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with highly correlated SNPs, correlated observations, and the number of SNPs
being two orders of magnitude larger than the number of observations, GWAS
procedures often suffer from high false positive rates.

Results: We propose BGWAS, a novel Bayesian variable selection method based
on nonlocal priors for linear mixed models specifically tailored for genome-wide
association studies. Our proposed method BGWAS uses a novel nonlocal prior for
linear mixed models (LMMs). BGWAS has two steps: screening and model
selection. The screening step scans through all the SNPs fitting one LMM for
each SNP and then uses Bayesian false discovery control to select a set of
candidate SNPs. After that, a model selection step searches through the space of
LMMs that may have any number of SNPs from the candidate set. A simulation
study shows that, when compared to popular GWAS procedures, BGWAS greatly
reduces false positives while maintaining the same ability to detect true positive
SNPs. We show the utility and flexibility of BGWAS with two case studies: a case
study on salt stress in plants, and a case study on alcohol use disorder.

Conclusions: BGWAS maintains and in some cases increases the recall of true
SNPs while drastically lowering the number of false positives compared to
popular SMA procedures.
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Background

Genome-wide association studies (GWAS) are a popular tool to identify causal re-
lationships between variations in the genome and observed phenotypes. In GWAS
studies, the most commonly considered genomic variations are single nucleotide
polymorphisms (SNPs), which may be of the order of 100,000s to 1,000,000s de-
pending on the species and the dataset. An important aspect of GWAS analysis is
the existence of correlation among the observations as a result of study design or
population structure. A popular way to deal with this correlation is to use linear
mixed models that include kinship random effects with a covariance matrix propor-
tional to a realized relationship matrix [1, 2, 3]. The most widely used procedures
for GWAS analysis are single marker association tests (SMA), which evaluate the
individual predictive ability of each SNP by fitting as many linear mixed models
(LMMs) as the number of SNPs [1], each model only containing one SNP. In a
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traditional SMA, after evaluating each SNP individually, a multiple comparison
correction, such as the Bonferroni correction or the Benjamini Hochberg correc-
tion, is used to identify important SNPs and attempt to control the false discovery
rate (FDR). However, these SMAs based on LMMs still yield high FDR because
the SNPs themselves are highly correlated [4]. To have better FDR control and still
maintain the same ability to detect true positive SNPs, we propose a novel Bayesian
method for linear mixed models with nonlocal priors for efficient analysis of GWAS
data.

We call our novel method BGWAS. BGWAS has two steps: screening and model
selection. First, the screening step fits as many LMMs as the number of SNPs, uses a
mixture of a Dirac delta at zero and a nonlocal prior, and estimates the probability
of the Dirac delta component. After that, the screening step computes the posterior
probability of each SNP being a null SNP and uses Bayesian false discovery control
[5, 6, 7, 8] to choose a set of candidate SNPs. Second, the model selection step
performs a model search where the possible models contain any number of SNPs
from the set of candidate SNPs. When the model space is too large for complete
enumeration, the BGWAS model selection step searches through the model space
with a genetic algorithm (GA). A simulation study presented in the Results section
shows that, when compared to SMA, BGWAS reduces the number of false positives
while maintaining the same level of true casual SNPs recall.

BGWAS uses novel nonlocal priors specifically tailored for LMMs. Nonlocal pri-
ors were first proposed by [9] and extended fully to Gaussian linear models in [10].
[10] proposed product moment (pMOM) priors that are proportional to a Gaussian
kernel multiplied by the product of the absolute values of the coefficients raised to
a scalar. Figure 1 presents two pMOM priors and a local prior. When compared to
local priors, nonlocal priors lead to a much faster accumulation of evidence in favor
of a true null hypothesis [9, 10]. This property is especially useful in GWAS where
the vast majority of SNPs are usually not important. [11] extended the pMOM non-
local prior to generalized linear models by using a Gaussian kernel with a covariance
matrix proportional to the diagonal of the Fisher information. In contrast, here we
propose a pMOM nonlocal prior for LMMs that uses the full Fisher information
matrix. When compared to using just the diagonal of the Fisher information ma-
trix, the use of the full Fisher information matrix in the definition of the nonlocal
prior better accounts for the correlations between SNPs and, thus, better controls
the FDR.

Figure 1 pMOM nonlocal priors with 7 = 0.022 and 7 = 0.348, as well as a local prior.

Many of the published works regarding Bayesian analysis of GWAS data use
Markov chain Monte Carlo (MCMC). [12] proposes a screening algorithm that iden-
tifies causal SNPs using local priors, but does not take into account the relationships
between SNPs. Similarly, [13] uses local priors with a MCMC implementation in a
screening algorithm to identify SNPs, but, similarly does not take into account the
relationships between SNPs. [14] and [15] both propose two-step procedures, first
screening the SNPs to reduce the size of the problem, and second using a model se-
lection step with different local priors in MCMC implementations to identify causal
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SNPs. [14] does not take into account the kinship correlation structure among ob-
servations. [16] takes into account the correlation among observations and SNPs
but uses local priors in both steps of an iterative two-step procedure. [17] proposes
an iterative two-step procedure using R? and nonlocal priors in an MCMC imple-
mentation but does not take into account the kinship correlation structure. By not
taking into account the kinship correlation structure, an increase of false positives is
typically seen [1, 2, 3]. In contrast, our method BGWAS performs a Bayesian proce-
dure using nonlocal priors that takes into account the kinship correlation structure
and the relationships between SNPs. Importantly, instead of MCMC, BGWAS uses
a fast Empirical Bayes procedure that analyzes GWAS problems of size 10° to 10°
SNPs in a reasonable amount of time.

To decrease the computational burden of LMMs, BGWAS uses estimates of the
variance components from baseline models for both the screening step and model
selection step. Methods such as EMMAX [3] and population parameters previously
determined (P3D [18]) have popularized estimating variance components from a
baseline model in a SMA using LMMs. EMMAX avoids the repeated estimation
of the variance components by using the heritability estimate from the null model
for all SNPs. P3D uses both the estimate of the heritability and the estimate of
the independent error structure parameter fixed while testing all SNPs. Similarly
to EMMAX, BGWAS estimates the kinship dependence parameter from a baseline
model. As EMMAX and P3D have shown, using variance estimates from a baseline
model provides orders of magnitude faster results while losing little to no statistical
power.

The remainder of this article is organized as follows. The Methods section presents
our proposed BGWAS method for fast Bayesian SNP search. The Results section
presents simulation results using genotype data from Illumina sequencing of 2,772
humans as well as two case studies based on real world examples. The Conclusion
and Future Directions section discusses conclusions and possible avenues of future
research.

Methods

BGWAS works in two distinct steps: a screening step and a model selection step.
First, the screening step fits as many LMMs as the number of SNPs using a mixture
of a Dirac delta at zero and a nonlocal prior, and estimates the probability of
the Dirac delta component. After that, the screening step computes the posterior
probability of each SNP being a null SNP and uses Bayesian false discovery control
[5, 6, 7, 8] to choose a set of candidate SNPs. Next, the BGWAS model selection
step takes the set of candidate SNPs identified in the screening step and uses a
novel multivariate nonlocal prior to perform Bayesian model selection among them.
The goal of the model selection step is to further control false positives.

The model used in both the screening step and the model selection step is [1]

Y = Xca+ X8+ Zu+e where €~ N(0,0°I) and u~ N(0,0°sK), (1)

where Y is an n x 1 phenotype vector, X, is an n x [ matrix with columns including
the intercept and fixed effects, a is an [ x 1 vector of regression coefficients, X
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is an n X p matrix with columns including SNPs, 3 is a p x 1 vector of regression
coefficients, Z is an n X t incidence matrix mapping each observed phenotype to
one of ¢ inbred strains, u is a t x 1 vector of random effects accounting for pop-
ulation structure, and € is an error term. K is the realized relationship matrix or
kinship matrix assumed to be a known positive semi-definite matrix calculated at
the beginning of the procedure.

The remainder of this section is divided into two subsections: BGWAS Screening
Step provides details about the screening step and BGWAS Model Selection Step
presents the model selection step.

BGWAS Screening Step

The screening step fits as many LMMs as the number of SNPs, with each LMM
having only one SNP in addition to the control regressors. To speed up computa-
tions, we use an approach similar to P3D, which is widely used in SMA for GWAS
[18, 3]. Specifically, the variance parameter x and the vector of coefficients a of the
control regressors are fixed at their baseline model estimates when fitting models
that include SNPs. The use of these estimates leads to great computational savings
because of two reasons: first, the numerical optimization methods used for estimat-
ing k account for a substantial part of the computational cost of fitting LMMs;
second, fixing a allows us to use fast numerical linear algebra to simultaneously
estimate the regression coefficients of the SNPs in all LMMs that have just one
SNP.

Specifically, we estimate x and a from the baseline model
Y ~ NXea,0?(I +kZKZ")). 2)

These estimates are calculated using the restricted likelihood (REML) which is
equivalent to using a flat prior on «, integrating out «, and maximizing the corre-
sponding integrated likelihood with respect to o2 and . We then take an Empirical
Bayes approach that assumes x and a are known parameters equal to their esti-
mates & and &. Let Y =Y — X, &, be the vector of residuals from the baseline
model. Similar to SMA, the screening step estimates the regression coeflicient §; of
SNP j, 7 =1,...,p, in the approximate LMM

Y & N(a;8,02(I + RZK2ZT)), (3)

where z; denotes the covariate related to the jth SNP. Let Bj = (x;r (I+RZKZT) 'a)) - x;r (I+
#ZKZ")71Y be the REML of 3; under Equation (3). Then Bj|ﬁj N N(ﬂj,agj),
where 0/23], = 6?(@([ + KZKZ")"lz;)71. Note that &? is the REML estimate
calculated for the model given by Equation (3) for SNP j.
We assume a spike and slab prior for §; [19]. Traditionally, such a prior usually
assumes for (; a mixture of a Dirac delta function and a Gaussian distribution
[19, 13]. In contrast, instead of a Gaussian distribution, we assume a nonlocal prior
which has better theoretical properties with respect to the convergence rates of

posterior probabilities [9, 10]. Specifically, we assume that a priori 8; follows a
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mixture of a Dirac delta prior and a moment nonlocal prior [9] of the form

2T (I +RZKZ ) 1y,
p(BjIT,Wo)=Wo5(ﬂj=0)+(1—ﬂo)ﬁj<x3( + & : )" tzy)

m'oj

2
X N (8]0, — 11795 - .
(z; (I+ RZKZT) 1))

We note that in Equation (4), we take a hierarchical modeling approach where
the regression coefficients of all SNPs share the same parameters my and 7. We
consider three different procedures for choosing 7: fix 7 = 0.348 as recommended
in [10]; fix 7 = 0.022 as recommended in [17]; or estimate 7 from the data [11].
Finally, BGWAS borrows strength across SNPs by estimating either my or (mg, 7)

in a computationally efficient Empirical Bayes approach.

We now discuss how to estimate my and 7. We assign a noninformative uniform
prior on the interval (0,1) for the probability of a true null SNP 7. As the uniform
prior is bounded on the interval (0,1), this is a proper prior for my. For the scale
parameter 7, we assign an Inverse Gamma prior as proposed in [11] for generalized
linear models. To set the hyperparameters of this Inverse Gamma prior, we note
that [17] proposed to fix 7 at 0.022 for GWAS analysis. Thus, we set the prior
mean of 7 to 0.022. In addition, we note that values of 7 smaller than 0.01 would
allow the selection of too many false SNPs. Further, values of 7 that are too close
to zero lead to numerical instabilities. Based on these considerations, we assign an
Inverse Gamma prior with shape 0.55/0.022 4+ 1 and scale 0.55 implying a prior
mean of 7 equal to 0.022. In addition, this choice implies the prior probability that
7 is less than 0.01 is less than 0.001, stochastically bounding 7 away from zero to
make computations stable. As the simulation study in the Results Section shows,
this choice of priors works very well for GWAS analysis.

Multiplying the corresponding density for B ; by the prior for 3; given in Equa-
tion (4) and integrating out (;, we obtain the predictive density:

p(B, |, m0) = / N(B,185, 03, (8517 7o) dB;

=mN(B;10,03,) + (1 —m)(2m03, )"/ *(nr +1)73/2
A2

m'Bj 6J

S - N ¢ N G
(n7+1)of, P 2(nt +1)03, )

The derivation of the predictive density is provided in the Supplementary Mate-
rial. Assuming that 31,827 . ,Bp conditional on (i, B2, ..., B, are approximately

independent, an approximate likelihood function for 7y and 7 is given by

p

E(T,770§Bl7~-~73p):Hp(th—ﬂTO)' (6)

Jj=1
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Let p(7) and p(mp) be the prior densities for 7 and mg, respectively. Then, by Bayes
Theorem the joint posterior density of 7 and g is

p(T> 7r0|817 cee 7Bp) & £(T7 7(-0;817 LR Bp)p(T)p(ﬂ—O) (7)

BGWAS estimates 7y and 7 by maximizing the posterior density given in (7). When
T is treated as fixed, only 7 is estimated from the posterior distribution. After
that, BGWAS takes an Empirical Bayes approach that fixes mg = 7y and 7 = 7 to
calculate the posterior probability of 8; = 0 for all j using the predictive density of
B - Specifically, applying Bayes theorem, the posterior probability is given by:

. oV (3510, 03,
P8, = 03 ) = T A T) 0

p(B;1#, 7o)
With the posterior probabilities of 3; = 0 for all SNPs, the BGWAS screening step
uses a Bayesian FDR control procedure [5, 6, 7, 8] to select a set of candidate SNPs.
Let k£ be the number of candidate SNPs and X, be the design matrix that includes
all such candidate SNPs.

BGWAS Model Selection Step

The BGWAS model selection step searches through the model space of all LMMs
that contain any number of candidate SNPs in X}. Similarly to the screening step,
to speed up computations the model selection step uses estimates of x and « from a

baseline model. Specifically, first x and « are estimated assuming as baseline model
the full model

Y ~ N(Xea + X8, 02 (I + ZKZ")). (9)

These estimates are calculated using restricted maximum likelihood (REML) esti-
mation. After that, for all other models we assume that x and a are known param-
eters equal to their estimates & and &. Next, similarly to the screening step, define
Y=-Y-— X.&. Now consider a model M; with s possible SNPs, where 0 < s < k.
Let B; be the vector of coefficients and X; be the covariate matrix associated with
these s SNPs. Then, the distribution of Y in model M, is approximately

Y|M; & N(X,8,,02(I+#ZKZ")). (10)

We propose a novel product moment (pMOM) prior for Gaussian linear mixed
models. This prior uses the Fisher Information matrix in its Gaussian kernel. We
note that [11] proposed to use the diagonal of the Fisher Information matrix in
the Gaussian kernel of a pMOM prior for generalized linear models. Instead of the
diagonal of the Fisher Information matrix, our use of the full Fisher Information
matrix allows for the high correlations among SNPs to be accounted for in the
pMOM prior. Specifically, the prior we propose is

m(Bi|7,67) = d Hﬁﬁ X N (B |0,767n(X," (I +RZKZ")"' X))~ (11)

=1
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where

s -1
;= { L6 % N (8105630 (1 +52K 27 %)) dﬂl} . (12)
i=1

Note that 7 is either estimated in the screening step or fixed at the chosen value.

The marginal likelihood m;(Y) is then

L

mi(Y) = (2767)~(3)

BT 3
[+/ZKZT Y2 (i 4+1)"*/ exp (_ L ) Blllic1 B) 45

267 ) Ex(I1;-1 BL)
where
T+1
o =" x4+ azKZT) X,
nTt
B, =Cr'X (I +rZKZT)'Y,
Ri=Y (I+#ZKZV) I +#ZKZT) — X,CO X (I + RZKZT) 1Y

Here, 1 ([];_, B2) is the expected value of [;_, A7 with respect to N (83,0, 67 (n# +
1)C; ") and Eo([[;_, B7) is the expected value of [[;_, 8% with respect to
N(B,|B,,57C ). To compute both expectations, a Monte Carlo simulation ob-
tains 1,000 draws from the distribution N(8,|8,, 67C; 1) and performs a transfor-
mation of variables to get a second set of 1,000 draws from N(3,]0, 67 (n7+1)C; ).
Now, these draws can be used to obtain Monte Carlo estimates of Ey([];_, 82) and
E5([1;—, B2). Proof of the marginal likelihood derivation given in Equation (13) is
provided in the Supplementary Material.

To assign the prior probability on a model M; with s SNPs, we assume that
SNPs are true positives or true negatives according to a sequence of exchangeable
Bernoulli trials with probability of a true negative equal to my. Thus, the prior
probability of model M; with s SNPs is

p(My) = (m0)* =) (1 — mp)°. (14)

BGWAS implements this prior probability by setting 7wy equal to the estimated
proportion 7y of true null SNPs estimated in the screening step.
Then, by Bayes Theorem the posterior probability of model M; is

p<Ml)ml(?)~ o p(M))my (Y 15
>y p(M;)m;(Y) p(Mijmu(Y), (15)

P(M|Y) =

where m = 2¥ is the total number of possible models.

To perform model selection with the candidate SNPs identified in the screening
step, BGWAS either uses complete enumeration (when the number of candidate
SNPs is less than 16) or searches the model space with a genetic algorithm. Specif-
ically, we have implemented a genetic algorithm with the function ga() from the R

package GA [20] that iterates mutation, crossover, and selection steps.
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Our implementation starts with an initial population of 100 models that includes
one model with just the intercept and 99 models with only one SNP per model. If
the screening step yields more than 99 candidate SNPs, then the 99 SNPs with the
highest posterior probabilities are used in the initial population. If the screening
step yields less than 99 candidate SNPs, then the remaining models in the initial
population are chosen based on the GA package’s default settings. The fitness func-
tion used in this genetic algorithm is log(P(M;)) +log(my (?)) The algorithm stops
if either 4,000 maximum iterations are reached or if convergence is achieved with

400 consecutive iterations having the same best model.

Results

Simulation Study

To assess the performance of BGWAS compared to SMA, data have been simulated
under the mixed effects model:

Y =0l+XB+ Zu+e, (16)

where u ~ N(0,0%£K) and € ~ N(0,02I). For this simulation study we consider
two SMA procedures with Bonferroni correction: “SMA - Approx.” estimates vari-
ance components estimated from a baseline model [3, 18], “SMA-Exact” estimates
variance components for each model [2, 21]. In addition, we consider BGWAS with
the three different methods for the nonlocal prior procedure discussed in the BG-
WAS Screening Step section. These three nonlocal prior procedures differ in the
way they specify the hyperparameter 7: fix 7 = 0.348 as recommended in [10]; fix
7 = 0.022 as recommended in [17]; and estimate 7 from the data assuming an In-
verse Gamma prior with shape 0.55/0.022 4+ 1 and scale 0.55. In all nonlocal prior
based methods, we assume a uniform prior on the interval (0,1) for my. As discussed
in [10] and [17], the fixed values of 7 = 0.348 or 7 = 0.022 assign 0.99 marginal
prior probability to |3;| > 0.2¢ or |5;| > 0.050 respectively. As a consequence, pre-
specifying different values of 7 may have a large effect on the false discovery rates
and true positive rates of nonlocal prior methods. As an alternative, estimating 7
provides a data-driven way to set the scale parameter.

To assess performance of these methods we use three different criteria: number
of true positives, number of false positives, and the F1 score. The F1 score is the
harmonic mean of precision (one minus the false discovery rate) and recall (the
number of detected true SNPs divided by the total number of true SNPs). Similarly
to [22], we define true positives and false positives using a buffer region. Specifically,
if one or more selected SNPs are in a 5 kilobase pair (kbp) window centered at a true
causal SNP, then that is counted as one true positive. Selected SNPs not located in
any of the true-causal-SNP buffer regions are declared false positives. This buffer
region mirrors the way scientists decide to further investigate genes that are near
SNPs identified in GWAS studies [23, 24].

This simulation study is rather extensive and the full results are shown in the
Supplementary Material. We consider four different sizes of genotype data, all sub-
setted from an Illumina sequencing of 2,772 humans. The four different sizes reflect
all considered combinations of two sample sizes (n = 400 and n = 2,772) and num-
ber of SNPs (p = 225,000 and p = 800,000). When there are 225,000 SNPs, there
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are 15 causal SNPs starting at position 7,500 and with 15,000 SNPs in between
each causal SNP. When there are 800,000 SNPs there are 20 causal SNPs starting
at position 20,000 and with 40,000 SNPs in between each causal SNP. We explore
four different vectors of regression coefficients for each set of causal SNPs. The first
vector of regression coeflicients is a vector of zeros, that is, there are no causal
SNPs. In the three other vectors of regression coefficients, all coefficients are equal
to 0.4 except for the coefficients at positions 1, 5, 9, 13, and 17. At these positions
(B(l)), the coefficients are equal to each other and take on the values of 0.1, 0.4, and
1.6 for each of the three vectors of regression coefficients. Further, we set o2 = 0.2
and have three different values of x: 0, 0.1, and 1. Note that when x = 0 the true
model does not have kinship random effects. In that case of k = 0, we implement
SMA with simple linear regression. However, note that in this simulation study we
always implement BGWAS with LMMs. Finally, we illustrate this procedure using
two different nominal FDR levels, the traditional 0.05 and a less conservative 0.1.

The remainder of this section is divided into three subsections: General Simulation
Study examines the two combinations of parameters closest to the case studies;
Behavior of BGWAS when there is no Kinship Dependence Structure investigates
how well BGWAS with the nonlocal prior performs when there are no causal SNPs,
that is, when all regression coefficients are 0; Behavior of BGWAS when there are
no Causal SNPs investigates how BGWAS performs when data have been simulated
from a linear model instead of a linear mixed model; and Recommendation provides
a recommendation for which BGWAS procedure to use.

General Stmulation Study
Here we focus on results of the simulation study for combinations of sample size,
number of SNPs, and parameter values that best match the case studies we explore
later in the Case Studies section. The first simulation study combination shown in
Table 1 is similar to the A. Thaliana case study. The A. Thaliana case study has
328 observations and about 230,000 SNPs. Estimates from the best model suggest
the closest simulation study combination of parameter values is & = 1 and 0 = 0.2.
The closest matching set of coefficients is the third setting with positions 1, 5, 9,
and 13 all taking the value 1.6. However, we show results for all three different
settings of the coefficients for the two nominal FDR levels. The second simulation
study combination shown in Table 2 is similar to the alcohol dependence case study,
which considers the log of age of first drink with 1,738 subjects and approximately
840,000 SNPs. The closest simulation study combination has x = 0.1 and 02 = 0.2
with the regression coefficients all equal to 0.4. For a full understanding of how each
method performs in each combination, the Supplementary Material provides tables
with the same information as shown in Tables 1 and 2 for all other combinations of
sample size, number of SNPs, and parameter values. Tables 1 and 2 display results
averaged over 50 datasets for each setting. The average number of true positives
(TP), average number of false positives (FP), and average F1 score are given for
each method for each setting.

In both tables, BGWAS with nonlocal priors better controls false discoveries while
maintaining a level recall of true SNPs similar to that of SMA. In terms of overall
performance, the F1 score is highest for BGWAS in every setting in every simulation

Page 9 of 20



Page 10 of 20

Williams et al.

[ ov [g¥0] 00 [¥¥% | o [190 11T [O2 ] 8¢ [ 66'0 | 60 | 9°9 | porewnss £ ‘gN | 7
| 2¢ | g0 | 00 | ¥% | s¢ | 000 | 80 | 89 | 6¢ | 260 | 60 | ¥9 | 22o0o=+'dN | 7
| 1€ | e¢vo | 00 | oy | €€ | ovo | 20| 6¢ | ce | sv0 | 20| ov | speo=2"dN | 7
| €6 | ero | 6% | 07 | vo1 | e2vo | €5 | €5 | €ot | 6c0 | z8 | 96 | ex3a-vins | ro 7
| ¥ leto | viv | ov | ¥ |evo |es |es | ® | 660 | 78 | 66 | -xoiddy-yS | 7
| 2¢ | ev0 | 00 | T% | o | 090 | 80 | 29 | or | 2¢'0 | 80 | 79 | porewnss + 4N | 7
| s¢ | e7'0 | 00 | T'% | o¢ | 260 | 90 | €9 | s¢ | ss0 | 80 | 19 | 22o0=<+'dN | 7
| 62 | zv0o | 00 | oy | 21 | veo | 10 | ¢ | 28 | e¢vo | 90| ¢v | sve0o=~'dN | 7
| €6 | ¥10 | 679¢ | 6°€ | vOT | 60 | ¢y | ot | €01 | sc0 | 02 | s | wexavas | |00 7
| ¥ | v10 | voc | 6¢ | ¥ leco | 1v |ov | ¥ | gs0 | 69 | ¢6 | "xoddy-yns | 7
| ()swnr | 14 | dd4 ldL [ (swr |14 | dd | dL | ()swir | 14 | d4 | dL | | 7
| 01= 0 | ro =6 | ro= o | PowSW | ¥Od i |

'8u1119s Yoes 10j s19se1ep ()G 49A0 POYIdW UDED JO SDUBWIONSH 93eI9AY "9400S T 98eJISAY Yl SI T4 pue
‘SOAI1ISO 9S|e4 JO Joquinu 3BISAY SI d4 ‘SOAINSOH SnJ| JO Jsquinu 38esdAy S91edIpuUl J | .L.@.o T0 g 70 Fﬁ.o,w.oxcﬁ@\ Fﬁ.o,w.o%.oxim 9070 J\oﬁig = ¢ 248 SNS |esned
GT Y3 JO SIUBIDIYS0D UOISSaIBaI BY | 'SJNS |eSned GT e aJdy3l ‘9|qel Slyl U] 'g'0 = 2 pue ‘T = ‘000 ‘3¢ = @ ‘00F = U YHUM |N|\T WOolj palenwis elep SyYAAD J0j synssy [ 3|qel



Page 11 of 20

Williams et al.

[ 29z [120 [ v1 2711 ] op€ [ s80 [ 8z [e691 | 160 [ 6208 [ T%T | pesewnss £ ‘gN | 7
| ¢sz | 600 | ¥1 | 11 | €16 | 280 | ¥ | 121 | 68¢C | 620 | 9 | ovT | zzoo=<+'dN | 7
| otc | 850 | 6'0 | v'8 | €6¢ | 2800 | T2 | 691 | soz | 920 | % | Te1 | spe0=<"dN | 7
| 8961 | 900 | ¥viz | 16 | €601 | v10 | avez | 88T | L€11 | v10 | o221 | 291 |  wex3-vns | ro 7
| 90t | 900 | vviz | 16 | g6 | ¥1°0 | s'vez | 8'81 | 68T | ¥1°0 | @oz | 2%1 | xoiddy-yiNS | 7
| vse | 290 | s1 | 601 | 6g€ | a0 | 22 | gor | €82 | 6270 | 9 | 0vT | perewnss 2 ‘4N | 7
| ¢ve | ¥o0 | 21 | TOT | TC€ | 98'0 | vz | 691 | 6.2 | 820 | 9 | ge1 | 22o0=<+'dN | 7
| g0z | es0 | 20 | vg | 182 | s80 | z'z | 991 | 65¢ | oz0 | 1 | oer | spveo=+"dN | 7
| 961 | 900 | zooz | 06 | €601 | v10 | 6'€zz | 281 | 611 | vT0 | 8691 | T'HT | wex3vms | |00 7
| 901 | 900 | zooz | 06 | g6 | v10 | 6'€cze | 28T | 6€T | ¥10 | 5691 | T'#T | ‘xoiddy-ynS | 7
| s)owry [ 14 | dd [dr [(owr |14 [dd |dL [()swr |14 [dd | dL | 7 7
| 91 = f | 0= | o= Em | PoYIa N | ¥4 feuioN |

'8u1119s Yoes JoJ S195e1Ep ()G J9A0 POYISW UDEd JO 9DUBLLIOLDY 95BI9AY 24035 T4 98BISAY 9Yl SI T4 PUB ‘S9AINISOH 9S|e JO Jaquunu
98eISAY S| d4 'SIAIISOd BNJ] JO Jaquinu 38esaAY $31ed1pul 41 | (PO F0 T 0 (1)d TOF 0T 0 (1)d TOFOFTO0 (1)d FOFTOFTO0 (1)d TOFO0FT0(1)d) = ¢ 248 SANS |esned Qg
91 JO S1USID1YJ90D uoIssaiBal 3y | ‘SHNS |esned Qg oJe 249yl ‘s|qe1 syl uj ‘10 = Z2 PUe ‘T°0 =% '000 ‘008 = d ‘TLL T = U YUM |\|NT WOy palenwis eiep SYAND J40j S1Nsay ¢ djqel



Williams et al.

setting. In Table 1, BGWAS either with using 7 = 0.022 or estimating 7 detects a
higher number of true positives compared to SMA in all settings and with all FDR
nominal levels. In addition, when compared to SMA, BGWAS reduces the number
of false positives by a factor of 10 or more. In Table 2, the number of true positives
detected by BGWAS with 7 = 0.022 or estimating 7 is similar to the number of true
positives detected by SMA when using a type 1 nominal level of 0.1. Importantly, in
Table 2, BGWAS reduces false positives by a factor of 100 or more. The reduction
in false positives is credited to both the BGWAS screening step and the BGWAS
model selection step. The BGWAS screening step is less conservative than SMA
and the BGWAS model selection step better controls FDR.

Different ways to specify 7 in our BGWAS approach offer their own benefits.
The use of 7 = 0.348 provides the best false discovery control out of any method
but also has the lowest true positive rate out of any method. Thus BGWAS with
7 = 0.348 is by far the most conservative method. Overall, BGWAS using 7 = 0.022
well balances the true positives and false discoveries in nearly all settings. Finally,
BGWAS estimating 7 performs the best in most circumstances in terms of true
positive rate.

The differences in performance of BGWAS in Table 1 and Table 2 are mainly due
to differences in sample size n, variance parameter x, and number of possible SNPs
p. Tables 1 and 2 are useful because their conditions are similar to those of the two
case studies, thus the results in these two tables inform us about the reliability of
the case studies results. However, to understand the impact of sample size, variance
parameter, and number of possible SNPs on the performance of BGWAS and SMA
methods, we need to also examine Tables S1 through S9 in the Supplementary Ma-
terials. Comparison of all the tables leads to three main conclusions. First, we note
that larger values of the variance parameter x lead to a decrease in the performance
of both BGWAS and SMA. Second, the impact of increasing the number of possi-
ble SNPs p depends on the sample size. If the sample size is small n = 400, then
increasing p from 225,000 to 800, 000 causes severe deterioration in performance of
both BGWAS and SMA. However, if the sample size is moderate n = 2,772, then
increasing p from 225,000 to 800,000 has little impact on the performance. Third,
when the sample size increases, both BGWAS and SMA are able to detect a larger
number of true causal SNPs. However, when the sample size increases, the number
of false discoveries increases tremendously for SMA. As a result, when the sample
size increases the performance of SMA in terms of F'1 either remains about the same
(when p = 800,000) or deteriorates (when p = 225,000) — this happens because the
simulation study is based on real-life correlated SNPs. In contrast, when the sample
size increases, the number of false discoveries remains well controlled by BGWAS.
As a result, as the sample size increases, the performance of BGWAS in terms of
F1 becomes even better.

A major consideration in the application of GWAS methods is the computational
cost of the procedures. Tables 1 and 2 show for each procedure the average time in
seconds averaged over 50 datasets. All timings in these tables and in the Supple-
mentary Material are for computations performed on 100 cores of a 128 core AMD
EPYC 7702 with 256 GB. All operations were implemented in the R statistical
language built with OpenBLAS for optimized numerical linear algebra [25]. As BG-
WAS is a two-step procedure, it can not be faster than the screening step. However,
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since both its screening step and the model selection step approximate the variance
from a baseline model, the times for BGWAS are much faster than a traditional
SMA such as EMMA [2]. In these tables the timings range from 2 to 8 times faster
for BGWAS. Therefore, BGWAS with different choices of T are accurate procedures
that maintain true positive rates while dramatically reducing the number of false
positives in an efficient manner.

Behavior of BGWAS when there is no Kinship Dependence Structure
To understand how the nonlocal prior procedure performs when data are simulated
from a linear model, we simulate 50 datasets from the model

Y=0l+XB+e, (17)

where € ~ N(0,0%I). Similarly to the general simulation study, o2 = 0.2. We use
the four different combinations of data sizes as in the general simulation study, that
is, n = 400 or n = 2,772 and p = 225,000 or 800,000. We again use the same
set of causal SNPs as in the general simulation study, where the number of causal
SNPs is 15 or 20 with all positions having value of 0.4 besides positions 1, 5, 9, 13,
and 17 where these positions take on the values of 0.1, 0.4, and 1.6. For the SMA
procedure, we assume the linear model without the kinship random effect. Thus,
the SMA procedure in this section is exact. Meanwhile, our BGWAS procedure
assumes the LMM given in Equation (17). However, note that for datasets where
BGWAS estimates s to be 0, then BGWAS will behave as if the fitted model is a
linear model with independent error structure.

Table 3 presents average number of true positives, false positives, and F1 score
for 50 simulated datasets for n = 400 and p = 225,000. Table 3 has similar results
to Table 1 in terms of true positives, false positives, and F1 score. Results for other
combinations of sample size, number of SNPs, and parameter values for the case
% = 0 shown in full detail in the Supplementary Material are also similar to results
for the linear mixed model. Therefore, BGWAS performs better than SMA even
when the true model is a linear model without kinship random effects.

Behavior of BGWAS when there are no Causal SNPs

To examine the behavior of BGWAS in the case when there is no true causal SNPs,
we have simulated 50 datasets for each combination of sample sizes (n = 400 and
n = 2,772), number of SNPs (p = 225,000 and p = 800, 000), and x (k = 0, k = 0.1,
and x = 1) from the model

Y =al + Zu +¢, (18)

where u ~ N(0,02xK) and € ~ N(0,0%1). Since there are no true causal SNPs in
this simulation study, for each method we recorded the number of false positives.
Table 4 presents the average number of false positives over the 50 datasets created
under the several considered combinations of sample size, number of SNPs and k.

All methods are relatively conservative when there are no causal SNPs. We note
that keeping 7 fixed at 0.348 is still the most conservative method out of all methods.
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Table 5 The number of SNPs identified by each method for each case study. Multiple comparison
corrections are based on the number of SNPs in a given genotype dataset.

Salt Stress Age First Drink

Method a=005 [a=01]a=005] a=01
SMA-Approx. 22 25 8 8
SMA-Exact 22 26 8 8
NP, 7 =0.348 4 4 1 2
NP, 7 = 0.022 5 38 3 4
NP, 7 estimated 7 7 4 6

More importantly, when there are no causal SNPs, BGWAS with an estimated 7
from the data controls false discoveries better than fixing 7 = 0.022. Combined with
the results from the general simulation study, BGWAS with estimating 7 from the
data is the best method.

Recommendation

We have considered BGWAS with multiple different choices of 7 and different FDR
nominal values. Both estimating 7 from the data and setting 7 at 0.022 have similar
performance in terms of the F1 score in almost all the combinations of the simulation
study parameters. We note that when 7 is estimated, the prior is an Inverse Gamma
prior with a prior mean of 0.022. Therefore, the similar performance of these two
methods is expected. Estimating 7 tends to have slightly higher false discoveries
and slightly higher true positives comparatively in the general simulation study.
In the case of no causal SNPs, when compared to fixing 7 at 0.022, estimating 7
had a smaller number of false discoveries. As the goal of GWAS is detection of true
positive SNPs while maintaining false discoveries to a reasonable level, we think that
estimating 7 from the data is the best approach for conducting real GWAS analyses.
In this same light, setting the nominal level at 0.1 instead of 0.05 provided similar
F1 scores but higher number of true positives. Therefore, our recommendation for
GWAS analyses is estimating 7 from the data and using a FDR nominal level of
0.1.

Case Studies

To demonstrate the utility and flexibility of BGWAS, we present two case studies
with real data analyses. First, BGWAS is applied to data from a published study
of salt stress on the selfing species A. Thaliana [24]. Second, BGWAS is applied to
a study of alcohol dependency in humans and explores the response variable “age
of first drink”. To normalize and variance-stabilize the data, the logarithm trans-
formation has been applied to age of first drink. To briefly highlight the differences
between BGWAS and SMA, Table 5 presents the number of SNPs found by each
method for each nominal FDR level.

For each application and under each FDR level, BGWAS with different choices of
7 yields a much smaller number of identified SNPs than the SMA procedures. In
addition, the results of the simulation study suggest that many of the SNPs found by
the SMA methods may be false positives. Therefore, following the recommendation
from the early section, the remainder of this section discusses the SNPs discovered
using BGWAS with estimating 7 from the data.
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Salt Stress in A. Thaliana

We analyze data from a study that considers three different settings of salt stress to
identify SNPs and their genes associated with the response of A. Thaliana to salt
stress [24]. The three settings considered by [24] were a control setting, 75 mM of
NaCl, and 125 mM of NaCl. Different measures of the root structure were taken to
gauge how salt stress impacted the plants. In our case study, we analyze the average
length of lateral root per main root length for 328 A. Thaliana accessions under 75
mM NaCl salt stress. Genotype data was sequenced in [26]. Only SNPs with minor
allele frequency greater than 0.01 were included in the analysis.

Following the recommendation given earlier, here we discuss the SNPs found by
BGWAS estimating 7 from the data and with a nominal FDR level of 0.1. Of
the seven SNPs identified, one SNP is perfectly correlated to two other SNPs and
another SNP is perfectly correlated with another SNP, implying nine identified
SNPs. The 9 SNPs are located in the genes AT1G48300.1, AT1G62500, nearby
AT2G38970, AT3G60370, AT4G14305.1, AT4G39955, AT4G39970, AT4G40000,
AT5G28500.1. SNPs found in AT4G39955, AT4G39970, and AT4G40000 are in
linkage disequilibrium. Importantly, AT1G62500 (also known as DEG27) is a gene
that becomes differentially expressed in the event of salt stress [27]. In addition,
AT4G39955 is an «/B-Hydrolases superfamily protein; these proteins have been
shown to enhance salt tolerance in the sweet potato family [28].

Alcohol Use Disorder in Humans

We consider publicly available data from The Collaborative Study on the Genetics
of Alcoholism (COGA), which was performed to identify genetic factors associated
with alcohol dependency [29]. In this case study we analyze the response variable
“log of age of first drink” for 1738 people of European ancestry. Illumina sequenc-
ing provided approximately 1 million SNPs. Only SNPs with minor allele frequency
larger than 0.01, not in the X/Y chromosomes, and with RS identifiers were inves-
tigated. To control for the effect of sex, this analysis was performed on the residuals
of the linear mixed model for log age of first drink regressed on sex.

Following the recommendation given earlier, here we discuss the SNPs found by
BGWAS estimating 7 from the data and with a nominal FDR level of 0.1. The six
SNPs discovered are located in genes KCNMAT1, near PPIAP33, ANKS1B, RBL1,
ABCF1, and LINC02237. We note that KCNMAT1 is known as a gene associated
with alcohol dependency [30]. In addition, in a study with people of Chinese Han
ethnicity, ANKS1B has been associated with alcoholism [31]. Finally, genes RBL1
and ABCF1 may be good candidates for further investigation.

Conclusion and Future Directions

We have proposed BGWAS, a novel Bayesian two-step procedure based on nonlocal
priors for the analysis of GWAS data. In BGWAS, we propose in Equation (4) a
hierarchical approach where the regression coeflicients for the several SNPs share
the same mixing probability my and the same scale parameter 7. Thus, BGWAS
borrows strength across SNPs to estimate my and 7 in a very efficient Empirical
Bayes approach. With the estimates 7y and 7, in both screening and model selection
steps, BGWAS uses Bayes theorem to efficiently compute posterior probabilities
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and make decisions on which SNPs to select. We note that it is not clear how to
implement a classical/frequentist approach that would borrow strength across SNPs
in a way similar to BGWAS. In addition, we note that our simulation studies with
real SNP data show that, when compared to widely used frequentist procedures,
BGWAS has favorable performance with much smaller FDR.

One important issue when using nonlocal priors is the specification of the scale
parameter 7. Previous literature has proposed 7 = 0.348 for usual linear regression
problems [10] and 7 = 0.022 for GWAS analysis [17]. In contrast, here we propose an
empirical Bayes procedure that estimates 7 from the GWAS data. Our simulation
studies show that, when compared to fixing 7 at 0.348 or 0.022, our procedure that
estimates 7 performs the best in most circumstances in terms of true positive rates.
In addition, in the case when there are no causal SNPs, our procedure that estimates
7 from the data controls false discoveries better than fixing 7 at 0.022. Therefore,
our recommendation for GWAS analyses is to estimate 7 from the data.

Of the nine SNPs found by BGWAS for the Salt Stress case study, two of the
SNPs were found in genes that have associated salt stress publications. Given the
results of the simulation setting most closely related to this case study, Table 1 in
the manuscript, we strongly believe that most of the other SNPs found by BGWAS
are worthy of further investigation. The human case study of AUD found six SNPs
of which two were located in genes previously related to AUD in publications.
Similarly to the A. Thaliana case study, the simulation setting most similar to that
of the case study, Table 2 of the manuscript, suggests that the remainder of the
SNPs found by BGWAS are highly likely to be true positives and worth further
investigation.

There are many possible avenues for future research. For example, a potentially
useful avenue is to extend our work to non-Gaussian data such as the number of
lateral roots in plants or the indicator of alcohol dependency in studies of alcohol use
disorder. Another possible area of research would be to extend BGWAS to BioBank
scale data.
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