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A B S T R A C T

Rank aggregation has ubiquitous applications in computer science, operations research, and various other
fields. Most attention on this problem has focused on an NP-hard variant known as Kemeny aggregation,
for which solution approaches with provable guarantees that can handle difficult high-dimensional instances
remain elusive. This work introduces exact and approximate methodologies inspired by the social choice
foundations of the problem, namely the Condorcet Criterion. We formalize the concept of the finest-Condorcet
partition for rankings that may contain ties and specify its required conditions. We prove that this partition
is unique and devise an efficient algorithm to obtain it. To deal with instances where it does not yield
many subsets, we propose Approximate Condorcet Partitioning (ACP), with which larger subsets can be
further broken down and more easily solved. ACP is a scalable solution technique capable of handling large
instances while still providing provable guarantees. Although ACP approximation factors are instance-specific,
their values were lower than those offered by all known constant-factor approximation schemes — inexact
algorithms whose resulting objective values are guaranteed to be within a specified fixed percent of the optimal
objective value — for all 113 instances tested herein (containing up to 2,820 items). What is more, ACP
obtained solutions that deviated by at most two percent from the optimal objective function values for a large
majority of these instances.
1. Introduction

Rank aggregation is a well studied problem in operations research,
computer science, and computational social choice, which arises in
a variety of situations where 𝑚 judges are asked to rank 𝑛 items
based on some quality of interest. The objective is to find an aggregate
ranking, defined as the ranking of items with the lowest cumulative
disagreement to the given rankings — prior related works often refer
to this as the consensus ranking, but we eschew use of this term to avoid
the implication that the solution ranking does not cause disagreement.
Rank aggregation has been utilized in wide-ranging real-world situa-
tions. A recent application is the pool riding problem, whose goal is
to assign a pool of passengers to a set of drivers with predetermined
routes. Drivers are ranked for each passenger based on different criteria
such as percentage of matched routes and initial distance; the final
ranking is obtained by consolidating the rankings associated with each
criterion. Rank aggregation has been shown to increase the passenger–
driver matching rate (Şahin et al., 2022). Another popular application
is within the field of bioinformatics, specifically, to accurately identify
and rank genes possibly related to a disease from micro-array gene
expression data (Mandal and Mukhopadhyay, 2017; Wald et al., 2012).
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E-mail addresses: sina.akbari@asu.edu (S. Akbari), adres@asu.edu (A.R. Escobedo).

Since various statistical tools and data mining techniques can be ap-
plied for this purpose, rank aggregation has been utilized to avoid
relying on any single technique or study. On a similar direction, rank
aggregation is being increasingly utilized as an ensemble technique to
consolidate output rankings of different machine learning algorithms
seeking to evaluate a common set of entities. One such example is the
label ranking problem, whose objective is to predict the ranking of a
set of labels, given a set of input attributes. In this context, the output
of different label ranking algorithms can be aggregated to produce a
more robust prediction (Aledo et al., 2017a). Similar uses in related
contexts include feature selection (Dahiya et al., 2016; Drotár et al.,
2019), natural language processing (Cascaro et al., 2019; Onan, 2018),
recommender systems (Oliveira et al., 2020), and data query (Cohen-
Boulakia et al., 2011). There are also wider applications in meta-search
engines (Desarkar et al., 2016; Dwork et al., 2001), crowdsourcing and
human computation (Kemmer et al., 2020; Mao et al., 2013), multi-
criteria decision-making (Dong et al., 2021; Mohammadi and Rezaei,
2020), and network inference (Marbach et al., 2012; Puerta et al.,
2021).
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One of the principled ways to address the rank aggregation problem
is by using distances founded on rigorous mathematical axioms (Brandt
et al., 2016; Cook, 2006). Kemeny and Snell (1962) introduced the
first such framework. The authors proposed a set of axioms — non-
negativity, triangular inequality, anonymity, extension, scaling, and
commutativity — that should be satisfied by any distance metric on
rankings, and they introduced a distance that uniquely satisfies them.
The optimization problem induced with this distance metric is known
as the Kemeny aggregation problem (Kemeny-Agg). The aggregate rank-
ing returned by Kemeny-Agg satisfies various key social choice properties
such as neutrality, local stability, and the Condorcet Criterion (Brandt
et al., 2016; Young and Levenglick, 1978), which translate into prac-
ical benefits such as spam detection (Dwork et al., 2001). These
heoretical benefits come at a high computational price as Kemeny-Agg
s NP-hard when there are four or more input rankings (Bartholdi et al.,
989; Dwork et al., 2001). It is worth adding that non-strict rankings
i.e., rankings that may contain ties) are more numerous than strict
ankings (i.e., rankings without ties) over the same set of items —
! strict rankings compared to approximately 0.5𝑛!(1.4)𝑛+1 non-strict
ankings (Gross, 1962). Hence, their aggregation is much more difficult,
.e., due to a higher number of possible solution rankings that must be
onsidered.
Kemeny-Agg has been modeled and solved using binary programming

ormulation in Conitzer et al. (2006), Cook (2006) and Yoo and Es-
obedo (2021). Other exact methods include the specialized branch and
ound algorithm of Emond and Mason (2002) and the exact implicit
numeration algorithm of Azzini and Munda (2020). Exact methods
an solve only small- to medium-sized instances; the largest instances
olved exactly, for example, in Azzini and Munda (2020), Emond and
ason (2002), Conitzer et al. (2006), Betzler et al. (2014), and Yoo and
scobedo (2021) had 14, 15, 40, 200, and 210 items, respectively. Due
o the general computational intractability of Kemeny-Agg, large-scale
nstances have been solved nearly exclusively via inexact methods.
hese include various heuristics such as those of Aledo et al. (2017b,
019), Badal and Das (2018), D’Ambrosio et al. (2017) and Ding et al.
2018), to name but a few. Although many of them are designed to com-
ute promising solutions quickly, heuristics generally do not provide
ormal guarantees on the solution quality. Hence, various researchers
ave also focused on developing approximation schemes – algorithms
hose resulting objective values are guaranteed to be within a specified
ixed percent of the objective value – which will serve as the basis
f comparison for the methods developed herein. The two ensuing
aragraphs provide a review of notable approximation algorithms for
olving Kemeny-Agg.
First, we review approximation algorithms designed for Kemeny-

gg with strict rankings. The aggregate list according to Spearman’s
ootrule distance is a 2-approximation algorithm (Dwork et al., 2001)
or Kemeny-Agg; this distance calculates the sum of the absolute dif-
erences between the rank positions assigned to each of the items.
ilon et al. (2008) proposed KwikSort and LP-KwikSort. KwikSort,
n expected 2-approximation algorithm, repeatedly chooses a random
tem as the pivot, and it divides the remaining items into two groups
the sets of items ranked ahead and behind the pivot item — based

n the pairwise comparison information; LP-KwikSort also chooses a
andom item as the pivot, and it divides the remaining items into two
roups based on the linear programming (LP) relaxation solution of a
emeny-Agg formulation. The authors proved that the best of KwikSort
nd Pick-A-Perm (see the next paragraph) yields an expected 11/7-
pproximation, and the best of LP-KwikSort and Pick-A-Perm yields
n expected 4/3-approximation. In effect, KwikSort and LP-KwikSort
o well on instances in which the Pick-A-Perm does not, and vice
ersa. Kenyon-Mathieu and Schudy (2007) derived the first polynomial
ime approximation scheme (PTAS) for the feedback arc set problem
FASP) on tournaments; a PTAS is a (1 + 𝜖)-approximation — i.e., it
eturns a solution up to (1 + 𝜖) times the optimal objective function
2

alue, for any fixed value of 𝜖 > 0. The authors also introduced t
weighted generalization of the PTAS for FASP to provide the first
TAS for Kemeny-Agg. Because the time complexity of this PTAS is
oubly exponential in 1∕𝜖, its implementation becomes impractical for
ufficiently small 𝜖 (Betzler et al., 2014).
Second, we review approximation algorithms suitable for strict and

on-strict rankings. Pick-A-Perm (Ailon et al., 2008) selects one of the
nput rankings at random, and its deterministic version called BestInput,
icks the input ranking with the lowest cumulative Kemeny–Snell
istance to the input rankings. Pick-A-Perm and BestInput are expected
-approximation algorithms for strict rankings; however, their approxi-
ation factors have not yet been defined for the case of non-strict rank-
ngs. Ailon (2010) proposed RepeatChoice, an expected 2-approximation
lgorithm, and LPKwikSortℎ, an expected 3/2-approximation. While
hese two algorithms allow the input rankings to be non-strict, the
ggregate ranking is required to be strict, which is not be suitable for
any applications. RepeatChoice repeatedly and without replacement
hooses an input ranking and refines an initial non-strict ranking until
ll ties are broken. LPKwikSortℎ uses a novel LP rounding technique
nd is the first algorithm that, by itself, provides an (expected) ap-
roximation factor lower than 2. Van Zuylen and Williamson (2007)
roposed a derandomized version of KwikSort, referred to herein as
eterministicKwikSort, which is an expected 2-approximation algorithm,
nd showed that the best solution achieved by their algorithm and
epeatChoice provides an expected 8/5-approximation. Their work,
imilar to Ailon (2010), allows the input rankings to be non-strict but
ot the aggregate ranking.
Next, we turn to partitioning algorithms that have been developed

o expedite exact methods for Kemeny-Agg based on key social choice
roperties guaranteed to be satisfied by the optimal solution(s) to
his problem. A small number of works have introduced theory and
lgorithms that enable certain large instances to be decomposed into
set of smaller subproblems while guaranteeing that solving them

ndependently still induces an optimal solution to the original problem.
ore specifically, these specialized partitioning methods efficiently
etermine the relative ordering of subsets of items; however, the exact
rdering of the items within each individual subset is determined by
olving a Kemeny-Agg subproblem restricted to that subset. The final
anking is obtained by properly concatenating the shorter rankings of
tems within each subset according to how the subsets were ordered in
he partitioning. These partitioning schemes have been utilized to accel-
rate exact formulations (Betzler et al., 2014; Schalekamp and Zuylen,
009; Yoo and Escobedo, 2021) and lower bounding techniques (Akbari
nd Escobedo, 2021) of Kemeny-Agg. A notable scheme is based on the
xtended Condorcet Criterion (XCC) proposed by Truchon (1998), who
roved that the optimal solutions to Kemeny-Agg for strict rankings are
onsistent with XCC and devised a partitioning algorithm that takes
dvantage of this theoretical guarantee. Betzler et al. (2014) introduced
nother scheme based on the 3/4-Majority Rule. The authors proved
hat this different type of partitioning scheme cannot further partition
n instance that has already been partitioned by XCC, meaning that
CC partitioning is always at least as good as partitioning using the
/4-Majority Rule. Yoo and Escobedo (2021) showed that XCC is
nconsistent with the solution to Kemeny-Agg with non-strict rankings,
hat is, the optimal solution to Kemeny-Agg may violate XCC. In the
ight of this fact, they proposed the Non-strict Extended Condorcet
riterion (NXCC), a generalization of XCC suitable for both strict and
on-strict rankings, and introduced a partitioning algorithm based on
equential pairwise comparisons. The authors reported that whenever
nstances from the Preflib data set (Mattei and Walsh, 2013) with up
o 210 items were partitionable, the combined exact solution times of
he decomposed subproblems — using their exact binary programming
ormulation — were at least 25% and up to 96% faster than those
f the full problem. Betzler et al. (2014) reported similar results on
he effectiveness of XCC with up to a 35x computational speedup.
ecently, Akbari and Escobedo (2021) reported that NXCC rendered up

o a 25x computational improvement when implemented to compute
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lower bounds for Kemeny-Agg with non-strict rankings. It is worth
entioning that a related yet significantly distinct approach introduced
y Milosz and Hamel (2018, 2020) aims to find the relative ordering
f certain item-pairs in the aggregate ranking. While this approach was
hown to be more effective than XCC in practice, it is only applicable
or strict rankings and it has a time complexity of 𝑂(𝑛3), whereas XCC
has a time complexity of 𝑂(𝑛2).

This work makes three main contributions. First, it improves XCC-
and NXCC-based decomposition by defining the finest possible partition
that is consistent with these properties. This finest-Condorcet partition
yields the most subsets among all such possible partitions, thereby
maximizing their potential computational benefits. Second, it derives
an efficient algorithm for obtaining the finest-Condorcet partition. Even
though, XCC- and NXCC-based decomposition are useful on certain
instances, not all instances are partitionable (Betzler et al., 2014; Yoo
and Escobedo, 2021) and when they are, there may be one or a few
large subsets that are difficult to solve to optimality, hence limiting
the usefulness of these schemes in practice. Motivated by this fact, the
present work introduces as its third main contribution Approximate Con-
dorcet Partitioning (ACP), a scalable solution approach for Kemeny-Agg
with provable guarantees suitable for high-dimensional instances. ACP
attempts to further decompose the finest-Condorcet partition whenever
there are one or more subsets (i.e., subproblems) that are too large to
solve using exact methods. This contribution is accompanied by the
derivation of instance-specific approximation factors, which are appli-
cable to any item-partitioning scheme, including those that may not be
consistent with Condorcet extensions. Improved guarantees are derived
for the proposed solution technique via ACP. Although these approxi-
mation factors are also instance-specific, their values were lower than
those offered by all constant-factor approximation algorithms known to
date, for all tested instances herein.

The rest of this paper is organized as follows. Section 2 introduces
the notations used throughout this paper, provides some preliminary
definitions, and reviews the Condorcet Criterion and its extensions. Sec-
tion 3 introduces the finest-Condorcet partition and proves its unique-
ness; furthermore, it develops an efficient algorithm to construct it.
Section 4 introduces the Approximate Condorcet Partitioning technique
and derives its provable guarantees. Section 5 presents the results
of comparing this technique with various prominent approximation
algorithms. Finally, Section 6 concludes the paper.

2. Notation and preliminaries

Rankings can be categorized as strict and non-strict. Strict rankings
refer to the case where there are no ties, while non-strict rankings refer
to the case where there may be ties. It is worth emphasizing that set of
non-strict rankings includes all strict rankings; stated otherwise, non-
strict rankings do not necessarily include ties, rather they may contain
ties. Both strict and non-strict rankings can further be categorized as
complete and incomplete; all items are ranked in the former and some
items may be unranked in the latter. This work focuses on complete
non-strict rankings. However, all techniques proposed herein are ap-
plicable to strict rankings as well due to aforementioned relationship
between strict and non-strict rankings. This section is organized as fol-
lows. Section 2.1 describes basic mathematical notations to introduce
the rank aggregation problem, and Section 2.2 describes the social
choice-inspired decomposition schemes that serve as the foundations
of this paper.

2.1. Mathematical notation

Let  = {1, 2,… , 𝑛} be the set of items,  = {1, 2,… , 𝑚} be the set
of indices of input rankings over  , and 𝝈𝑙 be the 𝑙th input ranking,
where 𝑙 ∈ . Additionally, let 𝜮 ⊂ Z𝑛 be the set of all possible
complete ranking vectors over  , and 𝜎𝑙𝑖 be the rank of item 𝑖 in 𝝈𝑙.
As a convention, 𝑖 ≻ 𝑗 indicates that item 𝑖 is preferred over item
3

𝝈

𝑗 in 𝝈 (i.e., 𝜎𝑖 < 𝜎𝑗), and 𝑖 ≈𝝈 𝑗 indicates that 𝑖 and 𝑗 are tied in 𝝈
(i.e., 𝜎𝑖 = 𝜎𝑗). Additionally, let a full rank reversal denote the case where
two rankings 𝝈1,𝝈2 fully disagree over the relative orderings of 𝑖 and
𝑗 (one of them ranks 𝑖 ahead of 𝑗, and the other ranks 𝑗 ahead of 𝑖);
additionally, let a partial rank reversal denote the case where 𝑖 and 𝑗 are
tied in one ranking, but not in the other.

Definition 1. The Kemeny–Snell distance between two complete rank-
ings 𝝈1,𝝈2, denoted by 𝑑𝐾𝑆 (𝝈1,𝝈2), is given by

𝑑𝐾𝑆 (𝝈1,𝝈2) = 1
2
∑

𝑖∈

∑

𝑗∈

|

|

|

sign(𝜎1𝑖 − 𝜎1𝑗 ) − sign(𝜎
2
𝑖 − 𝜎2𝑗 )

|

|

|

. (1)

The function 𝑠𝑖𝑔𝑛(𝑣) returns 1 if 𝑣 > 0, −1 if 𝑣 < 0, and 0 otherwise.
In the case of strict rankings, distance 𝑑𝐾𝑆 counts the number of full
rank reversals; in the case of non-strict rankings, it assigns a weight of
two for each full rank reversal and a weight of one for every partial
rank reversal.

Definition 2. The aggregate ranking obtained from Kemeny-Agg can be
mathematically stated as:

𝝈∗ = argmin
𝝈∈𝜮

∑

𝑙∈
𝑑𝐾𝑆 (𝝈,𝝈𝒍). (2)

Definition 3. Let 𝑠𝑖𝑗 = |𝑙 ∈  ∶ 𝑖 ≻𝝈𝑙 𝑗| and 𝑡𝑖𝑗 = |𝑙 ∈  ∶ 𝑖 ≈𝝈𝑙 𝑗| be the
number of input rankings in which item 𝑖 is preferred over item 𝑗, and
the number of input rankings in which 𝑖 and 𝑗 are tied, respectively.

Definition 4 (Yoo and Escobedo, 2021). Item 𝑖 is pairwise preferred by
a decisive majority over item 𝑗 if 𝑠𝑖𝑗 > 𝑠𝑗𝑖 + 𝑡𝑖𝑗 , that is, the number of
input rankings which prefer 𝑖 to 𝑗 is greater than the number of input
rankings which prefer 𝑗 to 𝑖, plus those which tie them. If neither 𝑖
is preferred over 𝑗 nor 𝑗 is preferred over 𝑖, then there is no decisive
majority that prefers 𝑖 over 𝑗 or 𝑗 over 𝑖.

For succinctness, the rest of the paper employs the term pairwise
referred as shorthand for pairwise preferred by a decisive majority.

efinition 5. Let 𝑑𝐾𝑆 (𝝈) be the cumulative Kemeny–Snell distance of
given ranking 𝝈 ∈ 𝜮 to the input rankings; it is useful to also expand
𝐾𝑆 (𝝈) as

∑

𝑖∈𝑋
∑

𝑗∈𝑋 𝑑𝐾𝑆 (𝜎𝑖𝑗 ), where 𝑑𝐾𝑆 (𝜎𝑖𝑗 ) is the contribution of
ach pair of items (𝑖, 𝑗) in 𝑑𝐾𝑆 (𝝈), which is given by

𝐾𝑆 (𝜎𝑖𝑗 ) =

⎧

⎪

⎨

⎪

⎩

2𝑠𝑗𝑖 + 𝑡𝑖𝑗 if 𝑖 ≻𝝈 𝑗,
2𝑠𝑖𝑗 + 𝑡𝑖𝑗 if 𝑗 ≻𝝈 𝑖,
𝑠𝑖𝑗 + 𝑠𝑗𝑖 if 𝑖 ≈𝝈 𝑗.

(3)

Eq. (3) follows from the definition of the Kemeny–Snell distance
unction. As stated earlier, distance 𝑑𝐾𝑆 assigns a weight of 2 for
ach rank reversal and a weight of 1 for every partial rank reversal.
herefore, if 𝑖 is ranked ahead of 𝑗 in 𝝈, the imposed distance for this
air equals the number of input rankings where 𝑗 is ranked ahead of
, times 2, plus the number of input rankings where 𝑖 and 𝑗 are tied.
urthermore, if 𝑖 and 𝑗 are tied in 𝝈, the imposed distance for this pair
quals the number of input rankings where either 𝑖 is ranked ahead of
or vice versa.

efinition 6. Let [𝑐𝑖𝑗 ] ∈ Z𝑛×𝑛 be the Cumulative Ranking (CR) matrix
hose individual entries are obtained as 𝑐𝑖𝑗 = 𝑠𝑖𝑗 + 𝑡𝑖𝑗 − 𝑠𝑗𝑖, when the
nput rankings are complete.

The CR matrix is used to linearize Kemeny-Agg formulation in Yoo
nd Escobedo (2021). Here, it is employed to reduce the space require-
ents of the proposed algorithm.
An ordered set of subsets 𝑿 = {𝑋1, 𝑋2,… , 𝑋𝑤} is a partition of  if

𝑤
𝑘=1𝑋𝑘 =  and 𝑋𝑘∩𝑋𝑘′ = ∅,∀𝑘, 𝑘′ ∈ {1,… , 𝑤}, with 𝑘 ≠ 𝑘′. Subset 𝑋𝑘
s said to be preferred over subset 𝑋𝑘′ , written as 𝑋𝑘 ≻ 𝑋𝑘′ , if all items
n 𝑋 are pairwise preferred over all items in 𝑋 . Similar to Laslier
𝑘 𝑘′
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(1997), we call partition 𝐗 a null partition if |𝐗| = 1, a trivial partition
f |𝐗| = 𝑛, and a proper partition otherwise.
We close this section with an example to illustrate the featured

otation.

xample 1. Consider an instance with 6 rankings of 6 items. The input
ankings and the pairwise comparison matrices, 𝐒 = [𝑠𝑖𝑗 ] ∈ Z6×6,
= [𝑡𝑖𝑗 ] ∈ Z6×6, and 𝐶𝑅 = [𝑐𝑖𝑗 ] ∈ Z6×6, are given by

Item Input rankings
𝝈1 𝝈2 𝝈3 𝝈4 𝝈5 𝝈6

𝟏 1 1 1 1 1 1
𝟐 3 3 3 2 2 1
𝟑 2 2 4 4 2 2
𝟒 3 3 3 3 3 5
𝟓 4 4 2 4 5 3
𝟔 5 5 5 5 4 4

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 5 6 6 6 6
0 0 3 3 5 6
0 2 0 4 4 6
0 0 2 0 4 5
0 1 1 2 0 5
0 0 0 1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, T =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0
1 0 1 3 0 0
0 1 0 0 1 0
0 3 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

CR =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 6 6 6 6 6
−4 0 2 6 4 6
−6 0 0 2 4 6
−6 0 −2 0 2 4
−6 −4 −2 −2 0 4
−6 −6 −6 −4 −4 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Consider 𝝈1 and 𝝈6. The two rankings fully disagree over the
elative ordering of item-pairs (2, 3), (4, 5), and (4, 6), and they
artially disagree over the relative ordering of item-pairs (1, 2) and (2,
). Since 𝑑𝐾𝑆 assigns a weight of two to every full rank reversal and a
eight of one to every partial rank reversal, we have 𝑑𝐾𝑆 (𝝈1,𝝈6) = 8.

Furthermore, the cumulative distance between 𝝈1 and the rest of input
rankings is given by

𝑑𝐾𝑆 (𝝈1) =
6
∑

𝑙=2
𝑑𝐾𝑆 (𝝈1,𝝈𝒍) = 0 + 10 + 6 + 4 + 8 = 28.

.2. The Condorcet Criterion and its variants

The Condorcet Criterion (CC), first proposed by Marquis de Con-
dorcet (1785), is among the most prominent social choice properties
arising from voting theory. CC states that a candidate who is pairwise
preferred over all other candidates must be declared as the top-ranked
candidate, formally known as the Condorcet Winner. CC can be formally
stated as (Young, 1988)

if ∃ 𝑖 ∈ 𝑋 ∶ 𝑠𝑖𝑗 > 𝑠𝑗𝑖 ∀𝑗 ∈ ∖{𝑖} ⟹ 𝑖 ≻𝝈 𝑗 ∀𝑗 ∈ ∖{𝑖},

here 𝝈 is the aggregate ranking. A voting rule is said to be Condorcet
onsistent if it always selects the Condorcet Winner as the top-ranked
tem, when one exists (Brandt et al., 2016). There are other Condorcet
onsistent rank aggregation methods such as Dodgson’s rule (Dodgson,
876), maximin rule (Young, 1977), and ranked pairs rule (Tideman,
017).
Truchon (1998) proposed the Extended Condorcet Criterion (XCC),

hich generalizes CC to guarantee an ordering of item-subsets in the
ggregate ranking. XCC states that if  can be arranged into a partition
= {𝑋1, 𝑋2,… , 𝑋𝑤} such that 𝑋𝑘 ≻ 𝑋𝑘′ , ∀𝑘, 𝑘′ ∈ {1,… , 𝑤}, with
< 𝑘′, then all items in 𝑋𝑘 must be ranked ahead of all items in 𝑋𝑘′

n the aggregate ranking. XCC can be stated formally as:

f 𝑠𝑖𝑗 > 𝑠𝑗𝑖 ∀𝑖 ∈ 𝑋𝑘 ∀𝑗 ∈ 𝑋𝑘′ ∀𝑘 < 𝑘′

⟹ 𝑖 ≻ 𝑗 ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑋 ∀𝑘 < 𝑘′,
4

𝝈∗ 𝑘 𝑘′
here 𝝈∗ is the optimal solution to Kemeny-Agg. This means that, in
he optimal solution, items belonging to lower-indexed subsets in the
artition must be strictly ranked ahead of items belonging to higher-
ndexed subsets. This partitioning scheme can be very useful in practice
ince through these partitioning approaches, certain large instances can
e decomposed into a set of smaller subproblems while guaranteeing
hat solving them independently still induces an optimal solution to the
riginal problem. Note that the precise ordering of the items within
ach subset is not obtained by applying this property alone; it is
etermined by solving rank aggregation subproblems restricted to the
tems in each subset of the partition — this applies to all partitioning
chemes discussed in this paper.
Recently, Yoo and Escobedo (2021) showed that Kemeny-Agg with

on-strict rankings is inconsistent with XCC. That is, solutions to this
roblem, which allows rankings with and without ties, may violate
CC. The authors defined a social choice property called the Non-strict
xtended Condorcet Criterion (NXCC), which can be stated formally as:

f 𝑠𝑖𝑗 > 𝑠𝑗𝑖 + 𝑡𝑖𝑗 ∀𝑖 ∈ 𝑋𝑘 ∀𝑗 ∈ 𝑋𝑘′ ∀𝑘 < 𝑘′

⟹ 𝑖 ≻𝝈∗ 𝑗 ∀𝑖 ∈ 𝑋𝑘 ∀𝑗 ∈ 𝑋𝑘′ ∀𝑘 < 𝑘′.

bserve that, for the case with all strict rankings (i.e., 𝑡𝑖𝑗 = 0 ∀𝑖, 𝑗 ∈
), NXCC becomes XCC. It was formally demonstrated in Yoo and
scobedo (2021) that the aggregate rankings returned by Kemeny-Agg
or non-strict rankings are consistent with NXCC.

. The finest-Condorcet partition

Henceforth, we will denote partitions based on XCC and NXCC
imply as Condorcet partitions, to distinguish them from alternative
artitioning schemes (e.g. see Betzler et al., 2014). The rest of this
ection is organized as follows. Section 3.1 formally introduces the
oncept of the finest-Condorcet partition, specifies its conditions, and
roves that it is unique. Section 3.2 proposes a novel algorithm for
btaining the finest-Condorcet partition.

.1. Definition and properties

Let ℘( ) denote the class of partitions satisfying NXCC. This class
an contain more than one partition; however, certain members of
( ) are more computationally expedient than others. In particular,
fter obtaining a Condorcet partition, it is necessary to solve a Kemeny-
gg subproblem for each subset of the partition and then to concatenate
he separate solutions, in proper order, to obtain a solution to the
riginal problem. The worst case happens when the instance has a null
ondorcet Partition (|𝐗| = 1), and the best case happens when the
nstance has a trivial Condorcet partition (|𝐗| = 𝑛) (i.e., the order of
he singleton subsets in the partition provides the optimal ranking of
ll items). For this reason, it is desirable to obtain partitions with more
ubsets and/or with smaller subsets. The ensuing example illustrates the
ifferences between multiple NXCC partitions and motivates our focus
n the finest among all such partitions.

xample 2. Consider the instance given in Example 1. There are seven
XCC partitions: 𝐗1 = {{1}, {2, 3, 4}, {5}, {6}}, 𝐗2 = {{1, 2, 3, 4}, {5},
6}}, 𝐗3 = {{1, 2, 3, 4, 5}, {6}}, 𝐗4 = {{1}, {2, 3, 4}, {5, 6}}, 𝐗5 =
{1, 2, 3, 4}, {5, 6}}, 𝐗6 = {{1}, {2, 3, 4, 5}, {6}}, and 𝐗7 = {{1, 2, 3, 4, 5,
}}. The first is the finest and most desirable, as it has the highest
umber of subsets; indeed, the only subproblem that needs to be solved
s the one corresponding to items 2, 3, 4 (since the other subsets are
ingletons). Notice that it is possible to further partition at least one
ubset in 𝐗2–𝐗7 while satisfying NXCC. Partition 𝐗1 implies that item
will be ranked first, items 2, 3, and 4 will be ranked ahead of items 5
nd 6, and item 5 will be ranked ahead of item 6 in the optimal solution
o Kemeny-Agg; however, this partition on its own cannot determine the
xact ordering of the three items in the second subset.
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The concept of a finest-Condorcet partition was first introduced

in Truchon (1998), although its formal definition or required condi-
tions were not provided therein. This partition is an adaption of the
unique minimal decomposition (Laslier, 1997) of a tournament, which is
applicable only for aggregating strict rankings. Next, we formally define
an extension of the finest-Condorcet partition that is suitable for both
strict and non-strict rankings, and we specify its required conditions.

Definition 7. Partition 𝐗𝑓 ∈ ℘( ) is the finest-Condorcet partition if
there is no other partition 𝐗 ∈ ℘( ) such that |𝐗| > |𝐗𝑓

|, that is, 𝐗𝑓

is the partition with the most subsets.

For any 𝐗 ∈ ℘( )∖𝐗𝑓 — i.e., all but the finest partition of the class
— it is possible to further decompose at least one of the subsets such
that the resulting partition still satisfies NXCC. To improve both XCC
and NXCC, we add a requirement that is only satisfied by 𝐗𝑓 . Let ℘𝑓 ( )
be the class of finest-Condorcet partitions. Any 𝐗𝑓 ∈ ℘𝑓 ( )must satisfy

∀𝑋𝑘 ∈ 𝐗𝑓 , ∄𝑋𝑘 ⊂ 𝑋𝑘 ∶ 𝑠𝑖𝑗 > 𝑠𝑗𝑖 + 𝑡𝑖𝑗 , ∀𝑖 ∈ 𝑋𝑘, ∀𝑗 ∈ 𝑋𝑘∖𝑋𝑘. (4)

Condition (4) does not allow a subset of items in 𝑋𝑘 to be pairwise
preferred over the rest of the items in 𝑋𝑘, for all 𝑋𝑘 ∈ 𝐗 (i.e., the
subsets cannot be further decomposed while satisfying NXCC). Later
we prove that NXCC and Condition (4) are the necessary and sufficient
conditions for the finest-Condorcet partition. Beforehand, Theorem 1
proves that |℘𝑓 ( )| = 1, meaning that 𝐗𝑓 is unique.

Theorem 1. The finest-Condorcet partition is unique.

Theorem 2. 𝐗𝑓 ∈ ℘( ) is the finest-Condorcet partition if and only if it
satisfies Condition (4).

The proofs of Theorems 1 and 2 are provided in Appendix A and B,
respectively.

3.2. An efficient algorithm for constructing 𝐗𝑓

This section presents an algorithm for constructing the finest-
Condorcet partition. Beforehand, it is expedient to link the pairwise
preference relationships, i.e., 𝑠𝑖𝑗 > 𝑠𝑗𝑖 + 𝑡𝑖𝑗 , with the elements of the CR
matrix (see Section 2.1), namely to reduce storage requirements and
computational effort.

Proposition 1. Item 𝑖 is pairwise preferred over item 𝑗 if and only if 𝑐𝑖𝑗 > 0
and 𝑐𝑗𝑖 < 0.

The proof is provided in Appendix C.
From Proposition 1, the CR matrix contains sufficient information

to determine the pairwise preferences of all item-pairs and thereby
enable Condorcet partitioning. Its use reduces storage requirements
since instead of having to store [𝑠𝑖𝑗 ] ∈ Z𝑛×𝑛 and [𝑡𝑖𝑗 ] ∈ Z𝑛×𝑛, only
[𝑐𝑖𝑗 ] ∈ Z𝑛×𝑛 is needed. Next, we define parameters needed by the
presented algorithm.

Definition 8. Let 𝛤𝑖 be the set of items over which item 𝑖 is pairwise
preferred; its contents are given by 𝛤𝑖 ∶= {𝑗 ∈  ∶ 𝑠𝑖𝑗 > 𝑠𝑗𝑖 + 𝑡𝑖𝑗}, or
equivalently, 𝛤𝑖 ∶= {𝑗 ∈  ∶ 𝑐𝑖𝑗 > 0, 𝑐𝑗𝑖 < 0}. Additionally, let 𝛾𝑖 ∶= |𝛤𝑖|

denote the number of items over which 𝑖 is pairwise preferred.

Definition 9. Let 𝛤 𝑖 ∶= ∖(𝛤𝑖∪{𝑖}) be the set of items over which item
is not preferred.

The following proposition serves as the foundation of the proposed
lgorithm, which connects the 𝛾-values of a distinct item-pair to their
elative positions in the subsets of 𝐗𝑓 .

Proposition 2. If 𝛾𝑖 > 𝛾𝑗 , then item 𝑗 cannot belong to a lower-indexed
subset than item 𝑖 in 𝐗𝑓 ; additionally, if 𝛾𝑖 = 𝛾𝑗 , then 𝑖 and 𝑗 must belong
5

to the same subset.
Proof.We prove this by contradiction. Let 𝐗𝑓 = {𝑋1, 𝑋2,… , 𝑋𝑤} be the
inest-Condorcet partition. Additionally, let item 𝑖 to belong to 𝑋𝑘 ∈ 𝐗𝑓

and item 𝑗 to belong to 𝑋𝑘′ ∈ 𝐗𝑓 , where 𝑘, 𝑘′ ∈ {1,… , 𝑤}, with 𝑘 < 𝑘′.
This gives that

𝐗𝑓 = {𝑋1,… , {𝑗,…}
⏟⏟⏟

𝑋𝑘

,… , {𝑖,…}
⏟⏟⏟

𝑋𝑘′

,… , 𝑋𝑤}.

Letting |𝑋𝑘| be the number of items in subset 𝑋𝑘, bounds on 𝛾𝑖 and 𝛾𝑗
can be obtained as
|𝑋𝑘+1| +⋯ + |𝑋𝑘′ | +⋯ + |𝑋𝑤| ≤ 𝛾𝑗 ≤ |𝑋𝑘| +⋯ + |𝑋𝑘′ | +⋯

+ |𝑋𝑤| − 1, and
|𝑋𝑘′+1| +⋯ + |𝑋𝑤| ≤ 𝛾𝑖 ≤ |𝑋𝑘′ | +⋯ + |𝑋𝑤| − 1.

The lower bound on 𝛾𝑗 comes from the definition of 𝐗𝑓 , since each item
in 𝑋𝑘 must be pairwise preferred over all items in subsets 𝑋𝑘+1,… , 𝑋𝑤.
The upper bound on 𝛾𝑗 comes from the fact that, when |𝑋𝑘| > 1, 𝑗
can be pairwise preferred over some items in 𝑋𝑘, but there must be
at least one item in this subset over which 𝑗 is not pairwise preferred;
otherwise, 𝑗 must belong to 𝑋𝑘−1. Lower and upper bounds on 𝛾𝑖 are
calculated in the same fashion. The values of 𝛾𝑖 and 𝛾𝑗 can be connected
as follows:

𝛾𝑗 ≥
𝑤
∑

𝑡=𝑘+1
|𝑋𝑡| =

𝑘′−1
∑

𝑡=𝑘+1
|𝑋𝑡| +

𝑤
∑

𝑡=𝑘′
|𝑋𝑡| ≥

𝑤
∑

𝑡=𝑘′
|𝑋𝑡| >

𝑤
∑

𝑡=𝑘′
|𝑋𝑡| − 1 ≥ 𝛾𝑖.

Therefore, this gives that 𝛾𝑗 > 𝛾𝑖, which contradicts the starting
assumption. In summary, when 𝛾𝑖 > 𝛾𝑗 , 𝑗 cannot belong to a lower-
indexed subset than 𝑖 in 𝐗𝑓 . Through a parallel chain of arguments, a
similar contradiction results when 𝛾𝑖 = 𝛾𝑗 , meaning that 𝑖 and 𝑗 must
belong to the same subset in the latter case. □

The pseudocode of the proposed partitioning procedure is presented
in Algorithm 1, and it consists of two phases: (1) construction of an
initial partition, (2) validation & merging. The algorithm utilizes Propo-
sition 2 to build an initial partition X0. According to this proposition, if
𝛾𝑖 = 𝛾𝑗 , then 𝑖 and 𝑗 must belong to the same subset in 𝐗𝑓 ; additionally,
if 𝛾𝑖 > 𝛾𝑗 , 𝑗 cannot belong to a lower-indexed subset than 𝑖 in 𝐗𝑓 . Hence,
{𝑋0

1 , 𝑋
0
2 ,… , 𝑋0

𝑤} = 𝐗0 is constructed by ordering the items by non-
increasing 𝛾-values; items with a distinct value are placed in separate
subsets, and items with the same value are placed in the same subset.
In more detail, the item(s) with the maximum 𝛾-value are placed in 𝑋0

1 ,
item(s) with the next highest value are placed in 𝑋0

2 , etc. The second
phase checks whether X0 satisfies NXCC; if it does not, it merges the
subsets that have caused the violation. This process is repeated until
the working partition satisfies NXCC. The next two theorems prove
that Algorithm 1 is correct, meaning that its output satisfies NXCC and
condition (4), and that it has a time complexity of 𝑂

(

𝑛2
)

.

Theorem 3. Algorithm 1 is correct.

Theorem 4. Algorithm 1 has a time complexity of 𝑂
(

𝑛2
)

.

The proofs of Theorems 3 and 4 are provide in Appendix C and D,
respectively.

Example 3. Consider the instance given in Example 1. The 𝛾-values for
this instance are

𝛾1 = 5, 𝛾2 = 3, 𝛾3 = 3, 𝛾4 = 2, 𝛾5 = 1, 𝛾6 = 0.

The initial partition is 𝐗0 = {{1}, {2, 3}, {4}, {5}, {6}}. Here, item 1 has
the highest 𝛾-value, items 2 and 3 have the second-highest value, etc.
Next, set the working partition to the initial partition (i.e., 𝐗̃ ← 𝐗0).
Afterward, start validation & merging.
Iteration 1: Item 1 is pairwise preferred over all items in the higher-
indexed subsets; hence, the working partition remains unchanged.
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Algorithm 1: Finest-Condorcet Partition
Input : [𝑐𝑖𝑗 ] ∈ Z𝑛×𝑛 (CR matrix)
Output: Finest-Condorcet partition (X𝑓 ), initial partition (X0)

1 Apply Definitions 8 and 9 to calculate parameters 𝛤𝑖, 𝛤 𝑖, and 𝛾𝑖 using
[𝑐𝑖𝑗 ], for 𝑖 ∈  ;

2 Construct the initial partition X0 by placing all item(s) with the
highest 𝛾-value in 𝑋0

1 , all item(s) with the next highest 𝛾-value in
𝑋0

2 , etc.;
3 X̃ ← {𝑋0

1 , 𝑋
0
2 ,… , 𝑋0

𝑤} = X0 ; // set working partition to
initial partition

4 𝑘 = 1;
5 while 𝑘 < |X0

| do
6 𝛤 (𝑋𝑘) ← ∪𝑖∈𝑋𝑘

𝛤 𝑖 ; // get items over which items in 𝑋𝑘

are not pairwise preferred
7 if 𝛤 (𝑋𝑘)∖ ∪𝑘

𝑡=1 𝑋𝑡 = ∅ ; // if 𝑋𝑘 does not violate NXCC
then

8 𝑘 ← 𝑘 + 1;
else

9 while 𝛤 (𝑋𝑘)∖ ∪𝑘
𝑡=1 𝑋𝑡 ≠ ∅ do ; // while subset 𝑋𝑘

violates NXCC

10 𝑘′ ← max{𝑔 ∶ 𝑖 ∈ 𝛤 (𝑋𝑘)∖ ∪𝑘
𝑡=1 𝑋𝑡 ∧ 𝑖 ∈ 𝑋𝑔} ; // get

max-index subset where a violation is
detected

11 𝑋𝑘 ← ∪𝑘′
𝑡=𝑘𝑋𝑡 ; // merge subsets causing NXCC

violation into 𝑋𝑘

12 𝑘 ← 𝑘′ + 1;

13 X𝑓 ← X̃;
14 return X𝑓 ,X0

Iteration 2: Item 2 is not pairwise preferred over item 4. Hence,
subsets {2, 3} and {4} are merged to satisfy NXCC. This gives that
̃ = {{1}, {2, 3, 4}, {5}, {6}}.
teration 3: Items 2, 3, 4 are pairwise preferred over items 5 and 6;
ence, the working partition remains unchanged.
teration 4: Item 5 is pairwise preferred over item 6. Therefore, 𝐗𝑓 =
{1}, {2, 3, 4}, {5}, {6}}.

. Approximate Condorcet partitioning

Condorcet partitioning can be very useful for expediting Kemeny-
gg, particularly when the resulting partition has many small subsets.
owever, some instances are not partitionable, and, in various other
ases when they are, the partition may yield relatively few subsets
nd/or very large subsets. Yoo and Escobedo (2021) reported that a
izeable fraction of the real-world instances with ties drawn from the
reflib data set (Mattei and Walsh, 2013) yielded Condorcet partitions
ith these disadvantageous characteristics: Nearly 40% of the tested
nstances, which contained up to 300 items, were not partitionable at
ll. Betzler et al. (2014) reported similar results on synthetic instances
enerated via the Plackett–Luce model (Luce, 2012; Plackett, 1975):
ut of four synthetic instances, the two largest instances with 100
nd 200 items, respectively, had Condorcet partitions with one subset
ontaining over 95% of the items. Pilot experiments conducted herein
ielded similar results: 109 out of 113 instances with more than 100
tems drawn from three different real-world data sets were either not
artitionable or they had a subset that contained more than 95% of
he items. Such results indicate that exact decomposition is useful only
or a limited number of instances. This section introduces Approximate
ondorcet Partitioning (ACP), which can be applied to any strict or
on-strict instance of Kemeny-Agg. Whenever NXCC yields a partition
ith at least one large subset, ACP leverages both the finest-Condorcet
artition and the initial partition constructed from 𝛾-values to return a
artition with relatively more and smaller subsets, which is not strictly
Condorcet partition (i.e., the subset orderings may conflict with the
6

emeny optimal solution(s)) but retains some of the computationally
eneficial structure of this social choice-inspired concept. ACP is a
calable solution technique for solving Kemeny-Agg. Formal guarantees
f the resulting solutions are also derived later in this section.
Finally, an important remark regarding the constant-factor approx-

mation schemes for Kemeny-Agg is in order. Except for Spearman’s
ootrule, the approximation algorithms introduced in Section 1 do
ot guarantee their respective approximation factor over all instances.
ather, their guarantees are achieved on average. We illustrate the
otential for high variability in solution quality of such expected ap-
roximation algorithms using Pick-A-Perm. Let 𝝈1 = ⋯ = 𝝈9 = [1, 2, 3]𝑇

nd 𝝈10 = [1, 3, 2]𝑇 . Here, 𝝈∗ = 𝝈1, with a cumulative Kemeny–Snell dis-
ance to the input rankings of 2. However, Pick-A-Perm may still choose
10 (with a probability of 1/10), which has a cumulative Kemeny–Snell
istance to the input rankings of 18 (9-times the expected factor). The
est of this section is organized as follows. Section 4.1 develops ACP,
nd Section 4.2 derives solution guarantees for any item-partitioning
scheme and improved guarantees for ACP.

4.1. Applying ACP to solve Kemeny-Agg

Before proceeding, it is important to emphasize that ACP is primar-
ily designed for solving large-scale problems (instances with thousands
of items), where state-of-the-art algorithms like LPKwikSort are not
practical or where the solution guarantees of existing approximation
algorithms are not satisfactory.

Whenever 𝐗𝑓 contains one or more large subsets, ACP constructs a
partition of  that leverages the finest-Condorcet partition, 𝐗𝑓 , and the
initial partition, 𝐗0, both obtained from Algorithm 1. Recall that 𝐗0 is
easily constructed based on the calculated parameter 𝛾𝑖, defined as the
number of items over which item 𝑖 is pairwise preferred. Typically, 𝐗0

consists of many subsets, a large fraction of which are subsequently
merged in Algorithm 1 to satisfy NXCC. Whenever the validation &
merging step creates large subsets in 𝐗𝑓 , ACP builds a different item
partition from 𝐗0, which may violate NXCC but retains some of the
convenient structure of 𝐗𝑓 . That is, only those subsets of 𝐗𝑓 which
are difficult to solve by exact methods are broken down by ACP; all
other subsets are left unchanged, and this preserves some of the ordered
item-subsets. Thus, this new partition is designed to yield a higher
number of computationally manageable subsets, i.e., whose Kemeny-Agg
subproblems are solvable with exact methods. A key insight behind ACP
is that, items that have close 𝛾-values are more likely to be close to
each other in the aggregate ranking; hence, smaller subsets are formed
based on these calculated parameters, keeping those with similar values
near one another. The pseudocode of the proposed algorithm for ACP
is presented in Algorithm 2.

To summarize its steps, let ℎ be a user-specified threshold, which
can be set to the maximum Kemeny-Agg instance size that is solvable
to optimality within a reasonable time (i.e., based on prior findings
and available computational resources). That is, for some subset 𝑋𝑓

𝑘 ∈
𝐗𝑓 with |𝑋𝑓

𝑘 | ≤ ℎ, ACP skips this subset. However, if |𝑋𝑓
𝑘 | > ℎ,

then the algorithm evaluates the corresponding adjacent subsets in
𝐗0, say {𝑋0

𝑢 ,… , 𝑋0
𝑣} = 𝑋0

𝑢𝑣, which were merged together during the
validation & merging step of Algorithm 1 to form 𝑋𝑓

𝑘 . In the next step,
the algorithm tries to merge adjacent subsets of 𝑋0

𝑢𝑣 as long as their
combined size does not exceed ℎ. During this process, if the size of
any individual subset comprising 𝑋0

𝑢𝑣 is already greater than ℎ, that
subset is not merged with any other subsets and is left unchanged for
the remainder of the algorithm.

Let 𝐗𝐴𝐶𝑃
ℎ denote the partition obtained using threshold ℎ. After

obtaining ACP, the ensuing steps aim to obtain a high quality solution
via ACP: (1) solve those subsets of 𝐗𝐴𝐶𝑃

ℎ whose size is at most ℎ to
optimality, (2) for each subset whose size exceeds ℎ, tie all its items
in the case of non-strict rankings and permute its items randomly in
the case of strict rankings. Step 2 aims to find a quick solution for
those subset that are deemed difficult to solve to optimality. Similar
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Algorithm 2: Approximate Condorcet Partitioning
Input : [𝑐𝑖𝑗 ] ∈ Z𝑛×𝑛 (CR matrix), ℎ
Output: Approximate Condorcet Partition (X𝐴𝐶𝑃

ℎ )
1 X𝑓 , X0 ← Finest-Condorcet Partition([𝑐𝑖𝑗 ]);
2 X𝐴𝐶𝑃

ℎ ← ∅;
3 for 𝑘 = 1 to |X𝑓

| do

4 if |X𝑓
𝑘 | ≤ ℎ then

5 Append X𝑓
𝑘 to X

𝐴𝐶𝑃
ℎ ;

else
6 Let {𝑋0

𝑢 ,… , 𝑋0
𝑣} = 𝑋0

𝑢𝑣 be the set of consecutive subsets of X
0

that have been merged together to form X𝑓
𝑘 ;

7 𝑞 ← 𝑢;
8 while 𝑞 ≤ 𝑣 − 1 do

9 if |𝑋0
𝑞 | ≥ ℎ or 𝑞 = 𝑣 − 1 then

10 Append 𝑋0
𝑞 to X

𝐴𝐶𝑃
ℎ ;

11 𝑞 ← 𝑞 + 1;
else

12 Let 𝑙 ≤ 𝑣 be the highest index such that
|𝑋0

𝑞 ∪⋯ ∪𝑋0
𝑙 | ≤ ℎ;

13 Merge subsets 𝑋0
𝑞 ,… , 𝑋0

𝑙 and append it to X
𝐴𝐶𝑃
ℎ ;

14 𝑞 ← 𝑙 + 1;

15 return X𝐴𝐶𝑃
ℎ

to Condorcet partitioning, to obtain a complete ordering of  , items
in lower-indexed subsets of 𝐗𝐴𝐶𝑃

ℎ are strictly ranked ahead of items in
higher-indexed subsets.

Remark 1. The proposed solution method via ACP becomes an exact
method if |𝑋𝑓

𝑘 | ≤ ℎ ∀𝑋𝑘 ∈ 𝐗𝑓 .

The ensuing small example helps illustrate ACP.

Example 4. Consider an instance with 5 rankings of 10 items and
set the threshold as ℎ = 3. The input rankings (𝝈1,… ,𝝈5), aggregate
ranking (𝝈∗), and 𝛾-value of each item are given by

Item Input rankings 𝝈∗ Item 𝜸𝝈1 𝝈2 𝝈3 𝝈4 𝝈5

1 8 1 9 10 1 7 1 3
2 2 3 7 6 8 4 2 5
3 5 10 2 4 10 5 3 4
4 6 5 5 2 2 2 4 8
5 3 4 10 9 9 10 5 1
6 1 9 1 1 4 1 6 9
7 10 7 6 5 5 9 7 2
8 9 6 4 8 7 8 8 2
9 7 2 8 7 3 6 9 4
10 4 8 3 3 6 3 10 7

The initial partition is 𝐗0 = {{6}, {4}, {10}, {2}, {3, 9}, {1}, {7, 8}, {5}},
and the finest-Condorcet partition is 𝐗𝑓 = {{6}, {4}, {10},
{1, 2, 3, 5, 7, 8, 9}}. The ACP algorithm leaves subsets {6}, {4} and {10}
nchanged, as their sizes are less than ℎ, but it seeks to further
ecompose the fourth subset of 𝐗𝑓 whose size exceeds ℎ. Note that,
ubsets {2}, {3, 9}, {1}, {7, 8}, {5} ∈ 𝐗0 were merged in the validation
merging to form subset {1, 2, 3, 5, 7, 8, 9}. ACP proceeds by merging

subsets {2}, {3, 9} to form subset {2, 3, 9} whose size reaches ℎ; subsets
{1}, {7, 8} are merged to form subset {1, 7, 8} whose size also reaches
the threshold; and subset {5} is left unchanged. Therefore, the output
f ACP is given by 𝐗𝐴𝐶𝑃

ℎ=3 = {{6}, {4}, {10}, {2, 3, 9}, {1, 7, 8}, {5}}. After-
ward, one Kemeny-Agg subproblem is solved for each subset and their
respective solutions are concatenated (for completeness, the concate-
nated subproblem solutions matches the optimal solution of the full
problem, for this example).
7

4.2. Provable guarantees from partitioning

This subsection derives three different approximation factors, all
of which are easy to calculate and specific to the characteristics of
an instance. The first of these is applicable to any item-partitioning
scheme, including those that may not be consistent with Condorcet
properties — e.g., see Aledo et al. (2021) for a decomposition based
on Borda scores and Liu et al. (2021) for a hierarchical clustering
method. The second and third derived approximation factors provide
improved guarantees for the ACP solution, for non-strict and strict
ranking instances, respectively.

For the remainder of this section, let 𝑑𝐾𝑆 (𝝈∗) denote the cumula-
tive Kemeny–Snell distance of the aggregate ranking 𝝈∗ to all input
rankings, and 𝐿𝐵 be a lower bound on 𝑑𝐾𝑆 (𝝈∗).

Lemma 1. Let 𝐗 = {𝑋1, 𝑋2,… , 𝑋𝑤} be any given partition of 𝑋 and 𝝈̂ be
a complete ranking obtained by independently solving the subsets of 𝐗 and
concatenating the solutions of these subproblems. If 𝑑𝐾𝑆 (𝝈̂) − 𝑑𝐾𝑆 (𝝈∗) is
bounded by a constant 𝛽, the complete ranking 𝝈̂ is an (1 + 𝛼)-approximate
solution, where 𝛼 = 𝛽∕𝐿𝐵.

Proof.
𝑑𝐾𝑆 (𝝈̂) ≤ 𝑑𝐾𝑆 (𝝈∗) + 𝛽 = 𝑑𝐾𝑆 (𝝈∗) + 𝛼𝐿𝐵 ≤ 𝑑𝐾𝑆 (𝝈∗) + 𝛼𝑑𝐾𝑆 (𝝈∗)

= (1 + 𝛼)𝑑𝐾𝑆 (𝝈∗).
□

Lemma 2. Let 𝐗 = {𝑋1, 𝑋2,… , 𝑋𝑤} be any given partition of  and 𝝈̂ be
a complete ranking obtained by independently solving the subsets of 𝐗 (using
any method of choice) and concatenating the solutions of these subproblems.
The term 𝑑𝐾𝑆 (𝝈̂) − 𝑑𝐾𝑆 (𝝈∗) is bounded by

2
𝑤−1
∑

𝑘=1

𝑤
∑

𝑘=𝑘+1

∑

𝑖∈𝑋𝑘

∑

𝑗∈𝑋𝑘′

max
(

0, (2𝑠𝑗𝑖 + 𝑡𝑖𝑗 ) − (2𝑠𝑖𝑗 + 𝑡𝑖𝑗 ),

(2𝑠𝑗𝑖 + 𝑡𝑖𝑗 ) − (𝑠𝑖𝑗 + 𝑠𝑗𝑖)
)

+
𝑤
∑

𝑘=1

∑

(𝑖,𝑗)∈𝑋𝑘

max
(

2𝑠𝑖𝑗 + 𝑡𝑖𝑗 , 2𝑠𝑗𝑖 + 𝑡𝑖𝑗 , 𝑠𝑖𝑗 + 𝑠𝑗𝑖
)

− min
(

2𝑠𝑖𝑗 + 𝑡𝑖𝑗 , 2𝑠𝑗𝑖 + 𝑡𝑖𝑗 , 𝑠𝑖𝑗 + 𝑠𝑗𝑖
)

.

(5)

Combining Lemmas 1 and 2 provides a formal guarantee of the
solution quality of an arbitrary partition 𝐗. The approximation factor
holds regardless of how the items within each subset in the partition are
ordered (i.e., it is a worst-case bound), and thus any method of choice
can be used. As such, the quality of the solution is improved by deter-
mining orderings that more closely align with the optimal solution. The
next two theorems derive a tighter guarantee by leveraging the specific
solution methods for solving the subsets of 𝐗𝐴𝐶𝑃

ℎ .

Theorem 5. Assume that the input rankings are non-strict and let 𝐗𝐴𝐶𝑃
ℎ =

{𝑋1,… , 𝑋𝑤} be the ACP partition obtained using threshold ℎ. Let 𝝈̂ be the
complete ranking obtained via ACP from the following two steps: (1) solve
subsets of at most size ℎ to optimality, (2) tie all items in subsets of size
greater than ℎ. The term 𝑑𝐾𝑆 (𝝈̂) − 𝑑𝐾𝑆 (𝝈∗) is bounded by

2
𝑤−1
∑

𝑘=1

𝑤
∑

𝑘=𝑘+1

∑

𝑖∈𝑋𝑘

∑

𝑗∈𝑋𝑘′

max
(

0, (2𝑠𝑗𝑖 + 𝑡𝑖𝑗 ) − (2𝑠𝑖𝑗 + 𝑡𝑖𝑗 ),

(2𝑠𝑗𝑖 + 𝑡𝑖𝑗 ) − (𝑠𝑖𝑗 + 𝑠𝑗𝑖)
)

+
𝑤
∑

𝑘=1

∑

(𝑖,𝑗)∈𝑋𝑘

((

𝑠𝑖𝑗 + 𝑠𝑗𝑖
)

− min
(

2𝑠𝑖𝑗 + 𝑡𝑖𝑗 , 2𝑠𝑗𝑖 + 𝑡𝑖𝑗 , 𝑠𝑖𝑗 + 𝑠𝑗𝑖
))

.

(6)

Theorem 6. Assume that the input rankings are strict and let 𝐗𝐴𝐶𝑃
ℎ =

{𝑋1,… , 𝑋𝑤} be the ACP partition obtained using threshold ℎ. Let 𝝈̂ be the

complete ranking obtained via ACP from the following two steps: (1) solve
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subsets of at most size ℎ to optimality, (2) randomly permute items within
ubsets of size greater than ℎ. The term 𝑑𝐾𝑆 (𝝈̂) − 𝑑𝐾𝑆 (𝝈∗) is bounded by

4
𝑤−1
∑

𝑘=1

𝑤
∑

𝑘=𝑘+1

∑

𝑖∈𝑋𝑘

∑

𝑗∈𝑋𝑘′

max
(

0, 𝑠𝑗𝑖 − 𝑠𝑖𝑗
)

+ 2
𝑤
∑

𝑘=1

∑

(𝑖,𝑗)∈𝑋𝑘

(

𝑠𝑗𝑖1𝜎𝑖<𝜎𝑗 + 𝑠𝑖𝑗1𝜎𝑗<𝜎𝑖 − min
(

𝑠𝑖𝑗 , 𝑠𝑗𝑖
))

; (7)

where 𝝈 is an auxiliary ranking obtained by randomly permuting all items
in subset 𝑋𝑘, ∀𝑘 ∈ {1,… , 𝑤} (while ranking items in the lower-indexed
subsets strictly ahead of items in the higher-indexed subsets), and 1 is an
indicator function.

The approximation factors are computed after a partition is ob-
tained, meaning they are instance-specific and not constant; their value
becomes relatively small when the given partition aligns well with the
structure of the aggregate ranking. ACP offers significant advantages
over various other partitioning methods in this regard. Furthermore,
it uses the calculated 𝛾-parameters used to obtain 𝐗0 to reduce the
umber of rank reversals between items across many more subsets
han are contained in 𝐗𝑓 . It also leverages structural information from
𝑓 by retaining item-ordering of subsets that are relatively easy to
olve and their relative ordering to other subsets. It is important to
mphasize that, while the derived approximation factors provide a
uarantee of the solution quality, we are interested in partitions that
end to produce high quality solutions rather than those that minimize
he approximation factor. Indeed, by increasing the number of subsets
i.e., reducing the value of ℎ), one may decrease their values; however,
oing so can also negatively impact the resulting solution, as increasing
he number of subsets can be viewed as placing more constraints on the
rdering of certain items.
The introduced approximation factors require a lower bound on

𝐾𝑆 (𝝈∗). A lower bound on 𝑑𝐾𝑆 (𝝈∗) is given by (Akbari and Escobedo,
2021):

𝐿𝐵 = 2
∑

𝑖,𝑗∈𝑋
min

(

2𝑠𝑗𝑖 + 𝑡𝑖𝑗 , 2𝑠𝑖𝑗 + 𝑡𝑖𝑗 , 𝑠𝑖𝑗 + 𝑠𝑗𝑖
)

. (8)

The lower bound defined in Eq. (8) equals zero if and only if all input
rankings are identical, which renders the approximation factors incom-
putable; however, this special case does not require analysis of any kind
(i.e., the aggregate ranking equals the unanimous ranking), meaning
that it does not pose a serious issue for the proposed approximation
algorithm. We reckon that there are other lower bounds for the case of
strict rankings (Conitzer et al., 2006) and non-strict rankings (Akbari
and Escobedo, 2021). The lower bound defined in Eq. (8) has been
utilized as it is very fast to compute (Akbari and Escobedo, 2021).

5. Computational comparisons

This section compares ACP with some of the prominent approxi-
mation schemes mentioned in Section 1. The selected methods for in-
stances with strict rankings are the proposed solution method via ACP,
BestInput, DeterministicKwikSort, KwikSort, LPKwikSort, and Spear-
man’s footrule. For instances with non-strict rankings, we elected not
to use RepeatChoice and LPKwikSortℎ (Ailon, 2010) as they restrict
the aggregate ranking to be strict, which does not align with the more
general assumption that the output rankings may also be non-strict. Due
to a lack of suitable algorithms (and to compare ACP with more than
simply BestInput) for Kemeny-Agg with non-strict rankings, we modify
wikSort to handle these instances and denote the resulting algorithm
s NonStrictKwikSort; the pseudocode and its description are presented
n Appendix I.
We use two real-world data sets. The first data set is from Cohen-

oulakia et al. (2011) and is henceforth denoted as the Biomedical data
et. Each instance of this data set contains four non-strict rankings of
enes possibly associated with Breast Cancer, Prostate Cancer, Blad-
8

er Cancer, Neuroblastoma, Retinoblastoma, ADHD (Attention Deficit a
yperactivity Disorder), and LQTS (Long QT Syndrome). Each set of
nput rankings is the result of querying for the respective diseases in
iological databases using four different methods. The objective of the
eferenced study is to reduce the variability of information retrieval
echniques by consolidating their outputs. The second data set consists
f instances with and without ties from Preflib (Mattei and Walsh,
013), a library of preference data; namely instances from ‘‘TOC -
rders with Ties - Complete List’’ and ‘‘SOC - Strict Orders - Complete
ist’’ with over 100 items.1
All experiments were carried out on a PC with an Intel(R) Xeon(R)

CPU E5-2680 @2.40 GHz with 64 GB RAM. All Kemeny-Agg subprob-
lems were solved using the exact binary programming formulation
of Yoo and Escobedo (2021) via CPLEX solver version 12.10.0. The
Spearman’s footrule rank aggregation problem was solved via minimum
cost perfect matching in bipartite graphs (Dwork et al., 2001). For ACP,
we tested thresholds ℎ = 30, 40, 50. The experimental results report,
for each instance, number of items (𝑛), number of input rankings (𝑚),
ize of the largest subset of 𝐗𝑓 ((𝑋𝑓

𝑙 )
𝑚𝑎𝑥), run-time (Time) and relative

ptimality gap (Gap %) attained by each tested method. Run-times
nclude pre-processing time required by each specific method. The
elative optimality gap for each method is calculated as the difference
etween its objective value and the lower bound (Eq. (8)), divided
y the lower bound. It is displayed as a percentage, for convenience
relative optimality gap, multiplied by 100); the best relative optimality
ap % attained for each instance is shown in bold. For ACP, the
ested threshold value (ℎ) and calculated approximation factor (AF)
re reported. Lastly, for each data set, the average relative optimality
ap and geometric mean of run-times achieved by each of the selected
lgorithms are displayed. All statistics are rounded to two decimal
oints, and all reported run times are in seconds. For completeness,
he objective functions values of the tested algorithms — that is, the
umulative 𝑑𝐾𝑆 distance of their solution ranking to all the input
ankings — are reported in Appendix J.
Table 1 reports the computational results for the Biomedical data

et. These results exclude the ADHD and LSQT instances since they were
oth relatively small and could be easily solved to optimality without
artitioning. Compare table columns 𝑛 and (𝑋𝑓

𝑙 )
𝑚𝑎𝑥 (the number of

tems and the size of the largest subset of 𝐗𝑓 ) to observe that the finest-
ondorcet partition over all instances is either null or it contains a
ather large subset that is difficult to solve to optimality. Overall, none
f the selected methods had a dominant performance on all of these
nstances. On average, BestInput had the lowest relative optimality
ap, ACP the second-lowest, and NonStrictKwikSort the third-lowest.
s Table 1 shows, BestInput and ACP had a top-2 performance in
erms of solution quality for all five instances. Among the three tested
hreshold values for ACP, ℎ = 50 achieved the best solution quality,
ut it also had higher run-times and approximation factors. The average
pproximation factor it achieved over these instances was 1.14. Finally,
CP yielded near-optimal solutions (with gaps of up to 0.11%) on
ladder Cancer and Retinoblastoma, for which each 𝐗𝑓 contained
ultiple subsets of small-to-medium sizes.
Table 2 reports the results of the Preflib TOC data set. The general

haracteristics of 𝐗𝑓 were the same as for the Biomedical data set.
verall, ACP exhibited a dominant performance, achieving the lowest
elative optimality gap for all 85 instances. In fact, its worst optimality
ap of 3.49% over all instances and three tested thresholds was lower
han all optimality gaps achieved by BestInput. Most impressively, its
verage approximation factor was 1.02, further highlighting the com-
arative robustness of ACP. To round out the results, NonStrictKwikSort
as faster but yielded a slightly lower solution quality than BestInput

1 The Preflib data set presents the input rankings in the form of sorted
ists, but a few items repeat in certain instances, presumably due to error.
o overcome this issue, we adjusted these instances by keeping the first
ppearance of each item in each list and deleting any extra occurrences
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Table 1
Performance metrics of the selected algorithms for solving instances of the Biomedical data set; times are reported in seconds (s).

Instance 𝑛 𝑚 (𝑋𝑓
𝑙 )

𝑚𝑎𝑥 NonStrictKwikSort BestInput Approximate Condorcet Partitioning

ℎ = 30 ℎ = 40 ℎ = 50

Gap % Time (s) Gap % Time (s) Gap % Time (s) AF Gap % Time (s) AF Gap % Time (s) AF

Prostate Cancer 218 4 216 41.1 0.05 12.8 0.21 22.99 1.07 1.23 22.4 1.92 1.22 22.34 2.28 1.22
Bladder Cancer 308 4 266 16.54 0.11 0.00 0.45 0.01 0.95 1.01 0.01 0.85 1.01 0.01 2.19 1.01
Breast Cancer 386 4 386 34.97 0.18 5.32 0.67 29.12 2.72 1.29 29.32 4.78 1.29 29.52 6.39 1.3
Retinoblastoma 402 4 358 0.88 0.18 0.19 0.74 0.11 0.51 1.01 0.11 1.6 1.01 0.11 2.55 1.01
Neuroblastoma 431 4 431 15.78 0.18 5.43 0.82 4.23 1.4 1.05 3.91 4.55 1.04 3.76 7.74 1.04

Average 21.85 0.13 4.75 0.52 11.29 1.15 1.12 11.15 2.24 1.12 11.15 3.63 1.14
Table 2
Performance metrics of the selected algorithms for solving instances of the TOC data set with more than 100 items; times are reported in seconds (s).

Instance 𝑛 𝑚 (𝑋𝑓
𝑙 )

𝑚𝑎𝑥 NonStrictKwikSort BestInput Approximate Condorcet Partitioning

ℎ = 30 ℎ = 40 ℎ = 50

(%) Gap Time (s) (%) Gap Time (s) (%) Gap Time (s) AF (%) Gap Time AF (%) Gap Time (s) AF

ED-14-02 100 5000 100 0 2.48 – ≥ 3600 0.00 2.5 1.00 0.00 2.5 1.00 0.00 2.5 1.00
ED-14-03 100 5000 100 0 2.17 – ≥ 3600 0.00 2.17 1.00 0.00 2.17 1.00 0.00 2.19 1.00
MD-03-03 102 32 102 0 0.01 52.07 4.07 0.00 0.02 1.00 0.00 0.02 1.00 0.00 0.02 1.00
MD-03-05 103 31 103 0 0.02 69.32 4.85 0.00 0.02 1.00 0.00 0.02 1.00 0.00 0.02 1.00
MD-03-06 133 38 133 0 0.02 69.72 11.56 0.00 0.02 1.00 0.00 0.02 1.00 0.00 0.02 1.00
MD-03-08 147 51 147 0 0.02 57.58 25.17 0.00 0.03 1.00 0.00 0.03 1.00 0.00 0.05 1.00
MD-03-07 155 51 155 0 0.03 69.72 20.96 0.00 0.06 1.00 0.00 0.06 1.00 0.00 0.06 1.00
ED-10-50 170 4 170 36.63 0.02 14.17 0.14 1.44 1.48 1.07 1.57 1.86 1.10 1.47 3.2 1.13
ED-10-49 351 4 351 15.39 0.30 16.58 0.77 0.75 2.85 1.03 0.75 4.19 1.04 0.65 7.32 1.04
ED-18-01 379 723 379 99.82 0.41 – ≥ 3600 0.00 0.44 1.00 0.00 0.45 1.00 0.00 0.42 1.00
ED-18-03 477 556 476 99.36 0.45 – ≥ 3600 0.00 0.48 1.00 0.00 0.48 1.00 0.00 0.47 1.00
ED-11-12 1210 4 1207 11.17 1.27 4.93 6.36 2.81 6.13 1.03 2.79 9.24 1.03 2.77 13.44 1.03
ED-11-31 1223 4 1223 16.69 1.16 8.78 6.58 1.73 5.77 1.02 1.72 8.63 1.02 1.69 12.24 1.02
ED-11-09 1272 4 1272 22.55 1.52 8.45 6.85 3.49 8.59 1.04 3.46 13.83 1.04 3.39 20.90 1.04
ED-11-23 1342 4 1341 10.96 1.39 9.39 7.98 1.68 6.77 1.02 1.65 10.72 1.02 1.62 15.36 1.02
ED-11-21 1347 4 1347 10.28 1.56 5.24 7.69 2.71 8.16 1.03 2.68 12.47 1.03 2.66 19.13 1.03
ED-11-37 1351 4 1351 16.4 1.66 4.53 8.11 3.15 9.86 1.04 3.08 15.83 1.04 3.04 24.15 1.04
ED-11-25 1356 4 1353 18.23 1.55 8.78 7.89 2.39 8.56 1.03 2.31 14.05 1.03 2.27 19.42 1.03
ED-11-13 1363 4 1363 5.03 1.47 6.59 8.2 1.63 6.44 1.02 1.61 9.38 1.02 1.6 13.38 1.02
ED-11-29 1368 4 1368 25.91 1.75 4.08 8.55 3.4 10.20 1.04 3.37 16.67 1.04 3.31 25.94 1.04
ED-11-14 1375 4 1372 27.29 1.77 3.87 8.36 3.32 9.89 1.04 3.24 16.03 1.04 3.2 23.74 1.04
ED-11-30 1386 4 1384 4.96 1.64 6.26 8.78 2.46 8.85 1.03 2.41 14.41 1.03 2.38 21.21 1.03
ED-11-06 1449 4 1449 17.69 1.77 5.22 10.02 2.8 9.69 1.03 2.75 14.52 1.03 2.71 22.66 1.03
ED-11-04 1467 4 1463 48.04 1.91 4.94 10.63 2.64 8.85 1.03 2.61 13.3 1.03 2.59 19.86 1.03
ED-11-07 1474 4 1470 3.72 1.73 8.57 10.19 1.84 7.3 1.02 1.82 10.61 1.02 1.81 15.7 1.02
ED-11-34 1509 4 1509 12.92 1.77 6.94 10.02 1.54 7.36 1.03 1.51 10.68 1.03 1.5 14.91 1.03
ED-11-22 1514 4 1513 18.74 1.86 5.92 10.09 1.9 9.52 1.02 1.85 14.7 1.02 1.83 20.88 1.02
ED-11-11 1545 4 1542 38.89 2.08 5.75 10.36 2.1 10.91 1.02 2.04 17.04 1.02 2.01 25.27 1.03
ED-11-15 1563 4 1560 38.81 1.97 6.44 10.74 2.06 9.36 1.02 2.03 14.82 1.02 2.01 20.75 1.02
ED-11-08 1572 4 1569 7.45 1.94 6.8 11.73 1.28 6.75 1.02 1.27 9.31 1.02 1.26 13.25 1.02
ED-11-28 1616 4 1611 2.76 1.89 14.38 12.05 0.79 6.72 1.01 0.78 9.0 1.01 0.78 12.38 1.01
ED-11-40 1623 4 1623 35.54 1.59 19.18 11.88 0.33 6.43 1.01 0.32 10.49 1.01 0.32 11.64 1.02
ED-11-36 1634 4 1632 28.92 2.06 8.13 11.85 1.55 9.03 1.02 1.52 13.19 1.02 1.51 18.36 1.02
ED-11-33 1646 4 1644 9.96 2.3 5.82 12.5 1.94 10.35 1.02 1.9 15.31 1.02 1.85 22.41 1.02
ED-11-05 1673 4 1672 4.07 1.98 23.32 13.52 0.66 9.91 1.01 0.64 17.89 1.01 0.63 88.36 1.01
ED-11-18 1681 4 1676 12.33 2.22 6.24 12.14 1.98 8.85 1.02 1.97 13.56 1.02 1.94 18.66 1.02
ED-11-16 1708 4 1707 6.93 2.19 8.07 13.07 1.19 8.73 1.02 1.17 12.64 1.02 1.17 17.61 1.02
ED-11-32 1751 4 1751 9.45 2.3 5.57 13.1 1.71 8.92 1.02 1.68 12.56 1.02 1.68 17.69 1.02
ED-11-38 1754 4 1752 13.8 2.36 6.03 14.16 2.02 9.06 1.02 1.99 12.83 1.02 1.97 17.92 1.02
ED-11-39 1788 4 1788 35.34 2.2 18.19 13.75 0.39 9.22 1.01 0.37 18.8 1.01 0.35 24.71 1.01

(continued on next page)
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n average. NonStrictKwikSort had an optimality gap of up to 97.92%
nd BestInput of up to 69.72%. BestInput did not terminate after
h of run-time for instances #77–#80, likely owing to its quadratic
omplexity with respect to both the number of items and number of
nput rankings. These four instances are much larger than the rest:
77–#78 have 5,000 input rankings and #79–#80 have at least 379
tems and at least 556 input rankings.
Table 3 reports the results of the Preflib SOC data set. The general

haracteristics of 𝐗𝑓 were the same as for the TOC and the Biomedical
ata sets. Since all of the alternative methods tested for this data
et output a strict ranking, the output ranking of ACP was forced to
e strict as well. While this restriction does not take full advantage
ts intended purpose, ACP still exhibited a very good performance,
9

eadlined by its average approximation factor of 1.06 over this data set.
hile LPKwikSort dominated in solution quality, achieving the lowest
ptimality gap in all but one of the 23 tested instances, it also had
elatively high run-times — in fact, its lowest run-time was greater than
he highest run-time attained by all other methods. This is due to fact
hat LPKwikSort requires solving a LP with 𝑂(𝑛3) constraints, which
auses memory issues for large instances. Conversely, ACP produced
ompetitive solutions in far less time (it solved each instance of the
OC data set in under eight seconds). In the 22 instances where
PKwikSort had the lowest optimality gap, ACP had the second-lowest
n 14 instances and BestInput in 8 instances; however, the worst relative
ptimality gap of BestInput (14.94%) was much higher than ACP’s (not
ore than 4.07%). Furthermore, the relative optimality gaps attained
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Table 2 (continued).

Instance 𝑛 𝑚 (𝑋𝑓
𝑙 )

𝑚𝑎𝑥 NonStrictKwikSort BestInput Approximate Condorcet Partitioning

ℎ = 30 ℎ = 40 ℎ = 50

(%) Gap Time (s) (%) Gap Time (s) (%) Gap Time (s) AF (%) Gap Time AF (%) Gap Time (s) AF

ED-11-68 1826 4 1826 45.79 2.14 10.22 14.36 0.62 6.3 1.01 0.62 7.74 1.01 0.62 9.11 1.01
ED-11-49 1845 4 1844 2.94 2.6 6.7 14.74 0.91 6.56 1.01 0.9 8.1 1.01 0.9 9.17 1.01
ED-11-20 1870 4 1866 3.0 2.77 7.52 15.13 1.55 11.7 1.02 1.51 17.33 1.02 1.47 24.35 1.02
ED-11-26 1931 4 1930 7.41 2.80 6.36 16.63 1.39 11.03 1.02 1.36 16.85 1.02 1.33 23.24 1.02
ED-11-35 1936 4 1935 17.19 2.80 6.25 16.69 1.58 11.02 1.02 1.56 15.58 1.02 1.53 21.99 1.02
ED-11-74 1976 4 1976 5.74 2.92 5.93 17.89 1.16 9.91 1.02 1.14 13.7 1.02 1.13 18.69 1.02
ED-11-60 1977 4 1976 3.7 2.69 10.98 16.94 0.87 7.94 1.01 0.87 10.22 1.01 0.87 12.66 1.01
ED-11-58 2011 4 2010 3.43 2.94 7.26 17.28 1.1 8.95 1.02 1.09 11.77 1.02 1.09 15.36 1.02
ED-11-62 2014 4 2013 4.04 2.86 12.49 17.50 0.89 9.53 1.01 0.87 12.7 1.01 0.86 16.69 1.01
ED-11-17 2015 4 2014 14.86 3.08 6.03 17.68 1.31 11.49 1.03 1.28 16.78 1.03 1.26 22.6 1.03
ED-11-66 2024 4 2024 7.68 3.22 5.11 18.31 2.01 11.64 1.02 1.99 16.32 1.03 1.98 22.28 1.03
ED-11-24 2049 4 2049 6.29 3.11 5.75 18.28 1.44 11.92 1.03 1.42 16.83 1.03 1.41 23.02 1.03
ED-11-67 2066 4 2066 7.65 3.16 7.54 18.43 1.31 10.17 1.02 1.3 14.09 1.03 1.3 19.19 1.02
ED-11-27 2092 4 2088 22.28 3.11 7.32 19.39 1.13 9.92 1.02 1.11 13.46 1.02 1.11 17.97 1.02
ED-11-10 2096 4 2095 6.18 2.95 13.64 19.08 0.65 10.53 1.01 0.63 13.88 1.01 0.62 19.52 1.01
ED-11-19 2104 4 2102 10.51 3.25 6.56 19.24 1.28 12.38 1.02 1.26 17.78 1.02 1.24 25.38 1.02
ED-11-50 2111 4 2111 1.82 3.01 8.19 20.30 0.62 7.95 1.01 0.61 9.12 1.01 0.61 10.89 1.01
ED-11-51 2112 4 2112 6.8 3.28 4.92 19.6 1.54 10.81 1.02 1.52 14.85 1.02 1.51 19.92 1.02
ED-11-65 2119 4 2118 3.12 2.84 21.21 19.91 0.28 7.30 1.00 0.27 8.92 1.00 0.28 9.66 1.00
ED-11-41 2123 4 2123 8.44 3.28 7.5 19.6 1.05 9.03 1.01 1.04 11.45 1.01 1.04 14.25 1.02
ED-11-71 2127 4 2127 18.27 3.13 8.96 19.55 0.52 8.10 1.01 0.51 9.41 1.01 0.51 12.25 1.01
ED-11-46 2133 4 2133 4.83 3.22 10.31 20.11 1.37 9.96 1.02 1.36 12.92 1.02 1.36 16.47 1.02
ED-11-43 2153 4 2153 5.31 3.3 6.81 20.41 1.29 9.88 1.02 1.28 12.88 1.02 1.27 16.36 1.02
ED-11-48 2194 4 2194 9.41 3.64 11.46 20.86 1.15 12.08 1.02 1.14 16.55 1.02 1.12 21.72 1.02
ED-11-52 2242 4 2239 11.3 3.47 8.55 21.67 0.63 10.24 1.01 0.63 13.36 1.01 0.62 16.50 1.01
ED-11-73 2258 4 2257 6.46 3.47 11.74 22.06 0.30 9.34 1.00 0.30 11.36 1.00 0.29 13.49 1.00
ED-11-45 2265 4 2264 0.43 3.33 11.62 22.50 0.07 7.25 1.00 0.07 7.39 1.00 0.07 7.25 1.00
ED-11-70 2276 4 2274 3.28 3.61 8.45 22.40 0.50 10.06 1.01 0.50 12.16 1.01 0.49 15.48 1.01
ED-11-59 2281 4 2280 8.57 3.58 8.72 23.10 0.70 10.28 1.01 0.70 12.97 1.01 0.68 16.75 1.01
ED-11-77 2317 4 2317 0.10 2.88 28.42 25.64 0.09 8.13 1.00 0.08 8.72 1.00 0.08 10.22 1.00
ED-11-53 2321 4 2320 0.84 3.7 10.39 24.0 0.29 9.89 1.01 0.28 12.28 1.01 0.28 14.63 1.01
ED-11-69 2338 4 2338 4.6 3.68 7.33 25.81 0.53 11.55 1.01 0.53 10.69 1.01 0.52 13.77 1.01
ED-11-55 2353 4 2350 2.09 3.69 8.47 23.82 0.59 9.02 1.01 0.59 10.63 1.01 0.59 11.57 1.01
ED-11-75 2391 4 2390 30.02 3.86 7.41 25.1 0.76 9.66 1.01 0.76 10.80 1.01 0.76 12.64 1.01
ED-11-44 2434 4 2430 3.56 3.95 9.42 25.66 0.56 9.83 1.01 0.56 11.52 1.01 0.55 14.72 1.01
ED-11-64 2446 4 2444 13.19 3.89 11.04 26.19 0.60 10.52 1.01 0.60 12.72 1.01 0.59 15.59 1.01
ED-11-72 2447 4 2446 4.12 4.03 10.5 27.50 0.83 11.29 1.01 0.82 14.75 1.01 0.82 18.32 1.01
ED-11-63 2510 4 2509 17.3 4.22 12.47 27.08 0.67 12.39 1.01 0.66 15.83 1.01 0.65 20.58 1.01
ED-11-54 2512 4 2511 5.52 4.28 11.57 27.32 0.67 12.85 1.01 0.66 16.77 1.01 0.66 21.93 1.01
ED-11-57 2559 4 2559 19.18 4.42 11.46 28.71 0.78 12.72 1.01 0.76 16.95 1.01 0.76 22.46 1.01
ED-11-76 2581 4 2581 3.92 3.81 21.74 30.16 0.11 11.17 1.00 0.11 14.18 1.00 0.10 16.30 1.00
ED-11-42 2598 4 2598 2.16 4.10 27.23 30.32 0.16 11.66 1.00 0.16 32.91 1.00 0.15 17.24 1.00
ED-11-56 2632 4 2630 3.83 4.60 12.94 30.21 0.56 12.94 1.01 0.55 15.88 1.01 0.55 19.63 1.01
ED-11-61 2726 4 2726 6.91 4.88 7.2 32.41 0.97 14.31 1.01 0.97 17.88 1.01 0.96 22.94 1.02
ED-11-47 2819 4 2819 4.34 4.72 24.91 34.68 0.24 12.28 1.00 0.23 14.20 1.00 0.23 16.66 1.01

Average 13.46 1.73 13.08 ≥ 18.32 1.14 5.79 1.02 1.13 7.45 1.02 1.11 10.14 1.02

% The instance names have been shortened. The original names include three zeros before the first number and six zeros before the second number.
by LPKwikSort and ACP were very close, differing by no more than
three percentage points. To round out the results, DeterministicKwik-
Sort produced neither high-quality solutions nor low run-times. While
KwikSort had quick run-times, they were similar to those of BestInput
and Spearman’s footrule, which yielded better solutions.

All things considered, BestInput had a good performance on the
Biomedical and SOC data sets, but performed poorly on the TOC
data set, especially when the number of input rankings was high.
LPKwikSort had an excellent performance on strict rankings, but its
run-time increases very fast with 𝑛, which makes it unattractive for
large scale problems. Additionally, this method is only able to handle
strict rankings, and its non-strict variant, LPKwikSortℎ, does not allow
the aggregate ranking to include ties, thereby limiting its general
application. ACP has a very good performance on the Biomedical
and SOC data sets and a dominant performance on the TOC data
set. Overall, it had a very robust performance in terms of solution
quality and run-times on both strict and non-strict rankings instances.
Quite remarkably, none of the tested instances of up to 2,820 items
exceeded 90 s in run-time, which includes the time to construct 𝐗𝑓

and 𝐗𝐴𝐶𝑃 and to solve the corresponding Kemeny-Agg subproblems
for all ACP subsets whose size is under the threshold ℎ. In fact, the
10
time to calculate the CR matrix, to construct 𝐗𝑓 and 𝐗𝐴𝐶𝑃 , and to
calculate the respective approximation factor took less than 1 s for each
instance of the Biomedical and SOC data sets and less than 12 s for each
instance of the TOC data set. As a final note, it is important to highlight
that although the approximation factors achieved by ACP are instance-
specific, they are considerably lower for all 113 tested instances than
the guarantees offered by any existing constant-factor approximation
algorithm for Kemeny-Agg. Indeed, the worst ACP approximation factor
obtained was 1.3.

6. Conclusion and future research

This paper explores the partitioning of the Kemeny aggregation
problem based on Condorcet extensions. These partitioning schemes
offer theoretical guarantees that enable the decomposition of certain
large instances of this NP-hard problem into a set of smaller subprob-
lems that can be solved independently. Since there may exist more
than one partition that satisfies the criteria of the Condorcet extensions,
we formalize the concept of the finest-Condorcet partition, which is
designed to provide the highest possible computational advantages
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Table 3
Performance metrics of the selected algorithms for solving instances of the SOC data set with more than 100 items; times are reported in seconds (s).

Instance 𝑛 𝑚 (𝑋𝑓
𝑙 )

max KwikSort Deterministic
KwikSort LPKwikSort BestInput Spearman’s

footrule
Approximate Condorcet Partitioning

ℎ = 30 ℎ = 40 ℎ = 50

Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s) AF Gap % Time (s) AF Gap % Time (s) AF

ED-15-12 100 4 99 13.38 0.06 12.71 0.45 0.42 6.25 5.81 0.02 6.54 0.06 1.76 0.59 1.06 1.21 1.23 1.06 1.39 1.87 1.06
ED-15-42 100 4 100 14.44 0.06 10.44 0.44 0.86 6.16 14.94 0.02 6.67 0.05 1.4 0.64 1.04 0.95 1.31 1.04 1.26 1.84 1.04
ED-15-28 102 4 99 11.57 0.06 5.12 0.47 0.15 6.50 2.0 0.02 8.66 0.06 1.64 0.64 1.07 1.12 1.38 1.07 0.77 1.94 1.07
ED-15-36 102 4 100 16.69 0.06 7.83 0.48 0 6.41 0.2 0.02 7.57 0.06 0.94 0.61 1.08 1.24 1.33 1.08 0.69 2.00 1.08
ED-15-05 103 4 94 14.21 0.06 13.56 0.55 0.11 10.24 12.26 0.03 6.67 0.06 0.21 0.95 1.03 0.11 1.05 1.03 0.21 1.64 1.03
ED-11-03 103 5 90 6.93 0.06 14.67 0.47 2.85 6.56 10.5 0.03 7.63 0.06 2.93 1.11 1.05 2.91 1.05 1.05 2.93 1.53 1.05
ED-15-29 106 4 105 16.24 0.06 10.45 0.59 0.32 7.39 1.51 0.02 5.84 0.06 1.3 0.66 1.06 1.46 1.41 1.06 1.3 1.85 1.06
ED-15-07 110 4 106 16.14 0.06 15.25 0.59 0.16 7.86 2.46 0.02 6.71 0.08 1.15 1.06 1.05 0.74 1.13 1.05 0.57 2.00 1.05
ED-15-22 112 4 110 11.37 0.08 19.27 0.67 0.05 8.67 0.91 0.02 6.18 0.06 1.32 0.66 1.07 1.32 1.55 1.07 1.22 1.92 1.07
ED-15-18 115 4 112 12.08 0.08 28.01 0.70 0 9.28 1.34 0.03 6.53 0.08 1.39 0.73 1.06 0.76 1.61 1.06 0.58 2.02 1.06
ED-15-25 115 4 114 11.26 0.06 17.98 0.70 0.08 9.24 1.46 0.03 7.82 0.08 1.82 0.72 1.06 0.93 1.64 1.06 1.01 1.98 1.06
ED-15-09 115 4 115 16.93 0.06 18.84 0.69 0.22 9.44 1.29 0.03 5.27 0.08 1.5 1.19 1.06 1.55 1.35 1.06 0.93 2.3 1.06
ED-15-20 122 4 116 19.16 0.06 32.19 0.94 0.19 10.99 1.4 0.03 7.49 0.09 3.16 0.78 1.08 1.95 1.87 1.08 1.5 1.91 1.08
ED-15-17 127 4 124 14.25 0.08 10.46 1.00 0.1 12.72 0.37 0.03 6.87 0.10 2.03 0.86 1.07 1.69 2.03 1.07 1.29 2.00 1.07
ED-15-33 128 4 126 15.86 0.08 18.06 1.00 0.7 12.5 2.52 0.03 7.23 0.08 3.59 0.80 1.08 2.83 2.02 1.08 1.98 2.13 1.08
ED-15-40 131 4 131 17.81 0.09 18.55 1.14 0.26 13.52 0.97 0.03 9.09 0.09 1.83 0.78 1.06 1.66 1.30 1.06 1.66 2.83 1.06
ED-15-23 142 4 135 27.36 0.09 18.11 1.55 0.03 17.58 1.05 0.05 8.11 0.11 2.24 0.91 1.07 1.97 1.37 1.07 1.8 3.06 1.07
ED-15-32 153 4 153 17.9 0.13 21.91 2.09 0.26 21.56 1.05 0.05 8.61 0.13 2.64 0.94 1.07 2.28 1.59 1.07 1.46 3.67 1.07
ED-15-14 163 4 160 16.96 0.16 22.37 2.67 0.04 26.32 0.65 0.05 9.78 0.14 2.04 1.09 1.07 1.62 3.25 1.07 1.79 2.83 1.07
ED-15-01 240 4 240 3.49 0.28 11.84 12.13 0.35 84.28 9.17 0.13 4.44 0.33 0.9 1.67 1.03 0.84 2.77 1.03 0.84 7.77 1.03
ED-11-01 240 5 229 4.58 0.39 9.67 12.38 2.27 85.31 7.63 0.19 5.51 0.39 2.43 1.75 1.04 2.32 2.58 1.04 2.33 3.89 1.04
ED-15-03 242 4 242 5.12 0.30 11.15 13.03 1.09 95.98 9.16 0.11 5.92 0.33 3.83 1.75 1.10 3.18 2.80 1.12 3.19 4.44 1.12
ED-11-02 242 5 239 6.63 0.47 12.04 12.20 4.05 93.31 7.96 0.19 7.46 0.39 4.07 2.02 1.06 3.86 6.86 1.06 3.98 5.22 1.06

Average 13.51 0.10 15.67 1.26 0.63 14.66 4.2 0.04 7.07 0.10 2.01 0.93 1.06 1.67 1.72 1.06 1.51 2.35 1.06

% The instance names have been shortened. The original names include three zeros before the first number and six zeros before the second number.
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among all such partitions. We specify the requirements of the finest-
Condorcet partition, prove its uniqueness, and derive an algorithm for
its construction. Condorcet partitioning is useful for a small portion
of problem instances, as it often yields a few large subsets which
may be too difficult to solve with exact methods. To overcome this
issue, we propose Approximate Condorcet Partitioning (ACP), which
breaks down these larger subsets based on the number of times an
item is pairwise preferred over other items. The resulting partition
has more subsets than the finest-Condorcet partition and is therefore
easier to solve. Furthermore, we propose an efficient solution technique
for strict and non-strict rankings, which is accompanied by instance-
specific approximation factors. Although the approximation factors are
not constant, ACP often achieves better solution guarantees than all
known approximation factors, including all instances tested herein.
The average approximation ratio for the strict and non-strict rankings
instances tested herein was 1.06 and 1.03, respectively, whereas the
best known approximation factors for strict and non-strict rankings
are 4/3 and 2, respectively. Experiments on a variety of very large
benchmark instances demonstrate the scalability and robustness of
the proposed approximation algorithm. The conducted experiments on
real-world instances showed that LPKiwkSort and the proposed solution
technique via ACP had the best and second best performances in terms
of solution quality on strict rankings, differing by no more than three
percentage points; however, ACP was on average nearly six times faster
than LPKiwkSort. On the other hand, ACP had a dominant performance
on non-strict rankings, achieving near-optimal solutions on the majority
of the tested instances.

All existing Condorcet partitioning schemes and ACP are only suit-
able for complete rankings (i.e., in which all items are evaluated by
all judges). There are numerous group-decision making contexts where
judges are unable to express their preferences over all items to produce
a complete ranking; that is, they may rank only a smaller subset of all
the items, and the sizes of the subsets may differ from one judge to
another. Reasons for this include practicality, feasibility, and judicious-
ness (Moreno-Centeno and Escobedo, 2016). Two relevant examples
include the National Science Foundation (NSF) proposal review process
and corporate project selection (Escobedo et al., 2022). Additional
potential advantages of using incomplete rankings are the mitigation
of overranking fatigue and various other cognitive biases (Yoo et al.,
2020).

It is generally not possible to apply the Condorcet Criterion and
its extensions to incomplete rankings since the existing definitions
effectively imply that each possible pair of items must be evaluated
by at least one judge. In the cases when this condition is met, it may
be possible to obtain a valid partition, but this remains to be formally
proved and computationally tested. Future research will explore these
directions as well as whether and how relaxing the partitioning con-
ditions could expand the applicability of these methods to the general
case.
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Appendix A. Proof of Theorem 1

Theorem 1. The finest-Condorcet partition is unique.

Proof. Let 𝐗𝑓 ,𝐗′ ∈ ℘𝑓 ( ), where 𝐗𝑓 = {𝑋𝑓
1 , 𝑋

𝑓
2 ,… , 𝑋𝑓

𝑤}, 𝐗′ =
{𝑋′

1, 𝑋
′
2,… , 𝑋′

𝑤}, and 𝐗𝑓 ≠ 𝐗′. Since both 𝐗𝑓 and 𝐗′ are distinct finest-
Condorcet partitions, they must have the same number of subsets, but
the contents of some of their subsets must be different.

Consider 𝑋𝑓
1 and 𝑋′

1. If 𝑋
𝑓
1 = 𝑋′

1, this part of the proof is trivially
satisfied. Otherwise, assume that 𝑋𝑓

1 ≠ 𝑋′
1 and consider two cases based

on the relative cardinality of the subsets.
Case 1. |𝑋𝑓

1 | = |𝑋′
1|. There exist items 𝑖 and 𝑗 such that 𝑖 ∈ 𝑋𝑓

1 , 𝑖 ∉ 𝑋′
1

and 𝑗 ∉ 𝑋𝑓
1 , 𝑗 ∈ 𝑋′

1. This implies that 𝑖 is pairwise preferred over 𝑗 and
𝑗 is pairwise preferred over 𝑖, yielding a contradiction.
Case 2. |𝑋𝑓

1 | ≠ |𝑋′
1|. Without loss of generality assume that |𝑋

𝑓
1 | >

|𝑋′
1|.
Case 2.1: 𝑋′

1 ⊂ 𝑋𝑓
1 . In this case, the contents of the respective

partitions are given by

𝐗𝑓 = {

𝑋𝑓
1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
{𝑋′

1, 𝑋
𝑓
1 ∖𝑋

′
1},… , 𝑋𝑓

𝑤},

𝐗′ = {𝑋′
1,… , {𝑋𝑓

1 ∖𝑋
′
1, 𝑋

′
𝑘∖(𝑋

𝑓
1 ∖𝑋

′
1)}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑋′
𝑘

,… , 𝑋′
𝑤}.

Without loss of generality, assume that 𝑋𝑓
1 ∖𝑋

′
1 ⊂ 𝑋𝑘′ (considering

a subset of 𝑋𝑓
1 ∖𝑋

′
1 also works). 𝐗′ is a finest-Condorcet partition

and, therefore, all items in 𝑋′
1 are pairwise preferred over all items

in 𝑋𝑓
1 ∖𝑋

′
1; thus, it is possible to decompose 𝑋𝑓

1 and obtain a finer
partition, contradicting the assumption that 𝐗𝑓 is a finest-Condorcet
partition.
Case 2.2: 𝑋′

1 ⊄ 𝑋𝑓
1 . This leads to a similar contradiction as in Case

1, since there exists items 𝑖 and 𝑗 such that 𝑖 ∈ 𝑋𝑓
1 , 𝑖 ∉ 𝑋′

1 and
𝑗 ∉ 𝑋𝑓

1 , 𝑗 ∈ 𝑋′
1.

These cases prove that 𝑋𝑓
1 = 𝑋′

1. Next, consider partitions 𝐗
𝑓∖𝑋𝑓

1
and 𝐗′∖𝑋′

1 and apply the above chain of arguments to show that
𝑋𝑓

2 = 𝑋′
2. Continuing in this manner gives that 𝑋𝑓

𝑘 = 𝑋′
𝑘, for 𝑘 =

,… , 𝑤. Therefore, we can conclude that the finest-Condorcet partition
s unique. □

ppendix B. Proof of Theorem 2

Theorem 2.

Proof. ⟹ We need to prove that if 𝐗𝑓 satisfies Condition (4), then
t is the finest-Condorcet partition. Note that 𝐗 has the most subsets
mong all partitions in ℘( ) if it is not possible to further decompose
ts subsets. This is indeed equivalent to satisfying Condition (4).

⟸ We need to prove that the finest-Condorcet partition must
atisfy Condition (4). We use contradiction. Assume that at least one
f the subset of 𝐗, say 𝑋𝑘, does not satisfy Condition (4). Then, we can
urther decompose 𝑋𝑘 into 𝑋𝑘 and 𝑋𝑘∖𝑋𝑘 and increase the size of 𝐗
y 1. However, this contradicts the fact that 𝐗 is the finest-Condorcet
artition, as we can construct another valid partition that has more
ubsets. □

ppendix C. Proof of Proposition 1

roposition 1. Item 𝑖 is pairwise preferred over item 𝑗 if and only if 𝑐𝑖𝑗 > 0
nd 𝑐𝑗𝑖 < 0.

roof. Recall that 𝑠𝑖𝑗 , 𝑠𝑗𝑖, 𝑡𝑖𝑗 ≥ 0, 𝑡𝑖𝑗 = 𝑡𝑗𝑖, and 𝑐𝑖𝑗 = 𝑠𝑖𝑗+𝑡𝑖𝑗−𝑠𝑗𝑖 ∀𝑖, 𝑗 ∈  .
⟹ Assume that 𝑠𝑖𝑗 > 𝑡𝑖𝑗 + 𝑠𝑗𝑖.

Case 1. 𝑡𝑖𝑗 = 0. By substituting 𝑠𝑖𝑗 > 𝑠𝑗𝑖 in the expressions for 𝑐𝑖𝑗 and

𝑗𝑖 we have that 𝑐𝑖𝑗 > 0, 𝑐𝑗𝑖 < 0.
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Case 2. 𝑡𝑖𝑗 > 0. By substituting 𝑠𝑖𝑗 > 𝑠𝑗𝑖 + 𝑡𝑖𝑗 in the expressions for 𝑐𝑖𝑗
and 𝑐𝑗𝑖 we have:

𝑖𝑗 = 𝑠𝑖𝑗 + 𝑡𝑖𝑗 − 𝑠𝑗𝑖 > 𝑠𝑗𝑖 + 𝑡𝑖𝑗 + 𝑡𝑖𝑗 − 𝑠𝑗𝑖 = 2𝑡𝑖𝑗 > 0,

𝑐𝑗𝑖 = 𝑠𝑗𝑖 + 𝑡𝑖𝑗 − 𝑠𝑖𝑗 < 𝑠𝑗𝑖 + 𝑡𝑖𝑗 − 𝑠𝑗𝑖 − 𝑡𝑖𝑗 = 𝑠𝑗𝑖 − 𝑠𝑗𝑖 < 0.

⟸ Now, assume that 𝑐𝑖𝑗 > 0, 𝑐𝑗𝑖 < 0. Here, we have 𝑐𝑖𝑗 = 𝑠𝑖𝑗 + 𝑡𝑖𝑗 −𝑠𝑗𝑖 >
0, which results in 𝑠𝑖𝑗 > 𝑠𝑗𝑖 − 𝑡𝑖𝑗 . Similarly, 𝑐𝑗𝑖 = 𝑠𝑗𝑖 + 𝑡𝑖𝑗 − 𝑠𝑖𝑗 < 0
results in 𝑠𝑖𝑗 > 𝑠𝑗𝑖 + 𝑡𝑖𝑗 . Since 𝑠𝑗𝑖 + 𝑡𝑖𝑗 ≥ 𝑠𝑗𝑖 − 𝑡𝑖𝑗 , we can conclude that
𝑠𝑖𝑗 > 𝑠𝑗𝑖 + 𝑡𝑖𝑗 . □

Appendix D. Proof of Theorem 3

Theorem 3. Algorithm 1 is correct.

Proof. Assume that the initial partition 𝐗0 = {𝑋0
1 , 𝑋

0
2 ,… , 𝑋0

𝑤} has been
accordingly constructed, per Algorithm 1, and let 𝐗̃ be the working
partition which is initially set to 𝐗0. Let 𝛤 (𝑋𝑘) = ∪𝑖∈𝑋𝑘

𝛤 𝑖 denote
he set of items over which at least one of the items in 𝑋𝑘 ∈ 𝐗̃ is
not pairwise preferred. If all items in 𝛤 (𝑋𝑘) belong to 𝑋𝑘 or to other
lower-indexed subsets, 𝐗̃ does not violate NXCC; otherwise, there is
a violation. Whenever a violation is detected, the associated subsets
(see the next paragraph) are merged. The process continues until the
working partition does not violate NXCC.

The validation & merging starts from subset 𝑋1. Generally, if
𝛤 (𝑋𝑘)∖ ∪𝑘

𝑡=1 𝑋𝑡 = ∅, all items in 𝑋𝑘 are pairwise preferred over all
items in 𝑋𝑡, for 𝑡 = 𝑘 + 1,… , |𝐗̃|. Therefore, subset 𝑋𝑘 satisfies NXCC
and remains unchanged in this case. If 𝛤 (𝑋𝑘)∖ ∪𝑘

𝑡=1 𝑋𝑡 ≠ ∅, there is
at least one item in subsets 𝑋𝑘+1,… , 𝑋

|𝐗̃| that not all items in 𝑋𝑘 are
airwise preferred over, which causes a violation of NXCC. Let 𝑋𝑘′

e the highest-indexed subset to which an item from 𝛤 (𝑋𝑘)∖ ∪𝑘
𝑡=1 𝑋𝑡

elongs, where 𝑘′ > 𝑘. Therefore, subsets 𝑋𝑘,… , 𝑋𝑘′ are merged and
laced into subset 𝑋𝑘. Validation & merging is repeated for 𝑋𝑘, which
s now defined as ∪𝑘′

𝑡=𝑘𝑋𝑡, until 𝛤 (𝑋𝑘)∖ ∪𝑘
𝑡=1 𝑋𝑘 = ∅; this process is

performed on the remaining subsets until the working partition satisfies
NXCC. Hence, the output of the algorithm satisfies NXCC.

Furthermore, we prove that the output of the algorithm satisfies
Condition (4). Recall that Condition (4) states that a subset cannot be
further split into two subsets while satisfying NXCC. For this part of
the proof, we emphasize that {𝑋𝑓

1 , 𝑋𝑓
2 ,… , 𝑋𝑓

|𝐗𝑓
|

} = 𝐗𝑓 refers to the
partition output by the algorithm. Assume that subset 𝑋𝑓

𝑘 ∈ 𝐗𝑓 has
not undergone validation & merging, therefore, it remains unchanged
after implementing the algorithm. If |𝑋𝑓

𝑘 | = 1, then the subset trivially
satisfies Condition (4). We use contradiction for the case when |𝑋𝑓

𝑘 | >
1. Assume that subset 𝑋𝑓

𝑘 does not satisfy Condition (4), meaning it
can be decomposed into 𝑋

𝑓
𝑘 and 𝑋𝑓

𝑘 ∖𝑋
𝑓
𝑘 . Consider items 𝑖 ∈ 𝑋

𝑓
𝑘 and

∈ 𝑋𝑓
𝑘 ∖𝑋

𝑓
𝑘 . This gives that 𝛾𝑖 > 𝛾𝑗 , contradicting the fact that 𝛾𝑖 = 𝛾𝑗

(since all items with the same 𝛾-values were placed in the same subset
in 𝐗0 and hence 𝐗̃).

Now, assume that subset 𝑋𝑓
𝑘 has undergone the merging process

and that a sequence of consecutive subsets {𝑋𝑘,… , 𝑋𝑘′} ⊆ 𝐗̃ were
merged to form subset 𝑋𝑓

𝑘 . Additionally, assume that 𝑋𝑓
𝑘 does not

satisfy Condition (4) and, hence, it is possible to further decompose
𝑓
𝑘 into {𝑋𝑓

𝑘 ,… , 𝑋𝑓
𝑡 } and {𝑋𝑓

𝑡+1,… , 𝑋𝑓
𝑘′} while satisfying NXCC. This

ontradicts the fact that 𝑋𝑓
𝑘 has triggered the merging process as

t least one item in 𝑋𝑓
𝑘 is not pairwise preferred over at least one

tem in 𝑋𝑓
𝑘′ . Therefore, 𝑋

𝑓
𝑘 satisfies Condition (4) and Algorithm 1 is

orrect. □

ppendix E. Proof of Theorem 4

( 2)
13

heorem 4. Algorithm 1 has a time complexity of 𝑂 𝑛 .
roof. Lines 1–2 of the algorithm construct the initial partition. In line
, calculating the 𝛤 -parameter sets has a time complexity of 𝑂

(

𝑛2
)

, and
alculating the 𝛤 -parameter sets and 𝛾-values has a time complexity of
𝑂(𝑛).

Lines 5–12 perform validation & merging. In this process, the num-
er of inner and outer while loops iterations are dependent on each
ther. The extreme cases are:
Case 1. the initial partition has 𝑛 subsets and the output partition has
subsets. In this case, the outer while loop is performed 𝑛 times but
he inner while loop is never performed. In this case, lines 6–8 have a
onstant time, therefore, validation & merging has a time complexity
f 𝑂(𝑛).
Case 2. the initial partition has 𝑛 subsets and the output partition has
subset and each time, two adjacent subsets are merged. In this case,
he inner while loop is performed 𝑛−1 times but the outer while loop is
erformed only once. Lines 10–11 have a constant time complexity, and
ine 12 has a time complexity of 𝑂(𝑛). Therefore, validation & merging
as a time complexity of 𝑂

(

𝑛2
)

.
Finally, the finest-Condorcet partition algorithm has a time com-

lexity of 𝑂
(

𝑛2
)

. □

Appendix F. Proof of Lemma 2

Lemma 2. Let 𝐗 = {𝑋1, 𝑋2,… , 𝑋𝑤} be any given partition of  and 𝝈̂ be
a complete ranking obtained by independently solving the subsets of 𝐗 (using
any method of choice) and concatenating the solutions of these subproblems.
The term 𝑑𝐾𝑆 (𝝈̂) − 𝑑𝐾𝑆 (𝝈∗) is bounded by

2
𝑤−1
∑

𝑘=1

𝑤
∑

𝑘=𝑘+1

∑

𝑖∈𝑋𝑘

∑

𝑗∈𝑋𝑘′

max
(

0, (2𝑠𝑗𝑖 + 𝑡𝑖𝑗 ) − (2𝑠𝑖𝑗 + 𝑡𝑖𝑗 ),

(2𝑠𝑗𝑖 + 𝑡𝑖𝑗 ) − (𝑠𝑖𝑗 + 𝑠𝑗𝑖)
)

+
𝑤
∑

𝑘=1

∑

(𝑖,𝑗)∈𝑋𝑘

max
(

2𝑠𝑖𝑗 + 𝑡𝑖𝑗 , 2𝑠𝑗𝑖 + 𝑡𝑖𝑗 , 𝑠𝑖𝑗 + 𝑠𝑗𝑖
)

− min
(

2𝑠𝑖𝑗 + 𝑡𝑖𝑗 , 2𝑠𝑗𝑖 + 𝑡𝑖𝑗 , 𝑠𝑖𝑗 + 𝑠𝑗𝑖
)

.

(F.1)

roof. Consider an item pair (𝑖, 𝑗), where 𝑖 ∈ 𝑋𝑘, 𝑗 ∈ 𝑋𝑘′ , 𝑘 < 𝑘′

items from different subsets); since 𝜎𝑖 < 𝜎𝑗 , the contribution of this
air in 𝑑𝐾𝑆 (𝝈̂) is 2𝑠𝑗𝑖+ 𝑡𝑖𝑗 , while the contribution of this pair in 𝑑𝐾𝑆 (𝝈∗)
ust be exactly one of 2𝑠𝑗𝑖 + 𝑡𝑖𝑗 , 2𝑠𝑖𝑗 + 𝑡𝑖𝑗 , or 𝑠𝑖𝑗 + 𝑠𝑗𝑖. Therefore, the
dditional distance accrued by (𝑖, 𝑗) in 𝑑𝐾𝑆 (𝝈̂) relative to 𝑑𝐾𝑆 (𝝈∗) is at
ost

ax
(

0, (2𝑠𝑗𝑖 + 𝑡𝑖𝑗 ) − (2𝑠𝑖𝑗 + 𝑡𝑖𝑗 ), (2𝑠𝑗𝑖 + 𝑡𝑖𝑗 ) − (𝑠𝑖𝑗 + 𝑠𝑗𝑖)
)

.

onsider a pair of distinct items (𝑖, 𝑗), where 𝑖, 𝑗 ∈ 𝑋𝑘 (items within the
ame subset); the additional distance accrued by (𝑖, 𝑗) in 𝑑𝐾𝑆 (𝝈̂) relative
o 𝑑𝐾𝑆 (𝝈∗) is at most

ax
(

2𝑠𝑖𝑗 + 𝑡𝑖𝑗 , 2𝑠𝑗𝑖 + 𝑡𝑖𝑗 , 𝑠𝑖𝑗 + 𝑠𝑗𝑖
)

− min
(

2𝑠𝑖𝑗 + 𝑡𝑖𝑗 , 2𝑠𝑗𝑖 + 𝑡𝑖𝑗 , 𝑠𝑖𝑗 + 𝑠𝑗𝑖
)

.

(F.2)

ince the exact orderings of 𝑖 and 𝑗 in 𝝈∗ and 𝝈̂ are not yet known,
q. (F.2) considers the worst case. Expressly, the contribution of (𝑖, 𝑗) in
𝐾𝑆 (𝝈∗) is taken as the smallest of the three possible values of 𝑑𝐾𝑆 (𝜎𝑖𝑗 ),
hereas the contribution of this pair in 𝑑𝐾𝑆 (𝝈̂) is taken as the largest
f the three possible values of 𝑑𝐾𝑆 (𝜎𝑖𝑗 ). Finally, the right-hand side of
q. (F.1) has been multiplied by 2 since 𝑑𝐾𝑆 counts each item-pair
wice. □

ppendix G. Proof of Theorem 5

heorem 5. Assume that the input rankings are non-strict and let 𝐗𝐴𝐶𝑃
ℎ =

𝑋1,… , 𝑋𝑤} be the ACP partition obtained using threshold ℎ. Let 𝝈̂ be the
omplete ranking obtained via ACP from the following two steps: (1) solve
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subsets of at most size ℎ to optimality, (2) tie all items in subsets of size
reater than ℎ. The term 𝑑𝐾𝑆 (𝝈̂) − 𝑑𝐾𝑆 (𝝈∗) is bounded by

2
𝑤−1
∑

𝑘=1

𝑤
∑

𝑘=𝑘+1

∑

𝑖∈𝑋𝑘

∑

𝑗∈𝑋𝑘′

max
(

0, (2𝑠𝑗𝑖 + 𝑡𝑖𝑗 ) − (2𝑠𝑖𝑗 + 𝑡𝑖𝑗 ),

(2𝑠𝑗𝑖 + 𝑡𝑖𝑗 ) − (𝑠𝑖𝑗 + 𝑠𝑗𝑖)
)

+
𝑤
∑

𝑘=1

∑

(𝑖,𝑗)∈𝑋𝑘

((

𝑠𝑖𝑗 + 𝑠𝑗𝑖
)

− min
(

2𝑠𝑖𝑗 + 𝑡𝑖𝑗 , 2𝑠𝑗𝑖 + 𝑡𝑖𝑗 , 𝑠𝑖𝑗 + 𝑠𝑗𝑖
))

.

(G.1)

Proof. Let 𝝈 be an auxiliary ranking obtained from 𝐗𝐴𝐶𝑃
ℎ , whereby

all items in each subset 𝑋𝑘 ∈ 𝐗𝐴𝐶𝑃
ℎ are tied ∀𝑘 ∈ {1,… , 𝑤} (items

in lower-indexed subsets remain ranked ahead of items in higher-
indexed subsets). Since 𝝈̂ solves all the subsets whose size is at most
ℎ to optimality and ties all the items in subsets whose size is greater
than ℎ, we have that 𝑑𝐾𝑆 (𝝈̂) ≤ 𝑑𝐾𝑆 (𝝈). Furthermore, we show that
𝑑𝐾𝑆 (𝝈) − 𝑑𝐾𝑆 (𝝈∗) ≤ 𝛽.

Consider an item pair (𝑖, 𝑗), where 𝑖 ∈ 𝑋𝑘, 𝑗 ∈ 𝑋𝑘′ , 𝑘 < 𝑘′ (items
rom different subsets); since 𝜎𝑖 < 𝜎𝑗 , the contribution of this pair in
𝑑𝐾𝑆 (𝝈) is 2𝑠𝑗𝑖 + 𝑡𝑖𝑗 , while the contribution of this pair in 𝑑𝐾𝑆 (𝝈∗) must
be exactly one of 2𝑠𝑗𝑖+ 𝑡𝑖𝑗 , 2𝑠𝑖𝑗+ 𝑡𝑖𝑗 , or 𝑠𝑖𝑗+𝑠𝑗𝑖. Therefore, the additional
distance accrued by (𝑖, 𝑗) in 𝑑𝐾𝑆 (𝝈) relative to 𝑑𝐾𝑆 (𝝈∗) is at most

ax
(

0, (2𝑠𝑗𝑖 + 𝑡𝑖𝑗 ) − (2𝑠𝑖𝑗 + 𝑡𝑖𝑗 ), (2𝑠𝑗𝑖 + 𝑡𝑖𝑗 ) − (𝑠𝑖𝑗 + 𝑠𝑗𝑖)
)

.

Consider a pair of distinct items (𝑖, 𝑗), where 𝑖, 𝑗 ∈ 𝑋𝑘 (items within
the same subset); the additional distance accrued by (𝑖, 𝑗) in 𝝈 relative
to 𝑑𝐾𝑆 (𝝈∗) is at most
(

𝑠𝑖𝑗 + 𝑠𝑗𝑖
)

− min
(

2𝑠𝑖𝑗 + 𝑡𝑖𝑗 , 2𝑠𝑗𝑖 + 𝑡𝑖𝑗 , 𝑠𝑖𝑗 + 𝑠𝑗𝑖
)

. (G.2)

Since the exact orderings of 𝑖 and 𝑗 in 𝝈∗ is not yet known, Eq. (G.2)
considers the worst case. Expressly, the contribution of (𝑖, 𝑗) in 𝑑𝐾𝑆 (𝝈∗)
is taken as the smallest of the three possible values of 𝑑𝐾𝑆 (𝜎𝑖𝑗 ), whereas
the contribution of this pair in 𝑑𝐾𝑆 (𝝈̂) is

(

𝑠𝑖𝑗 + 𝑠𝑗𝑖
)

as 𝝈 ties all items
within each subset. Finally, the first term of Eq. (G.1) has been multi-
lied by 2 since 𝑑𝐾𝑆 counts each item-pair twice. □

ppendix H. Proof of Theorem 6

heorem 6. Assume that the input rankings are strict and let 𝐗𝐴𝐶𝑃
ℎ =

𝑋1,… , 𝑋𝑤} be the ACP partition obtained using threshold ℎ. Let 𝝈̂ be the
omplete ranking obtained via ACP from the following two steps: (1) solve
ubsets of at most size ℎ to optimality, (2) randomly permute items within
ubsets of size greater than ℎ. The term 𝑑𝐾𝑆 (𝝈̂) − 𝑑𝐾𝑆 (𝝈∗) is bounded by
𝑤−1
∑

𝑘=1

𝑤
∑

𝑘=𝑘+1

∑

𝑖∈𝑋𝑘

∑

𝑗∈𝑋𝑘′

max
(

0, 𝑠𝑗𝑖 − 𝑠𝑖𝑗
)

+ 2
𝑤
∑

𝑘=1

∑

(𝑖,𝑗)∈𝑋𝑘

(

𝑠𝑗𝑖1𝜎𝑖<𝜎𝑗 + 𝑠𝑖𝑗1𝜎𝑗<𝜎𝑖 − min
(

𝑠𝑖𝑗 , 𝑠𝑗𝑖
))

; (H.1)

here 𝝈 is an auxiliary ranking obtained by randomly permuting all items
in subset 𝑋𝑘, ∀𝑘 ∈ {1,… , 𝑤} (while ranking items in the lower-indexed
subsets strictly ahead of items in the higher-indexed subsets), and 1 is an
indicator function.
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r

Proof. Order the items within subset 𝑋𝑘 ∈ 𝐗𝐴𝐶𝑃
ℎ whose size is greater

han ℎ in 𝝈̂ the same as in 𝝈. Since 𝝈̂ solves all subsets whose size is
t most ℎ to optimality whereas 𝝈̂ randomly permutes these items, we
have that 𝑑𝐾𝑆 (𝝈̂) ≤ 𝑑𝐾𝑆 (𝝈). Next, we show that 𝑑𝐾𝑆 (𝝈) − 𝑑𝐾𝑆 (𝝈∗) ≤ 𝛽.

Consider an item pair (𝑖, 𝑗), where 𝑖 ∈ 𝑋𝑘, 𝑗 ∈ 𝑋𝑘′ , 𝑘 < 𝑘′ (items
from different subsets); since 𝜎𝑖 < 𝜎𝑗 , the contribution of this pair in
𝑑𝐾𝑆 (𝝈) is 2𝑠𝑗𝑖, while the contribution of this pair in 𝑑𝐾𝑆 (𝝈∗) must be
xactly one of 2𝑠𝑗𝑖 or 2𝑠𝑖𝑗 (when the input rankings are strict, 𝑑𝐾𝑆 (𝜎𝑖𝑗 )
has only two possible values since the aggregate ranking is assumed to
be strict as well). Therefore, the additional distance accrued by (𝑖, 𝑗) in
𝑑𝐾𝑆 (𝝈) relative to 𝑑𝐾𝑆 (𝝈∗) is at most

ax
(

0, (2𝑠𝑗𝑖 − 2𝑠𝑖𝑗 )
)

.

Consider a pair of distinct items (𝑖, 𝑗), where 𝑖, 𝑗 ∈ 𝑋𝑘 (items within
the same subset); the additional distance accrued by (𝑖, 𝑗) in 𝝈 relative
to 𝑑𝐾𝑆 (𝝈∗) is at most

𝑠𝑗𝑖1𝜎𝑖<𝜎𝑗 + 2𝑠𝑖𝑗1𝜎𝑗<𝜎𝑖 − min
(

2𝑠𝑖𝑗 , 2𝑠𝑗𝑖
)

. (H.2)

Since the exact orderings of 𝑖 and 𝑗 in 𝝈∗ is not yet known, Eq. (H.2)
considers the worst case. Expressly, the contribution of (𝑖, 𝑗) in 𝑑𝐾𝑆 (𝝈∗)
is taken as the smallest of the three possible values of 𝑑𝐾𝑆 (𝜎𝑖𝑗 ), whereas
the contribution of this pair in 𝑑𝐾𝑆 (𝝈̂) is 2𝑠𝑗𝑖 if 𝜎𝑖 < 𝜎𝑗 , and 2𝑠𝑖𝑗
therwise. Finally, the first term of Eq. (H.1) has been multiplied by
since 𝑑𝐾𝑆 counts each item-pair twice. □

ppendix I. NonStrictKwikSort algorithm

NonStrictKwikSort is a randomized recursive algorithm that adapts
wikSort to handle non-strict rankings; its pseudocode is presented in
lgorithm 3. Similar to KwikSort, it starts by randomly selecting an
tem as pivot. Next, it compares all remaining items to the pivot item
nd assigns them based on their relative orderings within the input
ankings to three subsets: Left (𝐿), Right (𝑅), or Middle (𝑄). All items in
he Left subset will be ranked ahead of all items in the Middle and Right
ubsets; all items in the Middle subset will be tied and ranked ahead
f all items in the Right subset in the output solution. The algorithm
pplies the same procedure recursively to the Left and Right subsets
ntil the relative ordering of all items is determined. Next, we elaborate
n how the items are assigned to the three aforementioned subsets. The
lgorithm assigns item 𝑗 to the Left subset if pivot item 𝑖 is ranked ahead
f 𝑗 in at least (1 − 𝛽)% of the input rankings, it assigns 𝑗 to the Right
ubset if 𝑗 is ranked ahead of 𝑖 in at least (1 − 𝛽)% of the input lists,
nd it assigns 𝑗 to the Middle subset otherwise. Here, 0 ≤ 𝛽 ≤ 0.5 is
user-specified parameter, which is set to 0.25 herein. We note that
arts of the algorithm are inspired also by BucketPivot, which is the
odified KwikSort for the Optimal Bucket Pivot Problem (Aledo et al.,
017c; Gionis et al., 2006).

ppendix J. Objective function values of the tested algorithms

Tables J.4–J.6 report the objective function values (i.e., the cu-
ulative Kemeny–Snell distance of the obtained solution to the in-
ut rankings) of the tested algorithms, which connect to Tables 1–3,
espectively.
Table J.4
Objective function values of the tested algorithms for solving instances of the Biomedical data set.

Instance 𝑛 𝑚 NonStrictKwikSort BestInput ACP

ℎ = 30 ℎ = 40 ℎ = 50

Prostate Cancer 218 4 51,047 40,809 44,495 44,282 44,260
Bladder Cancer 308 4 49,927 42,841 42,845 42,845 42,845
Breast Cancer 386 4 145,646 113,651 139,333 139,549 139,765
Retinoblastoma 402 4 78,812 78,273 78,211 78,211 78,211
Neuroblastoma 431 4 92,065 83,835 82,881 82,626 82,507
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Table J.5
Objective function values of the tested algorithms for solving instances of the TOC data set.

Instance 𝑛 𝑚 NonStrictKwikSort BestInput ACP

ℎ = 30 ℎ = 40 ℎ = 50

ED-14-02 100 5,000 4,725,000 – 4,725,000 4,725,000 4,725,000
ED-14-03 100 5,000 4,651,850 – 4,651,850 4,651,850 4,651,850
MD-03-03 102 32 15,840 24,088 15,840 15,840 15,840
MD-03-05 103 31 15,500 26,244 15,500 15,500 15,500
MD-03-06 133 38 24,700 41,920 24,700 24,700 24,700
MD-03-08 147 51 43,629 68,751 43,629 43,629
MD-03-07 155 51 38,760 46,884 38,760 38,760 38,760
ED-10-50 170 4 33,308 27,832 24,729 24,761 24,736
ED-10-49 351 4 115,864 117,059 101,164 101,164 101,060
ED-18-01 379 723 60,854,829 – 30,454,824 30,454,824 3,0454,824
ED-18-03 477 556 46,367,191 – 23,258,021 23,258,021 2,325,8021
ED-11-12 1,210 4 1,767,972 1,668,735 1,635,020 1,634702 1,634,384
ED-11-31 1,223 4 1,770,836 1,650,797 1,543,810 1,543658 1,543,203
ED-11-09 1,272 4 1,913,851 1,693,653 1,616,193 1,615724 1,614,631
ED-11-23 1,342 4 2,046,014 2,017,064 1,874,898 1,874345 1,873,792
ED-11-21 1,347 4 2,022,786 1,930,340 1,883,935 1,883384 1,883,017
ED-11-37 1,351 4 2,079,039 1,867,027 1,842,379 1,841128 1,840,414
ED-11-25 1,356 4 2,188,135 2,013,239 1,894,977 1,893496 1,892,756
ED-11-13 1,363 4 2,063,442 2,094,091 1,996,645 1,996252 1,996,056
ED-11-29 1,368 4 2,204,187 1,822,030 1,810,126 1,809600 1,808,550
ED-11-14 1,375 4 2,372,258 1,935,788 1,925,538 1,924047 1,923,301
ED-11-30 1,386 4 1,918,957 1,942,725 1,873,251 1,872336 1,871,788
ED-11-06 1,449 4 2,466,040 2,204,747 2,154,039 2,152992 2,1521,53
ED-11-04 1,467 4 3,295,480 2,336,042 2,284,842 2,284175 2,283,729
ED-11-07 1,474 4 2,391,411 2,503,234 2,348,065 2,347604 2,347,373
ED-11-34 1,509 4 2,679,187 2,537,303 2,409,181 2,408469 2,408,232
ED-11-22 1,514 4 2,665,468 2,377,686 2,287,445 2,286323 2,285,874
ED-11-11 1,545 4 3,155,771 2,402,785 2,319,852 2,318489 2,317,807
ED-11-15 1,563 4 3,359,863 2,576,355 2,470,338 2,469612 2,469,128
ED-11-08 1,572 4 2,905,609 2,888,032 2,738,763 2,738493 2,738,222
ED-11-28 1,616 4 2,791,072 3,106,683 2,737,564 2,737293 2,737,293
ED-11-40 1,623 4 3,364,856 2,958,710 2,490,748 2,490500 2,490,500
ED-11-36 1,634 4 3,522,390 2,954,359 2,774,579 2,773759 2,773,486
ED-11-33 1,646 4 3,026703 2,912747 2,8059,48 2,804847 2,803,471
ED-11-05 1,673 4 2,696,219 3,194,942 2,607,873 2,607,355 2,607,096
ED-11-18 1,681 4 3,294,078 3,115,489 2,990,565 2,990,271 2,989392
ED-11-16 1,708 4 3,113,117 3,146,307 2,946,005 2,945,423 2,945,423
ED-11-32 1,751 4 3,576,633 3,449,842 3,323,704 3,322,723 3,322,723
ED-11-38 1,754 4 3,765,400 3,50,8307 3,375,624 3,374,632 3,373,970
ED-11-39 1,788 4 3,979,326 3,475,074 2,951,711 2,951,123 2,950,535
ED-11-68 1,826 4 5,095,568 3,852,346 3,516,812 3,516,812 3,516,812
ED-11-49 1,845 4 4,026,119 4,173,178 3,946,723 3,946,332 3,946,332
ED-11-20 1,870 4 3,553,291 3,709,222 3,503,269 3,501,889 3,500,509
ED-11-26 1,931 4 3,985,229 3,946,271 3,761,869 3,760,756 3,759,643
ED-11-35 1,936 4 4,459,450 4,043,148 3,865,440 3,864,679 3,863,537
ED-11-74 1,976 4 4,416,193 4,424,128 4,224,911 4,224,076 4,223,658
ED-11-60 1,977 4 4,300,726 4,602,648 4,183,358 4,183,358 4,183,358
ED-11-58 2,011 4 4,516,635 4,683,885 4,414,887 4,414,451 4,414,451
ED-11-62 2,014 4 4,401,234 4,758,697 4,267,979 4,267,133 4,266,710
ED-11-17 2,015 4 4,659,696 4,301,476 4,109,993 4,1087,76 4,107,964
ED-11-66 2,024 4 4,612,366 4,502,283 4,369,497 4,368,641 4,368,212
ED-11-24 2,049 4 4,560,710 4,537,540 4,352,606 4,351,748 4,351,319
ED-11-67 2,066 4 4,815,256 4,810,335 4,531,663 4,522,717 4,522,717
ED-11-27 2,092 4 5,682,906 4,987,647 4,699,969 4,699,040 4,699,040
ED-11-10 2,096 4 4,624,781 4,949,710 4,383,916 4,383,045 4,382,610
ED-11-19 2,104 4 4,829,212 4,656,600 4,425,867 4,424,993 4,424,119
ED-11-50 2,111 4 4,960,102 5,270,413 4,901,645 4,901,158 4,901,158
ED-11-51 2,112 4 5,078,828 4,989,425 4,828,691 4,827,740 4,827,264
ED-11-65 2,119 4 4,889,334 5,747,053 4,754,678 4,754,204 4,754,678
ED-11-41 2,123 4 5,441,209 5,394,043 5,070,400 5,069,898 5,069,898
ED-11-71 2,127 4 5,796,474 5,340,186 4,926,537 4,926,047 4,926,047
ED-11-46 2,133 4 5,068,560 5,333,519 4,901,268 4,900,784 4,900,784
ED-11-43 2,153 4 5,274,322 5,3494,47 5,072,985 5,072,484 5,071,983
ED-11-48 2,194 4 5,536,944 5,640,689 5,118,927 5,118,421 5,117,409
ED-11-52 2,242 4 5,879,025 5,733,766 5,315,421 5,315,421 5,314,892
ED-11-73 2,258 4 5,759,327 6,044,968 5,426,081 5,426,081 5,425,540
ED-11-45 2,265 4 5,729,952 6,368,389 5,709,413 5,709,413 5,709,413
ED-11-70 2,276 4 5,808,590 6,099,357 5,652,240 5,652,240 5,651,677
ED-11-59 2,281 4 6,069,458 6,077,844 5,629,497 5,629,497 5,628,378
ED-11-77 2,317 4 4,951,261 6,352,058 4,950,767 4,950,272 4,950,272
ED-11-53 2,321 4 5,648,155 6,183,061 5,617,349 5,616,789 5,616,789
ED-11-69 2,338 4 6,229,042 6,391,616 5,986,669 5,986,669 5,986,074
ED-11-55 2,353 4 6,243,828 6,634,030 6,152,088 6,152,088 6,1520,88

(continued on next page)
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Table J.5 (continued).

Instance 𝑛 𝑚 NonStrictKwikSort BestInput ACP

ℎ = 30 ℎ = 40 ℎ = 50

ED-11-75 2,391 4 8,294,209 6,851,876 6,427,661 6,427,661 6,427,661
ED-11-44 2,434 4 6,664,168 7,041,263 6,471,115 6,471,115 6,470,472
ED-11-64 2,446 4 7,262,737 7,124,784 6,454,910 6,454,910 6,454,269
ED-11-72 2,447 4 6,672,648 7,081,517 6,461,804 6,461,164 6,461,164
ED-11-63 2,510 4 7,683,897 7,367,501 6,594,526 6,593,871 6,593,216
ED-11-54 2,512 4 6,843,662 7,236,044 6,529,108 6,528,459 6,528,459
ED-11-57 2,559 4 8,130,761 7,604,083 6,875,467 6,874,102 6,874,102
ED-11-76 2,581 4 6,440,721 7,545,163 6,204,586 6,204,586 6,203,966
ED-11-42 2,598 4 6,549,882 8,157,219 6,421,654 6,421,654 6,421,013
ED-11-56 2,632 4 7,468,730 8,124,033 7,233,511 7,232,792 7,232,792
ED-11-61 2,726 4 8,287,366 8,309,846 7,826,914 7,826,914 7,826,139
ED-11-47 2,819 4 8,399,175 10,055,021 8,069,133 8,068,328 8,068,328
Table J.6
Objective function values of the tested algorithms for solving instances of the SOC data set.

Instance 𝑛 𝑚 KwikSort Deterministic
KwikSort LPKwikSort BestInput Spearman’s

footrule
ACP

ℎ = 30 ℎ = 40 ℎ = 50

ED-15-12 100 4 7,492 7,448 6,636 6,992 7,040 6,724 6,688 6,700
ED-15-42 100 4 9,128 8,809 8,045 9,168 8,508 8,088 8,052 8,076
ED-15-28 102 4 8,714 8,210 7,822 7,966 8,486 7,938 7,897 7,870
ED-15-36 102 4 9,426 8,711 8,078 8,094 8,690 8,154 8,178 8,134
ED-15-05 103 4 4,246 4,222 3,722 4,174 3,966 3,726 3,722 3,726
ED-11-03 103 5 10,122 10,855 9,736 10,460 10,188 9,743 9,741 9,743
ED-15-29 106 4 8,592 8,164 7,416 7,504 7,824 7,488 7,500 7,488
ED-15-07 110 4 8,864 8,796 7,644 7,820 8,144 7,720 7,688 7,676
ED-15-22 112 4 9,798 10,493 8,802 8,878 9,342 8,914 8,914 8,905
ED-15-18 115 4 10,022 11,447 8,942 9,062 9,526 9,066 9,010 8,994
ED-15-25 115 4 10,990 11,654 9,886 10,022 10,650 10,058 9,970 9,978
ED-15-09 115 4 10,556 10,729 9,048 9,144 9,504 9,163 9,168 9,112
ED-15-20 122 4 14,945 16,579 12,566 12,718 13,481 12,938 12,787 12,730
ED-15-17 127 4 13,504 13,056 11,832 11,864 12,632 12,060 12,020 11,972
ED-15-33 128 4 13,790 14,052 11,985 12,202 12,763 12,329 12,239 12,138
ED-15-40 131 4 16,484 16,588 14,028 14,128 15,264 14,248 14,224 14,224
ED-15-23 142 4 18,401 17,065 14,452 14,600 15,620 14,772 14,733 14,708
ED-15-32 153 4 18,390 19,016 15,639 15,762 16,941 16,010 15,954 15,826
ED-15-14 163 4 20,859 21,823 17,841 17,950 19,578 18,198 18,123 18,153
ED-15-01 240 4 29,824 32,230 28,919 31,461 30,098 29,077 29,060 29,060
ED-11-01 240 5 32,119 33,682 31,409 33,055 32,404 31,458 31,425 31,428
ED-15-03 242 4 63,564 67,210 61,127 66,007 64,048 62,784 62,391 6,2397
ED-11-02 242 5 68,838 72,331 67,173 69,697 69,374 67,186 67,050 67,127
Algorithm 3: NonStrictKwikSort()
Input:  (a subset of items, i.e.,  ⊆ )

1 if  = ∅ then
return empty list

2 Pick pivot 𝑖 ∈  uniformly at random;
3 Set 𝐿 ← ∅, 𝑅 ← ∅, 𝑄 ← {𝑖};
4 for all 𝑗 ∈ ∖{𝑖} do

if 𝑠𝑖𝑗
𝑚

≥ 1 − 𝛽 then
𝐿 ← 𝐿 ∪ {𝑗};

else if 𝑠𝑗𝑖
𝑚

≥ 1 − 𝛽 then
𝑅 ← 𝑅 ∪ {𝑗};

else
𝑄 ← 𝑄 ∪ {𝑗};

5 return NonStrictKwikSort(𝐿), 𝑄, NonStrictKwikSort(𝑅)
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