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a b s t r a c t 

Rank Aggregation has ubiquitous applications in operations research, artificial intelligence, computational 

social choice, and various other fields. Interest in this problem has increased due in part to the need to 

consolidate lists of rankings and scores output by different decision-making processes and algorithms. Al- 

though most attention has focused on the variant of this problem induced by the Kemeny-Snell distance, 

other robust rank aggregation problems have been proposed. This work delves into the rank aggrega- 

tion problem under the generalized Kendall-tau distance —a parameterizable-penalty distance measure 

for comparing rankings with ties— which contains Kemeny aggregation as a special case. First, it de- 

rives exact and heuristic solution methods. Second, it introduces a social choice property (GXCC) that 

encloses existing variations of the Condorcet criterion as special cases, thereby expanding this seminal 

social choice concept beyond Kemeny aggregation for the first time. GXCC offers both computational and 

theoretical advantages. In particular, GXCC may help to divide the original problem into smaller subprob- 

lems, while still ensuring that solving them independently yields the optimal solution to the original 

problem. Experiments on two benchmark datasets conducted herein show that the featured exact and 

heuristic solution methods can benefit from GXCC. Finally, this work derives new theoretical insights into 

the effects of the generalized Kendall-tau distance penalty parameter on the optimal ranking and on the 

proposed social choice property. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Rank aggregation is an important problem in operations re- 

earch and artificial intelligence, and it has been studied in vari- 

us other fields including crowdsourcing [1,2] , bioinformatics [3] , 

nd computational social choice [4] . Its wide array of applications 

nclude meta-search engines [5] , journals ranking [6,7] , informa- 

ion retrieval [8] , ride pooling [9] , supplier selection [10] , and net-

ork inference [11,12] . Generally speaking, rank aggregation can 

e utilized whenever a set of judges (human or non-human) ex- 

ress their preferences over a set of items, and it is necessary 

o find a ranking that best represents these preferences collec- 

ively. It has been advocated as a systematic approach to guide 

ecision-making processes, especially in multi-criteria decision- 

aking (MCDM) [13–16] . MCDM methods evaluate alternatives 

ased on predefined criteria and subsequently sort or rank them 
� Area - Decision Analysis and Preference-Driven Analytics. This manuscript was 
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ased on the evaluations [16] . Prominent examples include AHP 

analytic hierarchy process) [17] , ANP (analytic network process) 

18] , and ELECTRE (ELimination and Choice Expressing REality) 

19] . Since different MCDM methods produce conflicting rankings, 

nding an overall consensus ranking that resolves these disagree- 

ents is of paramount importance [16] . In the context of informa- 

ion retrieval, analogous concerns fall under the umbrella of data 

usion, where the goal is to derive a collective ranking of differ- 

nt information retrieval systems [20] ; rank aggregation methods 

ave been effective in this context as well [21] . Furthermore, rank 

ggregation has also gained attention over the past few years as 

 robust mechanism for consolidating heterogeneous ordered lists 

utput by different machine learning techniques [20] . It has been 

sed for this purpose, for example, in meta-search engines and 

pam detection [22,23] , feature selection [24–26] , natural language 

rocessing [27,28] , recommendation systems [29] , data query [30] , 

nd label ranking [31,32] . 

Rank aggregation methodologies can be categorized into 

istance-based and ad hoc methods [33] , the latter of which is 

urther divided into elimination and non-elimination methods. 

 prominent elimination ad hoc method is Ranked Choice Vot- 

ng [4,34] . The popular score-based methods fall into the non- 

https://doi.org/10.1016/j.omega.2023.102893
http://www.ScienceDirect.com
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limination ad hoc category; these methods rank items by assign- 

ng scores to the items according to some function based on their 

ositions in each of the input rankings. Examples of score-based 

ethods are Borda rule [35] and Copeland rule [36] . 

This work focuses on distance-based methods to take advan- 

age of their rigorous axiomatic foundations and associated socio- 

heoretic properties, which translate into higher robustness to out- 

iers and manipulations [4] . Note, however, that their aggregation 

roblems tend to be more computationally demanding and are of- 

en NP-hard [4] . The reason is that techniques in this category re- 

urn a ranking among all possible solutions from a large combina- 

orial space with the least distance to all input rankings according 

o a specified distance measure. There are various distance mea- 

ures between rankings including Kemeny-Snell [37] , Kendall-tau 

38] , and Spearman’s footrule [39] . We refer the reader to Diaconis 

40] and Fagin et al. [41] for descriptions of various such distance 

easures between strict rankings (rankings without ties) and non- 

trict rankings (rankings that may contain ties), respectively. 

Dealing with non-strict rankings in real-world applications is 

he rule rather than the exception [42,43] . Their prominence has 

ncreased in recent years due to their enhanced flexibility in rep- 

esenting preference data. In particular, it may not possible for hu- 

ans to express their preferences strictly over more than a very 

mall number of items, or a subset of items may be considered in- 

istinguishable to a specific MCDM or machine learning algorithm 

e.g, it may award the same score to multiple items). What is more, 

orcing the judges to express their preferences in a strict manner 

ay not reflect their true opinion. Therefore, developing rank ag- 

regation frameworks capable of handling this type of ranking data 

s crucial. However, it is worth noting that allowing this flexibility 

n expressing the judge’s preferences comes at a higher compu- 

ational cost, as there are n ! possible strict ranking solutions as 

pposed to approximately 0 . 5 n !(1 . 4) n +1 >> n ! possible non-strict

olutions, where n is the number of items [44] . To better appreci- 

te the difference in magnitudes, when n = 5 , there are 120 strict

ankings and approximately 452 non-strict rankings; when n = 50 , 

here are 3 . 04 × 10 64 strict rankings and approximately 4 . 31 × 10 71 

on-strict rankings. 

Kemeny aggregation (KEM-AGG) is perhaps the most widely 

tudied variant of the distance-based rank aggregation problem. Its 

opularity is largely due to the fact that the Kemeny-Snell distance 

unction underlying this problem uniquely satisfies a key set of ax- 

oms, namely anonymity, commutativity, extension, non-negativity, 

caling, and the triangular inequality [37] . In addition, the optimal 

olution to KEM-AGG satisfies various desired social choice proper- 

ies including the Condorcet criterion, consistency, and neutrality 

45] . However, KEM-AGG is NP-hard when there are four or more 

nput rankings [23,46] . For this reason, the dominant focus on so- 

ution methods for this problem has been on approximation and 

euristic algorithms (see e.g., [23,47–51] ) and relatively less atten- 

ion has been devoted to exact methods. In particular, KEM-AGG 

or strict rankings has been formulated with binary programming 

n Conitzer et al. [52] and Cook [33] and for non-strict rankings in 

oo and Escobedo [53] . Other exact methods include the special- 

zed branch and bound algorithm of Emond and Mason [43] and 

he iterative exact algorithms of Azzini and Munda [54] and Rico 

t al. [55] for strict and non-strict rankings, respectively. Exact 

ethods are capable of solving instances mostly with tens and no 

ore than a few hundred items reliably. For example, the largest 

trict ranking instance solved exactly in Emond and Mason [43] , 

onitzer et al. [52] , Betzler et al. [56] , had 15, 40, and 200 items,

espectively, and the largest non-strict ranking instance solved ex- 

ctly in Yoo and Escobedo [53] had 210 items. 

Recent works have explored how the solution to KEM-AGG can 

e accelerated by leveraging certain social choice properties, which 

re provably satisfied by the optimal solution(s) to this problem. 
2 
ased on these properties, certain instances can be partitioned into 

 set of subproblems, such that solving them independently to 

ptimality and concatenating the solutions is guaranteed to pro- 

uce an optimal solution to the larger original problem. A preva- 

ent partitioning scheme is based on the seminal Condorcet crite- 

ion and its variants, including the Extended Condorcet criterion 

XCC) [57] for strict rankings and the Non-strict Extended Con- 

orcet criterion (NXCC) [53] for non-strict rankings. These tech- 

iques have been used to accelerate exact formulations of KEM- 

GG [53,56,58] and lower bounding techniques [59] . Yoo and Es- 

obedo [53] reported that NXCC accelerated their exact binary pro- 

ramming formulation by at least 25% and up to 96% on tested in- 

tances from the Preflib database [60] . As shown later in this paper, 

hey can accelerate other exact methods and improve the perfor- 

ance and run time of heuristics as well. It is worth mentioning 

hat Betzler et al. [56] introduced another partitioning technique 

ased on the 3/4-Majority Rule ; however, the authors proved that 

CC partitioning is always at least as good as partitioning using the 

/4-Majority Rule. Additionally, Milosz and Hamel [61] introduced 

 related approach that finds the relative ordering of certain item- 

airs in the optimal solution(s). While it was shown to be more 

ffective than XCC in providing the partial structure of the optimal 

olution(s) to KEM-AGG, the associated algorithm has a complex- 

ty of O (n 3 ) , where n is the number of items—whereas XCC has a

omplexity of O (n 2 ) —and it is only applicable for strict rankings. 

The Kendall-tau distance [62] is another widely used distance 

etween strict rankings. It is equivalent to the Kemeny-Snell dis- 

ance whenever the input rankings are strict, but unlike the latter, 

t is not capable of handling non-strict rankings, i.e., it is not a dis- 

ance measure in the presence of ties as it violates the triangular 

nequality [63] . Fagin et al. [63] proposed the generalized Kendall- 

au distance (a parameterizable-penalty distance measure, among 

arious metrics for comparing non-strict rankings), which includes 

he Kemeny-Snell distance as a special case. Accordingly, KEM- 

GG represents only one variant of the Parameterizable-penalty 

ank Aggregation (RANK-AGG( p)) framework, which is introduced 

erein to capitalize on the robust and flexible framework for han- 

ling ties induced by the generalized Kendall-tau distance. After 

ormally defining RANK-AGG( p), this paper presents several exact 

nd heuristic solution methods, and it generalizes the Condorcet 

riterion and its variants to expedite its solution. It is important to 

ention that another special case of RANK-AGG( p) has been stud- 

ed in the literature, specifically by Brancotte et al. [64] and An- 

rieu et al. [65] , who present an exact formulation and partitioning 

cheme, respectively. However, the general form of this rank aggre- 

ation problem has received little to no attention. In summary, this 

aper makes the following contributions: 

• Define Parameterizable-penalty Rank Aggregation, which in- 

cludes the Kemeny aggregation as a special case. 
• Introduce an exact formulation, a constraint relaxation, and a 

heuristic algorithm for Parameterizable-penalty Rank Aggrega- 

tion. 
• Present a new social choice property (GXCC) that generalizes 

the Condorcet criterion and its variants beyond Kemeny aggre- 

gation for the first time 
• Derive a partitioning method with respect to GXCC for expedit- 

ing both exact and inexact approaches. 
• Derive theoretical insights regarding the effect of the general- 

ized Kendall-tau distance penalty parameter on the resulting 

partitions and solutions of the problem. 

The rest of this paper is organized as follows. Section 2 in- 

roduces the notation used throughout the paper and estab- 

ishes some preliminaries. Section 3 introduces various exact 

nd heuristic methods. Section 4 generalizes the Condorcet cri- 

erion and its variants. Section 5 studies the effect of the gen- 
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ralized Kendall-tau distance penalty parameter on the optimal 

olution. Section 6 presents the computational results. Finally, 

ection 7 concludes the paper and discusses future directions of 

esearch. 

. Notation and preliminaries 

Rankings can be divided into strict and non-strict. Strict rank- 

ngs do not contain ties, while non-strict rankings allow for the 

ossibility of ties. It is important to note that all strict rankings 

re included in the set of non-strict rankings, meaning that the lat- 

er may have ties. Rankings can also be further classified as com- 

lete or incomplete. In complete rankings, all items are ranked, 

hile in incomplete rankings, some items may be unranked. Rea- 

ons for this include practicality, feasibility, and judiciousness [66] . 

his study focuses on complete non-strict rankings, but the meth- 

ds proposed can be applied to strict rankings due to the relation- 

hip between the two classes of rankings. 

Let X = { 1 , 2 , . . . , n } be the set of items, L = { 1 , 2 , . . . , m } be
he set of indices of input rankings over X , and � ⊂ X 

n be the set 

f all possible complete ranking vectors over X . Additionally, let πl 

e the input ranking l ∈ L , and π l 
i 
be the rank of item i in πl . Fur-

hermore, let � = { (i, j) | i, j ∈ X , j > i } be the set of distinct pairs
f items. This paper focuses on complete rankings, where all items 

re explicitly ranked in the input and output rankings. The input 

ankings and the consensus ranking(s) can be strict or non-strict. 

The preference relationship i �π j indicates that item i is pre- 

erred over item j in π, i.e., π
i 
< π

j 
, and i ≈π j indicates that i and

j are tied in π, i.e., π
i 
= π

j 
. As a convention, let a full rank reversal

enote the case where two rankings π1 , π2 fully disagree over the 

elative orderings of items i and j (one of them ranks i ahead of 

j, and the other has the reverse opinion); additionally, let a partial 

ank reversal denote the case where i and j are tied in one ranking, 

ut not in the other. 

efinition 1. Let s i j = | l ∈ L : i �πl j| and t i j = | l ∈ L : i ≈πl j| be
he number of input rankings in which item i is preferred over 

tem j, and the number of input rankings in which i and j are tied,

espectively. 

efinition 2. (Yoo and Escobedo [53] ) Item i is said to be pairwise

referred by a decisive majority over item j if s i j > s ji + t i j . 

For the rest of the paper, we use the term pairwise preferred in- 

tead of pairwise preferred by a decisive majority, for succinctness. 

efinition 3. The Kemeny-Snell distance between two complete 

ankings π1 , π2 , denoted by d KS ( π
1 , π2 ) , is given by 

 KS ( π
1 , π2 ) = 

1 

2 

∑ 

i, j∈ X 

∣∣sign (π1 
i − π1 

j ) − sign (π2 
i − π2 

j ) 
∣∣. 

The function sign (v ) returns 1 if v > 0 , −1 if v < 0 , and 0 other-

ise. In the case of strict rankings, d KS counts the number of full 

ank reversals. In the case of non-strict rankings, every full rank 

eversal has twice the weight of every partial rank reversal. 

efinition 4. The consensus ranking obtained from KEM-AGG can 

e mathematically stated as 

∗
KS = argmin 

π∈ �

∑ 

l∈ L 
d KS ( π, πl ) . (1) 

There is an equivalent rank aggregation problem to problem 

1) . Specifically, Emond and Mason [43] showed that whenever the 

ankings are complete, the aggregate ranking obtained by minimiz- 

ng the cumulative Kemeny-Snell distance between the aggregate 

anking and the input rankings is equivalent to the aggregate rank- 

ng obtained by maximizing the extended Kendall’s tau correlation 
3

oefficient ( τx ) between the aggregate ranking and the input rank- 

ngs. In mathematical terms, we have that 

rgmin 
π∈ �

∑ 

l∈ L 
d KS ( π, πl ) = argmax 

π∈ �

∑ 

l∈ L 
τx ( π, πl ) . (2) 

espite its name, this correlation measure differs from the distance 

hat is the subject of this work, which is defined as follows. 

efinition 5. The Kendall-tau distance between two complete 

trict rankings π1 , π2 , denoted by d KT ( π
1 , π2 ) , is given by 

 KT ( π
1 , π2 ) = 

∑ 

(i, j) ∈ �
K i j ( π

1 , π2 ) , (3) 

here K i j ( π
1 , π2 ) is set to 1 if the relative orderings of i and j are

ifferent in π1 and π2 , and 0 otherwise. In other words 

 i j ( π
1 , π2 ) = 

{
1 if (i �π1 j ∧ j �π2 i ) ∨ ( j �π1 i ∧ i �π2 j) 
0 otherwise . 

It is straightforward to verify that whenever the input rankings 

re strict, d KT and d KS are equivalent; however, unlike d KS , d KT is 

ot capable of handling ties [63] . Fagin et al. [63] proposed a gen-

ralization of the Kendall-tau distance for non-strict rankings using 

ucket orders, otherwise known as weak orders. A bucket order B 

s a transitive, total, and reflexive binary relation � in which buck- 

ts B 1 , . . . , B t form a partition of X such that i � j if and only if

 ∈ B k and j ∈ B k ′ , with k < k ′ . Members of the same bucket are

onsidered as being tied. The position of bucket B k is defined as 

pos (B k ) = ( 
∑ 

k ′ <k | B k ′ | ) + (| B k | + 1) / 2 , and it indicates the average

ocation within bucket B k . A bucket order becomes a linear order 

hen the cardinality of all buckets equals one. A non-strict ranking 

can be mapped to a bucket order by letting πi = pos ( B ) , where

 is the bucket containing item i [63] . 

Next, we restate the definition of the generalized Kendall-tau 

istance introduced by Fagin et al. [63] . Given a fixed penalty pa- 

ameter 0 ≤ p ≤ 1 and two rankings π1 and π2 , let K 
(p) 
i j 

( π1 , π2 ) be

he contribution to the distance function, for each pair (i, j) ∈ �. 

here are three cases with respect to the relative orderings of 

tems i and j in π1 and π2 : 

ases 1. There is a strict ordering between i and j in π1 and π2 . If

 and j are in the same order in both rankings, set K 
(p) 
i j 

( π1 , π2 ) =
 ; otherwise, set K 

(p) 
i j 

( π1 , π2 ) = 1 . 

ases 2. Both rankings tie i and j. In this case, set K 
(p) 
i j 

( π1 , π2 ) =
 . 

ases 3. One of the rankings ties i and j, but not the other. In this

ase, set K 
(p) 
i j 

( π1 , π2 ) = p. 

Piecing together the above three cases, K 
(p) 
i j 

( π1 , π2 ) can be suc- 

inctly written as 

K (p) 
i j 

( π1 , π2 ) 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 if (i �π1 j ∧ j �π2 i ) ∨ ( j �π1 i ∧ i �π2 j) 
p if (i ≈π1 j ∧ (i �π2 j ∨ j �π2 i )) 

∨ (i ≈π2 j ∧ (i �π1 j ∨ j �π1 i )) 
0 otherwise . 

Considering all distinct item-pairs, the Kendall-tau distance with 

enalty parameter p, denoted as K (p) , can be abbreviated as 

 
(p) ( π1 , π2 ) = 

∑ 

(i, j) ∈ �
K (p) 
i j 

( π1 , π2 ) . (4) 

ote that Case 1 corresponds to a full rank reversal, and Case 3 

orresponds to a partial rank reversal. Additionally, Eq. (4) induces 
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he Kemeny-Snell distance (scaled by 1/2) as a special case, namely 

or p = 1 / 2 . The K (p) distance is a metric for 1 / 2 ≤ p ≤ 1 , a near

etric for 0 < p < 1 / 2 , and not a metric for p = 0 [63] . The ensu-

ng example helps illustrate the use of this distance. 

xample 1. Define two non-strict rankings of four item π1 = 

1 , 2 , 3 , 3) and π2 = (2 , 1 , 1 , 1) ; the bucket orders correspond-

ng to these two rankings are B 1 = {{ 1 } , { 2 } , { 3 , 4 }} and B 2 =
{ 2 , 3 , 4 } , { 1 }} , respectively. The example highlights all three cases

f the distance: K 
(p) 
12 

( π1 , π2 ) = 1 (Case 1), K 
(p) 
34 

( π1 , π2 ) = 0 (Case

), and K 
(p) 
23 

( π1 , π2 ) = p (Case 3). Considering all distinct item- 

airs, we obtain K (p) ( π1 , π2 ) = 3 + 2 p. 

There are other variants of the Kendall-tau and Kemeny-Snell 

istances worth discussing, namely those of [67–73] . Each of these 

istances cannot be considered as a special case of the generalized 

endall-tau distance defined in Fagin et al. [63] and vice versa. 

n particular, Lee and Philip [68] , Kumar and Vassilvitskii [69] , 

nd Durand and Pascual [73] all propose slightly different gen- 

ralizations of Kendall tau distance for comparing strict rankings 

here item-pairs/position-pairs are weighted. Chee et al. [70] gen- 

ralized the Kendall-tau distance from another angle by focusing 

n swapping adjacent intervals instead of adjacent items. Fagin 

t al. [67] generalized the Kendall-tau distance for comparing top- 

 lists, defined as rankings wherein out of n total items, only a 

mall number of them, k , are explicitly ordered. The items in a 

op- k list are assumed to be pairwise preferred over all absent 

tems. In a somewhat related but distinct direction, Gilbert et al. 

72] proposed a set-wise generalization of the Kemeny-Snell dis- 

ance where instead of counting pairwise disagreements, the mea- 

ure counts the number of k -wise disagreements, i.e., the number 

f disagreement in a subset of top-choice alternatives of cardinal- 

ty at most k . The reviewed works solely focus on strict rankings, 

herefore, the generalized Kendall-tau distance, in its general form, 

annot be considered one of their special cases. Furthermore, the 

eneralized Kendall-tau distance does not place weights on item- 

airs/position-pairs and only focuses on complete rankings (not 

op- k lists), therefore, it does not include any of the reviewed dis- 

ances, in their general form, as a special case. 

. Parameterizable-penalty rank aggregation problem 

Setting aside the rather unacceptable process of breaking ties 

andomly, there are three prevalent treatments for handling par- 

ial rank reversals: 1) Assuming full agreement [74] ; 2) Assuming 

ull disagreement [64,65] ; and 3) Reflecting a level of agreement 

alfway between the two extremes [37] . To elaborate, assume that 

very full rank reversal has unit weight. Then, each partial rank 

eversal has a weight of 0, 1, and 0.5 under treatments 1–3, re- 

pectively. The entire agreement-disagreement spectrum is cov- 

red by the K (p) distance (via the penalty parameter p), which has 

een utilized for comparing non-strict rankings in numerous ap- 

lications such as multiagent system evaluation [75] , CP-nets [76] , 

nd social network analysis [77] . Despite the high flexibility of this 

istance measure in handling partial rank reversals, its associated 

ank aggregation problem has received little to no attention in the 

iterature. The general form of the distance has not been studied 

n the context of ranking aggregation; however, Brancotte et al. 

64] and Andrieu et al. [65] have used it for this purpose for the

pecial case induced by setting p = 1 (i.e., treatment 2). 

This section is organized as follows. Section 3.1 formally defines 

ANK-AGG( p), proves it is NP-hard and proposes an exact formu- 

ation. Section 3.2 devises a constraint relaxation method for solv- 

ng the formulation more efficiently. Finally, Section 3.3 presents a 

ovel heuristic algorithm. 
4 
.1. Definition and formulation 

RANK-AGG( p) seeks a ranking π∗—either strict or non-strict—

ith the lowest cumulative K (p) distance to all the input rankings. 

efinition 6. The optimal ranking obtained from RANK-AGG( p) can 

e mathematically stated as 

∗ = argmin π∈ �
∑ 

l∈ L 
K (p) ( π, πl ) = argmin π∈ �

∑ 

l∈ L 

∑ 

(i, j) ∈ �
K (p) 
i j 

( π, πl )

(5) 

heorem 1. RANK-AGG( p) is NP-hard for m ≥ 4 . 

roof. KEM-AGG was shown to be NP-hard for m ≥ 4 by an en- 

oding of the feedback arc set problem [23,46] . Since KEM-AGG is 

nly a special case of RANK-AGG( p), the latter inherits the compu- 

ational complexity of the former. �

It is pertinent to add that m = 2 has a trivial solution as both of

he input lists are optimal solutions. The computational complexity 

f the feedback arc set problem and KEM-AGG for m = 3 is an open

roblem [23] , to the best of our knowledge. 

Before proceeding, it is worth adding that due to the relation- 

hip depicted in Eq. (2) , RANK-AGG( p) also includes the rank 

ggregation technique associated with the extended Kendall’s tau 

orrelation coefficient, which maximizes the value of that measure 

etween the aggregate ranking and the input rankings, as a special 

ase. 

To introduce an exact formulation for RANK-AGG( p), the cumu- 

ative K (p) distance between a given ranking π ∈ � and all the in- 

ut rankings is re-expressed equivalently as 
∑ 

(i, j) ∈ �
K 

(p) 
i j 

( π) , where 

 

(p) 
i j 

( π) = 

{ 

s ji + pt i j if i �π j, 
s i j + pt i j if j �π i, 
p(s i j + s ji ) if i ≈π j. 

(6) 

q. (6) states that, whenever item i is ranked ahead of item j in 

, the imposed K (p) distance between π and all the input rank- 

ngs for this item-pair equals the number of input rankings where 

j is ranked ahead of i , plus p-times the number of input rankings 

here i and j are tied. Whenever the pair is tied, the imposed 

 
(p) distance is p-times the number of input rankings where there 

s strict ordering between i and j. 

Brancotte et al. [64] proposed a mixed-integer linear program- 

ing formulation for solving Problem (5) for the special case in- 

uced by fixing p = 1 . Herein, we revise their objective function to 

eflect any possible value of p as follows: 

in 
∑ 

i ∈ X 

∑ 

j∈ X 

[ 
(s ji + p t i j ) x i � j + (s i j + p t i j ) x j�i + p(s i j + s ji ) x i ≈ j 

] 
(7a) 

.t. x i � j + x j�i + x i ≈ j = 1 ∀ (i, j) ∈ � (7b) 

 i � j − x k � j − x i �k ≥ −1 ∀ i, j, k ∈ X ; i 
 = j 
 = k (7c) 

 x i � j + 2 x j�i + 2 x j�k + 2 x k � j − x i �k − x k �i ≥ 0 ∀ i, j, k ∈ X ; k > i, j 
 = k 

(7d) 

 i � j , x i ≈ j ∈ B ∀ i, j ∈ X . (7e) 

Decision variable x i � j is equal to 1 if item i is ranked ahead of 

tem j and 0 otherwise, and decision variable x i ≈ j is equal to 1 if i

nd j are tied, and 0 otherwise. The objective function (7a) mini- 

izes the cumulative K (p) distance to all the input rankings using 
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q. (6) . Constraint (7b) enforces that, for every distinct item-pair 

i, j) , either i is ranked ahead of j , j is ranked of i , or i and j are

ied. Constraint (7c) enforces preference-transitivity by preventing 

reference-cycles [78,79] ; for example, if i is ranked ahead of j, 

nd j is ranked ahead of k , then i must be ranked of k as well.

onstraint (7d) enforces that if i and j are tied, and j and k are 

ied, then i and k must be tied as well (see Yoo and Escobedo

53] for additional types of preference-cycles involving non-strict 

ankings avoid through these constraints). Constraint (7e) specifies 

he domain of the variables. 

Yoo and Escobedo [53] report that their formulation for KEM- 

GG with non-strict rankings, denoted as GKBP, outperformed the 

ariant of Formulation (7) induced by fixing p = 1 / 2 . Because GKBP

akes advantage of the specific relationship between the Kemeny- 

nell distance and the extended Kendall’s correlation coefficient 

43,80] , it cannot be directly applied to model RANK-AGG( p). Nev- 

rtheless, inspired by its computational performance and the fact 

hat its constraints are equivalent to the axiomatic facet defining in- 

qualities of the weak order polytope [53,78] , we propose an al- 

ernative formulation for solving Problem (5) that uses the same 

et of constraints. The proposed formulation is a non-linear binary 

rogramming model and is given by: 

in 
∑ 

i ∈ X 

∑ 

j∈ X 
(s ji + pt i j ) y i j + 

∑ 

(i, j) ∈ �

(
p(s i j + s ji ) − s i j − s ji − 2 pt i j 

)
y i j y ji 

(8a) 

.t. y i j + y ji ≥ 1 ∀ (i, j) ∈ � (8b) 

 i j − y k j − y ik ≥ −1 ∀ i, j, k ∈ X ; i 
 = j 
 = k (8c) 

 i j ∈ B ∀ i, j ∈ X ; i 
 = j. (8d) 

Here, the decision variable y i j is equal to 1 if item i is ranked

head of or tied with item j, and 0 otherwise. Item i is ranked

head of item j if y i j = 1 , y ji = 0 (giving y i j y ji = 0 ), and items i

nd j are tied whenever y i j = y ji = 1 (giving y i j y ji = 1 ). The objec-

ive function (8a) minimizes the cumulative K (p) distance to all the 

nput rankings. Constraint (8b) enforces that i and j cannot be si- 

ultaneously dispreferred over each other. Constraint (8c) imposes 

reference-transitivity, and Constraint (8d) specifies the domain of 

ariables. Let π be an arbitrary non-strict ranking induced by a 

easible solution to Formulation (8) ; the rank of item i in π is ob-

ained as πi := n − ∑ 

j∈ X : i 
 = j y i j . 
The objective function (8a) can be linearized using a technique 

roposed by Glover and Woolsey [81] . For each distinct item-pair 

i, j) , the binary product y i j y ji in the objective function is replaced

y the auxiliary continuous variable z i j , with the addition of four 

onstraints: z i j ≤ y i j , z i j ≤ y ji , z i j ≥ y i j + y ji − 1 , z i j ≥ 0 . Since the

bjective coefficient of y i j y ji , i.e., 
(
p(s i j + s ji ) − s i j − s ji − 2 p t i j 

)
, is

lways less than or equal to zero, constraint z i j ≥ y i j + y ji − 1 is

ctually redundant; that is, whenever y i j = y ji = 1 , the objective 

unction has the incentive to set z i j to its maximum value of 1 and

here is no need for this constraint. The full mixed-integer linear 

rogram for Problem (5) is as follows: 

in 
∑ 

i ∈ X 

∑ 

j∈ X 
(s ji + pt i j ) y i j + 

∑ 

(i, j) ∈ �

(
p(s i j + s ji ) − s i j − s ji − 2 p t i j 

)
z i j 

(9a) 

.t. y i j + y ji ≥ 1 ∀ (i, j) ∈ � (9b) 

 i j − y k j − y ik ≥ −1 ∀ i, j, k ∈ X ; i 
 = j 
 = k (9c) 
t

5 
 i j ≤ y i j ∀ (i, j) ∈ � (9d) 

 i j ≤ y ji ∀ (i, j) ∈ � (9e) 

 i j ≥ 0 ∀ (i, j) ∈ � (9f) 

 i j ∈ { 0 , 1 } ∀ i, j ∈ X ; i 
 = j. (9g) 

It is possible to derive a lower bound on Problem (5) using the 

airwise comparison information provided in Eq. (6) . 

roposition 1. A lower bound on Problem (5) can be obtained as: 

B = 

∑ 

(i, j) ∈ �
min 

(
s ji + p t i j , s i j + p t i j , p(s i j + s ji ) 

)
. (10) 

roof. For every distinct item-pair, Eq. (10) selects the smallest 

ontribution among all three possible preference relationships be- 

ween the items. �

Proposition 1 effectively generalizes the lower bound for KEM- 

GG with strict rankings introduced in Davenport and Kalagnanam 

82] and with non-strict rankings introduced in Akbari and Es- 

obedo [59] . This lower bound can be boosted by detecting 

reference-cycles in the input rankings, as the solution obtained 

y selecting the smallest contribution for each distinct item-pair 

ay not be transitive [52,61] . Yet another lower bound can be ob- 

ained by solving the linear programming relaxation of Formula- 

ions (7) or (9) . 

.2. Constraint relaxation method 

Formulation (9) has O (n 3 ) preference-transitivity constraints 

i.e., Constraints (9c) ) which makes solving it to optimality very 

ifficult and practically impossible for large values of n . However, 

nly a very small fraction of these constraints are typically nec- 

ssary to solve rank aggregation problem instances to optimality 

83] . We use this insight to develop a constraint relaxation (CR) 

ethod [84,85] to solve instances that are practically unsolvable 

ith off-the-shelf methods. The pseudocode of CR is presented in 

lgorithm 1 . It begins by dropping all preference-transitivity con- 

traints from Formulation (9) —this is denoted as the Relaxed For- 

ulation . At each iteration of CR, the Relaxed Formulation is solved 

nd the solution is inspected to determine whether there are un- 

atisfied preference-transitivity constraints, which are added to the 

odel. This process is repeated until the solution does not vio- 

ate any preference-transitivity constraints. CR is guaranteed to ob- 

ain an optimal solution, as all preference-transitivity constraints 

which are finite) are added to the Relaxed Formulation in the 

orst-case scenario. 

.3. The least imposed cost heuristic (LICH) 

In this section, we develop a greedy iterative algorithm, de- 

oted as the Least Imposed Cost Heuristic (LICH), for solving RANK- 

GG( p). Placing item i at any position of a bucket order contributes 

 certain amount to the objective function (9a) ; denote this im- 

osed cost as υ(i ) . The algorithm works by iteratively adding an 

tem among a small number of positions in a working bucket or- 

er, namely the available item with the lowest associated υ-value. 

LICH’s pseudocode is presented in Algorithm 2 and is summa- 

ized as follows. In the first iteration, one item needs to be selected 

o initialize the working bucket order. Placing item i in the first 
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Algorithm 1: Constraint Relaxation (CR) Method . 

Input : p, 
[
s i j 

]
∈ Z 

n.n , 
[
t i j 

]
∈ Z 

n.n 

Output : Optimal solution to Formulation (9) 

1 t := 0 ; 

2 � := { (i, j, k ) | i, j, k ∈ X ; i 
 = j 
 = k } ; // set of all 
item-triplets 

3 �′ := ∅ ; // set of item-triplets whose 
preference-transitivity constraints are included in the 
Relaxed Formulation (see the next line) 

4 Build the Relaxed Formulation: 

min 
∑ 

i ∈ X 

∑ 

j∈ X 
(s ji + p t i j ) y i j 

+ 

∑ 

(i, j) ∈ �

(
p(s i j + s ji ) − s i j − s ji − 2 p t i j 

)
z i j 

s.t. (9 b) , (9 d) − (9 g) 

y i j − y k j − y ik ≥ −1 ∀ (i, j, k ) ∈ �′ 

5 Preference_Transitivity_Violation = True ; 

6 while Preference_Transitivity_Violation is True do 

7 Preference_Transitivity_Violation = False; 

8 Solve the Relaxed Formulation and obtain solution y i j , 

where i, j ∈ X , i 
 = j; 

9 for (i, j, k ) ∈ �\ �′ do 
10 if y i j − y k j − y ik � −1 then 

11 Preference_Transitivity_Violation = True ; 

12 �′ ← �′ ∪ { (i, j, k ) } ; 

Return π∗ = [ n − ∑ 

j∈ X : i 
 = j y i j for i in X ] 
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Algorithm 2: The Least Imposed Cost Heuristic (LICH). 

Input : p, X , [ s i j ] ∈ R 
n ×n , [ t i j ] ∈ R 

n ×n 

Output : Solution non-strict ranking 

1 i ′ := arg min i ∈ X 
∑ 

j∈ X 
s ji + p t i j ; 

2 B := {{ i ′ }} ; // initialize the working bucket order 
3 X 

r := X \{ i ′ } ; // set of remaining items 
4 for t = 1 , . . . , n − 1 do 

5 Let B w be the last bucket of the working bucket order B ; 

6 for i ∈ X 
r do 

7 υ(i ) = 

min 

( ∑ 

j∈ B w 
(s ji + p t i j ) , 

∑ 

j∈ B w 
(s i j + p t i j ) , 

∑ 

j∈ B w 
p(s i j + s ji ) 

)
; 

8 i ′ = arg min i ∈X r υ(i ) ; // find the item with the 
lowest imposed cost 

9 X 
r ← X 

r \{ i ′ } ; // remove i ′ from the set of 
remaining items 
// The next block of code adds i ′ to the working 

bucket order in a way that it induces the 
lowest imposed cost 

10 if υ(i ′ ) = 

∑ 

j∈ B w 
p(s i ′ j + s ji ′ ) then 

11 B ← { B 1 , . . . , B w −1 , B w ∪ { i ′ }} ; 
12 if υ(i ′ ) = 

∑ 

j∈ B w 
(s i ′ j + pt i ′ j ) then 

13 B ← { B 1 , . . . , B w −1 , B w , { i ′ }} ; 
14 if υ(i ′ ) = 

∑ 

j∈ B w 
(s ji ′ + pt i ′ j ) then 

15 B ← { B 1 , . . . , B w −1 , { i ′ } , B w } ; 

16 Merge adjacent buckets of B if doing so improves the value 

of objective function (9a); 

17 Obtain π from B (as explained in Section 2); 

Return π; 

c
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a
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C

lace, assuming that it is ranked ahead of all other items, imposes 

he following cost: 

(i ) = 

∑ 

j∈ X \{ i } 
s ji + p t i j . 

 working bucket order B is initialized by placing the item with 

he lowest imposed cost in the first bucket. 

In the subsequent iterations, the remaining items are compared 

ith only the items in the last bucket of the working bucket order, 

or the sake of efficiency. At each iteration and for each remain- 

ng item i , three different imposed costs are calculated based on 

here i is added to the working bucket order: 1) in the last bucket, 

) a new bucket placed right after the last bucket, and 3) a new

ucket placed right before the last bucket. For each item, consider 

he minimum of the three calculated imposed costs. Formally, let 

 w be the last bucket of the working bucket order B and X 
r be the

et of remaining items to be placed in the working bucket order; 

hen, calculate 

(i ) = min 

( ∑ 

j∈ B w 
p(s i j + s ji ) , 

∑ 

j∈ B w 
(s i j + p t i j ) , 

∑ 

j∈ B w 
(s ji + p t i j ) 

) 

∀ i ∈ X 
r 

he item with the lowest imposed cost overall is added to the 

orking bucket order in the appropriate manner (according to the 

forementioned three cases). As a post-processing subroutine, ad- 

acent buckets are merged if doing so decreases the value of objec- 

ive function (9a) . 

heorem 2. Algorithm 2 has a time complexity of O (n 3 ) . 

roof. The worst time complexity of Algorithm 2 occurs when the 

orking bucket order has only one bucket; in this case, the last 

ucket of the working bucket order is always of maximum size. In 

his case, the number of distinct item-pairs for which we need to 
6

alculate the imposed cost is given by 

n (n − 1) + (n − 1)(1) + (n − 2)(2) + · · · + (1)(n − 1) 

= n (n − 1) + 

n −1 ∑ 

i =1 

(n − i ) i 

= n (n − 1) + 

1 

6 
(n − 1) n (n + 1) . 

he imposed costs of each item-pair can be obtained in constant 

ime. Therefore, the complexity of the full algorithm is O (n 3 ) . �

Note that the worst time complexity of Algorithm 2 occurs 

hen at least n − 1 items are tied in the optimal ranking, and its 

ime complexity reduces to O (n 2 ) in the case of strict rankings, as 

ll buckets are singletons in the latter case. 

. Generalizing the condorcet criterion and its variants 

Marquis de Condorcet [86] proposed one of the most eminent 

ocial choice properties in voting theory, which has come to be 

nown as the Condorcet criterion (CC). This property declares that 

n election candidate (i.e., item) that is pairwise preferred over 

ll other candidates must be declared as the top-ranked candidate 

n the outcome of the election (i.e., the optimal ranking); such a 

andidate is denoted as the Condorcet winner . CC can be formally 

tated as [87] 

f ∃ i ∈ X : s i j > s ji ∀ j ∈ X \{ i } �⇒ i �π j ∀ j ∈ X \{ i } , 
here π is the consensus ranking(s). In an analogous fashion, the 

ondorcet loser is a candidate who is pairwise dispreferred over all 
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ther candidates. A voting rule is said to be Condorcet consistent 

f it always selects the Condorcet winner as the top-ranked item 

n its consensus ranking π, when one exists [4] . Apart from KEM- 

GG, there are other Condorcet consistent rank aggregation meth- 

ds such as Dodgson’s rule [88] , maximin rule [89] , and the ranked

airs rule [90] . It is worth mentioning that Smith [91] proposed 

n item-set version of the Condorcet criterion that has come to 

e known as the Smith set in the literature. The winning (losing) 

mith set is defined as the smallest nonempty set of items that 

re pairwise preferred (dispreferred) over every item outside of the 

et. The Smith set may help decision-makers to exclude irrelevant 

tems from consideration. 

Truchon [57] proposed the Extended Condorcet criterion (XCC), 

hich generalizes CC to guarantee an ordering of item-subsets in 

he consensus ranking(s). XCC states that if X can be arranged into 

 partition X = { X 1 , X 2 , . . . , X w } such that all items in the lower-

ndexed subsets are pairwise preferred over all items in the higher- 

ndexed subsets, then the former must be ranked ahead of the lat- 

er in the consensus ranking(s). XCC can be stated formally as 

f s i j > s ji ∀ i ∈ X k ∀ j ∈ X ′ k ∀ k < k ′ �⇒ i �π j ∀ i ∈ X k ∀ j ∈ X ′ k ∀ k < k

ruchon [57] proved that the optimal solution(s) to KEME-AGG sat- 

sfies XCC. Note that the exact ordering of the full set of items 

s determined by solving the separate KEME-AGG subproblems in- 

uced by the items in each subset of the partition. 

Recently, Yoo and Escobedo [53] demonstrated that KEM-AGG 

ith non-strict rankings is inconsistent with XCC, meaning that its 

ptimal solution(s) may violate the subset orderings indicated by 

his property. Consequently, the authors proposed a consistent so- 

ial choice property for strict and non-strict rankings, which they 

alled the Non-strict Extended Condorcet criterion (NXCC). It can 

e stated formally as 

if s i j > s ji + t i j ∀ i ∈ X k , ∀ j ∈ X k ′ , ∀ k < k ′ �⇒ i �π∗
KS 

j 

∀ i ∈ X k , ∀ j ∈ X k ′ , ∀ k < k ′ . 

bserve that when all input rankings are strict (when t i j = 

 , ∀ i, j ∈ X ), NXCC becomes XCC. It was formally proven in Yoo

nd Escobedo [53] that any optimal ranking of KEM-AGG is consis- 

ent with NXCC. XCC and NXCC include both the Condorcet crite- 

ion and the Smith set. In fact, the winning (losing) Smith set cor- 

esponds to the first and most preferred (last and least preferred) 

ubset of the XCC and NXCC partitions. Moreover, the winning (los- 

ng) Smith set corresponds to the Condorcet winner (loser) when 

he former is a singleton. 

As a convention and to distinguish partitions using CC and its 

ariants from other existing methods—e.g., 3/4-majority rule [56] —

e denote such partitions as Condorcet partitions . Over the past 

ew years, various researchers have employed Condorcet partitions 

o facilitate the exact solution to KEM-AGG, e.g., see [53,56,58] . In 

he last work from this list, it is stated that NXCC can expedite 

he solution run time of exact formulations of this problem by up 

o 96 percent. Recently, Akbari and Escobedo [59] also reported 

hat NXCC rendered up to a 25x computational improvement in 

he computation of lower bounds for KEM-AGG. 

.1. Generalizing condorcet partitioning schemes 

XCC and NXCC have been defined only for KEM-AGG. This sub- 

ection expands the concept of Condorcet partitions to RANK- 

GG( p). To that end, it first redefines the concept of pairwise pref- 

rence to adapt to the nature of the generalized problem, and it 

ntroduces a novel social choice property termed the Generalized 

xtended Condorcet criterion (GXCC). 
7 
efinition 7. Item i is (strictly) pairwise preferred over item j un- 

er the penalty parameter p ∈ (0 , 1] if 

 i j > max 

((
1 − p 

p 

)
s ji + t i j , s ji 

)
, 

nd it is weakly pairwise preferred over j under the penalty pa- 

ameter p ∈ (0 , 1] if 

 i j ≥ max 

((
1 − p 

p 

)
s ji + t i j , s ji 

)
. 

efinition 8. (GXCC) Given a fixed penalty parameter p ∈ 

0 , 1] , assume that X can be arranged into a partition X (p) = 

 X 1 , X 2 , . . . , X w } such that 
 i j > max 

((
1 − p 

p 

)
s ji + t i j , s ji 

)
∀ i ∈ X k , ∀ j ∈ X k ′ , ∀ k < k ′ . 

(11) 

XCC specifies that π∗ must rank all items in the lower-indexed 

ubsets of X (p) ahead of all items in the higher-indexed subsets. 

hat is, when Eq. (11) holds, then 

 �π∗ j ∀ i ∈ X k , ∀ j ∈ X k ′ , ∀ k < k ′ . 

GXCC contains XCC and NXCC as special cases: it becomes NXCC 

hen p = 1 / 2 , and it becomes XCC when the same penalty is used

nd all the input rankings are strict. Furthermore, each of these 

ecompositions also includes the Smith set (and Condorcet win- 

er/loser, when applicable). 

The following theorem proves that the optimal solutions to 

ANK-AGG( p) are consistent with GXCC. This means that solving 

he subproblems induced by the subsets of the GXCC partition in- 

ependently to optimality and then concatenating the results in 

he proper order (placing all items in the lower-indexed subsets 

head of all items in the higher-indexed subsets) is guaranteed 

o yield an optimal solution to RANK-AGG( p). To the best of our 

nowledge, this is the first time that an exact Condorcet partition- 

ng scheme has been defined and applied to a problem other than 

EM-AGG in its general form. 

heorem 3. RANK-AGG( p) satisfies GXCC. 

roof. We use contradiction. Without loss of generality, let X (p) = 

 X , X 
c } be a GXCC bipartition of X , where X 

c = X \ X , and let π∗ be

n optimal ranking where at least one item in X 
c 
is ranked ahead 

f or tied with at least one item in X . Consider a ranking π′ ob-
ained by modifying π∗ such that all items of X are ranked ahead 

f all items in X 
c 
, and the relative orderings of all items within 

 and X 
c 
are as in π∗. The difference between the cumulative K (p) 

istances (i.e., to all the input rankings) accrued with π∗ versus π′ , 
enoted by �, is given by 

= 

∑ 

l∈ L 
K (p) ( π∗, πl ) −

∑ 

l∈ L 
K (p) ( π′ , πl ) 

= 

∑ 

i ∈ X 

∑ 

j∈ X c 

∑ 

l∈ L 
K (p) 
i j 

( π∗, πl ) −
∑ 

i ∈ X 

∑ 

j∈ X c 

∑ 

l∈ L 
K (p) 
i j 

( π′ , πl ) 

= 

∑ 

i ∈ X 

∑ 

j∈ X c 

∑ 

l∈ L 
K (p) 
i j 

( π∗, πl ) −
∑ 

i ∈ X 

∑ 

j∈ X c 
(s ji + p t i j ) . 

he last equation comes from the starting assumption that π′ 
anks all items in X ahead of all items in X 

c 
. Therefore, the con- 

ribution of every distinct item-pair (i, j) where i ∈ X and j ∈ X 
c 
in∑ 

∈ L 
K (p) ( π′ , πl ) is equal to s ji + p t i j . Observe that item-pairs from

ifferent subsets do not contribute to � as their relative orderings 

re the same in π∗ and π′ . To determine the sign of �, we com-

are terms 
∑ 

l∈ L 
K 

(p) 
i j 

( π∗, πl ) and s ji + p t i j . From Eq. (6) , for every
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1 An SWF is anonymous if all voters are weighted equally 

\ citep{brandt2016handbook}. 
2 An SWF is neutral if the names of the candidates are permuted, then their rank- 

ing is similarly permuted \ citep{brandt2016handbook}. 
3 An SWF is unanimous if all voters have the same ranking, then the aggregate 

ranking is the unanimous ranking \ citep{brandt2016handbook}. 
4 An SWF satisfies reinforcement if whenever a ranking is approved by two sep- 

arate groups of voters, then it would also be approved when the votes of the two 

groups are pooled \ citep{brandt2016handbook}. 
istinct item-pair (i, j) , i ∈ X and j ∈ X 
c 
, we have 

 

l∈ L 
K (p) 
i j 

( π∗, πl ) = 

{ 

s ji + p t i j if i �π∗ j, 
s i j + p t i j if j �π∗ i, 
p(s i j + s ji ) if i ≈π∗ j. 

(12) 

ext, we show that for such a distinct item-pair, s ji + p t i j does

ot exceed 
∑ 

l∈ L 
K 

(p) 
i j 

( π∗, πl ) in cases where j �π∗ i and i ≈π∗ j

 K 
(p) 
i j 

( π∗, πl ) equals s ji + p t i j when i �π∗ j). Based on the starting

ssumption that X (p) satisfies GXCC, for every distinct item-pair 

i, j) , i ∈ X and j ∈ X 
c 
, the following inequalities can be derived 

s i j > max 

((
1 − p 

p 

)
s ji + t i j , s ji 

)
�⇒ s i j > 

(
1 − p 

p 

)
s ji + t i j 

�⇒ p(s i j + s ji ) > s ji + p t i j . 

urthermore, we have 

s i j > max 

((
1 − p 

p 

)
s ji + t i j , s ji 

)
�⇒ s i j > s ji 

�⇒ s i j + p t i j > s ji + p t i j . 

Therefore, for every distinct item-pair (i, j) , where i ∈ X and j ∈
 

c 
, we have 
 

l∈ L 
K (p) 
i j 

( π∗, πl ) ≥ s ji + p t i j , (13) 

nd summing over all distinct item-pairs (i, j) , where i ∈ X and j ∈
 

c 
, gives 
 

i ∈ X 

∑ 

j∈ X c 

∑ 

l∈ L 
K (p) 
i j 

( π∗, πl ) ≥
∑ 

i ∈ X 

∑ 

j∈ X c 
s ji + p t i j . 

he above inequality implies that � ≥ 0 . According to the given as- 

umption, there exists at least one item in X 
c 
that is ranked ahead 

f or tied with at least one item in X . Hence, Eq. (13) holds strictly

or at least one item-pair, meaning that � > 0 , which contradicts 

he optimality of π∗. Therefore, we can conclude that all items in 

 must be ranked ahead of all items in X 
c 
in the optimal ranking. 

Finally, we extend the proof to the case with | X (p) | = w > 2 .

onsider a GXCC bipartition X (p) = { X , X c } where X = X 1 and X 
c = 

 X 2 , X 3 , . . . , X w } . Applying the prior result, all items in X 1 must

e ranked ahead of all items in X \ X 1 . Next, consider bipartition 
 
(p) = { X , X c } where X = { X 1 , X 2 } and X c = { X 3 , . . . , X w } ; from the

receding case, all items in X 1 and X 2 must be ranked ahead 

f all items in X \ (X 1 ∪ X 2 ) , and all items in X 1 must be ranked

head of all items in X 2 . Continuing in this manner, the only 

ay that this statement holds for all bipartitions of the form 

 
(p) = {{ X 1 , . . . , X k } , { X k +1 , . . . , X w }} , where k ∈ { 1 , . . . , w − 1 } , is if
∗ ranks all items in the lower-indexed subsets of X (p) ahead of 

ll items in the higher-indexed subsets. �

To elaborate on the theoretical implications of GXCC, we re- 

iew Arrow’s Impossibility Theorem [92] , a milestone in the field 

f voting theory and computational social choice. This theorem is 

otivated by the intuitive requirement that any reasonable social 

elfare function (SWF)—a function that maps the voter’s ordinal 

references over a set of competing candidates into one aggre- 

ate preference order of those candidates—should simultaneously 

e weakly Paretian and independent of irrelevant alternatives (IIA) . 

he weakly Paretian paradigm states that if all the voters strictly 

refer candidate a to candidate b, then a should be ranked strictly 

etter than b in the aggregate preference order. The IIA paradigm 

tates that the relative ordering of a and b in the aggregate pref- 

rence ordering should depend only on the relative orderings of a 

nd b in the voters’ inputs, that is, not a third candidate c. One 

f the main reasons that IIA is desirable is to prevent the ma- 

ipulation of results by introducing extraneous candidates. Arrow 
8

92] proved that whenever there are three or more candidates, the 

nly aggregation function that simultaneously is weakly Paretian 

nd IIA is a dictatorship , which is a voting rule where a single fixed

oter (i.e., the dictator) whose preference ordering is returned as 

he aggregate ordering, regardless of the other voters’ inputs. 

The Impossibility Theorem demonstrates that certain basic and 

esirable properties of voting systems are incompatible—simply 

ut, there exists no perfect voting rule or aggregation function. 

onetheless, many researchers have developed different SWFs that 

atisfy a subset of these (and other) desirable properties. The SWF 

ssociated with KEM-AGG uniquely satisfies five key social choice 

roperties simultaneously: anonymity 1 , neutrality 2 , unanimity 3 , re- 

nforcement 4 , and local stability [4,45] , which translates into vari- 

us practical benefits such as the aggregate preference order be- 

ng robust against outliers [23] . It is worth adding that the SWF 

ssociated with the popular Borda rule [35] satisfies all of these 

roperties, except local stability [45] , which can be interpreted as 

 weaker version of IIA [45] . In particular, local stability requires 

hat the relative aggregate ordering involving an interval of “closely 

elated” candidates—defined as a subset of the candidates whose 

ajority pairwise relations induce a cycle with each other but not 

ith the remaining alternatives—should not change when intro- 

ucing extraneous candidates—defined as those that each of the 

losely related candidates is pairwise preferred over by a major- 

ty of voters. Consider an example discussed in [45] , where the 

rue ordering of three candidates a , b, and c from a fixed number 

f input preference orders is being examined. Assume that three 

ew but inferior candidates d, e , and f , over which a , b, and c is

airwise preferred, are introduced. Ideally, the introduction of infe- 

ior candidates should not change the ordering of a , b, and c com- 

ared to the case where inferior candidates are absent. We remark 

hat this property can be interpreted as a special case of XCC and 

XCC—specifically, it is a requirement on any two subsets within 

he decomposition. Moreover, the guarantee that KEM-AGG satis- 

es this property, which was established by Young [45] , can be 

quivalently induced by the fact that RANK-AGG( p) satisfies GXCC 

or p ∈ (0 , 1] —and for p = . 5 , in particular; note that GXCC is un-

efined for p = 0 . 

.2. Enlarged GXCC partitions 

Let ℘( X ) denote the class of partitions that satisfy GXCC and 

onsider the case when there are multiple optimal rankings. The 

act that all optimal rankings must be consistent with any X ∈ 

( X ) can be viewed as a restrictive condition. It might be pos- 

ible to make the partition finer , i.e., one with more subsets, by 

equiring that it respects at least one rather than all of the opti- 

al rankings. Such partitions as known as enlarged partitions [57] . 

chalekamp and Zuylen [58] defined a type of enlarged XCC par- 

itions for strict rankings as follows. Assume that X can be ar- 

anged into a partition X e = { X 1 , X 2 , . . . , X w } such that s i j ≥ s ji ∀ i ∈
 k , ∀ j ∈ X k ′ , ∀ k < k ′ . Then, solving the subsets of X e independently
nd concatenating the results in the proper order will respect at 

east one of the optimal strict rankings. It is possible to extend this 

dea to GXCC to obtain more effective partitions. 
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Algorithm 3: Enlarged GXCC Partitioning. 

Input : p, 
[
s i j 

]
∈ Z n ×n , 

[
t i j 

]
∈ Z n ×n 

Output : Enlarged GXCC Partition 

1 X (p) e = {{ 1 }} ; 
2 for i = 2 to | X | do 
3 k = 1 ; 

4 if s i j ≥ max 
((

1 −p 
p 

)
s ji + t i j , s ji 

) ∀ j ∈ X 1 then 
5 Insert i in a new subset before X 1 , and increment the index of 

subsets after X κ(i ) by 1; 

6 k ← 3 ; 

else if s ji ≥ max 
((

1 −p 
p 

)
s i j + t i j , s ji 

) ∀ j ∈ X 1 then 
7 Insert i in a new subset after X 1 , and increment the index of subsets 

after X κ(i ) by 1; 

8 k ← 3 ; 

else 

9 Insert i in X 1 ; 

10 k ← 2 ; 

11 while k ≤ | X | do 
12 if s i j ≥ max 

((
1 −p 
p 

)
s ji + t i j , s ji 

)∀ j ∈ X k then 
13 k ← k + 1 ; 

else if s ji ≥ max 
((

1 −p 
p 

)
s i j + t i j , s i j 

)∀ j ∈ X k then 
14 if | κ(i ) − k | = 1 and | X κ(i ) | = 1 then 

15 Move X κ(i ) after X k ; 

else 

16 Merge subsets from X κ(i ) to X k ; 

17 Decrease the index of subsets after X k by (k − κ(i )) ; 

18 k ← κ(i ) + 1 ; 

else if ∃ j ∈ X k such that s ji > max 
((

1 −p 
p 

)
s i j ′ + t i j ′ , s i j 

)
then 

19 Merge subsets from X κ(i ) to X k ; 

20 Decrease the index of subsets after X k by (k − κ(i )) ; 

21 k ← κ(i ) + 1 ; 

22 Return X (p) e ; 

* κ(i ) is the index of the subset containing item i . 
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orollary 1. (Enlarged GXCC) Given a fixed penalty parameter p ∈ 

0 , 1] , assume that X can be arranged into a partition X 
(p) 
e = 

 X 1 , X 2 , . . . , X w } such that 
 i j ≥ max 

((
1 − p 

p 

)
s ji + t i j , s ji 

)
∀ i ∈ X k , ∀ j ∈ X k ′ , ∀ k < k ′ . 

(14) 

hen, there exists at least one optimal ranking in which all items in 

he lower-indexed subsets of X 
(p) 
e are ranked ahead of all items in its 

igher-indexed subsets. That is, when Eq. (14) holds, 

 π∗ ∈ � : i �π∗ j ∀ i ∈ X k , ∀ j ∈ X k ′ , ∀ k < k ′ . 

roof. The rationale mirrors that of the proof of Theorem 3 up to 

he point where it concludes that � ≥ 0 . Following those steps, 

ince π∗ is an optimal ranking according to the starting assump- 

ion and � ≥ 0 , it can be concluded that π′ is an optimal ranking 

s well. �

Notice that an enlarged GXCC partition requires items in the 

ower-indexed subsets to be only weakly pairwise preferred over 

tems in the higher-indexed subsets. 

xample 2. Consider an instance with 10 rankings of 6 items. The 

nput rankings and the pairwise comparison matrices, S = [ s i j ] ∈ 

 
6 ×6 and T = [ t i j ] ∈ Z 

6 ×6 , are given by 

The standard GXCC partitions for p = 1 / 2 , 3 / 4 , and 1 are

iven by X (1 / 2) = {{ 1 , 2 , 3 , 4 , 5 } , { 6 }} , X (3 / 4) = {{ 3 , 4 } , { 1 , 2 , 5 } , { 6 }} ,
nd X (1) = {{ 3 , 4 } , { 2 } , { 1 , 5 } , { 6 }} , respectively. The enlarged GXCC
artitions are given by X (1 / 2) 

e = {{ 3 , 4 } , { 1 , 2 } , { 5 } , { 6 }} , X (3 / 4) 
e =

{ 3 , 4 } , { 2 } , { 5 } , { 1 } , { 6 }} , and X (1) 
e = {{ 4 } , { 3 } , { 2 } , { 5 } , { 1 } , { 6 }} . 

Example 2 illustrates the improved practicality of enlarged 

XCC partitions. Considering the enlarged GXCC partitions for p = 

 / 2 , only the relative ordering of item-pairs (3,4) and (1,2) needs to

e determined; for p = 3 / 4 , only the relative ordering of item-pair

3,4) needs to be determined; and for p = 1 , an optimal solution

s trivially obtained from the partition. Clearly, this accelerates the 

olution to RANK-AGG( p) as each of the enlarged GXCC partitions 

mproves their standard counterparts. 

Due to the enhanced practicality of enlarged GXCC, we focus 

n this partitioning mechanism for the rest of the paper. To obtain 

n enlarged GXCC partition, we modify an algorithm introduced in 

oo and Escobedo [53] , which conducts NXCC partitioning by per- 

orming sequential pairwise comparisons. The modified algorithm 

s presented in Algorithm 3 . It starts by placing the first item in

 subset of the working partition, and it adds exactly one item to 

t at each iteration. Let item i denote the added item at any itera-

ion and X 
(p) 
e = { X 1 , . . . , X w } denote the working partition. The al-

orithm compares i with all items in the first subset of the work- 

ng partition, X , leading to three possible outcomes. If item i is 
1 

9 
eakly pairwise preferred over all items in X 1 , it is placed in a 

ew subset right before X 1 ; if all items in X 1 are weakly pairwise

referred over i , i is placed in a new subset right after X 1 ; oth-

rwise, it is placed in X 1 . Subsequently, the algorithm iteratively 

hecks whether the current working partition is a valid enlarged 

XCC partition by verifying that all items in the lower-indexed 

ubsets are weakly pairwise preferred over all items in the higher- 

ndexed subsets. Whenever violations are detected, the respective 

ubsets are merged/moved until there are no violations. The algo- 

ithm has a time complexity of O (n 2 ) [53] . Note that GXCC and

nlarged GXCC rely only on parameters required by the exact for- 

ulations; this fact, coupled with the quadratic time complexity of 

ts algorithm, makes enlarged GXCC a great and fast pre-processing 

tep for solving RANK-AGG( p) via exact and heuristic methods. 

We close this section by contrasting GXCC and enlarged GXCC 

ith the exact graph-based partitioning scheme of Andrieu et al. 

65] , which applies to the special case of RANK-AGG( p) induced 

y setting p = 1 . Upon close inspection, the conditions of the lat- 

er method translate to a relaxed version of GXCC that is stricter 

han the enlarged GXCC. To elaborate, GXCC requires all items in 

he lower-indexed subsets to be strictly pairwise preferred over all 

tems in the higher-indexed subsets; Andrieu et al. [65] ’s method 

equire all items in the lower-indexed subsets to be weakly pair- 

ise preferred (according to Definition 7 induced by setting p = 1 ) 

ver all items in the higher-indexed subsets except for adjacent 

ubsets, for which a strict pairwise preference is required; con- 

ersely, enlarged GXCC requires all items in the lower-indexed sub- 

ets to be weakly pairwise preferred over all items in the higher- 

ndexed subsets. Andrieu et al. [65] ’s method respects all the opti- 

al solutions [65] ; however, enlarged GXCC respects at least one 

ut not necessarily all optimal solutions. Nonetheless, enlarged 
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Fig. 1. Example depiction of objective function values obtained over all values of 

p by three different solution non-strict rankings (the piecewise linear envelope is 

shown in bolded red). (For interpretation of the references to colour in this fig- 

ure legend, the reader is referred to the web version of this article.) 
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XCC is guaranteed to have at least as many subsets as Andrieu 

t al. [65] ’s method. 

. Effect of modifying the penalty parameter 

The value of penalty parameter p can have a big impact on the 

utcome of RANK-AGG( p), as it can alter the optimal ranking and 

he very nature of the problem. Consider two extreme values of 

p over which K (p) is a distance metric, namely 1/2 and 1. When 

p = 1 / 2 , this induces KEM-AGG, in which every full rank reversal of

tem-pair (corresponding to case 1 of the K (p) distance) has twice 

he weight of every partial rank reversal (corresponding to case 3). 

s the value of p increases, the weight of a partial rank reversal 

ncreases; finally, when p = 1 , a partial rank reversal has the same

eight as a full rank reversal. 

Beyond the fact that p = 1 / 2 is the most frequently used value,

here have been no attempts to guide the choice of p or to analyze 

ts implications. The ensuing paragraphs provide useful insights re- 

arding the impact of p of the resulting GXCC and enlarged GXCC 

artitions and on the optimal ranking. 

roposition 2. The set of optimal objective values of RANK-AGG( p) 

or all values of p ∈ [0 , 1] forms a piecewise linear envelope. 

roof. The cumulative K (p) distance between any solution ranking 

∈ � and all the input rankings, i.e., 
∑ 

l∈ L 
K (p) ( π, πl ) , can be ex- 

ressed as a ( π) + pb ( π) , which is an affine function in terms of p,

here 

 
( π) = 

∑ 

(i, j) ∈ �

(
s i j 1 j�π i + s ji 1 i �π j 

)
nd 

 
( π) = 

∑ 

(i, j) ∈ �

(
(s i j + s ji ) 1 i ≈π j + t i j (1 j�π i + 1 i �π j ) 

)
. 

ere, the function 1 v returns 1 if v is true, and 0 otherwise; a ( π) 

nd π are the number of full rank reversals and partial rank re- 

ersals between π and all the input rankings. More specifically, if 

tems i and j are tied in π, b ( π) tallies the number of input rank-

ngs in which i and j are not tied; otherwise, it tallies the number 

f input rankings where they are tied. Since the objective function 

alues can be expressed as a series of affine functions and the K (p) 

istance is non-decreasing in p [63] , the set of optimal objective 

alues for all values of p forms a piecewise linear envelope. �

Fig. 1 illustrates an example of RANK-AGG( p) with two items. 

here are three possible rankings π1 , π2 , π3 , whose respective 

ffine functions are displayed; the piecewise linear envelope is 

hown in red. Proposition 2 will be used to derive additional in- 

ights regarding the effect of penalty parameter p. 

orollary 2. If π∗ is the optimal ranking for two distinct penalty pa- 

ameters p 1 and p 2 such that 0 ≤ p 1 < p 2 ≤ 1 , then π∗ is also the

ptimal rankings for any p 1 < p < p 2 . Furthermore, if π∗ is the opti-

al ranking for p 1 but not for p 2 , it will not be the optimal ranking

or any penalty parameter p > p 2 . 

Corollary 2 is a direct outcome of Proposition 2 . This corollary 

an help overcome the difficulty of selecting the exact value of 

enalty p in certain instances. For example, if π∗ is the optimal 

anking for p = 1 / 2 and p = 1 , then it is also the optimal ranking

or every intermediate value. 

Additionally, we show that using p = 3 / 4 has an interesting in-

erpretation, as it produces a robust solution. In particular, one 

ay also be interested in finding the optimal ranking with the 

inimum average K (p) distance to the input rankings over all pos- 

ible values of p for which the resulting function is a metric, i.e., 

 p ∈ [1 / 2 , 1] , instead of only one specific value. 
10 
roposition 3. The optimal ranking obtained by using p = 3 / 4 has 

he least average cumulative K (p) distance to the input rankings over 

he interval of penalty parameter p for which K (p) is a distance met- 

ic. 

roof. Since all values of p are given the same weight, p can be 

reated as a random variable with a continuous uniform distri- 

ution over [ 1 2 , 1] . Hence, the problem of finding a ranking with

he least average cumulative K (p) distance to all the input rankings 

ith respect to all values of p ∈ [ 1 2 , 1] 
1, 2 and 3 is equivalent to 

∗ = arg min 
π∈ �

E p∈ [ 1 2 , 1] 

[ ∑ 

l∈ L 
K (p) ( π, πl ) 

] 
= arg min 

π∈ �
E p∈ [ 1 2 , 1] 

[
a ( π) + pb ( π) 

]
= arg min 

π∈ �

[ 
a ( π) + b ( π) E p∈ [ 1 2 , 1] (p) 

] 
= arg min 

π∈ �

[
a ( π) + 3 / 4 b ( π) 

]
= arg min 

π∈ �

∑ 

l∈ L 
K (3 / 4) ( π, πl ) . 

�

As a last insight, when p increases, the cardinality of the GXCC 

nd enlarged GXCC partitions may at times increase, but it cannot 

ecrease. 

roposition 4. Consider two fixed penalty parameters p 1 , p 2 , with 

 < p 1 < p 2 ≤ 1 . For penalty parameter p 2 , the GXCC and enlarged

XCC partitions have at least as many subsets as their respective 

artitions with penalty parameter p 1 . That is | X (p 2 ) | ≥ | X (p 1 ) | and 
 X 

(p 2 ) 
e | ≥ | X (p 1 ) e | . 
roof. For every item pair (i, j) ∈ �, we have 

 i j > max 

((
1 − p 1 
p 1 

)
s ji + t i j , s ji 

)
≥ max 

((
1 − p 2 
p 2 

)
s ji + t i j , s ji 

)
. 

herefore, if i is pairwise preferred over j under p 1 , it will also 

e pairwise preferred over j under p 2 . Hence, X 
(p 1 ) is also a valid 

XCC partition for RANK-AGG( p) using penalty parameter p 2 . As a 

esult, X (p 2 ) will have at least as many subsets as X (p 1 ) . A parallel 

et of arguments can be applied to enlarged GXCC partitions. �

Proposition 4 indicates that partitioning may have more impact 

n large values of p. The possible effect of increasing p on the 
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Table 1 

Solution time (in seconds) of different exact methods with and without prior GXCC partitioning for different values of p for TOC instances with 40 ≤ n ≤ 400 . 

Instance id % n p = 1 / 2 p = 3 / 4 p = 1 

BBP MIP CR GXCC_MIP GXCC_CR BBP MIP CR GXCC_MIP GXCC_CR BBP MIP CR GXCC_MIP GXCC_CR 

ED-10-21 40 3.34 1.76 1.04 0.47 0.97 3.41 1.85 1.08 0.13 0.51 3.38 1.81 0.63 0.12 0.21 

ED-10-22 40 3.79 1.74 1.37 1.74 1.37 3.41 1.75 1.13 1.75 1.13 3.36 1.73 0.99 1.73 0.99 

ED-10-30 40 3.56 1.86 0.90 0.09 0.34 3.38 1.69 1.00 0.09 0.40 3.28 1.74 0.55 0.20 0.13 

ED-10-20 41 3.87 1.93 1.41 0.34 0.80 3.67 1.90 1.70 0.23 0.90 3.70 1.94 0.83 0.34 0.68 

ED-10-31 41 3.88 1.98 1.37 0.18 0.90 3.64 1.89 1.39 0.31 0.85 3.53 1.90 1.03 0.18 0.29 

ED-10-4 42 4.25 2.05 1.28 1.40 1.18 3.83 2.05 1.24 1.42 1.07 3.87 2.05 1.01 0.47 0.76 

ED-10-09 42 3.94 2.01 0.69 1.01 0.81 3.94 2.06 0.73 0.87 0.98 3.94 2.00 0.96 0.84 0.85 

ED-10-06 43 4.65 2.17 0.94 2.06 1.19 4.18 2.20 1.17 2.06 1.15 4.18 2.29 1.35 2.06 1.29 

ED-10-10 43 4.81 2.15 1.02 2.15 1.02 4.25 2.13 0.97 2.13 0.97 4.29 2.18 1.12 0.55 0.70 

ED-10-08 44 4.56 2.34 1.71 0.70 1.13 4.53 2.32 1.28 0.74 1.47 4.44 2.30 1.55 0.76 0.70 

ED-10-12 44 4.94 2.42 0.98 1.86 1.43 4.40 2.45 1.16 0.36 1.20 4.52 2.49 1.61 0.50 0.96 

ED-10-13 44 4.42 2.5 0.71 0.95 0.81 4.44 2.30 0.61 1.02 0.78 4.42 2.39 0.99 0.97 0.81 

ED-10-34 46 5.88 2.57 1.46 0.68 1.15 5.20 2.61 0.97 0.70 1.56 5.11 2.68 1.30 0.25 0.64 

ED-10-07 47 6.18 2.87 0.79 2.11 0.73 5.69 2.79 0.77 2.33 1.12 5.70 2.79 1.49 0.82 0.46 

ED-10-29 47 6.54 2.94 1.16 0.55 0.67 5.51 2.98 1.59 0.38 1.11 5.59 2.79 0.89 0.53 0.46 

ED-10-18 49 6.84 3.20 1.46 0.88 1.50 6.68 3.28 1.33 0.33 1.43 6.35 3.26 1.41 0.47 0.89 

ED-10-11 50 6.99 3.46 0.67 2.54 0.92 6.81 3.49 1.01 2.50 1.21 6.91 3.53 1.39 0.68 0.87 

ED-10-02 51 7.54 3.78 0.55 2.85 0.54 8.22 4.09 0.69 1.74 1.02 8.13 4.26 1.95 2.23 1.12 

ED-10-05 52 8.51 3.93 1.22 3.05 0.97 7.67 3.89 0.70 1.13 0.79 7.53 3.99 1.13 1.09 0.98 

ED-10-15 52 8.40 3.94 1.32 2.23 1.68 7.69 3.88 1.02 2.31 1.45 7.65 3.93 1.98 2.23 1.71 

ED-10-01 54 10.10 4.46 1.85 1.81 0.89 8.51 4.58 1.13 1.80 1.00 8.75 4.43 1.91 1.77 1.18 

ED-10-03 54 10.16 5.13 0.99 2.59 1.99 9.40 4.26 0.83 2.41 1.06 8.70 4.42 1.53 1.50 1.37 

MD-03-02 56 9.40 4.74 0.66 4.74 0.66 9.58 4.78 0.41 4.78 0.41 9.58 4.80 0.46 4.80 0.46 

ED-10-16 57 11.26 5.49 1.74 1.24 1.61 10.00 5.42 0.91 1.32 1.20 10.46 5.48 1.68 0.84 0.95 

MD-03-01 61 14.65 6.52 0.42 6.52 0.42 12.33 6.66 0.47 6.66 0.47 12.70 6.62 0.37 6.62 0.37 

ED-10-17 61 13.48 6.48 1.27 5.24 0.80 12.70 6.37 1.35 1.61 1.76 12.49 6.32 1.38 1.54 1.06 

ED-10-14 62 14.71 6.89 0.78 2.80 0.67 13.45 6.93 1.07 2.92 0.74 13.41 6.86 1.27 1.56 1.32 

MD-03-04 63 13.86 7.12 0.40 7.12 0.40 13.66 6.99 0.47 6.99 0.47 13.73 7.33 0.50 7.33 0.50 

ED-14-02 100 60.06 30.46 0.73 30.46 0.73 59.47 30.04 0.75 30.04 0.75 60.01 29.77 0.76 29.77 0.76 

ED-14-03 100 60.08 30.41 0.65 30.40 0.65 59.42 29.96 0.72 29.96 0.72 60.09 29.53 1.78 29.53 1.78 

MD-03-03 102 82.60 39.83 0.59 39.83 0.59 82.32 39.21 0.69 39.21 0.69 83.54 39.06 1.02 39.06 1.02 

MD-03-05 103 84.11 38.35 1.90 38.35 1.90 81.71 38.35 0.72 38.35 0.72 81.48 38.92 0.61 38.92 0.61 

MD-03-06 133 229.78 103.57 1.18 103.57 1.18 229.38 102.56 1.26 102.56 1.26 230.01 101.72 1.20 101.72 1.20 

MD-03-08 147 305.83 136.26 1.31 136.26 1.31 307.80 136.98 1.48 136.98 1.48 303.46 137.33 1.29 137.33 1.29 

MD-03-07 155 374.99 166.21 1.64 166.21 1.64 375.27 167.16 1.57 167.16 1.57 375.51 164.65 1.46 164.65 1.46 

ED-10-50 170 1,144.02 207.24 152.53 202.63 110.08 ≥ 7 , 400 . 04 # 201.65 282.36 162.57 159.5 ≥ 7 , 392 . 48 & 251.31 145.99 252.3 192.23 

ED-10-49 351 – – 1393.73 – 673.40 – – 4,260.8 – 3,057.86 – – 5,956.47 – 4,303.28 

Geometric Mean ∗ ≥ 13 . 51 6.33 1.16 3.41 1.06 ≥ 13 . 74 6.27 1.12 2.81 1.09 ≥ 13 . 44 6.34 1.25 2.43 0.90 

% The instance names have been shortened. The original names include three zeros before the firs number and six zeros before the second number ∗ The geometric mean does not include the ED-10-49 instance # The 

model had a relative optimality gap of 0 . 49% at the time of termination & The model had a relative optimality gap of 0 . 12% at the time of termination 

11
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12 
ardinality of the GXCC and enlarged GXCC partitions is demon- 

trated in Example 2 , where | X (1 / 2) | = 2 , | X (3 / 4) | = 3 , | X (1) | = 4 ,

nd | X (1 / 2) 
e | = 4 , | X (3 / 4) 

e | = 5 , | X (1) 
e | = 6 . 

. Computational results 

This section performs computational studies to: 1) compare the 

olution times of the revised Brancotte et al. [64] formulation (For- 

ulation (7) ), the proposed formulation (Formulation (9) ), and the 

R method; 2) investigate the effect of enlarged GXCC partition- 

ng on the solution times of the proposed formulation and the 

R method; 3) evaluate the performance of the proposed heuris- 

ic, both in terms of solution quality and run time; and 4) investi- 

ate the effect of enlarged GXCC partitioning on the solution qual- 

ty and run time of LICH. 

For all tested instances, we use three penalty values p ∈ 

 1 / 2 , 3 / 4 , 1 } . All experiments herein were carried out on a PC with

n Intel(R) Xeon(R) CPU E5-2680 2.40 GHz with 64 GB RAM. All 

ptimization models were solved using CPLEX solver version 20.1, 

ith a time limit of two-hour. The %Deviation from optimality of 

ICH is calculated as 

% De v iation 

= 

objective function value of LICH - optimal objective function value

optimal objective function value 

or the remainder of this section and the associated tables, the re- 

ised Brancotte et al. [64] binary programming formulation is de- 

oted as BBP, and the proposed mixed-integer programming for- 

ulation as MIP. Additionally, the two-step solution method con- 

isting of solving the partitioned problem via enlarged GXCC and 

hen MIP is denoted as GXCC_MIP, solving the partitioned problem 

ia enlarged GXCC and then CR is denoted as GXCC_CR, and solv- 

ng the partitioned problem via enlarged GXCC and then LICH is 

enoted as GXCC_LICH. 

Additionally, the two-step solution method consisting of parti- 

ioning the problem via enlarged GXCC and then solving via MIP is 

enoted as GXCC_MIP, 

.1. Data sets 

The experiments consider two real-world data sets. The first 

s drawn from the TOC - “Orders with Ties - Complete List” data 

et from Preflib [60] , a library of preference data. From this data 

et, only those instances with 40 to 351 items are used, as other 

nstances of this data set are either too small and easy to solve 

r too large to be solved using exact methods. The second data 

et comes from a real-world application in bioinformatics provided 

y Cohen-Boulakia et al. [30] . Each of the seven instances of the 

ohen-Boulakia et al. [30] data set contains four non-strict input 

ankings of genes possibly associated with Breast Cancer, Prostate 

ancer, Bladder Cancer, Neuroblastoma, Retinoblastoma, ADHD (At- 

ention Deficit Hyperactivity Disorder), and LQTS (Long QT Syn- 

rome). Each of the input rankings is the result of querying for 

he genes associated with the aforementioned diseases in biologi- 

al databases using four different methods. The goal of the refer- 

nced study is to alleviate the variability of information retrieval 

echniques by combining their outputs to obtain a more robust so- 

ution. For simplicity, henceforth, instance names are enclosed in 

uotation marks. 

.2. Results 

First, we compare the solution times of the exact methods, be- 

inning with the results of the TOC data set reported in Table 1 ;

he best solution time(s) attained for each instance and each tested 

alue of p is shown in bold. On average, MIP and CR were more 
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Table 3 

Number of items in the enlarged GXCC partition’s subsets for certain large in- 

stances. 

Instance n | X 1 | , | X 2 | , . . . , | X w | 
ED-10-50 170 1, 5, 1, 1, 1, 161 

ED-10-49 351 5, 3, 3, 7, 333 

LQTS 35 3, 1, 1, 1, 3, 1, 2, 1, 2, 2, 16, 2 

ADHD 45 1, 2, 5, 1, 3, 1, 1, 1, 1, 25, 4 

Prostate Cancer 218 1, 17, 1, 166, 15, 16, 2 

Bladder Cancer 308 1, 4, 21, 13, 3, 69, 197 

Breast Cancer 386 1, 362, 11, 12 

Retinoblastoma 402 1, 1, 1, 33, 1, 1, 2, 4, 17, 341 

Neuroblastoma 431 6, 55, 29, 9, 9, 1, 322 
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han 2x and 12x faster than BBP, respectively. In fact, BBP had a 

igher run time than MIP, and MIP than CR, for each of the tested 

nstances and values of p. BBP failed to obtain the optimal solu- 

ion of “ED-10-50” for p = 1 / 2 and p = 1 within the two-hour time

imit; however, MIP and CR were able to solve these two cases in 

ess than four minutes. Additionally, “ED-10-49” could not be di- 

ectly solved via BBP and MIP due to out-of-memory errors, how- 

ver, CR was able to solve it to optimality. Table 2 reports the so-

ution times of the Cohen-Boulakia et al. [30] data set, where a 

imilar pattern can be observed; the best solution time attained 

or each instance and each tested value of p is shown in bold. BBP 

ad a higher run time than MIP, and MIP had a higher run time 
Table 4 

Solution time (in seconds) and %Deviation of LICH with and without prior GXCC partitio

Instance n p = 1 / 2 

Time %Deviation Time 

LICH GXCC_LICH LICH GXCC_LICH LICH GXCC

ED-10-21 40 0.01 0.01 0.57 0.85 0.01 0.01 

ED-10-22 40 0.01 0.01 0.92 0.92 0.01 0.01 

ED-10-30 40 0.01 0.01 0.68 0 0.01 0.01 

ED-10-20 41 0.01 0.01 0.30 0.54 0.01 0.01 

ED-10-31 41 0.01 0.01 1.35 0.15 0.01 0.01 

ED-10-04 42 0.01 0.01 1.35 1.15 0.01 0.01 

ED-10-09 42 0.01 0.01 2.75 2.62 0.01 0.01 

ED-10-06 43 0.01 0.01 0.45 0.45 0.01 0.01 

ED-10-10 43 0.01 0.01 2.71 2.71 0.01 0.01 

ED-10-08 44 0.01 0.01 2.61 2.11 0.01 0.01 

ED-10-12 44 0.01 0.01 1.48 1.21 0.01 0.01 

ED-10-13 44 0.01 0.01 3.29 0.12 0.01 0.01 

ED-10-34 46 0.01 0.01 0.50 0.44 0.01 0.01 

ED-10-07 47 0.01 0.01 1.06 1.06 0.01 0.01 

ED-10-29 47 0.01 0.01 0.75 0.21 0.01 0.01 

ED-10-18 49 0.01 0.01 0.42 0.32 0.01 0.01 

ED-10-11 50 0.01 0.01 0.38 0.40 0.01 0.01 

ED-10-02 51 0.01 0.01 0.55 0.55 0.01 0.01 

ED-10-05 52 0.01 0.01 0.76 0.49 0.01 0.01 

ED-10-15 52 0.01 0.01 1.47 1.47 0.01 0.01 

ED-10-01 54 0.01 0.01 1.12 0.51 0.01 0.01 

ED-10-03 54 0.01 0.01 0.15 0.15 0.01 0.01 

MD-03-02 56 0.01 0.01 0 0 0.01 0.01 

ED-10-16 57 0.01 0.01 1.12 1.72 0.01 0.01 

MD-03-01 61 0.01 0.01 0 0 0.01 0.01 

ED-10-17 61 0.01 0.01 1.97 1.97 0.01 0.01 

ED-10-14 62 0.01 0.01 0.97 1.55 0.01 0.01 

MD-03-04 63 0.01 0.01 0 0 0.01 0.01 

ED-14-02 100 0.19 0.19 0 0 0.19 0.19 

ED-14-03 100 0.20 0.20 0 0 0.18 0.18 

MD-03-03 102 0.19 0.19 0 0 0.19 0.19 

MD-03-05 103 0.20 0.20 0 0 0.20 0.20 

MD-03-06 133 0.46 0.46 0 0 0.44 0.44 

MD-03-08 147 0.60 0.60 0 0 0.60 0.60 

MD-03-07 155 0.67 0.67 0 0 0.72 0.72 

ED-10-50 170 0.12 0.14 2.52 2.01 0.09 0.12 

ED-10-49 351 2.33 2.27 1.00 1.02 1.22 1.19 

Average 0.02 0.02 0.90 0.78 0.02 0.02 

13
han CR for each of the tested instances and each tested value of 

p, except in one case. Additionally, BBP failed to obtain the opti- 

al solution of “Prostate Cancer” for p = 1 / 2 and p = 1 within the

wo-hour time limit; however, MIP and CR were able to solve these 

wo cases in less than 20 and 5 minutes, respectively. Additionally, 

Bladder Cancer”, “Breast Cancer”, “Retinoblastoma”, and “Neurob- 

astoma” could not be directly solved via BBP and MIP due to out- 

f-memory errors. On the other hand, CR was able to solve each of 

hese instances within the time limit. Interestingly, all instances of 

he TOC data set with 100 to 155 items did not require any of the

reference-transitivity constraints to be included in the optimiza- 

ion model, which resulted in a significant difference in the run 

ime of MIP and CR on those instances. As a final note, the average

nd maximum percent of preference-transitivity constraints added 

y the CR method were 0.61% and 5.41% for the TOC data set, and 

hey were 2.67% and 7.48% for the Cohen-Boulakia et al. [30] data 

et. 

Next, we examine the impact of enlarged GXCC partitioning on 

he run times of MIP and CR. Beforehand, Table 3 reports the size 

f subsets of the enlarged GXCC partitions for the Cohen-Boulakia 

t al. [30] data set and the two largest instances of the TOC data

et; the partitions matched for each tested value of p; other in- 

tances of TOC data set with more than 100 items were not parti- 

ionable. As Table 1 shows, enlarged GXCC partitioning was able to 

educe the run times of both methods on the TOC data set for each 

ested value of p. Impressively, it reduced the geometric mean run 
ning for different values of p for TOC instances with 40 ≤ n ≤ 400 . 

p = 3 / 4 p = 1 

%Deviation Time %Deviation 

_LICH LICH GXCC_LICH LICH GXCC_LICH LICH GXCC_LICH 

0.39 0.18 0.01 0.01 0.38 0.17 

0.70 0.70 0.01 0.01 0.71 0.71 

0.35 0 0.01 0.01 0.62 0.08 

0.43 0.27 0.01 0.01 0.74 0.54 

0.67 0.23 0.01 0.01 0.82 0.14 

1.49 0.48 0.01 0.01 0.96 0.82 

1.06 1.06 0.01 0.01 0.72 0.72 

0.34 0.34 0.01 0.01 0.29 0.29 

0.22 0.22 0.01 0.01 0.19 0.21 

0.63 0.09 0.01 0.01 0.54 0.08 

1.14 0.24 0.01 0.01 1.30 0.35 

0.04 0.01 0.01 0.01 0.03 0 

0.36 0.25 0.01 0.01 0.43 0.23 

0.42 0.42 0.01 0.01 0.35 0.15 

0.56 0.04 0.01 0.01 0.81 0 

0.43 0.06 0.01 0.01 0.38 0.05 

0.26 0.26 0.01 0.01 0.34 0.25 

1.47 1.47 0.01 0.01 0.03 0.03 

0.23 0 0.01 0.01 0.14 0.14 

1.02 0.33 0.01 0.01 0.83 0.71 

1.60 1.60 0.01 0.01 0.05 0 

0.29 0.11 0.01 0.01 0.30 0.15 

0 0 0.01 0.01 0 0 

0.14 0.05 0.01 0.01 0.20 0 

0 0 0.01 0.01 0 0 

0.53 0.43 0.01 0.01 0.17 0.07 

0.18 0.06 0.01 0.01 0.15 0 

0 0 0.01 0.01 0 0 

0 0 0.23 0.23 0 0 

0 0 0.23 0.23 0 0 

0 0 0.24 0.24 0 0 

0 0 0.25 0.25 0 0 

0 0 0.55 0.55 0 0 

0 0 0.60 0.60 0 0 

0 0 0.85 0.85 0 0 

1.31 1.32 0.09 0.11 1.41 1.21 

1.35 1.39 1.52 1.52 0.87 0.93 

0.48 0.31 0.02 0.02 0.37 0.22 
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Table 5 

Solution time (in seconds) and %Deviation of LICH with and without prior GXCC partitioning for different values of p of the Cohen-Boulakia et al. [30] data set . 

Instance n p = 1 / 2 p = 3 / 4 p = 1 

Time %Deviation Time %Deviation Time %Deviation 

LICH GXCC_LICH LICH GXCC_LICH LICH GXCC_LICH LICH GXCC_LICH LICH GXCC_LICH LICH GXCC_LICH 

Long QT Syndrome 35 0.02 0.01 0 0 0.01 0.01 0 0 0.01 0.01 3.69 3.69 

ADHD 45 0.01 0.01 0 0 0.01 0.01 6.74 3.37 0.01 0.01 7.33 7.33 

Prostate Cancer 218 1.11 0.62 2.90 2.85 0.81 0.52 0.53 0.51 0.56 0.64 8.79 0.35 

Bladder Cancer 308 2.11 0.40 0.41 0.34 1.99 1.46 1.09 0.96 2.46 1.76 0.12 0.06 

Breast Cancer 386 5.91 4.97 0.98 0.98 4.89 3.89 1.32 1.32 2.28 1.89 37.50 8.85 

Retinoblastoma 402 4.94 4.99 0.77 0.05 4.08 3.84 0.28 0.28 5.17 4.85 0.54 0.54 

Neuroblastoma 431 4.59 4.58 9.30 3.08 5.21 4.63 4.06 3.76 1.29 0.41 15.83 15.57 

Average 0.67 0.43 1.93 1.19 0.56 0.47 2.28 1.66 0.41 0.33 11.77 5.20 
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ime of MIP from 6.34 to 2.43 seconds for p = 1 . Enlarged GXCC

artitioning decreased the run times of all instances with more 

han 62 items; however, it increased the run time of a handful 

f smaller instances. In fact, enlarged GXCC partitioning was able 

o reduce the run time of CR on “ED-10-49” approximately from 

956 to 4303 seconds, while it required only 0.02 seconds to ob- 

ain the partition. As Table 2 shows, enlarged GXCC partitioning 

educed the run times of both methods on all instances of the 

ohen-Boulakia et al. [30] data set for each tested value of p. It 

s worth adding that MIP was not able to solve “Bladder Cancer”

ue to an out-of-memory error; however, with the help of en- 

arged GXCC partitioning, MIP was able to solve this instance to 

ptimality in approximately 1043 seconds. Most impressively, en- 

arged GXCC partitioning was able to reduce the run time of CR 

n “Bladder Cancer” approximately from 526 to 95 seconds, a 5.5x 

mprovement, and the run time of MIP on “Prostate Cancer” ap- 

roximately from 1098 to 369 seconds, close to a 3x improvement. 

he highest partitioning time of instances in this data set only took 

.07 seconds. 

Next, we evaluate the performance of the LICH method. 

able 4 reports the run time and %Deviation of the TOC data set; 

he best %Deviation attained for each instance and each tested 

alue of p is shown in bold. LICH achieved an average %Deviation 

f at most 0.90% and a geometric mean run time of 0.02 seconds 

n this data set. It obtained the optimal solution in 10 instances 

or each tested value of p; its highest %Deviation on this data set 

as 2.71%. Table 5 reports the run time and %Deviation of the 

ohen-Boulakia et al. [30] data set; the best %Deviation attained 

or each instance and each tested value of p is shown in bold. 

ICH achieved an average %Deviation of 1.93%, 2.28%, and 11.77% 

or p = 1 / 2 , p = 3 / 4 , and p = 1 , respectively; its highest %Deviation

as 37.50%. However, the geometric mean run time of this method 

as less than one second on this data set, and its highest run time 

as 5.91 seconds. 

Finally, we investigate the effect of enlarged GXCC partitioning 

n the run time and solution quality of LICH. As Table 4 shows, 

nlarged GXCC partitioning was able to slightly reduce the average 

Deviation of the TOC data set for each tested value of p while 

aintaining the same geometric mean run time. On the other 

and, it was able to reduce both the geometric mean run time and 

he average %Deviation of the Cohen-Boulakia et al. [30] data set 

or all of the tested values of p, especially for p = 1 . Remarkably,

t reduced %Deviation of “Breast Cancer” for p = 1 from 37.50% to 

.85%, and %Deviation of “Prostate Cancer” for p = 1 from 8.79% to 

.35%. 

Putting together all of these pieces, CR outperformed MIP, and 

IP outperformed BBP. Additionally, enlarged GXCC partitioning 

educed the run time of exact methods by up to 20x. The ma- 

ority of the best run times of the exact methods were achieved 

y GXCC_CR. LICH achieved a near-optimal solution on most in- 

t

14 
tances of the TOC data set, but it had a less commanding per- 

ormance on the Cohen-Boulakia et al. [30] data set. However, en- 

arged GXCC partitioning reduced the run time and %Deviation of 

his method. Combining LICH with enlarged GXCC partitioning was 

hown to yield high-quality solutions in a short amount of time. 

. Conclusion and future research 

This paper introduces and studies RANK-AGG( p), which con- 

ains the well-known Kemeny aggregation problem as a special 

ase. It provides various analytical and computational contribu- 

ions evaluated over two real-world data sets. It introduces a new 

ixed-integer programming formulation that outperforms an ex- 

sting (revised) formulation over the featured instances. Addition- 

lly, it proposes a constraint relaxation technique, which was the 

nly exact method capable of solving several large instances (with 

p to 431 items). Furthermore, it presents a greedy heuristic al- 

orithm for obtaining high-quality solutions to RANK-AGG( p). The 

verage %Deviation of this heuristic was 0.57% and 4.2% on the two 

ested data sets. 

Additionally, this paper broadens the applicability of Condorcet 

riterion variants to RANK-AGG( p) by introducing a new social 

hoice property (GXCC). It provides an algorithm for obtaining a 

alid GXCC partition and various analytical insights regarding the 

ffect of the penalty parameter of the generalized Kendall-tau dis- 

ance on the optimal ranking and GXCC partitions. GXCC proved 

o be effective in accelerating the run time of exact methods, as 

emonstrated by the featured experiments. It was able to decrease 

he run time exact and heuristic methods by up to 20x, and it im- 

roved %Deviation of the proposed heuristic by up to 19.14 per- 

entage points. 

Future research will explore the development of additional ex- 

ct, approximate, and heuristic algorithms for RANK-AGG( p). An- 

ther important and interesting research direction is to compare 

ifferent mathematical frameworks for aggregating non-strict rank- 

ngs. Furthermore, it is possible to set different values of penalty 

arameter p for different indices, which can provide even more 

exibility to the decision-maker on how to treat ties. However, this 

odification is not consistent with the assumptions of the gener- 

lized Kendall-tau distance and it would result in a new distance 

easure. Studying this variant can be a future research direction, 

s the theoretical and computational implications motivate ques- 

ions beyond the scope of this work. 
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