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Abstract

Background: Genome-wide association studies (GWAS) seek to identify single
nucleotide polymorphisms (SNPs) that cause observed phenotypes. However,
with highly correlated SNPs, correlated observations, and the number of SNPs
being two orders of magnitude larger than the number of observations, GWAS
procedures often suffer from high false positive rates.

Results: We propose BGWAS, a novel Bayesian variable selection method based
on nonlocal priors for linear mixed models specifically tailored for genome-wide
association studies. Our proposed method BGWAS uses a novel nonlocal prior for
linear mixed models (LMMs). BGWAS has two steps: screening and model
selection. The screening step scans through all the SNPs fitting one LMM for
each SNP and then uses Bayesian false discovery control to select a set of
candidate SNPs. After that, a model selection step searches through the space of
LMMs that may have any number of SNPs from the candidate set. A simulation
study shows that, when compared to popular GWAS procedures, BGWAS greatly
reduces false positives while maintaining the same ability to detect true positive
SNPs. We show the utility and flexibility of BGWAS with two case studies: a case
study on salt stress in plants, and a case study on alcohol use disorder.

Conclusions: BGWAS maintains and in some cases increases the recall of true
SNPs while drastically lowering the number of false positives compared to
popular SMA procedures.

Keywords: GWAS; Bayesian; Model Selection

Background
Genome-wide association studies (GWAS) are a popular tool to identify causal re-

lationships between variations in the genome and observed phenotypes. In GWAS

studies, the most commonly considered genomic variations are single nucleotide

polymorphisms (SNPs), which may be of the order of 100,000s to 1,000,000s de-

pending on the species and the dataset. An important aspect of GWAS analysis is

the existence of correlation among the observations as a result of study design or

population structure. A popular way to deal with this correlation is to use linear

mixed models that include kinship random effects with a covariance matrix propor-

tional to a realized relationship matrix [1, 2, 3]. The most widely used procedures

for GWAS analysis are single marker association tests (SMA), which evaluate the

individual predictive ability of each SNP by fitting as many linear mixed models

(LMMs) as the number of SNPs [1], each model only containing one SNP. In a
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traditional SMA, after evaluating each SNP individually, a multiple comparison

correction, such as the Bonferroni correction or the Benjamini Hochberg correc-

tion, is used to identify important SNPs and attempt to control the false discovery

rate (FDR). However, these SMAs based on LMMs still yield high FDR because

the SNPs themselves are highly correlated [4]. To have better FDR control and still

maintain the same ability to detect true positive SNPs, we propose a novel Bayesian

method for linear mixed models with nonlocal priors for efficient analysis of GWAS

data.

We call our novel method BGWAS. BGWAS has two steps: screening and model

selection. First, the screening step fits as many LMMs as the number of SNPs, uses a

mixture of a Dirac delta at zero and a nonlocal prior, and estimates the probability

of the Dirac delta component. After that, the screening step computes the posterior

probability of each SNP being a null SNP and uses Bayesian false discovery control

[5, 6, 7, 8] to choose a set of candidate SNPs. Second, the model selection step

performs a model search where the possible models contain any number of SNPs

from the set of candidate SNPs. When the model space is too large for complete

enumeration, the BGWAS model selection step searches through the model space

with a genetic algorithm (GA). A simulation study presented in the Results section

shows that, when compared to SMA, BGWAS reduces the number of false positives

while maintaining the same level of true casual SNPs recall.

BGWAS uses novel nonlocal priors specifically tailored for LMMs. Nonlocal pri-

ors were first proposed by [9] and extended fully to Gaussian linear models in [10].

[10] proposed product moment (pMOM) priors that are proportional to a Gaussian

kernel multiplied by the product of the absolute values of the coefficients raised to

a scalar. Figure 1 presents two pMOM priors and a local prior. When compared to

local priors, nonlocal priors lead to a much faster accumulation of evidence in favor

of a true null hypothesis [9, 10]. This property is especially useful in GWAS where

the vast majority of SNPs are usually not important. [11] extended the pMOM non-

local prior to generalized linear models by using a Gaussian kernel with a covariance

matrix proportional to the diagonal of the Fisher information. In contrast, here we

propose a pMOM nonlocal prior for LMMs that uses the full Fisher information

matrix. When compared to using just the diagonal of the Fisher information ma-

trix, the use of the full Fisher information matrix in the definition of the nonlocal

prior better accounts for the correlations between SNPs and, thus, better controls

the FDR.

Figure 1 pMOM nonlocal priors with τ = 0.022 and τ = 0.348, as well as a local prior.

Many of the published works regarding Bayesian analysis of GWAS data use

Markov chain Monte Carlo (MCMC). [12] proposes a screening algorithm that iden-

tifies causal SNPs using local priors, but does not take into account the relationships

between SNPs. Similarly, [13] uses local priors with a MCMC implementation in a

screening algorithm to identify SNPs, but, similarly does not take into account the

relationships between SNPs. [14] and [15] both propose two-step procedures, first

screening the SNPs to reduce the size of the problem, and second using a model se-

lection step with different local priors in MCMC implementations to identify causal
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SNPs. [14] does not take into account the kinship correlation structure among ob-

servations. [16] takes into account the correlation among observations and SNPs

but uses local priors in both steps of an iterative two-step procedure. [17] proposes

an iterative two-step procedure using R2 and nonlocal priors in an MCMC imple-

mentation but does not take into account the kinship correlation structure. By not

taking into account the kinship correlation structure, an increase of false positives is

typically seen [1, 2, 3]. In contrast, our method BGWAS performs a Bayesian proce-

dure using nonlocal priors that takes into account the kinship correlation structure

and the relationships between SNPs. Importantly, instead of MCMC, BGWAS uses

a fast Empirical Bayes procedure that analyzes GWAS problems of size 105 to 106

SNPs in a reasonable amount of time.

To decrease the computational burden of LMMs, BGWAS uses estimates of the

variance components from baseline models for both the screening step and model

selection step. Methods such as EMMAX [3] and population parameters previously

determined (P3D [18]) have popularized estimating variance components from a

baseline model in a SMA using LMMs. EMMAX avoids the repeated estimation

of the variance components by using the heritability estimate from the null model

for all SNPs. P3D uses both the estimate of the heritability and the estimate of

the independent error structure parameter fixed while testing all SNPs. Similarly

to EMMAX, BGWAS estimates the kinship dependence parameter from a baseline

model. As EMMAX and P3D have shown, using variance estimates from a baseline

model provides orders of magnitude faster results while losing little to no statistical

power.

The remainder of this article is organized as follows. The Methods section presents

our proposed BGWAS method for fast Bayesian SNP search. The Results section

presents simulation results using genotype data from Illumina sequencing of 2,772

humans as well as two case studies based on real world examples. The Conclusion

and Future Directions section discusses conclusions and possible avenues of future

research.

Methods
BGWAS works in two distinct steps: a screening step and a model selection step.

First, the screening step fits as many LMMs as the number of SNPs using a mixture

of a Dirac delta at zero and a nonlocal prior, and estimates the probability of

the Dirac delta component. After that, the screening step computes the posterior

probability of each SNP being a null SNP and uses Bayesian false discovery control

[5, 6, 7, 8] to choose a set of candidate SNPs. Next, the BGWAS model selection

step takes the set of candidate SNPs identified in the screening step and uses a

novel multivariate nonlocal prior to perform Bayesian model selection among them.

The goal of the model selection step is to further control false positives.

The model used in both the screening step and the model selection step is [1]

Y = Xcα+Xsβ+Zu+ϵ where ϵ ∼ N(0, σ2I) and u ∼ N(0, σ2κK), (1)

where Y is an n×1 phenotype vector, Xc is an n× l matrix with columns including

the intercept and fixed effects, α is an l × 1 vector of regression coefficients, Xs
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is an n × p matrix with columns including SNPs, β is a p × 1 vector of regression

coefficients, Z is an n × t incidence matrix mapping each observed phenotype to

one of t inbred strains, u is a t × 1 vector of random effects accounting for pop-

ulation structure, and ϵ is an error term. K is the realized relationship matrix or

kinship matrix assumed to be a known positive semi-definite matrix calculated at

the beginning of the procedure.

The remainder of this section is divided into two subsections: BGWAS Screening

Step provides details about the screening step and BGWAS Model Selection Step

presents the model selection step.

BGWAS Screening Step

The screening step fits as many LMMs as the number of SNPs, with each LMM

having only one SNP in addition to the control regressors. To speed up computa-

tions, we use an approach similar to P3D, which is widely used in SMA for GWAS

[18, 3]. Specifically, the variance parameter κ and the vector of coefficients α of the

control regressors are fixed at their baseline model estimates when fitting models

that include SNPs. The use of these estimates leads to great computational savings

because of two reasons: first, the numerical optimization methods used for estimat-

ing κ account for a substantial part of the computational cost of fitting LMMs;

second, fixing α allows us to use fast numerical linear algebra to simultaneously

estimate the regression coefficients of the SNPs in all LMMs that have just one

SNP.

Specifically, we estimate κ and α from the baseline model

Y ∼ N(Xcα, σ2(I + κZKZ⊤)). (2)

These estimates are calculated using the restricted likelihood (REML) which is

equivalent to using a flat prior on α, integrating out α, and maximizing the corre-

sponding integrated likelihood with respect to σ2 and κ. We then take an Empirical

Bayes approach that assumes κ and α are known parameters equal to their esti-

mates κ̂ and α̂. Let ˜︁Y = Y − Xcα̂, be the vector of residuals from the baseline

model. Similar to SMA, the screening step estimates the regression coefficient βj of

SNP j, j = 1, . . . , p, in the approximate LMM

˜︁Y a∼ N(xjβj , σ
2
j (I + κ̂ZKZ⊤)), (3)

where xj denotes the covariate related to the jth SNP. Let β̂j =
(︁
x⊤
j (I + κ̂ZKZ⊤)−1xj

)︁−1
x⊤
j (I+

κ̂ZKZ⊤)−1 ˜︁Y be the REML of βj under Equation (3). Then β̂j |βj
a∼ N(βj , σ

2
βj
),

where σ2
βj

= σ̂2
j (x

⊤
j (I + κ̂ZKZ⊤)−1xj)

−1. Note that σ̂2
j is the REML estimate

calculated for the model given by Equation (3) for SNP j.

We assume a spike and slab prior for βj [19]. Traditionally, such a prior usually

assumes for βj a mixture of a Dirac delta function and a Gaussian distribution

[19, 13]. In contrast, instead of a Gaussian distribution, we assume a nonlocal prior

which has better theoretical properties with respect to the convergence rates of

posterior probabilities [9, 10]. Specifically, we assume that a priori βj follows a
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mixture of a Dirac delta prior and a moment nonlocal prior [9] of the form

p(βj |τ, π0) = π0δ(βj = 0) + (1− π0)
β2
j (x

⊤
j (I + κ̂ZKZ⊤)−1xj)

nτσ2
j

×N

(︄
βj | 0,

nτσ2
j

(x⊤
j (I + κ̂ZKZ⊤)−1xj)

)︄
. (4)

We note that in Equation (4), we take a hierarchical modeling approach where

the regression coefficients of all SNPs share the same parameters π0 and τ . We

consider three different procedures for choosing τ : fix τ = 0.348 as recommended

in [10]; fix τ = 0.022 as recommended in [17]; or estimate τ from the data [11].

Finally, BGWAS borrows strength across SNPs by estimating either π0 or (π0, τ)

in a computationally efficient Empirical Bayes approach.

We now discuss how to estimate π0 and τ . We assign a noninformative uniform

prior on the interval (0,1) for the probability of a true null SNP π0. As the uniform

prior is bounded on the interval (0,1), this is a proper prior for π0. For the scale

parameter τ , we assign an Inverse Gamma prior as proposed in [11] for generalized

linear models. To set the hyperparameters of this Inverse Gamma prior, we note

that [17] proposed to fix τ at 0.022 for GWAS analysis. Thus, we set the prior

mean of τ to 0.022. In addition, we note that values of τ smaller than 0.01 would

allow the selection of too many false SNPs. Further, values of τ that are too close

to zero lead to numerical instabilities. Based on these considerations, we assign an

Inverse Gamma prior with shape 0.55/0.022 + 1 and scale 0.55 implying a prior

mean of τ equal to 0.022. In addition, this choice implies the prior probability that

τ is less than 0.01 is less than 0.001, stochastically bounding τ away from zero to

make computations stable. As the simulation study in the Results Section shows,

this choice of priors works very well for GWAS analysis.

Multiplying the corresponding density for β̂j by the prior for βj given in Equa-

tion (4) and integrating out βj , we obtain the predictive density:

p(β̂j |τ, π0) =

∫︂
N(β̂j |βj , σ

2
βj
)p(βj |τ, π0)dβj

= π0N(β̂j | 0, σ2
βj
) + (1− π0)(2πσ

2
βj
)−1/2(nτ + 1)−3/2

×

⎛⎝1 +
nτβ̂

2

j

(nτ + 1)σ2
βj

⎞⎠ exp

⎡⎣− β̂
2

j

2(nτ + 1)σ2
βj

⎤⎦ . (5)

The derivation of the predictive density is provided in the Supplementary Mate-

rial. Assuming that β̂1, β̂2, . . . , β̂p conditional on β1, β2, . . . , βp are approximately

independent, an approximate likelihood function for π0 and τ is given by

L(τ, π0; β̂1, . . . , β̂p) =

p∏︂
j=1

p(β̂j |τ, π0). (6)
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Let p(τ) and p(π0) be the prior densities for τ and π0, respectively. Then, by Bayes

Theorem the joint posterior density of τ and π0 is

p(τ, π0|β̂1, . . . , β̂p)
a∝ L(τ, π0; β̂1, . . . , β̂p)p(τ)p(π0). (7)

BGWAS estimates π0 and τ by maximizing the posterior density given in (7). When

τ is treated as fixed, only π0 is estimated from the posterior distribution. After

that, BGWAS takes an Empirical Bayes approach that fixes π0 = π̂0 and τ = τ̂ to

calculate the posterior probability of βj = 0 for all j using the predictive density of

β̂j . Specifically, applying Bayes theorem, the posterior probability is given by:

P (βj = 0|β̂j , τ̂ , π̂0) =
π̂0N(β̂j |0, σ2

βj
)

p(β̂j |τ̂ , π̂0)
. (8)

With the posterior probabilities of βj = 0 for all SNPs, the BGWAS screening step

uses a Bayesian FDR control procedure [5, 6, 7, 8] to select a set of candidate SNPs.

Let k be the number of candidate SNPs and Xk be the design matrix that includes

all such candidate SNPs.

BGWAS Model Selection Step

The BGWAS model selection step searches through the model space of all LMMs

that contain any number of candidate SNPs in Xk. Similarly to the screening step,

to speed up computations the model selection step uses estimates of κ and α from a

baseline model. Specifically, first κ and α are estimated assuming as baseline model

the full model

Y ∼ N(Xcα+Xkβk, σ
2(I + κZKZ⊤)). (9)

These estimates are calculated using restricted maximum likelihood (REML) esti-

mation. After that, for all other models we assume that κ and α are known param-

eters equal to their estimates κ̂ and α̂. Next, similarly to the screening step, define˜︁Y = Y −Xcα̂. Now consider a model Ml with s possible SNPs, where 0 ≤ s ≤ k.

Let βl be the vector of coefficients and Xl be the covariate matrix associated with

these s SNPs. Then, the distribution of ˜︁Y in model Ml is approximately

˜︁Y|Ml
a∼ N(Xlβl, σ

2
l (I + κ̂ZKZ⊤)). (10)

We propose a novel product moment (pMOM) prior for Gaussian linear mixed

models. This prior uses the Fisher Information matrix in its Gaussian kernel. We

note that [11] proposed to use the diagonal of the Fisher Information matrix in

the Gaussian kernel of a pMOM prior for generalized linear models. Instead of the

diagonal of the Fisher Information matrix, our use of the full Fisher Information

matrix allows for the high correlations among SNPs to be accounted for in the

pMOM prior. Specifically, the prior we propose is

π(βl|τ̂ , σ̂
2
l ) = dl

s∏︂
i=1

β2
li ×N

(︁
βl | 0, τ̂ σ̂

2
l n(X

⊤
l (I + κ̂ZKZ⊤)−1Xl)

−1
)︁

(11)
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where

dl =

{︄∫︂
Rs

s∏︂
i=1

β2
li ×N

(︁
βl | 0, τ̂ σ̂

2
l n(X

⊤
l (I + κ̂ZKZ⊤)−1Xl)

−1
)︁
dβl

}︄−1

. (12)

Note that τ̂ is either estimated in the screening step or fixed at the chosen value.

The marginal likelihood ml(˜︁Y) is then

ml(˜︁Y) = (2πσ̂2
l )

−(n
2 )|I+κ̂ZKZ⊤|−1/2(nτ̂+1)−s/2 exp

(︃
− Rl

2σ̂2
l

)︃
E2(
∏︁s

i=1 β
2
li)

E1(
∏︁s

i=1 β
2
li)

, (13)

where

Cl =
nτ̂ + 1

nτ̂
X⊤

l (I + κ̂ZKZ⊤)−1Xl,

β̃l = C−1
l X⊤

l (I + κ̂ZKZ⊤)−1 ˜︁Y,

Rl = ˜︁Y⊤
(I + κ̂ZKZ⊤)−1[(I + κ̂ZKZ⊤)−XlC

−1
l X⊤

l ](I + κ̂ZKZ⊤)−1 ˜︁Y.

Here, E1(
∏︁s

i=1 β
2
li) is the expected value of

∏︁s
i=1 β

2
li with respect to N(βl|0, σ̂

2
l (nτ̂+

1)C−1
l ) and E2(

∏︁s
i=1 β

2
li) is the expected value of

∏︁s
i=1 β

2
li with respect to

N(βl|β̃s, σ̂
2
lC

−1
l ). To compute both expectations, a Monte Carlo simulation ob-

tains 1,000 draws from the distribution N(βl|β̃s, σ̂
2
lC

−1
l ) and performs a transfor-

mation of variables to get a second set of 1,000 draws from N(βl|0, σ̂
2
l (nτ̂+1)C−1

l ).

Now, these draws can be used to obtain Monte Carlo estimates of E1(
∏︁s

i=1 β
2
li) and

E2(
∏︁s

i=1 β
2
li). Proof of the marginal likelihood derivation given in Equation (13) is

provided in the Supplementary Material.

To assign the prior probability on a model Ml with s SNPs, we assume that

SNPs are true positives or true negatives according to a sequence of exchangeable

Bernoulli trials with probability of a true negative equal to π0. Thus, the prior

probability of model Ml with s SNPs is

p(Ml) = (π0)
(k−s)(1− π0)

s. (14)

BGWAS implements this prior probability by setting π0 equal to the estimated

proportion π̂0 of true null SNPs estimated in the screening step.

Then, by Bayes Theorem the posterior probability of model Ml is

P (Ml|˜︁Y) =
p(Ml)ml(˜︁Y)∑︁m

j=1 p(Mj)mj(˜︁Y)
∝ p(Ml)ml(˜︁Y), (15)

where m = 2k is the total number of possible models.

To perform model selection with the candidate SNPs identified in the screening

step, BGWAS either uses complete enumeration (when the number of candidate

SNPs is less than 16) or searches the model space with a genetic algorithm. Specif-

ically, we have implemented a genetic algorithm with the function ga() from the R

package GA [20] that iterates mutation, crossover, and selection steps.
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Our implementation starts with an initial population of 100 models that includes

one model with just the intercept and 99 models with only one SNP per model. If

the screening step yields more than 99 candidate SNPs, then the 99 SNPs with the

highest posterior probabilities are used in the initial population. If the screening

step yields less than 99 candidate SNPs, then the remaining models in the initial

population are chosen based on the GA package’s default settings. The fitness func-

tion used in this genetic algorithm is log(P (Ml))+log(ml(˜︁Y)). The algorithm stops

if either 4,000 maximum iterations are reached or if convergence is achieved with

400 consecutive iterations having the same best model.

Results
Simulation Study

To assess the performance of BGWAS compared to SMA, data have been simulated

under the mixed effects model:

Y = α1+Xβ + Zu+ ϵ, (16)

where u ∼ N(0, σ2κK) and ϵ ∼ N(0, σ2I). For this simulation study we consider

two SMA procedures with Bonferroni correction: “SMA - Approx.” estimates vari-

ance components estimated from a baseline model [3, 18], “SMA-Exact” estimates

variance components for each model [2, 21]. In addition, we consider BGWAS with

the three different methods for the nonlocal prior procedure discussed in the BG-

WAS Screening Step section. These three nonlocal prior procedures differ in the

way they specify the hyperparameter τ : fix τ = 0.348 as recommended in [10]; fix

τ = 0.022 as recommended in [17]; and estimate τ from the data assuming an In-

verse Gamma prior with shape 0.55/0.022 + 1 and scale 0.55. In all nonlocal prior

based methods, we assume a uniform prior on the interval (0,1) for π0. As discussed

in [10] and [17], the fixed values of τ = 0.348 or τ = 0.022 assign 0.99 marginal

prior probability to |βi| ≥ 0.2σ or |βi| ≥ 0.05σ respectively. As a consequence, pre-

specifying different values of τ may have a large effect on the false discovery rates

and true positive rates of nonlocal prior methods. As an alternative, estimating τ

provides a data-driven way to set the scale parameter.

To assess performance of these methods we use three different criteria: number

of true positives, number of false positives, and the F1 score. The F1 score is the

harmonic mean of precision (one minus the false discovery rate) and recall (the

number of detected true SNPs divided by the total number of true SNPs). Similarly

to [22], we define true positives and false positives using a buffer region. Specifically,

if one or more selected SNPs are in a 5 kilobase pair (kbp) window centered at a true

causal SNP, then that is counted as one true positive. Selected SNPs not located in

any of the true-causal-SNP buffer regions are declared false positives. This buffer

region mirrors the way scientists decide to further investigate genes that are near

SNPs identified in GWAS studies [23, 24].

This simulation study is rather extensive and the full results are shown in the

Supplementary Material. We consider four different sizes of genotype data, all sub-

setted from an Illumina sequencing of 2,772 humans. The four different sizes reflect

all considered combinations of two sample sizes (n = 400 and n = 2, 772) and num-

ber of SNPs (p = 225, 000 and p = 800, 000). When there are 225,000 SNPs, there
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are 15 causal SNPs starting at position 7,500 and with 15,000 SNPs in between

each causal SNP. When there are 800,000 SNPs there are 20 causal SNPs starting

at position 20,000 and with 40,000 SNPs in between each causal SNP. We explore

four different vectors of regression coefficients for each set of causal SNPs. The first

vector of regression coefficients is a vector of zeros, that is, there are no causal

SNPs. In the three other vectors of regression coefficients, all coefficients are equal

to 0.4 except for the coefficients at positions 1, 5, 9, 13, and 17. At these positions

(β(1)), the coefficients are equal to each other and take on the values of 0.1, 0.4, and

1.6 for each of the three vectors of regression coefficients. Further, we set σ2 = 0.2

and have three different values of κ: 0, 0.1, and 1. Note that when κ = 0 the true

model does not have kinship random effects. In that case of κ = 0, we implement

SMA with simple linear regression. However, note that in this simulation study we

always implement BGWAS with LMMs. Finally, we illustrate this procedure using

two different nominal FDR levels, the traditional 0.05 and a less conservative 0.1.

The remainder of this section is divided into three subsections: General Simulation

Study examines the two combinations of parameters closest to the case studies;

Behavior of BGWAS when there is no Kinship Dependence Structure investigates

how well BGWAS with the nonlocal prior performs when there are no causal SNPs,

that is, when all regression coefficients are 0; Behavior of BGWAS when there are

no Causal SNPs investigates how BGWAS performs when data have been simulated

from a linear model instead of a linear mixed model; and Recommendation provides

a recommendation for which BGWAS procedure to use.

General Simulation Study

Here we focus on results of the simulation study for combinations of sample size,

number of SNPs, and parameter values that best match the case studies we explore

later in the Case Studies section. The first simulation study combination shown in

Table 1 is similar to the A. Thaliana case study. The A. Thaliana case study has

328 observations and about 230,000 SNPs. Estimates from the best model suggest

the closest simulation study combination of parameter values is κ = 1 and σ2 = 0.2.

The closest matching set of coefficients is the third setting with positions 1, 5, 9,

and 13 all taking the value 1.6. However, we show results for all three different

settings of the coefficients for the two nominal FDR levels. The second simulation

study combination shown in Table 2 is similar to the alcohol dependence case study,

which considers the log of age of first drink with 1,738 subjects and approximately

840,000 SNPs. The closest simulation study combination has κ = 0.1 and σ2 = 0.2

with the regression coefficients all equal to 0.4. For a full understanding of how each

method performs in each combination, the Supplementary Material provides tables

with the same information as shown in Tables 1 and 2 for all other combinations of

sample size, number of SNPs, and parameter values. Tables 1 and 2 display results

averaged over 50 datasets for each setting. The average number of true positives

(TP), average number of false positives (FP), and average F1 score are given for

each method for each setting.

In both tables, BGWAS with nonlocal priors better controls false discoveries while

maintaining a level recall of true SNPs similar to that of SMA. In terms of overall

performance, the F1 score is highest for BGWAS in every setting in every simulation
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setting. In Table 1, BGWAS either with using τ = 0.022 or estimating τ detects a

higher number of true positives compared to SMA in all settings and with all FDR

nominal levels. In addition, when compared to SMA, BGWAS reduces the number

of false positives by a factor of 10 or more. In Table 2, the number of true positives

detected by BGWAS with τ = 0.022 or estimating τ is similar to the number of true

positives detected by SMA when using a type 1 nominal level of 0.1. Importantly, in

Table 2, BGWAS reduces false positives by a factor of 100 or more. The reduction

in false positives is credited to both the BGWAS screening step and the BGWAS

model selection step. The BGWAS screening step is less conservative than SMA

and the BGWAS model selection step better controls FDR.

Different ways to specify τ in our BGWAS approach offer their own benefits.

The use of τ = 0.348 provides the best false discovery control out of any method

but also has the lowest true positive rate out of any method. Thus BGWAS with

τ = 0.348 is by far the most conservative method. Overall, BGWAS using τ = 0.022

well balances the true positives and false discoveries in nearly all settings. Finally,

BGWAS estimating τ performs the best in most circumstances in terms of true

positive rate.

The differences in performance of BGWAS in Table 1 and Table 2 are mainly due

to differences in sample size n, variance parameter κ, and number of possible SNPs

p. Tables 1 and 2 are useful because their conditions are similar to those of the two

case studies, thus the results in these two tables inform us about the reliability of

the case studies results. However, to understand the impact of sample size, variance

parameter, and number of possible SNPs on the performance of BGWAS and SMA

methods, we need to also examine Tables S1 through S9 in the Supplementary Ma-

terials. Comparison of all the tables leads to three main conclusions. First, we note

that larger values of the variance parameter κ lead to a decrease in the performance

of both BGWAS and SMA. Second, the impact of increasing the number of possi-

ble SNPs p depends on the sample size. If the sample size is small n = 400, then

increasing p from 225, 000 to 800, 000 causes severe deterioration in performance of

both BGWAS and SMA. However, if the sample size is moderate n = 2, 772, then

increasing p from 225, 000 to 800, 000 has little impact on the performance. Third,

when the sample size increases, both BGWAS and SMA are able to detect a larger

number of true causal SNPs. However, when the sample size increases, the number

of false discoveries increases tremendously for SMA. As a result, when the sample

size increases the performance of SMA in terms of F1 either remains about the same

(when p = 800, 000) or deteriorates (when p = 225, 000) – this happens because the

simulation study is based on real-life correlated SNPs. In contrast, when the sample

size increases, the number of false discoveries remains well controlled by BGWAS.

As a result, as the sample size increases, the performance of BGWAS in terms of

F1 becomes even better.

A major consideration in the application of GWAS methods is the computational

cost of the procedures. Tables 1 and 2 show for each procedure the average time in

seconds averaged over 50 datasets. All timings in these tables and in the Supple-

mentary Material are for computations performed on 100 cores of a 128 core AMD

EPYC 7702 with 256 GB. All operations were implemented in the R statistical

language built with OpenBLAS for optimized numerical linear algebra [25]. As BG-

WAS is a two-step procedure, it can not be faster than the screening step. However,
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since both its screening step and the model selection step approximate the variance

from a baseline model, the times for BGWAS are much faster than a traditional

SMA such as EMMA [2]. In these tables the timings range from 2 to 8 times faster

for BGWAS. Therefore, BGWAS with different choices of τ are accurate procedures

that maintain true positive rates while dramatically reducing the number of false

positives in an efficient manner.

Behavior of BGWAS when there is no Kinship Dependence Structure

To understand how the nonlocal prior procedure performs when data are simulated

from a linear model, we simulate 50 datasets from the model

Y = α1+Xβ + ϵ, (17)

where ϵ ∼ N(0, σ2I). Similarly to the general simulation study, σ2 = 0.2. We use

the four different combinations of data sizes as in the general simulation study, that

is, n = 400 or n = 2, 772 and p = 225, 000 or 800, 000. We again use the same

set of causal SNPs as in the general simulation study, where the number of causal

SNPs is 15 or 20 with all positions having value of 0.4 besides positions 1, 5, 9, 13,

and 17 where these positions take on the values of 0.1, 0.4, and 1.6. For the SMA

procedure, we assume the linear model without the kinship random effect. Thus,

the SMA procedure in this section is exact. Meanwhile, our BGWAS procedure

assumes the LMM given in Equation (17). However, note that for datasets where

BGWAS estimates κ to be 0, then BGWAS will behave as if the fitted model is a

linear model with independent error structure.

Table 3 presents average number of true positives, false positives, and F1 score

for 50 simulated datasets for n = 400 and p = 225, 000. Table 3 has similar results

to Table 1 in terms of true positives, false positives, and F1 score. Results for other

combinations of sample size, number of SNPs, and parameter values for the case

κ = 0 shown in full detail in the Supplementary Material are also similar to results

for the linear mixed model. Therefore, BGWAS performs better than SMA even

when the true model is a linear model without kinship random effects.

Behavior of BGWAS when there are no Causal SNPs

To examine the behavior of BGWAS in the case when there is no true causal SNPs,

we have simulated 50 datasets for each combination of sample sizes (n = 400 and

n = 2, 772), number of SNPs (p = 225, 000 and p = 800, 000), and κ (κ = 0, κ = 0.1,

and κ = 1) from the model

Y = α1+ Zu+ ϵ, (18)

where u ∼ N(0, σ2κK) and ϵ ∼ N(0, σ2I). Since there are no true causal SNPs in

this simulation study, for each method we recorded the number of false positives.

Table 4 presents the average number of false positives over the 50 datasets created

under the several considered combinations of sample size, number of SNPs and κ.

All methods are relatively conservative when there are no causal SNPs. We note

that keeping τ fixed at 0.348 is still the most conservative method out of all methods.
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Table 5 The number of SNPs identified by each method for each case study. Multiple comparison
corrections are based on the number of SNPs in a given genotype dataset.

Method
Salt Stress Age First Drink

α = 0.05 α = 0.1 α = 0.05 α = 0.1
SMA-Approx. 22 25 8 8
SMA-Exact 22 26 8 8

NP, τ = 0.348 4 4 1 2
NP, τ = 0.022 5 8 3 4
NP, τ estimated 7 7 4 6

More importantly, when there are no causal SNPs, BGWAS with an estimated τ

from the data controls false discoveries better than fixing τ = 0.022. Combined with

the results from the general simulation study, BGWAS with estimating τ from the

data is the best method.

Recommendation

We have considered BGWAS with multiple different choices of τ and different FDR

nominal values. Both estimating τ from the data and setting τ at 0.022 have similar

performance in terms of the F1 score in almost all the combinations of the simulation

study parameters. We note that when τ is estimated, the prior is an Inverse Gamma

prior with a prior mean of 0.022. Therefore, the similar performance of these two

methods is expected. Estimating τ tends to have slightly higher false discoveries

and slightly higher true positives comparatively in the general simulation study.

In the case of no causal SNPs, when compared to fixing τ at 0.022, estimating τ

had a smaller number of false discoveries. As the goal of GWAS is detection of true

positive SNPs while maintaining false discoveries to a reasonable level, we think that

estimating τ from the data is the best approach for conducting real GWAS analyses.

In this same light, setting the nominal level at 0.1 instead of 0.05 provided similar

F1 scores but higher number of true positives. Therefore, our recommendation for

GWAS analyses is estimating τ from the data and using a FDR nominal level of

0.1.

Case Studies

To demonstrate the utility and flexibility of BGWAS, we present two case studies

with real data analyses. First, BGWAS is applied to data from a published study

of salt stress on the selfing species A. Thaliana [24]. Second, BGWAS is applied to

a study of alcohol dependency in humans and explores the response variable “age

of first drink”. To normalize and variance-stabilize the data, the logarithm trans-

formation has been applied to age of first drink. To briefly highlight the differences

between BGWAS and SMA, Table 5 presents the number of SNPs found by each

method for each nominal FDR level.

For each application and under each FDR level, BGWAS with different choices of

τ yields a much smaller number of identified SNPs than the SMA procedures. In

addition, the results of the simulation study suggest that many of the SNPs found by

the SMA methods may be false positives. Therefore, following the recommendation

from the early section, the remainder of this section discusses the SNPs discovered

using BGWAS with estimating τ from the data.
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Salt Stress in A. Thaliana

We analyze data from a study that considers three different settings of salt stress to

identify SNPs and their genes associated with the response of A. Thaliana to salt

stress [24]. The three settings considered by [24] were a control setting, 75 mM of

NaCl, and 125 mM of NaCl. Different measures of the root structure were taken to

gauge how salt stress impacted the plants. In our case study, we analyze the average

length of lateral root per main root length for 328 A. Thaliana accessions under 75

mM NaCl salt stress. Genotype data was sequenced in [26]. Only SNPs with minor

allele frequency greater than 0.01 were included in the analysis.

Following the recommendation given earlier, here we discuss the SNPs found by

BGWAS estimating τ from the data and with a nominal FDR level of 0.1. Of

the seven SNPs identified, one SNP is perfectly correlated to two other SNPs and

another SNP is perfectly correlated with another SNP, implying nine identified

SNPs. The 9 SNPs are located in the genes AT1G48300.1, AT1G62500, nearby

AT2G38970, AT3G60370, AT4G14305.1, AT4G39955, AT4G39970, AT4G40000,

AT5G28500.1. SNPs found in AT4G39955, AT4G39970, and AT4G40000 are in

linkage disequilibrium. Importantly, AT1G62500 (also known as DEG27) is a gene

that becomes differentially expressed in the event of salt stress [27]. In addition,

AT4G39955 is an α/β-Hydrolases superfamily protein; these proteins have been

shown to enhance salt tolerance in the sweet potato family [28].

Alcohol Use Disorder in Humans

We consider publicly available data from The Collaborative Study on the Genetics

of Alcoholism (COGA), which was performed to identify genetic factors associated

with alcohol dependency [29]. In this case study we analyze the response variable

“log of age of first drink” for 1738 people of European ancestry. Illumina sequenc-

ing provided approximately 1 million SNPs. Only SNPs with minor allele frequency

larger than 0.01, not in the X/Y chromosomes, and with RS identifiers were inves-

tigated. To control for the effect of sex, this analysis was performed on the residuals

of the linear mixed model for log age of first drink regressed on sex.

Following the recommendation given earlier, here we discuss the SNPs found by

BGWAS estimating τ from the data and with a nominal FDR level of 0.1. The six

SNPs discovered are located in genes KCNMA1, near PPIAP33, ANKS1B, RBL1,

ABCF1, and LINC02237. We note that KCNMA1 is known as a gene associated

with alcohol dependency [30]. In addition, in a study with people of Chinese Han

ethnicity, ANKS1B has been associated with alcoholism [31]. Finally, genes RBL1

and ABCF1 may be good candidates for further investigation.

Conclusion and Future Directions
We have proposed BGWAS, a novel Bayesian two-step procedure based on nonlocal

priors for the analysis of GWAS data. In BGWAS, we propose in Equation (4) a

hierarchical approach where the regression coefficients for the several SNPs share

the same mixing probability π0 and the same scale parameter τ . Thus, BGWAS

borrows strength across SNPs to estimate π0 and τ in a very efficient Empirical

Bayes approach. With the estimates π0̂ and τ̂ , in both screening and model selection

steps, BGWAS uses Bayes theorem to efficiently compute posterior probabilities
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and make decisions on which SNPs to select. We note that it is not clear how to

implement a classical/frequentist approach that would borrow strength across SNPs

in a way similar to BGWAS. In addition, we note that our simulation studies with

real SNP data show that, when compared to widely used frequentist procedures,

BGWAS has favorable performance with much smaller FDR.

One important issue when using nonlocal priors is the specification of the scale

parameter τ . Previous literature has proposed τ = 0.348 for usual linear regression

problems [10] and τ = 0.022 for GWAS analysis [17]. In contrast, here we propose an

empirical Bayes procedure that estimates τ from the GWAS data. Our simulation

studies show that, when compared to fixing τ at 0.348 or 0.022, our procedure that

estimates τ performs the best in most circumstances in terms of true positive rates.

In addition, in the case when there are no causal SNPs, our procedure that estimates

τ from the data controls false discoveries better than fixing τ at 0.022. Therefore,

our recommendation for GWAS analyses is to estimate τ from the data.

Of the nine SNPs found by BGWAS for the Salt Stress case study, two of the

SNPs were found in genes that have associated salt stress publications. Given the

results of the simulation setting most closely related to this case study, Table 1 in

the manuscript, we strongly believe that most of the other SNPs found by BGWAS

are worthy of further investigation. The human case study of AUD found six SNPs

of which two were located in genes previously related to AUD in publications.

Similarly to the A. Thaliana case study, the simulation setting most similar to that

of the case study, Table 2 of the manuscript, suggests that the remainder of the

SNPs found by BGWAS are highly likely to be true positives and worth further

investigation.

There are many possible avenues for future research. For example, a potentially

useful avenue is to extend our work to non-Gaussian data such as the number of

lateral roots in plants or the indicator of alcohol dependency in studies of alcohol use

disorder. Another possible area of research would be to extend BGWAS to BioBank

scale data.
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