Computers & Operations Research 153 (2023) 106164

Contents lists available at ScienceDirect

Computers &
Operations Research

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

t.)

Check for

Approximate Condorcet Partitioning: Solving large-scale rank aggregation o’
problems
Sina Akbari *, Adolfo R. Escobedo

School of Computing and Augmented Intelligence, Arizona State University, P.O. Box 878809, Tempe, AZ 85287-8809, United States

ARTICLE INFO ABSTRACT

Keywords:
Group decision-making
Rank aggregation

Rank aggregation has ubiquitous applications in computer science, operations research, and various other
fields. Most attention on this problem has focused on an NP-hard variant known as Kemeny aggregation,
for which solution approaches with provable guarantees that can handle difficult high-dimensional instances
remain elusive. This work introduces exact and approximate methodologies inspired by the social choice
foundations of the problem, namely the Condorcet Criterion. We formalize the concept of the finest-Condorcet
partition for rankings that may contain ties and specify its required conditions. We prove that this partition
is unique and devise an efficient algorithm to obtain it. To deal with instances where it does not yield
many subsets, we propose Approximate Condorcet Partitioning (ACP), with which larger subsets can be
further broken down and more easily solved. ACP is a scalable solution technique capable of handling large
instances while still providing provable guarantees. Although ACP approximation factors are instance-specific,
their values were lower than those offered by all known constant-factor approximation schemes — inexact
algorithms whose resulting objective values are guaranteed to be within a specified fixed percent of the optimal
objective value — for all 113 instances tested herein (containing up to 2,820 items). What is more, ACP
obtained solutions that deviated by at most two percent from the optimal objective function values for a large
majority of these instances.

Computational social choice
Condorcet criterion
Kemeny-Snell distance

1. Introduction Since various statistical tools and data mining techniques can be ap-
plied for this purpose, rank aggregation has been utilized to avoid
relying on any single technique or study. On a similar direction, rank
aggregation is being increasingly utilized as an ensemble technique to
consolidate output rankings of different machine learning algorithms
seeking to evaluate a common set of entities. One such example is the

label ranking problem, whose objective is to predict the ranking of a

Rank aggregation is a well studied problem in operations research,
computer science, and computational social choice, which arises in
a variety of situations where m judges are asked to rank n items
based on some quality of interest. The objective is to find an aggregate
ranking, defined as the ranking of items with the lowest cumulative
disagreement to the given rankings — prior related works often refer

to this as the consensus ranking, but we eschew use of this term to avoid set of labels, given a set of input attributes. In this context, the output
)

the implication that the solution ranking does not cause disagreement.
Rank aggregation has been utilized in wide-ranging real-world situa-
tions. A recent application is the pool riding problem, whose goal is
to assign a pool of passengers to a set of drivers with predetermined
routes. Drivers are ranked for each passenger based on different criteria
such as percentage of matched routes and initial distance; the final
ranking is obtained by consolidating the rankings associated with each
criterion. Rank aggregation has been shown to increase the passenger—
driver matching rate (Sahin et al., 2022). Another popular application
is within the field of bioinformatics, specifically, to accurately identify
and rank genes possibly related to a disease from micro-array gene
expression data (Mandal and Mukhopadhyay, 2017; Wald et al., 2012).

* Corresponding author.

of different label ranking algorithms can be aggregated to produce a
more robust prediction (Aledo et al., 2017a). Similar uses in related
contexts include feature selection (Dahiya et al., 2016; Drotar et al.,
2019), natural language processing (Cascaro et al., 2019; Onan, 2018),
recommender systems (Oliveira et al., 2020), and data query (Cohen-
Boulakia et al., 2011). There are also wider applications in meta-search
engines (Desarkar et al., 2016; Dwork et al., 2001), crowdsourcing and
human computation (Kemmer et al., 2020; Mao et al., 2013), multi-
criteria decision-making (Dong et al., 2021; Mohammadi and Rezaei,
2020), and network inference (Marbach et al., 2012; Puerta et al.,
2021).

E-mail addresses: sina.akbari@asu.edu (S. Akbari), adres@asu.edu (A.R. Escobedo).

https://doi.org/10.1016/j.cor.2023.106164

Received 25 May 2022; Received in revised form 21 November 2022; Accepted 26 January 2023

Available online 2 February 2023
0305-0548/© 2023 Elsevier Ltd. All rights reserved.

https://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:sina.akbari@asu.edu
mailto:adres@asu.edu
https://doi.org/10.1016/j.cor.2023.106164
https://doi.org/10.1016/j.cor.2023.106164
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2023.106164&domain=pdf

S. Akbari and A.R. Escobedo

One of the principled ways to address the rank aggregation problem
is by using distances founded on rigorous mathematical axioms (Brandt
et al.,, 2016; Cook, 2006). Kemeny and Snell (1962) introduced the
first such framework. The authors proposed a set of axioms — non-
negativity, triangular inequality, anonymity, extension, scaling, and
commutativity — that should be satisfied by any distance metric on
rankings, and they introduced a distance that uniquely satisfies them.
The optimization problem induced with this distance metric is known
as the Kemeny aggregation problem (Kemeny-Acc). The aggregate rank-
ing returned by Kemeny-Acg satisfies various key social choice properties
such as neutrality, local stability, and the Condorcet Criterion (Brandt
et al., 2016; Young and Levenglick, 1978), which translate into prac-
tical benefits such as spam detection (Dwork et al.,, 2001). These
theoretical benefits come at a high computational price as Kemeny-AcG
is NP-hard when there are four or more input rankings (Bartholdi et al.,
1989; Dwork et al., 2001). It is worth adding that non-strict rankings
(i.e., rankings that may contain ties) are more numerous than strict
rankings (i.e., rankings without ties) over the same set of items —
n! strict rankings compared to approximately 0.51!(1.4)"*! non-strict
rankings (Gross, 1962). Hence, their aggregation is much more difficult,
i.e., due to a higher number of possible solution rankings that must be
considered.

Kemeny-AcG has been modeled and solved using binary programming
formulation in Conitzer et al. (2006), Cook (2006) and Yoo and Es-
cobedo (2021). Other exact methods include the specialized branch and
bound algorithm of Emond and Mason (2002) and the exact implicit
enumeration algorithm of Azzini and Munda (2020). Exact methods
can solve only small- to medium-sized instances; the largest instances
solved exactly, for example, in Azzini and Munda (2020), Emond and
Mason (2002), Conitzer et al. (2006), Betzler et al. (2014), and Yoo and
Escobedo (2021) had 14, 15, 40, 200, and 210 items, respectively. Due
to the general computational intractability of Kemeny-Ace, large-scale
instances have been solved nearly exclusively via inexact methods.
These include various heuristics such as those of Aledo et al. (2017b,
2019), Badal and Das (2018), D’Ambrosio et al. (2017) and Ding et al.
(2018), to name but a few. Although many of them are designed to com-
pute promising solutions quickly, heuristics generally do not provide
formal guarantees on the solution quality. Hence, various researchers
have also focused on developing approximation schemes - algorithms
whose resulting objective values are guaranteed to be within a specified
fixed percent of the objective value — which will serve as the basis
of comparison for the methods developed herein. The two ensuing
paragraphs provide a review of notable approximation algorithms for
solving KEMENY-AGG.

First, we review approximation algorithms designed for Kemeny-
Acc with strict rankings. The aggregate list according to Spearman’s
footrule distance is a 2-approximation algorithm (Dwork et al., 2001)
for Kemeny-Acg; this distance calculates the sum of the absolute dif-
ferences between the rank positions assigned to each of the items.
Ailon et al. (2008) proposed KwikSort and LP-KwikSort. KwikSort,
an expected 2-approximation algorithm, repeatedly chooses a random
item as the pivot, and it divides the remaining items into two groups
— the sets of items ranked ahead and behind the pivot item — based
on the pairwise comparison information; LP-KwikSort also chooses a
random item as the pivot, and it divides the remaining items into two
groups based on the linear programming (LP) relaxation solution of a
Kemeny-Ace formulation. The authors proved that the best of KwikSort
and Pick-A-Perm (see the next paragraph) yields an expected 11/7-
approximation, and the best of LP-KwikSort and Pick-A-Perm yields
an expected 4/3-approximation. In effect, KwikSort and LP-KwikSort
do well on instances in which the Pick-A-Perm does not, and vice
versa. Kenyon-Mathieu and Schudy (2007) derived the first polynomial
time approximation scheme (PTAS) for the feedback arc set problem
(FASP) on tournaments; a PTAS is a (1 + e)-approximation — i.e., it
returns a solution up to (1 + ¢) times the optimal objective function
value, for any fixed value of ¢ > 0. The authors also introduced

Computers and Operations Research 153 (2023) 106164

a weighted generalization of the PTAS for FASP to provide the first
PTAS for Kemeny-Acc. Because the time complexity of this PTAS is
doubly exponential in 1/¢, its implementation becomes impractical for
sufficiently small e (Betzler et al., 2014).

Second, we review approximation algorithms suitable for strict and
non-strict rankings. Pick-A-Perm (Ailon et al., 2008) selects one of the
input rankings at random, and its deterministic version called BestInput,
picks the input ranking with the lowest cumulative Kemeny-Snell
distance to the input rankings. Pick-A-Perm and BestInput are expected
2-approximation algorithms for strict rankings; however, their approxi-
mation factors have not yet been defined for the case of non-strict rank-
ings. Ailon (2010) proposed RepeatChoice, an expected 2-approximation
algorithm, and LPKwikSort,, an expected 3/2-approximation. While
these two algorithms allow the input rankings to be non-strict, the
aggregate ranking is required to be strict, which is not be suitable for
many applications. RepeatChoice repeatedly and without replacement
chooses an input ranking and refines an initial non-strict ranking until
all ties are broken. LPKwikSort, uses a novel LP rounding technique
and is the first algorithm that, by itself, provides an (expected) ap-
proximation factor lower than 2. Van Zuylen and Williamson (2007)
proposed a derandomized version of KwikSort, referred to herein as
DeterministicKwikSort, which is an expected 2-approximation algorithm,
and showed that the best solution achieved by their algorithm and
RepeatChoice provides an expected 8/5-approximation. Their work,
similar to Ailon (2010), allows the input rankings to be non-strict but
not the aggregate ranking.

Next, we turn to partitioning algorithms that have been developed
to expedite exact methods for Kemeny-Ace based on key social choice
properties guaranteed to be satisfied by the optimal solution(s) to
this problem. A small number of works have introduced theory and
algorithms that enable certain large instances to be decomposed into
a set of smaller subproblems while guaranteeing that solving them
independently still induces an optimal solution to the original problem.
More specifically, these specialized partitioning methods efficiently
determine the relative ordering of subsets of items; however, the exact
ordering of the items within each individual subset is determined by
solving a Kemeny-AGG subproblem restricted to that subset. The final
ranking is obtained by properly concatenating the shorter rankings of
items within each subset according to how the subsets were ordered in
the partitioning. These partitioning schemes have been utilized to accel-
erate exact formulations (Betzler et al., 2014; Schalekamp and Zuylen,
2009; Yoo and Escobedo, 2021) and lower bounding techniques (Akbari
and Escobedo, 2021) of Kemeny-AGG. A notable scheme is based on the
Extended Condorcet Criterion (XCC) proposed by Truchon (1998), who
proved that the optimal solutions to Kemeny-Acé for strict rankings are
consistent with XCC and devised a partitioning algorithm that takes
advantage of this theoretical guarantee. Betzler et al. (2014) introduced
another scheme based on the 3/4-Majority Rule. The authors proved
that this different type of partitioning scheme cannot further partition
an instance that has already been partitioned by XCC, meaning that
XCC partitioning is always at least as good as partitioning using the
3/4-Majority Rule. Yoo and Escobedo (2021) showed that XCC is
inconsistent with the solution to Kemeny-AcG with non-strict rankings,
that is, the optimal solution to Kemeny-Acc may violate XCC. In the
light of this fact, they proposed the Non-strict Extended Condorcet
Criterion (NXCC), a generalization of XCC suitable for both strict and
non-strict rankings, and introduced a partitioning algorithm based on
sequential pairwise comparisons. The authors reported that whenever
instances from the Preflib data set (Mattei and Walsh, 2013) with up
to 210 items were partitionable, the combined exact solution times of
the decomposed subproblems — using their exact binary programming
formulation — were at least 25% and up to 96% faster than those
of the full problem. Betzler et al. (2014) reported similar results on
the effectiveness of XCC with up to a 35x computational speedup.
Recently, Akbari and Escobedo (2021) reported that NXCC rendered up
to a 25x computational improvement when implemented to compute

S. Akbari and A.R. Escobedo

lower bounds for Kemeny-Agc with non-strict rankings. It is worth
mentioning that a related yet significantly distinct approach introduced
by Milosz and Hamel (2018, 2020) aims to find the relative ordering
of certain item-pairs in the aggregate ranking. While this approach was
shown to be more effective than XCC in practice, it is only applicable
for strict rankings and it has a time complexity of O(n®), whereas XCC
has a time complexity of O(n?).

This work makes three main contributions. First, it improves XCC-
and NXCC-based decomposition by defining the finest possible partition
that is consistent with these properties. This finest-Condorcet partition
yields the most subsets among all such possible partitions, thereby
maximizing their potential computational benefits. Second, it derives
an efficient algorithm for obtaining the finest-Condorcet partition. Even
though, XCC- and NXCC-based decomposition are useful on certain
instances, not all instances are partitionable (Betzler et al., 2014; Yoo
and Escobedo, 2021) and when they are, there may be one or a few
large subsets that are difficult to solve to optimality, hence limiting
the usefulness of these schemes in practice. Motivated by this fact, the
present work introduces as its third main contribution Approximate Con-
dorcet Partitioning (ACP), a scalable solution approach for Kemeny-Acc
with provable guarantees suitable for high-dimensional instances. ACP
attempts to further decompose the finest-Condorcet partition whenever
there are one or more subsets (i.e., subproblems) that are too large to
solve using exact methods. This contribution is accompanied by the
derivation of instance-specific approximation factors, which are appli-
cable to any item-partitioning scheme, including those that may not be
consistent with Condorcet extensions. Improved guarantees are derived
for the proposed solution technique via ACP. Although these approxi-
mation factors are also instance-specific, their values were lower than
those offered by all constant-factor approximation algorithms known to
date, for all tested instances herein.

The rest of this paper is organized as follows. Section 2 introduces
the notations used throughout this paper, provides some preliminary
definitions, and reviews the Condorcet Criterion and its extensions. Sec-
tion 3 introduces the finest-Condorcet partition and proves its unique-
ness; furthermore, it develops an efficient algorithm to construct it.
Section 4 introduces the Approximate Condorcet Partitioning technique
and derives its provable guarantees. Section 5 presents the results
of comparing this technique with various prominent approximation
algorithms. Finally, Section 6 concludes the paper.

2. Notation and preliminaries

Rankings can be categorized as strict and non-strict. Strict rankings
refer to the case where there are no ties, while non-strict rankings refer
to the case where there may be ties. It is worth emphasizing that set of
non-strict rankings includes all strict rankings; stated otherwise, non-
strict rankings do not necessarily include ties, rather they may contain
ties. Both strict and non-strict rankings can further be categorized as
complete and incomplete; all items are ranked in the former and some
items may be unranked in the latter. This work focuses on complete
non-strict rankings. However, all techniques proposed herein are ap-
plicable to strict rankings as well due to aforementioned relationship
between strict and non-strict rankings. This section is organized as fol-
lows. Section 2.1 describes basic mathematical notations to introduce
the rank aggregation problem, and Section 2.2 describes the social
choice-inspired decomposition schemes that serve as the foundations
of this paper.

2.1. Mathematical notation

Let X = {1,2,...,n} be the set of items, £ = {1,2,...,m} be the set
of indices of input rankings over &, and ¢’ be the /th input ranking,
where /| € L. Additionally, let ¥ c Z" be the set of all possible
complete ranking vectors over &, and af be the rank of item i in o'.
As a convention, i >, j indicates that item i is preferred over item

Computers and Operations Research 153 (2023) 106164

jin o (e, o; < g;), and i =, j indicates that i and j are tied in o
(i.e., 0; = 0;). Additionally, let a full rank reversal denote the case where
two rankings ¢!, 6? fully disagree over the relative orderings of i and
j (one of them ranks i ahead of j, and the other ranks j ahead of i);
additionally, let a partial rank reversal denote the case where i and j are
tied in one ranking, but not in the other.

Definition 1. The Kemeny-Snell distance between two complete rank-
ings ¢!, 6%, denoted by dg (¢!, 6?), is given by

dxs(e'.0h =1 Y, Y |signic} - o)) -sign(o? - 02| &)
ieX jeX
The function sign(v) returns 1 if v > 0, —1 if v < 0, and 0 otherwise.
In the case of strict rankings, distance dg g counts the number of full
rank reversals; in the case of non-strict rankings, it assigns a weight of
two for each full rank reversal and a weight of one for every partial
rank reversal.

Definition 2. The aggregate ranking obtained from Kemeny-AGG can be
mathematically stated as:

o* = argmin z dys(o,ch). (2)
c€X |p

Definition 3. Let s;; = |/ € L 1 i >y jland t;; = |l € L : i m, j| be the
number of input rankings in which item i is preferred over item j, and
the number of input rankings in which i and j are tied, respectively.

Definition 4 (Yoo and Escobedo, 2021). Item i is pairwise preferred by
a decisive majority over item j if 5;; > s;; +1;;, that is, the number of
input rankings which prefer i to j is greater than the number of input
rankings which prefer j to i, plus those which tie them. If neither i
is preferred over j nor j is preferred over i, then there is no decisive
majority that prefers i over j or j over i.

For succinctness, the rest of the paper employs the term pairwise
preferred as shorthand for pairwise preferred by a decisive majority.

Definition 5. Let dg ¢(c) be the cumulative Kemeny-Snell distance of
a given ranking ¢ € X to the input rankings; it is useful to also expand
dgs(0) as Ycx ¥ ex dxs(o;;), where dg(o;;) is the contribution of
each pair of items (i, j) in dg g¢(o), which is given by

255+t i P4,
dgs(oy) =425, +1,; if j>, i, 3
sij+ S if imgj.

Eq. (3) follows from the definition of the Kemeny-Snell distance
function. As stated earlier, distance dgg assigns a weight of 2 for
each rank reversal and a weight of 1 for every partial rank reversal.
Therefore, if i is ranked ahead of j in o, the imposed distance for this
pair equals the number of input rankings where j is ranked ahead of
i, times 2, plus the number of input rankings where i and j are tied.
Furthermore, if i and j are tied in o, the imposed distance for this pair
equals the number of input rankings where either i is ranked ahead of
Jj or vice versa.

Definition 6. Let [c; i1 € 7"™" be the Cumulative Ranking (CR) matrix
whose individual entries are obtained as ¢;; = s;; +1;; — 5;;, when the
input rankings are complete.

The CR matrix is used to linearize Kemeny-Acc formulation in Yoo
and Escobedo (2021). Here, it is employed to reduce the space require-
ments of the proposed algorithm.

An ordered set of subsets X = {X|, X,, ..., X,,} is a partition of & if
UZ’:IXk =& and X, nX, =0,Vk, k' € {1,...,w}, with k # k’. Subset X
is said to be preferred over subset X,,, written as X, > X/, if all items
in X, are pairwise preferred over all items in X,,. Similar to Laslier

S. Akbari and A.R. Escobedo

(1997), we call partition X a null partition if |X| = 1, a trivial partition
if |X| = n, and a proper partition otherwise.

We close this section with an example to illustrate the featured
notation.

Example 1. Consider an instance with 6 rankings of 6 items. The input
rankings and the pairwise comparison matrices, S = [s;;] € 75%6,
T =[1,;] € Z®®, and CR = [c;;] € Z%9, are given by

Input rankings
Item 0'1 (o2 O'3 0'4 O'S 0'6
1 1 1 1 1 1 1
2 3 3 3 2 2 1
3 2 2 4 4 2 2
4 3 3 3 3 3 5
5 4 4 2 4 5 3
6 5 5 5 5 4 4
0 5 6 6 6 6 01 0 0 0 O
0 0 3 3 5 6 1 0 1 3 0 O
S— 0 2 0 4 4 6 T = 0O 1 0 0 1 O
0 0 2 0 4 57 0 3 0 0 0 OFf
0o 1 1 2 0 5 0 0 I 0 0 O
0 0 0 1 1 O 0 0 0 0 0 O
0 6 6 6 6 6
4 0 2 6 4 6
-6 0 0 2 4 6
CR=16 0 —2 o0 2 4f
-6 -4 -2 -2 0 4
6 -6 -6 -4 -4 0
Consider ¢' and o®. The two rankings fully disagree over the

relative ordering of item-pairs (2, 3), (4, 5), and (4, 6), and they
partially disagree over the relative ordering of item-pairs (1, 2) and (2,
4). Since dg g assigns a weight of two to every full rank reversal and a
weight of one to every partial rank reversal, we have dg ¢(c',c°) = 8.
Furthermore, the cumulative distance between ¢! and the rest of input
rankings is given by

6
dgse) =Y dys(c',6")=0+10+6+4+8 =28

=2

2.2. The Condorcet Criterion and its variants

The Condorcet Criterion (CC), first proposed by Marquis de Con-
dorcet (1785), is among the most prominent social choice properties
arising from voting theory. CC states that a candidate who is pairwise
preferred over all other candidates must be declared as the top-ranked
candidate, formally known as the Condorcet Winner. CC can be formally
stated as (Young, 1988)

iflieX: s;>s; VieX\{i} = i>;j VjeX\[i},

where o is the aggregate ranking. A voting rule is said to be Condorcet
consistent if it always selects the Condorcet Winner as the top-ranked
item, when one exists (Brandt et al., 2016). There are other Condorcet
consistent rank aggregation methods such as Dodgson’s rule (Dodgson,
1876), maximin rule (Young, 1977), and ranked pairs rule (Tideman,
2017).

Truchon (1998) proposed the Extended Condorcet Criterion (XCC),
which generalizes CC to guarantee an ordering of item-subsets in the
aggregate ranking. XCC states that if & can be arranged into a partition
X = {X|,X5,....X,} such that X, > X, Vk,k' € {1,...,w}, with
k < k', then all items in X, must be ranked ahead of all items in X,
in the aggregate ranking. XCC can be stated formally as:

if s;;>s; VieX, VjeXy Vk<k
= i>gj ViEX VjEXy Vk<k,

Computers and Operations Research 153 (2023) 106164

where o* is the optimal solution to Kemeny-Acc. This means that, in
the optimal solution, items belonging to lower-indexed subsets in the
partition must be strictly ranked ahead of items belonging to higher-
indexed subsets. This partitioning scheme can be very useful in practice
since through these partitioning approaches, certain large instances can
be decomposed into a set of smaller subproblems while guaranteeing
that solving them independently still induces an optimal solution to the
original problem. Note that the precise ordering of the items within
each subset is not obtained by applying this property alone; it is
determined by solving rank aggregation subproblems restricted to the
items in each subset of the partition — this applies to all partitioning
schemes discussed in this paper.

Recently, Yoo and Escobedo (2021) showed that Kemeny-Ace with
non-strict rankings is inconsistent with XCC. That is, solutions to this
problem, which allows rankings with and without ties, may violate
XCC. The authors defined a social choice property called the Non-strict
Extended Condorcet Criterion (NXCC), which can be stated formally as:

if s;;>s;+1; VieX, VjeXy Vk<k
= i>gj Vi€EX, VjEXy Vk<k.

Observe that, for the case with all strict rankings (i.e., t; =0Vije
X), NXCC becomes XCC. It was formally demonstrated in Yoo and
Escobedo (2021) that the aggregate rankings returned by Kemeny-AcG
for non-strict rankings are consistent with NXCC.

3. The finest-Condorcet partition

Henceforth, we will denote partitions based on XCC and NXCC
simply as Condorcet partitions, to distinguish them from alternative
partitioning schemes (e.g. see Betzler et al.,, 2014). The rest of this
section is organized as follows. Section 3.1 formally introduces the
concept of the finest-Condorcet partition, specifies its conditions, and
proves that it is unique. Section 3.2 proposes a novel algorithm for
obtaining the finest-Condorcet partition.

3.1. Definition and properties

Let g(&) denote the class of partitions satisfying NXCC. This class
can contain more than one partition; however, certain members of
#(&X’) are more computationally expedient than others. In particular,
after obtaining a Condorcet partition, it is necessary to solve a KeMmeny-
Agg subproblem for each subset of the partition and then to concatenate
the separate solutions, in proper order, to obtain a solution to the
original problem. The worst case happens when the instance has a null
Condorcet Partition (|X| = 1), and the best case happens when the
instance has a trivial Condorcet partition (|X| = n) (i.e., the order of
the singleton subsets in the partition provides the optimal ranking of
all items). For this reason, it is desirable to obtain partitions with more
subsets and/or with smaller subsets. The ensuing example illustrates the
differences between multiple NXCC partitions and motivates our focus
on the finest among all such partitions.

Example 2. Consider the instance given in Example 1. There are seven
NXCC partitions: X! = {{1},{2,3,4},{5}.{6}}, X® = {{1,2,3,4}, {5},
{61}, X* = {{1,2,3,4,5},{6}}, X* = {{1},{2,3,4},{5,6}}, X° =
{{1,2,3,4},{5,6}}, X® = {{1},{2,3,4,5},{6}}, and X7 = {{1,2,3,4,5,
6}}. The first is the finest and most desirable, as it has the highest
number of subsets; indeed, the only subproblem that needs to be solved
is the one corresponding to items 2, 3, 4 (since the other subsets are
singletons). Notice that it is possible to further partition at least one
subset in X?>-X’ while satisfying NXCC. Partition X! implies that item
1 will be ranked first, items 2, 3, and 4 will be ranked ahead of items 5
and 6, and item 5 will be ranked ahead of item 6 in the optimal solution
to Kemeny-Aca; however, this partition on its own cannot determine the
exact ordering of the three items in the second subset.

S. Akbari and A.R. Escobedo

The concept of a finest-Condorcet partition was first introduced
in Truchon (1998), although its formal definition or required condi-
tions were not provided therein. This partition is an adaption of the
unique minimal decomposition (Laslier, 1997) of a tournament, which is
applicable only for aggregating strict rankings. Next, we formally define
an extension of the finest-Condorcet partition that is suitable for both
strict and non-strict rankings, and we specify its required conditions.

Definition 7. Partition X/ € g(&) is the finest-Condorcet partition if
there is no other partition X € g(&) such that |X| > |X/|, that is, X/
is the partition with the most subsets.

For any X € ¢go(X)\X/ — i.e., all but the finest partition of the class
— it is possible to further decompose at least one of the subsets such
that the resulting partition still satisfies NXCC. To improve both XCC
and NXCC, we add a requirement that is only satisfied by X/. Let g/ (&)
be the class of finest-Condorcet partitions. Any X/ € g/ (&) must satisfy

VX €X/, BX, C Xt o5y > sy 1, Vi € X, V) € X\X, 4

Condition (4) does not allow a subset of items in X, to be pairwise
preferred over the rest of the items in X,, for all X, € X (i.e., the
subsets cannot be further decomposed while satisfying NXCC). Later
we prove that NXCC and Condition (4) are the necessary and sufficient
conditions for the finest-Condorcet partition. Beforehand, Theorem 1
proves that |g/(X)| = 1, meaning that X/ is unique.

Theorem 1. The finest-Condorcet partition is unique.

Theorem 2. X/ € ¢(X) is the finest-Condorcet partition if and only if it
satisfies Condition (4).

The proofs of Theorems 1 and 2 are provided in Appendix A and B,
respectively.

3.2. An efficient algorithm for constructing X/

This section presents an algorithm for constructing the finest-
Condorcet partition. Beforehand, it is expedient to link the pairwise
preference relationships, i.e., s;; > s;; +1,;, with the elements of the CR
matrix (see Section 2.1), namely to reduce storage requirements and
computational effort.

Proposition 1. Item i is pairwise preferred over item j if and only if ¢;; > 0
and c; < 0.

The proof is provided in Appendix C.

From Proposition 1, the CR matrix contains sufficient information
to determine the pairwise preferences of all item-pairs and thereby
enable Condorcet partitioning. Its use reduces storage requirements
since instead of having to store [s;;] € Z™" and [1;;] € Z™", only
[e;;] € 7™" is needed. Next, we define parameters needed by the
presented algorithm.

Definition 8. Let I be the set of items over which item i is pairwise
preferred; its contents are given by I; := {j € & : 5;; > 5;; +1;}, or
equivalently, I; :={j € X : ¢;; >0, ¢;; < 0}. Additionally, let y; := ||
denote the number of items over which i is pairwise preferred.

Definition 9. Let Fi 1= &\(I;U{i}) be the set of items over which item
i is not preferred.

The following proposition serves as the foundation of the proposed
algorithm, which connects the y-values of a distinct item-pair to their
relative positions in the subsets of X/.

Proposition 2. If y; > y;, then item j cannot belong to a lower-indexed
subset than item i in X/; additionally, if y; = v;, then i and j must belong
to the same subset.

Computers and Operations Research 153 (2023) 106164

Proof. We prove this by contradiction. Let X/ = { X}, X», ..., X,, } be the
finest-Condorcet partition. Additionally, let item i to belong to X, € X/
and item j to belong to X, € X/, where k,k’ € {1, ..., w}, with k < k'.
This gives that

X=Xy e b (i e X b
——
X Xyt

Letting | X, | be the number of items in subset X, bounds on y; and y;
can be obtained as

Xt]+ o I o X S 7 S DXL+ o+ X o
+ |X,| -1, and
[Xprgr)+ +F 11X <y S [Xp |+ +1X, |- 1.

The lower bound on y; comes from the definition of X/, since each item
in X, must be pairwise preferred over all items in subsets X, ,..., X,,.
The upper bound on y; comes from the fact that, when |X,| > 1, j
can be pairwise preferred over some items in X, but there must be
at least one item in this subset over which j is not pairwise preferred;
otherwise, j must belong to X,_;. Lower and upper bounds on y; are
calculated in the same fashion. The values of y; and y; can be connected
as follows:
w k-1 w w w

2 2 X=X+ X1z Y X > Y X -12y,

t=k+1 t=k+1 1=k’ 1=k’ 1=k’
Therefore, this gives that y; > y;, which contradicts the starting
assumption. In summary, when y; > y;, j cannot belong to a lower-
indexed subset than i in X/. Through a parallel chain of arguments, a
similar contradiction results when y; = y;, meaning that i and j must
belong to the same subset in the latter case. []

The pseudocode of the proposed partitioning procedure is presented
in Algorithm 1, and it consists of two phases: (1) construction of an
initial partition, (2) validation & merging. The algorithm utilizes Propo-
sition 2 to build an initial partition X°. According to this proposition, if
7; = 7;, then i and j must belong to the same subset in X/; additionally,
if y; > y;, j cannot belong to a lower-indexed subset than i in X/. Hence,
(X O,Xg, ... X%} = X is constructed by ordering the items by non-
increasing y-values; items with a distinct value are placed in separate
subsets, and items with the same value are placed in the same subset.
In more detail, the item(s) with the maximum y-value are placed in X' ?,
item(s) with the next highest value are placed in X g, etc. The second
phase checks whether X° satisfies NXCC; if it does not, it merges the
subsets that have caused the violation. This process is repeated until
the working partition satisfies NXCC. The next two theorems prove
that Algorithm 1 is correct, meaning that its output satisfies NXCC and
condition (4), and that it has a time complexity of O(r?).

Theorem 3. Algorithm 1 is correct.

Theorem 4. Algorithm 1 has a time complexity of O(n?).

The proofs of Theorems 3 and 4 are provide in Appendix C and D,
respectively.

Example 3. Consider the instance given in Example 1. The y-values for
this instance are

Y1=57=313=317,=2y5=17=0.

The initial partition is X° = {{1},{2,3}, {4}, {5}, {6}}. Here, item 1 has
the highest y-value, items 2 and 3 have the second-highest value, etc.
Next, set the working partition to the initial partition (i.e., X « X9).
Afterward, start validation & merging.

Iteration 1: Item 1 is pairwise preferred over all items in the higher-
indexed subsets; hence, the working partition remains unchanged.

S. Akbari and A.R. Escobedo

Algorithm 1: Finest-Condorcet Partition

Input : [¢;] € Z™" (CR matrix)

Output: Finest-Condorcet partition &'), initial partition x%

Apply Definitions 8 and 9 to calculate parameters I, T, and 7, using
le;ils for i € &;

Construct the initial partition X° by placing all item(s) with the
highest y-value in X ?, all item(s) with the next highest y-value in
X)), etc;

X (X0%0,.... X% =X";
initial partition

k=1;

while k < |X°| do

6 F(XN) < Uie %,

are not pairwise preferred

7 | TXNU X, =6; // if X, does not violate NXCC

-

X

// set working partition to

w

FN

T,; // get items over which items in X,

then
8 | ke—k+1;
else
9 while T(X)\ U, X, #6 do ; // while subset X,
violates NXCC
10 k’<—max{g:ieF()?k)\uf:1 Y,Aiefg}; // get
max-index subset where a violation is
detected
1 X, < U X, ; // merge subsets causing NXCC
violation into X,
12 k<K +1;
13 X/ <—)~(;

14 return X/, X°

Iteration 2: Item 2 is not pairwise preferred over item 4. Hence,
glbsets {2,3} and {4} are merged to satisfy NXCC. This gives that
X ={{1},{2,3,4}, {5}, {6}}.

Iteration 3: Items 2, 3, 4 are pairwise preferred over items 5 and 6;
hence, the working partition remains unchanged.

Iteration 4: Item 5 is pairwise preferred over item 6. Therefore, X/ =

{{1},{2,3,4}, {5}, {6} }.
4. Approximate Condorcet partitioning

Condorcet partitioning can be very useful for expediting Kemeny-
Acg, particularly when the resulting partition has many small subsets.
However, some instances are not partitionable, and, in various other
cases when they are, the partition may yield relatively few subsets
and/or very large subsets. Yoo and Escobedo (2021) reported that a
sizeable fraction of the real-world instances with ties drawn from the
Preflib data set (Mattei and Walsh, 2013) yielded Condorcet partitions
with these disadvantageous characteristics: Nearly 40% of the tested
instances, which contained up to 300 items, were not partitionable at
all. Betzler et al. (2014) reported similar results on synthetic instances
generated via the Plackett-Luce model (Luce, 2012; Plackett, 1975):
Out of four synthetic instances, the two largest instances with 100
and 200 items, respectively, had Condorcet partitions with one subset
containing over 95% of the items. Pilot experiments conducted herein
yielded similar results: 109 out of 113 instances with more than 100
items drawn from three different real-world data sets were either not
partitionable or they had a subset that contained more than 95% of
the items. Such results indicate that exact decomposition is useful only
for a limited number of instances. This section introduces Approximate
Condorcet Partitioning (ACP), which can be applied to any strict or
non-strict instance of Kemeny-Acs. Whenever NXCC yields a partition
with at least one large subset, ACP leverages both the finest-Condorcet
partition and the initial partition constructed from y-values to return a
partition with relatively more and smaller subsets, which is not strictly
a Condorcet partition (i.e., the subset orderings may conflict with the

Computers and Operations Research 153 (2023) 106164

Kemeny optimal solution(s)) but retains some of the computationally
beneficial structure of this social choice-inspired concept. ACP is a
scalable solution technique for solving Kemeny-Acc. Formal guarantees
of the resulting solutions are also derived later in this section.

Finally, an important remark regarding the constant-factor approx-
imation schemes for Kemeny-Acc is in order. Except for Spearman’s
footrule, the approximation algorithms introduced in Section 1 do
not guarantee their respective approximation factor over all instances.
Rather, their guarantees are achieved on average. We illustrate the
potential for high variability in solution quality of such expected ap-
proximation algorithms using Pick-A-Perm. Let ¢! = --- = 6° = [1,2,3]"
and ¢'° =[1,3,2]7. Here, 6* = ¢!, with a cumulative Kemeny-Snell dis-
tance to the input rankings of 2. However, Pick-A-Perm may still choose
60 (with a probability of 1/10), which has a cumulative Kemeny-Snell
distance to the input rankings of 18 (9-times the expected factor). The
rest of this section is organized as follows. Section 4.1 develops ACP,
and Section 4.2 derives solution guarantees for any item-partitioning
scheme and improved guarantees for ACP.

4.1. Applying ACP to solve KEMENY-AGG

Before proceeding, it is important to emphasize that ACP is primar-
ily designed for solving large-scale problems (instances with thousands
of items), where state-of-the-art algorithms like LPKwikSort are not
practical or where the solution guarantees of existing approximation
algorithms are not satisfactory.

Whenever X/ contains one or more large subsets, ACP constructs a
partition of & that leverages the finest-Condorcet partition, X/, and the
initial partition, X°, both obtained from Algorithm 1. Recall that X? is
easily constructed based on the calculated parameter y;, defined as the
number of items over which item i is pairwise preferred. Typically, X°
consists of many subsets, a large fraction of which are subsequently
merged in Algorithm 1 to satisfy NXCC. Whenever the validation &
merging step creates large subsets in X/, ACP builds a different item
partition from X°, which may violate NXCC but retains some of the
convenient structure of X/. That is, only those subsets of X/ which
are difficult to solve by exact methods are broken down by ACP; all
other subsets are left unchanged, and this preserves some of the ordered
item-subsets. Thus, this new partition is designed to yield a higher
number of computationally manageable subsets, i.e., whose KemEny-AcG
subproblems are solvable with exact methods. A key insight behind ACP
is that, items that have close y-values are more likely to be close to
each other in the aggregate ranking; hence, smaller subsets are formed
based on these calculated parameters, keeping those with similar values
near one another. The pseudocode of the proposed algorithm for ACP
is presented in Algorithm 2.

To summarize its steps, let 2 be a user-specified threshold, which
can be set to the maximum KemeNny-Acc instance size that is solvable
to optimality within a reasonable time (i.e., based on prior findings
and available computational resources). That is, for some subset X ,{ S
X/ with [X/| < h, ACP skips this subset. However, if |X/| > &,
then the algorithm evaluates the corresponding adjacent subsets in
XO, say {X0,...,X%} = X0, which were merged together during the
validation & merging step of Algorithm 1 to form X 1{ . In the next step,
the algorithm tries to merge adjacent subsets of X° as long as their
combined size does not exceed h. During this process, if the size of
any individual subset comprising X° is already greater than h, that
subset is not merged with any other subsets and is left unchanged for
the remainder of the algorithm.

Let X/“P denote the partition obtained using threshold h. After
obtaining ACP, the ensuing steps aim to obtain a high quality solution
via ACP: (1) solve those subsets of X;!‘CP whose size is at most A to
optimality, (2) for each subset whose size exceeds 4, tie all its items
in the case of non-strict rankings and permute its items randomly in
the case of strict rankings. Step 2 aims to find a quick solution for
those subset that are deemed difficult to solve to optimality. Similar

S. Akbari and A.R. Escobedo

Algorithm 2: Approximate Condorcet Partitioning

Input : [¢;] € Z™" (CR matrix), h

Output: Approximate Condorcet Partition (X;“")
1 X/ , X’ « Finest-Condorcet Partition([c; j]);
2 X:CP R/
3 for k=1 to |X’/| do

4 if |X/| < h then
5 Append X/ to X/;
else
6 Let {X?,..., X%} = X° be the set of consecutive subsets of x°
that have been merged together to form X/;
7 q < u
8 while g <v-1 do
9 ilef;lzhorq:u—lthen
10 Append X to XA
11 qg—q+1;
else
12 Let / < v be the highest index such that
IX0U-UXP| < B
13 Merge subsets Xg, ..., X" and append it to X;°";
14 | a<!+1;

15 return X;<°

to Condorcet partitioning, to obtain a complete ordering of &, items
in lower-indexed subsets of X;:CP are strictly ranked ahead of items in
higher-indexed subsets.

Remark 1. The proposed solution method via ACP becomes an exact
method if |X/| < h VX, € X/,

The ensuing small example helps illustrate ACP.
Example 4. Consider an instance with 5 rankings of 10 items and

set the threshold as 4 = 3. The input rankings (¢!, ..., 6°), aggregate
ranking (¢*), and y-value of each item are given by

Input rankings

*

Item p g pc p p o Item y
1 8 1 9 10 1 7 1 3
2 2 3 7 6 8 4 2 5
3 5 10 2 4 10 5 3 4
4 6 5 5 2 2 2 4 8
5 3 4 10 9 9 10 5 1
6 1 9 1 1 4 1 6 9
7 10 7 6 5 5 9 7 2
8 9 6 4 8 7 8 8 2
9 7 2 8 7 3 6 9 4

10 4 8 3 3 6 3 10 7

The initial partition is X° = ({6}, {4}, {10}, {2}, (3,9}.{1}.(7.8}.{5}},
and the finest-Condorcet partition is X/ = {{6},{4},{10},
{1,2,3,5,7,8,9}}. The ACP algorithm leaves subsets {6}, {4} and {10}
unchanged, as their sizes are less than h, but it seeks to further
decompose the fourth subset of X/ whose size exceeds h. Note that,
subsets {2}, (3,9}, {1},{7,8},{5} € X° were merged in the validation
& merging to form subset {1,2,3,5,7,8,9}. ACP proceeds by merging
subsets {2}, {3,9} to form subset {2,3,9} whose size reaches h; subsets
{1},{7,8} are merged to form subset {1,7,8} whose size also reaches
the threshold; and subset {5} is left unchanged. Therefore, the output
of ACP is given by XACF = ({6}, {4}, {10},{2,3,9},{1,7,8},{5}}. After-
ward, one Kemeny-AGG subproblem is solved for each subset and their
respective solutions are concatenated (for completeness, the concate-
nated subproblem solutions matches the optimal solution of the full
problem, for this example).

Computers and Operations Research 153 (2023) 106164

4.2. Provable guarantees from partitioning

This subsection derives three different approximation factors, all
of which are easy to calculate and specific to the characteristics of
an instance. The first of these is applicable to any item-partitioning
scheme, including those that may not be consistent with Condorcet
properties — e.g., see Aledo et al. (2021) for a decomposition based
on Borda scores and Liu et al. (2021) for a hierarchical clustering
method. The second and third derived approximation factors provide
improved guarantees for the ACP solution, for non-strict and strict
ranking instances, respectively.

For the remainder of this section, let dg(c*) denote the cumula-
tive Kemeny-Snell distance of the aggregate ranking ¢* to all input
rankings, and LB be a lower bound on dg ¢(c*).

Lemma 1. Let X = {X,, X,, ..., X} be any given partition of X and & be
a complete ranking obtained by independently solving the subsets of X and
concatenating the solutions of these subproblems. If dy¢(6) — dgg(c™) is
bounded by a constant f, the complete ranking & is an (1 + «)-approximate
solution, where « = f/ LB.

Proof.
dgs(6) < dgg(6™)+p=dgs(6")+aLlB < dgg(c™) + adgs(c™)
= (1 + a)dg5(c™).

Lemma 2. Let X = {X,, X5, ..., X,,} be any given partition of X and é be
a complete ranking obtained by independently solving the subsets of X (using
any method of choice) and concatenating the solutions of these subproblems.
The term dy ¢(6) — dg s(c*) is bounded by

w-1 w
23D DY max (0, @sj 1) = Qs + 1)),
k

=1 k=k+1i€X) jEX;r

Qsji+1) = (55 +5;0) +)

w

Z Z max(lsij+t,~j,2sl~i+t,~j,sij+sj,~)
k=1(i,j)EX
—min(ZS,-j+t,-j,2sj[+t,-j,s,»j+sj,-).

Combining Lemmas 1 and 2 provides a formal guarantee of the
solution quality of an arbitrary partition X. The approximation factor
holds regardless of how the items within each subset in the partition are
ordered (i.e., it is a worst-case bound), and thus any method of choice
can be used. As such, the quality of the solution is improved by deter-
mining orderings that more closely align with the optimal solution. The
next two theorems derive a tighter guarantee by leveraging the specific
solution methods for solving the subsets of XA°”.

Theorem 5. Assume that the input rankings are non-strict and let X\ =
{X|,...,X,} be the ACP partition obtained using threshold h. Let é be the
complete ranking obtained via ACP from the following two steps: (1) solve
subsets of at most size h to optimality, (2) tie all items in subsets of size
greater than h. The term d g g(6) — dg g(c*) is bounded by

w-1 w

22 Z Z Z max (0, (2s;; +1;;) — 2s;; +1;)),

k=1 k=k+1i€X; jE€X}
(2sj,»+t,~j)—(s,~j+sj,-))+ ©
w

Z Z ((sij+sj,~)—min(2s,~j+t,~j,2sj,-+t,~j,sij+sj,~)).
k=1(i,j)EX

Theorem 6. Assume that the input rankings are strict and let X" =
{X|,....X,} be the ACP partition obtained using threshold h. Let é be the
complete ranking obtained via ACP from the following two steps: (1) solve

S. Akbari and A.R. Escobedo

subsets of at most size h to optimality, (2) randomly permute items within
subsets of size greater than h. The term dg¢(6) — d i g(c*) is bounded by

w-1 w
4 Z z Z z max (O, Sji —s,-j)
k=1 k=k+1i€X; jEX,
w
+ 22 Z (sj,-]lgi<;j+s[j]lgj<a—min(s[j,sj[)); 7
k=1(i,))EX,,
where o is an auxiliary ranking obtained by randomly permuting all items
in subset X, Yk € {1,...,w} (while ranking items in the lower-indexed
subsets strictly ahead of items in the higher-indexed subsets), and 1 is an
indicator function.

The approximation factors are computed after a partition is ob-
tained, meaning they are instance-specific and not constant; their value
becomes relatively small when the given partition aligns well with the
structure of the aggregate ranking. ACP offers significant advantages
over various other partitioning methods in this regard. Furthermore,
it uses the calculated y-parameters used to obtain X° to reduce the
number of rank reversals between items across many more subsets
than are contained in X/ It also leverages structural information from
X/ by retaining item-ordering of subsets that are relatively easy to
solve and their relative ordering to other subsets. It is important to
emphasize that, while the derived approximation factors provide a
guarantee of the solution quality, we are interested in partitions that
tend to produce high quality solutions rather than those that minimize
the approximation factor. Indeed, by increasing the number of subsets
(i.e., reducing the value of h), one may decrease their values; however,
doing so can also negatively impact the resulting solution, as increasing
the number of subsets can be viewed as placing more constraints on the
ordering of certain items.

The introduced approximation factors require a lower bound on
dgs(c*). A lower bound on dg g(c*) is given by (Akbari and Escobedo,
2021):

LB=2) min (25} +1
ijeX

i 281+ 1ijs sij+sj,~). 8)
The lower bound defined in Eq. (8) equals zero if and only if all input
rankings are identical, which renders the approximation factors incom-
putable; however, this special case does not require analysis of any kind
(i.e., the aggregate ranking equals the unanimous ranking), meaning
that it does not pose a serious issue for the proposed approximation
algorithm. We reckon that there are other lower bounds for the case of
strict rankings (Conitzer et al., 2006) and non-strict rankings (Akbari
and Escobedo, 2021). The lower bound defined in Eq. (8) has been
utilized as it is very fast to compute (Akbari and Escobedo, 2021).

5. Computational comparisons

This section compares ACP with some of the prominent approxi-
mation schemes mentioned in Section 1. The selected methods for in-
stances with strict rankings are the proposed solution method via ACP,
BestInput, DeterministicKwikSort, KwikSort, LPKwikSort, and Spear-
man’s footrule. For instances with non-strict rankings, we elected not
to use RepeatChoice and LPKwikSort, (Ailon, 2010) as they restrict
the aggregate ranking to be strict, which does not align with the more
general assumption that the output rankings may also be non-strict. Due
to a lack of suitable algorithms (and to compare ACP with more than
simply BestInput) for Kemeny-Ace with non-strict rankings, we modify
KwikSort to handle these instances and denote the resulting algorithm
as NonStrictKwikSort; the pseudocode and its description are presented
in Appendix I

We use two real-world data sets. The first data set is from Cohen-
Boulakia et al. (2011) and is henceforth denoted as the Biomedical data
set. Each instance of this data set contains four non-strict rankings of
genes possibly associated with Breast Cancer, Prostate Cancer, Blad-
der Cancer, Neuroblastoma, Retinoblastoma, ADHD (Attention Deficit

Computers and Operations Research 153 (2023) 106164

Hyperactivity Disorder), and LQTS (Long QT Syndrome). Each set of
input rankings is the result of querying for the respective diseases in
biological databases using four different methods. The objective of the
referenced study is to reduce the variability of information retrieval
techniques by consolidating their outputs. The second data set consists
of instances with and without ties from Preflib (Mattei and Walsh,
2013), a library of preference data; namely instances from “TOC -
Orders with Ties - Complete List” and “SOC - Strict Orders - Complete
List” with over 100 items.!

All experiments were carried out on a PC with an Intel(R) Xeon(R)
CPU E5-2680 @2.40 GHz with 64 GB RAM. All Kemeny-AGG subprob-
lems were solved using the exact binary programming formulation
of Yoo and Escobedo (2021) via CPLEX solver version 12.10.0. The
Spearman’s footrule rank aggregation problem was solved via minimum
cost perfect matching in bipartite graphs (Dwork et al., 2001). For ACP,
we tested thresholds » = 30,40,50. The experimental results report,
for each instance, number of items (n), number of input rankings (m),
size of the largest subset of X/ ((X lf ')'"“"), run-time (Time) and relative
optimality gap (Gap %) attained by each tested method. Run-times
include pre-processing time required by each specific method. The
relative optimality gap for each method is calculated as the difference
between its objective value and the lower bound (Eq. (8)), divided
by the lower bound. It is displayed as a percentage, for convenience
(relative optimality gap, multiplied by 100); the best relative optimality
gap % attained for each instance is shown in bold. For ACP, the
tested threshold value (4) and calculated approximation factor (AF)
are reported. Lastly, for each data set, the average relative optimality
gap and geometric mean of run-times achieved by each of the selected
algorithms are displayed. All statistics are rounded to two decimal
points, and all reported run times are in seconds. For completeness,
the objective functions values of the tested algorithms — that is, the
cumulative dgg distance of their solution ranking to all the input
rankings — are reported in Appendix J.

Table 1 reports the computational results for the Biomedical data
set. These results exclude the ADHD and LSQT instances since they were
both relatively small and could be easily solved to optimality without
partitioning. Compare table columns » and (X lf ymax (the number of
items and the size of the largest subset of X/) to observe that the finest-
Condorcet partition over all instances is either null or it contains a
rather large subset that is difficult to solve to optimality. Overall, none
of the selected methods had a dominant performance on all of these
instances. On average, BestInput had the lowest relative optimality
gap, ACP the second-lowest, and NonStrictKwikSort the third-lowest.
As Table 1 shows, Bestlnput and ACP had a top-2 performance in
terms of solution quality for all five instances. Among the three tested
threshold values for ACP, 4 = 50 achieved the best solution quality,
but it also had higher run-times and approximation factors. The average
approximation factor it achieved over these instances was 1.14. Finally,
ACP yielded near-optimal solutions (with gaps of up to 0.11%) on
Bladder Cancer and Retinoblastoma, for which each X/ contained
multiple subsets of small-to-medium sizes.

Table 2 reports the results of the Preflib TOC data set. The general
characteristics of X/ were the same as for the Biomedical data set.
Overall, ACP exhibited a dominant performance, achieving the lowest
relative optimality gap for all 85 instances. In fact, its worst optimality
gap of 3.49% over all instances and three tested thresholds was lower
than all optimality gaps achieved by BestInput. Most impressively, its
average approximation factor was 1.02, further highlighting the com-
parative robustness of ACP. To round out the results, NonStrictKwikSort
was faster but yielded a slightly lower solution quality than BestInput

! The Preflib data set presents the input rankings in the form of sorted
lists, but a few items repeat in certain instances, presumably due to error.
To overcome this issue, we adjusted these instances by keeping the first
appearance of each item in each list and deleting any extra occurrences

S. Akbari and A.R. Escobedo

Table 1

Computers and Operations Research 153 (2023) 106164

Performance metrics of the selected algorithms for solving instances of the Biomedical data set; times are reported in seconds (s).

Approximate Condorcet Partitioning

Instance 0 (X ’,)mﬂx NonStrictKwikSort BestInput PR PR PR

Gap % Time (s) Gap % Time (s) Gap % Time (s) AF Gap % Time (s) AF Gap % Time (s) AF
Prostate Cancer 218 4 216 41.1 0.05 12.8 0.21 22.99 1.07 1.23 224 1.92 1.22 2234 228 1.22
Bladder Cancer 308 4 266 16.54 0.11 0.00 0.45 0.01 0.95 1.01 0.01 0.85 1.01 0.01 2.19 1.01
Breast Cancer 386 4 386 34.97 0.18 5.32 0.67 29.12 272 1.29 2932 478 1.29 29.52 6.39 1.3
Retinoblastoma 402 4 358 0.88 0.18 0.19 0.74 0.11 0.51 1.01 0.11 1.6 1.01 0.11 2.55 1.01
Neuroblastoma 431 4 431 15.78 0.18 5.43 0.82 4.23 1.4 1.05 3.91 4.55 1.04 3.76 7.74 1.04
Average 21.85 0.13 4.75 0.52 11.29 1.15 1.12 1115 2.24 1.12 1115 3.63 1.14

Table 2
Performance metrics of the selected algorithms for solving instances of the TOC data set with more than 100 items; times are reported in seconds (s).
stance) . - NonStrictkwikSort Bestinput Approximate Condorcet Partitioning
! h =30 h =40 h =50

(%) Gap Time (s) (%) Gap Time (s) (%) Gap Time (s) AF (%) Gap Time AF (%) Gap Time (s) AF
ED-14-02 100 5000 100 0 2.48 - > 3600 0.00 2.5 1.00 0.00 2.5 1.00 0.00 2.5 1.00
ED-14-03 100 5000 100 0 217 - > 3600 0.00 2.17 1.00 0.00 2.17 1.00 0.00 2.19 1.00
MD-03-03 102 32 102 0 0.01 52.07 4.07 0.00 0.02 1.00 0.00 0.02 1.00 0.00 0.02 1.00
MD-03-05 103 31 103 0 0.02 69.32 4.85 0.00 0.02 1.00 0.00 0.02 1.00 0.00 0.02 1.00
MD-03-06 133 38 133 0 0.02 69.72 11.56 0.00 0.02 1.00 0.00 0.02 1.00 0.00 0.02 1.00
MD-03-08 147 51 147 0 0.02 57.58 25.17 0.00 0.03 1.00 0.00 0.03 1.00 0.00 0.05 1.00
MD-03-07 155 51 155 0 0.03 69.72 20.96 0.00 0.06 1.00 0.00 0.06 1.00 0.00 0.06 1.00
ED-10-50 170 4 170 36.63 0.02 14.17 0.14 1.44 1.48 1.07 1.57 1.86 1.10 1.47 3.2 1.13
ED-10-49 351 4 351 15.39 0.30 16.58 0.77 0.75 2.85 1.03 0.75 4.19 1.04 0.65 7.32 1.04
ED-18-01 379 723 379 99.82 0.41 - > 3600 0.00 0.44 1.00 0.00 0.45 1.00 0.00 0.42 1.00
ED-18-03 477 556 476 99.36 0.45 - > 3600 0.00 0.48 1.00 0.00 0.48 1.00 0.00 0.47 1.00
ED-11-12 1210 4 1207 11.17 1.27 4.93 6.36 2.81 6.13 1.03 279 9.24 1.03 277 13.44 1.03
ED-11-31 1223 4 1223 16.69 1.16 8.78 6.58 1.73 5.77 1.02 1.72 8.63 1.02 1.69 12.24 1.02
ED-11-09 1272 4 1272 22.55 1.52 8.45 6.85 3.49 8.59 1.04 3.46 13.83 1.04 3.39 20.90 1.04
ED-11-23 1342 4 1341 10.96 1.39 9.39 7.98 1.68 6.77 1.02 1.65 10.72 1.02 1.62 15.36 1.02
ED-11-21 1347 4 1347 10.28 1.56 5.24 7.69 2.71 8.16 1.03 2.68 12.47 1.03 2.66 19.13 1.03
ED-11-37 1351 4 1351 16.4 1.66 4.53 8.11 3.15 9.86 1.04 3.08 15.83 1.04 3.04 24.15 1.04
ED-11-25 1356 4 1353 18.23 1.55 8.78 7.89 2.39 8.56 1.03 231 14.05 1.03 2.27 19.42 1.03
ED-11-13 1363 4 1363 5.03 1.47 6.59 8.2 1.63 6.44 1.02 1.61 9.38 1.02 1.6 13.38 1.02
ED-11-29 1368 4 1368 25.91 1.75 4.08 8.55 3.4 10.20 1.04 3.37 16.67 1.04 3.31 25.94 1.04
ED-11-14 1375 4 1372 27.29 1.77 3.87 8.36 3.32 9.89 1.04 3.24 16.03 1.04 3.2 23.74 1.04
ED-11-30 1386 4 1384 4.96 1.64 6.26 8.78 2.46 8.85 1.03 241 1441 1.03 2.38 21.21 1.03
ED-11-06 1449 4 1449 17.69 1.77 5.22 10.02 2.8 9.69 1.03 275 1452 1.03 2.71 22.66 1.03
ED-11-04 1467 4 1463 48.04 1.91 4.94 10.63 2.64 8.85 1.03 261 13.3 1.03 2.59 19.86 1.03
ED-11-07 1474 4 1470 3.72 1.73 8.57 10.19 1.84 7.3 1.02 1.82 10.61 1.02 1.81 15.7 1.02
ED-11-34 1509 4 1509 12.92 1.77 6.94 10.02 1.54 7.36 1.03 1.51 10.68 1.03 1.5 14.91 1.03
ED-11-22 1514 4 1513 18.74 1.86 5.92 10.09 1.9 9.52 1.02 1.85 14.7 1.02 1.83 20.88 1.02
ED-11-11 1545 4 1542 38.89 2.08 5.75 10.36 2.1 10.91 1.02 2.04 17.04 1.02 2.01 25.27 1.03
ED-11-15 1563 4 1560 38.81 1.97 6.44 10.74 2.06 9.36 1.02 2.03 14.82 1.02 2.01 20.75 1.02
ED-11-08 1572 4 1569 7.45 1.94 6.8 11.73 1.28 6.75 1.02 1.27 9.31 1.02 1.26 13.25 1.02
ED-11-28 1616 4 1611 2.76 1.89 14.38 12.05 0.79 6.72 1.01 0.78 9.0 1.01 0.78 12.38 1.01
ED-11-40 1623 4 1623 35.54 1.59 19.18 11.88 0.33 6.43 1.01 0.32 10.49 1.01 0.32 11.64 1.02
ED-11-36 1634 4 1632 28.92 2.06 8.13 11.85 1.55 9.03 1.02 1.52 13.19 1.02 1.51 18.36 1.02
ED-11-33 1646 4 1644 9.96 2.3 5.82 12.5 1.94 10.35 1.02 1.9 1531 1.02 1.85 22.41 1.02
ED-11-05 1673 4 1672 4.07 1.98 23.32 13.52 0.66 9.91 1.01 0.64 17.89 1.01 0.63 88.36 1.01
ED-11-18 1681 4 1676 12.33 2.22 6.24 12.14 1.98 8.85 1.02 197 13.56 1.02 1.94 18.66 1.02
ED-11-16 1708 4 1707 6.93 2.19 8.07 13.07 1.19 8.73 1.02 117 12.64 1.02 1.17 17.61 1.02
ED-11-32 1751 4 1751 9.45 2.3 5.57 13.1 1.71 8.92 1.02 1.68 1256 1.02 1.68 17.69 1.02
ED-11-38 1754 4 1752 13.8 2.36 6.03 14.16 2.02 9.06 1.02 1.99 12.83 1.02 1.97 17.92 1.02
ED-11-39 1788 4 1788 35.34 2.2 18.19 13.75 0.39 9.22 1.01 0.37 18.8 1.01 0.35 24.71 1.01

on average. NonStrictKwikSort had an optimality gap of up to 97.92%
and BestInput of up to 69.72%. Bestlnput did not terminate after
1 h of run-time for instances #77-#80, likely owing to its quadratic
complexity with respect to both the number of items and number of
input rankings. These four instances are much larger than the rest:
#77-#78 have 5,000 input rankings and #79-#80 have at least 379
items and at least 556 input rankings.

Table 3 reports the results of the Preflib SOC data set. The general
characteristics of X/ were the same as for the TOC and the Biomedical
data sets. Since all of the alternative methods tested for this data
set output a strict ranking, the output ranking of ACP was forced to
be strict as well. While this restriction does not take full advantage
its intended purpose, ACP still exhibited a very good performance,

(continued on next page)

headlined by its average approximation factor of 1.06 over this data set.
While LPKwikSort dominated in solution quality, achieving the lowest
optimality gap in all but one of the 23 tested instances, it also had
relatively high run-times — in fact, its lowest run-time was greater than
the highest run-time attained by all other methods. This is due to fact
that LPKwikSort requires solving a LP with O(»%) constraints, which
causes memory issues for large instances. Conversely, ACP produced
competitive solutions in far less time (it solved each instance of the
SOC data set in under eight seconds). In the 22 instances where
LPKwikSort had the lowest optimality gap, ACP had the second-lowest
in 14 instances and BestInput in 8 instances; however, the worst relative
optimality gap of BestInput (14.94%) was much higher than ACP’s (not
more than 4.07%). Furthermore, the relative optimality gaps attained

S. Akbari and A.R. Escobedo

Table 2 (continued).

Computers and Operations Research 153 (2023) 106164

Approximate Condorcet Partitioning

Instance " m x ’,)mﬂx NonStrictKwikSort BestInput R PR PR
(%) Gap Time (s) (%) Gap Time (s) (%) Gap Time (s) AF (%) Gap Time AF (%) Gap Time (s) AF

ED-11-68 1826 4 1826 45.79 2.14 10.22 14.36 0.62 6.3 1.01 0.62 7.74 1.01 0.62 9.11 1.01
ED-11-49 1845 4 1844 2.94 2.6 6.7 14.74 0.91 6.56 1.01 0.9 8.1 1.01 0.9 9.17 1.01
ED-11-20 1870 4 1866 3.0 2.77 7.52 15.13 1.55 11.7 1.02 1.51 17.33 1.02 1.47 24.35 1.02
ED-11-26 1931 4 1930 7.41 2.80 6.36 16.63 1.39 11.03 1.02 1.36 16.85 1.02 1.33 23.24 1.02
ED-11-35 1936 4 1935 17.19 2.80 6.25 16.69 1.58 11.02 1.02 1.56 15,58 1.02 1.53 21.99 1.02
ED-11-74 1976 4 1976 5.74 2.92 5.93 17.89 1.16 9.91 1.02 1.14 13.7 1.02 1.13 18.69 1.02
ED-11-60 1977 4 1976 3.7 2.69 10.98 16.94 0.87 7.94 1.01 0.87 10.22 1.01 0.87 12.66 1.01
ED-11-58 2011 4 2010 3.43 2.94 7.26 17.28 1.1 8.95 1.02 1.09 11.77 1.02 1.09 15.36 1.02
ED-11-62 2014 4 2013 4.04 2.86 12.49 17.50 0.89 9.53 1.01 0.87 12.7 1.01 0.86 16.69 1.01
ED-11-17 2015 4 2014 14.86 3.08 6.03 17.68 1.31 11.49 1.03 1.28 16.78 1.03 1.26 22.6 1.03
ED-11-66 2024 4 2024 7.68 3.22 5.11 18.31 2.01 11.64 1.02 1.99 16.32 1.03 1.98 22.28 1.03
ED-11-24 2049 4 2049 6.29 3.11 5.75 18.28 1.44 11.92 1.03 1.42 16.83 1.03 1.41 23.02 1.03
ED-11-67 2066 4 2066 7.65 3.16 7.54 18.43 1.31 10.17 1.02 1.3 14.09 1.03 1.3 19.19 1.02
ED-11-27 2092 4 2088 22.28 3.11 7.32 19.39 1.13 9.92 1.02 1.11 13.46 1.02 1.11 17.97 1.02
ED-11-10 2096 4 2095 6.18 2.95 13.64 19.08 0.65 10.53 1.01 0.63 13.88 1.01 0.62 19.52 1.01
ED-11-19 2104 4 2102 10.51 3.25 6.56 19.24 1.28 12.38 1.02 1.26 17.78 1.02 1.24 25.38 1.02
ED-11-50 2111 4 2111 1.82 3.01 8.19 20.30 0.62 7.95 1.01 0.61 9.12 1.01 0.61 10.89 1.01
ED-11-51 2112 4 2112 6.8 3.28 4.92 19.6 1.54 10.81 1.02 1.52 1485 1.02 1.51 19.92 1.02
ED-11-65 2119 4 2118 3.12 2.84 21.21 19.91 0.28 7.30 1.00 0.27 8.92 1.00 0.28 9.66 1.00
ED-11-41 2123 4 2123 8.44 3.28 7.5 19.6 1.05 9.03 1.01 1.04 11.45 1.01 1.04 14.25 1.02
ED-11-71 2127 4 2127 18.27 3.13 8.96 19.55 0.52 8.10 1.01 0.51 9.41 1.01 0.51 12.25 1.01
ED-11-46 2133 4 2133 4.83 3.22 10.31 20.11 1.37 9.96 1.02 1.36 1292 1.02 1.36 16.47 1.02
ED-11-43 2153 4 2153 5.31 3.3 6.81 20.41 1.29 9.88 1.02 1.28 12.88 1.02 1.27 16.36 1.02
ED-11-48 2194 4 2194 9.41 3.64 11.46 20.86 1.15 12.08 1.02 1.14 16.55 1.02 1.12 21.72 1.02
ED-11-52 2242 4 2239 11.3 3.47 8.55 21.67 0.63 10.24 1.01 0.63 13.36 1.01 0.62 16.50 1.01
ED-11-73 2258 4 2257 6.46 3.47 11.74 22.06 0.30 9.34 1.00 0.30 11.36 1.00 0.29 13.49 1.00
ED-11-45 2265 4 2264 0.43 3.33 11.62 22.50 0.07 7.25 1.00 0.07 7.39 1.00 0.07 7.25 1.00
ED-11-70 2276 4 2274 3.28 3.61 8.45 22.40 0.50 10.06 1.01 0.50 12.16 1.01 0.49 15.48 1.01
ED-11-59 2281 4 2280 8.57 3.58 8.72 23.10 0.70 10.28 1.01 0.70 1297 1.01 0.68 16.75 1.01
ED-11-77 2317 4 2317 0.10 2.88 28.42 25.64 0.09 8.13 1.00 0.08 8.72 1.00 0.08 10.22 1.00
ED-11-53 2321 4 2320 0.84 3.7 10.39 24.0 0.29 9.89 1.01 0.28 12.28 1.01 0.28 14.63 1.01
ED-11-69 2338 4 2338 4.6 3.68 7.33 25.81 0.53 11.55 1.01 0.53 10.69 1.01 0.52 13.77 1.01
ED-11-55 2353 4 2350 2.09 3.69 8.47 23.82 0.59 9.02 1.01 0.59 10.63 1.01 0.59 11.57 1.01
ED-11-75 2391 4 2390 30.02 3.86 7.41 25.1 0.76 9.66 1.01 0.76 10.80 1.01 0.76 12.64 1.01
ED-11-44 2434 4 2430 3.56 3.95 9.42 25.66 0.56 9.83 1.01 0.56 11.52 1.01 0.55 14.72 1.01
ED-11-64 2446 4 2444 13.19 3.89 11.04 26.19 0.60 10.52 1.01 0.60 12.72 1.01 0.59 15.59 1.01
ED-11-72 2447 4 2446 4.12 4.03 10.5 27.50 0.83 11.29 1.01 0.82 1475 1.01 0.82 18.32 1.01
ED-11-63 2510 4 2509 17.3 4.22 12.47 27.08 0.67 12.39 1.01 0.66 15.83 1.01 0.65 20.58 1.01
ED-11-54 2512 4 2511 5.52 4.28 11.57 27.32 0.67 12.85 1.01 0.66 16.77 1.01 0.66 21.93 1.01
ED-11-57 2559 4 2559 19.18 4.42 11.46 28.71 0.78 12.72 1.01 0.76 1695 1.01 0.76 22.46 1.01
ED-11-76 2581 4 2581 3.92 3.81 21.74 30.16 0.11 11.17 1.00 0.11 14.18 1.00 0.10 16.30 1.00
ED-11-42 2598 4 2598 2.16 4.10 27.23 30.32 0.16 11.66 1.00 0.16 3291 1.00 0.15 17.24 1.00
ED-11-56 2632 4 2630 3.83 4.60 12.94 30.21 0.56 12.94 1.01 0.55 15.88 1.01 0.55 19.63 1.01
ED-11-61 2726 4 2726 6.91 4.88 7.2 32.41 0.97 14.31 1.01 0.97 17.88 1.01 0.96 22.94 1.02
ED-11-47 2819 4 2819 4.34 4.72 24.91 34.68 0.24 12.28 1.00 0.23 1420 1.00 0.23 16.66 1.01
Average 13.46 1.73 13.08 > 1832 1.14 5.79 1.02 1.13 7.45 1.02 1.11 10.14 1.02

% The instance names have been shortened. The original names include three zeros before the first number and six zeros before the second number.

by LPKwikSort and ACP were very close, differing by no more than
three percentage points. To round out the results, DeterministicKwik-
Sort produced neither high-quality solutions nor low run-times. While
KwikSort had quick run-times, they were similar to those of BestInput
and Spearman’s footrule, which yielded better solutions.

All things considered, BestInput had a good performance on the
Biomedical and SOC data sets, but performed poorly on the TOC
data set, especially when the number of input rankings was high.
LPKwikSort had an excellent performance on strict rankings, but its
run-time increases very fast with n, which makes it unattractive for
large scale problems. Additionally, this method is only able to handle
strict rankings, and its non-strict variant, LPKwikSort,, does not allow
the aggregate ranking to include ties, thereby limiting its general
application. ACP has a very good performance on the Biomedical
and SOC data sets and a dominant performance on the TOC data
set. Overall, it had a very robust performance in terms of solution
quality and run-times on both strict and non-strict rankings instances.
Quite remarkably, none of the tested instances of up to 2,820 items
exceeded 90 s in run-time, which includes the time to construct X/
and X4¢? and to solve the corresponding Kemeny-AGG subproblems
for all ACP subsets whose size is under the threshold 4. In fact, the

time to calculate the CR matrix, to construct X/ and X4€”, and to
calculate the respective approximation factor took less than 1 s for each
instance of the Biomedical and SOC data sets and less than 12 s for each
instance of the TOC data set. As a final note, it is important to highlight
that although the approximation factors achieved by ACP are instance-
specific, they are considerably lower for all 113 tested instances than
the guarantees offered by any existing constant-factor approximation
algorithm for Kemeny-Acc. Indeed, the worst ACP approximation factor
obtained was 1.3.

6. Conclusion and future research

This paper explores the partitioning of the Kemeny aggregation
problem based on Condorcet extensions. These partitioning schemes
offer theoretical guarantees that enable the decomposition of certain
large instances of this NP-hard problem into a set of smaller subprob-
lems that can be solved independently. Since there may exist more
than one partition that satisfies the criteria of the Condorcet extensions,
we formalize the concept of the finest-Condorcet partition, which is
designed to provide the highest possible computational advantages

10

11

Table 3

Performance metrics of the selected algorithms for solving instances of the SOC data set with more than 100 items; times are reported in seconds (s).

. - KwikSort Det'erministic LPKwikSort Bestinput Spearman’s Approximate Condorcet Partitioning
nstance n m (X]) KwikSort footrule h=30 h =40 h=350
Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s) AF Gap % Time (s) AF Gap % Time (s) AF

ED-15-12 100 4 99 13.38 0.06 12.71 0.45 0.42 6.25 5.81 0.02 6.54 0.06 1.76 0.59 1.06 1.21 1.23 1.06 1.39 1.87 1.06
ED-15-42 100 4 100 14.44 0.06 10.44 0.44 0.86 6.16 14.94 0.02 6.67 0.05 1.4 0.64 1.04 0.95 1.31 1.04 1.26 1.84 1.04
ED-15-28 102 4 99 11.57 0.06 5.12 0.47 0.15 6.50 2.0 0.02 8.66 0.06 1.64 0.64 1.07 1.12 1.38 1.07 0.77 1.94 1.07
ED-15-36 102 4 100 16.69 0.06 7.83 0.48 0 6.41 0.2 0.02 7.57 0.06 0.94 0.61 1.08 1.24 1.33 1.08 0.69 2.00 1.08
ED-15-05 103 4 94 14.21 0.06 13.56 0.55 0.11 10.24 12.26 0.03 6.67 0.06 0.21 0.95 1.03 0.11 1.05 1.03 0.21 1.64 1.03
ED-11-03 103 5 90 6.93 0.06 14.67 0.47 2.85 6.56 10.5 0.03 7.63 0.06 2.93 1.11 1.05 2091 1.05 1.05 2.93 1.53 1.05
ED-15-29 106 4 105 16.24 0.06 10.45 0.59 0.32 7.39 1.51 0.02 5.84 0.06 1.3 0.66 1.06 1.46 1.41 1.06 1.3 1.85 1.06
ED-15-07 110 4 106 16.14 0.06 15.25 0.59 0.16 7.86 2.46 0.02 6.71 0.08 1.15 1.06 1.05 0.74 1.13 1.05 0.57 2.00 1.05
ED-15-22 112 4 110 11.37 0.08 19.27 0.67 0.05 8.67 0.91 0.02 6.18 0.06 1.32 0.66 1.07 1.32 1.55 1.07 1.22 1.92 1.07
ED-15-18 115 4 112 12.08 0.08 28.01 0.70 0 9.28 1.34 0.03 6.53 0.08 1.39 0.73 1.06 0.76 1.61 1.06 0.58 2.02 1.06
ED-15-25 115 4 114 11.26 0.06 17.98 0.70 0.08 9.24 1.46 0.03 7.82 0.08 1.82 0.72 1.06 0.93 1.64 1.06 1.01 1.98 1.06
ED-15-09 115 4 115 16.93 0.06 18.84 0.69 0.22 9.44 1.29 0.03 5.27 0.08 1.5 1.19 1.06 1.55 1.35 1.06 0.93 2.3 1.06
ED-15-20 122 4 116 19.16 0.06 32.19 0.94 0.19 10.99 1.4 0.03 7.49 0.09 3.16 0.78 1.08 1.95 1.87 1.08 1.5 1.91 1.08
ED-15-17 127 4 124 14.25 0.08 10.46 1.00 0.1 12.72 0.37 0.03 6.87 0.10 2.03 0.86 1.07 1.69 2.03 1.07 1.29 2.00 1.07
ED-15-33 128 4 126 15.86 0.08 18.06 1.00 0.7 12.5 2.52 0.03 7.23 0.08 3.59 0.80 1.08 2.83 2.02 1.08 1.98 2.13 1.08
ED-15-40 131 4 131 17.81 0.09 18.55 1.14 0.26 13.52 0.97 0.03 9.09 0.09 1.83 0.78 1.06 1.66 1.30 1.06 1.66 2.83 1.06
ED-15-23 142 4 135 27.36 0.09 18.11 1.55 0.03 17.58 1.05 0.05 8.11 0.11 2.24 0.91 1.07 1.97 1.37 1.07 1.8 3.06 1.07
ED-15-32 153 4 153 17.9 0.13 21.91 2.09 0.26 21.56 1.05 0.05 8.61 0.13 2.64 0.94 1.07 2.28 1.59 1.07 1.46 3.67 1.07
ED-15-14 163 4 160 16.96 0.16 22.37 2.67 0.04 26.32 0.65 0.05 9.78 0.14 2.04 1.09 1.07 1.62 3.25 1.07 1.79 2.83 1.07
ED-15-01 240 4 240 3.49 0.28 11.84 12.13 0.35 84.28 9.17 0.13 4.44 0.33 0.9 1.67 1.03 0.84 2.77 1.03 0.84 7.77 1.03
ED-11-01 240 5 229 4.58 0.39 9.67 12.38 2.27 85.31 7.63 0.19 5.51 0.39 2.43 1.75 1.04 2.32 2.58 1.04 2.33 3.89 1.04
ED-15-03 242 4 242 5.12 0.30 11.15 13.03 1.09 95.98 9.16 0.11 5.92 0.33 3.83 1.75 1.10 3.18 2.80 1.12 3.19 4.44 1.12
ED-11-02 242 5 239 6.63 0.47 12.04 12.20 4.05 93.31 7.96 0.19 7.46 0.39 4.07 2.02 1.06 3.86 6.86 1.06 3.98 5.22 1.06
Average 13.51 0.10 15.67 1.26 0.63 14.66 4.2 0.04 7.07 0.10 2.01 0.93 1.06 1.67 1.72 1.06 1.51 2.35 1.06

% The instance names have been shortened. The original names include three zeros before the first number and six zeros before the second number.

0paqodsq "Y'V pup LDQYV °S

¥91901 (£20Z) €SI Yopasay suonp.odQ pub siomduio)

S. Akbari and A.R. Escobedo

among all such partitions. We specify the requirements of the finest-
Condorcet partition, prove its uniqueness, and derive an algorithm for
its construction. Condorcet partitioning is useful for a small portion
of problem instances, as it often yields a few large subsets which
may be too difficult to solve with exact methods. To overcome this
issue, we propose Approximate Condorcet Partitioning (ACP), which
breaks down these larger subsets based on the number of times an
item is pairwise preferred over other items. The resulting partition
has more subsets than the finest-Condorcet partition and is therefore
easier to solve. Furthermore, we propose an efficient solution technique
for strict and non-strict rankings, which is accompanied by instance-
specific approximation factors. Although the approximation factors are
not constant, ACP often achieves better solution guarantees than all
known approximation factors, including all instances tested herein.
The average approximation ratio for the strict and non-strict rankings
instances tested herein was 1.06 and 1.03, respectively, whereas the
best known approximation factors for strict and non-strict rankings
are 4/3 and 2, respectively. Experiments on a variety of very large
benchmark instances demonstrate the scalability and robustness of
the proposed approximation algorithm. The conducted experiments on
real-world instances showed that LPKiwkSort and the proposed solution
technique via ACP had the best and second best performances in terms
of solution quality on strict rankings, differing by no more than three
percentage points; however, ACP was on average nearly six times faster
than LPKiwkSort. On the other hand, ACP had a dominant performance
on non-strict rankings, achieving near-optimal solutions on the majority
of the tested instances.

All existing Condorcet partitioning schemes and ACP are only suit-
able for complete rankings (i.e., in which all items are evaluated by
all judges). There are numerous group-decision making contexts where
judges are unable to express their preferences over all items to produce
a complete ranking; that is, they may rank only a smaller subset of all
the items, and the sizes of the subsets may differ from one judge to
another. Reasons for this include practicality, feasibility, and judicious-
ness (Moreno-Centeno and Escobedo, 2016). Two relevant examples
include the National Science Foundation (NSF) proposal review process
and corporate project selection (Escobedo et al., 2022). Additional
potential advantages of using incomplete rankings are the mitigation
of overranking fatigue and various other cognitive biases (Yoo et al.,
2020).

It is generally not possible to apply the Condorcet Criterion and
its extensions to incomplete rankings since the existing definitions
effectively imply that each possible pair of items must be evaluated
by at least one judge. In the cases when this condition is met, it may
be possible to obtain a valid partition, but this remains to be formally
proved and computationally tested. Future research will explore these
directions as well as whether and how relaxing the partitioning con-
ditions could expand the applicability of these methods to the general
case.

CRediT authorship contribution statement

Sina Akbari: Conceptualization, Methodology, Software, Formal
analysis, Writing — original draft. Adolfo R. Escobedo: Supervision,
Methodology, Formal analysis, Writing — review & editing.
Data availability

Public data sets.
Acknowledgment

The authors gratefully acknowledge funding support from the Na-
tional Science Foundation, United States (Award 1850355). They are
also grateful to the four anonymous referees, the area editor, and the

editor-in-chief for their valuable and insightful feedback, which helped
to enhance the clarity of this paper.

12

Computers and Operations Research 153 (2023) 106164
Appendix A. Proof of Theorem 1

Theorem 1. The finest-Condorcet partition is unique.

Proof. Let X/ X' € @/(X), where X/ = {X/.X]... X[} X =
{X!,X},....X])},and X/ # X'. Since both X/ and X' are distinct finest-
Condorcet partitions, they must have the same number of subsets, but
the contents of some of their subsets must be different.

Consider X lf and X|. If X lf = X, this part of the proof is trivially
satisfied. Otherwise, assume that X]f +X { and consider two cases based
on the relative cardinality of the subsets.

Case 1. |X{| = |X{|. There exist items i and j such that i € x7,i I3 X{
and j ¢ X 1/ LJjEX |- This implies that i is pairwise preferred over j and
Jj is pairwise preferred over i, yielding a contradiction.

Case 2. |X { | #1X ; |. Without loss of generality assume that | X lf | >
X1

Case 2.1: X| C le . In this case, the contents of the respective
partitions are given by

X/
———
X/ = ({x], x]\x]} . X0

X' = (X, XX XA \XD)L LX)

!
Xk

Without loss of generality, assume that le \X| € X, (considering
a subset of X]f \X { also works). X’ is a finest-Condorcet partition
and, therefore, all items in X| are pairwise preferred over all items
in X lf \X { ; thus, it is possible to decompose X lf and obtain a finer
partition, contradicting the assumption that X/ is a finest-Condorcet
partition.

Case 2.2: X ; ¢ X lf . This leads to a similar contradiction as in Case
1, since there exists items i and j such that i € X]f g X { and
jgx].jex.

These cases prove that X { = X|. Next, consider partitions XA\X lf
and X'\X| and apply the above chain of arguments to show that
Xzf = X). Continuing in this manner gives that X /{ = X, for k =
3,...,w. Therefore, we can conclude that the finest-Condorcet partition
is unique. []

Appendix B. Proof of Theorem 2
Theorem 2.

Proof. = We need to prove that if X/ satisfies Condition (4), then
it is the finest-Condorcet partition. Note that X has the most subsets
among all partitions in g(&) if it is not possible to further decompose
its subsets. This is indeed equivalent to satisfying Condition (4).

<= We need to prove that the finest-Condorcet partition must
satisfy Condition (4). We use contradiction. Assume that at least one
of the subset of X, say X, does not satisfy Condition (4). Then, we can
further decompose X, into X, and X,\X, and increase the size of X
by 1. However, this contradicts the fact that X is the finest-Condorcet
partition, as we can construct another valid partition that has more
subsets. []

Appendix C. Proof of Proposition 1

Proposition 1. Item i is pairwise preferred over item j if and only if ¢;; > 0
and c;; < 0.

Proof. Recall that s;;,s;;,,7;; 20, t;; =1;;, and ¢;; = s;;+1;;—s;; Vi,j € X.
= Assume that s5;; > 1;; +5;.

Case 1. t;; = 0. By substituting s;; > s;; in the expressions for ¢;; and

c;; we have that ¢;; >0, ¢;; <0.

S. Akbari and A.R. Escobedo

Case 2. 1;; > 0. By substituting s;; > 5, +1;; in the expressions for c;;
and c;; we have:

Gy =S+t —8; > s+ -,-:2t,-j>0,
cj,=sj,~+t,~j—s,~j<sj,~+tij—sj,~—tij=sji—sj,~<0.

<= Now, assume that ¢;; > 0, c;; < 0. Here, we have ¢;;
0, which results in s;; > s;; —#;;. Similarly,
results in s;; > s, +1,;. Since s;; +1;; > 55, — ¢
s> s+ O

=8t —=8; >
+1t;—s5; <0
we can conclude that

Cji = S8ji

ijs

Appendix D. Proof of Theorem 3
Theorem 3. Algorithm 1 is correct.

Proof. Assume that the initial partition X° = { X9, X9 X0} has been
accordingly constructed, per Algorithm 1, and let X be the working
partition which is initially set to X°. Let T(X,) = Uie F denote
the set of items over which at least one of the items in X € Xis
not pairwise preferred. If all items in T'(X,) belong to X, or to other
lower-indexed subsets, X does not violate NXCC; otherwise, there is
a violation. Whenever a violation is detected, the associated subsets
(see the next paragraph) are merged. The process continues until the
working partition does not violate NXCC.

The vahdatlon & merging starts from subset X,. Generally, if
T(X k)\ U = ¢, all items in X, « are pairwise preferred over all
items in X,, for t=k+1,..., |§|. Therefore, subset)?k satisfies NXCC
and remains unchanged in this case. If T(X O\ U Y # @, there is
at least one item in subsets X, ... X, that not all items in X, are
pairwise preferred over, which causes a violation of NXCC. Let X W
be the highest-indexed subset to which an item from T(X O\ u X
belongs, where k' > k. Therefore, subsets X, ..., X, are merged and
placed into subset X,. Validation & merging is repeated for X,, which
is now defined as Uf;k)?,, until T()? O\ uf=l X « = % this process is
performed on the remaining subsets until the working partition satisfies
NXCC. Hence, the output of the algorithm satisfies NXCC.

Furthermore, we prove that the output of the algorithm satisfies
Condition (4). Recall that Condition (4) states that a subset cannot be
further split into two subsets while satisfying NXCC. For this part of
the proof, we emphasize that {X f, Xzf, . ¢ le fl} = X/ refers to the
partition output by the algorithm. Assume that subset X]{ € X/ has
not undergone validation & merging, therefore, it remains unchanged
after implementing the algorithm. If | X 1{ | =1, then the subset trivially
satisfies Condition (4). We use contradiction for the case when |X 1{ | >
1. Assume that subset X kf does not satisfy Condition (4), meaning it
can be decomposed into Yi and X ,{ \Yi. Consider items i € ?i and
jEX]{ \Yi. This gives that y; > y;, contradicting the fact that y; = y;
(since all items with the same y-values were placed in the same subset
in X° and hence X).

Now, assume that subset X, /" has undergone the merglng process
and that a sequence of consecutlve subsets {X,..... X} € X were
merged to form subset X ,{ . Additionally, assume that le does not
satisfy Condition (4) and, hence, it is possible to further decompose
X,{ into {ka,.. Xf} and { M,...,ka,} while satisfying NXCC. This
contradicts the fact that X kf has triggered the merging process as
at least one item in X 1{ is not pairwise preferred over at least one
item in X /{' Therefore, X ,{ satisfies Condition (4) and Algorithm 1 is
correct. [

Appendix E. Proof of Theorem 4

Theorem 4. Algorithm 1 has a time complexity of O(n?).

13

Computers and Operations Research 153 (2023) 106164

Proof. Lines 1-2 of the algorithm construct the initial partition. In line
1, calculating the I'-parameter sets has a time complexity of O(n?), and
calculating the T-parameter sets and y-values has a time complexity of
O(n).

Lines 5-12 perform validation & merging. In this process, the num-
ber of inner and outer while loops iterations are dependent on each
other. The extreme cases are:

Case 1. the initial partition has » subsets and the output partition has
n subsets. In this case, the outer while loop is performed n times but
the inner while loop is never performed. In this case, lines 6-8 have a
constant time, therefore, validation & merging has a time complexity
of O(n).

Case 2. the initial partition has n subsets and the output partition has
1 subset and each time, two adjacent subsets are merged. In this case,
the inner while loop is performed n—1 times but the outer while loop is
performed only once. Lines 10-11 have a constant time complexity, and
line 12 has a time complexity of O(n). Therefore, validation & merging
has a time complexity of O(n?).

Finally, the finest-Condorcet partition algorithm has a time com-
plexity of O(n?). [

Appendix F. Proof of Lemma 2

Lemma 2. LetX = {X,, X,, ..., X,,} be any given partition of & and é be
a complete ranking obtained by independently solving the subsets of X (using
any method of choice) and concatenating the solutions of these subproblems.
The term dy 4(6) — dg s(c*) is bounded by

w—1

22 Z z max (0, (s +1;;) — 2s;; + 1),

=1 k=k+1i€X, jEX}

Qsji+1) = (s +5;0) +

w (F.1)
Z Z max(2s,~j+t,~j,2sl~[,j,s,/+v)

k=1(i,))EX

—rnin(2su+tu,23j,»+tu,s,-j+sﬂ).

Proof. Consider an item pair (i,j), where i € X;, j € Xy, k < kK
(items from different subsets); since 6; < &, the contribution of this
pair in dg () is 25; +1;;, while the contribution of this pair in dy ¢(c™)
must be exactly one of 2s;; +¢;;, 2s;; + 1;;, s;;- Therefore, the
additional distance accrued by (i, j) in dg (6) relative to dg ¢(c*) is at
most

or s;; +

max(o Qsj; +1,) = Qs+ 1), Qs +1,7) = (s,.j+sj,.)).

Consider a pair of distinct items (i, j), where i, j € X, (items within the
same subset); the additional distance accrued by (i, j) in dg ¢(6) relative
to dgg(c™*) is at most

max(Zs,-j +1 2sjl- + 15, 8i +sj,-> — min(Zs,-j +1;, 2sjl- +1;, 8 +sj,->.

ij ij

(F.2)

Since the exact orderings of i and j in ¢* and é are not yet known,
Eq. (F.2) considers the worst case. Expressly, the contribution of (i, j) in
dgs(c*) is taken as the smallest of the three possible values of di s(0;;),
whereas the contribution of this pair in dg (6) is taken as the largest
of the three possible values of dg s(c;;). Finally, the right-hand side of
Eq. (F.1) has been multiplied by 2 since dgg counts each item-pair
twice. [

Appendix G. Proof of Theorem 5

Theorem 5. Assume that the input rankings are non-strict and let XQCP =
{X|,....,X,} be the ACP partition obtained using threshold h. Let é be the
complete ranking obtained via ACP from the following two steps: (1) solve

S. Akbari and A.R. Escobedo

subsets of at most size h to optimality, (2) tie all items in subsets of size
greater than h. The term dy ¢(6) — dg s(c™) is bounded by

22 2 z Z max(() (2sj +1;;) — 2s;; + 1)),

=1 k=k+1i€X) jEX)1

(2Sjl + tu) (Sij + Sji)) +

> 3 (s

k=1 (i,))eXy

(G.1)

+55 min(25,~j+tij,25ji+tij,sij +sj,~)).

Proof. Let be an auxiliary ranking obtained from XA¢”, whereby
all items in each subset X, € XQCP are tied Vk € {I,...,w} (items
in lower-indexed subsets remain ranked ahead of items in higher-
indexed subsets). Since & solves all the subsets whose size is at most
h to optimality and ties all the items in subsets whose size is greater
than s, we have that dgg(6) < dgg(o). Furthermore, we show that
dgs(0) —dgs(c™) < f.

Consider an item pair (i, j), where i € X;, j € Xy, k < k' (items
from different subsets); since 5; < 7}, the contribution of this pair in
dgs(0) is 25;; +1;;, while the contrlbutlon of this pair in dgg(c*) must
be exactly one of 25, +1,;, 2s;; +1;;, Or s5;;+5;;. Therefore, the additional
distance accrued by (i, j) in dK s(o) relative to dg ¢(c*) is at most

max (0, (2Sji + l,-j) - (25,-j + Iij)’ (2Sji + tij) - (Sij + Sji)) .

Consider a pair of distinct items (i, j), where i,j € X, (items within
the same subset); the additional distance accrued by (i, j) in o relative
to dgg(c™*) is at most

(sij+sj,-)—min(25,-j+t 2s/-,-+tj,su+s) (G.2)

1’
Since the exact orderings of i and j in ¢* is not yet known, Eq. (G.2)
considers the worst case. Expressly, the contribution of (i, j) in dg g(c™)
is taken as the smallest of the three possible values of dg ¢(o;;), whereas
the contribution of this pair in dgg(6) is (s;; +s;;) as o ties all items
within each subset. Finally, the first term of Eq. (G.1) has been multi-
plied by 2 since dy ¢ counts each item-pair twice. []

Appendix H. Proof of Theorem 6

Theorem 6. Assume that the input rankings are strict and let X7 =
{X,,....X,,} be the ACP partition obtained using threshold h. Let é be the
complete ranking obtained via ACP from the following two steps: (1) solve
subsets of at most size h to optimality, (2) randomly permute items within
subsets of size greater than h. The term d g g(6) — dg g(c*) is bounded by

w-1 w

4 Z Z Z max(O,sji—

k=1 k=k+1i€Xy jEX}/

w
Z (sji15i<a

+2 Z
k=1 (i.)EX,

Sij)

+5;: 1=

ij~0;<o;

— min (s;;, sji)); (H.1)
where o is an auxiliary ranking obtained by randomly permuting all items
in subset X, Vk € {1,...,w} (while ranking items in the lower-indexed
subsets strictly ahead of items in the higher-indexed subsets), and 1 is an

indicator function.

Computers and Operations Research 153 (2023) 106164

Proof. Order the items within subset X, whose size is greater
than 4 in é the same as in o. Since 6 solves all subsets whose size is
at most & to optimality whereas 6 randomly permutes these items, we
have that dg 4(6) < dg ¢(6). Next, we show that dy ¢(c) — dgs(c™) < p.

Consider an item pair (i, j), where i € X;, j € Xy, k < k' (items
from different subsets); since o; < o‘ , the contribution of this pair in
dgs(0) is 2s;;, while the contrlbutlon of this pair in dg¢(c*) must be
exactly one of 2s;; or 2s;; (when the input rankings are strict, dg s(c;;)
has only two possible values since the aggregate ranking is assumed to
be strict as well). Therefore, the additional distance accrued by (i, j) in
dg (o) relative to dg ¢(c*) is at most

ACP
Xh

max (0, (2sj; — Zs,-j)) .

Consider a pair of distinct items (i, j), where i,j € X, (items within
the same subset); the additional distance accrued by (i, j) in o relative
to dgg(c™) is at most

25,1 5,<5; +2s;;1 7,<z; —min (2s;;, 2s;) . (H.2)

Since the exact orderings of i and j in ¢* is not yet known, Eq. (H.2)
considers the worst case. Expressly, the contribution of (i, j) in dg g(c™)
is taken as the smallest of the three possible values of dg ¢(o;;), whereas
the contribution of this pair in dgg(6) is 2s; if 5, < o, and 2s;;
otherwise. Finally, the first term of Eq. (H.1) has been multiplied by
2 since dg ¢ counts each item-pair twice. []

Appendix I. NonStrictKwikSort algorithm

NonStrictKwikSort is a randomized recursive algorithm that adapts
KwikSort to handle non-strict rankings; its pseudocode is presented in
Algorithm 3. Similar to KwikSort, it starts by randomly selecting an
item as pivot. Next, it compares all remaining items to the pivot item
and assigns them based on their relative orderings within the input
rankings to three subsets: Left (L), Right (R), or Middle (Q). All items in
the Left subset will be ranked ahead of all items in the Middle and Right
subsets; all items in the Middle subset will be tied and ranked ahead
of all items in the Right subset in the output solution. The algorithm
applies the same procedure recursively to the Left and Right subsets
until the relative ordering of all items is determined. Next, we elaborate
on how the items are assigned to the three aforementioned subsets. The
algorithm assigns item j to the Left subset if pivot item i is ranked ahead
of j in at least (1 —)% of the input rankings, it assigns j to the Right
subset if j is ranked ahead of i in at least (1 —)% of the input lists,
and it assigns j to the Middle subset otherwise. Here, 0 < g < 0.5 is
a user-specified parameter, which is set to 0.25 herein. We note that
parts of the algorithm are inspired also by BucketPivot, which is the
modified KwikSort for the Optimal Bucket Pivot Problem (Aledo et al.,
2017c; Gionis et al., 2006).

Appendix J. Objective function values of the tested algorithms

Tables J.4-J.6 report the objective function values (i.e., the cu-
mulative Kemeny-Snell distance of the obtained solution to the in-
put rankings) of the tested algorithms, which connect to Tables 1-3,
respectively.

Table J.4

Objective function values of the tested algorithms for solving instances of the Biomedical data set.
Instance n m NonStrictKwikSort BestInput AcP

h =30 h=40 h =50

Prostate Cancer 218 4 51,047 40,809 44,495 44,282 44,260
Bladder Cancer 308 4 49,927 42,841 42,845 42,845 42,845
Breast Cancer 386 4 145,646 113,651 139,333 139,549 139,765
Retinoblastoma 402 4 78,812 78,273 78,211 78,211 78,211
Neuroblastoma 431 4 92,065 83,835 82,881 82,626 82,507

14

S. Akbari and A.R. Escobedo Computers and Operations Research 153 (2023) 106164

Table J.5
Objective function values of the tested algorithms for solving instances of the TOC data set.
Instance n m NonStrictKwikSort BestInput AcP
h =30 h =40 h =50

ED-14-02 100 5,000 4,725,000 - 4,725,000 4,725,000 4,725,000
ED-14-03 100 5,000 4,651,850 - 4,651,850 4,651,850 4,651,850
MD-03-03 102 32 15,840 24,088 15,840 15,840 15,840
MD-03-05 103 31 15,500 26,244 15,500 15,500 15,500
MD-03-06 133 38 24,700 41,920 24,700 24,700 24,700
MD-03-08 147 51 43,629 68,751 43,629 43,629

MD-03-07 155 51 38,760 46,884 38,760 38,760 38,760
ED-10-50 170 4 33,308 27,832 24,729 24,761 24,736
ED-10-49 351 4 115,864 117,059 101,164 101,164 101,060
ED-18-01 379 723 60,854,829 - 30,454,824 30,454,824 3,0454,824
ED-18-03 477 556 46,367,191 - 23,258,021 23,258,021 2,325,8021
ED-11-12 1,210 4 1,767,972 1,668,735 1,635,020 1,634702 1,634,384
ED-11-31 1,223 4 1,770,836 1,650,797 1,543,810 1,543658 1,543,203
ED-11-09 1,272 4 1,913,851 1,693,653 1,616,193 1,615724 1,614,631
ED-11-23 1,342 4 2,046,014 2,017,064 1,874,898 1,874345 1,873,792
ED-11-21 1,347 4 2,022,786 1,930,340 1,883,935 1,883384 1,883,017
ED-11-37 1,351 4 2,079,039 1,867,027 1,842,379 1,841128 1,840,414
ED-11-25 1,356 4 2,188,135 2,013,239 1,894,977 1,893496 1,892,756
ED-11-13 1,363 4 2,063,442 2,094,091 1,996,645 1,996252 1,996,056
ED-11-29 1,368 4 2,204,187 1,822,030 1,810,126 1,809600 1,808,550
ED-11-14 1,375 4 2,372,258 1,935,788 1,925,538 1,924047 1,923,301
ED-11-30 1,386 4 1,918,957 1,942,725 1,873,251 1,872336 1,871,788
ED-11-06 1,449 4 2,466,040 2,204,747 2,154,039 2,152992 2,1521,53
ED-11-04 1,467 4 3,295,480 2,336,042 2,284,842 2,284175 2,283,729
ED-11-07 1,474 4 2,391,411 2,503,234 2,348,065 2,347604 2,347,373
ED-11-34 1,509 4 2,679,187 2,537,303 2,409,181 2,408469 2,408,232
ED-11-22 1,514 4 2,665,468 2,377,686 2,287,445 2,286323 2,285,874
ED-11-11 1,545 4 3,155,771 2,402,785 2,319,852 2,318489 2,317,807
ED-11-15 1,563 4 3,359,863 2,576,355 2,470,338 2,469612 2,469,128
ED-11-08 1,572 4 2,905,609 2,888,032 2,738,763 2,738493 2,738,222
ED-11-28 1,616 4 2,791,072 3,106,683 2,737,564 2,737293 2,737,293
ED-11-40 1,623 4 3,364,856 2,958,710 2,490,748 2,490500 2,490,500
ED-11-36 1,634 4 3,522,390 2,954,359 2,774,579 2,773759 2,773,486
ED-11-33 1,646 4 3,026703 2,912747 2,8059,48 2,804847 2,803,471
ED-11-05 1,673 4 2,696,219 3,194,942 2,607,873 2,607,355 2,607,096
ED-11-18 1,681 4 3,294,078 3,115,489 2,990,565 2,990,271 2,989392
ED-11-16 1,708 4 3,113,117 3,146,307 2,946,005 2,945,423 2,945,423
ED-11-32 1,751 4 3,576,633 3,449,842 3,323,704 3,322,723 3,322,723
ED-11-38 1,754 4 3,765,400 3,50,8307 3,375,624 3,374,632 3,373,970
ED-11-39 1,788 4 3,979,326 3,475,074 2,951,711 2,951,123 2,950,535
ED-11-68 1,826 4 5,095,568 3,852,346 3,516,812 3,516,812 3,516,812
ED-11-49 1,845 4 4,026,119 4,173,178 3,946,723 3,946,332 3,946,332
ED-11-20 1,870 4 3,553,291 3,709,222 3,503,269 3,501,889 3,500,509
ED-11-26 1,931 4 3,985,229 3,946,271 3,761,869 3,760,756 3,759,643
ED-11-35 1,936 4 4,459,450 4,043,148 3,865,440 3,864,679 3,863,537
ED-11-74 1,976 4 4,416,193 4,424,128 4,224,911 4,224,076 4,223,658
ED-11-60 1,977 4 4,300,726 4,602,648 4,183,358 4,183,358 4,183,358
ED-11-58 2,011 4 4,516,635 4,683,885 4,414,887 4,414,451 4,414,451
ED-11-62 2,014 4 4,401,234 4,758,697 4,267,979 4,267,133 4,266,710
ED-11-17 2,015 4 4,659,696 4,301,476 4,109,993 4,1087,76 4,107,964
ED-11-66 2,024 4 4,612,366 4,502,283 4,369,497 4,368,641 4,368,212
ED-11-24 2,049 4 4,560,710 4,537,540 4,352,606 4,351,748 4,351,319
ED-11-67 2,066 4 4,815,256 4,810,335 4,531,663 4,522,717 4,522,717
ED-11-27 2,092 4 5,682,906 4,987,647 4,699,969 4,699,040 4,699,040
ED-11-10 2,096 4 4,624,781 4,949,710 4,383,916 4,383,045 4,382,610
ED-11-19 2,104 4 4,829,212 4,656,600 4,425,867 4,424,993 4,424,119
ED-11-50 2,111 4 4,960,102 5,270,413 4,901,645 4,901,158 4,901,158
ED-11-51 2,112 4 5,078,828 4,989,425 4,828,691 4,827,740 4,827,264
ED-11-65 2,119 4 4,889,334 5,747,053 4,754,678 4,754,204 4,754,678
ED-11-41 2,123 4 5,441,209 5,394,043 5,070,400 5,069,898 5,069,898
ED-11-71 2,127 4 5,796,474 5,340,186 4,926,537 4,926,047 4,926,047
ED-11-46 2,133 4 5,068,560 5,333,519 4,901,268 4,900,784 4,900,784
ED-11-43 2,153 4 5,274,322 5,3494,47 5,072,985 5,072,484 5,071,983
ED-11-48 2,194 4 5,536,944 5,640,689 5,118,927 5,118,421 5,117,409
ED-11-52 2,242 4 5,879,025 5,733,766 5,315,421 5,315,421 5,314,892
ED-11-73 2,258 4 5,759,327 6,044,968 5,426,081 5,426,081 5,425,540
ED-11-45 2,265 4 5,729,952 6,368,389 5,709,413 5,709,413 5,709,413
ED-11-70 2,276 4 5,808,590 6,099,357 5,652,240 5,652,240 5,651,677
ED-11-59 2,281 4 6,069,458 6,077,844 5,629,497 5,629,497 5,628,378
ED-11-77 2,317 4 4,951,261 6,352,058 4,950,767 4,950,272 4,950,272
ED-11-53 2,321 4 5,648,155 6,183,061 5,617,349 5,616,789 5,616,789
ED-11-69 2,338 4 6,229,042 6,391,616 5,986,669 5,986,669 5,986,074
ED-11-55 2,353 4 6,243,828 6,634,030 6,152,088 6,152,088 6,1520,88

(continued on next page)

15

S. Akbari and A.R. Escobedo

Table J.5 (continued).

Computers and Operations Research 153 (2023) 106164

Instance n m NonStrictKwikSort BestInput Acp
h =30 h =40 h =50
ED-11-75 2,391 4 8,294,209 6,851,876 6,427,661 6,427,661 6,427,661
ED-11-44 2,434 4 6,664,168 7,041,263 6,471,115 6,471,115 6,470,472
ED-11-64 2,446 4 7,262,737 7,124,784 6,454,910 6,454,910 6,454,269
ED-11-72 2,447 4 6,672,648 7,081,517 6,461,804 6,461,164 6,461,164
ED-11-63 2,510 4 7,683,897 7,367,501 6,594,526 6,593,871 6,593,216
ED-11-54 2,512 4 6,843,662 7,236,044 6,529,108 6,528,459 6,528,459
ED-11-57 2,559 4 8,130,761 7,604,083 6,875,467 6,874,102 6,874,102
ED-11-76 2,581 4 6,440,721 7,545,163 6,204,586 6,204,586 6,203,966
ED-11-42 2,598 4 6,549,882 8,157,219 6,421,654 6,421,654 6,421,013
ED-11-56 2,632 4 7,468,730 8,124,033 7,233,511 7,232,792 7,232,792
ED-11-61 2,726 4 8,287,366 8,309,846 7,826,914 7,826,914 7,826,139
ED-11-47 2,819 4 8,399,175 10,055,021 8,069,133 8,068,328 8,068,328
Table J.6
Objective function values of the tested algorithms for solving instances of the SOC data set.

Instance n m KwikSort Ess:;‘;:lmc LPKwikSort BestInput ?(E’:Sglnean s Acp

h =30 h =40 h =50
ED-15-12 100 4 7,492 7,448 6,636 6,992 7,040 6,724 6,688 6,700
ED-15-42 100 4 9,128 8,809 8,045 9,168 8,508 8,088 8,052 8,076
ED-15-28 102 4 8,714 8,210 7,822 7,966 8,486 7,938 7,897 7,870
ED-15-36 102 4 9,426 8,711 8,078 8,094 8,690 8,154 8,178 8,134
ED-15-05 103 4 4,246 4,222 3,722 4,174 3,966 3,726 3,722 3,726
ED-11-03 103 5 10,122 10,855 9,736 10,460 10,188 9,743 9,741 9,743
ED-15-29 106 4 8,592 8,164 7,416 7,504 7,824 7,488 7,500 7,488
ED-15-07 110 4 8,864 8,796 7,644 7,820 8,144 7,720 7,688 7,676
ED-15-22 112 4 9,798 10,493 8,802 8,878 9,342 8,914 8,914 8,905
ED-15-18 115 4 10,022 11,447 8,942 9,062 9,526 9,066 9,010 8,994
ED-15-25 115 4 10,990 11,654 9,886 10,022 10,650 10,058 9,970 9,978
ED-15-09 115 4 10,556 10,729 9,048 9,144 9,504 9,163 9,168 9,112
ED-15-20 122 4 14,945 16,579 12,566 12,718 13,481 12,938 12,787 12,730
ED-15-17 127 4 13,504 13,056 11,832 11,864 12,632 12,060 12,020 11,972
ED-15-33 128 4 13,790 14,052 11,985 12,202 12,763 12,329 12,239 12,138
ED-15-40 131 4 16,484 16,588 14,028 14,128 15,264 14,248 14,224 14,224
ED-15-23 142 4 18,401 17,065 14,452 14,600 15,620 14,772 14,733 14,708
ED-15-32 153 4 18,390 19,016 15,639 15,762 16,941 16,010 15,954 15,826
ED-15-14 163 4 20,859 21,823 17,841 17,950 19,578 18,198 18,123 18,153
ED-15-01 240 4 29,824 32,230 28,919 31,461 30,098 29,077 29,060 29,060
ED-11-01 240 5 32,119 33,682 31,409 33,055 32,404 31,458 31,425 31,428
ED-15-03 242 4 63,564 67,210 61,127 66,007 64,048 62,784 62,391 6,2397
ED-11-02 242 5 68,838 72,331 67,173 69,697 69,374 67,186 67,050 67,127

Algorithm 3: NonStrictKwikSort(V)

Input: V (a subset of items, i.e., ¥V C X)
1 if V=0 then
| return empty list

2 Pick pivot i € V uniformly at random;
3 Set L—@,R« 0,0« {i};
4 for all j € V\{i} do
if 57/ >1—p then
| L<Lu{j)
else if % >1-p then
| R<RU{j%
else

| 0-o0uijs
5 return NonStrictKwikSort(L), Q, NonStrictKwikSort(R)

References

Ailon, N., 2010. Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica
57 (2), 284-300.

Ailon, N., Charikar, M., Newman, A., 2008. Aggregating inconsistent information:
Ranking and clustering. J. ACM 55 (5), 1-27.

Akbari, S., Escobedo, A.R., 2021. Lower bounds on kemeny rank aggregation with
non-strict rankings. In: 2021 IEEE Symposium Series on Computational Intelligence.
SSCI, IEEE, pp. 1-8.

Aledo, J.A., Gamez, J.A., Molina, D., 2017a. Tackling the supervised label ranking
problem by bagging weak learners. Inf. Fusion 35, 38-50.

16

Aledo, J.A., Gdmez, J.A., Molina, D., 2019. Approaching the rank aggregation problem
by local search-based metaheuristics. J. Comput. Appl. Math. 354, 445-456.
Aledo, J.A., Gamez, J.A., Rosete, A., 2017b. Partial evaluation in rank aggregation

problems. Comput. Oper. Res. 78, 299-304.

Aledo, J.A., Gamez, J.A., Rosete, A., 2017c. Utopia in the solution of the bucket order
problem. Decis. Support Syst. 97, 69-80.

Aledo, J.A., Gamez, J.A., Rosete, A., 2021. A highly scalable algorithm for weak
rankings aggregation. Inform. Sci. 570, 144-171.

Azzini, 1., Munda, G., 2020. A new approach for identifying the kemeny median
ranking. European J. Oper. Res. 281 (2), 388-401.

Badal, P.S., Das, A., 2018. Efficient algorithms using subiterative convergence for
kemeny ranking problem. Comput. Oper. Res. 98, 198-210.

Bartholdi, J., Tovey, C.A., Trick, M.A., 1989. Voting schemes for which it can be
difficult to tell who won the election. Soc. Choice Welf. 6 (2), 157-165.

Betzler, N., Bredereck, R., Niedermeier, R., 2014. Theoretical and empirical evaluation
of data reduction for exact kemeny rank aggregation. Auton. Agents Multi-Agent
Syst. 28 (5), 721-748.

Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D., 2016. Handbook of
Computational Social Choice. Cambridge University Press.

Cascaro, R.J., Gerardo, B.D., Medina, R.P., 2019. Aggregating filter feature selection
methods to enhance multiclass text classification. In: Proceedings of the 2019
7th International Conference on Information Technology: IoT and Smart City. pp.
80-84.

Cohen-Boulakia, S., Denise, A., Hamel, S., 2011. Using medians to generate consen-
sus rankings for biological data. In: International Conference on Scientific and
Statistical Database Management. Springer, pp. 73-90.

Marquis de Condorcet, M.J.A., 1785. Essai sur ’application de I’analyse a la Probabilite
des Decisions: Rendues a la Pluralite de Voix. De I'Imprimerie royale.

Conitzer, V., Davenport, A., Kalagnanam, J., 2006. Improved bounds for computing
kemeny rankings. In: AAAIL pp. 620-626.

Cook, W.D., 2006. Distance-based and ad hoc consensus models in ordinal preference
ranking. European J. Oper. Res. 172 (2), 369-385.

http://refhub.elsevier.com/S0305-0548(23)00028-X/sb1
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb1
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb1
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb2
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb2
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb2
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb3
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb3
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb3
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb3
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb3
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb4
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb4
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb4
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb5
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb5
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb5
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb6
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb6
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb6
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb7
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb7
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb7
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb8
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb8
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb8
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb9
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb9
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb9
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb10
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb10
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb10
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb11
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb11
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb11
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb12
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb12
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb12
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb12
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb12
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb13
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb13
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb13
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb14
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb14
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb14
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb14
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb14
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb14
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb14
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb15
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb15
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb15
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb15
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb15
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb16
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb16
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb16
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb17
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb17
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb17
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb18
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb18
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb18

S. Akbari and A.R. Escobedo

Dahiya, S., Handa, S., Singh, N., 2016. A rank aggregation algorithm for ensemble
of multiple feature selection techniques in credit risk evaluation. Int. J. Adv. Res.
Artif. Intell. 5 (9), 1-8.

D’Ambrosio, A., Mazzeo, G., lorio, C., Siciliano, R., 2017. A differential evolution
algorithm for finding the median ranking under the kemeny axiomatic approach.
Comput. Oper. Res. 82, 126-138.

Desarkar, M.S., Sarkar, S., Mitra, P., 2016. Preference relations based unsupervised rank
aggregation for metasearch. Expert Syst. Appl. 49, 86-98.

Ding, J., Han, D., Yang, Y., 2018. Iterative ranking aggregation using quality
improvement of subgroup ranking. European J. Oper. Res. 268 (2), 596-612.
Dodgson, C., 1876. A method of taking votes on more than two issues. In: The Theory

of Committees and Elections. Cambridge University Press.

Dong, Y., Li, Y., He, Y., Chen, X., 2021. Preference-approval structures in group decision
making: Axiomatic distance and aggregation. Decis. Anal. 18 (4), 273-295.

Drotér, P., Gazda, M., Vokorokos, L., 2019. Ensemble feature selection using election
methods and ranker clustering. Inform. Sci. 480, 365-380.

Dwork, C., Kumar, R., Naor, M., Sivakumar, D., 2001. Rank aggregation methods for
the web. In: Proceedings of the 10th International Conference on World Wide Web.
pp. 613-622.

Emond, E.J., Mason, D.W., 2002. A new rank correlation coefficient with application
to the consensus ranking problem. J. Multi-Criteria Decis. Anal. 11 (1), 17-28.
Escobedo, A.R., Moreno-Centeno, E., Yasmin, R., 2022. An axiomatic distance

methodology for aggregating multimodal evaluations. Inform. Sci. 590, 322-345.

Gionis, A., Mannila, H., Puolaméki, K., Ukkonen, A., 2006. Algorithms for discovering
bucket orders from data. In: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 561-566.

Gross, O.A., 1962. Preferential arrangements. Amer. Math. Monthly 69 (1), 4-8.

Kemeny, J.G., Snell, L.J., 1962. Preference ranking: An axiomatic approach. In:
Mathematical Models in the Social Sciences. Ginn New York, pp. 9-23.

Kemmer, R., Yoo, Y., Escobedo, A., Maciejewski, R., 2020. Enhancing collective
estimates by aggregating cardinal and ordinal inputs. In: Proceedings of the AAAI
Conference on Human Computation and Crowdsourcing. pp. 73-82.

Kenyon-Mathieu, C., Schudy, W., 2007. How to rank with few errors. In: Proceedings
of the Thirty-Ninth Annual ACM Symposium on Theory of Computing. pp. 95-103.

Laslier, J.F., 1997. Tournament Solutions and Majority Voting, 7. Springer.

Liu, N., Xu, Z., Zeng, X.J., Ren, P., 2021. An agglomerative hierarchical clustering
algorithm for linear ordinal rankings. Inform. Sci. 557, 170-193.

Luce, R.D., 2012. Individual Choice Behavior: A Theoretical Analysis. Courier
Corporation.

Mandal, M., Mukhopadhyay, A., 2017. Multiobjective PSO-based rank aggregation:
Application in gene ranking from microarray data. Inform. Sci. 385, 55-75.

Mao, A., Procaccia, A., Chen, Y., 2013. Better human computation through principled
voting. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp.
1142-1148.

Marbach, D., Costello, J.C., Kiiffner, R., Vega, N.M., Prill, R.J., Camacho, D.M.,
Allison, K.R., Kellis, M., Collins, J.J., Stolovitzky, G., 2012. Wisdom of crowds
for robust gene network inference. Nature Methods 9 (8), 796-804.

17

Computers and Operations Research 153 (2023) 106164

Mattei, N., Walsh, T., 2013. Preflib: A library for preferences http://www. preflib.
org. In: International Conference on Algorithmic Decision Theory. Springer, pp.
259-270.

Milosz, R., Hamel, S., 2018. Exploring the median of permutations problem. J. Discrete
Algorithms 52, 92-111.

Milosz, R., Hamel, S., 2020. Space reduction constraints for the median of permutations
problem. Discrete Appl. Math. 280, 201-213.

Mohammadi, M., Rezaei, J., 2020. Ensemble ranking: Aggregation of rankings produced
by different multi-criteria decision-making methods. Omega 96, 102254.

Moreno-Centeno, E., Escobedo, A.R., 2016. Axiomatic aggregation of incomplete
rankings. IIE Trans. 48 (6), 475-488.

Oliveira, S.E., Diniz, V., Lacerda, A., Merschmanm, L., Pappa, G.L., 2020. Is rank
aggregation effective in recommender systems? An experimental analysis. ACM
Trans. Intell. Syst. Technol. 11 (2), 1-26.

Onan, A., 2018. Ensemble learning based feature selection with an application to text
classification. In: 2018 26th Signal Processing and Communications Applications
Conference. SIU, IEEE, pp. 1-4.

Plackett, R.L., 1975. The analysis of permutations. J. R. Stat. Soc. Ser. C. Appl. Stat.
24 (2), 193-202.

Puerta, J.M., Aledo, J.A., Gamez, J.A., Laborda, J.D., 2021. Efficient and accurate
structural fusion of Bayesian networks. Inf. Fusion 66, 155-169.

Sahin, A., Sevim, i., Albey, E., Giiler, M.G., 2022. A data-driven matching algorithm
for ride pooling problem. Comput. Oper. Res. 140, 105666.

Schalekamp, F., Zuylen, A.v., 2009. Rank aggregation: Together we’re strong. In: 2009
Proceedings of the Eleventh Workshop on Algorithm Engineering and Experiments.
ALENEX, SIAM, pp. 38-51.

Tideman, N., 2017. Collective Decisions and Voting: The Potential for Public Choice.
Routledge.

Truchon, M., 1998. An Extension of the Condorcet Criterion and Kemeny Orders.
Citeseer.

Van Zuylen, A., Williamson, D.P., 2007. Deterministic algorithms for rank aggrega-
tion and other ranking and clustering problems. In: International Workshop on
Approximation and Online Algorithms. Springer, pp. 260-273.

Wald, R., Khoshgoftaar, T.M., Dittman, D., Awada, W., Napolitano, A., 2012. An
extensive comparison of feature ranking aggregation techniques in bioinformatics.
In: 2012 IEEE 13th International Conference on Information Reuse & Integration.
IRI, IEEE, pp. 377-384.

Yoo, Y., Escobedo, A.R., 2021. A new binary programming formulation and social
choice property for kemeny rank aggregation. Decis. Anal. 18 (4), 296-320.

Yoo, Y., Escobedo, A.R., Skolfield, J.K., 2020. A new correlation coefficient for
comparing and aggregating non-strict and incomplete rankings. European J. Oper.
Res. 285 (3), 1025-1041.

Young, H.P., 1977. Extending condorcet’s rule. J. Econom. Theory 16 (2), 335-353.

Young, H.P., 1988. Condorcet’s theory of voting. Am. Political Sci. Rev. 82 (4),
1231-1244.

Young, H.P., Levenglick, A., 1978. A consistent extension of condorcet’s election
principle. SIAM J. Appl. Math. 35 (2), 285-300.

http://refhub.elsevier.com/S0305-0548(23)00028-X/sb19
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb19
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb19
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb19
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb19
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb20
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb20
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb20
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb20
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb20
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb21
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb21
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb21
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb22
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb22
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb22
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb23
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb23
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb23
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb24
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb24
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb24
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb25
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb25
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb25
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb26
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb26
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb26
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb26
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb26
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb27
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb27
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb27
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb28
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb28
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb28
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb29
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb29
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb29
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb29
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb29
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb30
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb31
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb31
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb31
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb32
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb32
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb32
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb32
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb32
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb33
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb33
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb33
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb34
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb35
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb35
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb35
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb36
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb36
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb36
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb37
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb37
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb37
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb38
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb38
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb38
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb38
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb38
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb39
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb39
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb39
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb39
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb39
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb40
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb40
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb40
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb40
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb40
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb41
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb41
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb41
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb42
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb42
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb42
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb43
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb43
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb43
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb44
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb44
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb44
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb45
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb45
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb45
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb45
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb45
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb46
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb46
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb46
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb46
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb46
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb47
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb47
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb47
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb48
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb48
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb48
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb49
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb49
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb49
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb50
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb50
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb50
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb50
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb50
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb51
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb51
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb51
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb52
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb52
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb52
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb53
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb53
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb53
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb53
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb53
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb54
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb54
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb54
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb54
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb54
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb54
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb54
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb55
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb55
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb55
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb56
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb56
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb56
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb56
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb56
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb57
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb58
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb58
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb58
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb59
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb59
http://refhub.elsevier.com/S0305-0548(23)00028-X/sb59

	Approximate Condorcet Partitioning: Solving large-scale rank aggregation problems
	Introduction
	Notation and Preliminaries
	Mathematical Notation
	The Condorcet Criterion and its Variants

	The finest-Condorcet partition
	Definition and Properties
	An Efficient Algorithm for Constructing Xf

	Approximate Condorcet Partitioning
	Applying ACP to Solve Kemeny-Agg
	Provable Guarantees from Partitioning

	Computational Comparisons
	Conclusion and Future Research
	CRediT authorship contribution statement
	Data availability
	Acknowledgment
	Appendix A. Proof of Theorem 1
	Appendix B. Proof of Theorem 2
	Appendix C. Proof of Proposition 1
	Appendix D. Proof of Theorem 3
	Appendix E. Proof of Theorem 4
	Appendix F. Proof of Lemma 2
	Appendix G. Proof of Theorem 5
	Appendix H. Proof of Theorem 6
	Appendix I. NonStrictKwikSort Algorithm
	Appendix J. Objective Function Values of the Tested Algorithms
	References

