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Rank Aggregation has ubiquitous applications in operations research, artificial intelligence, computational
social choice, and various other fields. Interest in this problem has increased due in part to the need to
consolidate lists of rankings and scores output by different decision-making processes and algorithms. Al-
though most attention has focused on the variant of this problem induced by the Kemeny-Snell distance,
other robust rank aggregation problems have been proposed. This work delves into the rank aggrega-
tion problem under the generalized Kendall-tau distance —a parameterizable-penalty distance measure
for comparing rankings with ties— which contains Kemeny aggregation as a special case. First, it de-
rives exact and heuristic solution methods. Second, it introduces a social choice property (GXCC) that
encloses existing variations of the Condorcet criterion as special cases, thereby expanding this seminal
social choice concept beyond Kemeny aggregation for the first time. GXCC offers both computational and
theoretical advantages. In particular, GXCC may help to divide the original problem into smaller subprob-
lems, while still ensuring that solving them independently yields the optimal solution to the original
problem. Experiments on two benchmark datasets conducted herein show that the featured exact and
heuristic solution methods can benefit from GXCC. Finally, this work derives new theoretical insights into
the effects of the generalized Kendall-tau distance penalty parameter on the optimal ranking and on the
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1. Introduction

Rank aggregation is an important problem in operations re-
search and artificial intelligence, and it has been studied in vari-
ous other fields including crowdsourcing [1,2], bioinformatics [3],
and computational social choice [4]. Its wide array of applications
include meta-search engines [5], journals ranking [6,7], informa-
tion retrieval [8], ride pooling [9], supplier selection [10], and net-
work inference [11,12]. Generally speaking, rank aggregation can
be utilized whenever a set of judges (human or non-human) ex-
press their preferences over a set of items, and it is necessary
to find a ranking that best represents these preferences collec-
tively. It has been advocated as a systematic approach to guide
decision-making processes, especially in multi-criteria decision-
making (MCDM) [13-16]. MCDM methods evaluate alternatives
based on predefined criteria and subsequently sort or rank them
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based on the evaluations [16]. Prominent examples include AHP
(analytic hierarchy process) [17], ANP (analytic network process)
[18], and ELECTRE (ELimination and Choice Expressing REality)
[19]. Since different MCDM methods produce conflicting rankings,
finding an overall consensus ranking that resolves these disagree-
ments is of paramount importance [16]. In the context of informa-
tion retrieval, analogous concerns fall under the umbrella of data
fusion, where the goal is to derive a collective ranking of differ-
ent information retrieval systems [20]; rank aggregation methods
have been effective in this context as well [21]. Furthermore, rank
aggregation has also gained attention over the past few years as
a robust mechanism for consolidating heterogeneous ordered lists
output by different machine learning techniques [20]. It has been
used for this purpose, for example, in meta-search engines and
spam detection [22,23], feature selection [24-26], natural language
processing [27,28], recommendation systems [29], data query [30],
and label ranking [31,32].

Rank aggregation methodologies can be categorized into
distance-based and ad hoc methods [33], the latter of which is
further divided into elimination and non-elimination methods.
A prominent elimination ad hoc method is Ranked Choice Vot-
ing [4,34]. The popular score-based methods fall into the non-
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elimination ad hoc category; these methods rank items by assign-
ing scores to the items according to some function based on their
positions in each of the input rankings. Examples of score-based
methods are Borda rule [35] and Copeland rule [36].

This work focuses on distance-based methods to take advan-
tage of their rigorous axiomatic foundations and associated socio-
theoretic properties, which translate into higher robustness to out-
liers and manipulations [4]. Note, however, that their aggregation
problems tend to be more computationally demanding and are of-
ten NP-hard [4]. The reason is that techniques in this category re-
turn a ranking among all possible solutions from a large combina-
torial space with the least distance to all input rankings according
to a specified distance measure. There are various distance mea-
sures between rankings including Kemeny-Snell [37], Kendall-tau
[38], and Spearman’s footrule [39]. We refer the reader to Diaconis
[40] and Fagin et al. [41] for descriptions of various such distance
measures between strict rankings (rankings without ties) and non-
strict rankings (rankings that may contain ties), respectively.

Dealing with non-strict rankings in real-world applications is
the rule rather than the exception [42,43]. Their prominence has
increased in recent years due to their enhanced flexibility in rep-
resenting preference data. In particular, it may not possible for hu-
mans to express their preferences strictly over more than a very
small number of items, or a subset of items may be considered in-
distinguishable to a specific MCDM or machine learning algorithm
(e.g, it may award the same score to multiple items). What is more,
forcing the judges to express their preferences in a strict manner
may not reflect their true opinion. Therefore, developing rank ag-
gregation frameworks capable of handling this type of ranking data
is crucial. However, it is worth noting that allowing this flexibility
in expressing the judge’s preferences comes at a higher compu-
tational cost, as there are n! possible strict ranking solutions as
opposed to approximately 0.5n!(1.4)"t! >> n! possible non-strict
solutions, where n is the number of items [44]. To better appreci-
ate the difference in magnitudes, when n = 5, there are 120 strict
rankings and approximately 452 non-strict rankings; when n = 50,
there are 3.04 x 1064 strict rankings and approximately 4.31 x 107!
non-strict rankings.

Kemeny aggregation (KEM-AGG) is perhaps the most widely
studied variant of the distance-based rank aggregation problem. Its
popularity is largely due to the fact that the Kemeny-Snell distance
function underlying this problem uniquely satisfies a key set of ax-
ioms, namely anonymity, commutativity, extension, non-negativity,
scaling, and the triangular inequality [37]. In addition, the optimal
solution to KEM-AGG satisfies various desired social choice proper-
ties including the Condorcet criterion, consistency, and neutrality
[45]. However, KEM-AGG is NP-hard when there are four or more
input rankings [23,46]. For this reason, the dominant focus on so-
lution methods for this problem has been on approximation and
heuristic algorithms (see e.g., [23,47-51]) and relatively less atten-
tion has been devoted to exact methods. In particular, KEM-AGG
for strict rankings has been formulated with binary programming
in Conitzer et al. [52] and Cook [33] and for non-strict rankings in
Yoo and Escobedo [53]. Other exact methods include the special-
ized branch and bound algorithm of Emond and Mason [43] and
the iterative exact algorithms of Azzini and Munda [54] and Rico
et al. [55] for strict and non-strict rankings, respectively. Exact
methods are capable of solving instances mostly with tens and no
more than a few hundred items reliably. For example, the largest
strict ranking instance solved exactly in Emond and Mason [43],
Conitzer et al. [52], Betzler et al. [56], had 15, 40, and 200 items,
respectively, and the largest non-strict ranking instance solved ex-
actly in Yoo and Escobedo [53] had 210 items.

Recent works have explored how the solution to KEM-AGG can
be accelerated by leveraging certain social choice properties, which
are provably satisfied by the optimal solution(s) to this problem.
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Based on these properties, certain instances can be partitioned into
a set of subproblems, such that solving them independently to
optimality and concatenating the solutions is guaranteed to pro-
duce an optimal solution to the larger original problem. A preva-
lent partitioning scheme is based on the seminal Condorcet crite-
rion and its variants, including the Extended Condorcet criterion
(XCC) [57] for strict rankings and the Non-strict Extended Con-
dorcet criterion (NXCC) [53] for non-strict rankings. These tech-
niques have been used to accelerate exact formulations of KEM-
AGG [53,56,58] and lower bounding techniques [59]. Yoo and Es-
cobedo [53] reported that NXCC accelerated their exact binary pro-
gramming formulation by at least 25% and up to 96% on tested in-
stances from the Preflib database [60]. As shown later in this paper,
they can accelerate other exact methods and improve the perfor-
mance and run time of heuristics as well. It is worth mentioning
that Betzler et al. [56] introduced another partitioning technique
based on the 3/4-Majority Rule; however, the authors proved that
XCC partitioning is always at least as good as partitioning using the
3/4-Majority Rule. Additionally, Milosz and Hamel [61] introduced
a related approach that finds the relative ordering of certain item-
pairs in the optimal solution(s). While it was shown to be more
effective than XCC in providing the partial structure of the optimal
solution(s) to KEM-AGG, the associated algorithm has a complex-
ity of 0(n3), where n is the number of items—whereas XCC has a
complexity of O(n?)—and it is only applicable for strict rankings.

The Kendall-tau distance [62] is another widely used distance
between strict rankings. It is equivalent to the Kemeny-Snell dis-
tance whenever the input rankings are strict, but unlike the latter,
it is not capable of handling non-strict rankings, i.e., it is not a dis-
tance measure in the presence of ties as it violates the triangular
inequality [63]. Fagin et al. [63] proposed the generalized Kendall-
tau distance (a parameterizable-penalty distance measure, among
various metrics for comparing non-strict rankings), which includes
the Kemeny-Snell distance as a special case. Accordingly, KEM-
AGG represents only one variant of the Parameterizable-penalty
Rank Aggregation (RANK-AGG(p)) framework, which is introduced
herein to capitalize on the robust and flexible framework for han-
dling ties induced by the generalized Kendall-tau distance. After
formally defining RANK-AGG(p), this paper presents several exact
and heuristic solution methods, and it generalizes the Condorcet
criterion and its variants to expedite its solution. It is important to
mention that another special case of RANK-AGG(p) has been stud-
ied in the literature, specifically by Brancotte et al. [64] and An-
drieu et al. [65], who present an exact formulation and partitioning
scheme, respectively. However, the general form of this rank aggre-
gation problem has received little to no attention. In summary, this
paper makes the following contributions:

o Define Parameterizable-penalty Rank Aggregation, which in-
cludes the Kemeny aggregation as a special case.

Introduce an exact formulation, a constraint relaxation, and a
heuristic algorithm for Parameterizable-penalty Rank Aggrega-
tion.

Present a new social choice property (GXCC) that generalizes
the Condorcet criterion and its variants beyond Kemeny aggre-
gation for the first time

Derive a partitioning method with respect to GXCC for expedit-
ing both exact and inexact approaches.

Derive theoretical insights regarding the effect of the general-
ized Kendall-tau distance penalty parameter on the resulting
partitions and solutions of the problem.

The rest of this paper is organized as follows. Section 2 in-
troduces the notation used throughout the paper and estab-
lishes some preliminaries. Section 3 introduces various exact
and heuristic methods. Section 4 generalizes the Condorcet cri-
terion and its variants. Section 5 studies the effect of the gen-
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eralized Kendall-tau distance penalty parameter on the optimal
solution. Section 6 presents the computational results. Finally,
Section 7 concludes the paper and discusses future directions of
research.

2. Notation and preliminaries

Rankings can be divided into strict and non-strict. Strict rank-
ings do not contain ties, while non-strict rankings allow for the
possibility of ties. It is important to note that all strict rankings
are included in the set of non-strict rankings, meaning that the lat-
ter may have ties. Rankings can also be further classified as com-
plete or incomplete. In complete rankings, all items are ranked,
while in incomplete rankings, some items may be unranked. Rea-
sons for this include practicality, feasibility, and judiciousness [G6].
This study focuses on complete non-strict rankings, but the meth-
ods proposed can be applied to strict rankings due to the relation-
ship between the two classes of rankings.

Let X ={1,2,...,n} be the set of items, £={1,2,...,m} be
the set of indices of input rankings over X, and I1 ¢ X" be the set
of all possible complete ranking vectors over X. Additionally, let !
be the input ranking [ € £, and ni’ be the rank of item i in 7. Fur-
thermore, let A = {(i, j) |i,j € X, j > i} be the set of distinct pairs
of items. This paper focuses on complete rankings, where all items
are explicitly ranked in the input and output rankings. The input
rankings and the consensus ranking(s) can be strict or non-strict.

The preference relationship i ~5 j indicates that item i is pre-
ferred over item j in m, i.e., ; < T, and i ~5 j indicates that i and
j are tied in =, ie., 7, = . As a convention, let a full rank reversal
denote the case where two rankings !, w2 fully disagree over the
relative orderings of items i and j (one of them ranks i ahead of
Jj, and the other has the reverse opinion); additionally, let a partial
rank reversal denote the case where i and j are tied in one ranking,
but not in the other.

Definition 1. Let s;;=|le L:i> j| and t;;=|le L i~y j| be
the number of input rankings in which item i is preferred over
item j, and the number of input rankings in which i and j are tied,
respectively.

Definition 2. (Yoo and Escobedo [53]) Item i is said to be pairwise
preferred by a decisive majority over item j if s;; > sj; + ;.

For the rest of the paper, we use the term pairwise preferred in-
stead of pairwise preferred by a decisive majority, for succinctness.

Definition 3. The Kemeny-Snell distance between two complete
rankings m!, w2, denoted by dys (!, m2), is given by
1 . .
dgs(m!, m?) = 3 Y |sign(r}! — 7}) —sign(z? — 7})|.
i,jexX

The function sign(v) returns 1 if v > 0, —1 if v < 0, and 0 other-
wise. In the case of strict rankings, dgs counts the number of full
rank reversals. In the case of non-strict rankings, every full rank
reversal has twice the weight of every partial rank reversal.

Definition 4. The consensus ranking obtained from KEM-AGG can
be mathematically stated as

s = argmin y " dgs (7, ). (1)

well lel

There is an equivalent rank aggregation problem to problem
(1). Specifically, Emond and Mason [43] showed that whenever the
rankings are complete, the aggregate ranking obtained by minimiz-
ing the cumulative Kemeny-Snell distance between the aggregate
ranking and the input rankings is equivalent to the aggregate rank-
ing obtained by maximizing the extended Kendall’s tau correlation
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coefficient (7yx) between the aggregate ranking and the input rank-
ings. In mathematical terms, we have that

argmin ) " dgs(w, w') = argmax )t (wr, '), (2)
e leL e leL

Despite its name, this correlation measure differs from the distance

that is the subject of this work, which is defined as follows.

Definition 5. The Kendall-tau distance between two complete
strict rankings !, w2, denoted by dgr (w!, m2), is given by

dir (!, w?) = Z Kij(z!, %), (3)
(i,j)eA

where Kij(n'l, m?) is set to 1 if the relative orderings of i and j are
different in &' and 72, and 0 otherwise. In other words

1T f (opj A Jogd) Vv Gopi Adsg])

12y
Kij (", %) = {0 otherwise.

It is straightforward to verify that whenever the input rankings
are strict, dgr and dgs are equivalent; however, unlike dgs, dgr is
not capable of handling ties [63]. Fagin et al. [63] proposed a gen-
eralization of the Kendall-tau distance for non-strict rankings using
bucket orders, otherwise known as weak orders. A bucket order B
is a transitive, total, and reflexive binary relation > in which buck-
ets By,...,B; form a partition of X such that i > j if and only if
ieB, and je By, with k < k’. Members of the same bucket are
considered as being tied. The position of bucket B is defined as
pos(By) = (X -k IB|) + (IB¢| +1)/2, and it indicates the average
location within bucket B;. A bucket order becomes a linear order
when the cardinality of all buckets equals one. A non-strict ranking
7 can be mapped to a bucket order by letting 7; = pos(B), where
B is the bucket containing item i [63].

Next, we restate the definition of the generalized Kendall-tau
distance introduced by Fagin et al. [63]. Given a fixed penalty pa-
rameter 0 < p < 1 and two rankings 7! and x2, let Ki(jp) (n!, %) be
the contribution to the distance function, for each pair (i, j) € A.
There are three cases with respect to the relative orderings of
items i and j in w! and m2:

Cases 1. There is a strict ordering between i and j in &' and 2. If
i and j are in the same order in both rankings, set Kl.(jp) (m!, m?) =

0; otherwise, set Ki(j”) (x!, 7)) =1.

Cases 2. Both rankings tie i and j. In this case, set Ki(]f’) (!, %) =
0.

Cases 3. One of the rankings ties i and j, but not the other. In this
case, set Kl.(jp) (n!, m2) = p.

Piecing together the above three cases, Ki(jp) (!, m?) can be suc-
cinctly written as

(p)

K (n', m?)
10 (o j A jogi) Vv (g A irge )
p if (icpjA(li=pjVv j=pi)

= V(irgp jA(=p j V j=p i)
0 otherwise.

Considering all distinct item-pairs, the Kendall-tau distance with
penalty parameter p, denoted as KP, can be abbreviated as
KP(r' w2 = 3 KP(x'. m?). (4)

(i.)eA
Note that Case 1 corresponds to a full rank reversal, and Case 3
corresponds to a partial rank reversal. Additionally, Eq. (4) induces
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the Kemeny-Snell distance (scaled by 1/2) as a special case, namely
for p=1/2. The K® distance is a metric for 1/2 < p <1, a near
metric for 0 < p < 1/2, and not a metric for p =0 [63]. The ensu-
ing example helps illustrate the use of this distance.

Example 1. Define two non-strict rankings of four item m! =
(1,2,3,3) and w2 =(2,1,1,1); the bucket orders correspond-
ing to these two rankings are B' = {{1},{2}.{3,4}} and B? =
{{2, 3,4}, {1}}, respectively. The example highlights all three cases
of the distance: Kl(g) (!, m2) =1 (Case 1), <3<fl’)(n1,n2) =0 (Case
2), and Kz(g)(zﬂ,ztz) = p (Case 3). Considering all distinct item-
pairs, we obtain K® (n!, m2) = 3 + 2p.

There are other variants of the Kendall-tau and Kemeny-Snell
distances worth discussing, namely those of [67-73]. Each of these
distances cannot be considered as a special case of the generalized
Kendall-tau distance defined in Fagin et al. [63] and vice versa.
In particular, Lee and Philip [68], Kumar and Vassilvitskii [69],
and Durand and Pascual [73] all propose slightly different gen-
eralizations of Kendall tau distance for comparing strict rankings
where item-pairs/position-pairs are weighted. Chee et al. [70] gen-
eralized the Kendall-tau distance from another angle by focusing
on swapping adjacent intervals instead of adjacent items. Fagin
et al. [67] generalized the Kendall-tau distance for comparing top-
k lists, defined as rankings wherein out of n total items, only a
small number of them, k, are explicitly ordered. The items in a
top-k list are assumed to be pairwise preferred over all absent
items. In a somewhat related but distinct direction, Gilbert et al.
[72] proposed a set-wise generalization of the Kemeny-Snell dis-
tance where instead of counting pairwise disagreements, the mea-
sure counts the number of k-wise disagreements, i.e., the number
of disagreement in a subset of top-choice alternatives of cardinal-
ity at most k. The reviewed works solely focus on strict rankings,
therefore, the generalized Kendall-tau distance, in its general form,
cannot be considered one of their special cases. Furthermore, the
generalized Kendall-tau distance does not place weights on item-
pairs/position-pairs and only focuses on complete rankings (not
top-k lists), therefore, it does not include any of the reviewed dis-
tances, in their general form, as a special case.

3. Parameterizable-penalty rank aggregation problem

Setting aside the rather unacceptable process of breaking ties
randomly, there are three prevalent treatments for handling par-
tial rank reversals: 1) Assuming full agreement [74]; 2) Assuming
full disagreement [64,65]; and 3) Reflecting a level of agreement
halfway between the two extremes [37]. To elaborate, assume that
every full rank reversal has unit weight. Then, each partial rank
reversal has a weight of 0, 1, and 0.5 under treatments 1-3, re-
spectively. The entire agreement-disagreement spectrum is cov-
ered by the KP) distance (via the penalty parameter p), which has
been utilized for comparing non-strict rankings in numerous ap-
plications such as multiagent system evaluation [75], CP-nets [76],
and social network analysis [77]. Despite the high flexibility of this
distance measure in handling partial rank reversals, its associated
rank aggregation problem has received little to no attention in the
literature. The general form of the distance has not been studied
in the context of ranking aggregation; however, Brancotte et al.
[64] and Andrieu et al. [65] have used it for this purpose for the
special case induced by setting p =1 (i.e., treatment 2).

This section is organized as follows. Section 3.1 formally defines
RANK-AGG(p), proves it is NP-hard and proposes an exact formu-
lation. Section 3.2 devises a constraint relaxation method for solv-
ing the formulation more efficiently. Finally, Section 3.3 presents a
novel heuristic algorithm.
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3.1. Definition and formulation

RANK-AGG(p) seeks a ranking sm*—either strict or non-strict—
with the lowest cumulative K(P) distance to all the input rankings.

Definition 6. The optimal ranking obtained from RANK-AGG(p) can
be mathematically stated as

* = argming. g Y. K® (x, ') = argmin, g . Y. K,.(jp) (mw, 7).
leC leL (i,j)eA

(5)

Theorem 1. RANK-AGG(p) is NP-hard for m > 4.

Proof. KEM-AGG was shown to be NP-hard for m > 4 by an en-
coding of the feedback arc set problem [23,46]. Since KEM-AGG is
only a special case of RANK-AGG(p), the latter inherits the compu-
tational complexity of the former. O

It is pertinent to add that m = 2 has a trivial solution as both of
the input lists are optimal solutions. The computational complexity
of the feedback arc set problem and KEM-AGG for m = 3 is an open
problem [23], to the best of our knowledge.

Before proceeding, it is worth adding that due to the relation-
ship depicted in Eq. (2), RANK-AGG(p) also includes the rank
aggregation technique associated with the extended Kendall's tau
correlation coefficient, which maximizes the value of that measure
between the aggregate ranking and the input rankings, as a special
case.

To introduce an exact formulation for RANK-AGG(p), the cumu-
lative KP) distance between a given ranking & < II and all the in-
put rankings is re-expressed equivalently as " Ki(jp) (i), where

(i.j)eA
Sj,-—l—pt,-j ifi>n j,
K,-(jp) () = §sij+pti  if j-ni, (6)
p(sij+sji) ifi~g )

Eq. (6) states that, whenever item i is ranked ahead of item j in
7, the imposed KP distance between m and all the input rank-
ings for this item-pair equals the number of input rankings where
j is ranked ahead of i, plus p-times the number of input rankings
where i and j are tied. Whenever the pair is tied, the imposed
K® distance is p-times the number of input rankings where there
is strict ordering between i and j.

Brancotte et al. [64] proposed a mixed-integer linear program-
ming formulation for solving Problem (5) for the special case in-
duced by fixing p = 1. Herein, we revise their objective function to
reflect any possible value of p as follows:

min Yy [(Sﬁ + P tij)Xis j + (Sij + P tij)Xjei + P(Sij +Sji)ximj]

ieX jeXx
(7a)
s.t. Xisj +Xjoi + Xinj = 1 V@, j) e A (7b)
Xij—Xioj— Xk = =1 Vi jkeXji#j#k (7¢)

2% j+ 2Xj i + 2K + 2Ky~ Xipk — Xpei 20 Vi ke Xk >, j#k
(7d)

Xis j» Xinj eB Vl,]EX (76)

Decision variable x;, ; is equal to 1 if item i is ranked ahead of
item j and O otherwise, and decision variable x;.; is equal to 1 if i
and j are tied, and O otherwise. The objective function (7a) mini-
mizes the cumulative K distance to all the input rankings using
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Eq. (6). Constraint (7b) enforces that, for every distinct item-pair
(i, j), either i is ranked ahead of j, j is ranked of i, or i and j are
tied. Constraint (7c) enforces preference-transitivity by preventing
preference-cycles [78,79]; for example, if i is ranked ahead of j,
and j is ranked ahead of k, then i must be ranked of k as well.
Constraint (7d) enforces that if i and j are tied, and j and k are
tied, then i and k must be tied as well (see Yoo and Escobedo
[53] for additional types of preference-cycles involving non-strict
rankings avoid through these constraints). Constraint (7e) specifies
the domain of the variables.

Yoo and Escobedo [53] report that their formulation for KEM-
AGG with non-strict rankings, denoted as GKBP, outperformed the
variant of Formulation (7) induced by fixing p = 1/2. Because GKBP
takes advantage of the specific relationship between the Kemeny-
Snell distance and the extended Kendall’s correlation coefficient
[43,80], it cannot be directly applied to model RANK-AGG(p). Nev-
ertheless, inspired by its computational performance and the fact
that its constraints are equivalent to the axiomatic facet defining in-
equalities of the weak order polytope [53,78], we propose an al-
ternative formulation for solving Problem (5) that uses the same
set of constraints. The proposed formulation is a non-linear binary
programming model and is given by:

min Y (sji+ ptip)yi+ > (PCsij + i) — Sij — Sji — 2Pt ViV i

ieX jex (i,j)eA
(8a)
st yij+yi=>1 V@i, j)e A (8b)
Vii—Wji—Yx=—-1 VijkeX: i#j#k (8¢c)
y,-je]B Vi,jEX; 175_] (Sd)

Here, the decision variable y;; is equal to 1 if item i is ranked
ahead of or tied with item j, and O otherwise. Item i is ranked
ahead of item j if y;; =1,y;; =0 (giving y;;y;; =0), and items i
and j are tied whenever y;; = yj; = 1 (giving y;;y;; = 1). The objec-
tive function (8a) minimizes the cumulative K(P) distance to all the
input rankings. Constraint (8b) enforces that i and j cannot be si-
multaneously dispreferred over each other. Constraint (8c) imposes
preference-transitivity, and Constraint (8d) specifies the domain of
variables. Let T be an arbitrary non-strict ranking induced by a
feasible solution to Formulation (8); the rank of item i in 7 is ob-
tained as 7; := 1 — 3" jc x.iz Vij

The objective function (8a) can be linearized using a technique
proposed by Glover and Woolsey [81]. For each distinct item-pair
(i, j), the binary product y;;y;; in the objective function is replaced
by the auxiliary continuous variable z;;, with the addition of four
constraints: z;; < ¥, zjj <Yji» Zj = Yij +¥ji— 1, z;j = 0. Since the
objective coefficient of y;;yj;, i.e. (p(sij+5ji) — sij — Sji — 2P t;j), i
always less than or equal to zero, constraint z;; > y;j +yji— 1 is
actually redundant; that is, whenever y;; =yj; =1, the objective
function has the incentive to set z;; to its maximum value of 1 and
there is no need for this constraint. The full mixed-integer linear
program for Problem (5) is as follows:

min > Y (sji+ ptipyig+ »_ (P(sij + i) — Sij — Sji — 2D tij)z

ieX jex (i.j)eA
(9a)
s.t. Yijt+VYi > 1 V@i, j)e A (9b)
Vii—Ykj—Yuz=—-1 VijkeXx; i#j#k (9¢)
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zij<yi;j V(@ jeA (9d)
zij<y; VY(@.jeA (9e)
2;=0  V(i.j)eA (9f)
yij {0, 1} VijeXx; i#] (9g)

It is possible to derive a lower bound on Problem (5) using the
pairwise comparison information provided in Eq. (6).

Proposition 1. A lower bound on Problem (5) can be obtained as:

LB= Y min (sj+ pty, Sij+ ptij. P(Sij+Sji)). (10)
(.f)eA

Proof. For every distinct item-pair, Eq. (10) selects the smallest
contribution among all three possible preference relationships be-
tween the items. O

Proposition 1 effectively generalizes the lower bound for KEM-
AGG with strict rankings introduced in Davenport and Kalagnanam
[82] and with non-strict rankings introduced in Akbari and Es-
cobedo [59]. This lower bound can be boosted by detecting
preference-cycles in the input rankings, as the solution obtained
by selecting the smallest contribution for each distinct item-pair
may not be transitive [52,61]. Yet another lower bound can be ob-
tained by solving the linear programming relaxation of Formula-
tions (7) or (9).

3.2. Constraint relaxation method

Formulation (9) has O(n3) preference-transitivity constraints
(i.e., Constraints (9c)) which makes solving it to optimality very
difficult and practically impossible for large values of n. However,
only a very small fraction of these constraints are typically nec-
essary to solve rank aggregation problem instances to optimality
[83]. We use this insight to develop a constraint relaxation (CR)
method [84,85] to solve instances that are practically unsolvable
with off-the-shelf methods. The pseudocode of CR is presented in
Algorithm 1. It begins by dropping all preference-transitivity con-
straints from Formulation (9)—this is denoted as the Relaxed For-
mulation. At each iteration of CR, the Relaxed Formulation is solved
and the solution is inspected to determine whether there are un-
satisfied preference-transitivity constraints, which are added to the
model. This process is repeated until the solution does not vio-
late any preference-transitivity constraints. CR is guaranteed to ob-
tain an optimal solution, as all preference-transitivity constraints
(which are finite) are added to the Relaxed Formulation in the
worst-case scenario.

3.3. The least imposed cost heuristic (LICH)

In this section, we develop a greedy iterative algorithm, de-
noted as the Least Imposed Cost Heuristic (LICH), for solving RANK-
AGG(p). Placing item i at any position of a bucket order contributes
a certain amount to the objective function (9a); denote this im-
posed cost as v(i). The algorithm works by iteratively adding an
item among a small number of positions in a working bucket or-
der, namely the available item with the lowest associated v-value.

LICH’s pseudocode is presented in Algorithm 2 and is summa-
rized as follows. In the first iteration, one item needs to be selected
to initialize the working bucket order. Placing item i in the first
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Algorithm 1: Constraint Relaxation (CR) Method .

Algorithm 2: The Least Imposed Cost Heuristic (LICH).

Input : p, [S,‘j] ez, [tij] ez"n

Output: Optimal solution to Formulation (9)

t:=0;

Ei={0jik|ijkex;i#j#k};

item-triplets

3 B =0, // set of item-triplets whose
preference-transitivity constraints are included in the

-

// set of all

N

Relaxed Formulation (see the next line)
Build the Relaxed Formulation:

min Y (s + P tij)yij

ieX jeXx

+ D (p(sij+s5) —sij — 5 = 2p )z
(i.j)eA
s.t.  (9b), (9d) — (9g)

Yij =Yk —Yez=—-1 V(i jk)eZ
Preference_Transitivity_Violation = True;
while Preference_Transitivity_Violation is True do
Preference_Transitivity_Violation = False;
Solve the Relaxed Formulation and obtain solution y;;,
where i, j e X, i# j;
9 | for (i,j k) € E\E' do

N

10 if yi; — yij — Vi # —1 then
1 Preference_Transitivity_Violation = True;
12 B« B u{d b}

Return * = [n— 3" y.i.;y;; for i in X]

place, assuming that it is ranked ahead of all other items, imposes
the following cost:

U(l) = Z Sji + Ptij~

jex\{i}
A working bucket order B is initialized by placing the item with
the lowest imposed cost in the first bucket.

In the subsequent iterations, the remaining items are compared
with only the items in the last bucket of the working bucket order,
for the sake of efficiency. At each iteration and for each remain-
ing item i, three different imposed costs are calculated based on
where i is added to the working bucket order: 1) in the last bucket,
2) a new bucket placed right after the last bucket, and 3) a new
bucket placed right before the last bucket. For each item, consider
the minimum of the three calculated imposed costs. Formally, let
By be the last bucket of the working bucket order B and X" be the
set of remaining items to be placed in the working bucket order;
then, calculate

v (i) = min (Z psij+ i), D (i + L), Y (sji+ ptfj)) Vie &’

jeBw jeBw jeBw

The item with the lowest imposed cost overall is added to the
working bucket order in the appropriate manner (according to the
aforementioned three cases). As a post-processing subroutine, ad-
jacent buckets are merged if doing so decreases the value of objec-
tive function (9a).

Theorem 2. Algorithm 2 has a time complexity of 0(n3).

Proof. The worst time complexity of Algorithm 2 occurs when the
working bucket order has only one bucket; in this case, the last
bucket of the working bucket order is always of maximum size. In
this case, the number of distinct item-pairs for which we need to

Input : p, X, [s;;] e R™", [t;;] e R™"
Output: Solution non-strict ranking
11 :=argminicx Y sji+ ptij:
jex
2 B:={{i'}}; // initialize the working bucket order
3 X" = x\{i"}; // set of remaining items
afort=1,....,n—1do

5 Let By be the last bucket of the working bucket order B;

6 | forie X" do

7 v(i) =
min( > Gi+ptj), X (Sij+ptj), X P(Sij+$ji)):

jeBw jeBw JjeBw

8 i’ = argmin;crv (i) ; // find the item with the
lowest imposed cost

9 X" x"\{i'}; // remove i’ from the set of

remaining items

// The next block of code adds i’ to the working
bucket order in a way that it induces the
lowest imposed cost

10 if U(i/) = Z p(si/j +Sﬁ/) then

JjeBw
n LB<—{B]a‘-~,Bw71,BWU{i/}};
12 if U(i/) = Z (Sl'/j + ptl’j) then
JjeBw
13 LB&{Bls‘-wafLBW# {l/}},
14 if U(i/) = Z (Sﬁ/ + ptl’j) then
JjeBw
15 LB(—{B],‘..,Bw,p{l’/},Bw};

16 Merge adjacent buckets of B if doing so improves the value
of objective function (9a);

17 Obtain & from B (as explained in Section 2);
Return 7;

calculate the imposed cost is given by
nn-D+m-1)(H+nM-2)Q)+---+(1)(n-1)

n-1
=n(n-1)+Y (n—1ii
i=1

=n(n—1)+%(n—l)n(n+1).

The imposed costs of each item-pair can be obtained in constant
time. Therefore, the complexity of the full algorithm is 0(n3). O

Note that the worst time complexity of Algorithm 2 occurs
when at least n — 1 items are tied in the optimal ranking, and its
time complexity reduces to O(n2) in the case of strict rankings, as
all buckets are singletons in the latter case.

4. Generalizing the condorcet criterion and its variants

Marquis de Condorcet [86] proposed one of the most eminent
social choice properties in voting theory, which has come to be
known as the Condorcet criterion (CC). This property declares that
an election candidate (i.e., item) that is pairwise preferred over
all other candidates must be declared as the top-ranked candidate
in the outcome of the election (i.e., the optimal ranking); such a
candidate is denoted as the Condorcet winner. CC can be formally
stated as [87]

ifdicx: Sij > Sji V]EX\{I} - i>nj V]EX\{I},
where 7 is the consensus ranking(s). In an analogous fashion, the
Condorcet loser is a candidate who is pairwise dispreferred over all
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other candidates. A voting rule is said to be Condorcet consistent
if it always selects the Condorcet winner as the top-ranked item
in its consensus ranking sz, when one exists [4]. Apart from KEM-
AGG, there are other Condorcet consistent rank aggregation meth-
ods such as Dodgson’s rule [88], maximin rule [89], and the ranked
pairs rule [90]. It is worth mentioning that Smith [91]| proposed
an item-set version of the Condorcet criterion that has come to
be known as the Smith set in the literature. The winning (losing)
Smith set is defined as the smallest nonempty set of items that
are pairwise preferred (dispreferred) over every item outside of the
set. The Smith set may help decision-makers to exclude irrelevant
items from consideration.

Truchon [57] proposed the Extended Condorcet criterion (XCC),
which generalizes CC to guarantee an ordering of item-subsets in
the consensus ranking(s). XCC states that if A can be arranged into
a partition X = {X;,X5, ..., Xw} such that all items in the lower-
indexed subsets are pairwise preferred over all items in the higher-
indexed subsets, then the former must be ranked ahead of the lat-
ter in the consensus ranking(s). XCC can be stated formally as

if Sij > Sji ViEXk VjEXl:.Vk<k/ - i>7rj ViEXk V-nglé Vk < kK.

Truchon [57] proved that the optimal solution(s) to KEME-AGG sat-
isfies XCC. Note that the exact ordering of the full set of items
is determined by solving the separate KEME-AGG subproblems in-
duced by the items in each subset of the partition.

Recently, Yoo and Escobedo [53] demonstrated that KEM-AGG
with non-strict rankings is inconsistent with XCC, meaning that its
optimal solution(s) may violate the subset orderings indicated by
this property. Consequently, the authors proposed a consistent so-
cial choice property for strict and non-strict rankings, which they
called the Non-strict Extended Condorcet criterion (NXCC). It can
be stated formally as

if Sij > Sji +t,‘j Vi EXk, V] € Xk/, Vk < kK
Vi EXk, V] EXk/, Vk < k.

= i>”7<sj

Observe that when all input rankings are strict (when t;; =
0, Vi, j e &), NXCC becomes XCC. It was formally proven in Yoo
and Escobedo [53] that any optimal ranking of KEM-AGG is consis-
tent with NXCC. XCC and NXCC include both the Condorcet crite-
rion and the Smith set. In fact, the winning (losing) Smith set cor-
responds to the first and most preferred (last and least preferred)
subset of the XCC and NXCC partitions. Moreover, the winning (los-
ing) Smith set corresponds to the Condorcet winner (loser) when
the former is a singleton.

As a convention and to distinguish partitions using CC and its
variants from other existing methods—e.g., 3/4-majority rule [56]—
we denote such partitions as Condorcet partitions. Over the past
few years, various researchers have employed Condorcet partitions
to facilitate the exact solution to KEM-AGG, e.g., see [53,56,58]. In
the last work from this list, it is stated that NXCC can expedite
the solution run time of exact formulations of this problem by up
to 96 percent. Recently, Akbari and Escobedo [59] also reported
that NXCC rendered up to a 25x computational improvement in
the computation of lower bounds for KEM-AGG.

4.1. Generalizing condorcet partitioning schemes

XCC and NXCC have been defined only for KEM-AGG. This sub-
section expands the concept of Condorcet partitions to RANK-
AGG(p). To that end, it first redefines the concept of pairwise pref-
erence to adapt to the nature of the generalized problem, and it
introduces a novel social choice property termed the Generalized
Extended Condorcet criterion (GXCC).
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Definition 7. Item i is (strictly) pairwise preferred over item j un-
der the penalty parameter p € (0, 1] if

1-p
Sij > Mmax (( )Sj,' + tij’ Sj,'),

and it is weakly pairwise preferred over j under the penalty pa-
rameter p € (0, 1] if

1-p
Sij = max (( >5ji+l','j, Sj,‘).

Definition 8. (GXCC) Given a fixed penalty parameter pe
(0,1], assume that X can be arranged into a partition XP =
{X1.X2, ..., Xw} such that

1-—
Sjj > max ((

GXCC specifies that m* must rank all items in the lower-indexed
subsets of X(P) ahead of all items in the higher-indexed subsets.
That is, when Eq. (11) holds, then

Vie st V] € Xk/, Vk <K'

p)sj,-+tu,5ﬁ) Vie X VjeXe, Yk<K.
(11)

i>n

GXCC contains XCC and NXCC as special cases: it becomes NXCC
when p = 1/2, and it becomes XCC when the same penalty is used
and all the input rankings are strict. Furthermore, each of these
decompositions also includes the Smith set (and Condorcet win-
ner/loser, when applicable).

The following theorem proves that the optimal solutions to
RANK-AGG(p) are consistent with GXCC. This means that solving
the subproblems induced by the subsets of the GXCC partition in-
dependently to optimality and then concatenating the results in
the proper order (placing all items in the lower-indexed subsets
ahead of all items in the higher-indexed subsets) is guaranteed
to yield an optimal solution to RANK-AGG(p). To the best of our
knowledge, this is the first time that an exact Condorcet partition-
ing scheme has been defined and applied to a problem other than
KEM-AGG in its general form.

Theorem 3. RANK-AGG(p) satisfies GXCC.

Proof. We use contradiction. Without loss of generality, let X =
{X. X"} be a GXCC bipartition of X', where X' = X\X, and let 7* be
an optimal ranking where at least one item in X° is ranked ahead
of or tied with at least one item in X. Consider a ranking 7’ ob-
tained by modifying m* such that all items of X are ranked ahead
of all items in X°, and the relative orderings of all items within
X and X° are as in 7*. The difference between the cumulative K
distances (i.e., to all the input rankings) accrued with &* versus r’,
denoted by A, is given by

A=Y KP @, ) - Y K (' )

lec lec

=3y ZK,,(J.") . SEDYY Zl(l.(jp) (', )
ieX jeX' leL ieX jex' leL

B 3D TULITES 3) LRI
ieX jeX‘ leL ieX jex

The last equation comes from the startinigc assumption that 7z’
ranks all items in X ahead of all items in X". Therefore, theSCC)n—
tribution of every distinct item-pair (i, j) where i ¢ X and j € X in
> K®P (x’, ') is equal to sj; + pt;;. Observe that item-pairs from
leC

different subsets do not contribute to A as their relative orderings

are the same in &* and &’. To determine the sign of A, we com-
pare terms IZ;KISP) (m*, ') and Sji + ptjj. From Eq. (6), for every
€
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distinct item-pair (i, j), i X and j € X', we have

Sji + P G ifi > J,
Y KP (@, wy = s+ pty  ifja i, (12)
lec p(sij +sji) ifi =g J.

Next, we show that for such a distinct item-pair, sj; + pt;; does

not exceed Zl(i(].p)(n*,n’) in cases where j>gz«i and i~g= j
lec

(I(I.(jp) (m*, ') equals Sji + ptjj when i >+ j). Based on the starting

assumption that X(f) satisfies GXCC, for every distinct item-pair
(i,j),ieXand je X‘, the following inequalities can be derived

1-p 1-p
Sij > Max (( )Sj,‘ +t,‘j, Sj,‘) = Sjj > < )5]',' +t,'j

= p(sij +Sji) > Sji + P tij.

Furthermore, we have

1-p
Sij > Max (( )S]’j +t,‘j, Sﬁ) = Sijj > Sji

= Sijj+Dptij > Sji+ ptij.

. Therefore, for every distinct item-pair (i, j), where i e X and j €
X", we have

ZK,-(JP)(JT*,H') > sji+ ptij, (13)
leC

and summing over all distinct item-pairs (i, j), where i Xand je
XC, gives

YK @A) =3 Y sit pti
ieX jgfc leL ieX jg)?c
The above inequality implies that A > 0. According to the given as-
sumption, there exists at least one item in X° that is ranked ahead
of or tied with at least one item in X. Hence, Eq. (13) holds strictly
for at least one item-pair, meaning that A > 0, which contradicts
the optimality of m*. Therefore, we can conclude that all items in
X must be ranked ahead of all items in X* in the optimal ranking.
Finally, we extend the proof to the case with |X®| =w > 2.
Consider a GXCC bipartition X” = {X, X} where X =X; and X' =
{X5,X3,...,Xw}. Applying the prior result, all items in X; must
be ranked ahead of all items in A\X;. Next, consider bipartition
X — (X, X} where X = {X1,X,} and X' = {X3,...,Xw}; from the
preceding case, all items in X; and X, must be ranked ahead
of all items in X\(X; UX;), and all items in X; must be ranked
ahead of all items in X;. Continuing in this manner, the only
way that this statement holds for all bipartitions of the form
XP = (X1, ... X}, (Xii1 - - Xw}}, where ke {1,...,w—1}, is if
m* ranks all items in the lower-indexed subsets of X(P ahead of
all items in the higher-indexed subsets. O

To elaborate on the theoretical implications of GXCC, we re-
view Arrow’s Impossibility Theorem [92], a milestone in the field
of voting theory and computational social choice. This theorem is
motivated by the intuitive requirement that any reasonable social
welfare function (SWF)—a function that maps the voter’s ordinal
preferences over a set of competing candidates into one aggre-
gate preference order of those candidates—should simultaneously
be weakly Paretian and independent of irrelevant alternatives (IIA).
The weakly Paretian paradigm states that if all the voters strictly
prefer candidate a to candidate b, then a should be ranked strictly
better than b in the aggregate preference order. The IIA paradigm
states that the relative ordering of a and b in the aggregate pref-
erence ordering should depend only on the relative orderings of a
and b in the voters’ inputs, that is, not a third candidate c. One
of the main reasons that IIA is desirable is to prevent the ma-
nipulation of results by introducing extraneous candidates. Arrow
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[92] proved that whenever there are three or more candidates, the
only aggregation function that simultaneously is weakly Paretian
and IIA is a dictatorship, which is a voting rule where a single fixed
voter (i.e., the dictator) whose preference ordering is returned as
the aggregate ordering, regardless of the other voters’ inputs.

The Impossibility Theorem demonstrates that certain basic and
desirable properties of voting systems are incompatible—simply
put, there exists no perfect voting rule or aggregation function.
Nonetheless, many researchers have developed different SWFs that
satisfy a subset of these (and other) desirable properties. The SWF
associated with KEM-AGG uniquely satisfies five key social choice
properties simultaneously: anonymity!, neutrality?, unanimity?, re-
inforcement?, and local stability [4,45], which translates into vari-
ous practical benefits such as the aggregate preference order be-
ing robust against outliers [23]. It is worth adding that the SWF
associated with the popular Borda rule [35] satisfies all of these
properties, except local stability [45], which can be interpreted as
a weaker version of IIA [45]. In particular, local stability requires
that the relative aggregate ordering involving an interval of “closely
related” candidates—defined as a subset of the candidates whose
majority pairwise relations induce a cycle with each other but not
with the remaining alternatives—should not change when intro-
ducing extraneous candidates—defined as those that each of the
closely related candidates is pairwise preferred over by a major-
ity of voters. Consider an example discussed in [45], where the
true ordering of three candidates a, b, and ¢ from a fixed number
of input preference orders is being examined. Assume that three
new but inferior candidates d, e, and f, over which a, b, and c is
pairwise preferred, are introduced. Ideally, the introduction of infe-
rior candidates should not change the ordering of a, b, and ¢ com-
pared to the case where inferior candidates are absent. We remark
that this property can be interpreted as a special case of XCC and
NXCC—specifically, it is a requirement on any two subsets within
the decomposition. Moreover, the guarantee that KEM-AGG satis-
fies this property, which was established by Young [45], can be
equivalently induced by the fact that RANK-AGG(p) satisfies GXCC
for p € (0,1]—and for p =.5, in particular; note that GXCC is un-
defined for p = 0.

4.2. Enlarged GXCC partitions

Let »(X) denote the class of partitions that satisfy GXCC and
consider the case when there are multiple optimal rankings. The
fact that all optimal rankings must be consistent with any X e
©(X) can be viewed as a restrictive condition. It might be pos-
sible to make the partition finer, i.e.,, one with more subsets, by
requiring that it respects at least one rather than all of the opti-
mal rankings. Such partitions as known as enlarged partitions [57].
Schalekamp and Zuylen [58] defined a type of enlarged XCC par-
titions for strict rankings as follows. Assume that X can be ar-
ranged into a partition Xe = {X;. X,, ..., Xw} such that s;; >s; Vie
Xy, Vj € X, Yk < K'. Then, solving the subsets of X, independently
and concatenating the results in the proper order will respect at
least one of the optimal strict rankings. It is possible to extend this
idea to GXCC to obtain more effective partitions.

TAn  SWF is anonymous if all voters are
\citep{brandt2016handbook}.

2 An SWF is neutral if the names of the candidates are permuted, then their rank-
ing is similarly permuted \citep{brandt2016handbook}.

3 An SWF is unanimous if all voters have the same ranking, then the aggregate
ranking is the unanimous ranking \citep{brandt2016handbook}.

4 An SWF satisfies reinforcement if whenever a ranking is approved by two sep-
arate groups of voters, then it would also be approved when the votes of the two
groups are pooled \citep{brandt2016handbook}.

weighted  equally
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Corollary 1. (Enlarged GXCC) Given a fixed penalty parameter p e
(0,1], assume that X can be arranged into a partition ng> =
{X1.X5, ..., Xw} such that

1-—
Sij = max((

Then, there exists at least one optimal ranking in which all items in
the lower-indexed subsets of Xép) are ranked ahead of all items in its
higher-indexed subsets. That is, when Eq. (14) holds,

Im eM:iisrg j VieX, VjeXe, Vk<K.

p)S]’,‘ +t,‘j, Sﬁ) Vi GXk, Vj EXk/, Yk < k.
(14)

Proof. The rationale mirrors that of the proof of Theorem 3 up to
the point where it concludes that A > 0. Following those steps,
since x* is an optimal ranking according to the starting assump-
tion and A > 0, it can be concluded that 7’ is an optimal ranking
as well. O

Notice that an enlarged GXCC partition requires items in the
lower-indexed subsets to be only weakly pairwise preferred over
items in the higher-indexed subsets.

Example 2. Consider an instance with 10 rankings of 6 items. The
input rankings and the pairwise comparison matrices, S = [s;;] €
25+6 and T = [t;;] € Z5%5, are given by

Ttem i , . 4Inputé Ranl;ings7 , .
w7 | nt [ m | n x| 7| |«
1 2 4 2 2 3 4 5 2 1 5
2 3 1 3 5 1 3 5 1 1 5
3 3 3 1 3 1 1 2 5 2 3
4 1 3 1 1 5 1 1 5 3 1
5 4 5 4 1 2 2 3 4 4 2
6 5 2 5 4 4 5 4 3 5 4
0 3 4 3 5 T] 03 00 0O
4 0 3 46 7 302 000
g _ 6 5 0 2 7 8 T — 02 0400
76 4 0 7 7| 004010
5 4 3 2 0 8 0001 0O
3 3 2 3 2 0] 000 0 O0O0

The standard GXCC partitions for p=1/2,3/4, and 1 are
given by X(1/2 = {{1,2, 3, 4,5}, {6}}, XC/ = {{3,4},{1,2,5). {6}},
and XM = {{3, 4}, {2}, {1, 5}, {6}}, respectively. The enlarged GXCC
partitions are given by x§1/2> ={{3,4},{1,2}, {5}, {6}}, X§3/4) —
{{3.4). {2} {5}. {1}, {6}}, and X( = {{4}. {3}. (2}. {5} {1}. {6}}.

Example 2 illustrates the improved practicality of enlarged
GXCC partitions. Considering the enlarged GXCC partitions for p =
1/2, only the relative ordering of item-pairs (3,4) and (1,2) needs to
be determined; for p = 3/4, only the relative ordering of item-pair
(3,4) needs to be determined; and for p =1, an optimal solution
is trivially obtained from the partition. Clearly, this accelerates the
solution to RANK-AGG(p) as each of the enlarged GXCC partitions
improves their standard counterparts.

Due to the enhanced practicality of enlarged GXCC, we focus
on this partitioning mechanism for the rest of the paper. To obtain
an enlarged GXCC partition, we modify an algorithm introduced in
Yoo and Escobedo [53], which conducts NXCC partitioning by per-
forming sequential pairwise comparisons. The modified algorithm
is presented in Algorithm 3. It starts by placing the first item in
a subset of the working partition, and it adds exactly one item to
it at each iteration. Let item i denote the added item at any itera-
tion and Xép) ={Xj,...,Xw} denote the working partition. The al-
gorithm compares i with all items in the first subset of the work-
ing partition, Xj, leading to three possible outcomes. If item i is
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Algorithm 3: Enlarged GXCC Partitioning.

Input : p, [s;] ez, [t;] e Zmn
Output : Enlarged GXCC Partition
1 XP = {{1});
2 fori=2to |X| do
3 k=1;
4 if 5;j zmax((%)sj,-+t,-,-,sﬁ) Vj € X, then

5 Insert i in a new subset before X;, and increment the index of

subsets after X, by 1;
6 k < 3;

else if 5;; > max ((152)si; + tij, 5i) Vi€ X then

7 Insert i in a new subset after X;, and increment the index of subsets

after X, by 1;
8 k < 3;

else

9 Insert i in Xp;
10 L k < 2;
1 while k < [x]| do
12 if 5;j > max ((152)si + &ij, 5j1)¥Jj € X, then
13 ‘ k< k+1;

else if 5;; > max ((152)s;; + i, 5;j)¥Jj € X, then
14 if [k (i) — k| =1 and |X,| =1 then
15 | Move X, after X;

else

16 Merge subsets from X, to X;;
17 Decrease the index of subsets after X, by (k — « (i));
18 k<—k@)+1;

else if 3 € X, such that s; > max ((I’T”)s,jr +ti, s;j) then
19 Merge subsets from X, ;, to X;;
20 Decrease the index of subsets after X, by (k — « (i));
21 k<K@ +1;

22 Return X(P);
* k(i) is the index of the subset containing item i.

weakly pairwise preferred over all items in Xj, it is placed in a
new subset right before X;; if all items in X; are weakly pairwise
preferred over i, i is placed in a new subset right after X;; oth-
erwise, it is placed in X;. Subsequently, the algorithm iteratively
checks whether the current working partition is a valid enlarged
GXCC partition by verifying that all items in the lower-indexed
subsets are weakly pairwise preferred over all items in the higher-
indexed subsets. Whenever violations are detected, the respective
subsets are merged/moved until there are no violations. The algo-
rithm has a time complexity of O(n?) [53]. Note that GXCC and
enlarged GXCC rely only on parameters required by the exact for-
mulations; this fact, coupled with the quadratic time complexity of
its algorithm, makes enlarged GXCC a great and fast pre-processing
step for solving RANK-AGG(p) via exact and heuristic methods.
We close this section by contrasting GXCC and enlarged GXCC
with the exact graph-based partitioning scheme of Andrieu et al.
[65], which applies to the special case of RANK-AGG(p) induced
by setting p = 1. Upon close inspection, the conditions of the lat-
ter method translate to a relaxed version of GXCC that is stricter
than the enlarged GXCC. To elaborate, GXCC requires all items in
the lower-indexed subsets to be strictly pairwise preferred over all
items in the higher-indexed subsets; Andrieu et al. [65]'s method
require all items in the lower-indexed subsets to be weakly pair-
wise preferred (according to Definition 7 induced by setting p = 1)
over all items in the higher-indexed subsets except for adjacent
subsets, for which a strict pairwise preference is required; con-
versely, enlarged GXCC requires all items in the lower-indexed sub-
sets to be weakly pairwise preferred over all items in the higher-
indexed subsets. Andrieu et al. [65]'s method respects all the opti-
mal solutions [65]; however, enlarged GXCC respects at least one
but not necessarily all optimal solutions. Nonetheless, enlarged
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GXCC is guaranteed to have at least as many subsets as Andrieu
et al. [65]’s method.

5. Effect of modifying the penalty parameter

The value of penalty parameter p can have a big impact on the
outcome of RANK-AGG(p), as it can alter the optimal ranking and
the very nature of the problem. Consider two extreme values of
p over which K(P) is a distance metric, namely 1/2 and 1. When
p = 1/2, this induces KEM-AGG, in which every full rank reversal of
item-pair (corresponding to case 1 of the KP) distance) has twice
the weight of every partial rank reversal (corresponding to case 3).
As the value of p increases, the weight of a partial rank reversal
increases; finally, when p = 1, a partial rank reversal has the same
weight as a full rank reversal.

Beyond the fact that p = 1/2 is the most frequently used value,
there have been no attempts to guide the choice of p or to analyze
its implications. The ensuing paragraphs provide useful insights re-
garding the impact of p of the resulting GXCC and enlarged GXCC
partitions and on the optimal ranking.

Proposition 2. The set of optimal objective values of RANK-AGG(p)
for all values of p € [0, 1] forms a piecewise linear envelope.

Proof. The cumulative K(P) distance between any solution ranking

7 < Il and all the input rankings, ie., Y K (x, x!), can be ex-
leC

pressed as a™ + pb™ which is an affine function in terms of p,
where

a™ = Z (Sij1j>,,i+5ji]1i>,,j)

(i.j)eA

and

b® = 3" <(5ij +8ji) Ling j + Lij (L j i + Jli>,[j))~
(i.j)eA

Here, the function 1, returns 1 if v is true, and 0 otherwise; a™®
and m are the number of full rank reversals and partial rank re-
versals between 7w and all the input rankings. More specifically, if
items i and j are tied in &, b tallies the number of input rank-
ings in which i and j are not tied; otherwise, it tallies the number
of input rankings where they are tied. Since the objective function
values can be expressed as a series of affine functions and the K
distance is non-decreasing in p [63], the set of optimal objective
values for all values of p forms a piecewise linear envelope. O

Fig. 1 illustrates an example of RANK-AGG(p) with two items.
There are three possible rankings m!, w2, w3, whose respective
affine functions are displayed; the piecewise linear envelope is
shown in red. Proposition 2 will be used to derive additional in-
sights regarding the effect of penalty parameter p.

Corollary 2. If * is the optimal ranking for two distinct penalty pa-
rameters p' and p* such that 0 < p! < p? <1, then m* is also the
optimal rankings for any p! < p < p2. Furthermore, if * is the opti-
mal ranking for p! but not for p?, it will not be the optimal ranking
for any penalty parameter p > p2.

Corollary 2 is a direct outcome of Proposition 2. This corollary
can help overcome the difficulty of selecting the exact value of
penalty p in certain instances. For example, if &* is the optimal
ranking for p=1/2 and p =1, then it is also the optimal ranking
for every intermediate value.

Additionally, we show that using p = 3/4 has an interesting in-
terpretation, as it produces a robust solution. In particular, one
may also be interested in finding the optimal ranking with the
minimum average K(P) distance to the input rankings over all pos-
sible values of p for which the resulting function is a metric, i.e.,
Vp e [1/2,1], instead of only one specific value.

10
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K®

Fig. 1. Example depiction of objective function values obtained over all values of
p by three different solution non-strict rankings (the piecewise linear envelope is
shown in bolded red). (For interpretation of the references to colour in this fig-
ure legend, the reader is referred to the web version of this article.)

Proposition 3. The optimal ranking obtained by using p = 3/4 has
the least average cumulative KP) distance to the input rankings over
the interval of penalty parameter p for which KP) is a distance met-
ric.

Proof. Since all values of p are given the same weight, p can be
treated as a random variable with a continuous uniform distri-
bution over [%, 1]. Hence, the problem of finding a ranking with
the least average cumulative K(P) distance to all the input rankings
with respect to all values of p € [§,1]" 223 is equivalent to

* : I
T* = arg 17211![1 EPE[%J][ZI((P) (m, )]
leC

— i () (7r)
= arg min EPE[%J][a +pb™]

= mi (™) 4 3/4p®)
arg min [a™ +3/ ]

—arg min Y KOG (&, x!).
gmin >° (. 7"
leC

O

As a last insight, when p increases, the cardinality of the GXCC
and enlarged GXCC partitions may at times increase, but it cannot
decrease.

Proposition 4. Consider two fixed penalty parameters py, pp, Wwith

0 < p1 < pp < 1. For penalty parameter p,, the GXCC and enlarged

GXCC partitions have at least as many subsets as their respective

partitions with penalty parameter p;. That is |XP2)| > |XPV)| and
(p2) (p1)

X' = 1Xe7.

Proof. For every item pair (i, j) € A, we have

1- 1-
Sij > max ((7p])5ﬂ + tjj, Sﬁ) > max (( pz)Sﬁ + tijv Sji)-
D1 p2

Therefore, if i is pairwise preferred over j under pq, it will also
be pairwise preferred over j under p,. Hence, XPV is also a valid
GXCC partition for RANK-AGG(p) using penalty parameter p,. As a
result, X(P2) will have at least as many subsets as XP1). A parallel
set of arguments can be applied to enlarged GXCC partitions. O

Proposition 4 indicates that partitioning may have more impact
on large values of p. The possible effect of increasing p on the
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Table 1

Solution time (in seconds) of different exact methods with and without prior GXCC partitioning for different values of p for TOC instances with 40 < n < 400.
Instance id* n p=1/2 p=3/4 p=1

BBP MIP CR GXCC_MIP ~ GXCC_CR  BBP MIP CR GXCC_MIP  GXCC_CR  BBP MIP CR GXCC_MIP  GXCC_CR

ED-10-21 40 3.34 1.76 1.04 0.47 0.97 3.41 1.85 1.08 0.13 0.51 3.38 1.81 0.63 0.12 0.21
ED-10-22 40 3.79 1.74 1.37 1.74 1.37 341 1.75 113 1.75 113 3.36 1.73 0.99 1.73 0.99
ED-10-30 40 3.56 1.86 0.90 0.09 0.34 3.38 1.69 1.00 0.09 0.40 3.28 1.74 0.55 0.20 0.13
ED-10-20 41 3.87 1.93 1.41 0.34 0.80 3.67 1.90 1.70 0.23 0.90 3.70 1.94 0.83 0.34 0.68
ED-10-31 41 3.88 1.98 1.37 0.18 0.90 3.64 1.89 1.39 0.31 0.85 3.53 1.90 1.03 0.18 0.29
ED-10-4 42 4.25 2.05 1.28 1.40 1.18 3.83 2.05 1.24 1.42 1.07 3.87 2.05 1.01 047 0.76
ED-10-09 42 3.94 2.01 0.69 1.01 0.81 3.94 2.06 0.73 0.87 0.98 3.94 2.00 0.96 0.84 0.85
ED-10-06 43 4.65 2.17 0.94 2.06 1.19 4.18 2.20 1.17 2.06 1.15 4.18 2.29 1.35 2.06 1.29
ED-10-10 43 4.81 2.15 1.02 2.15 1.02 4.25 2.13 0.97 2.13 0.97 4.29 2.18 1.12 0.55 0.70
ED-10-08 44 4.56 2.34 1.71 0.70 1.13 4.53 2.32 1.28 0.74 1.47 4.44 2.30 1.55 0.76 0.70
ED-10-12 44 4.94 2.42 0.98 1.86 1.43 4.40 2.45 1.16 0.36 1.20 4.52 2.49 1.61 0.50 0.96
ED-10-13 44 4.42 2.5 0.71 0.95 0.81 4.44 2.30 0.61 1.02 0.78 4.42 239 0.99 0.97 0.81
ED-10-34 46 5.88 2.57 1.46 0.68 1.15 5.20 2.61 0.97 0.70 1.56 5.11 2.68 1.30 0.25 0.64
ED-10-07 47 6.18 2.87 0.79 2.11 0.73 5.69 2.79 0.77 2.33 1.12 5.70 2.79 1.49 0.82 0.46
ED-10-29 47 6.54 2.94 1.16 0.55 0.67 5.51 2.98 1.59 0.38 1.11 5.59 2.79 0.89 0.53 0.46
ED-10-18 49 6.84 3.20 1.46 0.88 1.50 6.68 3.28 133 0.33 143 6.35 3.26 1.41 0.47 0.89
ED-10-11 50 6.99 3.46 0.67 2.54 0.92 6.81 3.49 1.01 2.50 1.21 6.91 3.53 1.39 0.68 0.87
ED-10-02 51 7.54 3.78 0.55 2.85 0.54 8.22 4.09 0.69 1.74 1.02 8.13 4.26 1.95 223 1.12
ED-10-05 52 8.51 3.93 1.22 3.05 0.97 7.67 3.89 0.70 1.13 0.79 7.53 3.99 1.13 1.09 0.98
ED-10-15 52 8.40 3.94 1.32 2.23 1.68 7.69 3.88 1.02 2.31 1.45 7.65 3.93 1.98 2.23 1.71
ED-10-01 54 10.10 4.46 1.85 1.81 0.89 8.51 4.58 1.13 1.80 1.00 8.75 4.43 1.91 1.77 1.18
ED-10-03 54 10.16 513 0.99 2.59 1.99 9.40 4.26 0.83 241 1.06 8.70 4.42 1.53 1.50 1.37
MD-03-02 56 9.40 4.74 0.66 4.74 0.66 9.58 4.78 0.41 4.78 0.41 9.58 4.80 0.46 4.80 0.46
ED-10-16 57 11.26 5.49 1.74 1.24 1.61 10.00 5.42 0.91 1.32 1.20 10.46 5.48 1.68 0.84 0.95
MD-03-01 61 14.65 6.52 0.42 6.52 0.42 12.33 6.66 0.47 6.66 0.47 12.70 6.62 0.37 6.62 0.37
ED-10-17 61 13.48 6.48 1.27 5.24 0.80 12.70 6.37 1.35 1.61 1.76 12.49 6.32 1.38 1.54 1.06
ED-10-14 62 14.71 6.89 0.78 2.80 0.67 13.45 6.93 1.07 2.92 0.74 13.41 6.86 1.27 1.56 1.32
MD-03-04 63 13.86 7.12 0.40 7.12 0.40 13.66 6.99 0.47 6.99 0.47 13.73 7.33 0.50 7.33 0.50
ED-14-02 100  60.06 30.46 0.73 30.46 0.73 59.47 30.04 0.75 30.04 0.75 60.01 29.77 0.76 29.77 0.76
ED-14-03 100  60.08 30.41 0.65 30.40 0.65 59.42 29.96 0.72 29.96 0.72 60.09 29.53 1.78 29.53 1.78
MD-03-03 102 82.60 39.83 0.59 39.83 0.59 82.32 39.21 0.69 39.21 0.69 83.54 39.06 1.02 39.06 1.02
MD-03-05 103 84.11 38.35 1.90 38.35 1.90 81.71 38.35 0.72 38.35 0.72 81.48 38.92 0.61 38.92 0.61
MD-03-06 133 229.78 103.57 1.18 103.57 1.18 229.38 102.56  1.26 102.56 1.26 230.01 101.72  1.20 101.72 1.20
MD-03-08 147  305.83 136.26  1.31 136.26 1.31 307.80 136.98 148 136.98 1.48 303.46 13733 1.29 137.33 1.29
MD-03-07 155  374.99 166.21 1.64 166.21 1.64 375.27 167.16  1.57 167.16 1.57 375.51 164.65 146 164.65 1.46
ED-10-50 170  1,144.02 20724  152.53 202.63 110.08 >7,400.04%*  201.65 282.36 162.57 159.5 >7,392.48% 25131 145.99 252.3 192.23
ED-10-49 351 - - 1393.73 - 673.40 - - 42608 - 3,057.86 - - 595647 - 4,303.28
Geometric Mean* > 13.51 6.33 1.16 341 1.06 >13.74 6.27 1.12 2.81 1.09 >13.44 6.34 1.25 243 0.90

% The instance names have been shortened. The original names include three zeros before the firs number and six zeros before the second number * The geometric mean does not include the ED-10-49 instance # The

model had a relative optimality gap of 0.49% at the time of termination & The model had a relative optimality gap of 0.12% at the time of termination
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cardinality of the GXCC and enlarged GXCC partitions is demon-

o strated in Example 2, where |X1/?| =2, |XC/9| =3, |xD| =4,
dl 28838 and |X{"P| = 4, |XP| =5, |X{V| = 6.
S IBEREEEEE
Olcoot=ane™m
6. Computational results
& ™
5 Ca This section performs computational studies to: 1) compare the
% E § g § D solution times of the revised Brancotte et al. [64] formulation (For-
mulation (7)), the proposed formulation (Formulation (9)), and the
oo P o CR method; 2) investigate the effect of enlarged GXCC partition-
© E E E 5% ing on the solution times of the proposed formulation and the
el -8R CR method; 3) evaluate the performance of the proposed heuris-
- tic, both in terms of solution quality and run time; and 4) investi-
“ gate the effect of enlarged GXCC partitioning on the solution qual-
S22 ity and run time of LICH.
S AR For all tested instances, we use three penalty values pe
%, {1/2,3/4, 1}. All experiments herein were carried out on a PC with
o= ) an Intel(R) Xeon(R) CPU E5-2680 2.40 GHz with 64 GB RAM. All
f I E‘g E § ‘;‘ D | e optimization models were solved using CPLEX solver version 20.1,
K % with a time limit of two-hour. The %Deviation from optimality of
= & - E LICH is calculated as
- Y gengag | o
= S1eR3s88gg |2 %Deviation
E b A o __ objective function value of LICH - optimal objective function value
= o £ - optimal objective function value ’
—g E| [=2] 2 —ac.» . . . .
2 S lom=2g = For the remainder of this section and the associated tables, the re-
_“2 Sla3g2 . . g vised Brancotte et al. [64] binary programming formulation is de-
§ o o noted as BBP, and the proposed mixed-integer programming for-
§ e 5 j‘; mulation as MIP. Additionally, the two-step solution method con-
£ R8pgdnd|e sisting of solving the partitioned problem via enlarged GXCC and
= IR R e then MIP is denoted as GXCC_MIP, solving the partitioned problem
Z = = via enlarged GXCC and then CR is denoted as GXCC_CR, and solv-
TE clwos EL ing the partitioned problem via enlarged GXCC and then LICH is
2 S(232 08 denoted as GXCC_LICH.
E 2 Additionally, the two-step solution method consisting of parti-
b T @ CT,_JV tioning the problem via enlarged GXCC and then solving via MIP is
§17]slg=2 - denoted as GXCC_MIP,
Dlalm|ades 1 110 [ 8
g o Z 6.1. Data sets
E g ] g
& J N wed E . .
> EE PRI The experiments consider two real-world data sets. The first
g Ujecoanwn |, is drawn from the TOC - “Orders with Ties - Complete List” data
LS’ e § set from Preflib [60], a library of preference data. From this data
= = - 2 set, only those instances with 40 to 351 items are used, as other
‘g § =2 g § g instances of this data set are either too small and easy to solve
k= R or too large to be solved using exact methods. The second data
E —no | set comes from a real-world application in bioinformatics provided
E - Q38 E E 5 = by Cohen-Boulakia et al. [30]. Each of the seven instances of the
= - a § ﬁ A SRS f Cohen-Boulakia et al. [30] data set contains four non-strict input
2 : rankings of genes possibly associated with Breast Cancer, Prostate
§ 3 a Cancer, Bladder Cancer, Neuroblastoma, Retinoblastoma, ADHD (At-
g e o ’§ ) tention Deficit Hyperactivity Disorder), and LQTS (Long QT Syn-
S === E drome). Each of the input rankings is the result of querying for
§ N 5 the genes associated with the aforementioned diseases in biologi-
g 8 =t cal databases using four different methods. The goal of the refer-
i 5|22~ E enced study is to alleviate the variability of information retrieval
S e A techniques by combining their outputs to obtain a more robust so-
o R - E lution. For simplicity, henceforth, instance names are enclosed in
§ = MY NmO T %E" quotation marks.
& ©
% % % : g E ? 6.2. Results
E 9] :j 2 G E E % . . .
~E|E L,oE2z88|8  First, we compare the solution times of the exact mgthods, be-
2|2 §'§ g é g é g ‘E ginning with the results of the TOC data set reported in Table 1;
GRS % the best solution time(s) attained for each instance and each tested

value of p is shown in bold. On average, MIP and CR were more

12



S. Akbari and A.R. Escobedo

Table 3
Number of items in the enlarged GXCC partition's subsets for certain large in-
stances.

Instance n X1, 1Xal, ..., [ X |

ED-10-50 170 1,5 1,1,1, 161

ED-10-49 351 5,3,3,7,333

LQTS 35 3,1,1,1,3,1,2,1, 2, 2,16, 2
ADHD 45 1,251,3111,1,25 4
Prostate Cancer 218 1, 17, 1, 166, 15, 16, 2
Bladder Cancer 308 1, 4, 21, 13, 3, 69, 197

Breast Cancer 386 1, 362, 11, 12
Retinoblastoma 402 1,1,1,33, 1,1, 2,4, 17, 341
Neuroblastoma 431 6, 55,29,9,09,1, 322

y

than 2x and 12x faster than BBP, respectively. In fact, BBP had a
higher run time than MIP, and MIP than CR, for each of the tested
instances and values of p. BBP failed to obtain the optimal solu-
tion of “ED-10-50" for p = 1/2 and p = 1 within the two-hour time
limit; however, MIP and CR were able to solve these two cases in
less than four minutes. Additionally, “ED-10-49” could not be di-
rectly solved via BBP and MIP due to out-of-memory errors, how-
ever, CR was able to solve it to optimality. Table 2 reports the so-
lution times of the Cohen-Boulakia et al. [30] data set, where a
similar pattern can be observed; the best solution time attained
for each instance and each tested value of p is shown in bold. BBP
had a higher run time than MIP, and MIP had a higher run time

Omega 119 (2023) 102893

than CR for each of the tested instances and each tested value of
p, except in one case. Additionally, BBP failed to obtain the opti-
mal solution of “Prostate Cancer” for p=1/2 and p = 1 within the
two-hour time limit; however, MIP and CR were able to solve these
two cases in less than 20 and 5 minutes, respectively. Additionally,
“Bladder Cancer”, “Breast Cancer”, “Retinoblastoma”, and “Neurob-
lastoma” could not be directly solved via BBP and MIP due to out-
of-memory errors. On the other hand, CR was able to solve each of
these instances within the time limit. Interestingly, all instances of
the TOC data set with 100 to 155 items did not require any of the
preference-transitivity constraints to be included in the optimiza-
tion model, which resulted in a significant difference in the run
time of MIP and CR on those instances. As a final note, the average
and maximum percent of preference-transitivity constraints added
by the CR method were 0.61% and 5.41% for the TOC data set, and
they were 2.67% and 7.48% for the Cohen-Boulakia et al. [30] data
set.

Next, we examine the impact of enlarged GXCC partitioning on
the run times of MIP and CR. Beforehand, Table 3 reports the size
of subsets of the enlarged GXCC partitions for the Cohen-Boulakia
et al. [30] data set and the two largest instances of the TOC data
set; the partitions matched for each tested value of p; other in-
stances of TOC data set with more than 100 items were not parti-
tionable. As Table 1 shows, enlarged GXCC partitioning was able to
reduce the run times of both methods on the TOC data set for each
tested value of p. Impressively, it reduced the geometric mean run

Table 4
Solution time (in seconds) and %Deviation of LICH with and without prior GXCC partitioning for different values of p for TOC instances with 40 < n < 400.
Instance n p=1/2 p=3/4 p=1
Time %Deviation Time %Deviation Time %Deviation
LICH GXCC_LICH LICH GXCC_LICH LICH GXCC_LICH LICH GXCC_LICH LICH GXCC_LICH LICH GXCC_LICH

ED-10-21 40 0.01 0.01 0.57 0.85 0.01 0.01 0.39 0.18 0.01 0.01 0.38 0.17
ED-10-22 40 0.01 0.01 0.92 0.92 0.01 0.01 0.70 0.70 0.01 0.01 0.71 0.71
ED-10-30 40 0.01 0.01 0.68 0 0.01 0.01 0.35 0 0.01 0.01 0.62 0.08
ED-10-20 41 0.01 0.01 0.30 0.54 0.01 0.01 0.43 0.27 0.01 0.01 0.74 0.54
ED-10-31 41 0.01 0.01 1.35 0.15 0.01 0.01 0.67 0.23 0.01 0.01 0.82 0.14
ED-10-04 42 0.01 0.01 1.35 1.15 0.01 0.01 1.49 0.48 0.01 0.01 0.96 0.82
ED-10-09 42 0.01 0.01 2.75 2.62 0.01 0.01 1.06 1.06 0.01 0.01 0.72 0.72
ED-10-06 43 0.01 0.01 0.45 0.45 0.01 0.01 0.34 0.34 0.01 0.01 0.29 0.29
ED-10-10 43 0.01 0.01 2.71 2.71 0.01 0.01 0.22 0.22 0.01 0.01 0.19 0.21
ED-10-08 44 0.01 0.01 2.61 2.11 0.01 0.01 0.63 0.09 0.01 0.01 0.54 0.08
ED-10-12 44 0.01 0.01 1.48 1.21 0.01 0.01 1.14 0.24 0.01 0.01 1.30 0.35
ED-10-13 44 0.01 0.01 3.29 0.12 0.01 0.01 0.04 0.01 0.01 0.01 0.03 0
ED-10-34 46 0.01 0.01 0.50 0.44 0.01 0.01 0.36 0.25 0.01 0.01 0.43 0.23
ED-10-07 47 0.01 0.01 1.06 1.06 0.01 0.01 0.42 0.42 0.01 0.01 0.35 0.15
ED-10-29 47 0.01 0.01 0.75 0.21 0.01 0.01 0.56 0.04 0.01 0.01 0.81 0
ED-10-18 49 0.01 0.01 0.42 0.32 0.01 0.01 0.43 0.06 0.01 0.01 0.38 0.05
ED-10-11 50 0.01 0.01 0.38 0.40 0.01 0.01 0.26 0.26 0.01 0.01 0.34 0.25
ED-10-02 51 0.01 0.01 0.55 0.55 0.01 0.01 147 147 0.01 0.01 0.03 0.03
ED-10-05 52 0.01 0.01 0.76 0.49 0.01 0.01 0.23 0 0.01 0.01 0.14 0.14
ED-10-15 52 0.01 0.01 147 1.47 0.01 0.01 1.02 0.33 0.01 0.01 0.83 0.71
ED-10-01 54 0.01 0.01 1.12 0.51 0.01 0.01 1.60 1.60 0.01 0.01 0.05 0
ED-10-03 54 0.01 0.01 0.15 0.15 0.01 0.01 0.29 0.11 0.01 0.01 0.30 0.15
MD-03-02 56 0.01 0.01 0 0 0.01 0.01 0 0 0.01 0.01 0 0
ED-10-16 57 0.01 0.01 1.12 1.72 0.01 0.01 0.14 0.05 0.01 0.01 0.20 0
MD-03-01 61 0.01 0.01 0 0 0.01 0.01 0 0 0.01 0.01 0 0
ED-10-17 61 0.01 0.01 1.97 1.97 0.01 0.01 0.53 0.43 0.01 0.01 0.17 0.07
ED-10-14 62 0.01 0.01 0.97 1.55 0.01 0.01 0.18 0.06 0.01 0.01 0.15 0
MD-03-04 63 0.01 0.01 0 0 0.01 0.01 0 0 0.01 0.01 0 0
ED-14-02 100 0.19 0.19 0 0 0.19 0.19 0 0 0.23 0.23 0 0
ED-14-03 100 0.20 0.20 0 0 0.18 0.18 0 0 0.23 0.23 0 0
MD-03-03 102 0.19 0.19 0 (1] 0.19 0.19 0 0 0.24 0.24 0 0
MD-03-05 103 0.20 0.20 0 0 0.20 0.20 0 0 0.25 0.25 0 0
MD-03-06 133 0.46 0.46 0 0 0.44 0.44 0 0 0.55 0.55 0 0
MD-03-08 147 0.60 0.60 0 (1] 0.60 0.60 0 0 0.60 0.60 0 0
MD-03-07 155 0.67 0.67 0 0 0.72 0.72 0 0 0.85 0.85 0 0
ED-10-50 170 0.12 0.14 2.52 2.01 0.09 0.12 1.31 1.32 0.09 0.11 1.41 1.21
ED-10-49 351 2.33 2.27 1.00 1.02 1.22 1.19 1.35 1.39 1.52 1.52 0.87 0.93

Average 0.02 0.02 0.90 0.78 0.02 0.02 0.48 0.31 0.02 0.02 0.37 0.22
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Table 5

Solution time (in seconds) and %Deviation of LICH with and without prior GXCC partitioning for different values of p of the Cohen-Boulakia et al. [30] data set .
Instance n p=1/2 p=3/4 p=1

Time %Deviation Time %Deviation Time %Deviation
LICH GXCC_LICH LICH GXCC_LICH LICH GXCC_LICH LICH GXCC_LICH LICH GXCC_LICH LICH GXCC_LICH
Long QT Syndrome 35 0.02 0.01 0 0 0.01  0.01 0 (1] 0.01  0.01 3.69 3.69
ADHD 45 0.01 0.01 0 0 0.01 0.01 6.74  3.37 0.01  0.01 7.33 7.33
Prostate Cancer 218 1.11 0.62 290 2385 081 0.52 0.53  0.51 056 0.64 8.79 0.35
Bladder Cancer 308 211 040 041 034 1.99 146 1.09  0.96 246 1.76 0.12 0.06
Breast Cancer 386 591 497 098 0.98 489 389 132 132 228 189 3750 8.85
Retinoblastoma 402 494 499 0.77  0.05 408 3.84 028 0.28 517 4.85 0.54 0.54
Neuroblastoma 431 459 458 930 3.08 521 4.63 406 3.76 1.29 041 15.83 15.57
Average 0.67 043 193 119 056 047 228 1.66 041 033 11.77 5.20

time of MIP from 6.34 to 2.43 seconds for p = 1. Enlarged GXCC
partitioning decreased the run times of all instances with more
than 62 items; however, it increased the run time of a handful
of smaller instances. In fact, enlarged GXCC partitioning was able
to reduce the run time of CR on “ED-10-49” approximately from
5956 to 4303 seconds, while it required only 0.02 seconds to ob-
tain the partition. As Table 2 shows, enlarged GXCC partitioning
reduced the run times of both methods on all instances of the
Cohen-Boulakia et al. [30] data set for each tested value of p. It
is worth adding that MIP was not able to solve “Bladder Cancer”
due to an out-of-memory error; however, with the help of en-
larged GXCC partitioning, MIP was able to solve this instance to
optimality in approximately 1043 seconds. Most impressively, en-
larged GXCC partitioning was able to reduce the run time of CR
on “Bladder Cancer” approximately from 526 to 95 seconds, a 5.5x
improvement, and the run time of MIP on “Prostate Cancer” ap-
proximately from 1098 to 369 seconds, close to a 3x improvement.
The highest partitioning time of instances in this data set only took
0.07 seconds.

Next, we evaluate the performance of the LICH method.
Table 4 reports the run time and %Deviation of the TOC data set;
the best %Deviation attained for each instance and each tested
value of p is shown in bold. LICH achieved an average %Deviation
of at most 0.90% and a geometric mean run time of 0.02 seconds
on this data set. It obtained the optimal solution in 10 instances
for each tested value of p; its highest %Deviation on this data set
was 2.71%. Table 5 reports the run time and %Deviation of the
Cohen-Boulakia et al. [30] data set; the best %Deviation attained
for each instance and each tested value of p is shown in bold.
LICH achieved an average %Deviation of 1.93%, 2.28%, and 11.77%
for p=1/2, p=3/4, and p = 1, respectively; its highest %Deviation
was 37.50%. However, the geometric mean run time of this method
was less than one second on this data set, and its highest run time
was 5.91 seconds.

Finally, we investigate the effect of enlarged GXCC partitioning
on the run time and solution quality of LICH. As Table 4 shows,
enlarged GXCC partitioning was able to slightly reduce the average
%Deviation of the TOC data set for each tested value of p while
maintaining the same geometric mean run time. On the other
hand, it was able to reduce both the geometric mean run time and
the average %Deviation of the Cohen-Boulakia et al. [30] data set
for all of the tested values of p, especially for p = 1. Remarkably,
it reduced %Deviation of “Breast Cancer” for p =1 from 37.50% to
8.85%, and %Deviation of “Prostate Cancer” for p =1 from 8.79% to
0.35%.

Putting together all of these pieces, CR outperformed MIP, and
MIP outperformed BBP. Additionally, enlarged GXCC partitioning
reduced the run time of exact methods by up to 20x. The ma-
jority of the best run times of the exact methods were achieved
by GXCC_CR. LICH achieved a near-optimal solution on most in-
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stances of the TOC data set, but it had a less commanding per-
formance on the Cohen-Boulakia et al. [30] data set. However, en-
larged GXCC partitioning reduced the run time and %Deviation of
this method. Combining LICH with enlarged GXCC partitioning was
shown to yield high-quality solutions in a short amount of time.

7. Conclusion and future research

This paper introduces and studies RANK-AGG(p), which con-
tains the well-known Kemeny aggregation problem as a special
case. It provides various analytical and computational contribu-
tions evaluated over two real-world data sets. It introduces a new
mixed-integer programming formulation that outperforms an ex-
isting (revised) formulation over the featured instances. Addition-
ally, it proposes a constraint relaxation technique, which was the
only exact method capable of solving several large instances (with
up to 431 items). Furthermore, it presents a greedy heuristic al-
gorithm for obtaining high-quality solutions to RANK-AGG(p). The
average %Deviation of this heuristic was 0.57% and 4.2% on the two
tested data sets.

Additionally, this paper broadens the applicability of Condorcet
criterion variants to RANK-AGG(p) by introducing a new social
choice property (GXCC). It provides an algorithm for obtaining a
valid GXCC partition and various analytical insights regarding the
effect of the penalty parameter of the generalized Kendall-tau dis-
tance on the optimal ranking and GXCC partitions. GXCC proved
to be effective in accelerating the run time of exact methods, as
demonstrated by the featured experiments. It was able to decrease
the run time exact and heuristic methods by up to 20x, and it im-
proved %Deviation of the proposed heuristic by up to 19.14 per-
centage points.

Future research will explore the development of additional ex-
act, approximate, and heuristic algorithms for RANK-AGG(p). An-
other important and interesting research direction is to compare
different mathematical frameworks for aggregating non-strict rank-
ings. Furthermore, it is possible to set different values of penalty
parameter p for different indices, which can provide even more
flexibility to the decision-maker on how to treat ties. However, this
modification is not consistent with the assumptions of the gener-
alized Kendall-tau distance and it would result in a new distance
measure. Studying this variant can be a future research direction,
as the theoretical and computational implications motivate ques-
tions beyond the scope of this work.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appe ared
to influence the work reported in this paper.



S. Akbari and A.R. Escobedo
CRediT authorship contribution statement

Sina Akbari: Conceptualization, Methodology, Software, Formal
analysis, Writing - original draft. Adolfo R. Escobedo: Supervision,
Methodology, Formal analysis, Writing - review & editing.

Data availability
Data will be made available on request.
Acknowledgments

The authors gratefully acknowledge funding support from the
National Science Foundation (Award 1850355).

References

[1] Chatterjee S, Mukhopadhyay A, Bhattacharyya M. A weighted rank aggregation
approach towards crowd opinion analysis. Knowl Based Syst 2018;149:47-60.

[2] Kemmer R, Yoo Y, Escobedo A, Maciejewski R. Enhancing collective estimates
by aggregating cardinal and ordinal inputs. In: Proceedings of the AAAI confer-
ence on human computation and crowdsourcing, vol. 8; 2020. p. 73-82.

[3] Quillet A, Saad C, Ferry G, Anouar Y, Vergne N, Lecroq T, et al. Improving bioin-
formatics prediction of microrna targets by ranks aggregation. Front Genet
2020;10:1330.

[4] Brandt F, Conitzer V, Endriss U, Lang ], Procaccia AD. Handbook of computa-
tional social choice. Cambridge University Press; 2016.

[5] Bar-Ilan ], Mat-Hassan M, Levene M. Methods for comparing rankings of search
engine results. Comput Networks 2006;50(10):1448-63.

[6] Aledo JA, Gamez JA, Molina D, Rosete A. Consensus-based journal rankings:
a complementary tool for bibliometric evaluation. ] Assoc Inf Sci Technol
2018;69(7):936-48.

[7] Cook WD, Raviv T, Richardson AJ. Aggregating incomplete lists of journal rank-
ings: an application to academic accounting journals. Accounting perspectives
2010;9(3):217-35.

[8] Losada DE, Parapar ], Barreiro A. A rank fusion approach based on score distri-
butions for prioritizing relevance assessments in information retrieval evalua-
tion. Information Fusion 2018;39:56-71.

[9] Sahin A, Sevim i, Albey E, Giiler MG. A data-driven matching algorithm for ride
pooling problem. Computers & Operations Research 2022;140:105666.

[10] Peng Y, Kou G, Wang G, Shi Y. FAMCDM: a fusion approach of mcdm
methods to rank multiclass classification algorithms. Omega (Westport)
2011;39(6):677-89.

[11] Marbach D, Costello JC, Kiiffner R, Vega NM, Prill R]J, Camacho DM,
et al. Wisdom of crowds for robust gene network inference. Nat Methods
2012;9(8):796-804.

[12] Puerta JM, Aledo JA, Gamez JA, Laborda JD. Efficient and accurate structural
fusion of bayesian networks. Information Fusion 2021;66:155-69.

[13] Benitez-Fernandez A, Ruiz F. A meta-goal programming approach to car-
dinal preferences aggregation in multicriteria problems. Omega (Westport)
2020;94:102045.

[14] Chen S, Liu J, Wang H, Augusto JC. Ordering based decision making-a survey.
Information Fusion 2013;14(4):521-31.

[15] Liao H, Wu X. DNMA: a double normalization-based multiple aggregation
method for multi-expert multi-criteria decision making. Omega (Westport)
2020;94:102058.

[16] Mohammadi M, Rezaei J. Ensemble ranking: aggregation of rankings pro-
duced by different multi-criteria decision-making methods. Omega (Westport)
2020;96:102254.

[17] Saaty TL. A scaling method for priorities in hierarchical structures. ] Math Psy-
chol 1977;15(3):234-81.

[18] Saaty TL. Decision making for leaders: the analytic hierarchy process for deci-
sions in a complex world. RWS publications; 2001.

[19] Figueira JR, Mousseau V, Roy B. Electre methods. In: Multiple criteria decision
analysis. Springer; 2016. p. 155-85.

[20] Klementiev A, Roth D, Small K. Unsupervised rank aggregation with dis-
tance-based models. In: Proceedings of the 25th international conference on
Machine learning; 2008. p. 472-9.

[21] Hsu DF, Taksa I. Comparing rank and score combination methods for data fu-
sion in information retrieval. Inf Retr Boston 2005;8(3):449-80.

[22] Desarkar MS, Sarkar S, Mitra P. Preference relations based unsupervised rank
aggregation for metasearch. Expert Syst Appl 2016;49:86-98.

[23] Dwork C, Kumar R, Naor M, Sivakumar D. Rank aggregation methods for the
web. In: Proceedings of the 10th international conference on World Wide Web;
2001. p. 613-22.

[24] Bol6n-Canedo V, Alonso-Betanzos A. Ensembles for feature selection: a review
and future trends. Information Fusion 2019;52:1-12.

[25] Sarkar C, Cooley S, Srivastava ]. Robust feature selection technique using rank
aggregation. Applied Artificial Intelligence 2014;28(3):243-57.

[26] Onan A, Korukoglu S. A feature selection model based on genetic rank ag-
gregation for text sentiment classification. Journal of Information Science
2017;43(1):25-38.

15

Omega 119 (2023) 102893

[27] Cascaro RJ, Gerardo BD, Medina RP. Aggregating filter feature selection meth-
ods to enhance multiclass text classification. In: Proceedings of the 2019 7th
international conference on information technology: IoT and smart city; 2019.
p. 80-4.

[28] Mehta P, Majumder P. Improving sentence extraction through rank aggrega-
tion. In: From extractive to abstractive summarization: a journey. Springer;
2019. p. 49-68.

[29] Oliveira SE, Diniz V, Lacerda A, Merschmanm L, Pappa GL. Is rank aggregation
effective in recommender systems? an experimental analysis. ACM Transac-
tions on Intelligent Systems and Technology (TIST) 2020;11(2):1-26.

[30] Cohen-Boulakia S, Denise A, Hamel S. Using medians to generate consensus
rankings for biological data. In: International conference on scientific and sta-
tistical database management. Springer; 2011. p. 73-90.

[31] Aledo JA, Gamez JA, Molina D. Tackling the supervised label ranking problem
by bagging weak learners. Information Fusion 2017;35:38-50.

[32] Werbin-Ofir H, Dery L, Shmueli E. Beyond majority: label ranking ensembles
based on voting rules. Expert Syst Appl 2019;136:50-61.

[33] Cook WD. Distance-based and ad hoc consensus models in ordinal preference
ranking. Eur J Oper Res 2006;172(2):369-85.

[34] Hare T. A treatise on the election of representatives, parliamentary and mu-
nicipal. Longman, Green, Longman, & Roberts; 1861.

[35] Borda Jd. Mémoire sur les élections au scrutin. Histoire de I'’Academie Royale
des Sciences pour 1781 (Paris, 1784) 1784.

[36] Copeland AH. A reasonable social welfare function. Tech. Rep.. mimeo, 1951
University of Michigan; 1951.

[37] Kemeny ]G, Snell L. Preference ranking: an axiomatic approach. Mathematical
models in the social sciences 1962:9-23.

[38] Kendall MG. A new measure of
1938;30(1/2):81-93.

[39] Diaconis P, Graham RL. Spearman’s footrule as a measure of disarray. Jour-
nal of the Royal Statistical Society: Series B (Methodological) 1977;39(2):
262-268.

[40] Diaconis P. Group representations in probability and statistics. Lecture notes—
monograph series 1988;11 i-192.

[41] Fagin R, Kumar R, Mahdian M, Sivakumar D, Vee E. Comparing partial rankings.
SIAM ] Discrete Math 2006;20(3):628-48.

[42] D’Ambrosio A, lorio C, Staiano M, Siciliano R. Median constrained bucket order
rank aggregation. Comput Stat 2019;34(2):787-802.

[43] Emond EJ, Mason DW. A new rank correlation coefficient with application
to the consensus ranking problem. Journal of Multi-Criteria Decision Analysis
2002;11(1):17-28.

[44] Gross OA. Preferential arrangements. The American Mathematical Monthly
1962;69(1):4-8.

[45] Young HP, Levenglick A. A consistent extension of condorcet’s election princi-
ple. SIAM ] Appl Math 1978;35(2):285-300.

[46] Bartholdi ], Tovey CA, Trick MA. Voting schemes for which it can be difficult to
tell who won the election. Soc Choice Welfare 1989;6(2):157-65.

[47] Acampora G, lorio C, Pandolfo G, Siciliano R, Vitiello A. A memetic algorithm
for solving the rank aggregation problem. In: Algorithms as a basis of modern
applied mathematics. Springer; 2021. p. 447-60.

[48] Ailon N, Charikar M, Newman A. Aggregating inconsistent information: ranking
and clustering. Journal of the ACM (JACM) 2008;55(5):1-27.

[49] Ailon N. Aggregation of partial rankings, p-ratings and top-m lists. Algorith-
mica 2010;57(2):284-300.

[50] Aledo JA, Gamez JA, Rosete A. Approaching rank aggregation problems by using
evolution strategies: the case of the optimal bucket order problem. Eur ] Oper
Res 2018;270(3):982-98.

[51] Ding ], Han D, Yang Y. Iterative ranking aggregation using quality improvement
of subgroup ranking. Eur | Oper Res 2018;268(2):596-612.

[52] Conitzer V, Davenport A, Kalagnanam ]. Improved bounds for computing ke-
meny rankings. In: AAAI vol. 6; 2006. p. 620-6.

[53] Yoo Y, Escobedo AR. A new binary programming formulation and social
choice property for kemeny rank aggregation. Decision Analysis 2021;18(4):
296-320.

[54] Azzini I, Munda G. A new approach for identifying the Kemeny median rank-
ing. Eur ] Oper Res 2020;281(2):388-401.

[55] Rico N, Vela CR, Diaz I. Reducing the time required to find the kemeny ranking
by exploiting a necessary condition for being a winner. Eur ] Oper Res 2022.

[56] Betzler N, Bredereck R, Niedermeier R. Theoretical and empirical evaluation of
data reduction for exact kemeny rank aggregation. Auton Agent Multi Agent
Syst 2014;28(5):721-48.

[57] Truchon M. An extension of the Condorcet criterion and Kemeny orders. Cite-
seer; 1998.

[58] Schalekamp F, Zuylen Av. Rank aggregation: Together we're strong. In: 2009
Proceedings of the eleventh workshop on algorithm engineering and experi-
ments (ALENEX). SIAM; 2009. p. 38-51.

[59] Akbari S, Escobedo AR. Lower bounds on kemeny rank aggregation with
non-strict rankings. In: 2021 IEEE symposium series on computational intel-
ligence (SSCI). IEEE; 2021. p. 1-8.

[60] Mattei N, Walsh T. PrefLib: A library for preferences http://www. preflib. org.
In: International Conference on Algorithmic DecisionTheory. Springer; 2013.
p. 259-70.

[61] Milosz R, Hamel S. Exploring the median of permutations problem. ] Discrete
Algoritms 2018;52:92-111.

[62] Kendall MG. The treatment of ties
1945;33(3):239-51.

rank correlation. Biometrika

in ranking problems. Biometrika


http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0001
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0002
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0003
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0004
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0005
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0006
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0007
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0008
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0009
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0010
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0011
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0012
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0013
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0014
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0015
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0016
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0017
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0018
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0019
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0020
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0021
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0022
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0023
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0024
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0025
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0026
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0027
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0028
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0029
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0030
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0031
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0032
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0033
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0034
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0035
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0036
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0037
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0038
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0039
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0040
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0041
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0042
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0043
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0044
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0045
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0046
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0047
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0048
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0049
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0050
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0051
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0052
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0053
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0054
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0055
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0056
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0057
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0058
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0059
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0060
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0061
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0062

S. Akbari and A.R. Escobedo

[63] Fagin R, Kumar R, Mahdian M, Sivakumar D, Vee E. Comparing and aggregat-
ing rankings with ties. In: Proceedings of the twenty-third ACM SIGMOD-SI-
GACT-SIGART symposium on principles of database systems; 2004. p. 47-58.

[64] Brancotte B, Yang B, Blin G, Cohen-Boulakia S, Denise A, Hamel S. Rank aggre-
gation with ties: experiments and analysis. Proceedings of the VLDB Endow-
ment (PVLDB) 2015;8(11):1202-13.

[65] Andrieu P, Brancotte B, Bulteau L, Cohen-Boulakia S, Denise A, Pierrot A,
Vialette S. Efficient, robust and effective rank aggregation for massive biologi-
cal datasets. Future Generation Computer Systems 2021.

[66] Moreno-Centeno E, Escobedo AR. Axiomatic aggregation of incomplete rank-
ings. IIE Trans 2016;48(6):475-88.

[67] Fagin R, Kumar R, Sivakumar D. Comparing top k lists. SIAM ] Discrete Math
2003;17(1):134-60.

[68] Lee PH, Philip L. Distance-based tree models for ranking data. Computational
Statistics & Data Analysis 2010;54(6):1672-82.

[69] Kumar R, Vassilvitskii S. Generalized distances between rankings. In: Proceed-
ings of the 19th international conference on World wide web; 2010. p. 571-80.

[70] Chee YM, et al. Breakpoint analysis and permutation codes in generalized
kendall tau and cayley metrics. In: 2014 IEEE international symposium on in-
formation theory. IEEE; 2014. p. 2959-63.

[71] Fu X, Liu L, Liu L, Feng Y, Yue K. Ordinal preferences driven reputation mea-
surement for online services with user incentive. In: 2020 IEEE international
conference on Web services (ICWS). IEEE; 2020. p. 248-55.

[72] Gilbert H, Portoleau T, Spanjaard O. Beyond pairwise comparisons in
social choice: asetwise kemeny aggregation problem. Theor Comput Sci
2022;904:27-47.

[73] Durand M, Pascual F. Collective schedules: Axioms and algorithms. In: Algo-
rithmic Game Theory: 15th International Symposium, SAGT 2022, Colchester,
UK, September 12-15, 2022, Proceedings. Springer; 2022. p. 454-71.

[74] Kendall MG. Partial rank correlation. Biometrika 1942;32(3/4):277-83.

[75] Rowland M, Omidshafiei S, Tuyls K, Perolat ], Valko M, Piliouras G, et al. Mul-
tiagent evaluation under incomplete information. Adv Neural Inf Process Syst
2019;32.

[76] Loreggia A, Mattei N, Rossi F, Venable KB. A notion of distance between
cp-nets. In: Proc. of AAMAS; 2018. p. 955-63.

16

Omega 119 (2023) 102893

[77] Zhang Y, Bouadi T, Martin A. A clustering model for uncertain preferences
based on belief functions. In: International conference on big data analytics
and knowledge discovery. Springer; 2018. p. 111-25.

[78] Fiorini S, Fishburn PC. Weak order polytopes.
2004;275(1-3):111-27.

[79] Grotschel M, Jiinger M, Reinelt G. A cutting plane algorithm for the linear or-
dering problem. Oper Res 1984;32(6):1195-220.

[80] Yoo Y, Escobedo AR, Skolfield JK. A new correlation coefficient for comparing
and aggregating non-strict and incomplete rankings. Eur ] Oper Res 2020.

[81] Glover F, Woolsey E. Converting the 0-1 polynomial programming problem to
a 0-1 linear program. Oper Res 1974;22(1):180-2.

[82] Davenport A, Kalagnanam J]. A computational study of the Kemeny rule for
preference aggregation. In: AAAI vol. 4; 2004. p. 697-702.

[83] Pedings KE, Langville AN, Yamamoto Y. A minimum violations ranking method.
Optimization and Engineering 2012;13(2):349-70.

[84] Dantzig G, Fulkerson R, Johnson S. Solution of a large-scale traveling-sales-
man problem. Journal of the operations research society of America
1954;2(4):393-410.

[85] Dantzig GB, Fulkerson DR, Johnson SM. On a linear-programming, combinato-
rial approach to the traveling-salesman problem. Oper Res 1959;7(1):58-66.

[86] Marquis de Condorcet MJA. Essai sur I'application de I'analyse a la probabilite
des decisions: rendues a la pluralite de voix. De I'Imprimerie royale; 1785.

[87] Young HP. Condorcet’s theory of voting. American Political science review
1988;82(4):1231-44.

[88] Dodgson C. A method of taking votes on more than two issues. The theory of
committees and elections 1876.

[89] Young HP. Extending condorcet’s rule. ] Econ Theory 1977;16(2):335-53.

[90] Tideman N. Collective decisions and voting: the potential for public choice.
Routledge; 2017.

[91] Smith JH. Aggregation of preferences with variable electorate. Econometrica:
Journal of the Econometric Society 1973:1027-41.

[92] Arrow K]. Social choice and individual values. New Haven, CT: Cowles Founda-
tion; 1951.

Discrete  Math


http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0063
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0064
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0065
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0066
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0067
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0068
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0069
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0070
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0071
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0072
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0073
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0074
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0075
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0076
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0077
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0078
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0079
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0080
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0081
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0082
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0083
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0084
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0085
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0086
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0087
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0088
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0089
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0090
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0091
http://refhub.elsevier.com/S0305-0483(23)00057-9/sbref0092

	Beyond kemeny rank aggregation: A parameterizable-penalty framework for robust ranking aggregation with ties
	1 Introduction
	2 Notation and preliminaries
	3 Parameterizable-penalty rank aggregation problem
	3.1 Definition and formulation
	3.2 Constraint relaxation method
	3.3 The least imposed cost heuristic (LICH)

	4 Generalizing the condorcet criterion and its variants
	4.1 Generalizing condorcet partitioning schemes
	4.2 Enlarged GXCC partitions

	5 Effect of modifying the penalty parameter
	6 Computational results
	6.1 Data sets
	6.2 Results

	7 Conclusion and future research
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References


