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ABSTRACT. The 4N carpets are a class of infinitely ramified self-similar fractals with a large group
of symmetries. For a 4N-carpet F, let {F,},>0 be the natural decreasing sequence of compact
pre-fractal approximations with N, F, = F. On each F,, let &(u,v) = fFN Vu - Vudz be the
classical Dirichlet form and u,, be the unique harmonic function on F,, satisfying a mixed boundary
value problem corresponding to assigning a constant potential between two specific subsets of the
boundary. Using a method introduced by Barlow and Bass [2], we prove a resistance estimate of
the following form: there is p = p(N) > 1 such that &(un,un)p”™ is bounded above and below
by constants independent of n. Such estimates have implications for the existence and scaling
properties of Brownian motion on F'.

1. INTRODUCTION

The 4N carpets are a class of self-similar fractals related to the classical Sierpinski Carpets.
They are defined by a finite set of similitudes with a single contraction ratio, are highly symmetric,
and are post-critically infinite. Two examples, the octacarpet (N = 2) and dodecacarpet (N = 3)
are shown in Figure 1. We do not consider the case N = 1 which is simply a square.

The construction of 4N carpets is as follows; illustrations for N = 2 are in Figure 2. Fix N > 2, let
A(N)={0,...,4N—-1} and Cj(N) = exp % € C. Let Fy denote the convex hull of {C}(N),j €
A(N)}. Consider contractions ¢;(z) = r(z—C;)+C; where the ratio r = r(N) = (1+cot(r/4N))~?
is chosen so ¢;(Fy) N ¢r(Fp) is a line segment. For a set A define ®(A) = U?ﬁo_l(ﬁj (A) and let "
denote the n-fold composition. @ is a contraction on the space of non-empty compact sets in C
with the Hausdorff metric ([20], pg. 11). Then let F,, = ®"(Fp) and F' = N, F,, be the unique
non-empty compact set such that ®(F) = F (see [15]). We call F' the 4N-carpet. Since one may
verify the Moran open set condition is valid for the interior of Fp, [15, Theorem 5.3(2)] implies its
Hausdorff dimension is df = —log4N/logr(N) = log4N/log(1 + cot(n/4N)).
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FIGURE 1. The octacarpet (N = 2) and dodecacarpet (N = 3) are 4N-Carpets.
1
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FIGURE 2. The pre-carpets Fy, F} and Fs for the octacarpet (N = 2).
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FIGURE 3. The thick lines indicate A,, and B,, for the dodecacarpet (N = 3)).

This paper is concerned with a physically-motivated problem connected to the resistance of the
4N carpet, and is closely related to well-known results of Barlow and Bass [2]. To state it we need
some further notation. Writing subindices modulo 4NV, let L; be the line segment from C; to Cj11
(these are shown for the case N = 2 in the left diagram in Figure 8). Then define

(1.1) Ay = Fun (U5 L) By = Fo 1 (U Lk

These sets are shown for the case of the dodecacarpet (N = 3) in Figure 3.

Supposing F,, to be constructed from a thin, electrically conductive sheet let R,, = R, (N) be the
effective resistance (as defined in (2.2) below) when the edges of A,, are short-circuited at potential
0 and those of B,, are short-circuited at potential 1.

Bounds for R, have a well-known connection to crossing time estimates for Brownian Motion
(see, for example, [4, Theorem 2.7]). In the case of the Sierpinski Carpet such estimates play a
significant role in the Barlow-Bass approach to establishing properties of the Brownian motion
constructed in [5]. Specifically, these estimates are used to establish the behavior of the resulting
heat kernel py(z,y) under space rescaling and hence prove existence of the limit lim; o+ lnpfn(f’x),
which is used to define the spectral dimension. See [2, 6] for details and [3] for numerical estimates
of the spectral dimension via estimation of the resistance scaling.

There have been considerable developments regarding the Dirichlet form on the Sierpinski carpet,
among which we note the proof of uniqueness [8], more general results on the geometry of the
spectral dimension [17], and a proof of existence of the form by a non-probabilistic method [13].
The original results of Barlow and Bass [2] on scaling of the resistance for the Sierpinski carpet
were extended to more general types of carpets in [7, 21], and further improved using a different
approach in [18]. Resistance estimates for the Strichartz hexacarpet are in [19].

With regard to the 4N carpets considered here, there are few results in the literature. For the
case N = 2, which is called either the octacarpet or octagasket, there are some results regarding
features one might expect the spectrum of a Laplacian to have, provided that one exists: [9] contains
numerical data and results from Strichartz’s “outer approximation” method, and [22] has results
from a method involving approximation of the set by a Peano curve. The results most closely
connected to the present work are in the PhD thesis of Ulysses Andrews [1], where the Barlow-Bass
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method is used to prove the existence of a local regular Dirichlet form on 4N carpets under several
assumptions, one of which is a resistance estimate that follows readily from Theorem 1.1 below.
Our main result is the following theorem.

Theorem 1.1. For fized N > 2 there is a constant p = p(N) such that:

44N
7R0Pn <R, < TROPn

Proof. The majority of the work is to establish (in Theorem 4.1 below) that there are constants
¢,C 80 cRyRy < Ry < CRuR,,. Then S, = logcR, is superadditive and S;, = log CR,, is
subadditive, so Fekete’s lemma implies lim, %Sn = sup,, %Sn and lim,,— oo %S,’l = inf, %SZ
However lim,,_, o %(Sn — S/) = 0, so defining log p to be the common limit we conclude %Sn <
logp < %S,’l and thus cR, < p" < CR,,.

O

2. RESISTANCE, FLOWS AND CURRENTS

We recall some necessary notions regarding Dirichlet forms on graphs and on Lipschitz domains.
Our treatment generally follows [2], which in turn refers to [11] for the graph case.

2.1. Graphs. On a finite set of points G suppose we have g : G x G — R satisfying for all z,y € G
that g(x,y) = 9(y, ), g(x,y) > 0 and g(z,x) = 0. We call g a conductance. It defines a Dirichlet
form by

£ u) = 5 32 3 gla.) (ulz) — u(w)”

reGyeG
For disjoint subsets A, B from G the effective resistance between them is R (A, B) defined by
(2.1) Ra(A, B)*l =inf{Eq(u,u) : ula =0, ulp = 1}.

The set of functions in (2.1) are called feasible potentials. Viewing G as the vertex set of a graph
with an edge from x to y when g(z,y) > 0 we note that if G is connected then the infimum is
attained at a unique potential .

A current from A to B is a function I on the edges of the conductance graph, meaning I : {z,y :
g(z,y) > 0} = R, with properties: I(z,y) = —I(y,z) forallz,y and 3 o I(z,y) =0ifz ¢ AUB.
It is called a feasible current if it has unit flux, meaning:

Z Z[(x7y) = —ZZI(l',y) =1
zeEByeG z€AyedG

Note that the first equality is a consequence of the definition of a current. The energy of the
current is defined by

Bo(I,1) = 3 3° 3 glaey) ()"

zeG zeG

Theorem 2.1 ([11, Section 1.3.5]).
Rc(A,B) =inf{Eq(I,I) : I is a feasible current}.

This well-known result, often called Thomson’s Principle, is proven by showing that for the
optimal potential @ one may define a current by Vug(z,y) = (ig(y) — ac(x))g(z,y), this current
has flux Rg(A, B)~" and the optimal current which attains the infimum in the theorem is I =
R (A, B)Vig. We note that the theorem in the reference is only for the case where A and B are
singleton sets, but that the argument requires minimal changes to cover the more general case, and
indeed the general case is often treated by “shorting” each set to a point.
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2.2. Lipschitz domains. We shall need corresponding results on each of our prefractal sets F,,
for the sets A, and B, defined in (1.1). To this end we must define a space of potentials and of
currents for which suitable integrability criteria are valid; several ways to do this are possible, and
it can sometimes be difficult to check all details for the approaches in the literature.

Let Q C C be a Lipschitz domain, suppose A, B are disjoint closed subsets of 02 and write o for
the surface measure on 92 and v for the interior unit normal. Let H'(£2) denote the Sobolev space
with one derivative in L2. Note that since 2 is a Sobolev extension domain (see [23, Chapter 6])
the space C1() is dense in H'(Q). Also, the trace of H'(Q2) to the Lipschitz boundary is the
fractional Sobolev space H'Y2(0Q,do) and H' () convergence implies convergence in H'/2(9Q)
(see, for example [16, Theorem 1 of Chapter VII]). We then define a feasible potential for the pair
(A, B) to be u € H'(Q) which satisfies u|4 = 0 and u|p = 1 in the sense of HY/2. It is easy to
check that feasible potentials exist, and we define the effective resistance from A to B by

(2.2) Ro(A, B)™' = inf{€q(u,u) : u is a feasible potential.}

Our space of currents is defined to be the subspace of L?(2,R™) functions with vanishing weak
divergence. We need a Gauss-Green theorem to determine a sense in which the boundary values
exist; this is standard (even in greater generality) but included for the convenience of the reader.

Lemma 2.2 (A Gauss-Green theorem). For u € H?(Q) and I € L?(Q2,R™) with VI = 0 in the

weak sense,
/(Vu)'I:—/ ul - dv,
Q o0

where the boundary values I - dv exist as an element of H=Y/2(9Q), the dual of H'/?(98).

Proof. Using a classical version of the Gauss-Green theorem (see [12, Theorem 1 of Section 5.8] for
a proof applicable to the situation of a Lipschitz boundary) for v’ € C1(Q) and I' € C'(Q,R")

(2.3) —/aQu’I'-dV:/QV-(u'I’):/Q(Vu’)'fl—i-/gu'V-I'

We first observe that in (2.3) we may approximate u € H?(2) by v’ € C1(2) in H?(2) norm. On
the left we get convergence of the boundary values in H'/2, and on the right we have convergence
of Va/ to Vu in L?(£2,R") and of v’ to u in L*(Q).

Now the vanishing weak divergence of I determines, in particular, that V-I € L?(£2). We need the
standard but non-trivial fact that one can approximate by I’ so that |[I—I'||;2+||V-I—=V-I'|| 12 < e.
From this it is apparent that the right side of (2.3) converges to [(Vu) - I.

Since the right side converges, the left must also. The limit of u is in H'/2(9Q), so I - dv exists
as an element of the dual H~1/2(99). O

We may now define a feasible current for the pair (A4, B) as I € L?(Q) with V-1 = 0 and

Toa\(aup) = 0 as an element of H~'/2, and the flux integrals

(2.4) /J-I/daz—/J-l/dazl
B A

where we note that the equality (2.4) follows from Lemma 2.2.

Our work here depends crucially on the following result, which is a special case of [10, Theo-
rem 2.1]. The reader may recognize that Lax-Milgram provides a solution to the stated Dirichlet
problem, so we emphasize that the main content of the theorem is that the boundary gradient is
in L2(0€2). It should be noted that this result is not valid for arbitrary mixed boundary value
problems on Lipschitz domains; in particular, in [10] it is required that the pieces of the boundary
on which the Dirichlet and Neumann conditions hold meet at an angle less than 7. This condition is
true for the sets A,, By, F},. Finally, the reader may observe that since our domains are polygonal
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we could have obtained the desired result by classical techniques such as those of Grisvard [14,
Section 4.3.1].

Theorem 2.3. For the choices of domain Q and sets A, B considered in this paper, there is a
unique g € HY(Q) with Vag € L*(do) which solves the mized boundary value problem

Atug =0 in

ﬂg~2|A:0, uolp =1
%LVQ:O a.e. do on 002\ (AU B).

Once this is known, the proofs of [2, Proposition 2.2 and Theorem 2.3] may be duplicated in
our setting, using Lemma 2.2 above in place of [2, Lemma 2.1], to prove the following analogue
of the previously stated result for graphs. It is perhaps worth remarking that the argument uses
that Vi is a current, as this explains why we need the boundary gradient to be in L?(9%,do)
(or at least in H~1/2(9Q)) as well as illustrating the connection between the Dirichlet problem and
the requirement that currents have vanishing divergence. We also note that standard results about
harmonic functions ensure g has a representative that is continuous at points of A; this will be
relevant later.

Theorem 2.4. The function tq from Theorem 2.3 is the unique minimizer of (2.2) so sat-
isfies Ro(A,B)™' = Eq(iq,tq). Moreover Jq = Rq(A,B)Vuq is the unique minimizer for
inf{Eq(J,J) : J is a feasible current} and thus Eq(Jq, Jo) = Ra(A, B).

We close this section with an observation that will be used to glue potentials and currents in the
construction in Section 3.

Lemma 2.5. Suppose 2 C C is a Lipschitz domain symmetric under reflection in a line L and
write Q4 for the intersection with the half planes on either side of L.
(i) Let ux € HY () respectively. Setting u = ux on Q defines a function in H*(Q) if and
only if u+ are equal a.e. on QN L.
(ii) Let I+ € L*(Q) satisfy V - I = 0 on Q4 respectively. Then I = I. on Q. satisfies
V-I=0o0nQifand only if V-11(z) = =V -1_(z) in the weak sense on QNR.

Proof. We first rotate and translate so that L = R, and €24 are the intersections with the upper and
lower half planes. Evidently all of the relevant notions are invariant under this Euclidean motion.

For (i) we use the standard characterization that if u € L? then v € H! if and only if it
has a representative that is absolutely continuous on almost all line segments in the domain that
are parallel to the axes, and the classical derivatives on these line segments are in L? (see [24,
Theorem 2.1.4]). Observe that all such segments in either of Q1 are in 2, and the only segments in
Q) that are not in one of )1 are those that are perpendicular to and cross the real axis. Then the
absolute continuity with L? derivatives on each line segment is valid if and only if the representatives
from €2+ have the same value at the intersection of the line segment with the real axis.

For (ii) it is apparent that I € L?(Q), so the relevant question is whether V - I = 0. Certainly
V-1 =0 on  implies the same on 2. For the converse, suppose V-1 =0 on {4, so f Vfit-I1=0
for any fi € CL(Q4). We have V - I = 0 if and only if for all f € C}()

(2.5) 0= [16)-V1C) = [ 1.2V + [ 12950

+ —
but if g is a C*' cutoff in a small neighborhood of R then [, - V((1 —g)f) = 0 because (1 — g)f
is a sum of functions in C§(Q4), so we only need (2.5) for f supported in an arbitrarily small
neighborhood of R and hence the condition is equivalent to the equality V-1, = —V - I_ in the
weak sense on 2 NR. 0
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FIGURE 4. The map 1[10 takes Ly and L3y_71 to the sides of the cell @O(Fo) that
intersect other cells of the same size, while L/NJ()(L(]) C Lo (thick lines). The graph G
(dotted lines) has vertices at the center of the diagram and the centers of the lines
Lo, Ly and L3y_q; &O(Go) is shown with dashed lines.

FIGURE 5. From left to right, for N = 2: Go, U;0i(Gy), and Ui (Go).

3. RESISTANCE ESTIMATES

Suppose Theorem 2.3 is applicable to the Lipschitz domain Q and disjoint subsets A, B C 992. In
light of (2.2) we can bound the resistance from below by o (u,u)~! for u a feasible potential, and
by the characterization in Theorem 2.4 we can bound the resistance from above by Eq(J, J) for J
a feasible current. To get good resistance estimates one must ensure the potential and current give
comparable bounds.

We do this for the pre-carpet sets F;, 4, following the method of Barlow and Bass in [2]. First we
define graphs G,, and D,,, which correspond to scale m approximations of a current and potential
(respectively) on F,,, and for which the resistances are comparable. Next we establish the key
technical step, which involves using the symmetries of the 4N gasket to construct a current with
prescribed fluxes through certain sides L;NF,, from the optimal current on F;, (see Proposition 3.9),
and to construct a potential with prescribed data at the endpoints of these sides from the optimal
potential on F), (see Proposition 3.11). Combining these results we establish the resistance bounds
in Theorem 4.1 by showing that the optimal current on G,, can be used to define a current on
Frn with comparable energy, and the optimal potential on D,, can be used to define a potential
on Fp,4p, with comparable energy.

The two symmetries of F' and the pre-carpets F;, that play an essential role are the rotation
6(z) = ze"™/?N and complex conjugation. They preserve F and all F},.
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3.1. Graph approximations. For a fixed m the pre-carpet Fy, is a union of cells, each of which
is a scaled translated copy of the convex set Fy. Our immediate goal is to define graphs that reflect
the the adjacency structure of the cells and have boundary on A,, and B,,. We define maps ),
and W,,, as follows.

Definition 3.1. Define maps

¢j 06 (z if j=0 mod 2,
d}j(z) = ! jgl)— e
pjo0(z) ifj=1 mod 2.

If N is even, let:
gsn—100*N"(z) j=3N -1,
bj(z) = { gan 03N 71(z)  j=3N,
¥i(2) j € A\ {3N,3N 1},
and if NV is odd, let:
onofN(z)  j=N,
Ui(2) = { dnr100V(z) j=N+1,
;(z) jeA\{N,N +1}.

Finally, given a word w = wiwsa - - Wy, Set Py = Yy, © @wz 0---0 zﬁwm and define a map ¥, =
U|w|:m¢w ko — B

Remark. Both 1; and ﬁj take Fp to the unique cell of Fy that contains C}, however we first rotate
and/or reflect Fy so as to adjust the location of the image of some specific sides L. The reason for
doing so comes from the adjacency structure of cells in F;, and the location of our desired graph
boundary on A,, U B;;,.

Specifically, the choice of rotations and reflections for the 1]1]- ensures that @j (Ly) and @j (Lsn—1)
are the sides of the cell 1[)]-(}7’0) that intersect neighboring cells, and that if this cell intersects L,
Ly or Lgy_1 then it does so along the side 1/~Jj (Lp), see Figure 4. In consequence, if we take any
connected graph having boundary at either the center or the endpoints of the sides Ly, Ly and
L3n_1 then the union of the images under @Z;j for j =0,...,4N — 1 is also a connected graph with
boundary at the same points. This latter is illustrated in Figure 4 for the case of the graph Gy
of Definition 3.2 using dotted and dashed lines. The procedure can then be iterated, so the map
Ujw|=m®ur © * -+ © ¢y, will also produce a graph of the same type.

The reason for choosing slightly different rotations and reflections for the maps v; is that our final
goal is to obtain graphs that reflect the adjacency structure of F;,, and have boundary on A,, U By,.
Using only the 1/;]- would give the correct adjacency structure but (as discussed above) boundary
on the sides Lo, Ly and Ly_1. To fix this we use the maps 1;, each of which maps Ly and L3n_1
to the sides where the cell 1;(Fp) meets its neighbors, but also has v;(Lg) C A; U By. Applying
a single copy of 1; at the end of each of the compositions defining W¥,, ensures the boundary is in
A U By,. The effect when starting with the graph Gg from Definition 3.2 is in Figure 6. Figure 7
shows both the Dy graphs of Definition 3.3 (on the left), which have boundary on Lo, Ly and
Lsn_1, and the D; and D9 graphs (center and right) which have boundary on 4; U By and Ay U By
respectively.

We can now define the graphs G, that we will use to approximate currents on Fp,. They
correspond to ignoring the internal structure of cells and recording only the (net) flux through the
intersections of pairs of cells. Figure 4 shows the edges of Gy as dotted lines. Figure 6 shows graphs
(G2 on the octacarpet and dodecacarpet.
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FIGURE 6. The graphs G for the octacarpet (N = 2) and the dodecacarpet (N = 3).

Definition 3.2. The graph Gy has vertices at 0 (the center of Fy) and at 3(C; + Cjtq) for
j =0,N,3N — 1, which are the midpoints of the sides Lo N Fy, Ly N Fy and Lsy_1 N Fy. It has
one edge from 0 to each of the other three vertices. The graphs G,, are defined via G,, = ¥,,,(Gp).

Let j:g be the optimal current from A,, to B,, on G,,, where we recall that these sets were
defined in (1.1). By symmetry, the total flux through each L; N A,, is —1/N, and the total flux
through each L; N By, is 1/N. Since there are N sides in A4,, and also in B,,, this gives unit total
flux from A,, to B;,. The corresponding optimal potential is denoted a,?; and is 0 on A,, and 1 on
B,,. We write RS for the resistance of Gy, defined as in (2.1). Also note that I o4, is a current
on Gy for each word w of length m.

The graphs D,,, that we use to approximate potentials on F;, have vertices at each endpoint of
a side common to two cells. Figure 7 shows the first few D,, for N =2 and N = 3.

Definition 3.3. The graph Dy has vertices {0, Cy, C1,Cn,Cn+1,C3nv—1,Csn} and edges from 0 to
each of the other six vertices.The graphs D,,, are defined by ¥,,(Dy). Figure 7 shows these graphs
for n = 0,1, 2 on the octacarpet and dodecacarpet.

We let @2 denote the optimal potential on D,, for the boundary conditions i, = 0 at vertices in
A,, and 1, = 1 at vertices in B,,. The resistance of D,, is written Rﬁ. As with currents, @, o ¥y,
is a potential on Dy for any word w of length m.

Lemma 3.4. For allm > 1, RS = 2RD.

Proof. Each edge in G, connects the center x of a cell to a point y on a side of the cell. Writing
y+ for the endpoints of that side we see that there are two edges in D,,, connecting x to the same
side at y+. In this sense, each edge of G, corresponds to two edges of D,, and conversely.

From the optimal potential @S, for G,, define a function f on G,, by setting f(z) = 4S () at cell
centers and f(y+) = 4S (y) at endpoints y4 of a side with center y. This ensures f(y+) — f(z) =
f(y)— f(x), so that two edges in D,, have the same edge difference as the corresponding single edge
in D,,. Clearly f is a feasible potential on Dy, so (RD)™' < &p (f, f) = 2&q,, (05, 05) = 2(RS) L.

Conversely, beginning with the optimal potential @2 define f on Gy, by f(z) = @5 (z) at cell
centers and f(y) = 3(@k (y+)+al)(y-)) if y is the center of a cell side with endpoints y4. The edge
difference f(z) — f(y) in G,, is half the sum of the edge difference on the corresponding edges in
Dy, so using that f is a feasible potential on Gy, we have (RS)™! < &g, (f, f) = 3&p,, (05, 15) =

(R O
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FIGURE 7. The graphs Dy, D and Dy for the octacarpet (N = 2) and the dode-
cacarpet (N = 3). Note that Dy has boundary on the sides Ly, Ly, and Lgy_1,
whereas D1 and Dy have boundary on Ay U By and Ay U By respectively.

3.2. Currents and potentials with energy estimates via symmetry. Fix n > 0 and recall
that @, denotes the optimal potential on F;, with boundary values 0 on A,, and 1 on B,,. In order
to exploit the symmetries of Fj, it is convenient to work instead with w, = 2up, — 1; evidently
Er, (Un,up) = 4€k, (Up, ,Up,) = 4R, ' is then minimal for potentials that are —1 on A, and 1 on
B,,. The corresponding current J,, = R,, Vu, minimizes the energy for currents with flux 2 from A,
to B, and has Ef, (J,, J,) = 4R,,. We begin our analysis by recording some symmetry properties
of J,.

Lemma 3.5. Both u, 06> = —u,, and J, 0 6% = —J,.

Proof. The rotation 6 takes C;j to Cjy1, thus L; to Ljyq. It then follows from the definition (1.1)
of A, and B, that 6% exchanges A,, and B,,; see Figure 3 for an example in the case N = 3. It
follows that —u, o #? is a feasible potential for the problem optimized by u, and by symmetry
Er, (—up 0 0%, —uy, 0 0%) = Ep, (Un, up), S0 —u, 0 02 = u, by uniqueness of the energy minimizer.
The argument for currents is similar. O

One consequence of this lemma is that the flux of J,, through each of the sides L; N F;, in A, is
independent of j and hence equal to —%. Similarly, the flux through each side in B, is %

Lemma 3.6. Both u,(z) = un(2) and J,(2) = Ju(2).

Proof. Under complex conjugation the point C; = exp % is mapped to
- (1—2j5)im (8N —2j + 1)im (24N —j+1) = 1)im
C; = exp Iy =P N = exp AN = C4N—j+1

Then the endpoints Cy; and Cyp41 of Ly are mapped to Cyn_g)4+1 and Cyy_g) so Ly is mapped
to Lyn—g). This shows A, is invariant under complex conjugation. Similarly, Cipyo = CyN—k—1)+3

and Cygi3 = CyN_k—1)+2, S0 Lagi2 is mapped to Lyn_r—1) and B, is invariant under complex
conjugation. Both u, and J,, are determined by their boundary data on these sets. O

We decompose F,, into sectors within triangles by taking, for integers j and j + 1 modulo
4N, T7 to be the interior of the triangle with vertices {0,C},Cj11}, and defining our sectors by
Tj(n) = F, N TJ* For notational simplicity we will drop the dependence on n and just write 7.



10 CANNER, HAYES, SHINYU HUANG, MICHAEL ORWIN, AND LUKE G. ROGERS.

up =1, flux =2/N

up, = —1, flux = =2/N

up = 1, flux = 2/N

FIGURE 8. For N = 2: Decomposition of Fy into sectors Tj (left), General current
flow lines for J,, (middle), and examples of V7 and W7 vector fields (right)

This is shown for N = 2 in the left image in Figure 8. Then the central diagram in Figure 8
illustrates the fact that, up to a change of sign, both u, and J,, have one behavior on sectors T}
with j even, and another behavior on sectors with j odd. This motivates us to define

(3.1) v/ = (uy, 0 9-j)|Tj w! = (uy, 0 9_j+1)}Tj

(3.2) V= (J,o e—j){Tj Wi = (J,o0 9—j+1)\Tj.

Examples of V7 and W7 in various sectors are shown on the right in Figure 8 for N = 2.
Symmetry under rotations shows us that the following quantities are independent of j

(33) g = [ 1 Eulw) = [ 0P
(3.4) B.(v) = [ 1VIF B.(W) = [ [wip

J TJ
and therefore that
(3.5) AR = &, (un, un) = 2N(E,(v) + Ep(w))
(3.6) AR, = Ep, (Jn, Jn) = 2N (En (V) + E,(W)).

Lemma 3.7. For any j € A(N), ij Vol - V! = ij VIi.Wi=0.

Proof. By rotational symmetry it is enough to verify this for j = 0. Since J,, = Ryup, we have
Vvl = R,V7 and Vw? = R, W7, so we work only with V° and WP°. The sector Tj is symmetrical
under complex conjugation, and using Lemmas 3.5 and 3.6 we have

(3.7) VO(2) = Ju(2) = Ju(2) = VO(2),
(3.8) WO2) = J,00(2) = —Jp0071(2) = —Jn(0(2)) = —Ju(0(2)) = —WO(2).
Thus V- W0(2) = - VY. WO (2) and the result follows. O

In addition to being orthogonal, the vector fields V7 and W7 have the property that they can
easily be glued together to form currents on F,. Recall that to be a current a vector field J must
be L? on the domain and satisfy V - J = 0.

Lemma 3.8. If J is a vector field such that J|7, = Vi 4+ BW and agiq + oy = Bip1 — B for each
l, then J is a current.
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Proof. The fields V! and W' are the restriction of currents to the sets 7}, thus J is an L? function
on F), for each [. To see the given linear combination is a current we must verify V - J = 0 using
symmetry considerations that imply the cancellation of the weak divergences as in Lemma 2.5(ii).

The symmetry of V? in (3.7) shows that V- V? and —V - V! cancel on Ty N Ty, so VO — V1 is
a current on Ty U Ty. Similarly, the antisymmetry of W9 in (3.8) shows the fluxes of W° and W'
cancel on TyNT, so WO+ W1 is a current on ToUT;. In addition we note that VO+W1! = J, |TuTy
is the restriction of the optimal current and is hence a current on ToUT;. Combining these with the
definition (3.2) we see that each of V! — V1 W+ Wl and V! + W!H! are currents on 7y U T4
as they are obtained from the [ = 0 case by rotations.

Similarly, the antisymmetry of W in (3.8) shows the fluxes of W° and W cancel on Ty N T, so
WO + W' is a current on Ty U Ty. In addition we note that VI + W1l = Jn|Tyur, is the restriction
of the optimal current and is hence a current on 7y UT;. Combining these with the definition (3.2)
we see that each of V! — VL Wl + Wl and V! + W are currents on Tj U Ty, as they are
obtained from the [ = 0 case by rotations.

The divergence V - J then vanishes on the common boundary of T} and Tj, by writing J|r,ur,,

as the linear combination —ayy1 (V! — VD) 4+ g/(WH+ WHY) 4 (g 4+ a1 ) (VE+ WD), O

We will need currents with specified non-zero fluxes on the three sides at which cells join and
zero flux on the other sides. The relevant sides were determined in Section 3.1; they are those
which contain a vertex of Gy.

Proposition 3.9. IfI;, j =0,N,3N —1 satisfy > o ysn_1 Lj = 0 then there is a current J on F,
with flux I; on L; N F, for j =0,N,3N —1 and zero on all other L; N F,, and that has energy

N? N? 5 11 5
Ep (J,J) < (TE(V) + g (1IN - 8)E(W)> > B<oNR, YL
0,N,3N—1 0,N,3N—1

Proof. Write A'(N) = {0, N,3N — 1}. Define coefficients 3; by

In —Izn_q ifj=0 2In — 21, ifl<j<N-1
Bi= Isn-1—1y ifj=N Bj =4 2l3ny-1—2Iy fN+1<j<3N-2
Iy — In itj=3N—-1 2Ip —2I3ny—1 3N <j<4N -1
and let
N J J
WSS Y
JEN jEA
Then J is of the form }_, a; VI + BiW7 with o = —7Ij for j € A’ and zero otherwise. One

can verify the conditions of Lemma 3.8, so J is a current. Moreover, all of the W have zero flux
through L; N F;,, and V7 has flux —% through L; N F;,, thus the flux of J is as stated.
By the orthogonality in Lemma 3.7 and (3.4),

Ep, (J,J) = ZIQ+—E W)y g2
A
It is straightforward to compute
> B2 = (AN = 3)(In — Ip)* + (8N — T)(Isy—1 — In)* + (4N + 1)(Io — Isn—1)?

= (16N — 9)I2 + (20N — 17)I% + (20N — 13)I3y_1 + 4(N — DIgIn +4(N — 2)IoI3n_;
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where we used —2InI3ny_1 = Ig +I]2V +I§N—1 + 21gIn + 213N _1, which was obtained by squaring
> a1; = 0. Then the bound 2Iyl; < %Ig + %IJQ for j = N,3N — 1 gives, also using N > 2,

> B < (22N — 18)I§ + (22N — 19)I} + (22N — 16)I5y ;.

This gives the energy estimate. The bound by R, is from the expression following (3.4). O

Having established these results on currents, we turn to considering potentials, which will be
built from the functions v/ and w’ so as to have specified boundary data at those C; which are
vertices of the graph Dy from Section 3.1.

Lemma 3.10. The function which is v' +w' +v° —w® on Ty UT, and zero on F, \ToUT) defines
a potential on F,.

Proof. Recall from Section 2.2 that a function is a potential if it is in H? on the domain. Since the
given function is the restriction of a harmonic function as in Theorem 2.3 to both Ty and 77, and is
zero on the complement of these, it is in H' on each of these sets separately. Moreover, these sets
meet along the intersection of F,, with three distinct lines (corresponding to the common boundary
of Tj and Tj44 for j = —1,0,1), so Lemma 2.5(i) is applicable in each case and we see the function
is in H'(F,) with L? boundary values if and only if the pieces agree a.e. on the common boundary.
In what follows we suppress the “a.e.” to avoid repetition

The proof that the pieces match uses the symmetries v°(z) = v (z) and w%(2) = —w(2), which
follow from Lemma 3.6 in the same manner as the proofs of (3.7) and (3.8). Note that z — 6(Z) is
an isometry of Tp U T and compute from the symmetries and (3 1) that

)

W(0(2) = (071 (2)) = v' (2
(3.9) wl(0(2)) = w’(2) = —w’(2).

)

Now observe that v +w! is in H'(TyUT}) because it is the restriction of the optimal potential u,,
to this set, see (3 1), and this latter is a harmonic function as in Theorem 2.3. Using the preceding
it follows that (v! —w®)(z) = (v* +w!)(8(2)) is in HY(To UTY), and therefore so is v! +w! +v° —w?.

What is more, if z is in the common boundary of Ty and 77 then 6(Z) = z and thus (3.9) gives
wh(z) = —w%(2). Then v° +w! € H! at such points implies v°(z) = —w°(z), but this says v° + w°
vanishes on the common boundary of Ty and 7;. Thus v' + w!' = v + w® 0 #~! vanishes on the
common boundary of T3 and T3, and (v° —w?)(2) = (v +w")(2) vanishes on the common boundary
of Ty and T_;. Together these show v! + w! 4+ v — w® vanishes on the boundary of Ty U T} in F,,
so the zero extension to F, \ (To UTy) is in H? and the proof is complete. O

For the following proposition we recall that the harmonic functions from Theorem 2.3 are con-
tinuous on the sets A, and B,, in F},, thus we may refer to their values at the points Cj.

Proposition 3.11. Given a function w on Dy that is harmonic at 0 there is a potential f on F,
having a representative with f(C;) = u(C;) for C; € Dy and

_ 2
Eru (£, 1) < (Eav) + Ea(w)) D (u(Cy) —u(0)) *R > (u u(0))”.
CjieDo CjeDo
If f(Cj11) = f(Cj) for some j € {0,N,3N — 1} then f is constant on the edge Lj N F,.
Proof. Let z; = u(Cj) — u(0) for C; € Dy and z; = 0 otherwise. With indices modulo 4N, define

1 - - . . 1 ,
f=u(0)+ 3 Z zj(wI ™t — T —f —w?) = w(0) + B Z(z]Jrl zj)w! — (zj41 + 2)v.
JEA(N) J
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This is a linear combination of rotations of the function in Lemma 3.10, so it is a potential. Using
wI=HCy) =1, v H(C)) = wITH(C;) = w(C)) = —1 and V!(Cy) = wl(C) =0forl#j,j+1we
easily see f(C}) = u(C;) for C; € Dy.

From the orthogonality in Lemma 3.7 and (3.3) we have

Er (1. 0) = 1El0) 3 (it + 5 + 7E0(0) 3 (2331 = ) < (Eal0) + Ealw)) Y023

jeAlIl jeA/Il

where we used (zj41 £ zj)2 < 22]2 Ry 2ZJ2-. The remaining part of the asserted energy bound is from
from (3.5).

Finally, suppose there is j € {0, N,3N — 1} for which f(Cj4+1) = f(C}). Then zj;1 = z;, and on
the edge L; N F,, we have f = u(0) — (241 +2j)v’. However (3.1) says v/ comes from the restriction
of u, to Lo, where u, = 1, so v/ is constant on L;NF, and sois f. O

4. BOUNDS

Our main resistance estimate is obtained from the results of the previous sections by constructing
a feasible current and potential on F;,,,. We use the optimal current on G,,, and optimal potential
on D,, to define boundary data on m-cells that are copies of Fj,, and then build matching currents
and potentials from Propositions 3.9 and 3.11 to prove the following theorem.

Theorem 4.1. Forn >0 and m > 1
44N

44NR01R R < R < —RolR R

Proof. For fixed m > 1 let I} [C be the optimal current on the graph G, and u be the optimal

potential on the graph D,,, both for the sets A,, and B,,. Recall that for each cell we have an

address w = wy -+ w;, and a map Y, as in Section 3.1 so that fg 0 1y, is a current on Gy and
D 6 4)y, is a potential on Dy.

Now fix n > 0 and consider Fj,1,. Then v, maps F,, to the m-cell of F,,,;, with address w, and
we write Jy, for the current from Proposition 3.9 With fluxes from 1: o1y, and fy, for the potential
from Proposition 3.11 with boundary data from @2 o4),. In partlcular summing over all words of
length m we have from these propositions and the optimality of the current and potential that

_ 119 g 7oy _ 1l o g
41)  Ep,., (Zw: oo, Zw: Jw> - Zw:EFn(Jw, Ju) € 5 N? R, (IS, 1) = 5-N?R. RS,

(42)  Er, (%jfw,%jfw) =2 8w fu) < 2R\, (15, 1) = R (RD)™

Since fg is a current, its flux through the edges incident at a non-boundary point is zero. Using
this fact at the vertex on the center of a side where two m-cells meet we see that the net flux of
> w Juw through such a side is zero. What this means for )  J,, is that the currents in the cells
that meet on this side are weighted to have equal and opposite flux through the side. However,
examining the construction of J,, it is apparent that the term providing the flux through this side
is a (scaled) copy of V7 from (3.2). Using that V7 is a rotate of V? and that V°(z) = V(z)
from (3.7), we see that all terms in ), J, that provide flux through the sides where m-cells meet
are multiples of a single vector field. It follows that the cancellation of the net flux guarantees
cancellation of the fields in the sense of Lemma 2.5(ii). Thus we conclude that >, J,, is a current
on Fp,1p. Its net flux through a boundary edge is the same as that of fnCI:, so is —1 through A4
and 1 through By,1,. Hence ), J, is a feasible current from A4, t0 Brypn on Fiyqpy, and (4.1)
together with Theorem 2.4 implies

(4.3) Ropsn < Ep,, .. (Z o, Z J ) N2R RS,
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Similarly, we can see that ), fu, is a potential on Fj,4,. Each side where two m-cells meet is the
line segment at the intersection of the closures of copies of sectors T; and T under maps ), ¥y
corresponding to the m-cells. We see that ), f,, coincides with @2 at the endpoints of this line
segment, while along the line it is a linear combination of v/ and w’ as in Proposition 3.11. This
linear combination depends only on the endpoint values, so is the same on the line from 1,,(7}) as
on the line from 1,/ (T}). Hence 3", f. is a potential on Fy,1,. Since @l is 0 at all endpoints of
sides of cells in A,, 1, and 1 at all endpoints of sides in B, ., the final result of Proposition 3.11
ensures ). fu has value 0 on A4, and 1 on By,4y, so is a feasible potential. Combining this
with (4.2) and (2.2) gives

- 2 _
(4.4) e € € (3 Fun Y fu) < R RE)T
w w
Our estimates (4.3) and (4.4), together with Lemma 3.4, give for n > 0, m > 1 that
N 11 22
ERan?Z < Rpyn < §N2Rn}?ﬁ = §N2RHR£’Z.

In particular, for n = 0 we have RTIT)L < %Ra 'R,, and %Ra 'R, < RTQL, which may be substituted
into the previous expression to obtain the theorem. O
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