REPRESENTATION STABILITY IN THE LEVEL 4 BRAID GROUP

KEVIN KORDEK AND DAN MARGALIT

ABSTRACT. We investigate the cohomology of the level 4 subgroup of the braid group,
namely, the kernel of the mod 4 reduction of the Burau representation at ¢ = —1. This
group is also equal to the kernel of the mod 2 abelianization of the pure braid group. We
give an exact formula for the first Betti number; it is a quartic polynomial in the number of
strands. We also show that, like the pure braid group, the first homology satisfies uniform
representation stability in the sense of Church and Farb. Unlike the pure braid group, the
group of symmetries—the quotient of the braid group by the level 4 subgroup—is one for
which the representation theory has not been well studied; we develop its representation
theory. This group is a non-split extension of the symmetric group.

As applications of our main results, we show that the rational cohomology ring of the
level 4 braid group is not generated in degree 1 when the number of strands is at least 15,
and we compute all Betti numbers of the level 4 braid group when the number of strands
is at most 4. We also derive a new lower bound on the first rational Betti number of the
hyperelliptic Torelli group and on the top rational Betti number of the level 4 mapping class
group in genus 2. Finally, we apply our results to locate all of the 2-torsion points on the
characteristic varieties of the pure braid group.

1. INTRODUCTION

For an integer m > 0, the level m braid group B,[m] is a subgroup of the braid group
B,,. It is defined as the kernel of the composition

B, — GL,(Z[t,t7']) = GL,(Z) = GL,(Z/m)

where the first map is the (unreduced) Burau representation (see Birman’s book [4]), the
next map is evaluation at t = —1 and the last map is given by reducing entries mod m.

The group B, [0] is the kernel of the Burau representation at ¢ = —1. This group is
called the braid Torelli group, and we denote it by BZ,. The braid Torelli group arises in
algebraic geometry: it is the product of Z with fundamental group of any component of
the branch locus of the period map on Torelli space [20]. Brendle, Putman, and the second
author found a set of generators for BZ,, [6].

Arnol’d [2] showed that B, [2] is equal to the pure braid group PB,,. Brendle and the
second author showed that B,[4] is equal to PB2, the subgroup of PB,, generated by all
squares of elements [8]. Equivalently, B,,[4] is the kernel of the mod 2 abelianization map

PB, — H,(PB,;Z/2) = (2/2)(5).

They additionally showed that B,,[4] is equal to the subgroup of PB,, generated by all squares
of Dehn twists [8]. Little else is known about the algebraic structure of B, [m]| when m > 2.
Indeed, there are no explicit finite generating sets known for these groups (in principle one can
obtain a finite generating set from the Reidemeister—Schreier process, but such a generating
set would not be geometrically meaningful).

The group B,[4] is also of interest in algebraic geometry. It is isomorphic to the
fundamental group of the mod 2 congruence cover of the complement of the braid arrangement
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X,; see [8]. Arithmetic aspects of this cover were studied by Yu [24] in connection with
Cohen—Lenstra heuristic for functions fields; see also [15]. The group B,[4] and the moduli
space X, also play an important role in forthcoming work of Rudenko on scissor congruence
problems [30]. In fact, Rudenko’s work makes direct use of our Theorem 2.1.

Our main result is Theorem 2.5, which states that H;(B,,[4]; C) satisfies uniform rep-
resentation stability in the sense of Church and Farb. The group of symmetries is Z,, =
B,, / B, [4], which is a non-split extension of the symmetric group S,, by H;(PB,,;Z/2). The-
orem 2.5 gives the explicit decomposition of H;(B,[4];C) into irreducible Z,-modules:

Va(1,(0)) n=2
Hy(Bn[4];C) = § Va(1,(0)) & V3(1, (1)) & V3(ps, (0)) n=3
Va(1,(0)) @ Vi (1, (1)) @ Va(1,(2)) @ Valps, (0)) @ Valps, (0)) n =4
Each summand here is of the form
Va(p,A) = Indgz (Vi (p) B Vi (X))

where Z. is the stabilizer in Z,, of a set I of pairs of elements of {1,...,n}, Vi,(p) is an
irreducible representation of Z{n, and V,,_,,(\) is an irreducible representation of S, _,,. See
Theorem 2.4 and the preceding discussion for the precise definitions.

Our first step towards proving Theorem 2.5 is to prove Theorem 2.1, which gives an
explicit basis for H; (B, [4]; Q). From this basis we obtain a formula for the first Betti number
of By, [4], which is a quartic polynomial in n:

dim H; (B, [4]; Q) = 3<Z> +3<Z> + <;‘)

In order to prove this equality, there are two steps. We first construct new abelian quotients
of B,,[4]; these are defined in terms of double covers of the disk with n punctures (Section 3.1).
Then we construct a basis by first giving an infinite spanning set (Section 5) and whittling it
down to a basis, using the squared lantern relation, a Jacobi identity, the Witt—Hall identity,
and the Artin relations for PB,, (Sections 6-7); this is the technical heart of the computation
of dim Hy(B,[4]; Q). It is perhaps surprising that the end result here is a polynomial in n;
for instance, for the free group F), the dimension of Hy(F2;Q) is exponential in n.

Church and Farb introduced the theory of representation stability and proved that
Hy(PB,,; Q) satisfies uniform representation stability [13]. By passing to PB,-invariants, our
Theorem 2.5 recovers their result for £k = 1. Church and Farb take advantage of the explicit
basis for Hi(PB,;Q) provided by Arnol’d; our Theorem 2.1 plays the role of the Arnol’d
result. They also employ the representation theory of S,. As part of our work we develop
the representation theory of Z,, from the ground up (Section 8). Our results suggest that it
is an interesting problem to study the stability of Hy(B,[m]) as k, n, and m vary.

One other thing that makes the proof of Theorem 2.5 difficult is that our generators
for the irreducible components of H;(B,[4]; Q) do not seem to have simple expressions. The
components V,(ps, (0)) and V,,(p4, (0)) are the spans of the orbits of the elements

3 = (1 —Ti3) H (1+T;)(1+To5)T2 and x4 = (1 — T14)(1 — To3) 712,
4<j<n
respectively, where each Tj; is an Artin generator for PB, and each 7;; is the image of
TZ? in H1(B,[4];Q). In order to show that the actions of Z, on these spans agree with

the definitions of V,,(ps, (0)) and V,,(p4, (0)) requires deep understanding of the algebraic
structure of Hy(B,[4]; Q).
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We derive a number of consequences of our methods and results, about the level 4
hyperelliptic mapping class group SMod,[4], the braid Torelli group BZ,,, the level 4 mapping
class group Modg[4], the characteristic varieties Vy(X,) of the braid arrangement X,, and
B, [4] itself. Specifically, we give the following applications.

(1) H*(B,[4]; Q) is not generated in degree 1 (Theorem 2.8).
(2) By[4] is not generated by 4th powers of half-twists (Theorem 2.3).
(3) All 2-torsion on V;(X,,) lies on central components, and outside V2(X,,) (Theorem 2.14).

We further give:

(4) a new lower bound for the first Betti number of BZ,, (Theorem 2.11),
(5) a new lower bound for the top Betti number of Mods[4] (Proposition 2.7), and
(6) computations of all Betti numbers of B, [4] for n < 4 (Theorem 2.2).

Finally, we obtain analogues of some of our results about B,,[4] for SMod,[4]:

(7) we determine the first Betti number of SModg4[4] (Corollary 2.6), and
(8) we show H*(SMod,[4]; Q) is not generated in degree 1 (Theorem 2.9).

Representation stability has been studied for representations of Weyl groups (such as
the symmetric groups and the hyperoctahedral groups), certain linear groups, and certain
wreath products, among others; see the surveys by Farb, Khomenko—Kesari, and Wilson
[16, 25, 34]. The group Z, seems to have not appeared before in the theory. The general
trend has to obtain representation stability from the finite generation of a module over a
category associated to a sequence of groups. The category for the groups {Z,,} is the subject
of a forthcoming paper with Miller and Patzt. With the current technology it does not appear
to be possible to obtain our uniform representation stability from this categorical viewpoint.

Representation stability has also been studied extensively for various types of configu-
ration spaces, beginning with the work of Church, Church—Farb, and Church—Ellenberg—Farb
[11, 12, 13]. However, there is no general theory for the representation stability of the ho-
mology of covers of configuration spaces. On the other hand, the representation stability for
the homology of specific covers, such as orbit configuration spaces, have been studied, for
example, by Bibby-Gadish and Casto [3, 10]. Congruence covers of complements of hyper-
plane arrangements are well studied; see, for example, the survey by Suciu [32]. However,
we are not aware of any previously known general closed formulas for the Betti numbers of
congruence covers of X,,.

The uniform representation stability of the { H1(B,[4]; C)} can also be interpreted as a
result about the twisted homology of B,, with coefficients in the V,,(p, A). Wahl and Randal-
Williams have proven a general stability result for the homology of braid groups with twisted
coefficients [29]. Their theorem applies to certain coefficient systems, called polynomial co-
efficient systems. It seems to be an interesting (and difficult) problem to determine if the
Vi (p, A) are polynomial in this sense. Even if this were the case, their result would not imply
our Theorem 2.5; it would only imply that the multiplicities stabilize.
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and Oscar Randal-Williams for helpful comments and conversations. We are also grateful
to an anonymous referee for comments that improved the quality of the exposition. This
material is based upon work supported by the National Science Foundation under Grant
Nos. DMS - 1057874 and DMS - 1745583.
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2. STATEMENTS OF RESULTS

In this section, we explain our results in detail and give an outline for the paper. We
begin with a discussion of Theorem 2.1. This theorem can be obtained from our main result,
Theorem 2.5 (and the dimension count in Theorem 2.1 does indeed follow immediately).
However, our entire approach to Theorem 2.5 is predicated on Theorem 2.1.

An explicit basis. In this paper we identify B,, with the mapping class group of the 2-
dimensional disk D, with n marked points in the interior [17, Chapter 9]. In general, for a
surface S, possibly with boundary and possibly with marked points, we define the mapping
class group Mod(S) as the group of homotopy classes of orientation-preserving homeomor-
phisms of S that preserve the set of marked points and fix the boundary pointwise.

We label the marked points by [n] = {1,...,n} and denote by T;; the (left) Dehn twist
about the curve in D, indicated in Figure 1 and by 7;; the image of Tfj in H1(B,[4];Q). The
group PB,, acts on H;(B,[4]; Q) by conjugation; for f € PB,, we denote by f7;; the image of
7;; under the action of f.

For n > 4 we define the set S to be &1 U Sy U S3 where

Sy ={m; [ i <j},
Sy = {TixTij, Tjpmir, Tijmjr | 1 < j <k}, and
Sz = {TuTjrrij, TijTretin, TinTjemie |1 < j < k < {}.
For n < 4 we define § in the same way, except that we declare Sy, So, and S5 to be empty

when n is less than 2, 3, and 4, respectively. In this paper we compose elements of B,, from
right to left (functional notation).

Theorem 2.1. For alln > 1 the set S is a basis for Hi(B,[4]; Q). In particular,

dim H; (B, [4]; Q) = 3(2) +3<§> + (Z)

We do not know if the abelianization of B,[4] is torsion free, which is to say that we do
not know a complete description of Hy(By,[4]; Z). On the other hand, the proof of Theorem 2.1
also works with Z/pZ coefficients for any odd prime p, implying that any non-trivial torsion
in the abelianization would have to be 2-primary.

As applications of Theorem 2.1 we prove the following two theorems in Section 11.3
and 10, respectively. The first gives all Betti numbers for B3[4] and By[4].

Theorem 2.2. For n =3 and n =4, the dimensions of Hi(B,[4]; Q) are as follows:

1 k=0
éz (1’ 91 k=1
dim Hy(Bs[4:Q) =4 § ') dimHy(Bi4:Q) ={ 103 k=2
e

The second application shows that, even though H;(B,,[4]; Q) is generated by the images
of 4th powers of half-twists, the group B,[4] is not. This is in contrast with B,, and PB,,,
each of which is generated by its simplest elements, half-twists and squares of half-twists.

Theorem 2.3. Let n > 3 and suppose that G is a subgroup of By, [4] that contains BZ,,. Then
G does not have a generating set consisting entirely of even powers of Dehn twists about curves
surrounding 2 points. In particular By, [4] is not generated by 4th powers of half-twists.
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FIGURE 1. Left: T;; is the Dehn twist about the indicated curve; Right: A
hyperelliptic involution

We have the following related question.

Question 1. Does B, [4] have a generating set whose cardinality is equal to the dimension of
H,(B,[4]; Q) (or even a generating set whose cardinality is a quartic polynomial in n)?

Irreducible representations of Z,. In order to state our main theorem, Theorem 2.5,
we must first describe the irreducible representations of the group Z,, = B, /B,[4]. The
end result of our discussion here is Theorem 2.4 below, which gives a naming system for the
irreducible representations.

In order to state our classification of irreducible Z,,-representations we require several
definitions. Let [n] denote {1,...,n} and let [n]2 denote the set of unordered pairs of elements
of [n]. The standard action of B,, on [n] (via the symmetric group S,,) induces an action on
[n)2. We say that a subset I of [n])? is full if the union of the elements of I is [n]. The symmetric
group S, acts on the set of full subsets of [n]%; let I, be a set of orbit representatives.

Let I € I,,,. For n > m we may regard I as a subset of [n]2. We denote by BZ the
stabilizer in B,, of the set I and by Zﬁ the image in Z,,. We prove in Section 8.1 that there
is a natural surjective map

2L — Z1 xS .

Next, let PZ,, denote the image of PB,, in Z,,. This group is isomorphic to (Z/Z)(g), and the
irreducible representations of PZ,, are in bijection with subsets of [n]2; see Section 8.2. We
denote the representation corresponding to I C [n]2 by V;. We say that a representation of
PZ,, is I-isotypic if it decomposes as a direct sum of copies of V7, and that a representation
of a subgroup of Z,, containing PZ,, is I-isotypic if its restriction to PZ, is.

We are ready to describe the irreducible representations of Z, that appear in our
classification. The input for one of these representations consists of two pieces of data, an I-
isotypic irreducible representation p of some Z{n with I € I,, and an irreducible representation
of S,—m; as usual we label the latter by its corresponding padded partition of [n —m], call it
A. With these in hand, we define a Z,-representation V,,(p, A) by the formula

Va(p, A) = IndZj (Vin(p) B Voiom(A)

where V;,(p) and V,,_,,()\) are the representations corresponding to p and A and ZI acts
via the surjection to ZZ — ZI xS, _,,. Of course if p is isomorphic to p’ then Vi, (p, \) is
isomorphic to V,,(p’, A). In order to obtain a unique name for each representation, we fix one
representative from each equivalence class once and for all.

We observe that if we take I = (), then V,(p, \) is the representation of Z,, that factors
through the S,,-representation V;,(\). We denote such a representation as V,,(1, \).
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Theorem 2.4. The V,,(p,\) are irreducible Z,-representations. Further, every irreducible
Z,-representation is isomorphic to exactly one Vi, (p, \).

The usual map B,, — S,, induces a short exact sequence
1—->PZ,— Z,— S, — 1.

If this sequence were split, we could hope to understand the representation theory of Z,, via
the representation theory of S,,. We prove, however, in Proposition 8.6 that it is not split.

Statement of the main theorem: representation stability. The conjugation action of
B,, on B, [4] induces an action of B,, on H;(B,[4];C). Since this restricts to a trivial action
of B, [4], we have that H;(B,[4]; C) is in a natural way a representation of Z,,.

Church and Farb defined representation stability for sequences of representations of
Sn, = B, /PB,. We extend their definition to our setting and show that the H;(B,[4]; C)
are uniformly representation stable.

For each n there is a standard inclusion B,, — B, ;1 obtained by adding a strand. We
show in Lemma 9.6 that this induces inclusions B, [4] — By4+1[4] and Z,, — Z,41. Suppose
we have a sequence of Z,-representations V,, and maps ¢, : V;; = Vy41. Following Church—
Farb, we say that the sequence {V,,} is consistent if for each n the map ¢, is equivariant
with respect to the Z,-action. The inclusions B,,[4] — B,,+1[4] induce maps H;(B,[4];C) —
Hi(Bp+1[4]; C). With respect to these maps the H;(B,[4]; C) form a consistent sequence of
Z,-representations (Lemma 9.7).

Further following Church—Farb, we say that a consistent sequence of Z,-representations
V,, satisfies representation stability if

(1) the maps ¢, : V,, = Vi, 41 are injective,
(2) the span of the Z,,4;-orbit of ¢, (V},) is equal to V,,41, and
(3) if we decompose each V,, into irreducible Z,-representations

Vn = @ cp,)\,nvn(p >‘)
(p,A)
then each of the sequences of multiplicities ¢, ), > 0 is independent of n for n large.

We say that the V,, satisfy uniform representation stability if there is some N so that every
Cp\n is independent of n for n > N.
Let I3 and I be the subsets of [3]2 and [4]2 given by

Is ={{1,3},{2,3}}, and I4={{1,3},{2,3},{1,4},{2,4}}.

We may assume that I3 € I3 and Iy € I;. Let ug denote the multiplicative group {£1}; we
can regard ps as a subgroup of GL(C). In Section 9.1 we define specific homomorphisms

[ Zé‘“ — u2, and hence representations of Zik, for k € {3,4}. Each py is the sum of the
winding numbers of the pairs of strands corresponding to the elements of Ij.

Theorem 2.5. There are Z,,-equivariant isomorphisms
V2(1,(0)) n=2
Hi(Bn[4]; €) = 4 Va(1,(0)) @ Va(1, (1) & Vs(ps, (0)) n=3
Va(1,(0)) @ Va(1, (1)) © Va(L, (2)) © Va(ps, (0)) © Va(pa, (0))  n > 4.
(

Further, the sequence {H1(B,[4]; C)} of Z,-modules is uniformly representation stable.

(0
(
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The PZ,-invariants of Hy(B,[4]; C) is exactly H;(PB,;C); this subspace corresponds to
the summands V,,(p, A) in the statement of Theorem 2.5 with p = 1. Thus, the first statement
of Theorem 2.5 recovers Church—Farb’s description of H;(PB,;C) as an S,-representation.

Also, representation stability for a sequence V,, of Z,-modules implies representation
stability for the sequence of PZ,-invariants, which are S,,-modules. In this way, the second
statement of Theorem 2.5 recovers the representation stability of H;(PB,,;C) discovered by
Church-Farb [13].

It appears to be an interesting problem to determine the character table of Z,,.

Level 4 hyperelliptic mapping class groups. Let X, be a closed orientable surface of
genus g. Let Mod, denote its mapping class group. This group is, for example, the (orbifold)
fundamental group of the moduli space M, of Riemann surfaces of genus g.

The hyperelliptic mapping class group SMody is the centralizer in Mod, of some fixed
hyperelliptic involution; see Figure 1. The level m mapping class group Mod,[m] is the
subgroup of Mod, consisting of all elements that act trivially on H;(2,;Z/m). The level m
hyperelliptic mapping class group SMod,[m] is the intersection SMod, N Modgy[m)].

As we will explain in Section 11.1, there are isomorphisms Bag1[4] = SMod,[4] % Z for
all g > 1. Even in the absence of an inclusion ¥, — Y,41, these isomorphisms give rise to
maps SMody[4] — SMod,1[4] as follows:

SMOdg[4] — B29+1[4} — B29+3 [4] — SMOdg+1[4],

where the first map is inclusion into the first factor, the second map is the standard inclusion,
and the third map is projection onto the first factor. The induced maps H;(SMod,[4];C) —
Hi(SModgy41[4];C) are injective and equivariant with respect to the Zj511- and Zog43-
actions. Since the Z-factor of Bog1[4] is central, it follows that this factor corresponds to the
trivial representation Vag41(1, (0)) in Theorem 2.5. We thus obtain the following consequence
of Theorem 2.5.

Corollary 2.6. For g > 1, there are Z441-equivariant isomorphisms

{%(17(1))@%(93,(0)) g=1

H,(SMod,[4]; C) =
! ) Vag+1(1, (1)) © Vag+1(1, (2)) @ Vagt1(ps, (0)) © Va(ps, (0)) g > 2.

In particular, we have

dim #1(8Mod, @) = 3(*7 ) (P 1) o (1) -

Further, the sequence { H1(SModg[4]; C)} of Z2441-modules is uniformly representation stable.

In contrast to Corollary 2.6, Hi(Mody[m]; Q) = 0 for g > 3 and m > 1; see the paper
by Hain [22].

Under the map Bog1[4] — SModg[4] from Section 11.1, the basis elements from The-
orem 2.1 map to the classes of 4th powers of Dehn twists about nonseparating curves.

The group SMod, is the orbifold fundamental group of the hyperelliptic locus H, in
M. The group SMod,[4] is the fundamental group of any connected component #,4[4] of the
hyperelliptic locus in the moduli space of genus g Riemann surfaces C with level 4 structure,!
i.e. a symplectic basis for H1(C;Z/4). In fact, H4[4] is a K(m, 1) space for SModg[4]. Thus

297 (229 — 1)... (22 — 1)
(29 +2)!

IThere are such components; they are mutually isomorphic.
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H'(SMod,[4]; Q) = H*(H4[4]; Q) for all 5 > 0. As such, Corollary 2.6 gives the first Betti
number of #H,4[4].
For g = 2 we have SMody, = Mod,. In this case we have the following result.

Proposition 2.7. We have dim Hz(Mod[4]; Q) > 3068.

Proposition 2.7 improves on a special case of a result of Fullarton—Putman [18, Theorem
A], which gives dim H3(Modz[4]; Q) > 24.

Albanese cohomology. For a finitely generated group I', the Albanese cohomology of T’
is the subalgebra H7%, (I';Q) of the rational cohomology algebra H*(I';Q) generated by
HY(T;Q). In other words, H%;,(I'; Q) is the image of the cup product mapping

AH'(T;Q) — H*(I; Q).

The term “Albanese cohomology” was introduced by Church—Ellenberg—Farb in their work
on representation stability [12].

Arnol’d [2] showed that the cohomology ring of PB,, is generated by degree 1 classes,
in other words H%,;,(PB,; Q) = H*(PB,; Q). We prove the following contrasting result.

Theorem 2.8. Let n > 15. Then HY,(B,[4]; Q) is a proper subalgebra of H*(B,[4]; Q).

Although Theorem 2.8 asserts that there are cohomology classes in H*(B,[4]; Q) that
are not cup products of classes in H'(B,[4]; Q), our proof does not produce examples of such
classes. We will derive Theorem 2.8 from the following slightly stronger result.

Theorem 2.9. For all g > 7 the Albanese cohomology H,;,(SModg[4]; Q) is a proper subal-
gebra of H*(SMod,[4]; Q).

The original proofs that the cohomology groups of the pure braid groups and the pure
string motion groups are representation stable take advantage of the fact that the cohomology
algebras of both are generated in degree 1; see the papers by Church—Farb and Wilson [13, 33].
One would like to emulate this in the case of B,,[4] to prove that its higher cohomology groups
of B, [4] are representation stable. However, as Theorem 2.8 shows, this approach cannot
work. Instead, we propose the following.

Conjecture 2.10. For each k > 1 the sequence of Z,-representations H%, (B,[4];Q) is
uniformly representation stable for n > 4k.

Conjecture 2.10 may be compared with a result of Church—Ellenberg—Farb, which states
that the Albanese cohomology of the Torelli group is a finitely generated FI-module, hence
uniformly representation stable [12, proof of Theorem 7.2.2].

Hyperelliptic Torelli groups. The braid Torelli group BZ,, is the level 0 subgroup of By,
i.e. the kernel of the Burau representation evaluated at ¢t = —1 (the latter is sometimes
called the integral Burau representation). This group, an infinite-index subgroup of B,,, is
even more mysterious than the B, [m]. For example, it is not known if this group is finitely
generated when n > 7. It is, however, known that for n = 2,3,4,5,6 have that that BZ, is
isomorphic to 1, Z, Fi, Foo X Z, and F X F, respectively, where F, denotes the free group
of countably infinite rank. It is also known that BZ7 is not finitely presented [5, Theorem
1.3]. An appealing infinite generating set for BZ,,, consisting of all squares of Dehn twists
about curves surrounding either 3 or 5 punctures, was identified by Brendle, Putman, and
the second author [6].
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The hyperelliptic Torelli group SZ, is the subgroup of SMod, whose elements act triv-
ially on Hi(X4;Z). There are isomorphisms BZygy1 = SZ, x Z; see [7]. Using Hain’s
description [19] of the image of the second Johnson homomorphism, one can obtain a lower
bound
9—1)(4g9*> +49—3)

3
We will deduce an improved lower bound from Theorem 2.1 as follows.

dim H1(8I2g+1; Q) > g( + 1.

Theorem 2.11. For g > 3 we have

1
dim H (BI5g+1;Q) > ¢ (209" + 129" — 5¢” + 9)

The finiteness properties of the BZ,, and the B, [m] are related by the following propo-
sition, which we prove in Section 12.

Proposition 2.12. Let n be odd. If the sequence (dim Hy(By,[m]; Q))>°_, is unbounded then

m=1 "1

Hy(BZ,;Q) is infinite dimensional, and in particular BZL, is not finitely generated.
We make the following conjecture.

Conjecture 2.13. For fized n > 4, the sequence (dim Hy(By,[m]; Q))>_, is unbounded. In

m=1

particular, Hi(BZ,;Q) is infinite dimensional and BZ,, is not finitely generated.

Theorem 2.1 provides some evidence for Conjecture 2.13; with the equalities

dim H1(B,;Q) =1 dim H,(PB,; Q) = (Z)

it implies
dim H;(B,; Q) < dim H1(B,[2]; Q) <« dim H; (B, [4]; Q).

From the above descriptions of BZ,, for 2 < n < 6 we have that Hy(BZ,;Q) is not finite dimen-
sional for 4 < n < 6. Brendle, Childers, and the second author showed that Hy_1(BZ2441;Q)
is infinite dimensional [5, Theorem 1.3]. It is not known if any of the other Hy(BZ,;Q) are
infinite dimensional.

The group BZy,11 is isomorphic to the direct product of Z with fundamental group
of any component of the branch locus of the period map on Torelli space [20]. Therefore
Conjecture 2.13 implies that this fundamental group is infinitely generated.

Torsion points on the characteristic variety for the braid arrangement. Let X,, C
C™ denote the complement of the braid arrangement

Xn=C"\{(z1,...,2,) € C" | 2; = x; some ¢,5}

There is a one-to-one correspondence between homomorphisms PB,, = m;(X,,) — C* and 1-
dimensional complex local systems over X,,; to a homomorphism p : PB,, — C* we associate
the 1-dimensional local system C, with monodromy p. Thus the space of all such local
systems can be identified with the algebraic torus Hom(PB,,, C*), which we identify with

n

(©) ) via p = (p(T12), ..., p(Tu-1.0)).

For d > 1, the dth characteristic variety Vy(X,) of X,, is the subvariety of ((CX)(;L)
consisting of all p € Hom(PB,,, C*) such that dim H'(X,,;C,) > d. One reason for studying
the characteristic varieties of X, is that they give fine information about the topology of its
abelian covers. A general theorem of Arapura [1] implies that V;(X,,) is a union of algebraic
subtori, possibly with some components translated away from the identity 1 by finite-order
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elements. Following Cohen-Suciu [14], we denote by V(X)) the union of the components of
Va(X,,) that contain 1 (these are the so-called central components).

Let p; : PZ,, — us denote the homomorphism giving the irreducible representation V7
of PZ,, (see Section 8) and denote the unique extension PB,, — s C C* by pr as well.

Theorem 2.14. Let n > 3. For d > 2, the characteristic variety Vy(X,) contains no
2-torsion. The set of 2-torsion points on Vi(Xn) is {pg(1)}ges, U {Pg(1s)}gesn, which is
contained in V1(X,).

For n < 4, all known components of the characteristic varieties of X,, contain 1 but it
is an open problem to determine whether this holds for general n. Arapura’s theorem implies
that any component of Vy(X,) not containing 1 must contain some point of finite order.
Therefore, if one could show that every torsion point on V(X)) were contained in Vd(Xn),
it would follow that Vy(X,) = Va(X,). By Theorem 2.14, any translated components of
Va(X,), should they exist, would have to be translated by an element of order at least 3.

Outline of the paper. The remainder of the paper essentially has three parts. The first
part, Sections 3-7, is devoted to the proof of Theorem 2.1. In Section 3 we define maps

W : Bp4] - z(2),
Yioo : Bpld] — zC) <4¢<mn, and

2n

ij Bad] > 2C7) 1<i<j<n

that we will use to detect nontrivial classes in H;(B,[4];@Q). The map 1 is simply the
restriction of the abelianization of PB,,. This map is clearly not sufficient for our purposes,
since the dimension of H;(B,[4];Q) asserted by Theorem 2.1 is much larger than that of
Hi(PB,;Q) = (). The ¢;; are designed to detect elements of Hi(B,[4]; Q) coming from the
commutator subgroup of PB,,. Roughly, they are defined as follows: lift an element of By, [4]
to a double cover of I, and apply the abelianization of the pure braid group of the cover. We
show at the end of Section 3 that these maps do indeed detect commutators of pure braids.

With the 1);; in hand, we complete the proof of Theorem 2.1 for n = 3 in Section 4. That
the given basis elements are independent is proved using the ;; and the fact that the first
Betti number is 6, which comes easily from the equality B3[4] = PB% and the isomorphism
PB3 = Fy X 7.

The proof of Theorem 2.1 for n > 4 is carried out in the next three sections. In Section 5
we use the v;; to show that the basis elements from Theorem 2.1 are linearly independent;
this step is similar in spirit to the n = 3 case, and is complicated mainly by the large number
of homology classes being considered. Then in Section 6 we give an infinite spanning set
for Hy(B,[4]; Q) whose elements have a particularly simple form: they are the images of
squares of Dehn twists about curves surrounding two marked points. There is an obvious
spanning set for Hq(B,[4]; Q) coming from the generating set for B,,[4] given by Brendle and
the second author, namely the squares of Dehn twists, and our spanning set is a subset of
this one. Finally, in Section 7 we complete the proof of Theorem 2.1. This section is the
technical heart of the proof. The idea is to whittle down the spanning set from Section 6
using a series of relations in H;(B,[4]; Q). The relations are obtained using a combination
of the squared lantern relation, a Jacobi identity, the Witt—Hall identity, and the standard
Artin relations for PB,,.

The second part of the paper is dedicated to the proof of Theorem 2.5. As above, this
first requires an investigation of the representation theory of Z,,. In particular, the statement
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of representation stability requires a naming system for its irreducible representations. This
is carried out in Section 9.2. The main difficulty stems from the fact that Z,, does not split
as a semi-direct product over S,. We then prove Theorem 2.5 in Section 9.3 by exhibiting
the irreducible representations from the statement of the theorem as explicit submodules
and by verifying the three parts of the definition of uniform representation stability. These
submodules are the spans of the Z,-orbits of elements a;;, x3, and 4. The main obstacle
towards proving Theorem 2.5 is simply locating the elements x3 and x4 in the first place.

Finally, the third part of the paper gives the proofs of the various applications of our
main results. First in Section 10 we quickly dispense with Theorem 2.3 as a consequence of
Theorem 2.1. Then in Section 11 we prove Theorem 2.9 and then use this to prove Theo-
rem 2.8. For Theorem 2.9, the basic idea is to compare the dimension of H!(SMod,[4]; Q)
(Corollary 2.6) to the Euler characteristic of SMody[4]. The latter is an enormous negative
number, signaling the presence of large amounts of cohomology in odd degrees. A careful
comparison of the odd Betti numbers of SModg[4] with the dimensions of the odd graded
pieces of the exterior algebra A*H'(SMody[4]; Q) then gives the result. At the end of Sec-
tion 11 we prove Proposition 2.7 and Theorem 2.2.

Next, in Section 12 we prove Theorem 2.11. The idea is to show that there is a surjective
map Hi(BZyg41; Q) — Hi(SMod,[4]; Q) and that the direct sum of this map with the second
Johnson homomorphism is surjective. The result is then obtained by adding together the
dimensions of the targets of these two maps. Finally, in Section 13 we prove Theorem 2.14
as an application of Theorem 2.5.

3. ABELIAN QUOTIENTS FROM DOUBLE COVERS

The goal of this section is to define and describe the homomorphisms
Y Byfd] - 2(3),
ico : Buld] » 20" 1<i<n, and
Vi Bp4] - 2

2n—2

2) 1<i<j<n

discussed in Section 2. We will denote the induced maps on H; (B, [4]; Q) by the same symbols.
We will use these homomorphisms in Sections 4 and 5 to detect non-zero homology classes
in Hy (B, [4]; Q).

The map ¢ will simply be defined as the restriction of the abelianization of PB,,. As
discussed in Section 2, the v;; will be defined in terms of 2-fold covers of I,,. In Section 3.1
we describe the 2-fold covers used. Then in Section 3.2 we define the v;; and in Section 3.3
we compute the images under the v;; of each square of a Dehn twist in B, [4]. Finally we in
Section 3.4 we give a naturality (equivariance) formula for the v;; and use this formula to
compute several examples.

One of the examples we compute at the end of the section is 110 ([T, T12]). In par-
ticular we show it is non-zero. Of course 1) evaluates to zero on the commutator subgroup of
PB,,, and so this computation verifies that the v;; are indeed giving more information than

.

3.1. Double covers of the disk. Denote the set of marked points of D,, by P. There is a
correspondence

Hy(Dy,, PUJD,;Z/2) <— {2-fold branched covers of (D, P)}/ ~



12 KEVIN KORDEK AND DAN MARGALIT

Here, a branched cover over (D, P) is a branched cover over I, where the set of branch
points lies in P.

The above correspondence can be explained as a sequence of three correspondences as
follows. First, it is a consequence of Lefschetz duality that Hy (D, PUID,,;Z/2) is isomorphic
to H'(D2;Z/2), where DS, is the surface obtained from D, by removing the n marked points.
Second, by basic covering space theory, the latter is in bijective correspondence with the
equivalence classes of 2-fold covers of D;. Third, 2-fold covers over D are in bijection
with 2-fold branched covers of I, with branch set in P; we pass from one to the other by
adding/subtracting the points of P and its preimage. The stated correspondence follows.

As above, let [n] denote the set {1,...,n} and let [n]2 denote the set of pairs of elements
of [n]. Also let [n]so denote [n] U {oo} and let [n]3 be the set of pairs of elements of [n]uo.
There is a natural bijection between [n] and P, where i corresponds to the ith marked point.
If we think of 0, has having the label oo then there is a further bijection between [n]~, and
the set of connected components of P U JD,,. There is a map

{[n]2,} — {2-fold branched covers of (D, P)}/ ~

defined as follows. For an element of [n]% we obtain a nontrivial element of Hy(D,, P U
0D,,;Z/2) by choosing an arc between the corresponding components of P U dD,, (the arc
should be disjoint from P U 9D,, on its interior). This homology class, hence the resulting
equivalence class of covers, is independent of the choice of arc. We refer to any resulting
cover of I, as an (ij)-cover of D,,. An (ico)-cover of I, is a disk with 2n — 1 marked points
and any other (ij)-cover is an annulus with 2n — 2 marked points.

As elements of [n]%o only give equivalence classes of branched covers over I,,, it will be
helpful to fix specific (ij)-covers once and for all, as follows. First we fix a copy of D, once
and for all, as the closed unit disk in the plane with the marked points along the x-axis.

Then for each ¢ we let a;oo be the vertical arc in I,, connecting the ¢th marked point
to the upper boundary of D,,. And for each {i,j} € [n]® we let a;; be the semi-circular arc
that connects the ¢th and jth marked points and lies above the z-axis.

We construct the specific (ij)-covers by taking two copies of D,,, cutting each along the
corresponding «;;-arc and then gluing the two cut disks together. Each cut disk corresponds
to a fundamental domain for the deck group. We think of the «;; as branch cuts.

In the (ico)-cover D,,, each marked point of D,, has two pre-images except for the ith,
which has one. We label the preimage in D,, of the ith marked point with i. For each jFi
we label the preimages of the jth marked point in the first and second fundamental domains
of D, with j and j, respectively. For an (ij)-cover with j # oo the marked points in D,
are labeled similarly. We denote by [n]" the set of symbols {1’,...,n'}. So the labels of the
marked points of D, lie in [n] U [n]'.

We remark that the cover D, and hence the labeling of its marked points, is sensitive
to the homotopy class of each «;j, not just the corresponding class in H; (D, P UJD,,;Z/2).

3.2. Homomorphisms from double covers. Our next goal is to define ¢» and the ;;.
The 1);; will be defined as follows: given an element of B, [4], lift it to the corresponding
cover Dy, and then take an abelian quotient of the pure mapping class group PMod(ID)n). In
general, for a surface S with marked points, PMod(S) is the subgroup of Mod(S) given by
the kernel of the action on the set of marked points.

We will carry out the plan described in the previous paragraph by explicitly describing
the lifting maps and the abelian quotients. The latter will be aided by another homomor-
phism, called the capping homomorphism, which we define along the way.
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Lifting. We begin with the lifting homomorphism. Consider an element of [n ]oo and let Dy,
denote the corresponding branched cover. There is a homomorphism

Lift : PB,, — Mod(DD,,),

defined as follows. Let f € PB, = PMod(D,) and let ¢ : D, — D, be a representative
homeomorphism fixing the boundary. Because f lies in PB,, it fixes the element of H;(D,,, PU
OD,; Z./2) corresponding to D,,. Hence ¢ lifts to a homeomorphism of D,,. There is a unique

lift that induces the identity map on dDy,; let f be the corresponding element of Mod(]D)n).
Then Lift is defined by

Lift(f) = f.

Lemma 3.1. Let n > 2, let {i,j} C [n]oo, and let D, denote the corresponding branched
cover of D,,. The lifting homomorphism Lift : PB,, — Mod(ID,,) restricts to a homomorphism

B,.[4] — PMod(Dy,).

Proof. As mentioned in Section 2, it is a theorem of Brendle and the second author that
B, [4] is equal to the subgroup of PB,, generated by squares of Dehn twists. Therefore, it is
enough to show that if ¢ is a simple closed curve in I, then Lift(72) lies in PMod(Dy,).
The preimage é in Dy, of a simple closed curve ¢ in D,, is a 2-fold cover of ¢. In particular
it has one or two components. In the first case, T2 lifts to the Dehn twist about ¢. In the
second case, T2 lifts to the product of the squares of the Dehn twists about the components
of & In both cases, the lift lies in PMod(ID,,), as desired. O

Capping. We now proceed to the capping homomorphism. Let .S be a surface with boundary.
We choose one distinguished component of the boundary of S. Let S be the surface obtained
by gluing a disk to this component. There is a homomorphism

Cap : Mod(S) — Mod(S),

defined as follows: given an element f of Mod(S) we can represent it by a homeomorphism
of S that fixes the boundary, and then extend this homeomorphism to S in such a way that
the extension is the identity on the complement of S. The resulting mapping class is Cap(f).

The abelianization of the pure braid group. The abelianization of the pure braid group is:
PB, /[PB,, PB,] = H;(PB,; 2) = z(3).
The abelianization map
PB, — 7(2)
can be described as follows. There are (g) forgetful homomorphisms
PB, - PBy = Z

obtained by forgetting all but two of the marked points in ID,,, and the abelianization of PB,,
is the direct sum of these homomorphisms. We note here that the image of the map that
corresponds to forgetting all but the ¢th and jth marked points is generated by the image of
the Dehn twist T;;.

We now give a slightly different, and more natural, description of the abelianization of
PB,,. We will denote the element {z j} of [n]2 by (ij). Let Z{(ij)}i<; denote the free abelian
group on the set of elements of [n]2. We emphasize that (ij), (ji), and {i,;} all denote the
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same set; we will use (ij) instead of {7, j} for the generators of Z{(ij)}i<; so as to simplify
the notation.
With this notation, we can write the abelianization of PB,, as

PBn — Z{(’L])}Z<],

where the (ij)-factor of Z{(ij)}i<; corresponds to the map PB,, — PBy where all marked
points except the ith and the jth are forgotten. This notation will be especially useful when
the labels of the marked points are not natural numbers, as is the case in our (ico)- and
(ij)-covers.

For any subset A = {ij,i9, -+ ,ix} of {1,...,n} there is an associated element of the
free abelian group Z{(ij)}i<;. This element may be denoted by (A) or (iyiz--- i) and it is

defined as
(iig -~ ik) = Z(i;ﬂitﬁ-
p<q
For example, (123) = (12)+(13)+(23). We observe that if we permute the numbers iy, . .., i,
then the value of (i1i3 - - - ix) is unchanged. In this notation it makes sense to interpret (0)) as
the identity. This language makes it convenient to describe the image of a Dehn twist under
the abelianization of PB,,: if ¢ is a simple closed curve in ,, surrounding the marked points
{il, e ,ik}, then
Tc — (iliz .. ’Lk)

The braid group B,, acts on PB,,, hence its abelianization, by conjugation. The action of
a particular element f € B, depends only on its image in the quotient B,, /PB,,, which is
isomorphic to the symmetric group on [n]. If the image of f is the permutation ¢ then the

action fi. on Z{(ij)}i<; is given by f.(ij) = (c(i)o(j)).
The definition of . As advertised, we define
¥ Buld] = Z{(ij)}ic; = 205)

as simply the restriction of the abelianization of PB,,. From our description of the latter we
immediately obtain a formula for the image of the square of an arbitrary Dehn twist under
the map : if ¢ is a simple closed curve in ID,, and A is the set of labels of marked points in
the interior of ¢, then

W(T7) = 2(A).
If f € B, maps to f, in the symmetric group on [n] then

U(f - T2) = 2(f(4)).
Our goal in the remainder of this section is to define the 1);; and obtain similar formulas for
the image of a square of a Dehn twist.

The definitions of the 1;;. We are finally ready to define the 1;;. First, for i € [n] we define
Yiso as the composition

Lift ~ 2n—1
Wio : Bald] ¥ PMod(D,) = Z{(k0)} p.nycr,, =202,
where ]f))n is the (ioco)-cover of D, and L is the set of labels of the marked points of ]f))n. The
existence of the first map is ensured by Lemma 3.1. The second map is the abelianization.
The isomorphism at the end comes from the fact that the (ioco)-cover is a disk with 2n — 1
marked points, with Lo, = [n] U [n]"\ 7.



REPRESENTATION STABILITY IN THE LEVEL 4 BRAID GROUP 15

FIGURE 2. A representative case for the proof of Lemma 3.2

For {i,j} € [n]? we denote by D,, the (ij)-cover of D,, and by L;; the corresponding set
of marked points. Then we define v;; in the analogous way. The only difference is that we
must apply the capping homomorphism (as on the preceding page, we cap the component of
the boundary lying in the second fundamental domain, where the marked points are labeled
with primed numbers):

1/%']‘ : Bn[4] L—if>t

2n72)

PMod(D,) “F PBa—s = Z{(h0)} prpycr, = 20

The induced maps. Since v and the 1);; are maps to abelian groups, they also induce maps
¢ 1 Hi(Ba[4);Q) » Q1)
biso : Hi(Bn[4;Q) —» (") 1 <i<n, and
Vi + Hi(Bo[4]; Q) — @(%{2) I<i<ji<n
As shown here, we refer to the induced maps by the same symbols as the original maps.

3.3. Computations. Our next goal is to describe the images under the ;; of a square of
a Dehn twist, first for squares of Artin generators and then for arbitrary squares of Dehn
twists. The statement of the first lemma requires some notation. Let {i,j} be an element of
[n)% with i < j and let {k, ¢} be an element of [n]2 with k < £. We say that {i,;} and {k, ¢}
are linked if

i<k<j<{t or k<i<fi<j

and we say that they are unlinked if
i<k<i<j or k<i<j<Hdt.
Also, we write [n\ k, ¢] for [n] \ {k, (}.
Lemma 3.2. Let k,¢ € [n] with k < £ and let i,j € [n]oo with i < j. Then

(ke {i.grn{k, 0} = {k}
(kK'0) {i, 5} n{k, &} = {6}
bij(Tig) = 4 2(k0) + 2(k'C') {i, 5}, {k, €} unlinked
2(kl') + 2(k'0) {i, 3}, {k, €} linked
(2({k, U\ E L) +2([n \ K, &) {i,j} ={k (}

Proof. Let ¢ be the curve in I, corresponding to the Artin generator Tj. As discussed in the
proof of Lemma 3.1, the preimage in I, is either a single curve ¢ or a pair of curves ¢y, ¢o.
In the first case Lift(7?) is equal to Tz and in the second case it is equal to T2 Tgl.

1
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By the way the 1;; are defined, and because we already have a formula for the image of
a Dehn twist in the abelianization the pure braid group, it remains to determine the preimage
of ¢ in each case. In fact, the only relevant feature of the preimage of c¢ is the set of marked
points that it surrounds.

There are nine cases, as the fifth case of the lemma only makes sense for (ij)-covers
with 4,j # co. A representative picture for the case where j # oo and {i,j} and {k, ¢} are
linked is shown in Figure 2. The curve c is the boundary of a regular neighborhood of the
arc a = age. Therefore the preimage of c¢ is the boundary of a regular neighborhood of the
preimage of a. The path lift of o starting at the marked point k£ crosses the preimage of o;
and ends at ¢'; this path lift is hence a connected component of the preimage of . Similarly,
the other component of the preimage of « is an arc connecting the marked points k' and /.
So the preimage of ¢ is a pair of curves, one surrounding the marked points k and ¢’ and one
surrounding the marked points k" and ¢. It follows that 1;;(T7,) = 2(k¢') + 2(k'(), as in the
statement of the lemma. The other cases are handled similarly. O

The formulas in the statement of Lemma 3.2 take three different forms (the first two
cases are similar, the next two are similar, and the last is distinct from the first four). The
differences arise because of the different ways that the curve ¢ lifts under the cover D,, — D,,.
Let Agy be the disk with two marked points bounded by ¢. We can restrict the cover D, — D,
to a cover App — App. In the first two cases, the latter cover is a 2-fold branched cover of a
disk over a disk. In the next two cases it is the disconnected 2-fold cover over a disk. And in
the last case it is a 2-fold branched cover of an annulus over a disk.

Closed formulas. We also have a closed formula for an arbitrary v;;(7?). The formula has
three parts, depending on how many of {4, j} lie in the interior of ¢. Since we will not require
these general formulas in the sequel, we do not supply the proofs.

Let A be the set of labels of the marked points lying in the interior of c¢. In the case
where AN {i,j} = {i} the formula is:

2 .
Vi (T2) = (AU (A—{i})).
We now suppose that AN {i,j} = 0. In this case there is a natural partition of A into
two subsets: two elements of A are in the same subset if an arc that lies in the interior of ¢

and connects the corresponding marked points intersects «;; in an even number of points. If
we denote the two subsets of A by A; and As, the formula is

Vi (T2) = 2(A1 U Ay) + 2(A] U Ay).

In the third and final case, where {i,j} C A, we need to define two subsets B and C
of [n] \ A. An element of [n] \ A lies in B if and only if an arc that lies in the exterior of ¢
and connects that marked point to dI,, crosses a;; in an even number of points. Then C'is
the complement of B in [n] \ A. We have in this case

Vi (T2) =2(AUC U B U (A\ {i,5})) +2(C U B).

It is straightforward to check that in the case where T, = Tjy our formulas here agree with
Lemma 3.2. For instance, in the third case we have A = {k,¢}, B = [n] \ {k, ¢}, and C = 0.
Thus our formula gives that 1 (T7) is

20AUCUB UA\{i,5})) +2(CUB) =2({k, £} U[n\ k, €]') + 2([n \ k, £]),

as per Lemma 3.2.
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3.4. Naturality. Our final task in this section to give a formula for the image under 1;; of
Tho - f = Tief i,

in terms of the image of f, where f € B, [4] and T}, is an Artin generator for PB,,. Since we
already have a formula for each 1;;(T%,) (Lemma 3.2), this will give a formula for the image
under 1);; of an arbitrary Ty, - qu.

Let {i,5} € [n]% with i < j and k, £ € [n] with k < £. We define a permutation v, of
the set [n] U [n]" as follows:

() {igyn{ke =k}
vy = (R K) {i, 5} n{k, 0} = {6}
id otherwise.

In this formula we are using cycle notation for the symmetric group on [n] U [n]’, so (k k')
and (£ ¢') are transpositions.

Let {i,j} € [n)%, let Dy, be the corresponding branched cover of Dy, and let L;; be the
set of labels of the marked points of Dy, as in Section 3.2. We may regard sze as a permutation
of L;;, and as such it acts on the abelianization of PMod(ﬂ)n). We abuse notation and write

the corresponding automorphism of the abelianization as L;Cje.

Lemma 3.3. Let {i,j} € [n]% with i < j and {k,0} € [n)2 with k < {. Let f be an element

of Bpl4]. Then

Vi (Tre - f) = vy (Wig (1)) -
Proof. For concreteness, we suppose that j # oo; the case where j = oo is essentially the
same. As in Section 3.2, the set L;; is [n] U [n]" \ {¢,j'}. Let ¢ denote the abelianization of
PMod(Dy,,) = PBa,,—2. We have that Cap o Lift(Ty¢) is an element of Mod(D,,) = Ba,,—2. As

such it acts on PMod(Dn) by conjugation. As in Section 3.2 we denote the induced action
on the abelianization by Cap o Lift(7)¢)«. We have:

Yij(The - f) = p(Cap o Lift(Te - f))
= 1p(Cap o Lift(T) - Cap o Lift(f))
= Cap o Lift(Tye) 1 (Cap o Lift(f))
= Cap o Lift (The)«0i; (f)-

It remains to check that Cap o Lift(Te)« is equal to ¢},

If {i,7} N {k, £} is not a singleton, then the simple closed curve ¢ in I, corresponding
to {k, ¢} has an even number of intersections with the arc a;;. Thus the preimage of ¢ in
D, is a pair of curves. As in the proof of Lemma 3.1, it follows that Cap o Lift(Ts) lies in
PBs,,_2. This agrees with the fact that L;gg is trivial in this case.

Suppose that on the other hand {i,j5} N {k,¢} = {k}. In this case the simple closed
curve c in D, corresponding to {k, £} intersects the arc a;; in a single point. So the preimage
of cin D, is a single curve ¢ surrounding the points labeled k, ¢, and k’. And Cap o Lift(T}y,)
interchanges the points labeled k and &’ (the square of Cap o Lift(T}) is the Dehn twist about
¢). This again agrees with the definition of k€%, The case {i,j} N {k, £} = {£} is exactly the
same, with the roles of k and ¢ interchanged. O
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We now give three sample computations with Lemmas 3.2 and 3.3. First, for any n > 3
we have:

P1oo(Th2 - T223) = L12 (T/Jloo(T23))
=115° (2(23) +2(2'3))
=2(23) +2(2'3).

Second, for any n > 3 we have:

Y12(Tas3 - T122) = L23 (¢12(T12))
=133 (2(123'4 -+ - n') +2(3'4" - - n))
=2(1234"---n) +2(34"---n)).
Third, for any n > 3 we have:

V100 ([T53, T12]) = Y100 (T33(Th2 - To3?))

= Y100 (T53)115° (wloo(Tzrz )
= 2(23) +2(23) — 115°(2(23) 4+ 2(2'3"))
=2(23) +2(2'3') — 2(2'3) — 2(23).

As in Section 2, we refer to the image of T, in Hy(B,[4]; Q) by 7x,. Regarding the v;;
as maps defined on Hy(B,[4]; Q), we can reinterpret the above calculations as:

V1oo(Th2m3) = 2(23") +2(2'3),  12(Tosmi2) = 2(1234"---n) +2(34"---n'), and
Y100 ((1 — Th2)T23) = 2(23) + 2(2'3") — 2(2'3) — 2(23").

4. PROOF OF THEOREM 2.1 FOR THREE STRANDS

In this section we prove Theorem 2.1 for the case of Bs[4]. This result is stated as
Corollary 4.3 below. We begin by showing that dim H;(B3[4];Q) = 6 (Proposition 4.1).
Then we show that a set S’ closely related to the set S from Theorem 2.1 forms a basis
(Proposition 4.2). We then use this to prove Corollary 4.3. We will make use of the homo-
morphisms 1 and ;. introduced in Section 3.2; we refer the reader back to Sections 3.2-3.4
for background on these homomorphisms.

Below, we denote by PMody ,,, the pure mapping class group of a sphere with m marked
points.

Proposition 4.1. The dimension of Hi(Bs[4]; Q) is equal to 6.

Proof. We may glue a disk with one marked point to the boundary of D3 in order to obtain
a sphere with four marked points. There is a resulting capping homomorphism

PB3 — PMOdoA .

This map is defined analogously to the capping homomorphism in Section 3.2. The kernel
is the infinite cyclic group generated by Tp, the Dehn twist about the boundary of D3 [17,
Proposition 3.19].

Since B3[4] = PB3 and since (Tp) N B3[4] = (T2) we may restrict the capping homo-
morphism to obtain a short exact sequence

1 — (T3) — Bs[4] — PModj , — 1
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where PModgA denotes the subgroup of PModg 4 generated by all squares. This extension
gives rise to an exact sequence in homology

Q(T3) — H1(Bs[4];Q) — Hy(PModg 4; Q) — 0

We analyze the terms on the right and left in turn. We claim that the term on the right
is isomorphic to Q°. By the Birman exact sequence [17, Theorem 4.6] and the fact that
PMody 3 is trivial [17, Proposition 2.3] we have that PMod 4 is a free group of rank 2. The
index of PMod%A in PModg4 is 4 (it is the kernel of the mod 2 abelianization). By the
Nielsen—Schreier formula the former is a free group of rank 5 and the claim follows.

We next claim that the first map is injective. The sequence of inclusions (7, 32> —
Bs[4] — PBj3 induces maps on homology Q(Tg} — Hi(Bs[4]; Q) — H1(PB3;Q). It follows
from the discussion in Section 3.2 that the composition is nontrivial, and the claim follows.

It follows from the two claims that dim H;(B3[4];Q) =145 = 6. O

Consider the set &' = S U S} where
S1 = {2, 3, 73} and Sy = {(1 — Tiz)ma, (1 —Toz)713, (1 — T12)7e3}
Proposition 4.2. The set S’ is a basis for Hi(Bs[4]; Q).

Proof. The first step is to compute the values of 1) on the elements of §’. We find that

Y(m12) = 2(12) P((1 —T13)T12) =0
Y(mi3) = 2(13) Y((1 —Te3)T13) =0
Y(m23) = 2(23) Y((1 —Ti2)723) =0

Thus {712, T13, 723} is linearly independent and the span of S} is contained in the kernel of 1.
Thus it suffices to show that S} is linearly independent. Let §;; denote (ij)+(¢'5")—(i5")—(¢'7).
The images of the elements of S under the 1);o, are as shown in the following table (the top-
right entry was computed as an example in Section 3.4):

(1 —Ti3)T12 (1 —To3)713 (1 —Ti2)723
Ploo 0 0 2093
V200 0 —2013 0
Y300 2019 0 0

Since each element of S} has nontrivial image under exactly one ;o it follows that S
is linearly independent, and the proposition follows. O

As in Section 2, let S = S§1 U Ss, where
Sy = {T13712, To3713, T12723}.

The set S lies in the span of &’ and vice versa. Since the two sets have the same cardinality,
we have the following corollary of Proposition 4.2, which is the n = 3 case of Theorem 2.1.

Corollary 4.3. The set S is a basis for Hi(Bs[4]; Q).
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5. A LINEARLY INDEPENDENT SET

Let S be the subset of H;(B,[4]; Q) from Theorem 2.1. The goal of this section is to
prove the “lower bound” for Theorem 2.1, namely, that S is linearly independent (Proposi-
tion 5.1 below). The proof will make use of the homomorphisms introduced in Section 3.

As in Section 4 we will prove that S is linearly independent by showing that a slightly
different set &’ is linearly independent. Specifically, let &' = & U S, U S, where

Slz{Tij’1§i<j§n},
Sy = {(1 = Tjp)mij, (1 = Tjp) i, 1 = Tij) 7 | 1 < i < j <k <n}, and
Sé = {(1 — Eg)(l — ,Tjk)Tij; (1 — E])(l — Tkg)Tik, (1 — ’le)(l — ’Tj@)Tig ’ 1 < 7 <j <k</? < n}

For a group G and g,h € G we denote by [g,h] the commutator ghg='h~!. The elements
(1 — Tye)7i; are the images of the commutators [Tkg,'TZ%-] in H(B,[4];Q). Similarly, the
(1 = Tpq)(1 — Tye)i; are the images of [Tpg, [The, Tfjﬂ

Proposition 5.1. For all n > 4 the sets S and S’ are linearly independent.

In the proof we use a homomorphism F,, defined as follows. Since B,,[4] is the subgroup
of PB,, generated by all squares, there are well-defined maps B, [4] — B, _x[4] for all 0 <
k < n obtained by forgetting k of the marked points in D,,. There are thus induced maps
Hi(B,[4];Q) — H1(Bp—[4]; Q). By introducing formal variables €;jx¢, €ijk, and e;; we can
combine the maps with 2 < n — k < 4 into a single homomorphism

F, : Bn[4] — @ Hl(B4[4];Q)®€iju ® @ Hl(Bg[Zﬂ;@)@E@'jk ® @Hl(B2[4];Q)®Eij
1<j<k<l 1<j<k 1<J

where €;j1¢ corresponds to the map B,,[4] — B4[4] obtained by forgetting the marked points
not labeled by i, j, k, or ¢, and where ¢;;, corresponds to the map B,[4] — B3[4] obtained
by forgetting the marked points not labeled by i, j, or k, and where ¢;;;, corresponds to the
map B, [4] — Ba[4] obtained by forgetting the marked points not labeled by i or j.

When n = 4 it will also be convenient to use a function Fy that is defined in the same
way as Fy except without the terms corresponding to quadruples:

Fy: Hi(Bu[4;Q) » €D Hi(Bs[4];Q) @ ey & @) Hi(B:[4]; Q) @ 3.
i<j<k 1<J
Proof of Proposition 5.1. We proceed in two steps, first dealing with the case n = 4 and then
the general case. In both cases it suffices to show that S’ is independent, since (as in the
proof of Corollary 4.3) each element of S lies in the span of &’ and vice versa.
We now proceed with the proof for the case n = 4. We first claim that &7 is linearly
independent. For each i < j we have
Fiy(rij) =735 @ €ij + > Tij @ Eabes
where the sum is over all triples (a, b, ¢) with a < b < ¢ such that i,j € {a,b, c}. Since each
ei; only appears in the image of 7;;, and since H;(Bz[4]; Q) is non-zero, the claim follows.
We next claim that S U S} is linearly independent. We begin by computing the images
of the elements of S} under Fy. For fixed i < j < k, we have
Fy((1 = Tje)mi) = (1 — Ty 7ij @ €ijes
F4((1 — Tjk)Tzk) = (1 — Tjk)ﬂk &® €ijk, and

Fy((1 = Tij)min) = (1 = Tij)Tjr @ €ijge-
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First of all, since there are no ¢;; terms here, it is enough to check that S} is independent.
Second, since exactly three of the twelve elements of S have an €;;;, term in their images, it
is enough to check that these three elements are linearly independent. By replacing ¢, 7, and
k with 1, 2, and 3, we see that this is equivalent to the statement that the set S} from the
proof of Proposition 4.2 is independent. Applying that proposition, the claim is proven.
The set S§ lies in the kernel of Fy, and so to prove the n = 4 case it suffices to show
that 8% is linearly independent. To do this we compute the images under 12, 13, and ¥14:

(1 =Tuy)(1 =Toz)m12 | (1 —T12)(1 = T34)713 | (1 —T13)(1 — Tog)T14
V12 4634 0 0
(E 0 4624 0
14 0 0 4623

As in the proof of Proposition 4.2 the symbol d;; denotes the element (i5)+ (¢'5") — (i5") — (¢'5).

It is clear from the table that the image of Sj is independent, and so it remains to verify
the entries of the table. The calculations for the three rows are similar. We show details for
only the first one. For this we have

(1 =Ti4)(1 — Ta3)T12 = T2 — Thamiz — TogTi2 + 114753712

By Lemma 3.2, the image of T2 under 112 is 2(123'4’) 4+ 2(3'4’). By Lemma 3.3, the images
of Th4m12, TogT2, and T14T537m2 are 2(123/4/) + 2(3/4,), 2(123/4) + 2(3/4), and 2(1234) + 2(34).
The calculation in the table follows. This completes the proof of the n = 4 case.

We now proceed to the general case. The only elements of S’ detected by the compo-
nents of F;, corresponding to pairs of marked points are the elements of ;. The set Sy is
linearly independent for the same reason it is in the proof of the n = 4 case, namely, the fact
that H;(B2[4]; Q) is nontrivial. It then remains to show that S5 U S} is linearly independent.
The only elements of the latter detected by the components of F), corresponding to triples of
marked points are the elements of S5. By applying Proposition 4.2 to each choice of triple,
we conclude that S} is linearly independent. It then remains to check that Sj is linearly inde-
pendent. This follows by evaluating F;, on S5 and applying the n = 4 case of the proposition,
since each triple of elements of S} corresponding to a quadruple with i < j < k < £ maps to
a distinct direct summand Hq(B4[4]; Q) ® €4jke- O

6. A SPANNING SET IN TERMS OF ARTIN GENERATORS

The main goal of this section is to prove the following proposition. In the statement
{Txe} is the set of Artin generators for PB,,. Also, for n > 1 we define PB,, to be the quotient
PB,, / PB%. We note that PB,, = H;(PB,;Z/2) = PZ,.

Proposition 6.1. For all n > 3, the Q[PB,]-module Hy(B,[4];Q) is generated by {7;;}.
Equivalently, the vector space Hy(By[4]; Q) is spanned by

T:{(l—Tl)-"(l—Tm)Tij |m20, Tl,...,TmG{TM}}.

We now explain why the two statements of the proposition are equivalent. Clearly any
element of 7T lies in the module spanned by the 7;;. For the other direction, suppose we have
an element of Hy(B,[4]; Q) of the form T'r;; with T' € PB,,. We first write this as T - - - T3, 75
with each T; € {Tj¢} (note that no inverses are needed because the actions of T; and T[l are
the same). Then we may inductively apply the formula T'r;; = —(1 — T')7;; + 735 in order to
express the original element as a linear combination of elements of 7T .
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The boundary twist. Let Ty denote the element of PB,, corresponding to the Dehn twist
about dD,,, and let 75 denote the image of Tg in Hy(B,[4]; Q). We first express 7y as a linear
combination of elements T'7;; as in the statement of Proposition 6.1. Then we introduce the
squared lantern relation and use it to prove the proposition.

Lemma 6.2. For all n > 2 we have
70=2"G) 1+ T) - (14 Tur) Y 750
1<J
In particular 75 lies in the span of the ;.

Proof. The steps of the proof are:

(1) Every Z,-invariant element of H;(B,[4]; Q) is a multiple of 75.
(2) The following element of H;(B,[4]; Q) is Z,-invariant:

= (1 + le)(l + T13) cee (1 + Tnan) ZTU'
(3) z= 2(3)73.

For the first step let Hq(B,[4];Q)%" and H;(B,[4];Q)z, denote the spaces of Z,-invariants
and Z,,-coinvariants of H;(B,[4]; Q), respectively. Since Z,, is finite there are isomorphisms

Hy(Bn[4];Q)%" = Hy(B,[4);Q)z, = Hi1(By; Q) = Q,

where the last isomorphism is induced by the signed word length homomorphism B,, — Z.
We conclude that, up to scale, there is a unique Z,-invariant element of H;(By[4]; Q). The
image of Tg under the signed word length homomorphism is 4(3) This is because Ty can be
written as a product of T;; where each T;; appears exactly once and because the signed word
length of each Tj; is 2. Thus the image of 75 of in Hi(B,; Q) = Q is equal to 4(721) £ 0, so
any Z,-invariant element of H(B,[4]; Q) is a multiple of 75.

We now proceed to the second step. Let o € B,, and let o, be the induced permutation
of [n]2. We will use two facts. The first fact is that the action of o on the image of {T};} in
PZ,, is a permutation. The second fact is that o7;; is equal to Ty, (ij) for some T € PZ,,.
Both statements hold because o - TZ; is conjugate in PB,, to Tclf* (i)

By the previous paragraph, the action of ¢ on the 7j-term of x is given by

o - (1 + Tlg) e (1 + Tn—l,n)Tij = (1 + T12) s (1 + Tn—l,n)TTo*(ij)‘

Here we have used the fact that Q[PZ,] is commutative and so the permutation of {T;;}
induced by o is irrelevant.
To complete the proof of the second step, it is then enough to show for T' € PZ,, that

(1+T2) - A+ Th1n)T =1 +Ti2) - (1 +Tho1n)
in Q[PZ,]. If T' = T;j, then this follows from the equality
A+ Ty)T =T +T5=T; +1=1+T;
in Q[PZ,] and the commutativity of the latter. If T" is a product of more than one T;; then

we apply this equality inductively. This completes the proof of the second step.
We now proceed to the third step. As above, the image of 75 in H1(B,; Q) = Q is equal

to 4(’;) We similarly compute the image of x to be 4(2)2(3) Thus = = 2(3)73, as desired.
The lemma follows. l

We are now ready to prove Proposition 6.1.



REPRESENTATION STABILITY IN THE LEVEL 4 BRAID GROUP 23

Proof of Proposition 6.1. We will use the theorem of Brendle and the second author that
B, [4] is equal to the subgroup of PB,, generated by squares of Dehn twists. Because of this
theorem it is enough to show that for any curve c the image of T2 in B,,[4] lies in the Q[PZ,,]-
submodule of Hy(By[4]; Q) generated by {7;;}. We first prove this in the special case where
¢ is ¢g, the round circle in D, surrounding the first £ marked points.

Fix some k < n. The standard inclusion By — B,, induces an inclusion f : Bi[4] —
B, [4]. The latter further induces a map f, : H1(Bg[4]; Q) — H1(B,[4]; Q). The map f. sends
each Tij in Hl(Bk[4],Q) to Tij in Hl(Bn[4],Q)

By Lemma 6.2, the element 79 € H;(Bg[4]; Q) lies in the submodule of H;(Bg[4]; Q)
generated by the 7;;. By the previous paragraph, it follows that f.(75) € H1(B,[4];Q) lies
in the submodule of H;(By[4]; Q) generated by the 7;;. But since f(T35) = T2 we have that
f«(79) is the class of Tfk, and so this completes the proof of the special case.

Let ¢ be an arbitrary curve in D,. Say that ¢ surrounds k& marked points of D,,. There
is a braid o € B,, with o(c;) = ¢ (this is a special case of the change of coordinates principle
[17, Section 1.3]). Thus the image of T2 in H;(B,[4]; Q) is obtained by applying the action
of o to the image of Tr,. But the Q[PZ,]-submodule of H;(B,[4]; Q) generated by {7;;} is
invariant under the action of B,, (as in the proof of Lemma 6.2, each o7;; is equal to Ty, for
some k, £ and T € PB,,), so the proposition follows. O

7. BASIS AND DIMENSION

The goal of this section is to complete the proof of Theorem 2.1, which states that the
set S from Section 2 is a basis for H(B4[4]; Q).
Proposition 5.1 states that the subset 8" of Hy(B,[4]; Q) is linearly independent. The

cardinality of &' is
n n n
(1) () ()

Proposition 6.1 gives a spanning set T for Hy(B,[4]; Q) that contains S’. So our task in this
section is to show that the elements of 7 \ &’ lie in the span of §’. In fact, we will see that
the elements of 7 \ &’ are all multiples of elements of S’.

Before proving Theorem 2.1 we state and prove Lemma 7.1, which will allow us to
eliminate many of the elements from the spanning set 7 for H;(B,[4]; Q) given in Propo-
sition 6.1. Next we state and prove Lemma 7.2, which gives an expression for the class of
(T3, Tji] in Hi(By[4]; Q) in terms of the 7;;. We then state and prove Lemma 7.3, a pair of
algebraic identities used to prove the subsequent Lemma 7.4, which gives certain equalities
between elements of 7. We then finally proceed to the proof of the theorem.

Lemma 7.1. Let n > 2. The following statements hold in Hy(B,[4]; Q).
(1) Fori < j <k we have

Tiptij = TirTij, Tijmir = TikTik, and  Ti7j = TiTjk.
(2) For pairwise distinct i, j, k,{ we have
TijTre = Te.

Proof. We begin with the first statement. For ¢ < j < k, we have the following standard
Artin relations in PB,,:

(T Tix, Tij) = [Tk Tij, Tire) = T3 Tk, Tix) = 1.
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This implies that for i < j < k we have
2 2 2
(T Tjk, T5;) = [TieTij, Tix] = [T T, T3] = 1.
These relations are also expressible as
(TwTi) - T =T5  (TyTy) Ty, =T, (TyTaw) - Tji = Tipe
Since an element of PB,, and its inverse have the same action on H;(B,[4];Q) the above
relations take the following form in H;(B,[4]; Q):
Tiktij = Tipmij TijTit = TjiTik TiiTjk = TikTjk-
This completes the proof of the first statement.

We now proceed to the second statement. Let i, j, k, and ¢ be distinct. Let us also
assume that ¢ < j and k < £. There are six possible configurations for {i, j, k, ¢}, two of
which are linked and four of which are unlinked (see Section 3.3 for the definition of linked).
In the unlinked cases the result follows from the fact that Dehn twists about disjoint curves
commute. Thus it remains only to consider the linked cases i < k < j < fand k <i < { < j.
The two cases are essentially the same, so we deal only with the first.

If i < k < j < £ then in PB,, we have the standard Artin relation (TngijTj}l) Ty = Thy

which (as above) gives the relation
(36T T3 ) - Tiep = Tig-
In Hy(B,[4]; Q) this takes the form Tj;Tye = Tpe, as desired. O
In the next lemma we use 7' to denote the image of T' € B, [4] in H1(B,[4]; Q).
Lemma 7.2. Forn >3 and i < j <k, the following holds in Hi(B,[4]; Q):

1
(T3, Tjk] = 5 (L= Tag)ij + (L= Tig)man — (L = Tij) i)

Proof. We first prove the lemma for the n = 3 case and then use this to obtain the general
case.

Brendle and the second author proved a relation in Bs3[4] called the squared lantern
relation [8, Proposition 4.2]. In terms of the Artin generators for PB,, this relation can be
written as

[Tho, Tha - Ths] = THT5Tis T,
Conjugating both sides by Tﬁl and using the fact that Tj is central yields the relation
(T12, Ths) = Tty (T1y' - T33) (T1p' - Tis) T

(this commutator is conjugate to the one in the statement). Thus the following identity holds
in Hl(B3[4]; Q)

(T2, T13] = 112 + T12713 + T12703 — To-
Next we claim that

1

Ty = 5((1 + T13)7'12 + (1 + T12)7'23 + (1 + T12)7'13).

By Lemma 6.2 we have that
1
Ty = §<1 + Tlg)(l + T13)(1 + T23>(T12 + 713+ 723).

Lemma 7.1 implies that 119703 = 113723 and therefore that
(14 T12)(1 4 T13)(1 + Tas)7ag = 2(1 + Ti2)*1e3 = 4(1 + T12)T23.
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Similar calculations show that

(1 +T12)(1 4+ T13)(1 + Tog) 12 = 4(1 + T13) 112
and

(1 + T12)(1 + Tlg)(l + T23)7'13 = 4(1 + T12)7'13.
We therefore have that

Tog = < (4(1 4+ Tiz)12 + 4(1 + Th2)713 + (1 + T12)723)

(L +Tiz)m2 + (1 + Th2)me3 + (1 + T12)713),

N = 0ol =

whence the claim.
Combining the claim and the above expression for [Ti2,T13] we obtain

S 1
[T12, T13] = 12 + Tia713 + Th2To3 — 5 (14 Tig)mi2 + (L + Th2)1e3 + (1 + T12)713)

1
= 5((1 —T13)112 — (1 = Th12)713 — (1 — T12)723).
If we apply the braid generator oy to the first and last expressions above we obtain

—_ 1
(T2, To3] = 5((1 — To3)112 — (1 — Th2)723 — (1 — T12)T12713)

1

= 5((1 — To3)112 — (1 — Th2)703 + (1 — T2)T13)
1

= 5((1 —T3)112 — (1 — Th2)703 + (1 — Ti2)713)

The second equality is obtained by multiplying the terms (1 — T312) and Tj2 and the third
equality is obtained from the equality (1 — To3)712 = (1 — T33)712 from Lemma 7.1.

For n > 3 and i < j < k there exists an embedding f : D3 < D, such that the images
of T2, T13, and To3 under the induced map f, : PB3 — PB,, are T;;, T}, and T}y, respectively.

Applying f. to the expression for [Ti2, Th3] in the n = 3 case yields the lemma. O

For a group G, the commutator subgroup [G, G] is a subgroup of G2, the subgroup of
G generated by squares of elements of G. For g € G? we denote by g the image in H;(G?; Q).
The group G acts G? by conjugation. This induces an action of G on H;(G?;Q), which
descends to an action of G = G/G?: for g € G? and h € G we have hg = hgh~1.

Lemma 7.3. Let G be a group, and let x,y,z € G. We have the following identilies in
H1(G?%,Q), thought of as a Q[G]-module.
Witt-Hall:  [x,yz] = [z, y] + y[z, 2]

Jacobi: (1 —x)[y, 2] — (1 —y)[z,z] + (1 — 2)[z,y] =0
Proof. The Witt—Hall identity for groups is the equality

2,2 = [2,y) (vl 2ly ™)

in G, which can can checked by simply expanding both sides. Since [G,G] < G? we obtain
from this the Witt—Hall identity in the statement.

We now proceed to the Jacobi identity. The strategy is to express [z, [y, z]] in two ways
and to set the resulting expressions equal to each other. On one hand, since

[z, [y, 2] = (xly, 22~ D[y, 2]~
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we have

[, [y, 2]] = (z — 1]y, 2].
On the other hand, writing
[z, ly, 2]] = [z, (y2)(2y) "]
we obtain

[z, 2] +yz[x, (zy) 1]
z, 2] +yz ((zy)_l[zy»fv])

x,z] — ([x,z] + z[x,y])

where the first, second, and fifth equalities use the Witt—Hall identity, the third equality uses
the relation [a,b~!] = b~1[b, a]b, and the fourth equality uses the fact that G2, hence [G,G]
acts trivially on H;(G?;Q). The Jacobi identity follows. O

Lemma 7.4. For allp < q <r < s we have
(L= Tps)(1 = Top)7pq = (1 = Tps)(1 = Tgr)Ts
(1 = Tpg) (1 = Tys)pr = —(1 = Tpg)(1 — Trs)7gs
(1 =Tpr) (1 = Tos)1ps = (1= Tpr) (1 = Tips) 7qr
Proof. We first prove the lemma in the case n = 4 and then use this to obtain the general

case. When n is 4, we have that p, q, r, and s are 1, 2, 3, and 4. Thus the statement of the
lemma reduces to the following three specific equalities:

(1 =Tu)(1 =To3)ri2 = (1 —T14)(1 —T3)734
(1 =Ti2)(1 =T34)113 = —(1 = T12) (1 — T34) 724
(1 =T13)(1 =Tog)ria = (1 —T13)(1 — To4)703

We will prove the second equality using the Jacobi identity (Lemma 7.3) and then use
the Bj-action to derive the other two. Specifically, by inserting x = T2, y = Tb3, 2 = T3y
into the Jacobi identity and using the fact that [T72,734] = 1 in PB4, we obtain the following
equality in Hi(B,[4]; Q):

(1 —T12)[T23, T34] = —(1 — T34)[T12, T23].

Applying Lemma 7.2 twice with (4, j, k) equal to (1,2, 3) and (2, 3, 4), and inserting the results
into both sides of the above equation and simplifying, we obtain the second equality.

Acting on both sides of the second equality with o5 and o3, respectively, yields the first
and third equalities. This completes the proof of the lemma in the case n = 4.

We now address the general case. Let f : {1,2,3,4} — {p,q,r, s} be the unique
increasing map. There is an embedding D4 — D, so that the induced homomorphism By, —
By, maps Tjj to Ty ;). 1t follows that the induced homomorphism on homology maps 7;;
to Tp)f(j)- The images of the equalities from the n = 4 case are the desired equalities. [

We are now ready to prove Theorem 2.1.
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Proof of Theorem 2.1. By Proposition 5.1 the set S is linearly independent. To prove the
theorem, we must show that S spans H;(B,,[4]; Q). Since S has cardinality 3(2) + 3(7;) + (Z),
it suffices to show that there is some spanning set of this size.

The second statement of Proposition 6.1 states that Hy(B,,[4]; Q) is spanned as Q-vector
space by the set

T = {(1—T1)'~(1—Tm)7'ij | sz,Tl,...,Tm S {TM}}.

Let 7o = 7. The goal is to successively eliminate elements of 7y until we obtain a set 73 with
exactly 3(}) +3(3) + () elements. The elements of 73 will in fact all be scalar multiples of
the elements of the set &’ from Proposition 5.1.

We first claim that H;(By[4]; Q) is spanned by the subset 7; of 7y containing all ele-

ments of the form
H (1 = Ti)"* 7
k#i,j
where each ¢, lies in {0,1}. Each element of 7 is an element of 7y where the corresponding
m is at most n — 2 (but not all such elements of 7 lie in 77).
To prove the claim we consider a nonzero element

CL’Z(l—Tl)"'(l—Tm)Tij

of Ty and consider a single term (1—7},) of the product. Suppose that T}, is the Artin generator
Tye. Since x is non-zero, the product (1—7},)7;; must be non-zero. By the second statement of
Lemma 7.1 the intersection of {k, ¢} with {7, j} must contain exactly one element. Using the
first statement of Lemma 7.1 we may assume without loss of generality that the intersection
is {i}. This leaves exactly n — 2 possibilities for {k, ¢}, namely, the sets {i,¢} with ¢ # i, j.
We also have that (1—7},)% =1— 2Tp+sz = 2(1-1T,) in Q[PZ,], and so may further assume
that each term in the product appears at most once. The claim now follows.

We next claim that H;(B,[4]; Q) is spanned by the subset 72 of 71 consisting of elements
where there are only two or fewer factors of the form (1 — Tj;). In other words, T2 consists
of elements of the following form

Tij» (1 = Tig, )75, (1 = Tigy ) (1 — Tigy )75

where each k1 and kg lies outside {4, j} and in each product k; # ka. To prove the claim, it
suffices to show that an element of 77 of the form

(1= Tigs) (1 = Tigy ) (1 — Tigy )73
lies in the span of 77, where k3 does not lie in {k;, k2} or in {4, j}. Since the latter is equal to
(1 = Tiny ) (1 = Tigy ) Tij — Tites (1 — Tiny ) (1 — Ty )73
and the first of these terms already lies in 7> it suffices to show that the second term
Tikg (1 — Tigy ) (1 — Ty )i

lies in the span of 75. The basic strategy is to use Lemmas 7.1 and 7.4 to convert the latter
into an element of the form

:l:ﬂk;g(l - T**)(l - T**)Tk‘lkg'
By Lemma 7.1 and the fact that ¢, k1, k2, and k3 are all distinct we have that Tip, Tk, ky = Tk ks -
If both of the T, terms are of the form T}, , then the given element lies in 73 (up to sign).

If either of the T, terms are of the form 7},,., then we may apply Lemma 7.1 to replace it
with T}, ., leading to the previous case. If either 7}, term is not of the form Tj,, or Tk,
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then the corresponding product (1 — Ty )7, k, equals 0. In all cases, the given element lies
in the span of 75.

In order to convert Ty, (1 — Ty, )(1 — Tix, )7i; into the desired form, we proceed in two
steps. The first step is to replace either Tji, or T;;, with a different Artin generator, so that
the result is one of the six types of elements listed in the statement of Lemma 7.4. Here is
how we do this. The disjoint sets {i,j} and {k1, ko} are either linked or unlinked. If they are
unlinked then we can replace Ty, with T}, by Lemma 7.1. If they are linked then we can
replace Tj, with T}, by the same lemma.

Since we have converted the given element Tjy, (1 — Tix,)(1 — T, )7 into one of the
six forms in the statement of Lemma 7.4, we can apply the corresponding equality from
Lemma 7.4 and we obtain an element of the desired form. The claim is now proved.

Our final claim is that H;(B,[4]; Q) is spanned by the subset T3 of 72 consisting of all
of the 7;;, all of the terms of the elements of the form (1 — Tj;, )7;;, and among the elements
of the form (1 — Ty, )(1 — Tix, )7i5, only those that satisfy

i = min{i, j, k1, ka2 }.

This claim follows from Lemma 7.4. Indeed, of the six types of elements in the statement of
that lemma, there are three types that do not satisfy the condition ¢ = min{s, j, k1, k2 }, and
in each case the element on the other side of the equality does satisfy the condition.

To complete the proof, it remains to check that the cardinality of T3 is 3(}) +3(5) + (5)-
The number of 7;; with i < j is (}), the number of (1 — Ty, )7i; with i < j and k ¢ {4, j} is
3(3), and the number of (1—Tjy, ) (1 =Ty, )7i; with ¢ < j, with ky < ko and with ki, ko ¢ {i,5}
is 3(2). Adding these three terms together gives the desired result. O

8. REPRESENTATION THEORY OF Z,

In this section we prove Theorem 2.4, which states that the V,,(p, A) are irreducible
representations of Z,, and moreover that every irreducible representation of Z,, is isomorphic
to exactly one V,(p,A). We refer the reader back to the introduction for the definitions of
the groups Z, and PZ,.

In Section 8.1 we define the map 22 — Z! xS, _,, used in the definition of the V,(p, \)
and prove that it is surjective (Lemma 8.1). Then in Section 8.2 we give a complete criterion
for a representation of Z,, to be irreducible (Proposition 8.3) and use this to show that the
Vi(p, A) are irreducible. Finally in Section 8.3 we complete the proof of Theorem 2.4.

8.1. Projection maps. Our definition of the V,,(p, A) was predicated on the existence of a
map Z{Z — Z{n X Znp—m- In this section we prove Lemma 8.1, which gives such a map.

Let I be an element of I,,, and let n > m. By the definition of I,, the union of the
elements of I is [m]. As in Section 2, we may regard I as a subset of [n]2. There are forgetful
maps fi : B£ — Bfn and fo : BTIL — B,,_», obtained by forgetting the last n — m strands and
the first m strands, respectively. Since the f; take squares of pure braids to squares of pure
braids, and since B,[4] = PB2, there are induced maps

.2 5z and Rzl 52z, ...
Let P the composition of F} X Fy with the natural surjection Z{n X Zp—m — an XSh—_m.

Let K, , be the subgroup of PZ,, generated by the images of the T;; with j > m.
In the proof of the lemma, we will need the following isomorphism:

PB, = z/2.
[n]2
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This isomorphism follows from the description of the abelianization of PB,, in Section 3.2
and the fact that B,,[4] is the kernel of the mod 2 abelianization of PB,,.

Lemma 8.1. The map
p:zl -zl xS, .,

is surjective with kernel Ky, p,.

Proof. We first show that P is surjective. Let (g,0) € Zlm XSn_m. Let ¢ : Bﬁb X Bh—m < B,
be the natural inclusion, induced by disjoint embeddings D,,, — D,, and D,,_,,, — D,,. Let &
be a lift of o to B,,_,,. Then Po(g,6) = (g,0). Thus P is surjective.

It remains to determine the kernel of P. First, we observe that K, ,, is contained in
the kernel because it is contained in both the kernel of F; and the kernel of the composition
of F» with the natural map Z,,_,, = S,—,. Since the stated generating set for K, ,, has
(’;) — (Z‘) elements, and since these elements are part of the standard basis for PZ,,, it follows
that K, ,, has cardinality 2(3)=(3). To conclude the proof, we will next show that the kernel
of P has the same cardinality, and hence that K, ,, = ker(P). The cardinality of ZZ is equal
to | PZ, ||SL| = |SL, x Sp_m|, where S. is the stabilizer of I in S,, under the natural action
on [n]2. We therefore have that

21| = 26) [SL | (n —m)!

m
2

Similarly, we have | Z1 | = o )\S,In\ It now follows that the kernel of P has cardinality

za] 29 s momt ey
ZhxSum] 2D st my

The lemma follows. U

8.2. [-Isotypic representations and a criterion for irreducibility. We will give in this
section a characterization of the irreducible representations of Z,,, Proposition 8.3 below. As
a consequence, we deduce in Corollary 8.4 that the V,,(p, \) are irreducible.

Our characterization uses the notion of an [-isotypic representation, and so we begin
with this idea. It follows from the above description of PB,, that

H'(PBy; ) = [ [ o,

[n]2

and so elements of H(PZ,; ua) are labeled by subsets of [n]% (recall uy = {£1}). We may
identify HY(PZ,; u2) with Hom(PZ,, uz2), and we denote the homomorphism corresponding
to I C [n]2 by p;. We denote the corresponding 1-dimensional representation of PZ,, over C
by Vi.

Let I" be a subgroup of Z,, that contains PZ,,; for instance I' = Z£ for some I. Let
V be a representation of I' over C and let I C [n]2. We will say that a subspace W of V is
I-isotypic if it is a PZ,,-submodule of V' and there is a PZ,,-module isomorphism W = Vme
for some m > 1.

Lemma 8.2. Let I' be a subgroup of Z,, that contains PZ,, and let V be a representation of
I over C. If W C V is I-isotypic, then for all o € ' we have that cW is o(I)-isotypic.
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Proof. Let v e W, let 0 € I, and let Tj; denote the image of an Artin generator for PB,, in
PZ,. Tt suffices to show that Ti;(ov) is equal to py(r)(Ti;) (ov). We indeed have:

Tij (ov) =0 (U_lTija) v=0T,-17 ;v
= UPI(Ta—l{i,j}) (v) = PI(Ta—l{i,j}) (ov) = Po (1) (T35) (o) ,
as desired. 0

Proposition 8.3. Let W be a representation of Z, over C. Then W is irreducible if and
only if there exists an I C [n]2 and an irreducible, I-isotypic Zé—submodule Wiy C W so that
we have a Z,-module isomorphism

W Indg? Wi

Proof. First assume W is irreducible. Let Resgfgn W = @; Wr be the decomposition into
isotypic subspaces. By Lemma 8.2 we have that ¢gW7 is g(I)-isotypic for each g € Z,,. Thus
gWr = Wg( I and the Z,-action permutes the W;. Since W is irreducible, the induced action
on the set of indices I is transitive. Hence for any choice of I there is an isomorphism of
Zp-modules W = Indg? Wi. Since W is irreducible, W7 is an irreducible Z,Il—module.

Zn
z;,
irreducible, I-isotypic Zﬁ—module W;. Let W’ be the irreducible Z,-submodule of W that
contains W;. For any g € Z,, we have gW; C W’. Since gW7 is g(I)-isotypic (Lemma 8.2),
W' contains the direct sum € g€z, | 21 gW7. This direct sum is isomorphic to the Z,-module

Indi? Wi, which we assumed to be isomorphic to W. Thus W’ = W, as desired. ]

For the other direction, assume that W is a Z,,-module of the form Ind<7? W; for some

Corollary 8.4. Each Z,-representation Vy,(p, A) is irreducible.

Proof. Fix some V,,(p, ). From the definition there is an m < n, a full subset I of [m]2, an
irreducible Z! -representation Vj,(p), and an irreducible S,_,,-representation V(\) so that

Va(p. A) = dZ; (Viu(p) K Vi (V)) -

Since we are working over an algebraically closed field of characteristic 0, and since V;,,(p)
and V,,_,,,(\) are irreducible, and since the action of ZZ on V;,(p) ®V,,_,n(\) factors through
the surjective map P from Lemma 8.1, the tensor product V;,,(p) ®V,,_,(A) is an irreducible
Zﬁ-representation. Since p is I-isotypic by assumption, and since the image of PZ,, under P
lies in 27 < 21 xS, it follows that V;,(p) ® V;,_p () is I-isotypic. The corollary is thus
an immediate consequence of Proposition 8.3. [l

8.3. Classification of representations. We are almost ready to prove Theorem 2.5, our
classification of irreducible representations of Z,. What remains is to distinguish between
different representations of the form V,,(p, A\). The following technical lemma provides the
required tools for this.

Lemma 8.5. Let n > 2 and let I,J C [n]%.

(1) Let U be an I-isotypic Z1 module. There is a J-isotypic Z; -module W with
Indg? U= Indgy W if and only if I and J lie in the same Z,-orbit.

(2) If U, W are irreducible I-isotypic Zﬁ-modules, Indg? U= Indg? W if and only if U =2 W.
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Proof. We begin with the first statement. For the reverse implication, we first observe that
if I and J lie in the same Z,-orbit, which is to say that they lie in the same S,-orbit, then
B! and B are conjugate in B,,. It follows that Z% and Z/ are conjugate in Z,. The desired
conclusion is then given by the first part of the first exercise in Section III.5 of Brown’s
book [9].

For the forward implication, suppose that Indi? U = Indgﬁ W. Since U and W are

I- and J-isotypic, respectively, it follows that Res%”n Indgz U and Resggn Indi; W are each
direct sums of copies of representations of the form V) and V) for g € Z,, (possibly with
multiplicities), respectively. We conclude that there is a g so that V{ is isomorphic to V;
as PZ,-modules. But this implies that g(I) = J, as desired.

We proceed to the second statement. The reverse implication is trivial. For the forward
implication suppose that U and W are non-isomorphic I-isotypic irreducible Zfl—modules. It
suffices to prove that

Homz, (ndZ; U, IndZ; W) = 0.
By Frobenius reciprocity we have an isomorphism
Zn Zn ~ Zn T A Zn
Homy,, <Ind 23 U,ndZy W) > Hom (U, ResZ} IndZy W) .

Let E C Z, be a set of representatives for the set of double cosets 2%\ 2, / ZL. Using the
formula g 2% g7 = ZZ(I) for g € Z,, we have an isomorphism of ZZ-modules

ZQ(I)

Zp T 1Zn T Z; A
ResZj IndZ; W = (P Ind_; A ReSTE i gW
geE n n
(see [9, p.69 Proposition 5.6(b)]), and so
Z0 1120 ~ 2l 29D
Homy; (U, ResZ; ndZ; W) = €D Hom, (U, md% o ResZt W ).
geE o oo
Applying Frobenius reciprocity once more, we see that the right-hand side is isomorphic to
b:24 25
@Homzflmzim ResZI A 290 U, ResZI A 290 gW | .

geE

Since any ZTIL HZ%(I)-module map between U and gW restricts to a PZ,-module map, the
fact that U is I-isotypic and gW is g(I)-isotypic implies that there can be no non-trivial
Zﬁ N ZZ([)—moduIe maps between them unless g(I) = I. Since g ranges over a set of represen-
tatives for the set of double cosets Z% \ Z,, / Z1 the only g for which this condition is satisfied
is g = ¢d. Thus the only nontrivial summand in the above direct sum is Hom zI (U, W), which

vanishes by Schur’s lemma, because U and W are non-isomorphic irreducible Z,[L—modules. O

We are finally ready to prove Theorem 2.4, which states that every V,(p,A) is an
irreducible Z,,-representation and conversely that every irreducible Z,,-representation is iso-
morphic to exactly one V,,(p, ).

Proof of Theorem 2.4. Corollary 8.4 already gives that the V,,(p, \) are irreducible. Let V be
an arbitrary irreducible Z,-representation. We would like to show that V is isomorphic to
some V,,(p, \) as a Z,-module. By Proposition 8.3, there is an I C [n]2 and an irreducible I-
isotypic Zfl-representation Wi such that V = Ind§7 Wr. By the first statement of Lemma 8.5
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we may assume that the union of the elements of I is [m] for some m. Let K, ,, be the kernel
of the map P, as in Lemma 8.1. Since the generators for K, ,, act trivially on W7, the Z,Il—
action on W descends to an action of the quotient an XSp_m. Since Wy is an irreducible
representation of Z{L, it is an irreducible representation of the quotient Z{n X Sp—m. Since we
are working over an algebraically closed field of characteristic 0 an irreducible representation
of a direct product of groups decomposes as an external tensor product of irreducible repre-
sentations of the two factors [31]. In particular, there are irreducible representations U; and
Us of B{n and S,,_,, such that W; =2 Uy K U as Z{n X Sp—m-modules. Since W is I-isotypic
and since PZ,, acts trivially on U, it follows that U; is I-isotypic.

To complete the proof of the theorem, it remains to prove the uniqueness statement.
Suppose that V,,(p,\) and V,,(p', \) are isomorphic as Z,-modules. By the second state-
ment of Lemma 8.5, the Z,,-modules V,,(p) X V,,_,(A\) and V,,/ (p') KV, (X) from which
Va(p, A) and V,,(p’, \') are induced must be isomorphic. It follows from the first statement
of Lemma 8.5 that m = m’. Since the tensor products are isomorphic, it follows that the
individual factors are as well (as we are working over C). O

8.4. A non-splitting. The following proposition ties up a loose end from Section 2.

Proposition 8.6. The following extension is not split:
1—->PZ,— Z,— S, — 1.

Proof. The surjection Z,, — S, induces a surjection
Hl(Bn; Z) — Hl(Sn; Z) = Z/2
We claim that Hy(B,,;Z) = Z/4. Since there is no split surjection Z/4 — Z/2, the proposition

follows from this.
Since Z,, is the quotient of B,, by B,,[4] there is an exact sequence

Hy(Bn[4];Z) — H1(Bn; Z) — Hy(Zn;7) — 0.

We have Hi(B,;Z) = Z. The image of H1(PB,;Z) in Hi(B,;Z) is 2Z, since each Artin
generator evaluates to 2 under the length homomorphism on B,,. Since B,[4] is PBZ the
image of Hi(B,[4];Z) in H1(Bp;Z) is 4Z. The claim follows.

9. REPRESENTATION STABILITY

In this section we prove Theorem 2.5, which gives the decomposition of H;(B[4]; C)
into irreducible Z,-representations, and also states that the H;(B,[4];C) satisfy uniform
representation stability.

In Section 9.1, we define the representations Vs(p3) and Vi(ps) of Bé?’ and Bff that
are used in the representations V,,(ps,0) and V,(p4,0) from the statement of Theorem 2.5.
Then we prove the isomorphisms from Theorem 2.5 in Section 9.2 by exhibiting the given
Vo(p, ) as Z,-submodules of H;(B,[4];C). These submodules are the spans of the orbits of
the elements

r3 = (1 — T13) H (1 + le)(l + ng)Tlg T4 = (1 — T14)(1 — T23)7'12.
4<j<n

(note that x3 is only defined for n > 3 and x4 only for n > 4). Finally, in Section 9.3 we
complete the proof of Theorem 2.5 by showing that H;(B,[4]; C) satisfies the definition of
uniform representation stability.

In this section we denote the span of x € Hy(B,[4];C) by (x).
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9.1. Representations of Z,. The representations V3(p3) and Vi(ps) of 22 and 2t will
both be 1-dimensional representations obtained from homomorphisms py : Zi’“ — 2. We
first define maps wy, : BY — Z (Lemma 9.1) and then obtain the py, from the mod 2 reductions
of the wy,.

In order to define the wy we take a different point of view on braids, as follows. Let
Cnr(R?) be the space of configurations of n distinct, indistinguishable points in R2. Choose
a base point for C,(R?) where the n points lie on a horizontal line. There is a natural
isomorphism 71 (Cy,(R?)) = B,. We label the points in the base point of C,(R?) by [n]
from left to right. A loop in C,(R?) induces a permutation of [n], and this is the usual
homomorphism B,, — S,,. If we represent a braid by a loop in C,,(R?), then the ith strand
of this braid representative is the path traced out by the point labeled i (the terminology is
explained by considering a spacetime diagram of the loop). Let

§ij : B, — %Z
be the function that counts the total winding number of the ith strand with the jth strand.

This is well defined because of our choice of base point for Cy,(R?).
With this in hand, we define a function wjs : B# — Z by the formula

w3 = 13 + &23.
We similarly we define wy : Bt — Z by
wyq = 13 + &14 + E23 + Eou.

The subgroup Bff’ can alternatively be described as the subgroup of B,, preserving the subsets
{1,2} and {3} of [n]. Similarly, B can be described as the subgroup preserving the pair of
sets {{1,2}, {3, 4},

A priori the functions w3 and w4 are not well defined, since the natural codomain is %Z
in both cases.

Lemma 9.1. For k € {3,4}, the function wy is a well-defined homomorphism.

Proof. We begin by showing that ws and wy are well defined. For any braid in B{f’, the 1st
and 2nd strands both start and end to the left of the 3rd strand. It follows that both £13 and
£o3 map Bff to Z. Thus, ws is a well-defined function to Z.

For any braid in Bf;‘ that preserves {1,2} the numbers &3, 14, 23, and &oq are all
integers, similar to the w3 case. Also, for any braid in B that interchanges {1,2} and {3, 4},
none of &13, &€14, €23, and &oy are integers, and so again wy is well defined.

To complete the proof it remains to show that ws and wy are homomorphisms. We
observe that Bff’ can alternatively be described as the subgroup of B,, preserving the subsets
{1,2} and {3}. Similarly, B is the subgroup preserving the pair of sets {{1,2}, {3,4}}.

We begin with ws. Let g € Bff. We color the 1st and 2nd strands red and the 3rd
strand blue. Then ws3(g) is the sum of the winding numbers of red strands with blue strands.
If g and h are two elements of B{f then the colorings of the strands in R? for ¢ and h agree
with the coloring of gh (defined in the same way as the one for g). It follows that ws is a
homomorphism.

The case of wy is similar. In this case, given g € B,I;* we color the 1st and 2nd strands
red and we color the 3rd and 4th strands blue. Then w4(g) again is the sum of the winding
numbers of red strands with blue strands. Suppose now that A is another element of Bf;‘. If
g preserves the set {1,2} then we color the strands of h in the same way that we colored the
strands of g. Otherwise, if g interchanges {1,2} and {3,4} then we color h in the opposite
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way: the 1st and 2nd strands are blue and the 3rd and 4th strands are red. For either
coloring of h, the number wy(h) counts the sum of the winding numbers of red strands with
blue strands. The chosen colorings of g and h agree with the coloring on gh. It follows that
wy is a homomorphism. O

The homomorphisms w3 and w4 induce homomorphisms Bff — uo and Bf{l — 2.
The pure braid group PB,, hence B,[4], is contained in each Bk. Since B,[4] is equal
to PB2 the image of B,[4] under each map is trivial. It follows that w3 and wy induce
homomorphisms ]_3{;3 — o and B,If — po. Further restricting to n = 3 and n = 4 gives the
desired homomorphisms

ST S
p3: B3 = pp and  py: Byt — po.
These homomorphisms give rise to the representations V3(p3) and V4(p4) from Section 2.
Lemma 9.2. Let k € {3,4}. The representation Vi (pr) is Ix-isotypic.

Proof. Since each p; defines a 1-dimensional representation, it is enough to check that the
restriction of p; to PZy is equal to pr,. For any I the homomorphism p; can be written as

1
{igrel
The lemma now follows from this and the expressions of the p;, in terms of the &;;. 0

9.2. The irreducible decomposition. We are now in a position to prove the first part of
Theorem 2.5, which we state separately as Proposition 9.5 below. We require two lemmas.

In the statement of the first lemma, o013 denotes the half-twist in B,, whose square is
T13. In terms of the standard generators for B, we can write o3 as (0302)01(0302) 1. Also,
when an element is not defined we simply drop it from the proposed generating sets (for
instance T4 is not an element of B§3).

Lemma 9.3. Forn > 3 the group Bff 1s generated by the set
{T3, T4, T34,01} U{o; | i > 4}.
For n > 4 the group Bf;‘ 1s generated by the set
{To3, Tus, 01,0015 U {0y | i > 5}.

Proof. We begin with the case of B/3. To simplify the exposition we assume n > 4; the case
n = 3 is obtained by ignoring the elements T4 and T34. The stabilizer of I3 in S, is the
image of Sy x S7 X S,_3 under the standard inclusion. The o; in the proposed generating
set map to the standard generators for this subgroup. Thus it suffices to check that every
Artin generator Tj; € PB,, lies in the group generated by the proposed generators. Using the
fact that Tis, T4, and T34 lie in the generating set and inductively applying the formulas
Jjﬂjaj_l = T; j+1 and JZ-_ITZ-]-UZ- = T;_1; shows that each Tj; is a product of the proposed
generators, as desired.

We now treat Bf;‘. Again, to simplify the exposition we assume n > 5; the case
n = 4 is obtained by ignoring the element Ty5. The stabilizer of I in .S, is isomorphic to
(S2 x Sy x Sp—4) X Z/2, where the Z/2 factor is any element of order 2 that interchanges
{1,2} with {3,4}. The element 203 maps to (14)(23), giving the Z/2 factor. The element
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o1 maps to the generator of the first Sy factor. Since the Z/2 factor interchanges the Sy
factors, the generator for the other S factor also is in the image. The ¢; with ¢ > 5 map to
the standard generators for the S, _4 factor. So again the lemma reduces to the problem of
exhibiting each T;; as a product of generators. This is achieved in the same way as in the
previous case. ]

Lemma 9.4. Let k € {3,4} and letn > k. The subspace (zy) of Hi(By[4]; C) is a ZIx-module
isomorphic to Vi(px) W V1 (0).

Proof. We begin by observing that z3 and x4 are nonzero in Hj(B,[4];C). The element z4
is certainly nonzero, as it is one of the basis elements of H;(B,[4]; C) from Theorem 2.1. To
see that the element x3 is nonzero, we apply the forgetful map PB,, — PBj3 that forgets the
last n — 3 strands. Via this map, (1 + 73;) and (1 4+ T3;) both map to 2 in Q[PZ3], and
(1 —T13)T12 maps to (1 —"T33)712 in H1(B3[4]; C). Since the latter is one of the basis elements
for H1(B3[4]; C) from Theorem 2.1 it follows that the image of x3, hence x3 itself, is nonzero.

As in Section 2, the action of Z¥ on V,(pr) XV, _1(0) factors through the surjection to
P Z{L’“ — Z é" XSp_k from Lemma 8.1. Let P, denote the composition of P with projection
to the first factor.

For each k, Lemma 9.3 gives a set of generators for B,If. We will show that the image
g of each generator in ZI¥ preserves () and moreover that gxj = pj o Pi(g)zy. Since the
representation Vi (pr) K V,,_x(0) is determined by py o P; the lemma follows from this. In the
argument we refer to an element of B{L’“ and its image in Z{f by the same symbol.

We begin with the case k = 3. Again, to simplify the exposition, we assume n > 4. For
T13 we have T13(1 — Th13) = —(1 — T13) and so T3z = —x3 = p3 o Pi(T13)x3, as desired. For
T14 we have T14(1 4+ T14) = 1 + T14 and so again Thyxs = x3 = p3 o Py(T14)x3. Next we have
T34712 = T12 and so T3yxg = x3 = p3 o P1(T34)x3.

For o1 we use the following relations in B,: alleol_l = Ty for j > 3, angjol_l =
T12T1jT1_21 for j > 3, and o1 commutes with T122. Since PZ,, is abelian we have T12T1jT1_21 =
Ty in ZIs Using these facts and Lemma 7.1 in turn we obtain that

o1-(1=Tig) [[ A+Ty)A+Ty)me=(1—Tos) [[ (1+T0)(1 + Toj)mie
4<j<n 4<j<n

= (1=T) [ (0 +T0y) 1+ Toy)ma,
4<j<n

which is to say that oyx3 = x3 = p3 o P (03)xs.

Finally we must deal with the o; with j > 4. As elements of B,,, each of these commutes
with T, and Ty3. Similarly, for ¢ € {1,2} and k ¢ {1,2,7 — 1,5} we have that ¢; commutes
with Tj;. Also, for i € {1,2} we have that Jﬂ}g-d}l =T; j+1 and O'jj—‘i’j+10'j71 = TJ’JHTijTgleH
in B,. As before we have the the latter is equal to Tj; in Z,If’. We deduce that ojx3 = 23 =
p3 o Pi(oj)xs for j > 4.

We now treat the case k£ = 4. To simplify the exposition, we assume n > 5. For
Tys, we have that Tysmo = 712 and so Tysxy = x4 = pg O Pl(T45)$4. For Th3 we have
ng(l — T23) = —(1 — ng) and so To3xy = —x4 = pgo Py (ng)x4. Since o; commutes with 174,
T3, and T122 for i > 5 we also have o;24 = x4 = py o P1(0;)x4 for i > 5. Using the relations
O'1T140'1_1 = T24 and 0'1T223O'1_1 = T12T123T1_21 in Bn we have

o1 (1 =T4)(1 = To3)112 = (1 = Tog)(1 — T13) 7112 = (1 — T14)(1 — To3)712
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and so o1y = x4 = pg o Pi(01)x4. Finally, we will show that ogaﬁlm = T4 = pgo
P (0’201_31)1'4. The braid (7201_31 commutes with T4 and Th3, and (0201_31)T122(0201_31)*1 =T3
in B,. Applying these facts and the first equality of Lemma 7.4 in turn we have:

02073 - (1= T1a)(1 — Tog) 1o = (1 — Tia) (1 — Tas)7as = (1 — Thg)(1 — Th3)712,
as desired. ]
Proposition 9.5. There are Z,-equivariant isomorphisms
Va(1, (0)) n=2
Hi(Bn[4];C) = 4 Va(1,(0)) @ Va(1, (1) & Vs(ps, (0)) n=3
Va(1,(0)) @ Va(1, (1)) © Va(L, (2)) © Va(ps, (0)) © Va(pa, (0))  n > 4.

Proof of Proposition 9.5. As usual, to simplify the exposition, we assume n > 4. The other
cases are obtained by ignoring the appropriate terms.
The first step is to show that we have the following isomorphisms of Z,-modules:

zZ
IndZ, € n=2

H,(B,[4];C) = IndZQ Co Indizs (x3) n=3

Imdi?2 Ce Imdi?3 (x3) ® Indi?4 (x4) m >4,

where C is the trivial 252 module. The second step is to identify the summands of this
decomposition with the summands in the statement of the theorem.

We begin with the first step. The index of ZZ in B,, is (3), 3(%), and 3(;) for k equal
to 2, 3, and 4, respectively. Thus the dimension of the purported decomposition equals the
dimension of H;(B[4];C) as given in Theorem 2.1. Since representations of finite groups are

completely reducible in characteristic zero, it thus suffices to show that the representations
Zn Zn Zn
Indzf} C, Imdzf13 (x3), and Indzf14 (x4)

appear as submodules of H;(B,[4]; C) and that they pairwise intersect in the zero vector. We
deal with each summand in turn.
We start with the first submodule Indj 7 C. For i < j we define

Iy
n

aij = [10+Tro)mj.
r<s

The «;; are linearly independent since «;; is detected exactly by the forgetful map B, [4] —
Ba[4] that forgets all but the ith and jth marked points in Dy,. Since gay; = ag;)4(;) for all
g € Z, it follows that H;(B,[4]; C) contains the Z,-module

@ g(aga) = Indjz2 (a12) = Indjz2 C,
9€2n / 252

as desired.
Next, we identify the submodules Indi 7 (zk). Fix k € {3,4}. We consider the sub-

spaces g(xy) of Hi(Bn[4];C) for [g] € Z, /2. Since (x}) is a ZZ-module (Lemma 9.4),
these subspaces do not depend on the choice of g € [g]. It follows from the fact that (xy) is
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Ii-isotypic (Lemma 9.2) and Lemma 8.2 that the g(x)) are mutually non-isomorphic, and so
H,(B,[4]; C) contains the direct sum. We may write this direct sum as

a g(xk>::Ind§ﬂ(xk%

[9)€2Zn | 22k

which is the desired submodule.
Since Is, I3, and Iy lie in different Z,-orbits, it follows from Lemma 8.2 that the three
summands we have found have trivial intersection pairwise. This completes the first step.
We now proceed to the second step. By Lemma 9.4, the second and third summands
from the first step agree with the summands V,,(ps, (0)) and V;,(p4, (0)) from the statement
of the proposition. It therefore remains to show that we have an isomorphism of Z,,-modules

Indig C = V,(1,(0) @ Vi (1, (1) ® Viu(1, (2)).

Any representation of Z,, where PZ,, acts trivially can be naturally identified with a repre-
sentation of S,,. Applying this identification to the right-hand side of the above isomorphism
yields the S,-representation V,(0) & V,,(1) & V;,(2). Recall that on the left-hand side C is the
trivial Z{f—representation and so again PZ,, acts trivially. Applying the same identification
to the left-hand side yields the S),-representation Imdg’;X s,_, C. It follows from the branching
rule that the latter is isomorphic to V,(0) & V;,(1) @ V,,(2), as desired. O

9.3. Uniform representation stability. In this section we prove the second statement of
Theorem 2.5, namely, that the sequence {H1(B,[4];Q)} of Z,-modules is uniformly repre-
sentation stable (Proposition 9.8 below).

Lemma 9.6. The standard embedding B,, — By41 induces injective maps By [4] — Bj41[4]
and Zp — Zpi1.

Proof. As mentioned in Section 2, Brendle and the second author proved that the group B, [4]
is equal to PB%. It follows that the image of B,,[4] under B,, — By, is contained in By, 1[4].
Thus the standard embedding B,, — B,,+1 induces a well-defined maps B,,[4] — B,,+1[4] and
Zn — Zpy1- The first map is injective since it is the restriction of an injective map. The
injectivity of the second map is equivalent to the statement that the preimage of B,y1[4]
under B,, — B, is contained in B,[4]. This follows from the fact that PB2, hence B, [4],
is the kernel of the mod 2 abelianization of PB,, and the fact that the following square
commutes, where the horizontal arrows are the mod 2 abelianizations, and the vertical maps
are the inclusions:

7L+1)

PBn1 —— (2/2)("2

| |

PB, (z/2))

This completes the proof. ]

Lemma 9.7. For each k > 0 and n > 0, the vector spaces Hy(B,[4]; Q) form a consistent
sequence of Z,-representations with respect to the maps induced by the standard inclusions.
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Proof. For each g € B, there is a commutative diagram of groups

B, [4] - Bn+1 [4]

Qi lg
By 4] — B[4

where g acts by conjugation. The lemma then follows by applying H} to all four groups, and
using the fact that a group acts trivially on its homology groups. O

Proposition 9.8. The sequence {H1(B,[4];Q)} of Z,-modules is uniformly representation
stable.

Proof. We check the three parts of the definition of uniform representation stability in turn.
The standard inclusion map Bp[4] — Bp41[4] from Lemma 9.6 is a right inverse to the
surjective map Bj41[4] — By[4] obtained by forgetting the last strand. It follows that the
induced maps ¢y, : H1(Bn[4];C) — Hi(Bp+1[4];C) are injective. It follows from the first
statement of Proposition 6.1 and the fact that every 7;; lies in the same Z,1-orbit as 72
that the Z,.1-span of v, (Hi(By[4];C)) is equal to H;(By,+1[4]; C). Finally, the condition on
the multiplicities of the irreducible components follows immediately from Proposition 9.5. [

10. A NON-GENERATING SET

In this short section we use Lemma 6.2 to prove Theorem 2.3, which states that if
BZ, < G < B,[4] then G is not generated by even powers of Dehn twists about curves
surrounding two points.

Proof of Theorem 2.3. Brendle and the second author proved that the standard forgetful
maps B, [4] — Bs[4] induce a surjection G — Bgs[4]; see [8, Corollary 4.4]. Under any such
forgetful map, an even power of a Dehn twist about a curve surrounding two marked points
either maps to the identity or to an even power of a Dehn twist about a curve surrounding

two marked points. Thus it suffices to prove the result for the case n = 3.
By Lemma 6.2, we have in H;(B3[4]; Q) that

1
To = = (112 + 713 + 723 + Ti3712 + Tio713 + T12723) -

2
On the other hand, if Tg could be written as a product of even powers of Dehn twists about
curves surrounding two points, there would exist integers ci, ..., cg such that

Ty = c1T12 + c2T13 + ¢3723 + 4113712 + c5T12713 + c6 112723

But this is impossible, since 112, T3, T3, T13712, 112713, and Tio7o3 are exactly the elements
of our basis S for H(B3[4]; Q) from Corollary 4.3. O

11. ALBANESE COHOMOLOGY

In this section, we will prove Theorems 2.8, and 2.9, which state that H%,;, (B,[4]; Q) is
a proper subalgebra of H*(B,[4]; Q) for all n > 15 and that H}; (SMod,[4]; Q) is a proper
subalgebra of H*(SMod,[4]; Q) for g > 7, respectively. We conclude the section with the
proofs of Theorem 2.2 and Proposition 2.7. The former gives the Betti numbers of B3[4] and
By4[4], while the latter gives a new (large) lower bound on the top Betti number of Mods[4].
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11.1. Interpretations of the level 4 braid group a la Brendle—Margalit. In this
section, it will be advantageous to recast the group B, [4] in two different ways. Specifically,
we will utilize the following two isomorphisms, which hold for g > 1:

B29+1[4] = SMOdg[4] X 7
Bog+1[4] 2 PModg 5,5 XZ

As in Section 4, PModg,, denotes the pure mapping class group of a sphere with n marked
points and PModg’n is the subgroup generated by all squares.

Neither of the above isomorphisms are stated explicitly by Brendle and the second
author. However, both are easily obtained from their work, as we shall explain currently.

We begin with the first isomorphism. Brendle and the second author [7, Theorem 4.2]
proved the analogous isomorphism BZ441 = ST, x Z (their theorem actually refers to the
hyperelliptic Torelli group SI; of a surface with boundary instead of BZ41, but as explained
in their introduction the groups SI; and BTy are naturally isomorphic). The proof of
their isomorphism applies verbatim in our situation, except with the Torelli group replaced
with the level 4 mapping class group.

The second isomorphism follows from the theorem of Brendle and the second author
that Bogi1[4] = PB%QH and the fact that PB,, splits as a direct product as PModg n+1 XZ;
see [17, p. 252].

We can also combine the above two isomorphisms in order to obtain the isomorphism

SMody[4] = PModg 5, 5

for g > 1. Indeed, the group Bog1[4] has infinite cyclic center, and so the composition of the
two isomorphisms above must identify the two given Z-factors.

In this section we will use one other fact from the work of Brendle and the second
author. They observed [8, Corollary 4.4] that each of the forgetful maps PB, — PB,,
induces a surjective homomorphism

Bn[4] — B [4].
(cf. the proof of Theorem 2.3). This map is split. For instance if the forgetful map PB,, —
PB,, is the one obtained by forgetting the last n — m marked points of D,, then the splitting

is the restriction of the standard inclusion B,,, — B,,. Both the surjectivity and the existence
of the splitting follow directly from the isomorphism Bag1[4] = PB%Q 11

11.2. The proofs of Theorems 2.8 and 2.9. Our next goal is to prove Theorems 2.8
and 2.9, which state that the Albanese cohomology algebras of B,[4] and SMod,[4] are
proper subalgebras of H*(B,[4]; Q) and H*(SMod,[4]; Q) for n > 15 and g > 7, respectively.
We give two lemmas that give the cohomological dimension and the Euler characteristic of
SMod,[4] before proceeding to the proofs of Theorem 2.9 and 2.8 (in that order).

For a group G we denote by c¢d G its cohomological dimension.

Lemma 11.1. For n > 3 we have
cd PMod§,, =n—3
and for g > 1 we have
cd SModgy[4] = 2g — 1.
Proof. For n > 3 we have cd PModg,, = n — 3. The two statements now follow from the

fact that PModgvn has finite index in PMody ,, and the isomorphism SMod,[4] = PModan 49
from Section 11.1, respectively. 0
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Lemma 11.2. For g > 1 we have

2g+1

x(SMod,[4]) = _o(*% )—1(29 —1)!

Proof. As explained in Section 11.1, the group SModg[4] is isomorphic to PModazg 4o We
will compute the Euler characteristic of the latter.

We claim that the index of PModan in PModg ,, is ("1, Since for any group G we
have G/G? = Hy(G;Z/2), it follows that
PMody,, / PMod2,, = Hy (PModg,n; Z,/2) = (2,/2)("> )1

The last isomorphism follows from the splitting PB,,_1 = PMody , xZ and the usual descrip-
tion of the abelianization of PB,,_1. The claim follows.
Harer and Zagier [23, p. 476] proved that

x(PModg ,) = (=1)""3(n — 3)!

For any group G and a subgroup G’ of finite index we have x(G’) = [G : G'|x(G’). The
lemma follows by combining this fact with the claim. O

Proof of Theorem 2.9. By Lemma 11.1 we have cd SMody[4] = 2g — 1. Therefore, in order
to show that H%, (B,[4];Q) is a proper subalgebra of H*(B,[4]; Q) we must show that the
image of the cup product map

A"H'(SMod,[4]; Q) — H*(SMod,[4]; Q).

fails to be surjective for some 2 < ¢ < 2¢g — 1.

Let b; denote the ith Betti number of SMod,[4] and let d; denote the dimension of the
image of the above cup product map. Our basic strategy is to show that there is some 3
between 2 and 2¢g — 1 with b; > d;. To do this we will estimate the d; from above and the b;

from below.
T \29—1

We first claim that
for all 2 <i<2g—1. As g > 7 it follows from Corollary 2.6 that 2g — 1 < b;/2, and so
g by by
; < dim A"H' (SMod, [4]; Q) = <
d; < dim (SMody[4]; Q) (7,) < (29_1>
for 1 <2g — 1, as desired.
We next claim that

for some k with 2 < k < g. Since (as above) the cohomological dimension of SMod,[4] is
2g — 1 we have the following immediate consequence of Lemma 11.2:

b1 +bs+---+ bggfl > 2(2g;1)71(2g —1)!

The claim follows.
Combining the two claims, it is now enough to show that

gil (2(292+ DY 2g — 1) - bl) ” (2gbi 1)

forg > 7.
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For g = 7 we can verify the inequality numerically. Direct computation shows that the
right-hand side is on the order of 103® and that the left-hand side is on the order of 104°,

We now treat the general case g > 8. We will perform four strengthenings of the desired
inequality in order to obtain an inequality that we can prove with basic calculus. First, using

2g—1
the estimate (}) < n”*/k! and the estimate (29 — 1)! > (29—;1) \/2m(2g — 1) we obtain
the stronger inequality
1 29 — 1 2g—1 ng—l
(2@)_1 () Ve ’”) > g
g—1)!

Next, adding b1/(g — 1) to both sides and using the fact that b;/(g — 1) < by < (2;i1), that

(Z) < n¥, and that bfg < bfg , we obtain the even stronger inequality

29 — 1 49—2
o (%) 1 (9 ) om(2g — 1) > 229,

g—1 e

(&

It follows from Theorem 2.1 and the estimate (Z) < nk /k! that b; < %. Using this and

dividing both sides of the last inequality by 2 we obtain the even stronger inequality

(¥ 1)1 <2g - 1>4g_27r(29 —1) > (W)Qg.

e 6
Since both sides of the last inequality are positive, we may take the logarithms of both sides
in order to obtain the equivalent inequality
(2 +g—1)In2+(4g —2) (In(2g — 1) = 1) + In(2g — 1) + In7
> 8¢In(2g + 2) — 2¢gIn6.
Set
G(z) = (22 +2—1)In2+ (4o —2) (In(2z — 1) — 1) +In(2z — 1) + In7
and
H(z) =8zIn(2x + 2) — 2z 1n6.

The last inequality can be restated as G(g) > H(g). By direct computation, the function
F(z) = G(z) — H(x) satisfies F/(8) > 0 and F’(8) > 0. Furthermore, for 2 > 8 we have that

8 8 4 8
F"(z) = 4In2 - - -
(@) =424 o~ 1 " o1 @il
8 4 8
An2+0—>— — - 2
ZAmEH Ty T o TR
>0

where we have used the fact that z > 8 in the first inequality. This implies that F'(z)
is increasing for x > 8, and therefore that F'(z) is increasing for all x > 8. The theorem
follows. O

Proof of Theorem 2.8. We will now derive Theorem 2.8 from Theorem 2.9. Because of the
isomorphism Bagy1[4] = SMody[4] x Z there is a split surjective homomorphism Bag1[4] —
SMod,[4] induced by projection onto the first factor. Any section o : SModgy[4] — Bag+1[4]
induces a surjection

0" H*(Bag+1[4]; Q) — H*(SMod,[4]; Q)
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Let 0*(1) denote the algebra homomorphism
A*H*(Bag11[4];Q) — A*H' (SMod,[4]; Q)
induced by ¢* in degree 1. This map is surjective.
The relationships between o*, 0*(1), and the cup product are given by the following
commutative diagram:

A*HY(Bag 1 [41: @) L A* L (SMod, [4]; @)

H* (Bags1[4]; Q) — 2 H*(SMod, [4]; Q).

We complete the proof of Theorem 2.8 by first dealing with the case of n odd, followed
by the case of n even.

By Theorem 2.9, the rightmost cup product in the above diagram fails to be sur-
jective for g > 7. This implies that for all g > 7 the cup product A*H'(By,4+1[4];Q) —
H*(Bag+1[4]; Q) is not surjective. This proves Theorem 2.8 for n odd with n > 15.

It remains to deal with the case of n even. Let Bogy2[4] — Bog1[4] be the map induced
by forgetting the last marked point of D, and let s be any section, for instance the one
induced by the standard inclusion Bag11 — Baogyo. Replacing Bogy1[4], SMody[4], and o in
the diagram above with Bog2[4], Bag41[4], and s, respectively, and applying the odd n case of
Theorem 2.8, we obtain that for g > 7 the cup product A*H'(Bag42[4]; Q) — H*(Bag+2[4]; Q)
is not surjective. This completes the proof. ]

11.3. Higher Betti numbers. In this section we will prove Theorem 2.2, which gives the
Betti numbers of B, [4] for n = 3,4 and Proposition 2.7, which gives a lower bound for the
top Betti number of Mods[4]. We begin with a lemma.

Lemma 11.3. For all n > 1 we have cdB,[4] =n — 1 and x(By[4]) = 0.

Proof. For n > 1 we have cd PB,, = n—1; the lower bound comes from the existence of a free
abelian subgroup of rank n — 1 (generated by Dehn twists) and the upper bound comes from
the decomposition of PB,, into an (n — 1)-fold iterated semidirect product of free groups (via
combing). Since By, [4] has finite index in PB,, the first statement follows.

It follows from Arnol’d’s computation [2, Corollary 2] of the Poincaré polynomial of PB,,
that x(PB,) = 0. Since B, [4] has finite index in PB,,, we obtain the second statement. [J

Proof of Theorem 2.2. In the proof we will denote the ith Betti number of a group G by
b;(G) and we will abbreviate b;(B,,[4]) by b;.

We begin with the case of n = 3. By the second statement of Lemma 11.3 we have

X(B3[4]) =byg— b1 +by=0.

By the n = 3 case of Theorem 2.1 we have b;(Bs[4]) = 6. Since by = 1, we find that
ba(Bs[4]) = 5. By the first statement of Lemma 11.3, we have found all of the nontrivial
Betti numbers of Bs[4].

Next we treat the case n = 4. As in Section 11.1 we have By[4] = PMod%y5 XZ. From
this the Kiinneth theorem gives

HY(B4[4];Q) = H’(PModj 5; Q) & H’~' (PModj 5; Q)
for all 7 > 1. Thus for all j > 1 we have
bj = bj(PModg 5) + bj—1 (PModg 5).
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It follows from Lemma 11.3 and the isomorphism Bog1[4] = PModg’Qg 4o XZ (Section 11.1)
that cd PModaE, = 2. Thus by Lemma 11.2

64 = x(PModj 5) = 1 — by (PModg 5) + b2 (PModg 5).
Since by (PModaE,) = 20, we obtain bQ(PMOd?LE)) = 83. Thus
b2(B4[4]) = ba(PModj 5) + by (PModg 5) = 83 + 20 = 103.
Finally, since x(B4[4]) = 0 we have
bs(Ba[4]) = 1 — by (Ba[d]) + ba(By[4]) = 1 — 21 + 103 = 83.
Since cd B4[4] = 3, we have found all of the non-trivial Betti numbers of B4[4]. O

Proof of Proposition 2.7. Throughout we use the equality SMods[4] = Mods[4], which follows
immediately from the equality SMody = Moda; see [17, Section 9.4.2].
By Lemma 11.2 we have x(Modz[4]) = —3072 and by Lemma 11.1 we have cd Modz[4] =
3. Thus
1—>by + by — by = —3072.
By Corollary 2.6 we have b1 = 54, whence bz = 3019+ bs. It remains to bound by from below.
Since Bs[4] =2 Modz[4] x Z, the Kiinneth theorem gives

Hy(Mod[4]; Q) & Hi(Moda[4]; Q) = Ha(Bs[4]; Q)
and therefore that
by + b1 = dim HQ(B5[4]; @)
Since the map Bs[4] — B4[4] induced by forgetting the last marked point in D5 is split, the
induced map
Hy(B5[4]; Q) — Ha(Ba[4]; Q)
is surjective. By the n = 4 case of Theorem 2.2 we have
dim Hy(Bs[4]; Q) > dim Hy(B4[4]; Q) = 103
It follows that by > 103 — 54 = 49 and therefore that b3 > 3019 + 49 = 3068. O

12. HYPERELLIPTIC TORELLI GROUPS

In this section prove Theorem 2.11, which states that
1 )
dim H,(SZ,;Q) > G (20g* + 12¢® — 59 + 9g — 6) .

After recalling some facts about the second Johnson homomorphism 79, we proceed to the
proof of the theorem. At the end of the section we prove Proposition 2.12.

In this section, Sp,(Z)[m] denotes the level m congruence subgroup of Sp,(Z), that is,
the kernel of the mod m reduction map.

The second Johnson homomorphism. Let m = m1(2, *) and let 7(¥) denote the kth term of
the lower central series of 7. We define L = 7r(k)/7r(k+1) ® Q. Let K4 denote the subgroup
of Z, generated by Dehn twists about separating simple closed curves. The second Johnson
homomorphism is a Modg-equivariant homomorphism

T : g = Hom(Ly, L3);

see the papers by Hain and Morita [21, 26] for the definition. The image of 72 is a represen-
tation of Sp,(Z). Work of Hain [19] implies that the image is isomorphic to the restriction
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to Sp,(Z) of the irreducible Sp,(Q)-representation V' (2A2), where A1, Ag, ..., Ay is a system
of fundamental weights for Sp,(Q) (see also [26, p.377]).

The group SZ, is contained in Ky; see of the paper by Brendle, Putman, and the second
author [6, p. 268]. Thus we may restrict 7 to SZ, to obtain

j:8T, = V(2Xy).

The group SZ, is normal in SMod,[2]|. Also, A’Campo proved that the symplectic represen-
tation Mod, — Sp,(Z) induces an isomorphism SMod,[2]/SZ, = Sp,(Z)[2]. It follows that
J is SModg[2]-equivariant and that it induces an Sp,(Z)[2]-equivariant map

Jx 1 Hi(8Zg; Q) — V(2X2).
Proof of Theorem 2.11. Let i : ST, — SModg[4] denote the inclusion and consider the map
D . H1<SIg; Q) — H1(8M0d9[4]; Q) S¥ V(2/\2)

defined by

By Corollary 2.6 the dimension of the first summand is

29 +1 2g+1 29 +1
3 3 - 1.

The dimension of the second summand is also known (see [21, Lemma 8.5]):

dim V(2r) = L9~ 1)(4932 g =3)
Since the sum of these two dimensions is the desired lower bound, it suffices to prove that ®
is surjective. To do this, we will first show that i, and j, are surjective.
First we show that i, is surjective. It follows from the aforementioned theorem of
A’Campo that the map Mody — Sp,(Z) induces an isomorphism SMod,[4]/SZ, = Sp,(Z)[4].
We therefore have an exact sequence

H1(8Z,; Q) — Hi(SMody[4]; Q) — H1(Sp,(Z)[4]; Q)

The homology group Hi(Sp,(Z)[m]; Q) is zero for g > 2 and m > 0 (see [27, p. 3]). Thus i,
is surjective.

We now show that the map j, is surjective for each g > 2. By the Borel density theorem,
any lattice I' < Sp,(R) is Zariski dense; see [27, p. 766]. It follows that the irreducible Sp,(R)-
module V(2)X2) ® R is irreducible as a I'-module. Since tensoring a reducible representation
with R results in a reducible representation, it follows that V(2\q) is irreducible as a I'-
module. As j, is Sp,(Z)[2]-equivariant, it suffices to show that j. is non-zero.

Morita proved that if ¢ is any (nontrivial) separating curve in ¥, then m(7,) is non-zero
[26, Proposition 1.1]. If ¢ is any separating curve in ¥, that is preserved by the hyperelliptic
involution s, then T lies in SZ,. It follows that j is non-zero, and hence that that j, is
non-zero, hence surjective.

Finally, we show that ® is surjective. Let (z,y) € H1(SModg[4]; Q) & V(2X2). We will
show that (x,y) lies in the image of ®. Since both i, and j, are surjective, we can choose
z,y € Hi(SZ4; Q) such that

() =z and j.(y) =v.
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Let y1 = —j«(Z) +y. Since V(2)2) is an irreducible Sp,(Z)[4]-representation, the correspond-
ing space of coinvariants V(2)\2)spg(z)[4} is trivial. This is the same as saying that V(2)\9) is
spanned by

{(h—=1)vn | h € Sp,(Z)[4], v € H\(ST4;Q)} .
In particular, there is a finite set % C Sp,(Z)[4] such that

yi =) (h=1u,

heH

where each vy, lies in V(2X2).
For each h € H, let U, be an element of the j.-preimage of v,. Let

= (h— 1)
heH
By construction, we have that j.(y1) = y1 = —j«(Z) + .
Since SZ, is normal in SModgy[4], and since SMod,[4]/SZ, = Sp,(Z)[4], the map i, is
Sp,(Z)[4]-equivariant. Thus

(1) = Y (h=1)iu(@) = D hiu(Th) — i (Tn).
heH heH
Since SZ,, is contained in SModg[4] there is a well-defined action of the quotient Sp,(Z)[4]
on Hi(SMody[4]; Q). But the action of SMody[4] on Hi(SMod,[4]; Q) is trivial and so the
action of Sp,(Z)[4] is trivial. Thus our last expression for i.(y1) is zero. It follows that
Oz + 1) = (z,y), as desired. O

We now prove Proposition 2.12, which states that for n odd the first homology H;(BZ,; Q)
is infinite dimensional if the sequence (dim Hi(By[m];Q)) °_, unbounded.

Proof of Proposition 2.12. As in the statement, let n = 2¢g + 1 be odd. For each m we have
BZyg+1 C Bogri[m]. Indeed, BZo441 is equal to the intersection of all Bagq1[m] with m > 1.
It follows from the work of Brendle and the second author [8] that for g > 1 there is an
isomorphism

Bag+1[2m]/BIog 1 = Spy(Z)[2m].

The fact that Hi(Sp,(Z)[2m]; Q) = 0 for g > 2 (see, for example, [28]) implies that there is
a surjection

H1(BI2441; Q) — Hi(Bagy1[2m]; Q).
From this, it follows that if the sequence (dim Hi(B,[2m];Q)),°_, were unbounded then
H1(BZ34+1;Q) would be infinite dimensional. To complete the proof, it now suffices to observe
that the transfer homomorphism gives a surjection Hi(Bag41[2m]; Q) — Hi(Bag41[m]; Q).
So if the sequence (dim H;(B,,[m]; Q));°_, unbounded the sequence (dim H; (B, [2m]; Q)),~

=1
would be unbounded as well. " O

13. 2-TORSION ON THE CHARACTERISTIC VARIETIES OF THE BRAID ARRANGEMENT

The goal of this section is to prove Theorem 2.14. We first introduce a general branching
rule that gives the restriction of an irreducible Z,,-representation of to PZ,, (Lemma 13.1). To
prove the theorem we apply the lemma to our description of H;(B,[4]; C) from Theorem 2.5
in order to explicitly compute all of the 2-torsion points that lie on the characteristic variety
of the braid arrangement.
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Lemma 13.1. Let n > 2. Assume that p is an irreducible I-isotypic representation of Z;’n
for some full subset I C [m)® where m < n. Then we have an isomorphism of PZ,-modules

Res%n Va(p, M) = (dim Vi (p)) (dim V (V) €D Vi
gEZn/Zfl

Proof. By the definition of the V,,(p,A), by the formula for the restriction of an induced
representation [9, Proposition 5.6(b)], and by the fact that PB,, C Z; for every J C [n]2, we
have

g(I)
Res%n Vi(p, ) = Res%n Indéz V(@ BV = @ Reszs gVin(p) HV(N).
9EZn | 2]

To complete the proof, we observe that V;,_,,(\) restricts to a direct sum of dim V,,_,,, ()
copies of the trivial PZ,-module and that V;,(p) restricts to the direct sum of dim V,(p)
copies of the representation V. Thus V,(p) B V,,_p,(A) restricts to the direct sum of
(dim V,,,(p)) (dim V. (M) copies of V7. Employing Lemma 8.2, we see that gV, (p) ¥
Vi—m(A) restricts to the direct sum of (dim Vp,(p)) (dim Vi, (A)) copies of Vy(py. The result
follows. 0

Proof of Theorem 2.14. A 2-torsion point of V;(X,,) is a homomorphism p : PB,, — uy with
dim H'(X,,;C,) > d. As in Section 8, any such p is equal to some p;. For any I C [n]%, we
may identify the fiber of C,, with the PZ,-module V;, viewed as a PB,-module. The fact
that PZ,, = PB,, /B,[4] is a finite group implies that the Hochschild—Serre spectral sequence

EPY = HP(PZ,; H1(B,[4]; V1)) = HPT(PB,; V)
degenerates at the Fo page. This gives isomorphisms
HY(X,;C,,) =2 H'(PB,; V;) = (H'(B,[4;C) ® V;

We conclude that dim H'(X,,;C,,) is equal to the multiplicity of V; in H'(B,[4];C) =
H,(B,[4]; C), regarded as a PZ,-module. Combining Theorem 2.5 with Lemma 13.1 we
see that

)'PZH

C3 P (®g€23/2é3 Vg(Ig)) n=23

Res%z"vn Hy(B,[4];C) = n
c@e (@gezn/zfﬁ Vo(r;) @ ®gezn/2§4 Vg(l“)) n=d

Thus the multiplicity of any nontrivial V7 in Res%g,n H,(B,[4];C) is at most 1. That is, for
d > 2 there are no 2-torsion points on Vy(X,,). Further, this decomposition shows that the
2-torsion points on Vi (X,,) are exactly those of the form pg(z,) or py(y,) for g € S,,. It remains
only to show that these points lie on Vi (X,).

Cohen-Suciu [14] found explicit equations for all of the components of V;(X,). For
1 < j < k there is a component

Vije = {t € (C) ) sttt = 1 and tp, = 1if |{p, g} N {3, 5, k}| < 1}
and for each 4-element set I = {i,j,k, ¢} with ¢ < j < k < £ there is a component
Vijke = {t € (CX)(;I) tlpg = trs i {p, g} U{r,s} = LI, tpg =1if {p,q} £ I 7Htpq =1}

We directly verify that the 2-torsion points of the form py(r,) lie in Vy(123) and those of the
form py(z,) lie in Vi (1934). This completes the proof of the theorem. O
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