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Currently, there are over 100 antibody-based therapeutics on the market for the treatment of various dis-
eases. The increasing importance of antibody treatment is further highlighted by the recent FDA emer-
gency use authorization of certain antibody therapies for COVID-19 treatment. Protein-based materials
have gained momentum for antibody delivery due to their biocompatibility, tunable chemistry, monodis-
persity, and straightforward synthesis and purification. In this review, we discuss progress in engineering
the molecular features of protein-based biomaterials, in particular recombinant protein polymers, for
introducing novel functionalities and enhancing the delivery properties of antibodies and related binding
protein domains.
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1. Introduction

Antibodies [1] and immunoglobulin fragments [2] are rapidly
becoming important classes of therapeutic proteins used to treat
a wide range of diseases. However, clinical success of antibody
therapeutics has been hindered by poor pharmacokinetics and
inherent toxicity [3]. To address these issues, significant effort
has been invested into designing strategies to increase circulation
half-life, enhance therapeutic activity, and decrease necessary
dosages. Polyethylene glycol (PEG) conjugation has been widely
employed to increase the apparent molecular weight of antibody
products beyond the renal filtration threshold [4,5]. However,
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while PEG is used in a variety of clinically-approved products [6],
there is increasing concern over the immunogenicity of PEG [7]
as well as its lack of biodegradability, which has been reported to
cause cellular vacuolization [8]. Therefore, additional effective
and biocompatible delivery strategies that address these deficien-
cies by modulating solubility, aggregation, degradation, permeabil-
ity, clearance, and cellular distribution are essential for enhanced
therapeutic efficacy and reduced side effects [9].

Recombinant protein-based polymers, including elastin [10],
silk [11], resilin [12], collagen [13], XTEN [14], PAS [15], and
coiled-coils [16] have the potential to provide these favorable
properties and offer unique advantages that stem from the proper-
ties of the amino acid side chains and polypeptide backbone
(Fig. 1). Collagen-, elastin-, and silk-based biopolymers are biocom-
patible, giving them increased potential to be immunotolerant.
Furthermore, most protein polymers can be easily expressed as a
monodisperse product in microbial hosts such as E. coli and yeasts,
which is ideal for drug delivery applications. The sequence-level
control over recombinant protein polymers allows for tunable
modulation of physical properties as well as straightforward alter-
ation of the number and location of potential chemical conjugation
handles. In addition to improving pharmacokinetics of small
antibody-like binders, the self-assembly motifs in protein poly-
mers allow for spontaneous formation of well-defined nanostruc-
tures through inter- and intra-polymer interactions such as triple
helix formation in collagen, beta-sheet fibrilization in silks, and
multimerization of coiled-coil domains [17]. Furthermore,
elastin-like and resilin-like polymers exhibit stimuli-responsive
phase behavior that can drive the formation of nanoparticles with
tunable aspect ratios [18]. These structures further expand the
potential application space of antibody-like binders, as multimer-
ization may be employed to enhance avidity or cluster/cross-link
cell receptors to stimulate responses such as apoptosis.

In this review, we will discuss therapeutic antibodies, antibody
fragments, nanobodies, and other non-immunoglobin binding
Fig. 1. Recent advances in the use of recombinant protein polymers in conjunction wi
Created with BioRender.com.
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domains and peptides such as antibody binding domains. We will
highlight the structural features of the key classes of recombinant
protein polymers used to alter the properties of antibodies and
antibody-like binders. The applications of each type of antibody-
recombinant protein polymer conjugate or fusionwill be presented,
and we will discuss future outlooks on the direction of the field.
2. Therapeutic antibodies

In nature, our immune systems utilize antibodies to defend us
from disease through various mechanisms of action including
antibody-dependent cell-mediated cytotoxicity, complementmedi-
ated cytotoxicity, and antibody-dependent cell-mediated phagocy-
tosis [19]. These mechanisms have been repurposed in therapeutic
areas ranging from cancers, to neurologic diseases, to infectious dis-
eases, to cardiovascular diseases via the intravenous administration
of antibodies against particular targets, such as cancer biomarkers
[20]. Since the first FDA approved antibody treatment in 1985
[21], over a hundred antibody-based biologics have been approved
for clinical use [20,22], with a robust pipeline of additional entities
in clinical trials [23]; antibodies continue to be the most rapidly
growing protein therapeutic [19]. While only traditional mono-
clonal antibodies (mAbs)were used initially, there are now a variety
ofmAb-relatedproducts such as bispecifics [24],mAb fragments [1],
and nanobodies [25] that have been developed for therapeutic use
[26]. Thesemore varied and smaller antibody-type variants increase
the flexibility for designing peptide bioconjugates for improved cell
targeting and therapeutic efficacy [26].
2.1. Antibodies, antibody fragments, nanobodies, and other affinity
binding domains

The immunoglobin G (IgG) is the most prevalent antibody in the
blood and the most commonly used antibody isoform for cancer
th antibodies, antibody fragments, nanobodies and non-immunoglobulin scaffolds.

http://BioRender.com
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therapeutics applications [19,27]. The 150 kDa, Y-shaped structure
is made of two heavy chain units and two light chain units held
together with disulfide bonds. The heavy chains contain a single
variable domain (VH) followed by three constant regions (CH1,
CH2, CH3). The heavy chains make up the body of the Y, and are
joined by disulfides at the hinge region between the CH1 and
CH2. The light chains contain a single variable region (VL) followed
by a single constant region (CL) and are connected to the arms of
the Y through disulfide binds between the CL and CH1. The arms
of the Y, which contain the light chain in combination with the
VH and CH1, are denoted the Fab. The VH and VL at the tips of the
Y arms make up the variable region (Fv), which is responsible for
antigen binding. The two Fvs of the antibody provide avidity,
which enhances the apparent binding affinity of the full antibody
structure [28,29]. The heavy chain CH2 and CH3 domains make
up the fragment crystallizable (Fc) region, which varies by isotype
(1, 2, 3, and 4), and determines the type of effectors recruited for a
particular immune response [19]. In biomedical applications, this
region often is employed for conjugation to other moieties, such
as polymers, so that the Fv domains remain accessible [30].

While the Fc domain provides antibodies with extended half-
lives in circulation [28], it can stimulate undesirable immune
responses [29]. Additionally, the glycosylation patterns and disul-
fide bonds in full length antibodies make them incompatible to
produce in simpler organisms typically used for production of
recombinant polypeptides. Given that the Fc is not necessary for
target binding, antibody fragments limited to the Fab and Fv
regions can be used directly [31]. The Fab domain can be obtained
through proteolytic or chemical cleavage of the IgG, or alterna-
tively, by recombinant expression. Additionally, the disulfide bond
can be reduced so that the thiols may be reused for chemical cou-
pling. The Fv is typically recombinantly expressed as a single chain
(scFv) with a 15–30 amino acid flexible linker. These fragments can
be produced in E. coli and yeast [32], and binders to new targets
can be selected through directed evolution using phage and yeast
display technologies [19].

In addition to traditionally used antibodies, camelid antibodies,
which only contain heavy chain fragments, have also become pop-
ular homing agents. The variable heavy chain regions (VHH),
denoted nanobodies for their small size (15 kDa), can be expressed
in high yields in E. coli, and they also are easily adaptable for phage
display [33–35]. Beyond antibodies and antibody fragments, other
protein scaffolds and peptide platforms can be used for binding
specific targets [36]. About 20 different proteins have been used
as non-immunoglobin scaffolds. These proteins are typically low
molecular weight, single chain molecules that lack disulfide bonds
and post-translational modifications so that they are easy to
express in E. coli. A commonly used scaffold is the affibody, which
is a 58 residue protein derived from a fragment of staphylococcyl
protein A [37]. Affibodies have high solubility and can achieve
affinities down to the picomolar range. Non-immunoglobin scaf-
folds can even be derived from human sources to lower immune
response. Anticalins, derived from human lipocalins, are 160–180
residue -barrel proteins that have entered clinical development
with one molecule, PRS-080#22, going as far as phase IIa for treat-
ment of anemia of chronic kidney disease [38]. The advantage of
small homing proteins compared to the 150 kDa IgG is that these
smaller proteins can achieve faster cellular internalization and
deeper penetration into tumors, and their more rapid clearance is
beneficial for imaging and radioactive drug based therapies
[33,39]. Peptides, being much smaller than proteins, are less
immunogenic than larger protein binders derived from other
sources [40]. Both linear and cyclic peptides of varied lengths
(�6–20 amino acids) have been selected via phage display for their
selective binding to various targets, including 19 biomarkers for
cancer [41].
3

2.2. Antibody binding domains

An alternative strategy for the attachment of antibodies to
recombinant polypeptides is by using antibody binding domains
(ABDs) that site-specifically bind the Fc and therefore can be used
for non-covalent antibody linkage. ABDs originate from pathogenic
bacteria, which natively display proteins that shield them from
immune responses. Derivatives from Protein A from Staphylococ-
cus aureus and Streptococcal protein G are the most commonly
used, and these ABDs bind antibodies from a variety of species,
although their relative affinities vary [42–44]. This class of ABDs
consist of several repeats of a core domain. Each individual domain
is capable of binding the Fc between CH2 and CH3 [45,46]. For
example, Protein A has five triple helix domains (E, D, A, B, and
C), each 58 amino acids in length [47]. Domain B has better selec-
tivity for the Fc over the Fab [45 48]. Z-domain, a chemically stable
derivative of B domain, is also widely used and can be fused to
many recombinant proteins of interest [47,49–51]. Due to their
pathogenic origin, these ABDs are primarily used for the purifica-
tion of antibody therapeutics as well as molecular diagnostics. Pep-
tides [52,53] and non-immunoglobin scaffolds [54] have also been
selected for antibody binding; however, the non-covalent associa-
tion of these is likely to create issues for in vivo application where
native antibodies could compete for binding. Antibody binding
peptides directing site-specific covalent coupling to the Fc may
hold better promise in translating this strategy to the clinic [55].
3. Recombinant elastin-like polypeptides (ELPs)

Elastin-like polypeptides (ELPs), derived from tropoelastin,
were first characterized for their temperature responsive behavior
by Urry in the 1980 s [56]. They consist of repeats of the amino acid
sequence VPGXG, where X is any ‘‘guest” residue except for pro-
line. They exhibit a lower critical solution temperature (LCST)
where they shift from a random coil conformation to globule
aggregates above their transition temperature (Tt). This reversible
transition is a function of ionic strength and concentration of the
polymer, and can be further tuned by the identity of the guest resi-
due as well as the length of the polypeptide [57]. Apart from tem-
perature, ELPs can additionally be engineered to transition in
response to other stimuli such as pH [58] and the presence of metal
ions [59]. This phase transition also allows for simple, non-
chromatographic purification of fused or affinity bound protein
domains through inverse transition cycling (ITC) [60,61]. ELPs
fused to antibody binding domains, for example the Z-domain,
have been used for the purification of antibodies [62,63] Further
enhancement in antibody recovery was achieved by conjugating
ELP-Z fusions onto protein nanoparticles to enable IgG-triggered
cross-linking using a variety of bioconjugation strategies [64,65]
as well as the quick and facile detection of antibody titers in media
[66].

The stimuli responsive property in ELPs also can be used to cre-
ate hierarchical structures [67] such as ordered micelles [68] and
nanoworms [69]. Recombinant block copolymers with ELPs and
resilin-like blocks can self-assemble into spheres, rods, and
worm-like morphologies depending on the length of each block
[18,70]. Self-assembly into fibrils can be accomplished by combin-
ing ELPs with silk-like blocks [71,72]. The LCST also allows for the
formation of temperature triggered drug depots which can be sub-
cutaneously injected to provide sustained, local drug release via a
sustained surface-to-core dissolution [17,73]. A stealth property
also has been applied to ELPs though use of neutral and hydrophilic
guest residues [74] as well as by incorporating a zwitterionic
amino acid pair into the guest position [75].
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3.1. ELPs in antibody drug delivery applications

Antibody fragments, nanobodies, and other small affinity
domains have many advantages over antibodies when it comes
to therapeutics. They are easier to produce, exhibit faster tissue
penetration, and lack the Fc domain, which can lead to undesired
immune stimulation [29]. However, their small size leads to rapid
clearance and they lack multivalency and thus have less affinity
than the full antibody. A nanobody targeting TNF-alpha was fused
to ELP, expressed in transgenic plants, and purified through ITC
[76]. This fusion was able to increase half-life of the nanobody
24-fold and prevent septic shock in mice.

To overcome avidity limitations, the temperature responsive
property of ELP can be further used to assemble higher order struc-
tures that present antibody fragments on the surface at high local
concentrations. A PD-1 checkpoint inhibitor scFv fused to a block
copolymer consisting of linked hydrophilic and hydrophobic
immune tolerant ELP (iTEP) blocks assembled into micelles that
demonstrated an order of magnitude stronger binding to PD-1 than
either the monomeric scFv or the intact aPD-1 antibody [68]. The
PD-L1 blocking efficiency of the micelles was comparable to the
antibody. Enhanced avidity also is desirable in cell targeting appli-
cations. An ELP micelle displaying nanobodies targeting the epider-
mal growth factor receptor (EGFR) exhibited better binding to
human epidermoid carcinoma cells than the nanobody alone
[77]. The self-assembly property of the ELP micelles further allows
for the incorporation of other ELP-conjugated moieties providing
additional functionality, including the photosensitizer
IRDye700DX for photoimmunotherapy applications. This design
provides the ability to load a high payload of photosensitizer per
molecule of nanobody, where 98 % of the micelle was composed
of the photosensitizer-linked ELP and 2 % of the micelle contained
the nanobody-linked ELP. The photosensitizer micelle provided a
lower EC50 in the carcinoma cells than the singularly labeled
nanobody-photosensitizer control, while having similar relative
viabilities in the EGFR negative astrocytoma cells.

In addition to the benefits imparted by hierarchical structures
for increased avidity, the morphology of hierarchical structures
can affect binding and cell uptake, with high-aspect ratio, flexible,
worm-like particles exhibit a higher number of accessible binding
domains compared to spherical micelles [70]. These types of struc-
tures are useful for applications in which cell surface receptor
crosslinking is used to induce apoptosis. Worm-like nanoparticles
were generated after refolding a CD20-targeting scFv and ELP
(A192) fusion [69]. These nanoworms outperformed Rituximab in
inhibiting tumor growth in a non-Hodgkin lymphoma xenograft
model. Similarly, this nanoworm-mediated receptor clustering
strategy was used against CD20, HLA-DR10, CD19, and CD3 targets.
The CD3-targeted nanoworm could trigger activation-induced cell
death on a Sézary syndrome cell line model [78]. Similar nanos-
tructures were applied to acute myeloid leukemia by targeting
CD99 [79] or FMS-like tyrosine kinase 3 (FLT3) [80].
4. Silk and silk-like polypeptides

Silks are fibrous proteins spun by arthropods such as silkworms,
spiders, bees, ants, and lacewing insects, for the purpose of protec-
tion of pupae during metamorphosis, building webs/nests, captur-
ing prey, and protecting eggs [81]. They are known for their
spectacular mechanical properties; for example, Nephilla clavipes
dragline spider silk, has a high tensile strength while exhibiting
up to 30 % stain before breaking, resulting in a more durable mate-
rial than Kevlar, one of the strongest synthetic fibers [82]. The
properties of silkworm and spider silks are a result of the
hydrophobic anti-parallel beta-sheet regions that assemble nano
4

crystallites within the silk fibroin, or spidroin, in combination with
the hydrophilic amorphous regions of the silk protein, which pro-
vide its extensibility [11]. The most available source of natural silk
is the Bombyx mori silkworm, with sericulture of large numbers of
silkworms first developed in ancient times to enable production of
luxury textiles. Antibody fragments and binding domains have
been incorporated directly into silkworm fibroin and spun into
the cocoons [83–85]. Theses silk fusion materials can be used for
immunoprecipitation [84] or processed into films [85] or coatings
for immunosorbent assays [83].

The dominant B. mori hydrophobic region, which forms the
strong beta-sheet structures, is comprised of the GAGAGS motif
[11]. This motif was shown to increase expression of nanobodies
and provide a slight enhancement in thermostability when fused
to the C-terminus; increasing copies of the motif further increased
transcription levels due to higher mRNA stability [86]. Repeats of
this motif have also been used in combination with elastin-like
motifs to generate recombinant silk-elastin-like polypeptides
(SELPs), which can be expressed in high quantities in E. coli [11].
The properties of SELPs can be tuned based on the relative number
of repeats of silk and elastin, with silk providing stability and elas-
tin providing stimuli-responsive properties [71]. Similarly, resilin-
like polymers can also be used in conjunction with silk motifs to
make stimuli responsive materials [87]. These amphiphilic poly-
mers can form fibers [87], films [88], hydrogels [89], and nanopar-
ticles [90] though silk-silk crosslinks. Recombinant major
ampullate spider silks have also been constructed from consensus
repeat domains and expressed in E. coli [81]. These spidroin
repeats consist of alternating hydrophobic polyalanine regions
and hydrophilic glycine rich regions that are able to form fibers
[91], particles [92], coatings [93], gels [94], and films [95].

4.1. Applications of silk-like polypeptides

Given the ability of silk-like domains to form fibrous materials
and coatings, antibody-silk biomaterials have been most widely
used in various immunoassays. By fusing the silks to antibody
binding domains or antibody fragments, functionalized films and
coatings can be made for detection of analytes [95]. For example,
Z domain fused to spider silk was adsorbed to SiO2 surfaces [96].
This one-step chemical-free surface biofunctionalization strategy
allowed for an 8-fold higher capture of antibodies than the Z-
domain chemically attached to the surface. This enhanced capture
behavior was due to the site-specific attachment of the Z-domain,
which provided a higher number of affinity domains with the opti-
mal orientation for binding. Additionally, the formation of three-
dimensional silk fibers provided a higher surface area and binding
capacity than non-specific chemical modification of a flat surface.
This type of platform can be expanded to micro- and nanoarrays
in which spider silk is fused to individual scFvs targeting a range
of biomedically-relevant proteins such as VEGF and the comple-
ment component C1q, which can be spotted onto the arrays for
specific signal detection [97]. The co-localization of affinity
domains on surfaces can also be used for applications in cell signal-
ing. Coatings of recombinant spider silk fused to dimeric and tetra-
meric affibodies targeting VEGF receptor 2 (VEGFR2) were used to
induce cell proliferation [93]. The silk-mediated display of affibod-
ies in close proximity allowed for the VEGFR2 to properly dimerize
resulting in the activation of its signaling pathways.

Recombinant spider silks can be formulated into particles for
drug delivery. These particles can be further fused [92] or conju-
gated [98] to affinity peptides to target certain cancer models.
For example, spider silks have been fused with HER2 targeting pep-
tides for delivery into HER2 positive mouse breast cancer cells [99].
In vitro, the HER2 binding peptide provided a 6-fold higher binding
to HER2 positive breast cancer cells than the silk spheres on their
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own. When doxorubicin (DOX) was delivered into a mouse ortho-
topic breast cancer model, the spider silk spheres significantly
reduced tumor volume compared to DOX-free controls, while also
reducing the side effects of the systemically administered
chemotherapy. Spider silk spheres can be further engineered by
incorporating functional groups to encapsulate cargo, including
DOX binding peptides to prevent premature DOX release [100],
polylysine domains for CpG-siRNA [101] or pDNA delivery[102],
and metal binding peptides for making iron oxide nanoparticle
composites for photothermal therapy [103]. While the use of silk
particles functionalized with antibodies and their fragments has
not been explored, it should be straightforward to use them in
place of binding peptides for cell targeting.
5. Recombinant resilin-like polypeptides

Natural resilin is a rubbery protein with almost perfect elastic-
ity [104]. It is commonly found in the exoskeletons of insects and
arthropods and is well-known for having low stiffness, high resili-
ence, and the ability to efficiently store energy [105]. The unique
mechanical properties and biodegradability of resilin make it an
attractive biomaterial for regenerative medicine and drug delivery
applications [106].

Natural resilin is a crosslinked protein with a unique composi-
tion of amino acid residues comprising 66 % non-polar groups
and 31 % glycyl, resulting in a low isoelectric point and high
hydrophilicity [107]. Since the discovery of the resilin gene
sequences from Drosophila melanogaster in 2011 [108], recombi-
nant resilin-like polypeptides (RLPs) have been produced to mimic
the physicochemical and structural properties of natural resilin
[12,109]. RLPs are intrinsically disordered polypeptides that con-
tain high concentrations of glycine, and RLPs can be cast into a
rubber-like biomaterial with Ru(II)-mediated photo-crosslinking,
yielding a material with mechanical properties similar to those of
natural resilin. Beyond the unique mechanical properties, RLPs
are also responsive to pH and temperature [110], exhibiting dual
phase-transition behavior characterized by both lower (LCST) and
upper (UCST) critical solution temperatures, the temperatures
below which and above which, respectively, the RLP is fully misci-
ble in solution. Because these phase transitions are fully reversible,
RLPs have been exploited to provide simple and inexpensive purifi-
cation of fusion proteins [109]. Moreover, this tunable phase tran-
sition feature of RLPs also makes them an attractive biomaterial for
therapeutic applications.
5.1. Resilin-based materials for biomedical applications

The controllable phase behavior of RLPs has been exploited to
generate nanoparticles with tailorable sizes and shapes that are
useful as drug delivery vehicles [111]. For example, RLP nanoparti-
cles can be tuned from sizes of � 20 nm below the LCST transition
temperature to� 400 nm above the transition temperature. Hybrid
resilin-elastin polypeptides (RLP-ELPs) also have been created, and
nanoparticle sizes can be altered by varying the RLP-ELP ratio
(Fig. 2A) [112]. The nanostructure morphology can be further con-
trolled by changing the hydrophobicity of the ELP block, resulting
in formation of either spherical micelles or worm-like structures
when using a more hydrophilic ELP core [18]. Increasing the
hydrophobicity of the corona-forming ELP decreases the core
repulsion, causing a transition from spherical to cylindrical
morphology.

For drug delivery applications, a fibronectin type-III (Fn3)-
binding domain that binds the avb3 integrin was successfully
fused to the C-terminus of an RLP-ELP diblock copolymer without
impacting nanostructure formation [70]. While displaying Fn3 on
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spherical nanoparticles improved the binding affinity by 10-fold
due to multivalent binding, the worm-like nanostructures exhib-
ited a remarkable 1000-fold increase in affinity, likely due to their
flexible morphology and corresponding ability to provide
improved multivalent binding onto integrin-decorated surfaces
(Fig. 2B). The ability to display fusion protein partners on RLP
nanostructures can be extended to other polypeptide/protein
modalities such as antibodies to impart selective cellular targeting
or therapeutic activity.

In addition to nanoparticles, RLP-based hydrogels have been
created [113]. Different functional domains have been inserted
within RLPs [114] to provide additional responsiveness to metallo-
proteinases (MMPs) [115] or intracellular redox conditions [116].
Furthermore, ‘‘smart” RLP hydrogels have been designed for cell-
selective adhesion by inserting a cell-binding domain into the
RLP building block [114]. A wide range of cell-binding moieties
have been inserted to recruit different cell types [117–119]. While
none of these hydrogels have been used for drug delivery purposes,
these examples point to the feasibility of appending antibodies or
nanobodies for therapeutic applications.

Resilin has also been combined with other proteins, including
elastin, collagen, and silk, to generate hybrid resilin biomaterials
with enhanced properties [120]. A chimeric polypeptide comprised
of an RLP, ELP, and collagen-like peptide (CLP) in tandem was gen-
erated to enable formation of structures including large fibers and
fiber bundles with Young’s moduli in the range of 0.1–3 MPa [120].
These hybrid RLP biopolymers present a unique opportunity to cre-
ate recombinant hybrid RLP-antibody/nanobody conjugates with
customizable mechanical and targeting properties.
6. Recombinant collagen-like polypeptides (CLPs)

Native human collagen is a highly abundant class of extracellu-
lar matrix proteins encompassing 28 subclasses ranging from fib-
rillar to network-forming collagens. Each subclass is comprised
predominantly, if not entirely, of proteins that form a prototypical
right-handed triple helical tertiary structure based on the tight-
packing of three parallel left-handed polyproline II-type helical
polypeptide strands in a one-residue stagger [121]. This tight pack-
ing is facilitated by the obligatory repetitive (Gly-X-Y)n primary
sequence of each strand. Buried glycine residues within the center
of the helix coupled with the high predominancies for proline in
the X position and 4-hydroxyproline in the Y position give rise to
both the relatively large average helical rise of about 0.86 nm per
tripeptide repeat in proline-rich regions [122], and the small aver-
age triple helix diameter of about 1.5 nm [123,124]. Additionally,
each subclass of collagen is marked by a characteristic suprastruc-
ture that varies between groups of subclasses [125]. Of particular
interest in biomaterials applications is the use of fibrillar collagens
such as type I collagen, for the creation of biocompatible wound-
dressings [126,127] and matrices for drug delivery [128,129].
However, extraction of collagen from animal sources, which is
the traditional method for generating collagen-based biomaterials,
often generates heterogeneous products and also can contain trace
impurities that illicit strong immune responses. [130,131] There-
fore, most collagen-based biomaterials have moved towards utiliz-
ing either synthetic collagen mimetic peptides [132] or
recombinant collagen-like polypeptides (CLPs) [13], of which the
latter and its applications will be further discussed in this review.

The expression of fully functional recombinant mammalian col-
lagen requires the implementation of multiple post-translational
modification systems. Prolyl 4-hydroxylase, which is exogenous
to bacterial and yeast expression systems, is required for the
hydroxylation of proline residues throughout the triple helix.
[133] This post-translational modification at the Y amino acid posi-



Fig. 2. Shape-dependent avidity effects on binding kinetics and in vitro cellular uptake using recombinant resilin-elastin hybrid polypeptides of different segment lengths
with a C-terminal aVb3 integrin-targeting fibronectin type III (Fn3) domain. (A) Binding kinetics and dissociation constants of the monomeric Fn3 domain compared to Fn3-
decorated spherical and wormlike micelles. All measurements done using surface plasmon resonance. (B) Representative confocal micrographs and flow cytometry data for
delivery of 10 lM of the Alexa 488 dye-labeled monomeric Fn3 domain and Fn3-decorated spherical and wormlike micelles to K562 cells transfected with the aVb3 integrin
for 2.5 h. Adapted with permission from [70].
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tion enhances the thermostability of the triple helix through stere-
oelectronic and steric effects, and is necessary to elevate the triple
helix melting temperature above body temperature as needed for
biomedical applications [134,135]. Lysine hydroxylation, also
endogenous only to mammalian systems, is used for both glycosy-
lation and cross-linking fibrils in collagen to increase tensile
strength [136]. Recombinant expression of mammalian collagens
has therefore employed either recombinant mammalian systems
or non-mammalian systems (E. coli, yeast, plants) in which prolyl
4-hydroxylases are co-expressed. Mammalian expression systems
precisely and completely hydroxylate all the proper prolines, but
produce relatively low recombinant collagen yields, precluding
applications that require high quantities of product [137]. Non-
mammalian systems often yield products with either incomplete
proline hydroxylation or non-selective proline hydroxylation
patterns [138–140]. Therefore, most applications of recombinant
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collagens utilize only small sections of human collagen sequences,
or alternatively, employ collagen-like sequences from bacterial
sources.

Bacterial CLPs contain the same repetitive (Gly-X-Y)n consensus
primary sequence as mammalian collagen, but are stabilized by a
high percentage of polar and charged residues in the X and Y posi-
tions, as well as a large fraction of prolines in the X position, to
compensate for the lack of hydroxyproline [13]. With these high
percentages of polar and charged residues, many bacterial
collagen-like proteins are able to maintain their triple helical struc-
tures at temperatures comparable to those of recombinant mam-
malian collagen polypeptides [141]. Bacterial CLPs also contain
additional terminal non-collagen domains including a terminal
globular variable domain (V-domain), which facilitates refolding
following heat denaturation of the triple helix [142], and a terminal
cell wall anchoring domain. This ability to re-fold the triple helix



Fig. 3. Application of recombinant collagen-like polypeptides as scaffolds for multimeric clustered protein presentation. (A) Transmission electron micrographs of the
collabody constructed from the genetic fusion of a (GPP)10 CLP to a scFv for the human epidermal growth factor receptor’s extracellular domain, connected by a short flexible
linker. Scale bars are all 20 nm. (B) Binding kinetics and dissociation constants of the trimeric collabody compared to a dimeric scFv – Fc domain fusion and a monomeric scFv
construct. All measurements done using surface plasmon resonance. (C) Assembly diagram and transmission electron micrographs of ‘‘headless” C1q protein constructed
from the replacement of the C1q C-terminal globular regions with the NC2 domains of type IX collagen. Adapted with permission from [150] and [155].

A.G. Goncalves, E.J. Hartzell, M.O. Sullivan et al. Advanced Drug Delivery Reviews 191 (2022) 114570
when fused to the correct termini of the V-domain [142], and the
tunability of the triple helix melting temperature using multiple
inputs (e.g., pH [143], V-domain selection [142], collagen-like
domain selection/length/patterning [141,144–146]) makes bacte-
rial CLPs interesting for use in different biomaterials applications.
Furthermore, many examples show the ability to express bacterial
CLPs at high yields [147] and recover the CLPs using simple, large-
scale purification techniques [148], demonstrating that these
polypeptides could be applicable to the construction of biomateri-
als. Furthermore, the collagen-like domains of bacterial polypep-
tides do not elicit immune responses based on studies in mice
[149], showing their potential for application in drug delivery.

6.1. Recombinant CLPs in drug delivery applications

The triple helical structure of collagen can be leveraged as a
scaffold for the trimeric presentation of different protein
domains based on the amenability of the CLP chains to terminal
genetic fusions. Many examples exist in nature, with various
subclasses of collagen containing terminal globular domains
[125], and bacterial CLPs presenting terminal globular V-
domains [13]. This trimeric presentation can be utilized to
increase the affinity of a binding domain to an antigen target
by increasing the avidity in binding, which is especially pertinent
for low affinity binding domains. This affinity effect was shown
in the development of a ‘‘collabody,” in which an scFv to the
human epidermal growth factor receptor’s extracellular domain
was expressed in a genetic fusion to (GPP)10, linked by a short
flexible linker. (Fig. 3A) Using mouse myeloma NS0 cells for
expression, the authors demonstrated complete hydroxylation
of all the Y-position proline residues; moreover, trimerization
improved the dissociation constant by 1000-fold as compared
to the monomeric scFv construct (Fig. 3B) [150]. The
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trimerization of recombinant antibody fragments was important
beyond its capacity to increase binding avidity. Multimerization
increased the effective size of the overall structure, thus greatly
diminishing renal clearance following intravenous delivery [151].
The collabody structure can be further modified to increase avid-
ity or specificity via functionalization of the free termini of the
(GPP)10 triple helix with the same scFv or another binding
domain. Additionally, different collagen-like sequences could be
utilized to create heterotrimeric collabodies with more complex
binding specificity. For example, many platforms have been
designed for creating heterotrimeric collagen-like triple helices
with precise control of chain composition including ABC hetero-
trimers composed of a 1:1:1 composition of (PKG)10, (DKG)10,
and (EPG)10 collagen-like peptides [152]; AAB heterotrimers
composed of a 2:1 composition of (PKGEOG)5 and (POGDOG)5
collagen-like peptides [153]; and ABC heterotrimers formed from
the 1:1:1 mixing of genetic fusions to the AAB heterotrimeric
NC2 domain of type IX collagen [154]. The heteromerization of
collabodies could pose an elegant solution to control the target-
ing specificity of a trimeric scaffold, as many disease states cause
cells to upregulate multiple receptors at different relative densi-
ties. Manipulating the valency of multiple binding domains
within one structure could function to greatly improve targeting
specificity. Additionally, similar to the functions of the collabody,
a platform based on complement component C1q that was made
up of six individual collagenous domain ABC heterotrimers was
recently developed by replacing the C1q C-terminal globular
regions with the NC2 domains of type IX collagen(Fig. 3C)
[155]. This platform could be further amended for the presenta-
tion of different recombinant antibody fragments or binding
domains, with greater possibilities for control of the number
and relative densities of presented domains compared to the col-
labody platform.
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7. Recombinant intrinsically disordered pseudo-repeating
polypeptides: XTEN and PAS

Recombinant polypeptides with intrinsic conformational disor-
der and high solubility have been designed with the intention of
creating biodegradable and less immunogenic alternatives to poly-
ethylene glycol (PEG) that will improve the biophysical and phar-
macokinetic properties of protein and peptide drugs [156]. XTEN
[14] and PAS [15] recombinant pseudo-repeating polypeptides
both function with a near-identical mechanism to PEG: both
greatly increase the hydrated volume of the tagged molecule,
which minimizes renal clearance, while simultaneously providing
a shielding effect to reduce phagocytic clearance and proteolysis.
Similar to PEG, XTEN and PAS fusions to targeting domains slightly
increase the target dissociation constant through a reduction in the
on-rate, yet this decrease in apparent affinity can be more than
compensated for in vivo through the increase in the fusion’s circu-
lation half-life [15,157,158]. Therefore, both XTEN and PAS can be
utilized to greatly improve the delivery of antibody fragments,
nanobodies and other binding domains, especially those with a
sub-lM dissociation constant.

The original XTEN recombinant polypeptide developed by Amu-
nix Pharmaceuticals, which was recently acquired by Sanofi in
2021, consists of an 864-residue polypeptide chain containing a
proportional yet randomized sequence of alanine, glutamic acid,
glycine, proline, serine, and threonine built from iterative expres-
sion level screening and extension from randomized 36 amino acid
length segments [14]. The finalized XTEN sequence was shown to
completely lack secondary structure, present an extremely large
hydrodynamic volume with respect to its molecular weight, and
exhibit no observed propensity to aggregate in response to either
elevated concentration or elevated temperature [14,159]. Starting
from this original 864 residue sequence, multiple fractional trunca-
tions of XTEN as well as an XTEN tandem dimer have been charac-
terized to function similarly [159]. Most studies show that longer
XTEN sequences give greater improvements to circulation half-
life (Fig. 4A), yet conversely, longer lengths could have adverse
effects on expression yields, interfere with folding at internal inser-
tion sites, or dampen the rate of diffusion into a tumor; accord-
ingly, many applications benefit from selecting small XTEN
sequences [158,160].
Fig. 4. In vivo pharmacokinetics of PASylated and XTENylated DARPin fusions of different
serum concentration of DARPin fusions. All proteins were injected intravenously into five
with sandwich ELISA. (B) Effect of recombinant PAS lengths on tumor volume of DAR
conjugates were injected intravenously into six mice with EpCAM-positive HT29 tumor
DARPin. Adapted with permission from [158] and [160].
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The PAS recombinant polypeptide (e.g., Pro/Ala-rich Sequence)
was created using a more restrictive design principle as the XTEN
polypeptide. The original PAS sequence of 20 amino acids was built
by randomly arranging proline, alanine, and serine residues while
minimizing the presence of two-residue repeats and prohibiting
any longer length repeats to prevent the potential formation of sec-
ondary structures at localized areas of single-residue homopoly-
mers [15]. This randomly designed 20 amino acid sequence
(ASPAAPAPASPAAPAPSAPA) serves as the traditional template for
creating higher molecular PAS tandem multimers, often going all
the way up to 30-repeat PAS protein polymers [161]. However,
PAS polymers are not restricted to the same arrangement of pro-
line, alanine, and serine amino acids. Similarly acting polymers
can be created using the same design technique without including
serine, and also, while altering the proportion of proline to alanine
residues within a broad range [162]. When compared to PEG poly-
mers of identical molecular weight, PAS biopolymers show larger
hydrodynamic volumes and lower concentration-dependent vis-
cosities, outperforming PEG in aspects influential to the adminis-
tration of polymer-drug conjugates via injection [162]. When
compared to XTEN, PAS shows similar trends of increased biopoly-
mer lengths yielding prolonged circulation of fusions (Fig. 4A)
[158,163] while the upper range of biopolymer lengths can
decrease tumor uptake due to a combination of increasing the
apparent target dissociation constant and/or dampening the rate
of diffusion into the tumor [160,163]. (Fig. 4B) This has manifested
into many examples of the use of PAS fusions of different lengths,
ranging from as small at 20 residues to as large as 600 amino acids
[161].

Both XTEN and PAS polypeptides can serve as excellent
biodegradable alternatives for prolonging circulation in therapeu-
tic protein delivery. Utilizing recombinant polypeptides in a
genetic fusion to a protein cargo will always generate a homoge-
nous product as long as the chosen purification techniques can
remove any truncation products. By contrast, many examples have
shown that utilizing PEG can yield a difficult to separate heteroge-
neous mixture of products due to non-specific conjugation and the
inherent polydispersity of PEG [164]. Additionally, using genetic
fusions allows for the incorporation of two XTEN or PAS biopoly-
mers of the desired lengths by conjugation to both the termini of
the protein [165], whereas implementing such a scheme with
biopolymer lengths. (A) Effect of recombinant PAS and XTEN polypeptide lengths on
mice at 4.5 mg/kg for each construct and all serum concentrations were measured

Pin fusion with monomethyl auristatin F (MMAF) conjugation. All protein-MMAF
xenografts with either 300 nmol/kg of the EC1 DARPin or a negative control Off7
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PEG would require use of two orthogonal conjugation groups, fur-
ther increasing the complexity of synthesis and down-stream pro-
cessing steps [164]. Furthermore, both the XTEN and PAS
polypeptide sequences have additional properties that make them
even more useful for protein delivery. Both XTEN and PAS only
contain reactive nitrogen functionalities at their N-terminus and
have been shown to tolerate incorporation of multiple cysteine
residues within the polypeptide chain, allowing for creation of
site-specific and multivalent chemically conjugated products with
N-hydroxysuccinimide ester and maleimide functionalized pay-
loads [158,166–168]. PAS polypeptides also contain only one reac-
tive carboxyl functional group, at the C-terminus, enabling
additional orthogonal chemical conjugations. The functionalization
of a protein cargo with XTEN or PAS polypeptides also eliminates
the necessity for incorporation of purification tags, which typically
requires further downstream processing for tag cleavage and
removal. The tolerance of XTEN fusions to prolonged heating at
elevated temperatures has been leveraged to create a purification
scheme wherein an initial heating step is used to precipitate a
majority of whole cell lysate protein. Subsequently, the low iso-
electric point of the XTEN sequence is used to enable an anion
exchange chromatography step to further purify XTEN-fusion pro-
tein constructs [14,159,169]. A single-step chromatographic purifi-
cation scheme without harsh conditions has also been recently
developed for PAS fusion constructs by using a moderately low-
affinity PAS-specific antibody Fab fragment with fast dissociation
kinetics and a 1 M L-prolinamide elution step [170]. This Fab was
generated using a 40 amino acid PAS polypeptide conjugated to a
strong immunogenic carrier protein, with multiple immunizations
to several mice generating only a small pool of six monoclonal
antibodies [171]. A similar technique was used to create an anti-
XTEN monoclonal antibody [159]. The low number of antibodies
generated for both XTEN and PAS despite substantial effort, cou-
pled with the lack of observed immune response with either
sequence, emphasizes the potential suitability of translating from
PEG to either of these polypeptides for prolonging circulation in
therapeutic protein delivery.

7.1. Recombinant XTEN and PAS polypeptides in antibody drug
delivery applications

The primary application of XTEN and PAS recombinant polypep-
tides has been to prolong the circulation of different therapeutic
protein cargo. This is particularly relevant for proteins below
70 kDa, as this molecular weight represents the general renal
threshold limit for globular proteins, which includes a majority
of the recombinant antibody fragment domains and all nanobodies
and non-immunoglobulin scaffolds [151]. To this end, XTEN and
PAS recombinant polypeptides have been shown to prolong the cir-
culation of Fab domains [15,163,172–176], nanobodies [177,178],
anticalins [179,180], DARPins [158,160], and affibodies [168]. The
fusion of these polypeptides can increase circulation half-life as
compared to circulation of the untagged protein by 2-fold
[163,171] to 114-fold [158,160]. This change greatly improves
the therapeutic output of these molecules by prolonging their cir-
culation in mice from approximately a few minutes to nearly 24 h,
in the upper-range of XTEN and PAS tagged molecules. These dif-
ferences in half-lives in mice are even more substantial after taking
into account the allometric scaling of these values to circulation in
humans.

Recently, recombinant XTEN polypeptides were applied as a
scaffold for small-molecule drugs conjugated to a cysteine-
engineered antibody, creating a homogenous antibody-drug conju-
gate (ADC) with a very high drug-to-antibody ratio [167]. While
the implementation of these recombinant polypeptides did not
prolong circulation of ADCs because of their relatively large size
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and FcRn-mediated recycling, it emphasized the benefits of using
recombinant polypeptides as a scaffold for site-specific conjuga-
tion of cargo and creation of a homogenous product. This example
allowed for drug-to-antibody ratios of 18, where most clinically-
approved ADCs only have a ratio of at most 4 [181].

An additional interesting application of XTEN polypeptides uti-
lizes its secondary masking mechanism to create an MMP-
inducible protein delivery system. This was originally imple-
mented using a 288 residue XTEN polypeptide linked by an
MMP-2 and MMP-9 cleavable linker to a cytostatic and cytotoxic
protein, Killin, and 6x-arginine cell-penetrating peptide fusion
[169]. The cleavable XTEN mask gated the cytotoxicity of Killin,
shown by the approximately 96 % decrease in in vitro cell viability
of MMP-2 and MMP-9 upregulated human fibrosarcoma HT-1080
cells after delivery of 10 lM of the conjugate for 24 h, without
affecting the growth of BRL3A liver derived non-tumor cells
[169]. Amunix Pharmaceuticals has since started implementing
this XTEN masking system for the delivery of XTENylated
Protease-Activated T-Cell Engagers, or XPATs. The XPAT platform,
termed AMX-818, uses a bispecific T-cell engager (BiTE) format
constructed from the fusion of an anti-HER2 scFv and an anti-
CD3 scFv with N- and C-terminal XTEN masks of different lengths
linked by a proprietary sequence of three adjacent protease cleav-
able domains. The XTEN masks on AMX-818 increase the EC50 for
in vitro target-directed T cell cytotoxicity of huPBMCs against BT-
474 tumor cells by four-orders of magnitude after a 48-hour incu-
bation. Additionally, this masking allows for a large increase in
maximum tolerated exposure, with a Cmax around the single lM
range, an approximately 400-fold improvement to the unmasked
variant. This improvement allows for safe dosing of AMX-818 at
relatively high doses of around 50 mg/kg in non-human primates
[182]. This AMX-818 platform has also been shown to be translat-
able to other scFv tumor targeting domains [183].
8. Coiled-coil based nanostructures

Coiled-coil peptides are a widely used motif for protein assem-
bly because of their ability to provide highly predictable and tun-
able interactions [16]. Coiled-coil domains often exhibit 4 or
more heptad repeats of hydrophobic (H) and polar (P) residues,
HPPHPPP [184], and can be easily combined to generate a wide
range of complex assemblies [185]. Many of these sophisticated
assemblies have been made possible by sequentially combining
different coiled-coil domains into defined morphologies [186–
189]. A multiple domain protein containing 12 coiled-coil-
forming segments was used to create a tetrahedral nanostructure
whose morphology was precisely controlled by the orientation
and sequential pairwise interaction of each coiled-coil segment
[188]. More recently, dimerizing coiled-coils based on the
arginine-rich leucine zipper motif (ZR) and glutamic acid-rich leu-
cine zipper motif (ZE) were used to create protein amphiphiles for
thermally triggered self-assembly of 5 lm protein vesicles display-
ing functional GFP or mCherry [190]. Coiled-coil interactions can
also be repurposed to introduce multivalency in nanocarriers for
enhanced binding [191]. These examples highlight the structural
flexibility achieved simply by creating the appropriate pairwise
coiled-coil interactions.

Recently, a de novo designed hexameric coiled-coil peptide
(Hex) [192] was exploited for antibody delivery. Hex was fused
to the domain B of Protein A to enable binding to the Fc region
of antibodies [193]. The resulting self-assembled nanoparticles
were shown to display up to three antibodies, and these nanopar-
ticles were readily uptaken into HeLa cells via endocytosis.
Increased exposure of the Hex coiled-coil on the carriers enhanced
cellular internalization, highlighting a role of the coiled-coil in pro-
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moting endocytosis [194]. Improved endosomal escape was
observed when His-tags were presented on the carrier, suggesting
a possible endosomal buffering effect.

In addition to nanoparticles, de novo designed coiled-coil pep-
tides have been designed to self-assemble into a polyhedral nanoc-
age [188]. A single protein composed of 12 coiled-coil peptides was
created to drive the formation of nanostructures based on orthog-
onal pairwise interactions. The recent discovery of nanobodies that
bind specifically to different coiled-coil pairs provided a simple
strategy to decorate the nanocage with antibodies for therapeutic
applications [195]. Even multimeric coiled-coil interactions have
been exploited to create polyhedral nanostructures [196] that are
useful for multivalent display of antigens against HIV [197] and
malaria [198]. The ability to modulate the displayed protein cargo
is an attractive feature that can be extended to antibody or nano-
body display.
9. Conclusions and future directions

This review highlights the diverse array of functionalities
imparted to antibodies, antibody fragments, nanobodies, and other
non-immunoglobulin scaffolds by direct genetic fusion or conjuga-
tion to recombinant protein polymers. Each biopolymer instills
features such as greater avidity, enhanced circulation half-life, or
alternative purification methods that can assist in the translation
of these protein therapeutics to the clinic. While no clinical studies
to date have applied these biopolymers in combination with anti-
bodies, antibody fragments, nanobodies, or non-immunoglobulin
scaffolds, several recombinant protein polymer conjugates to other
classes of protein therapeutics have shown promising results in
clinical trials [199,200]. Moreover, the continual expansion of the
number and diversity of protein biologics on the market will
increasingly require cutting-edge drug delivery approaches. For
example, the fraction of combination products such as antibody-
drug conjugates (ADCs) will continue to increase, supported by
advances in antibody design and new linking chemistries, and
these ADCs will require more sophisticated control over the drug
delivery process to maximize drug potency, obviate off-target tox-
icities, and improve therapeutic index [201]. Meanwhile, antibod-
ies and antibody-like molecules offer new prospects for reaching
intracellular ‘undruggable’ targets [202], and the advent of new
endosomal escape techniques enables new capacity for successful
antibody delivery into the cellular cytoplasm [203,204]. Protein
polymers offer a natural solution to modify and fine-tune ADCs,
intracellular antibodies, and other novel antibody products for
increased clinical potential, and the existence of new regulatory
frameworks will accelerate the translation and commercialization
processes [205]. For these reasons we ascertain that in the near
future, recombinant protein polymers will see much more clinical
relevance in the delivery of antibody and antibody-like binders.

New frontiers for antibody-protein polymer structures may
exist in the use of protein polymers to construct and modify hier-
archical biomaterial structures, resulting in novel capacity to orga-
nize antibody or antibody-like domains into three-dimensional
nano- and microstructures relevant to drug delivery. A large frac-
tion of the application space for elastin-like [206], silk-like [87],
resilin-like [115], and collagen-like [207,208] polypeptides and
their hybrids [87,209,210] involves the construction of hydrogel
structures, and some of these hydrogels have been directly applied
for the sustained local delivery of antibodies [211]. Furthermore,
the inherent properties of protein polymers such as synthetic
collagen-like polypeptides enable unique modes of hydrogel mod-
ification with growth factors, nanoparticles, and other drug deliv-
ery moieties via utilization of the strand invasion capacity of
CLPs for stable and tunable binding to denatured collagen
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[132,212]. The self-assembly properties of CLPs and ELPs have been
combined to produce vesicular nanoparticles from CLP-ELP fusions
[213,214], with covalent linkage of the CLP and ELP permitting
temperature-responsive control over nanoparticle assembly state
and drug delivery. Moreover, benign bioconjugation techniques
such as sortase A ligation [215], SpyCatcher/SpyTag chemistries
[216], and unnatural amino click chemistries [217] can be used
to allow controlled decorated of hydrogels and nanostructures
with antibodies or nanobodies without disruption of the assembly
process [70,218,219]. The ability to exploit the diverse features of
protein polymers in conjunction with antibodies will greatly
expand the array of applications of antibody-protein polymer
fusions by enabling fine-tuning of antibody presentation, organiza-
tion, and activity within the context of a wide array of advanced
molecules, nanostructures, and biomaterials.

Additional recombinant technologies such as Fc domain fusion
and HSA-targeting have been shown to provide some of same
advantages as recombinant protein polymers [200]. These fusion
partner will likely impact the dissociation constant, solubility,
aggregation behavior, and the immunogenicity of each specific
antibody [220]. Additional preclinical studies that fully encapsu-
late these issues must be made on a case-by-case basis.
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