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Abstract. Standardized Ethereum tokens, e.g., ERC-20 tokens, have
become the norm in fundraising (through ICOs) and kicking off
blockchain-based DeFi applications. However, they require the user’s wal-
let to hold both tokens and ether to pay the gas fee for making a trans-
action. This makes for a cumbersome user experience, and complicates,
from the user perspective, the process of transitioning to a different smart-
contract enabled blockchain, or to a newly launched blockchain. We for-
malize, instantiate, and analyze in a composable manner a system that
we call Etherless Ethereum Tokens (in short, EETs), which allows the
token users to transact in a closed-economy manner, i.e., having only
tokens on their wallet and paying any transaction fees in tokens rather
than Ether/Gas. In the process, we devise a methodology for capturing
Ethereum token-contracts in the Universal Composability (UC) frame-
work, which can be of independent interest. Our system can be seen as a
targeted instance of the more general paradigm put forth—without a for-
mal study—by the Ethereum Gas Station Network (GSN). We have imple-
mented and benchmarked our system and compared it to GSN. In addition
to being the first system with a rigorous security analysis, we demonstrate
that EETs are far easier to deploy and less gas intensive than the GSN.

1 Introduction

As applications of smart contracts, e.g., Decentralized Finance (DeFi) and Non-
Fungible Tokens (NFTs), become mainstream, there is a need to make them as
independent from the Ethereum chain as possible. This is particularly relevant
for Ethereum tokens (e.g., ERC-20 tokens [20]). Indeed, for a token-holder to
exchange or transfer such tokens, they need to also hold Ether for fuelling the
Ethereum transaction. This is counter-intuitive and counter-productive: on the
one hand, token creators need to provide a wallet which supports both their token
and Ethereum, making it more challenging to transition to their own blockchain
or switch token platforms while offering a smooth user experience. On the other
hand, users need to make sure that they hold not only the token but also Ether,
c© Springer Nature Switzerland AG 2022
S. Dolev et al. (Eds.): CSCML 2022, LNCS 13301, pp. 388–407, 2022.
https://doi.org/10.1007/978-3-031-07689-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07689-3_29&domain=pdf
https://doi.org/10.1007/978-3-031-07689-3_29


Etherless Ethereum Tokens 389

which makes it more challenging to expand this technology to less tech-savvy
audiences, thereby hindering wider societal adoption.

The easiest way to conceptualize the relevant bottleneck is through consid-
ering the life cycle of an ETH-based initial coin offering (ICO): in a first stage,
the token creator solicits investment (typically in different cryptocurrencies),
under the promise of a certain (prearranged) amount of tokens once the token
launches.1 In a second phase, the token creator initializes the promised new token
by launching a token smart contract (e.g. an ERC 20 token) on the Ethereum
chain. The token creator then would then have the investors create and provide
an Ethereum address where the promised tokens can be transferred. This can
be done by means of a wallet that offers generic support for Ethereum tokens.

Often, however, ICO-funded applications launch tokens which have the ulti-
mate goal of eventually being disconnected from the main Ethereum blockchain,
and/or which aim to create an ecosystem independent of Ethereum. In such
cases, the token creator would typically also offer its users a token-specific wal-
let application. However, in order for anyone to use this application to transfer
his tokens, the token-specific wallet needs to also support Ether as a currency.
This leads to confusion for less tech-savvy investors, and makes the user experi-
ence of migrating the token to a different smart contract platform—e.g. a differ-
ent smart-contract-enabled blockchain or a blockchain developed by the token
creator—less intuitive. We note that such migration is becoming more relevant
as more smart-contract-enabled blockchains are released, and as the gas price for
Ethereum smart contracts rises to a point where its use makes the corresponding
tokens less attractive.

In this work, we start by proposing a design methodology and formal treat-
ment of Ethereum tokens which allow their creator to provide the option to
its users of making transfers without the need to hold Ether in their wallet, a
mechanism which we term Etherless Ethereum Tokens (in short, EETs). The
high-level idea is simple: allow the token creator to take on the cost (i.e., gas)
for the token transaction, and have the token contract perform an on-the-fly
exchange of token-to-ether at a pre-agreed rate, giving the user the experience
of a native token. As one might expect, properly specifying, implementing, and
proving such a protocol secure is a challenging task; in particular, it requires a
model for token-enabled ledgers, which we provide and believe it will be helpful
for all the future systems that might rely on token contracts in a composable
manner. We remark that, as a concept, etherless transactions have been fre-
quently discussed within the Ethereum community for several years, often under
the term meta transactions [1,2,12,18]. However, to our knowledge, our work is
the first to provide a formal treatment and security analysis of the concept.

The need for arguing the security of blockchain systems formally and in a
composable manner is motivated by the fact that a blockchain does not live

1 There are a number of legal issues regarding ICO’s—in particular, how to hold the
token creator to his promise and how to avoid scamming attacks—and there are
technological advances that allow us to circumvent them; these topics are outside
the scope of this paper.
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in isolation, and that many applications might run on top of it. Hence, it
is fundamental to argue the security of new blockchain applications in a set-
ting where multiple protocols are running in concurrency. Indeed, many recent
works have focused specifically on this task, proposing formal security models
and proving that existing protocols (like Bitcoin [5,10]) satisfy some important
and well-formalized security properties. On the same spirit, many other works
have used the same rigorous approach to argue and define the security of other
blockchain systems and applications. Just a few other examples are proof-of-
stake blockchains, private blockchains, private smart contracts and the lighting
network. [4,13–15].

At a less technical level, we believe that in addition to offering a more intu-
itive, closed-economy user experience, EET also provides assurance to the orig-
inal ICO investors that the token creator indeed expects value on the token,
as he is willing to make marginal exchanges. Indeed, in the system we design
anyone (in particular the token creator) could pay the fee (in Ether) on the
behalf on another party. Throughout we will generically refer to such an entity
as intermediary. We note in passing that despite being explicitly implemented
on the Ethereum blockchain, our design is generic and can be ported to any
smart-contract-enabled blockchain platform, and thus can enable transferring
the tokens from one blockchain to another.

We have implemented our EET design, and we demonstrate how it outper-
forms existing generic systems that enable etherless transactions, such as the
Gas Station Network (GSN) [1], both in terms of simplicity of deployment and
in terms of gas usage. We also compare such a deployment with how a native
token could perform on Ethereum and demonstrate that the overhead makes
the flexibility offered by black-box usage of smart-contract-based tokens a rea-
sonable compromise for the moderate increase in the required gas it incurs over
what a native token would require.

2 Our Contributions and Related Work

Our contribution is threefold: (1) A universally composable (UC) [6] treatment
of ledgers supporting a broad class of smart contracts, which includes token
contracts (e.g. ERC 20). (2) A design and UC security analysis of EETs. (3)
An implementation of our EET, benchmarks, and comparison with alternative
approaches. In the following, we expand on the key components of the above
contributions, and put our results in perspective with existing literature and
systems.

2.1 Smart-Contract-Enabled Transaction Ledgers

The first analyses of blockchain protocols showed that they satisfy certain desir-
able properties, such as common-prefix (also referred to as safety or consistency),
chain-growth (also referred to as liveness), chain quality, etc. [4,5,9–11,16,17].
Badertscher et al. [5] put forth the first universally composable treatment of the
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Bitcoin backbone (i.e. consensus layer) by introducing a UC functionality, called
Fledger, which captures the interface that Bitcoin offers to external applications,
rather than the way in which this interface is implemented. At a very high level,
Fledger takes as input transactions which are validated by means of a validation
predicate Validate. All valid transactions are then stored into a data structure
denoted as state. The adversary has full control over the order in which transac-
tions appear in state, and can define (in a limited way) the portion of the state
that each party can access. However, once something is added to the state, it
cannot be removed (not even by the adversary). We note that the advantage of
proving security in UC is that it enables use of the ledger as an ideal primitive,
and ensures that replacing this ideal ledger primitive by its implementation—
the corresponding blockchain—does not compromise the security of primitives
that make ideal calls to the ledger; nor does it affect the security of systems
and protocols that run alongside the ledger. This property is often referred to
as universal composability, and it allows for a constructive approach to crypto-
graphic/security protocols, analogous to how programming uses libraries with
fixed APIs without worrying about their implementation. Following that work,
a number of papers on the design and analysis of blockchains have adopted UC
as the model to prove their security and have devised systems implementing
variants of the above ledger [4,14]. UC [5] has also been leveraged to describe
how Fledger may be used together with a digital signature scheme to derive a
transaction ledger, abstracting the cryptocurrency aspects of Bitcoin in addition
to its backbone guarantees.2

This was done by relying on digital signatures where, to ensure composability,
the ideal adversary is allowed to choose the signing and verification keys.

The Transaction Ledger. In this paper we consider a simpler, more UC-
friendly approach that abstracts away the public-key infrastructure (PKI), anal-
ogous to how the UC signatures functionality [7] would. In a nutshell, instead
of having Validate rely on a specific signature scheme, we define a new transac-
tion ledger FT-Ledger that internally runs Fledger and also emulates existentially
unforgeable signatures, similar to [7]. FT-Ledger accepts transactions with the for-
mat tx := (v, addri, addrj , fee) where v represents the number of coins involved in
the transaction, fee is the fee that the issuer of the transaction is willing to pay,
and addri and addrj represent the wallet addresses of the sender and the receiver
respectively. Upon receiving a transaction, FT-Ledger checks the state of Fledger

to ensure that the wallet address addri has at least v + fee coins and that the fee
is sufficient, i.e. that fee ≥ f(tx), where f is function specified in the description
of FT-Ledger that determines the fee that needs to be payed for the input trans-
action. We note that it is straightforward to adapt the analysis of the transaction
ledger [5]—using a specific existentially-unforgeable signatures scheme—to prove
security of our ledger for a standard Bitcoin-style blockchain protocol, such as

2 Unlike transaction ledgers, the bare Fledger captures the consensus layer, and does
not interpret its contents as transactions which need to be verified with respect to
whether or not they are spending some already spent coin.
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Bitcoin or the proof-of-work-based version of Ethereum. Nonetheless, as we shall
see, this makes it more intuitive to add cryptocurrency-relevant features to the
ledger–such as etherless tokens.

Adding Smart Contracts. The functionality FT-Ledger is sufficient to capture
the base functionality of cryptocurrencies, but it does not support smart con-
tracts. To achieve that, in this work we define an augmented functionality, which
we denote FTSC-Ledger. This represents our first contribution. FTSC-Ledger inter-
nally manages FT-Ledger and a functionality FSC that abstracts a smart contract:
FSC maintains its own state cstate—corresponding to the state of a (virtual)
machine VM3—and is parametrized by a function fCFee, that takes as input the
query to the contract (which contains also the fee that the caller is willing to
pay to run the contract), and checks whether or not the fee is enough for the
VM to process the input and update its state.

FLedger

SigT

FT-Ledger FSC

VMSC

FTSC-Ledger

Fig. 1. The smart-contract-enabled trans-
action ledger functionality FTSC-Ledger

The construction of FTSC-Ledger

from its components is illustrated
in Fig. 1. FTSC-Ledger accepts either
standard transactions in the native
currency E (that are forwarded
to FT-Ledger) or inputs/transactions
that are intended as queries to the
contract FSC. Upon receiving such
a query for the smart contract,
FTSC-Ledger forwards the query to
FSC, which checks if the fee specified
in the query is sufficient to update its state, and if so it updates cstate by run-
ning the VM on input the given transaction and the state of FT-Ledger (which
is handed to FSC by FTSC-Ledger)4, and returns the updated state (including
the received input) to FTSC-Ledger. FTSC-Ledger then pushes the query and the
updated state cstate to the state of FT-Ledger (by submitting it as a transac-
tion). Consistently with the Ethereum smart contract mechanism, FSC charges
the contract caller only for the fee that is required to update its state, even if
the contract’s caller specified a higher fee. Moreover, if a contract caller did not
specify a fee high enough to conclude an update on the contract’s state, the fee
will be deducted from the caller account, and the input used to query the con-
tract will appear in the state of FT-Ledger, though no change to the contract’s
state will be committed.

Tokens as Smart Contracts. Given the above smart-contract-enabled ledger,
it is straightforward to capture a smart contract for creating a standard (e.g.
ERC 20 [20]) Ethereum token by instantiating FTSC-Ledger with contract func-
tionality that stores and updates the state (balances for different addresses)
3 We do not specify a model of computation for describing the VM; one can use any

such model, e.g. Turing machines, RAMs, etc.
4 Note that FTSC-Ledger also keeps track of the history of the state of FT-Ledger.



Etherless Ethereum Tokens 393

of such a token. Note that this results in a token-enabled transaction ledger
FToken

ledger
which allows parties both to issue transactions in the native coin E, and

to exchange tokens T.
In more detail, FToken

ledger
instantiates FTSC-Ledger with a token-contract FT

SC

which works as follows: FT
SC

collects all token transactions, and upon receiving
a read-request returns only the valid token transactions. Similarly to the way
the ledger FT-Ledger deals with native transactions, a token transaction consists
of the components (v, addrTi , addr

T
j), where v is the number of tokens involved

in the transaction, and addri and addrj represent the token wallet addresses
of the sender and the receiver respectively. Furthermore, FT

SC
internally emu-

lates an existentially-unforgeable signature scheme related to the token which is
independent of the one that is used in FT-Ledger.5

We observe that there is no fee appearing in the description of the token trans-
action. The reason is that the fee will be part of the query to the contract, and it
is expressed in the native currency E. Indeed, the issuer of the token transaction,
in order to query the contract FT

SC
, needs to possess coins of type E.

The EET Functionality. As discussed in the introduction, the above contract
implementation of tokens—which has become a standard for Ethereum—has
the undesireable property that a party who wants to send tokens requires coins
of type E to do so, coins which they might not have. In this work, we intro-
duce EETs to allow the token creator to offer, as a service, to take on the cost
of the token transaction, in exchange for tokens at a pre-agreed E-to-T rate.
This is captured by tweaking the token-enabled ledger FToken

ledger
toward an EET-

enabled ledger, denoted as FEET
Ledger

, which supports an additional input called
submit-delegation. Upon receiveing submit-delegation, FEET

Ledger
allows the

user to issue a token transaction which pays a fee, in T, to a special party, called
intermediary (that we denote with M), in exchange for the intermediary sub-
mitting the token transaction to FT

SC
and paying the E needed for the token

contract to process the transaction. In our system anyone can be an intermedi-
ary. More precisely, there might be multiple intermediaries that are willing to
pay the Ether fee for a transaction, but each of them will do that at a potentially
different exchange rate. This means that any user that wants to delegate the pay-
ment of the fee can look at what rates are available and decide accordingly with
what intermediary to interact with. The agreement on the rate is made com-
pletely off-chain, and for sake of simplicity in the paper we assume that there
is only one intermediary and that the rate has been already pre-agreed between
the parties.

2.2 EET Construction and Analysis

To realize FEET
Ledger

we rely only on FT-Ledger and signatures. In particular, any
party that wants to issue a token transaction and has enough coins of type E to
5 Note that we cannot generically use the same signature emulator procedure of
FT-Ledger, as a token address is typically overloaded to also be an Ethereum address.
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cover for the fee can issue a transaction tx = (0, addri, 0λ, (aux, σ), fee), where
aux = (v, addrTi , addr

T
j) and σ is a signature of aux that verifies under addrTi .

6

In a nutshell, tx is a standard transaction for FT-Ledger that contains in
its payload the information related to the token transaction properly signed
by the sender. By definition, if the fee fee is high enough, then tx will
become part of FT-Ledger’s state. Let addrTM be the token wallet address of
M. To delegate a transaction, the sender Pi creates a special token transaction
aux = ([v, del-fee], addrTi , [addr

T
j , addr

T
M]) (where del-fee is a fee expressed in T that

parametrizes FEET
Ledger

) and signs it to obtain σ. aux is the atomic representation
of two token transactions: the first moves v tokens from addrTi to addrTj , and the
second moves del-fee from addrTi to addrTM. M, upon receiving (aux, σ) submits a
transaction to FT-Ledger that contains (aux, σ) in its payload. If a party wants to
obtain only the valid token transaction, they need to filter out the payload of the
transactions stored in FT-Ledger’s state, and output only the valid transactions.
Similarly to what we have described above, a token transaction (v, addrTi , addr

T
j)

is valid if the sum of tokens with receiver address addrTi minus the sum of tokens
in the state with sender address addri (including the fees) is greater than or
equal to v.

2.3 Implementation, Benchmarks, and Comparisons

The Gas Station Network (GSN) is a relatively recent development in the
Ethereum community that shares some of our goals, but a broader scope. In
particular, the GSN aims to create a decentralized, trustless network of relay
servers which can pick up the transaction fees for any GSN-enabled contract.
The GSN is built around a RelayHub smart contract that:

1. Records available relay servers and their service fees,
2. Keeps ether deposits from GSN-enabled contracts for repayment of relay

servers,
3. Facilitates the interaction between relays and GSN-enabled contracts, and

punishes any detected bad actors.

This is in contrast to our mechanism, in which there is no separate smart con-
tract to manage the delegation of transactions. Additionally, each GSN-enabled
contract must interact with a separate paymaster contract, which is responsi-
ble for performing any action needed to extract or verify payment from users.
Paymaster contracts may be written generically and shared between multiple
contracts, or purpose-written for particular contracts.

The outward functionality of the GSN is similar to our mechanism: a gasless
user submits a transaction to an intermediary relay server instead of directly
to the blockchain, and the relay submits the transaction on the user’s behalf,
receiving an ether repayment from the target contract. The target contract,
in turn, is allowed to extract any payment it wishes from the user, e.g. tokens.

6 In the protocol, the addresses become verification keys for a signature scheme.
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The primary difference is in the complexity of implementation and development;
where the GSN aims to be fully generic and decentralized, and admits a great
deal of complexity in service of that aim, we have endeavored to keep our efforts
very self-contained in order to ease implementation, simplify formal analysis,
and keep operational costs manageable.

As is common in designs that aim for maximally generic functionality, the
GSN pays for its genericity with increased complexity. This complexity man-
ifests both in development effort—anecdotally, we found setting up a testing
environment for a GSN-enabled contract to be significantly more cumbersome
than for other contracts—and in gas consumption. Our experiments indicate
a 4-5x overhead in gas consumption when using the GSN as opposed to using
our EET contract. (Note that gas is pretty much the only relevant measurable
unit of comparison. Other metrics—e.g. running time, settlement time, etc.—are
either very difficult to test in a controlled way, are irrelevant for a contract which
aims only to facilitate token exchange, or are negligible compared to other con-
founding factors.) We note in passing that, to our knowledge, there is no formal
security analysis of the GSN, making our work the first rigorous treatment of
the etherless token paradigm.

Contract-Based vs Native Tokens. Recently, the blockchain/cryptocurrency
community has been entertaining the idea of making tokens native to the cryp-
tocurrency chain. In parallel and independent work [8] the authors propose a
solution that allows users posting a token transaction along with a token-to-
native exchange rate he is willing to pay; at the same time anyone could issue
transactions aimed at covering the fee of such token transactions in exchange of
tokens coins. Then any miner/minter that can match such transactions (if any
valid match exists) can create a block that contains both transactions, in which
the fee for the token transaction has been payed by a third party. A similar solu-
tion has been proposed in [19]. Such approach yields an advantage in terms of
fees needed for the transaction, but it does come at a cost: (1) The block miner
are in an advantageous position and can always front-run other users propos-
ing their own transactions to cover for the fees of token transaction; (2) The
token functionality is limited to what is hardwired on the token chain, and is
therefore far less flexible than a smart-contract-based solution. For example, it is
unclear if or how such a solution would allow the use of amortization/batching to
save on bulk transactions. (3) If one adopts the natural “pay-per-use” principle
for fees—i.e. you pay more for a more complex transaction—as Ethereum does,
then adding this functionality would increase the cost of all transactions, includ-
ing those that only involve the native cryptocurrency. Although this increase is
expected to be minimal, it is unclear how the implicit auction for the submitted
token transaction created by such a mechanism would affect fees.

In the full version [3], we have included an attempt to estimate the overhead
this might incur in a hypothetical implementation on Ethereum, and compare
it with using a smart contract. We note that in the absence of a (platform or
blockchain supporting an) actual implementation of native tokens, the relevant
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experiments are somewhat artificial and speculative. Thus, we do not consider
these experiments an important part of our contributions (and we defer them to
the appendix). Nonetheless, we do believe they give an interesting perspective
to the discussion on native tokens, and a pointer for experiments once such
a functionality is implemented on a mainstream blockchain. Finally, we stress
that our solution works on all blockchains that support token contracts (i.e.,
no need for turing completeness) like Cardano, Dfinity and Ethereum, whereas
the solution proposed in [8] would require to fork an existing blockchain to
accommodate for a new validation rule.

3 Preliminaries and Model

We denote a randomized assignment is denoted with a
$←− A, where A is a ran-

domized algorithm. We use existentially unforgeable and non-repudiable signa-
tures [7]. A signature scheme is a triple of ppt algorithms Σ = (Gen, Sign, Ver)

where (s, v) $←− Kgen(1λ) generates a secret-key/public key pair, σ
$←− Sign(s,m)

generates a signature and Ver(v,m, σ) verifies that σ is a valid signature. We refer
to the full version for the formal definition. We provide our protocols and security
proofs in Canetti’s universal composition (UC) framework [6]. We assume that
the reader is familiar with simulation-based security and has basic knowledge
of the UC framework. For more detail, we refer to the full version [3]. We now
elaborate on the main hybrid functionality used in our paper.

The functionality F ledger. The main functionality (in fact, a global setup) we
rely on is a cryptographic distributed transaction ledger. We use the (backbone)
ledgers proposed in the recent literature [4,5] in order to describe a transac-
tion ledger and its properties. As proved in [4,5], such a ledger is implemented
by known permissionless blockchains based on either proof-of-work (PoW), e.g.
Bitcoin, or poof-of-stake (PoS), e.g. Ouroboros Genesis. The ledger stores an
immutable sequence of blocks called state—each block containing several mes-
sages typically referred to as transactions and denoted by tx—which is accessible
from the parties under some restrictions discussed below. It enforces the follow-
ing basic properties that are inspired by [10,16]:

– Ledger growth. The size of the ledger’s state should grow—new blocks should
be added—as the rounds advance.

– Chain quality. It is guaranteed that a percentage of honest blocks are created
in a sufficiently long sequence of blocks.

– Transaction liveness. Old enough (valid) transactions are included in the next
block added to the ledger state.

We next give a brief overview of the ledger functionality Fledger proposed
in [4,5], focusing on the properties of Fledger that are relevant for the under-
standing our results. Along the way we also introduce some useful notation and
terminology. We refer the reader interested in the low-level details of the ledger
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functionality and its UC implementation to the full version [3] and [4,5]. We
note that with minor differences related to the nature of the resource used to
implement the ledger, PoW vs PoS, the ledgers proposed in these works are
identical.

The functionality Fledger is parametrized by three main functions Validate,
ExtendPolicy and Blockify. At a high level, anyone (honest miner or the adver-
sary) may submit a transaction to Fledger. The transaction is validated by means
of a filtering predicate Validate, and if it is found to be valid it is added to a
buffer that we denote buffer. Taking a peak at the actual implementation of
the ledger, this buffer contains transactions that, although validated, are either
not yet inserted into a valid block, or are in a block which is not yet deep enough
in the blockchain to be considered immutable for an adversary. The adversary
A is informed that the transaction was received and is given its contents. Peri-
odically, Fledger does the following: (1) fetches some of the transactions in the
buffer under the influence of the adversary (more on this will follow), (2) mod-
ifies them by means of a procedure Blockify, (3) creates a block including the
output of Blockify, and (4) adds this block to its permanent state, denoted as
state. state is a data structure that includes the sequences of blocks that the
adversary can no longer change. (In [10,16] this corresponds to the common pre-
fix.) Any miner or the adversary is allowed to request a read of the contents of
the state and, every honest miner will eventually receive state as its output.7

To enforce transaction liveness and chain-quality, Fledger relies on the function
ExtendPolicy. At a high level, ExtendPolicy makes sure that the adversary cannot
create too many blocks with arbitrary (but valid) contents (chain quality) and
that if a transaction is old enough, and still valid with respect to the actual state,
then it is included into the state. In more detail, ExtendPolicy takes the current
contents of the buffer, along with the adversary’s recommendation NxtBC, and
the block-insertion times vector τstate. The latter is a vector listing the times
when each block was inserted into the state. The output of ExtendPolicy is a
vector including the blocks to be appended to the state during the next state-
extend time-slot. Each of these blocks is then given as input to Blockify. We
conclude the discussion by providing a high-level description of the main input
command of Fledger used in our protocols/definitions, and refer to Sect. 3 for a
formal description of the functionality.

– The input (read, sid) is used to request the content of the ledger’s state.
Concretely, upon receiving (read, sid) from some party (or the adversary on
behalf of a corrupted party), the ledger returns (a prefix of) state to the
caller.

7 As observed in [5], it is not possible to guarantee with existing constructions that
at any given point in time all honest parties see exactly the same state (blockchain)
length, so each party may have a different view of the state which is defined by the
adversary. However, the adversary can restrict the view of the honest parties only
by a bounded number of blocks. The parameter that defines such a bound is called
windowSize.
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– The input (submit, sid, tx) is used to request that a transaction tx be added
to the buffer. That is, upon receiving a (submit, sid, tx) message from any
party (or the adversary), the ledger adds the transaction tx to the buffer
buffer. If the validation predicate Validate, on input state, buffer, tx out-
puts 1, then tx will be included in state.8 The time required for the trans-
action to be part of state and visible to all honest parties who query Fledger

depends on the transaction liveness parameter defined in ExtendPolicy.

4 The Cryptocurrency-Ledger Functionality FT-LEDGER

The ledger Fledger does not itself realize a cryptocurrency (unless if couple with
a signature scheme as described in [5]). To this direction we define and instantiate
a cryptocurrency (transaction) ledger FT-Ledger hosting a coin denoted by E. As
discussed in the introduction, in contrast to the transaction ledger from [5] our
construction does not assume an external signature functionality. This makes it
more useful for defining smart contracts (see Sect. 5).

The validation predicate of Fledger, in this case, is defined to always output 1,
and it is FT-Ledger’s responsibility to make sure that only valid transactions are
submitted to Fledger. FT-Ledger also generates and manages the wallets of the
parties. A transaction supported by FT-Ledger consists of five main components
(v, addri, addrj , aux, fee), where v represents the amount of coins of type E, addri
is the sender’s wallet address, addrj is the receiver’s wallet address, aux is a
payload, and fee represents the fee. At a high level, a transaction is valid if the
fee fee is high enough and if the amount of coins stored in the wallet with address
addri is at least v + fee. How high the fee should be in order for the transaction
to be considered is specified by a function f that is part of the description
of FT-Ledger. f takes as input the transaction tx and computes the required
fee. In the case where the output of f is greater than fee, the transaction is
immediately discarded. Otherwise, FT-Ledger replaces fee with the output of the
function and submits it. This captures the fact that FT-Ledger charges the issuer
of the transaction only for the cost of processing the transaction, even if the
transaction specifies a higher fee. In more detail, each party has an associated
wallet address, and different parties have different wallet addresses. FT-Ledger

manages a table T that, for each party Pi, stores Pi’s wallet address addri. We
initialize FT-Ledger with a party P0 which initially holds all the coins (e.g., V
coins) of type E9. To do so, FT-Ledger generates an address addr0 and sends
(submit, sid, tx) to the wrapped Fledger with tx := (V, 0λ, addr0,⊥, 0), where
V is the initial amount of coins held by Pi and 0λ is a special address used
only for the initialization. Upon receiving a registration request from a party Pi,
FT-Ledger creates a new wallet address addri and adds (addri, Pi) to the table

8 We have the guarantee that any transaction (either generated by a malicious or
honest party) that manages to go in buffer will eventually be included in state.

9 It is easy to intialize the functionality with an arbitrary number of parties that hold
an initial amount of coin. To simplify the description on the functionality, we decided
to use only one party in this phase.
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T . FT-Ledger, upon receiving (submit, sid, tx) from a party Pi, performs the
following steps.

– Parse tx as (v, addri, addrj , aux, fee) and continue if and only if (Pi, addri) ∈ T
and fee ≥ f(tx).

– Get state and buffer of Fledger and check that the balance of transactions
to/from the wallet address addri is at least v′ ≥ v + f(tx) coins. That is,
the sum of coins with receiver address addri minus the sum of coins in the
state with sender address addri (including the fees) is greater than or equal
to v + f(tx). If this is not the case, deem the transaction invalid; otherwise,
submit tx to Fledger with the fee f(tx).

FT-Ledger is also parametrized with the identifier of an ideal functionality Ftrap.
Whenever FT-Ledger receives the command (submit-trapdoor, sid, tx, Pi) from
Ftrap, it forwards the transaction tx on behalf of Pi to Fledger without checking
anything about tx in terms of balances and fees. This simple mechanism allows
FT-Ledger to interact with other ideal functionalities when required. This becomes
particularly helpful when we want to enhance the behavior of FT-Ledger with smart
contracts, and in the next section we show how to do that. For all the other input
commands, FT-Ledger just acts as a proxy between Fledger and its external inter-
face. To conclude the description of FT-Ledger, we need to specify how Blockify
works. Blockify is a simple procedure that takes as input the next block to be
added to the state, and outputs a concatenation of the transactions contained in
the block. This means that the state of Fledger (which will correspond also to the
state of FT-Ledger) is represented by just list of transactions. We do not specify how
ExtendPolicy works, as any realization of ExtendPolicy can be used in our formal-
ization. We provide a more detailed description of FT-Ledger in the full version [3].
We note that FT-Ledger does not specify who gets the fee, but this would not be
difficult to do since Fledger keeps track of the party that generated each block.
Hence, it would be easy to modify FT-Ledger to keep track of which party gets the
fees of the transactions that constitute a block. Another simplification we make is
to consider fixed relation between the cost required to execute a transaction (or
call a contract as we will see) and the complexity of the transaction (or the con-
tract call). In system like Ethereum this is not the case, as the fee that a party
pays depends on the complexity of the transaction (which determines the amount
of gas) and on the gas price. This means that how fast and if a transaction will
be executed depends on the product of gas price and amount of required gas. We
could modify FT-Ledger (and the other functionalities we will consider) to accom-
modate for an additional mechanism that allows the adversary communicating to
the functionality the average gas price, in such a say that we can use this gas cost to
decide whether to accept or reject a transaction. However, since these aspects are
not relevant for our results, to simplify the description of our already involved ideal
functionalities, we have decided to not include such mechanisms in our model.
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5 The Smart-Contract-Enabled Transaction Ledger

In this section we define the functionality FTSC-Ledger that, in addition to
FT-Ledger, captures a ledger that enables a large class of smart contracts.
FTSC-Ledger internally runs FT-Ledger and a smart contract (formally defined
by means of an additional ideal functionality). The contract has a state that can
be updated by any party that can afford to pay a fee (that depends on the con-
tract and on the input). After any valid update, the new contract state is pushed
onto the FT-Ledger’s state. As we have alluded, in order for the contract to freely
interact with FT-Ledger, the parameter Ftrap of FT-Ledger is set to be equal to
the identity of FTSC-Ledger, which will act as a bridge between the contract
functionality and FT-Ledger. To simplify the description of the functionality, we
describe the case where only one smart contract is running; however, it is easy to
extend the functionality to the case where multiple smart contracts are running
at the same time. A smart contract FSC is a small functionality managed by
FTSC-Ledger that maintains its own state cstate. The behavior of FSC is fully
determined by three procedures: fCFee, ffilter and ftrans.

– fCFee (the contract fee function) takes as input the contract state cstate, the
ledger state of FT-Ledger, a transaction, (which represents the input received
by the contract’s caller) and the fee specified in the input transaction. If
the fee indicated is sufficient to update the contract state, then fCFee returns
the actual fee required to run the contract (which could be less than the fee
indicated by the contract’s caller). If the submitted fee is not sufficient, then
the function returns ⊥.

– ftrans (the state transition function) takes as input the payload of the input
transaction, FT-Ledger’s state, and the contract state cstate, and returns a
new contract state updated according to its inputs.

– ffilter (the filtering function) takes as input (1) the view that the contract’s
caller has of FT-Ledger’s state statei and (2) the contract state, and returns
an arbitrary sub-set of the information contained in statei.

The functionality FTSC-Ledger is also parametrized by Fee, which represents
the minimum fee that a party should pay in order to query a contract (to update
the contract the fee might be higher). In more detail, FTSC-Ledger accepts trans-
actions with the following format: tx := (v, addrEi , addr

E
j , aux, fee, type), where

type ∈ {E,SC} denotes whether the transaction should be treated as a normal
transaction or as a call to the contract. In particular, FTSC-Ledger checks whether
type = E or type = SC. In the former case, FTSC-Ledger removes the field type from
the transaction and forwards it to FT-Ledger. In the latter, FTSC-Ledger checks
that fee ≥ Fee and that the issuer of the transaction has at least fee coins of type
E in its wallet10. If this check is successful, then FTSC-Ledger forwards the trans-
action and the current ledger state to FSC, which does the following: It uses fCFee
to check whether the fee specified in tx minus the fee required to query the con-
tract (denoted with Fee) would be sufficient to update the contract state using
10 FTSC-Ledger can do this check since it has full access to FT-Ledger’s state and buffer.
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the input aux. If fCFee returns ⊥, then the contract returns (ko, cstate, fee).
Else, if fCFee returns feeSC, FSC computes the updated contract state cstate by
running ftrans on input the payload of tx (denoted with aux), the ledger state,
and the contract state, and returns (ok, cstate, feeSC + Fee). FTSC-Ledger upon
receiving (FlagC, cstate, actualfee) from FSC, constructs and sends to FT-Ledger

the transaction txE := (0, addrEi , 0
λ, (FlagC, aux, cstate,FSC.id), actualfee) using

the command submit-trapdoor, where we recall that aux is the payload of tx,
FlagC ∈ {ok, ko}, and FSC.id is the identifier of SC. We note that the transaction
txE is a standard FT-Ledger transaction that contains in its payload the updated
state of the contract (or the old state if the fee was not sufficient), the input
used to eventually update the contract’s state, and the fee actualfee such that:

– if FlagC = ko (i.e. the fee specified by the contract’s caller was not sufficient
to update the contract state) then actualfee = fee

– if FlagC = ok (i.e. fee was sufficient to update the contract’s state) then
actualfee ≤ fee.

Note that it might be that actualfee < fee in the case where the fee required
to update the contract state is less that fee. That is, FTSC-Ledger only charges
the contract caller exactly for the fee required to run the contract. When fee is
insufficient to complete execution of the contract, the issuer of the transaction
pays the full amount of fee even though no change to the contract state is com-
mitted. (This is consistent with Ethereum and other blockchains that support
Turing-complete smart contracts.) We refer to the full version [3] for a more
detailed description of FTSC-Ledger and for the abstraction of FSC.

6 The EET Ledger

We can now define the functionality FEET
Ledger

. FEET
Ledger

internally runs
FTSC-Ledger, parametrized by a contract FT

SC
. FT

SC
maintains a token T, and

allows parties to issue transactions with respect to such a token. Any party
that has some tokens can sent it to another party by querying the contract
FT

SC
. However, invoking the contract requires payment of a fee in the native

currency E, even if the transaction involves only tokens. To mitigate this prob-
lem, our functionality allows a sender Pi to send tokens to another party Pj ,
even if Pi does not have native coins. In particular, the sender will pay a fee of
at least del-fee tokens T to a special party M, called the intermediary, and M
will pay the fee in E on the behalf of the sender (del-fee is a fixed amount of
tokens that parametrizes our functionality). The functionality guarantees that
either the transaction by Pi becomes part of the ledger state and M gets a
fixed amount of tokens del-fee, or nothing happens. We propose a more detailed
description of FEET

Ledger
and FT

SC
to the full version [3], and provide a more high

level (but still formal) description of those functionalities below. The functional-
ity FEET

Ledger
, interacts with a set of parties, with the adversary, and with a special

party that we denote with M (the intermediary), and manages the token wallet
addresses of the registered parties. We assume that a party P0 initially holds
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all of the available tokens11. We denote the token wallet addresses of P0 and M
with addrT0 and addrTM respectively. Any time FEET

Ledger
receives a registration com-

mand from a party Pi, it registers Pi to the ledger FTSC-Ledger, thus obtaining
addrEi . It then generates a token wallet address addrTi and returns (addrEi , addr

T
i )

to Pi. (addrEi , addr
T
i ) represents respectively the wallet addresses for the native

currency E and for the token T. FEET
Ledger

tolerates two types of transactions: stan-
dard and delegated transactions. Any registered party Pi can issue a standard
transaction txT := (v, addrEi , addr

T
i , addr

T
j , fee), where v denotes the amount of

tokens, (addrEi , addr
T
i ) are the addresses of the sender, addrTj is the token wallet

address of the receiver, and fee is the fee expressed in coins of type E. FEET
Ledger

takes txT and creates a transaction txE for the ledger FTSC-Ledger that (1) has
as a sender address addrEi , (2) has a fee fee, and (3) calls the contract FT

SC
and

includes in its payload what we call a token transaction tx′ := (v, addrTi , addr
T
j).

12

FEET
Ledger

then forwards txE to the ledger FTSC-Ledger on behalf of Pi. The con-
tract FT

SC
maintains a set token-set as part of its state, and if the fee specified

in txE is sufficient, it updates its state by adding tx′ to token-set and returns
(ok, cstate, actualfee). Note that this means that the tx′ is part of the contract
state and appears in the FTSC-Ledger’s state by definition. To complete this first
part of the description of FEET

Ledger
, it remains to specify the function ffilter (and

fCFee, which we describe later in this section) of FT
SC

. ffilter receives as input the
contract state and the state of FTSC-Ledger (which we denote state) and, for
each transaction tx in state such that txE := (0λ, addrEi , 0

λ, auxE, feeE) (where
auxE = (ok, tx′, cstate�,FT

SC
.id)), adds tx′ to stateT if and only if:

1. tx′ appears in token-set (which is part of the token state).
2. tx′ := (v, addrTi , addr

T
j) and the sum of tokens in the token transactions stored

so far in stateT with receiver address addrTi , minus the sum of coins in the
state with sender address addrTi , is greater than or equal to v.

FEET
Ledger

captures the main characteristics of a token, relying on the smart
contract to filter out invalid transactions. Unfortunately, the mechanism that we
have discussed so far has a major drawback: if a party wants to issue a token
transaction, they must have the required amount of coins of type E to query the
contract. To get rid of this requirement, FEET

Ledger
admits what we call delegated

transactions. A party that wants to issue a delegated transaction submits txT :=
(v, addrTi , addr

T
j , fee

T) to FEET
Ledger

, which in turns asks the special party denoted
M to pay the fee in E in exchange of (at least) del-fee tokens T, which will be
taken from Pi’s account. If M is honest and feeT ≥ del-fee, (where we recall
that del-fee is the minimum fee required for the delegation to be considered,)
then FEET

Ledger
submits a call to the contract FT

SC
on behalf of M with the input

(the payload of the transaction) aux := (([v, feeT], addrTi , [addr
T
j , addr

T
M])). If M

11 As before, we could have multiple addresses having different amounts of tokens, but
for simplicity, we assume that only one party initially holds tokens.

12 The payload also includes an identifier chosen by the adversary, which we omit in
this informal description.
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has enough coins of type E to afford the call to FT
SC

, then aux will become part
of the contract state. To accommodate for this special input, we modify the
filtering function ffilter of FT

SC
in such a way that the value aux can also be

understood as two atomic token transactions: the first moves v tokens from the
wallet address addrTi to the wallet address addrTj , and the second moves feeT from
the wallet address addrTi to the wallet address addrTM. It remains to specify how
the contract computes the fee. The function fCFee charges Fee coins of type E
for each token transaction encoded in aux (the input that is used to update the
contract state). Hence, for a non-delegated token transaction, fCFee would return
Fee, and for a delegated token transaction, it would return 2Fee. In addition to
this fee, we need to consider the fee required simply to query the contract. Hence,
the total cost of a non-delegated transaction would be of 2FeeE, and the total
cost of a delegated transaction would be 3FeeE. We stress that this is a simplified
method of computing the fee, and that a more fine-grained calculation could be
used to capture what actually happens in the real world.

Constructions and Experimental Evaluation. We have already highlighted
how our construction works in Sect. 2.2. We compared our system with GSN and
with users that make only self-funded transactions (i.e., user that do not want
to interact with the intermediary and have his own Ether to afford for the token
transaction). Our experiments indicate a 4-5x overhead in gas consumption when
using the GSN as opposed to using our EET contract. This is the cost of the
complexity of the GSN, a cost that is very unattractive for projects that do not
require the genericity of the GSN. We also show that our contract consumes less
than twice the gas of a standard self-funded token transaction, which we believe
is a reasonable compromise for the added user experience. We refer the reader
to the full version [3] for more detail on our experimental results.

A Our Protocol: How to Realize FEET
LEDGER

Our protocol is described in the FT-Ledger-hybrid world, where FT-Ledger is
parametrized by Ftrap = ⊥, and the fee function f which, upon receiving an input
transaction txE, does the following: 1) Parse tx as (v, addri, addrj , aux, fee); 2) if
aux = ⊥, then return Fee; 3) Otherwise, return Fee + |aux|/κFee. In a nutshell,
the fee required for a transaction to settle in the FT-Ledger’s state is Fee, plus
and additional Fee for each κ bits contained in the payload, where Fee and κ are
part of the description of f . We provide the formal description of our protocol in
Fig. 2. At a very high level, the protocol works as follows: Each party registers
with FT-Ledger and runs Kgen(1λ) to obtain (skTi , addr

T
i ), where addrTi represents

the token wallet address. A party Pi that wants to send vT to Pj and has at least
2Fee coins of type E can do so by issuing a transaction for FT-Ledger that contains
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in its payload aux := (v, addrTi , addr
T
j , id, σ

T
i ), where id is a random value, and σT

i

is a signature of (v, addrTi , addr
T
j , id) that verifies under the verification key addrTi .

We require Pi to pay a fee of at least 2Fee because we assume that, in this case,
|aux| = κ. When an honest party Pi receives the command (read, sid, T), they
shall retrieve FT-Ledger’s state, filter out the payload of each transaction (thus
obtaining only the information related to token transactions), and output only
the valid token transactions. A token transaction (v, addrTi , addr

T
j , id, σ

T
i ) is valid

if addrTi has received at least v tokens, σT
i is a signature of (v, addrTi , addr

T
j , id)

that verifies under the verification key addrTi , and there does not exist any other
token transaction with the same sender address and identifier id. Our protocol
allows any party Pi that does not have coins of type E to delegate the payment
of the fee to M, paying M with at least del-fee tokens T. To do so, Pi creates
m := ([v, del-fee], addrTi , [addr

T
j , addr

T
M], id) and signs it, thus obtaining σT

i . Pi then
sends (m,σT

i ) to M. The honest M then creates a transaction for FT-Ledger that
includes (m,σT

i ) in its payload and has a fee of at least 3Fee, and submits it. We
require M to pay a fee of at least 3FeeE because we assume that, in this case,
the payload of the transaction is 2κ bits (as, indeed, the payload of this type of
transaction contains more information). The honest M would immediately cre-
ate and submit such a transaction, whereas the corrupted M might decide when
(and if) to create the transaction. We require each token transaction to contain
a random identifier in order to avoid replay attacks; without such an identi-
fier, the adversary could take the payload of any transaction from FT-Ledger’s
state, (for instance, the payload of a transaction that moves v tokens from the
address addrTi of an honest party to some potentially adversarial address,) copy
this payload, and use it to generate a new transaction for FT-Ledger. In this way,
the adversary could empty the token wallet of the honest party without their
knowledge. The other advantage of using identifiers is that an honest party that
has delegated a transaction to a malicious intermediary can at any point decide
to withdraw the delegation. Indeed, if M is not responding to a party that has
delegated the transaction m := ([v, del-fee], addrTi , [addr

T
j , addr

T
M], id) for a long

time, and m does not appear in the payload of any transaction that appears in
the ledger’s state, then Pi can withdraw the delegation by submitting (or dele-
gating) a token transaction with the same identifier; then, at most one of these
transactions will be valid and accepted by the functionality. We refer to Fig. 2
for the formal description of ΠToken.
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Fig. 2. Our protocol.
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