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1 | INTRODUCTION

Yuanfang Guan'?

Abstract

The situation of coronavirus disease 2019 (COVID-19)
pandemic is rapidly evolving, and medical researchers
around the globe are dedicated to finding cures for the
disease. Drug repurposing, as an efficient way for drug
development, has received a lot of attention. However, the
huge amount of studies makes it challenging to keep up to
date with the literature on COVID-19 therapeutic devel-
opment. This review addresses this challenge by grouping
the COVID-19 drug repurposing research into three large
groups, including clinical trials, computational research,
and in vitro protein-binding experiments. Particularly, to
facilitate future drug discovery and the creation of effec-
tive drug combinations, drugs are organized by their me-
chanisms of action and reviewed by their efficacy
measured by clinical trials. Providing this subtyping in-
formation, we hope this review would serve the scientists,
clinicians, and the pharmaceutical industry who are looking
at the new therapeutics for COVID-19 treatment.
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COVID-19 is an acute respiratory disease caused by the RNA virus SARS-CoV-2. Since its first outbreak in Wuhan,
China, the disease has rapidly spread to more than 180 countries around the world. The World Health

Organization (WHO) declared it as a public health emergency on Jan 30, 2020, and assessed it as a pandemic
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on Mar 11, 2020. The situation of the COVID-19 pandemic is continuously evolving. According to the WHO
COVID-19 situation report No. 134 published on Jun 2, 2020, there have been 6.19 million confirmed cases
worldwide, and the disease has taken 376,320 lives. Effective treatments are in urgent need, but currently, no drug
with stable performance has been found for COVID-19.

Medical researchers around the globe are dedicated to understanding and finding cures for the disease. By the
time this review is written, there are 3153 COVID-19 related studies listed on the World Health Organization's
International Clinical Trials Registry Platform (WHO ICTRP), which include studies from countries other than the
United States, and 1963 studies listed on http://ClinicalTrials.gov, which include the US clinical trials only. Among
the studies in the United States with their study phases documented, most of them are in Phases 2 or 3, and more
than 600 drug interventions are included in these trials. Drug repurposing, defined as finding new indications for
existing drugs,” is of particular interest for coping with the COVID-19 urgency. Compared with developing drugs
de novo, which was estimated to cost 10 to 17 years and 800 million USD," drug repurposing significantly reduces
both the time and money needed as the lengthy and costly ADMET (absorption, distribution, metabolism, elim-
ination, toxicity) evaluation can be avoided. If succeeded, this would result in readily available and comparatively
affordable medical treatments for COVID-19. Repurposing existing drugs to treat COVID-19 is biologically feasible
as SARS-CoV-2 shares some similarities with other coronaviruses such as SARS-CoV and MERS-CoV,” and there
are many successful precedents in repurposing antivirals for new virus targets.® Actually, most of the drugs
currently in clinical trials for COVID-19 are repurposed from approved antiviral drugs. Additionally, with the help
of advancing computational methods and mature protein interaction assays, finding potential drug repurposing
targets from currently approved drugs or drug candidates.

As a global emergency, the COVID-19 pandemic leads to an explosion of publications, and the research
situation is largely unorganized and unstructured: The results of large-scale controlled clinical trials are still on the
way, though the results of smaller-scale clinical trials usually contradict with each other. Inevitably, overlapping or
similar works exist in computational studies. The amount and complexity of current studies make it hard to keep up
to date with the literature on COVID-19 therapeutic development. In the hope to help reduce double efforts, in
this review, we grouped the COVID-19 drug repurposing research into three large categories, including clinical
trials, computational research, and in vitro experimental studies (Figure 1). In the clinical trial group, drugs are
organized and reviewed by their mechanisms of action, which we hope is informative to the discovery of drugs of
similar mechanisms and the creation of combinatory treatment. In the computational research group, methods are

sorted by their target proteins, and proposed drugs are listed out to prevent duplicated efforts.

2 | DRUGS IN CLINICAL TRIALS FOR COVID-19

To facilitate the completeness of this review, we hand-curated the drugs currently on clinical trials by mapping the
Food and Drug Administration's (FDA) drug database and PubChem repository. Then, for each identified drug, we
screened through literature that reported clinical trial results on PubMed using the drug name plus “COVID-19.” We
also searched for ongoing clinical trials for each drug on NIH ClinicalTrials website using the same searching phrases.
Of note, trials suspended, withdrawn, terminated, and completed are not included as ongoing trials. For this section,
the drugs are organized and reviewed based on their molecular mechanisms. A summary of the type, cohort, drug

doses, and outcome of the clinical trials mentioned in this section is presented in Table 1.

2.1 | RNA mutagens: Remdesivir, favipiravir and ribavirin

As the replication of SARS-CoV-2 depends on the virus protein RNA-dependent RNA polymerase (RdRp), mole-
cules that interfere with the function of RdRp could be potential treatments of COVID-19 by inducing mutations
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(A) Molecular Mechanisms of Drugs in Clinical Trials (C) Drugs Proposed by in vitro Protein Binding Screen

FIGURE 1 Overview of the review. A, Molecular mechanisms of drugs in clinical trials. B, Drugs proposed by
computational works (Molecular docking figure credits to Wikipedia Docking [molecular] webpage; https://en.
wikipedia.org/wiki/Docking_(molecular)). C, Drugs proposed by in vitro protein-binding screen [Color figure can be
viewed at wileyonlinelibrary.com]

into the virus and blocking virus replication.”® Remdesivir, favipiravir, and ribavirin are typical drugs that fall into
this category, and the clinical trials about these drugs are reviewed below. Other potential drugs in this category

include fluorouracil and acyclovir. However, clinical trials have not yet been conducted to test their efficacy.

2.1.1 | Remdesivir

Remdesivir, a 1’-cyano-substituted adenosine nucleotide analogue prodrug,’’ is proposed to have the potential to
treat COVID-19 by inducing RNA mutation in SARS-CoV-2. The theoretical evidence of this argument lies in that
remdesivir triphosphate can compete with adenosine triphosphate (ATP) for incorporation in Ebola virus, resulting
in early termination of the RNA chain.*° It is also found to be able to inhibit the replication of SARS-CoV,
MERS-CoV, and a wide spectrum of other CoVs in in vitro systems.>" A recent study has also demonstrated its ability
to control infection of COVID-19 in vitro.*> A number of clinical trials have been carried out to test remdesivir's
effectiveness on COVID-19. A study treated a cohort of 53 patients with severe COVID-19 with compassionate-use
remdesivir for 10 days, 200 mg intravenously on day 1 and 100 mg for the following 9 days. The results show that
during a median follow-up of 18 days after the first dose of remdesivir, 68% of the patients showed clinical
improvements in terms of oxygen support.” However, a randomized, double-blinded, placebo-controlled clinical trial
carried out in 10 hospitals in Hubei, China looked into remdesivir's efficacy in a cohort of 237 adults, and the results
show that remdesivir is not statistically significantly associated with clinical benefits, whereas the statistically in-
significant reduction in time to clinical improvement in patients within 10 days of symptom onset requires further
confirmation in larger cohorts.>® Another smaller-scale study in Italy administered compassionate-use remdesivir for
10 days to a cohort of 35 patients with severe COVID-19 in both ICU and the infectious diseases ward, and the

results indicate that remdesivir benefits patients outside ICU.° By far, the largest-scale study on remdesivir is a
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recently published double-blind, randomized, controlled study on a cohort of 1059 participants from 10 countries.
The results indicate that remdesivir significantly reduced the time to recovery of COVID-19.° Although the clinical
trial results of remdesivir are promising, FDA still has not approved it as a drug against COVID-19 by the time this
review is written.>* Besides literature reports, there are 17 ongoing clinical trials on remdesivir's clinical effect on
COVID-19 documented by NIH ClinicalTrials by the time of May 15, 2020.%°

2.1.2 | Favipiravir

Favipiravir-triphosphate can also mimic ATP and GTP for incorporation with RdRp,*® however, not as effective as
remdesivir.>” In an open-labeled nonrandom controlled study, the effects of favipiravir and ritonavir-lopinavir on
SARS-CoV-2 treatment were compared. The favipiravir group exhibited significantly shorter virus clearance time,
improved chest imaging, and fewer adverse reactions.” Another retrospective, randomized, controlled study
compared the effect of favipiravir and arbidol in a cohort of 240 patients, and found that there are no differences
in the recovery rate in the two groups at day 7. However, favipiravir led to significantly accelerated relief of
symptoms including pyrexia and cough.® Besides literature reports, there are 16 ongoing clinical trials on
favipiravir's clinical effect on COVID-19 documented by NIH ClinicalTrials by the time of May 20, 2020.%°

2.1.3 | Ribavirin

Ribavirin's mechanism is similar to that of favipiravir, which also mimics ATP and GTP to incorporate with RdRp.>’
A study on a cohort of 94 patients showed that a combination of IFN-a, lopinavir/ritonavir, and ribavirin may be
beneficial to patients with SARS-CoV-2 infection.” Another open-label, randomized, phase-2 trial assessed the
efficacy of a combination of IFN-£-1b, lopinavir/ritonavir, and ribavirin on treating SARS-CoV-2 infected patients.
The study demonstrated that triple therapy was superior to only using lopinavir/ritonavir in terms of treating
patients with mild or moderate SARS-CoV-2 infection.’® However, there aren't clinical trials that directly assess
the efficacy of ribavirin by the time this review is written. Besides literature reports, there is another ongoing

clinical trial on the treatment of COVID-19 by a combination of nitazoxanide, ribavirin, and ivermectin.®’

2.2 | Protease inhibitors: Ritonavir-lopinavir and darunavir

As the CoVs’ gene expression and replication processes require proteolytic processing of polypeptides into non-
structural proteins, it is reasonable to use protease inhibitors to block these processes.*®? Representative drugs

in this category include ritonavir-lopinavir and darunavir.

2.2.1 | Ritonavir-lopinavir

Ritonavir-lopinavir is originally a combination medication for AIDS by inhibiting the protease of HIV.*° A number of
clinical trials have been carried out to test whether it is also effective in treating COVID-19. A retrospective study
including 120 patients shows that early administration of ritonavir-lopinavir could shorten the time of virus
shedding.'* A controlled study involving 47 patients with COVID-19 infection indicated that a combination of
ritonavir-lopinavir and adjuvant drugs significantly decreased the number of days for virus clearance compared to
adjuvant drugs alone.'> However, a randomized, controlled, open-label trial on 199 patients with SARS-CoV-2

suggested that no additional benefits were observed for the ritonavir-lopinavir treatment.*® But the result of this
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study is controversial as there are arguments that it is premature to abandon ritonavir-lopinavir treatment only
based on this trial since it is statistically underpowered to show a better improvement, and that the secondary
outcomes of the trial suggested that ritonavir-lopinavir has the potential to reduce overall severe-disease and
mortality risk.”> Another set of studies investigated ritonavir-lopinavir's effectiveness compared to or in combi-
nation with the antiviral drug arbidol, and the results are not in favor of ritonavir-lopinavir. A retrospective cohort
study with 178 patients diagnosed with COVID-19 suggests that no evidence proved that ritonavir-lopinavir or
ritonavir-lopinavir combined with arbidol can shorten the disease course.' A retrospective study with a cohort of
33 patients shows that a combination of arbidol and ritonavir-lopinavir achieved better clinical response compared
to using ritonavir-lopinavir only."® In another retrospective cohort study, 50 patients were divided into ritonavir-
lopinavir group and arbidol group and compared to the ritonavir-lopinavir group, viral clearance is faster in patients
in the arbidol group.’® The most common side effects of ritonavir-lopinavir are mild to moderate gastrointestinal
adverse effects such as diarrhea, nausea, and vomiting.” Besides these published trials, there are 31 ongoing
clinical trials on ritonavir-lopinavir's clinical effect on COVID-19 documented by NIH ClinicalTrials at the time of
May 20, 2020.%°

2.2.2 | Darunavir

Darunavir is also a protease inhibitor originally used for HIV.*? There are not clinical trials concerning the SARS-
CoV-2 treatment effectiveness of darunavir. On the basis of the case studies of three HIV-positive patients
infected with SARS-CoV-2, Riva et al.*® suggests that according to these preliminary evidence, darunavir at a
dosage of 800 mg does not prevent HIV patients from COVID-19 infection, and also may not protect HIV patients
from worsening of respiratory function caused by SARS-CoV-2. There is one ongoing clinical trial (NCT04252274)

that assesses the efficacy and safety of darunavir.>®

2.3 | Virus-entry blockers: Chloroquine, hydroxychloroquine, arbidol, and antibodies
against spike (S) protein

SARS-CoV-2 enters the human cell by binding to plasma membrane receptors. Therefore, interfering with this
process would block virus entry and thus has the potential to fight virus infection. Drugs in this category include
arbidol, and potentially, chloroquine and hydroxychloroquine, and the antibodies against virus spike (S) protein,
including LY3819253, JS016, and REGN-COV2.

2.3.1 | Chloroquine

Chloroquine has been used as an antimalaria drug for many years. Its antiviral mechanism is not completely clear,
whereas there are studies suggesting that it disrupts virus-receptor binding by interfering with glycosylation of the

)./Vl

human cell membrane receptor angiotensin-converting enzyme 2 (ACE2).”" A recent study proposed that the virus

entrance process not only involves spike protein binding to ACE2 but also host gangliosides, and chloroquine
interferes with this process by competing with the virus's spike protein to bind to gangliosides.”> Gao et al.*’
reported in a letter that there are clinical trials that demonstrated that chloroquine performed better than control
treatment in improving clinical outcomes of COVID-19 infected patients. However, the letter didn't give any
details of the clinical trials. A controlled study in a cohort of 22 patients showed that compared to ritonavir-
lopinavir treatment, chloroquine phosphate significantly reduced the disease duration.’® However, large-scale

studies are still in urgent need to determine the effectiveness of chloroquine.

:sdiy) suonIpuoy) pue sua I o 995 -[£702/50/91] U0 ATeIqrT SUIUO Ao[1 A “ATeIqrT WESIYOIN JO ANSIOAUN AQ 872 17-POWZ001°01/10p W02 Ka1mv ATeIquouI[uo,/5dy woxy papeofumod T *120 82118601

-Ropm A

2SURDFT SUOWIWIO)) AATIERI) A[qEaNIdd A1 £q PAUIAACS AIE SO[OIE VO SN JO Sa[N 10] AIBIqIT SUHUQ AJ[TAY O (



WANG anp GUAN 17
W1 LEYJ—

2.3.2 | Hydroxychloroquine

Hydroxychloroquine is the hydroxylated form of chloroquine, and thus they share similar antiviral mechanisms.
Some early small-scale trials found hydroxychloroquine effective for mild COVID-19 treatment. For example, a
randomized controlled trial with 62 patients demonstrated that the use of hydroxychloroquine significantly
shortened the disease course.’” Another pilot observational study in a cohort of 80 mildly infected patients also
shows that combined therapy using hydroxychloroquine and azithromycin may improve the situation of infected
patients.”” However, another study mentioned that they failed to observe strong clinical improvement when using
the same drugs and doses to treat 11 patients severely infected with COVID-19.%* The results of a series of larger-
scale studies also cast doubt on the effectiveness of hydroxychloroquine. A recent randomized controlled study
involving 150 mild to moderate patients concludes that no evidence suggests that hydroxychloroquine treatment
performs better than standard patient care, and the adverse effect of hydroxychloroquine is higher.?? Another
recent observational study in 181 patients with SARS-CoV-2 who required oxygen but not intensive care also does
not support the effectiveness of hydroxychloroquine.”® Besides, it is reported that hydroxychloroquine add-on
therapy to ritonavir-lopinavir may have many potential adverse effects including cardiac, metabolic, and neuro-
logical symptoms, and so forth, and should be used with caution.”® FDA recently established a summary of safety
issues brought by chloroquine and hydroxychloroquine, including severe heart rhythm problems, blood and lymph
system disorders, kidney injuries, and liver problems and failure, and cautioned against the use of these drugs

outside hospital settings.”’

2.3.3 | Arbidol

Arbidol is a broad-spectrum antiviral. Previous studies on viruses such as HCV, influenza virus, and so forth.
demonstrated that it interferes with various steps of the virus life-cycle, including virus entry, endocytosis, en-
dosomal trafficking, and so forth.”® There is a lack of clinical trials that directly measure the efficacy of arbidol in
treating COVID-19. Most of the clinical trials related to arbidol use it as a control group or in combination with
other drugs. As mentioned in the ritonavir-lopinavir section, there are clinical studies suggesting that arbidol
monotherapy*® and arbidol combined with ritonavir-lopinavir® perform better at shortening the duration of the
disease compared to ritonavir-lopinavir only. However, there is another clinical trial stating that no evidence
suggests that arbidol combined with ritonavir-lopinavir would shorten the disease course.’ A randomized con-
trolled study that compares the efficacy of arbidol and favipiravir in a cohort of 240 patients showed no significant
difference in 7-day recovery rate between the two groups, whereas favipiravir led to an earlier improvement of
symptoms including pyrexia and cough.® Recently, a retrospective cohort study involving 141 adult patients
without ventilation suggests that there is almost no difference in clinical outcomes between arbidol monotherapy
and arbidol combined with IFN-2b, and the study infers that combined therapy may be used to improve the
situation of mild patients though it may not be able to accelerate virus clearance.’” There are three ongoing clinical
trials that evaluate the efficacy and safety of arbidol for COVID-19 infection treatment.*”

234 | LY3819253

LY3819253, developed by the pharmaceutical company Eli Lilly, is the world's first neutralizing antibody that goes
into clinical trials. It is a potent monoclonal antibody against the SARS-CoV-2 spike (S) protein. The current Phase 1
(NCT04411628, 40 participants) and Phase 2 (NCT04427501, 400 participants) are randomized, double-blind,
placebo-controlled studies with mild or moderate infected participants, and both are anticipated to end in mid to
late August, 2020.%°
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235 | JS016

JS016 is also a neutralizing antibody against the SARS-CoV-2 spike (S) protein. It is developed by the pharma-
ceutical Shanghai Junshi Bioscience and entered Phase 1 clinical trial in early June (NCT04441918). The rando-
mized, double-blind, and placebo-controlled clinical trial aims at evaluating the safety of the product based on the
experience of 40 healthy participants.® Studies in vitro and in rhesus monkeys show that J5016 (CB6) has the
ability to inhibit SARS-CoV-2 infection.”” The completion date of the trial is expected to be in mid-December 2020.

2.3.6 | REGN-COV2

REGN-COV2 is a combination therapy containing the antibodies REGN10933 and REGN10987, and is currently
under Phase 1 clinical trial (NCT04426695).>° The antibodies are generated from humanized mice and con-
valescent humans, both proved to be efficiently targeting the receptor-binding domain of the spike protein.’®
There are expected to be 1860 participants in the Phase 1 trial, and the study completion date is going to be in
June 2021.

2.4 | Virus-release blockers: Oseltamivir

This category of medication inhibits the release of the virus from the infected cell, thus blocks virus transmission. A
typical drug in this category is oseltamivir. Studies in influenza viruses show that it binds to and inhibits the virus
neuraminidase enzyme, which facilitates virus release from the infected cell.”* There are currently no completed
clinical trials for oseltamivir's efficacy in treating COVID-19. Four ongoing clinical trials are dedicated to assess the

efficacy and safety of oseltamivir.>”

2.5 | Non-virus-targeting treatments: Tocilizumab, dexamethasone, CD24Fc, and
dapagliflozin

Cytokine storm is a crucial factor that leads to acute respiratory distress syndrome and multiple organ failure,
which would suddenly exacerbate the disease and finally lead to death. Therefore, inhibition of the cytokine storm

t.°? Drugs in this category include interleukin-6 (IL-6) inhibitors (to-

is an important step in COVID-19 treatmen
cilizumab) and CD24Fc. Besides these treatments that directly target cytokines, metabolic modulators can also
reduce adverse events brought by SARS-CoV-2 infection. These drugs include the corticosteroid drug dex-

amethasone and SGLT2 inhibitor dapagliflozin.

2.6 | Tocilizumab

IL-6 level is highly positively related to COVID-19 disease severity. The monoclonal antibody tocilizumab, an IL-6
receptor antagonist, is used in most cases of COVID-19 treatment where IL-6 is targeted. An observational study
on 20 patients with severe or critical COVID-19 infection showed that the use of tocilizumab immediately im-
proved clinical outcomes.?® Another observational study in 15 patients, 13 of which are severely or critically ill,
also demonstrated that tocilizumab may be a useful therapy, and the repeated dose is recommended for patients

|2(>

with elevated IL-6 level.”” However, two cases with adverse effects are reported, and the author advised clinicians

to be cautious about hypertriglyceridemia when using tocilizumab.>®
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2.7 | CD24Fc

CD24Fc, composed of the nonpolymorphic regions of CD24 attached to the Fc region of human IgG1, is an
immunomodulator that can suppress the expression of multiple cytokines.>® It is currently in Phase 2/Phase 3
clinical trial stage, and the current randomized, double-blind, placebo-controlled Phase 3 trial (NCT04317040)
evaluates the safety efficacy of CD24Fc in treating COVID-19 in the cohort of 230 patients.®> The study

completion date is expected to be in December 2020.%°

2.8 | Dexamethasone

Dexamethasone is an FDA approved synthetic corticosteroid that suppresses the immune system by inhibiting
naive T cell proliferation and differentiation,” and is the first-line treatment for immune-related complications. A
large-scale randomized, controlled, open-label trial involving 6425 patients observed that dexamethasone reduced
the 28-day mortality rate by one-third in patients receiving invasive ventilation, and by one-fifth of patients

27 1t does not reduce the mortality rate in patients not requiring

receiving oxygen but not invasive ventilation.
oxygen support.”” Metabolic side effects of dexamethasone include a mild increase of blood glucose level,>®
ocular hypertension, and cataract,”® neuropsychological side effects such as mood and behavior change,”’ and
osteoporosis.”® However, these adverse effects are mostly associated with long-term high-dose dexamethasone
treatments, whereas its benefit-risk profile is favorable for short-term treatments.”” WHO is in the process of

adding dexamethasone into COVID-19 treatment guidelines.>’

2.9 | Dapagliflozin

Dapagliflozin is a sodium-glucose cotransporter-2 (SGLT2) inhibitor and is hypothesized to be able to prevent
serious side effects caused by SARS-CoV-2 infection by preventing low PH in cells.®® However, it is suggested to be
carefully used together with insulin to prevent the side effect of euglycemic diabetic ketoacidosis.°® A randomized,
double-blind, placebo-controlled Phase 3 study (NCT04350593) is being carried out to evaluate the safety and
efficacy of dapagliflozin in preventing adverse events in a cohort of 900 COVID-19 patients.>” The completion date
is expected to be in December 2020.%°

Finally, it is worth noting that there are no drugs passed clinical trials and approved by FDA for COVID-19 by
the time this review is written. Phase 3 trials compare a new drug to the standard-of-care drug, and Phase 4 trials
test new drugs approved by the FDA for short-lived and long-lasting side effects and safety.® For the COVID-19
situation, drugs passed Phases 3 or 4 may be considered as passed clinical trials. There are currently nine com-
pleted Phase 3 trials and two completed Phase 4 trials concerning COVID-19 on the clinicaltrials. gov webpage,
involving drugs such as remdesivir (positive), favipiravir (result not posted), hydroxychloroquine (unclear, larger
data set needed; negative), baricitinib (result not posted), methylprednisolone therapy (result not posted),
liposomal lactoferrin (result not posted), and danoprevir (result not posted).*”

3 | DRUGS THAT HAVE BEEN PROPOSED BY COMPUTATIONAL
WORKS

Significant efforts have been put into the computational works for prioritizing previous FDA-approved drugs for
repurposing to treat COVID-19. In this section, we summarized the general categories of computational drug

repurposing methods to help reduce duplicated works (Table 2).
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TABLE 2 Drugs proposed by computational methods

Author

Protein in focus

Category 1. Network-based algorithms

Zhou et al.®?

Cava et al.®

119 proteins in the HCoV-host interactome
network

Angiotensin-converting enzyme 2 (ACE2)

Category 2. Expression-based algorithms

He and
Garmire®”

Category 3. Docking simulation or protein structure-based algorithms

Wu et al.®®

Al-Khafaji
et al.%¢

Shah et al.®”

Kandeel and
Al-Nazawi®®

Mahanta et al.*”

Pant et al.”®

Wang”*

Odhar et al.”?

ACE2

18 SARS-CoV-2 proteins and 2 human
proteins: Nsp1, Nsp3, Nsp7-Nsp8, Nsp9-
Nsp10, Nsp14-Nsp16, 3CLP™, E-channel
(E protein), ORF7a, Spike, ACE2, C-
terminal RNA binding domain (CRBD), N-
terminal RNA binding domain (NRBD),
helicase, RNA-dependent RNA
polymerase (RdRp), TMPRSSS2

SARS-CoV-2 main protease (MP™ or 3CLP™)

SARS-CoV-2 main protease (MP™ or 3CLP™)

SARS-CoV-2 main protease (MP™ or 3CLP™)

SARS-CoV-2 main protease (MP™ or 3CLP™)
SARS-CoV-2 main protease (MP™ or 3CL"™)

SARS-CoV-2 main protease (MP™ or 3CLP™)

SARS-CoV-2 main protease (MP™ or 3CLP™)

Proposed drugs/molecules

Irbesartan, toremifene, camphor, equilin,
mesalazine, mercaptopurine, paroxetine,
sirolimus, carvedilol, colchicine,
dactinomycin, melatonin, quinacrine,
eplerenone, emodin, oxymetholone

LMB-2, L-778123, didanosine, lomustine,
fumarate, vatiquinone, lentinan, flutamide,
photofrin, medroxyprogesterone acetate,
dihydrokainate, letrozole, mesalamine,
cerulenin, thiabendazole, trichostatin,
nimesulide, fluticasone propionate,
semapimod, iratumumab, ivacaftor, SGN-
30, retinol, QBW251, lumacaftor, apigenin,
NS-398, tezacaftor, naproxen,
esflurbiprofen, mefenamic acid, VK-19911,
alglucosidase alfa, ibutilide, fumarate,
amiodarone, hydrochloride, venetoclax

COL-3, CGP-60474

Ribavirin, valganciclovir, -Thymidine,
aspartame, oxprenolol, lymecycline,
chlorhexidine, alfuzosin, cilastatin,
famotidine, valganciclovir, ceftibuten,
fenoterol, fludarabine, etc. (only listed part
of the results)

Saquinavir, ritonavir, remdesivir, delavirdine,
cefuroxime axetil, oseltamivir, prevacid

Lopinavir, asunaprevir, remdesivir,
CGP42112A, indinavir, ritonavir, ABT450,
marboran (methisazone), galidesivir

Chromocarb, ribavirin, telbivudine, vitamin
B12, aminophylline, nicotinamide, triflusal,
and so forth (only listed part of the results)

Viomycin
Cobicistat, ritonavir, lopinavir, darunavir

Carfilzomib, eravacycline, valrubicin, lopinavir,
elbasvir

Conivaptan, olaparib, loxapine, sonidegib,
azelastine, idelalisib, tolvaptan,
perampanel, suvorexant, ponatinib
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TABLE 2

Author

Mittal et al.”®

Das et al.”*

Farag et al.””

Gimeno et al.”®

Elfiky””

Gupta et al.”®

Beck et al.”’

Elmezayen
et al.®°

Hall and Ji®*

Batra et al.??

Oliveira et al.?®

Park et al.®

(Continued)

Protein in focus

SARS-CoV-2 main protease (MP™ or 3CLP™)

SARS-CoV-2 main protease (MP™ or 3CLP™)

SARS-CoV-2 main protease (MP™ or 3CLP™)

SARS-CoV-2 main protease (MP™ or 3CLP™)

RdRp

SARS-CoV-2 envelope (E) protein

SARS-CoV-2 main protease (MP™ or 3CLP™),
RdRp, Helicase, 3'-5" exonuclease,
endoRNAse, 2'-O-ribose
methyltransferase

SARS-CoV-2 main protease (MP™ or 3CLP™),
human transmembrane protease serine 2
(TMPRSS2)

SARS-CoV-2 main protease (MP™ or 3CLP™),
Spike (S) protein

Spike (S) protein or Spike (S) protein-ACE2
interface complex

Spike (S) protein

Spike (S) protein

Note: Bold words indicate drugs in clinical trials reviewed above.
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Proposed drugs/molecules

Leupeptin, hemisulphate, pepstatin A,
nelfinavir, birinapant, lypression, octreotide

Ritonavir, emetine, lopinavir, indinavir (only
listed part of the results)

Darunavir, mitoxantrone, nelfinavir, moexpril,
daunorubicin, rosuvastatin, saquinavir,
metamizole, bepotastine, benzonatate,
atovaqoune

Perampanel, carprofen, celecoxib, alprazolam,
trovafloxacin, sarafloxacin, ethyl
biscoumacetate

Ribavirin, remdesivir, sofosbuvir, galidesivir,
tenofovir, hydroxychloroquine, cefuroxime,
favipiravir, setrobuvir, YAK, IDX-184

Belachinal, macaflavanone E, vibsanol B

Atazanavir, ganciclovir, lopinavir, ritonavir,
darunavir, and so forth (only listed part of
the results)

Talampicillin, lurasidone, rubitecan, loprazolam
(only listed part of the results)

Cangrelor, NADH, flavin adenine dinucleotide
(FAD) adeflavin, comeprol, Coenzyme A,
tiludronate, zanamivir, bortezomib, saquinavir,
cangrelor, carfilzomib, indinavir, remdesivir

Pemirolast, sulfamethoxazole, valaciclovir,
sulfamerazine, tazobactam, nitrofurantoin

Suramin sodium, 5-hydroxytrytophan,
dihydroergocristine mesylate, quinupristin,
nilotinib, dexamethasone-21-
sulfobenzoate, tirilazad, selamectin,
acetyldigitoxin, doramectin

CR3022 human antibody, F26G19 mouse
antibody, D12 mouse antibody

Zhou et al.®? integrated HCoV-host interactions, drug-target network and human protein interactome together

and proposed 16-drug and three-drug combinations for SARS-CoV-2 infection treatment. In this study, CoV-

associated host proteins were collected and based on these proteins, HCoV-host interactome was generated. Then,

potential drugs are identified by measuring network proximity between the HCoV-specific network and the drug-

target network in the human interactome.? Another study focused on the main cell receptor of SARS-CoV-2, the
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angiotensin-converting enzyme 2 (ACE2).°® A protein-protein interaction network containing genes coexpressed
with ACE2 was constructed, and focus was placed on genes that were already associated with drugs. A total of 36
potential drugs were proposed by this method.®*

3.2 | Expression-based algorithms

In an expression-based drug repurposing study, based on the statement that inhibition of the angiotensin-
converting enzyme 2 (ACE2) may be the mechanism of lung injury induced by SARS-CoV-2, two potential re-
purposed drugs were proposed for COVID-19 treatment since they reversed the change of gene expression
patterns caused by ACE2 inhibitor.*

3.3 | Docking simulation or protein structure-based drug design

There are a comparatively large number of studies under this category, which can be further divided into two
subcategories:

(a) Docking simulation for small molecule treatment predictions: The general steps for this kind of drug
design method are (1) predict target protein structures using homology modeling or retrieve established crystal
structures from databases; (2) screen for molecules that can bind to the target proteins using virtual docking
simulation; (3) validation of the most promising molecules using methods such as molecular dynamic simulation,
and so forth (Figure 2). Differences between studies mainly lie in the choice of protein targets, the docking sites
on the protein targets, the drug/molecule databases, and the virtual screening algorithms. Several viruses or
host proteins that are crucial for virus invasion or replication are in focus for drug design. SARS-CoV-2 3C-like
main protease (3CLP™ or MP™), as the first SARS-CoV-2 protein whose crystal structure has been discovered,®’
becomes the target of most molecular docking drug screening studies.®®”">8%¢1 To highlight a few, Gimeno

.76 integrated the predictions of three molecular docking softwares (Glide, FRED, and AutoDock Vina), only

eta
selecting the drugs that are predicted to have high binding affinity to MP™ by all the three softwares.”® Wang”’
and Mittal et al.”® both used molecular dynamic simulation followed by binding free energy calculations to
validate the top docking molecules. Other popular targets include RdRp,”” spike (S) protein,®*#* and spike (S)
protein-human ACE2 interface.®? Besides, several studies investigated relatively novel targets, such as cellular
transmembrane protease serine 2 (TMPRSS2)%° and SARS-CoV-2 envelope (E) protein.”® Instead of focusing on
only one or two proteins, there are some large-scale studies that focused on more than two protein targets. An

1.°> modeled and screened for drugs against 18 SARS-CoV-2 proteins and two

early study carried out by Wu et a
host proteins.® And another study by Beck et al.”? screened for drugs against five virus proteins using their
own pretrained deep learning-based drug-target interaction model.”” Finally, Shi et al.®® developed a new
molecular docking-based web server that facilitates protein structure-based drug screening. As the structure of
RdRp) has been established very recently,”® we forecast that more inhibitors may be proposed for this protein
target.

(b) Docking simulation for antibodies treatment: The binding of SARS-CoV-2 spike (S) protein with human
ACE2 protein is believed to facilitate SARS-CoV-2 to enter human cells,®”®® making this process a good target.
Using antibody-antigen docking simulation, Park et al.®* proposed that the human antibody CR3022 may have a
high affinity to SARS-CoV-2 spike protein, and thus, it may be a potential treatment of COVID-19.

Besides drug repurposing, computational methods are also used for vaccine design. Multiple in-silico studies
have been carried out to design multiepitope vaccines against SARS-CoV-2.27"7* General workflow of vaccine
design includes the retrieval of antigenic protein sequences, predicting potential epitopes, construction of the

vaccine, and validating the binding ability of the designed vaccine with TLR3 immune receptor using docking
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FIGURE 2 |llustration of computational drug repurposing methods. A, Network-based algorithms, using the
work of Zhou et al.°? as an example; B, Expression-based algorithms, using the work of He and Garmire®” as an
example; C, General pipeline of docking simulation-based drug design (Protein structures credit to RCSB PDB
3AWO [https://www.rcsh.org/structure/3AWO0] and 6LU7 [https://www.rcsb.org/structure/6LU7]. Sequence
alignment performed by UniProt [https://www.uniprot.org/align/]). Note that the root mean standard

deviation plot is only for illustration [Color figure can be viewed at wileyonlinelibrary.com]

89 nucleocapsid,c”O

simulation. Antigenic proteins used in these studies include SARS-CoV-2 spike glycoprotein,
ORF3a, and nonstructural proteins.”*

It is worth mentioning that for this part of the review, we mostly focused on the repurposing of currently
approved drugs or drug candidates under clinical trials. There are a number of enlightening studies that focus on
finding new drugs from plants or other natural products or designing new molecules’” that are not included here

since they are outside the scope of this review.

4 | DRUGS THAT HAVE BEEN PROPOSED BY IN VITRO
PROTEIN-BINDING ASSAYS

Studies have been carried out for genome-wide in vitro binding screening of the virus proteins and human proteins,
and drugs that directly target these proteins can thus be proposed.>?>7* In this section, we will review the
methods and progress in this area (Table 3).

Gordon et al.”® cloned, tagged, and expressed 26 of the SARS-CoV-2 proteins in human cells, and then
identified 332 SARS-CoV-2-human protein interactions using affinity-purification mass spectrometry, among which
67 druggable proteins and 69 potential drugs are identified. Li et al.”” first used SARS-CoV-2 genome-wide yeast-
two hybrid and co-immunoprecipitations to identify the intra-viral protein-protein interactions. Then they cloned

and overexpressed each of the virus genes and determined host-virus interactome using affinity-purification, liquid
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TABLE 3 Drugs proposed by in vitro protein binding assays
Author Main method Proposed drugs/molecules

Gordon et al.”®>  AP-MS Silmitasertib, valproic acid, haloperidol, entacapone, indomethacin,
metformin, ponatinib, ribavirin, migalastat, and so forth (only listed part of
the results)

Li et al.?* Y2H and co-IP, Does not contain screening for drugs, only identified protein-protein
AP-LC-MS interaction network
Jin et al.®® FRET Ebselen, shikonin, tideglusib, PX-12, disulfiram, carmofur

Note: Bold words indicate drugs in clinical trials reviewed above.

Abbreviations: AP-LC-MS; affinity purification, liquid chromatography-mass spectrometry; FRET, fluorescence resonance
energy transfer; co-IP, co-immunoprecipitation; Y2H, yeast-two hybrid.

chromatography and mass spectrometry (AP-LC-MS). Jin et al.?° purified MP™ and then used fluorescence
resonance energy transfer assay to screen through the MP™ binding ability of more than 10,000 compounds

including approved drugs or drug candidates.®”

5 | OUTLOOK

In this review, we summarized drugs against COVID-19 proposed by clinical trials, computational approaches
and in vitro protein binding assays. From the clinical trials session, we conclude that there is not a single drug
for which consistent positive response has been reported yet, and large-scale controlled trials are in urgent
need. Additionally, the clinical trials reviewed in this study reveal that there are differences in drug efficacy
between mild or moderate infected patients and severe or critical patients. Thus, analysis and reports taking
into account these factors may be informative. From the computational study summary, we learned that some
of the drugs proposed by computational methods have already been put into clinical use, which validates the
methods in some way.

Current small-scale pilot trials point to the necessity for future large-scale, well-controlled trials to resolve a
certain inconsistency in results, as disagreements in the reported drug response can root from differences in
dosage, baseline biometrics and population groups. With more clinical trial results coming in, they will also enable
meta-analysis to stratify these variables across centers and trials. Besides, an in-depth reflection on the causes and
solutions of challenges faced by clinical trials, such as small sample sizes, result consistency, and efficiency of result
delivery would be very helpful for future clinical trials.

With the effort of researchers around the world, a variety of unconventional drugs and treatments are
explored. Synthetic peptide against COVID-19, for example, is one of the novel treatment options that deserve
attention due to its relatively fast and inexpensive synthesis process and better safety. There are currently a
handful of peptide treatments against COVID-19 under clinical trials, such as angiotensin peptide (1-7)
(NCT04375124) and LSALT peptide (NCT04402957), and several suggested by studies and clinical trials, such as
modified a-ketoamide inhibitors’® and solnatide.”® Future reviews may consider providing a more detailed
summary of the development of peptide treatments.

Additionally, antibodies and vaccines play crucial roles in the battle against COVID-19. Future work may
provide more complete and in-depth reviews focusing on the development of antibodies and vaccines against
COVID-19.
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