x, y) = (ũG(y)− ũG(x))g(x, y), this current
has flux RG(A,B)−1 and the optimal current which attains the infimum in the theorem is ĨG =
RG(A,B)∇ũG. We note that the theorem in the reference is only for the case where A and B are
singleton sets, but that the argument requires minimal changes to cover the more general case, and
indeed the general case is often treated by “shorting” each set to a point.
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2.2. Lipschitz domains. We shall need corresponding results on each of our prefractal sets Fn,
for the sets An and Bn defined in (1.1). To this end we must define a space of potentials and of
currents for which suitable integrability criteria are valid; several ways to do this are possible, and
it can sometimes be difficult to check all details for the approaches in the literature.

Let Ω ⊂ C be a Lipschitz domain, suppose A, B are disjoint closed subsets of ∂Ω and write σ for
the surface measure on ∂Ω and ν for the interior unit normal. Let H1(Ω) denote the Sobolev space
with one derivative in L2. Note that since Ω is a Sobolev extension domain (see [23, Chapter 6])
the space C1(Ω̄) is dense in H1(Ω). Also, the trace of H1(Ω) to the Lipschitz boundary is the

fractional Sobolev space H1/2(∂Ω, dσ) and H1(Ω) convergence implies convergence in H1/2(∂Ω)
(see, for example [16, Theorem 1 of Chapter VII]). We then define a feasible potential for the pair

(A,B) to be u ∈ H1(Ω) which satisfies u|A = 0 and u|B = 1 in the sense of H1/2. It is easy to
check that feasible potentials exist, and we define the effective resistance from A to B by

(2.2) RΩ(A,B)−1 = inf{EΩ(u, u) : u is a feasible potential.}
Our space of currents is defined to be the subspace of L2(Ω,Rn) functions with vanishing weak

divergence. We need a Gauss-Green theorem to determine a sense in which the boundary values
exist; this is standard (even in greater generality) but included for the convenience of the reader.

Lemma 2.2 (A Gauss-Green theorem). For u ∈ H2(Ω) and I ∈ L2(Ω,Rn) with ∇I = 0 in the
weak sense, ∫

Ω
(∇u) · I = −

∫

∂Ω
uI · dν,

where the boundary values I · dν exist as an element of H−1/2(∂Ω), the dual of H1/2(∂Ω).

Proof. Using a classical version of the Gauss-Green theorem (see [12, Theorem 1 of Section 5.8] for
a proof applicable to the situation of a Lipschitz boundary) for u′ ∈ C1(Ω̄) and I ′ ∈ C1(Ω̄,Rn)

(2.3) −
∫

∂Ω
u′I ′ · dν =

∫

Ω
∇ · (u′I ′) =

∫

Ω
(∇u′) · I ′ +

∫

Ω
u′∇ · I ′

We first observe that in (2.3) we may approximate u ∈ H2(Ω) by u′ ∈ C1(Ω̄) in H2(Ω) norm. On

the left we get convergence of the boundary values in H1/2, and on the right we have convergence
of ∇u′ to ∇u in L2(Ω,Rn) and of u′ to u in L2(Ω).

Now the vanishing weak divergence of I determines, in particular, that∇·I ∈ L2(Ω). We need the
standard but non-trivial fact that one can approximate by I ′ so that ∥I−I ′∥L2+∥∇·I−∇·I ′∥L2 < ϵ.
From this it is apparent that the right side of (2.3) converges to

∫
(∇u) · I.

Since the right side converges, the left must also. The limit of u is in H1/2(∂Ω), so I · dν exists

as an element of the dual H−1/2(∂Ω). □

We may now define a feasible current for the pair (A,B) as I ∈ L2(Ω) with ∇ · I = 0 and

I∂Ω\(A∪B) = 0 as an element of H−1/2, and the flux integrals

(2.4)

∫

B
J · νdσ = −

∫

A
J · νdσ = 1

where we note that the equality (2.4) follows from Lemma 2.2.
Our work here depends crucially on the following result, which is a special case of [10, Theo-

rem 2.1]. The reader may recognize that Lax-Milgram provides a solution to the stated Dirichlet
problem, so we emphasize that the main content of the theorem is that the boundary gradient is
in L2(∂Ω). It should be noted that this result is not valid for arbitrary mixed boundary value
problems on Lipschitz domains; in particular, in [10] it is required that the pieces of the boundary
on which the Dirichlet and Neumann conditions hold meet at an angle less than π. This condition is
true for the sets An, Bn, Fn. Finally, the reader may observe that since our domains are polygonal
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we could have obtained the desired result by classical techniques such as those of Grisvard [14,
Section 4.3.1].

Theorem 2.3. For the choices of domain Ω and sets A, B considered in this paper, there is a
unique ũΩ ∈ H1(Ω) with ∇ũΩ ∈ L2(dσ) which solves the mixed boundary value problem





∆ũΩ = 0 in Ω

ũΩ|A = 0, ũΩ|B = 1
∂ũΩ
∂ν = 0 a.e. dσ on ∂Ω \ (A ∪B).

Once this is known, the proofs of [2, Proposition 2.2 and Theorem 2.3] may be duplicated in
our setting, using Lemma 2.2 above in place of [2, Lemma 2.1], to prove the following analogue
of the previously stated result for graphs. It is perhaps worth remarking that the argument uses
that ∇ũΩ is a current, as this explains why we need the boundary gradient to be in L2(∂Ω, dσ)

(or at least in H−1/2(∂Ω)) as well as illustrating the connection between the Dirichlet problem and
the requirement that currents have vanishing divergence. We also note that standard results about
harmonic functions ensure ũΩ has a representative that is continuous at points of A; this will be
relevant later.

Theorem 2.4. The function ũΩ from Theorem 2.3 is the unique minimizer of (2.2) so sat-

isfies RΩ(A,B)−1 = EΩ(ũΩ, ũΩ). Moreover J̃Ω = RΩ(A,B)∇ũΩ is the unique minimizer for

inf{EΩ(J, J) : J is a feasible current} and thus EΩ(J̃Ω, J̃Ω) = RΩ(A,B).

We close this section with an observation that will be used to glue potentials and currents in the
construction in Section 3.

Lemma 2.5. Suppose Ω ⊂ C is a Lipschitz domain symmetric under reflection in a line L and
write Ω± for the intersection with the half planes on either side of L.

(i) Let u± ∈ H1(Ω±) respectively. Setting u = u± on Ω± defines a function in H1(Ω) if and
only if u± are equal a.e. on Ω ∩ L.

(ii) Let I± ∈ L2(Ω±) satisfy ∇ · I± = 0 on Ω± respectively. Then I = I± on Ω± satisfies
∇ · I = 0 on Ω if and only if ∇ · I+(z) = −∇ · I−(z) in the weak sense on Ω ∩ R.

Proof. We first rotate and translate so that L = R, and Ω± are the intersections with the upper and
lower half planes. Evidently all of the relevant notions are invariant under this Euclidean motion.

For (i) we use the standard characterization that if u ∈ L2 then u ∈ H1 if and only if it
has a representative that is absolutely continuous on almost all line segments in the domain that
are parallel to the axes, and the classical derivatives on these line segments are in L2 (see [24,
Theorem 2.1.4]). Observe that all such segments in either of Ω± are in Ω, and the only segments in
Ω that are not in one of Ω± are those that are perpendicular to and cross the real axis. Then the
absolute continuity with L2 derivatives on each line segment is valid if and only if the representatives
from Ω± have the same value at the intersection of the line segment with the real axis.

For (ii) it is apparent that I ∈ L2(Ω), so the relevant question is whether ∇ · I = 0. Certainly
∇· I = 0 on Ω implies the same on Ω±. For the converse, suppose ∇· I = 0 on Ω±, so

∫
∇f± · I = 0

for any f± ∈ C1
0 (Ω±). We have ∇ · I = 0 if and only if for all f ∈ C1

0 (Ω)

(2.5) 0 =

∫

Ω
I(z) · ∇f(z) =

∫

Ω+

I+(z) · ∇f(z) +
∫

Ω−
I−(z) · ∇f(z).

but if g is a C1 cutoff in a small neighborhood of R then
∫
Ω I · ∇((1 − g)f) = 0 because (1 − g)f

is a sum of functions in C1
0 (Ω±), so we only need (2.5) for f supported in an arbitrarily small

neighborhood of R and hence the condition is equivalent to the equality ∇ · I+ = −∇ · I− in the
weak sense on Ω ∩ R. □
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C1

C0

C−1

L0

LN

L3N−1

Figure 4. The map ψ̃0 takes LN and L3N−1 to the sides of the cell ψ̃0(F0) that

intersect other cells of the same size, while ψ̃0(L0) ⊂ L0 (thick lines). The graph G0

(dotted lines) has vertices at the center of the diagram and the centers of the lines

L0, LN and L3N−1; ψ̃0(G0) is shown with dashed lines.

Figure 5. From left to right, for N = 2: G0, ∪iψi(G0), and ∪iψ̃i(G0).

3. Resistance Estimates

Suppose Theorem 2.3 is applicable to the Lipschitz domain Ω and disjoint subsets A,B ⊂ ∂Ω. In
light of (2.2) we can bound the resistance from below by EΩ(u, u)−1 for u a feasible potential, and
by the characterization in Theorem 2.4 we can bound the resistance from above by EΩ(J, J) for J
a feasible current. To get good resistance estimates one must ensure the potential and current give
comparable bounds.

We do this for the pre-carpet sets Fm+n following the method of Barlow and Bass in [2]. First we
define graphs Gm and Dm, which correspond to scale m approximations of a current and potential
(respectively) on Fm, and for which the resistances are comparable. Next we establish the key
technical step, which involves using the symmetries of the 4N gasket to construct a current with
prescribed fluxes through certain sides Lj∩Fn from the optimal current on Fn (see Proposition 3.9),
and to construct a potential with prescribed data at the endpoints of these sides from the optimal
potential on Fn (see Proposition 3.11). Combining these results we establish the resistance bounds
in Theorem 4.1 by showing that the optimal current on Gm can be used to define a current on
Fm+n with comparable energy, and the optimal potential on Dm can be used to define a potential
on Fm+n with comparable energy.

The two symmetries of F and the pre-carpets Fn that play an essential role are the rotation
θ(z) = zeiπ/2N and complex conjugation. They preserve F and all Fn.
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3.1. Graph approximations. For a fixed m the pre-carpet Fm is a union of cells, each of which
is a scaled translated copy of the convex set F0. Our immediate goal is to define graphs that reflect
the the adjacency structure of the cells and have boundary on Am and Bm. We define maps ψw,
and Ψm as follows.

Definition 3.1. Define maps

ψj(z) =

{
ϕj ◦ θj(z) if j ≡ 0 mod 2,

ϕj ◦ θj−1(z̄) if j ≡ 1 mod 2.

If N is even, let:

ψ̃j(z) =





ϕ3N−1 ◦ θ3N−1(z) j = 3N − 1,

ϕ3N ◦ θ3N−1(z̄) j = 3N,

ψj(z) j ∈ Λ \ {3N, 3N − 1},
and if N is odd, let:

ψ̃j(z) =





ϕN ◦ θN (z) j = N,

ϕN+1 ◦ θN (z̄) j = N + 1,

ψj(z) j ∈ Λ \ {N,N + 1}.
Finally, given a word w = w1w2 · · ·wm, set ψw = ψw1 ◦ ψ̃w2 ◦ · · · ◦ ψ̃wm and define a map Ψm =
∪|w|=mψw : F0 → Fm.

Remark. Both ψj and ψ̃j take F0 to the unique cell of F1 that contains Cj , however we first rotate
and/or reflect F0 so as to adjust the location of the image of some specific sides Lk. The reason for
doing so comes from the adjacency structure of cells in Fm and the location of our desired graph
boundary on Am ∪Bm.

Specifically, the choice of rotations and reflections for the ψ̃j ensures that ψ̃j(LN ) and ψ̃j(L3N−1)

are the sides of the cell ψ̃j(F0) that intersect neighboring cells, and that if this cell intersects L0,

LN or L3N−1 then it does so along the side ψ̃j(L0), see Figure 4. In consequence, if we take any
connected graph having boundary at either the center or the endpoints of the sides L0, LN and
L3N−1 then the union of the images under ψ̃j for j = 0, . . . , 4N − 1 is also a connected graph with
boundary at the same points. This latter is illustrated in Figure 4 for the case of the graph G0

of Definition 3.2 using dotted and dashed lines. The procedure can then be iterated, so the map
∪|w|=mψ̃w1 ◦ · · · ◦ ψ̃wm will also produce a graph of the same type.

The reason for choosing slightly different rotations and reflections for the maps ψj is that our final
goal is to obtain graphs that reflect the adjacency structure of Fm and have boundary on Am∪Bm.
Using only the ψ̃j would give the correct adjacency structure but (as discussed above) boundary
on the sides L0, LN and LN−1. To fix this we use the maps ψj , each of which maps LN and L3N−1

to the sides where the cell ψj(F0) meets its neighbors, but also has ψj(L0) ⊂ A1 ∪ B1. Applying
a single copy of ψj at the end of each of the compositions defining Ψm ensures the boundary is in
Am ∪Bm. The effect when starting with the graph G0 from Definition 3.2 is in Figure 6. Figure 7
shows both the D0 graphs of Definition 3.3 (on the left), which have boundary on L0, LN and
L3N−1, and the D1 and D2 graphs (center and right) which have boundary on A1∪B1 and A2∪B2

respectively.

We can now define the graphs Gm that we will use to approximate currents on Fm. They
correspond to ignoring the internal structure of cells and recording only the (net) flux through the
intersections of pairs of cells. Figure 4 shows the edges of G0 as dotted lines. Figure 6 shows graphs
G2 on the octacarpet and dodecacarpet.
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Figure 6. The graphs G2 for the octacarpet (N = 2) and the dodecacarpet (N = 3).

Definition 3.2. The graph G0 has vertices at 0 (the center of F0) and at 1
2(Cj + Cj+1) for

j = 0, N, 3N − 1, which are the midpoints of the sides L0 ∩ F0, LN ∩ F0 and L3N−1 ∩ F0. It has
one edge from 0 to each of the other three vertices. The graphs Gm are defined via Gm = Ψm(G0).

Let ĨGm be the optimal current from Am to Bm on Gm, where we recall that these sets were
defined in (1.1). By symmetry, the total flux through each Li ∩ Am is −1/N , and the total flux
through each Li ∩Bm is 1/N . Since there are N sides in Am and also in Bm, this gives unit total
flux from Am to Bm. The corresponding optimal potential is denoted ũGm and is 0 on Am and 1 on

Bm. We write RG
m for the resistance of Gm defined as in (2.1). Also note that ĨGm ◦ ψw is a current

on G0 for each word w of length m.
The graphs Dm that we use to approximate potentials on Fm have vertices at each endpoint of

a side common to two cells. Figure 7 shows the first few Dn for N = 2 and N = 3.

Definition 3.3. The graph D0 has vertices {0, C0, C1, CN , CN+1, C3N−1, C3N} and edges from 0 to
each of the other six vertices.The graphs Dm are defined by Ψm(D0). Figure 7 shows these graphs
for n = 0, 1, 2 on the octacarpet and dodecacarpet.

We let ũDm denote the optimal potential on Dm for the boundary conditions ũm = 0 at vertices in
Am and ũm = 1 at vertices in Bm. The resistance of Dm is written RD

m. As with currents, ũm ◦ψw

is a potential on D0 for any word w of length m.

Lemma 3.4. For all m ≥ 1, RG
m = 2RD

m.

Proof. Each edge in Gm connects the center x of a cell to a point y on a side of the cell. Writing
y± for the endpoints of that side we see that there are two edges in Dm connecting x to the same
side at y±. In this sense, each edge of Gm corresponds to two edges of Dm and conversely.

From the optimal potential ũGm for Gm define a function f on Gm by setting f(x) = ũGm(x) at cell
centers and f(y±) = ũGm(y) at endpoints y± of a side with center y. This ensures f(y±) − f(x) =
f(y)−f(x), so that two edges in Dm have the same edge difference as the corresponding single edge
inDm. Clearly f is a feasible potential onDm, so (RD

m)−1 ≤ EDm(f, f) = 2EGm(ũ
G
m, ũ

G
m) = 2(RG

m)−1.
Conversely, beginning with the optimal potential ũDm define f on Gm by f(x) = ũDm(x) at cell

centers and f(y) = 1
2

(
ũDm(y+)+ ũ

D
m(y−)

)
if y is the center of a cell side with endpoints y±. The edge

difference f(x) − f(y) in Gm is half the sum of the edge difference on the corresponding edges in
Dm, so using that f is a feasible potential on Gm we have (RG

m)−1 ≤ EGm(f, f) =
1
2EDm(ũ

G
m, ũ

G
m) =

1
2(R

D
m)−1. □
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Figure 7. The graphs D0, D1 and D2 for the octacarpet (N = 2) and the dode-
cacarpet (N = 3). Note that D0 has boundary on the sides L0, LN , and L3N−1,
whereas D1 and D2 have boundary on A1 ∪B1 and A2 ∪B2 respectively.

3.2. Currents and potentials with energy estimates via symmetry. Fix n ≥ 0 and recall
that ũFn denotes the optimal potential on Fn with boundary values 0 on An and 1 on Bn. In order
to exploit the symmetries of Fn it is convenient to work instead with un = 2ũFn − 1; evidently
EFn(un, un) = 4EFn(ũFn , ũFn) = 4R−1

n is then minimal for potentials that are −1 on An and 1 on
Bn. The corresponding current Jn = Rn∇un minimizes the energy for currents with flux 2 from An

to Bn and has EFn(Jn, Jn) = 4Rn. We begin our analysis by recording some symmetry properties
of Jn.

Lemma 3.5. Both un ◦ θ2 = −un and Jn ◦ θ2 = −Jn.
Proof. The rotation θ takes Cj to Cj+1, thus Lj to Lj+1. It then follows from the definition (1.1)
of An and Bn that θ2 exchanges An and Bn; see Figure 3 for an example in the case N = 3. It
follows that −un ◦ θ2 is a feasible potential for the problem optimized by un and by symmetry
EFn(−un ◦ θ2,−un ◦ θ2) = EFn(un, un), so −un ◦ θ2 = un by uniqueness of the energy minimizer.
The argument for currents is similar. □

One consequence of this lemma is that the flux of Jn through each of the sides Lj ∩ Fn in An is
independent of j and hence equal to − 2

N . Similarly, the flux through each side in Bn is 2
N .

Lemma 3.6. Both un(z̄) = un(z) and Jn(z̄) = Jn(z).

Proof. Under complex conjugation the point Cj = exp (2j−1)iπ
4N is mapped to

C̄j = exp
(1− 2j)iπ

4N
= exp

(8N − 2j + 1)iπ

4N
= exp

(2(4N − j + 1)− 1)iπ

4N
= C4N−j+1

Then the endpoints C4k and C4k+1 of L4k are mapped to C4(N−k)+1 and C4(N−k) so L4k is mapped

to L4(N−k). This shows An is invariant under complex conjugation. Similarly, C̄4k+2 = C4(N−k−1)+3

and C̄4k+3 = C4(N−k−1)+2, so L4k+2 is mapped to L4(N−k−1) and Bn is invariant under complex
conjugation. Both un and Jn are determined by their boundary data on these sets. □

We decompose Fn into sectors within triangles by taking, for integers j and j + 1 modulo
4N , T ∗

j to be the interior of the triangle with vertices {0, Cj , Cj+1}, and defining our sectors by

Tj(n) = Fn ∩ T ∗
j . For notational simplicity we will drop the dependence on n and just write Tj .
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un = 1, flux = 2/N
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u
n
=
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1
,
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=

−
2
/N

u
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=

−
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u
x
=

−
2/
N

V 0W 4

W 1V 3

W 5

Figure 8. For N = 2: Decomposition of F0 into sectors Tj (left), General current
flow lines for Jn (middle), and examples of V j and W j vector fields (right)

This is shown for N = 2 in the left image in Figure 8. Then the central diagram in Figure 8
illustrates the fact that, up to a change of sign, both un and Jn have one behavior on sectors Tj
with j even, and another behavior on sectors with j odd. This motivates us to define

vj = (un ◦ θ−j)
∣∣
Tj

wj = (un ◦ θ−j+1)
∣∣
Tj

(3.1)

V j = (Jn ◦ θ−j)
∣∣
Tj

W j = (Jn ◦ θ−j+1)
∣∣
Tj
.(3.2)

Examples of V j and W j in various sectors are shown on the right in Figure 8 for N = 2.
Symmetry under rotations shows us that the following quantities are independent of j

En(v) =
∫

Tj

|vj |2 En(w) =
∫

Tj

|wj |2(3.3)

En(V ) =

∫

Tj

|V j |2 En(W ) =

∫

Tj

|W j |2(3.4)

and therefore that

4R−1
n = EFn(un, un) = 2N(En(v) + En(w))(3.5)

4Rn = EFn(Jn, Jn) = 2N
(
En(V ) + En(W )

)
.(3.6)

Lemma 3.7. For any j ∈ Λ(N),
∫
Tj

∇vj · ∇wj =
∫
Tj
V j ·W j = 0.

Proof. By rotational symmetry it is enough to verify this for j = 0. Since Jn = Rnun, we have
∇vj = RnV

j and ∇wj = RnW
j , so we work only with V 0 and W 0. The sector T0 is symmetrical

under complex conjugation, and using Lemmas 3.5 and 3.6 we have

V 0(z̄) = Jn(z̄) = Jn(z) = V 0(z),(3.7)

W 0(z̄) = Jn ◦ θ(z̄) = −Jn ◦ θ−1(z̄) = −Jn(θ(z)) = −Jn(θ(z)) = −W 0(z).(3.8)

Thus V 0 ·W 0(z̄) = −V 0 ·W 0(z) and the result follows. □

In addition to being orthogonal, the vector fields V j and W j have the property that they can
easily be glued together to form currents on Fn. Recall that to be a current a vector field J must
be L2 on the domain and satisfy ∇ · J = 0.

Lemma 3.8. If J is a vector field such that J |Tl
= αlV

l+βlW
l and αl+1+αl = βl+1−βl for each

l, then J is a current.
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Proof. The fields V l and W l are the restriction of currents to the sets Tl, thus J is an L2 function
on Fn for each l. To see the given linear combination is a current we must verify ∇ · J = 0 using
symmetry considerations that imply the cancellation of the weak divergences as in Lemma 2.5(ii).

The symmetry of V 0 in (3.7) shows that ∇ · V 0 and −∇ · V 1 cancel on T0 ∩ T1, so V 0 − V 1 is
a current on T0 ∪ T1. Similarly, the antisymmetry of W 0 in (3.8) shows the fluxes of W 0 and W 1

cancel on T0∩T1, soW 0+W 1 is a current on T0∪T1. In addition we note that V 0+W 1 = Jn|T0∪T1

is the restriction of the optimal current and is hence a current on T0∪T1. Combining these with the
definition (3.2) we see that each of V l − V l+1, W l +W l+1 and V l +W l+1 are currents on Tl ∪ Tl+1

as they are obtained from the l = 0 case by rotations.
Similarly, the antisymmetry of W 0 in (3.8) shows the fluxes of W 0 and W 1 cancel on T0 ∩T1, so

W 0 +W 1 is a current on T0 ∪ T1. In addition we note that V 1 +W 1 = Jn|T0∪T1 is the restriction
of the optimal current and is hence a current on T0 ∪T1. Combining these with the definition (3.2)
we see that each of V l − V l+1, W l +W l+1 and V l +W l+1 are currents on Tl ∪ Tl+1 as they are
obtained from the l = 0 case by rotations.

The divergence ∇·J then vanishes on the common boundary of Tl and Tl+1 by writing J |Tl∪Tl+1

as the linear combination −αl+1(V
l − V l+1) + βl(W

l +W l+1) + (αl + αl+1)(V
l +W l+1). □

We will need currents with specified non-zero fluxes on the three sides at which cells join and
zero flux on the other sides. The relevant sides were determined in Section 3.1; they are those
which contain a vertex of G0.

Proposition 3.9. If Ij, j = 0, N, 3N − 1 satisfy
∑

0,N,3N−1 Ij = 0 then there is a current J on Fn

with flux Ij on Lj ∩ Fn for j = 0, N, 3N − 1 and zero on all other Lj ∩ Fn and that has energy

EFn(J, J) ≤
(N2

4
E(V ) +

N2

18
(11N − 8)E(W )

) ∑

0,N,3N−1

I2j ≤ 11

9
N2Rn

∑

0,N,3N−1

I2j

Proof. Write Λ′(N) = {0, N, 3N − 1}. Define coefficients βj by

βj =





IN − I3N−1 if j = 0

I3N−1 − I0 if j = N

I0 − IN if j = 3N − 1

βj =





2IN − 2I0 if 1 ≤ j ≤ N − 1

2I3N−1 − 2IN if N + 1 ≤ j ≤ 3N − 2

2I0 − 2I3N−1 if 3N ≤ j ≤ 4N − 1

and let

J = −N
2

∑

j∈Λ′
IjV

j +
N

6

∑

j∈Λ
βjW

j .

Then J is of the form
∑

j αjV
j + βjW

j with αj = −N
2 Ij for j ∈ Λ′ and zero otherwise. One

can verify the conditions of Lemma 3.8, so J is a current. Moreover, all of the W j have zero flux
through Lj ∩ Fn, and V

j has flux − 2
N through Lj ∩ Fn, thus the flux of J is as stated.

By the orthogonality in Lemma 3.7 and (3.4),

EFn(J, J) =
N2

4
E(V )

∑

Λ′
I2j +

N2

36
E(W )

∑

Λ

β2j .

It is straightforward to compute
∑

Λ

β2j = (4N − 3)(IN − I0)
2 + (8N − 7)(I3N−1 − IN )2 + (4N + 1)(I0 − I3N−1)

2

= (16N − 9)I20 + (20N − 17)I2N + (20N − 13)I23N−1 + 4(N − 1)I0IN + 4(N − 2)I0I3N−1
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where we used −2INI3N−1 = I20 + I
2
N + I23N−1+2I0IN +2I0I3N−1, which was obtained by squaring∑

Λ′ Ij = 0. Then the bound 2I0Ij ≤ 3
2I

2
0 + 2

3I
2
j for j = N, 3N − 1 gives, also using N ≥ 2,

∑

Λ

β2j ≤ (22N − 18)I20 + (22N − 19)I2N + (22N − 16)I23N−1.

This gives the energy estimate. The bound by Rn is from the expression following (3.4). □

Having established these results on currents, we turn to considering potentials, which will be
built from the functions vj and wj so as to have specified boundary data at those Cj which are
vertices of the graph D0 from Section 3.1.

Lemma 3.10. The function which is v1+w1+ v0−w0 on T0 ∪T1 and zero on Fn \T0 ∪T1 defines
a potential on Fn.

Proof. Recall from Section 2.2 that a function is a potential if it is in H2 on the domain. Since the
given function is the restriction of a harmonic function as in Theorem 2.3 to both T0 and T1, and is
zero on the complement of these, it is in H1 on each of these sets separately. Moreover, these sets
meet along the intersection of Fn with three distinct lines (corresponding to the common boundary
of Tj and Tj+1 for j = −1, 0, 1), so Lemma 2.5(i) is applicable in each case and we see the function
is in H1(Fn) with L

2 boundary values if and only if the pieces agree a.e. on the common boundary.
In what follows we suppress the “a.e.” to avoid repetition.

The proof that the pieces match uses the symmetries v0(z̄) = v0(z) and w0(z̄) = −w0(z), which
follow from Lemma 3.6 in the same manner as the proofs of (3.7) and (3.8). Note that z 7→ θ(z̄) is
an isometry of T0 ∪ T1 and compute from the symmetries and (3.1) that

v0(θ(z̄)) = v0(θ−1(z)) = v1(z),

w1(θ(z̄)) = w0(z̄) = −w0(z).(3.9)

Now observe that v0+w1 is in H1(T0∪T1) because it is the restriction of the optimal potential un
to this set, see (3.1), and this latter is a harmonic function as in Theorem 2.3. Using the preceding
it follows that (v1−w0)(z) = (v0+w1)(θ(z̄)) is in H1(T0∪T1), and therefore so is v1+w1+v0−w0.

What is more, if z is in the common boundary of T0 and T1 then θ(z̄) = z and thus (3.9) gives
w1(z) = −w0(z). Then v0 +w1 ∈ H1 at such points implies v0(z) = −w0(z), but this says v0 +w0

vanishes on the common boundary of T0 and T1. Thus v1 + w1 = v0 + w0 ◦ θ−1 vanishes on the
common boundary of T1 and T2, and (v0−w0)(z) = (v0+w0)(z̄) vanishes on the common boundary
of T0 and T−1. Together these show v1 +w1 + v0 −w0 vanishes on the boundary of T0 ∪ T1 in Fn,
so the zero extension to Fn \ (T0 ∪ T1) is in H2 and the proof is complete. □

For the following proposition we recall that the harmonic functions from Theorem 2.3 are con-
tinuous on the sets An and Bn in Fn, thus we may refer to their values at the points Cj .

Proposition 3.11. Given a function u on D0 that is harmonic at 0 there is a potential f on Fn

having a representative with f(Cj) = u(Cj) for Cj ∈ D0 and

EFn(f, f) ≤
(
En(v) + En(w)

) ∑

Cj∈D0

(
u(Cj)− u(0)

)2
=

2

N
R−1

n

∑

Cj∈D0

(
u(Cj)− u(0)

)2
.

If f(Cj+1) = f(Cj) for some j ∈ {0, N, 3N − 1} then f is constant on the edge Lj ∩ Fn.

Proof. Let zj = u(Cj)− u(0) for Cj ∈ D0 and zj = 0 otherwise. With indices modulo 4N , define

f = u(0) +
1

2

∑

j∈Λ(N)

zj(w
j−1 − vj−1 − vj − wj) = u(0) +

1

2

∑

j

(zj+1 − zj)w
j − (zj+1 + zj)v

j .
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This is a linear combination of rotations of the function in Lemma 3.10, so it is a potential. Using
wj−1(Cj) = 1, vj−1(Cj) = wj−1(Cj) = wj(Cj) = −1 and vl(Cj) = wl(Cj) = 0 for l ̸= j, j + 1 we
easily see f(Cj) = u(Cj) for Cj ∈ D0.

From the orthogonality in Lemma 3.7 and (3.3) we have

EFn(f, f) =
1

4
En(v)

∑

j∈Λ′′′
(zj+1 + zj)

2 +
1

4
En(w)

∑

j∈Λ′′′
(zj+1 − zj)

2 ≤ (En(v) + En(w))
∑

j

z2j

where we used (zj+1±zj)2 ≤ 2z2j+1+2z2j . The remaining part of the asserted energy bound is from

from (3.5).
Finally, suppose there is j ∈ {0, N, 3N − 1} for which f(Cj+1) = f(Cj). Then zj+1 = zj , and on

the edge Lj ∩Fn we have f = u(0)− (zj+1+zj)v
j . However (3.1) says vj comes from the restriction

of un to L0, where un ≡ 1, so vj is constant on Lj ∩ Fn and so is f . □

4. Bounds

Our main resistance estimate is obtained from the results of the previous sections by constructing
a feasible current and potential on Fm+n. We use the optimal current on Gm and optimal potential
on Dm to define boundary data on m-cells that are copies of Fn, and then build matching currents
and potentials from Propositions 3.9 and 3.11 to prove the following theorem.

Theorem 4.1. For n ≥ 0 and m ≥ 1

9

44N
R−1

0 RnRm ≤ Rm+n ≤ 44N

9
R−1

0 RnRm.

Proof. For fixed m ≥ 1 let ĨGm be the optimal current on the graph Gm and ũDm be the optimal
potential on the graph Dm, both for the sets Am and Bm. Recall that for each cell we have an
address w = w1 · · ·wm and a map ψw as in Section 3.1 so that ĨGm ◦ ψw is a current on G0 and
ũDm ◦ ψw is a potential on D0.

Now fix n ≥ 0 and consider Fm+n. Then ψw maps Fn to the m-cell of Fm+n with address w, and
we write Jw for the current from Proposition 3.9 with fluxes from ĨGm ◦ψw and fw for the potential
from Proposition 3.11 with boundary data from ũDm ◦ψw. In particular, summing over all words of
length m we have from these propositions and the optimality of the current and potential that

EFm+n

(∑

w

Jw,
∑

w

Jw

)
=

∑

w

EFn(Jw, Jw) ≤
11

9
N2RnEGm(Ĩ

G
m, Ĩ

G
m) =

11

9
N2RnR

G
m(4.1)

EFm+n

(∑

w

fw,
∑

w

fw

)
=

∑

w

EFn(fw, fw) ≤
2

N
R−1

n EDm(ũ
D
m, ũ

D
m) =

2

N
R−1

n (RD
m)−1.(4.2)

Since ĨGm is a current, its flux through the edges incident at a non-boundary point is zero. Using
this fact at the vertex on the center of a side where two m-cells meet we see that the net flux of∑

w Jw through such a side is zero. What this means for
∑

w Jw is that the currents in the cells
that meet on this side are weighted to have equal and opposite flux through the side. However,
examining the construction of Jw it is apparent that the term providing the flux through this side
is a (scaled) copy of V j from (3.2). Using that V j is a rotate of V 0 and that V 0(z̄) = V 0(z)
from (3.7), we see that all terms in

∑
w Jw that provide flux through the sides where m-cells meet

are multiples of a single vector field. It follows that the cancellation of the net flux guarantees
cancellation of the fields in the sense of Lemma 2.5(ii). Thus we conclude that

∑
w Jw is a current

on Fm+n. Its net flux through a boundary edge is the same as that of ĨGm, so is −1 through Am+n

and 1 through Bm+n. Hence
∑

w Jw is a feasible current from Am+n to Bm+n on Fm+n, and (4.1)
together with Theorem 2.4 implies

(4.3) Rm+n ≤ EFm+n

(∑

w

Jw,
∑

w

Jw

)
≤ 11

9
N2RnR

G
m.
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Similarly, we can see that
∑

w fw is a potential on Fm+n. Each side where two m-cells meet is the
line segment at the intersection of the closures of copies of sectors Tj and Tj′ under maps ψw, ψw′

corresponding to the m-cells. We see that
∑

w fw coincides with ũDm at the endpoints of this line
segment, while along the line it is a linear combination of vj and wj as in Proposition 3.11. This
linear combination depends only on the endpoint values, so is the same on the line from ψw(Tj) as
on the line from ψw′(Tj′). Hence

∑
w fw is a potential on Fm+n. Since ũDm is 0 at all endpoints of

sides of cells in Am+n and 1 at all endpoints of sides in Bm+n, the final result of Proposition 3.11
ensures

∑
w fw has value 0 on Am+n and 1 on Bm+n, so is a feasible potential. Combining this

with (4.2) and (2.2) gives

(4.4) R−1
m+n ≤ EFm+n

(∑

w

fw,
∑

w

fw

)
≤ 2

N
R−1

n (RD
m)−1.

Our estimates (4.3) and (4.4), together with Lemma 3.4, give for n ≥ 0, m ≥ 1 that

N

2
RnR

D
m ≤ Rm+n ≤ 11

9
N2RnR

G
m =

22

9
N2RnR

D
m.

In particular, for n = 0 we have RD
m ≤ 2

NR
−1
0 Rm and 9

22N2R
−1
0 Rm ≤ RD

m, which may be substituted
into the previous expression to obtain the theorem. □
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