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Mathematical problem posing (MPP) has been at the forefront of discussion for the
past few decades, and a wide range of problem-posing topics have been studied.
However, problem posing is still not a widespread activity in mathematics classrooms,
and there is not yet a general problem-posing analogue to well-established
frameworks for problem solving. This paper presents the state of the art on the effort to
understand the cognitive and affective processes of problem posing as well as task
variables of problem posing at the individual, group, and classroom levels. We end this
paper by proposing a number of research questions for future studies related to task
variables and processes of problem posing.

POSING A PROBLEM ABOUT PROBLEM POSING — PROMPT DESIGN

To open the floor for a discussion about problem posing, we invite readers to engage
with a problem-posing activity. Consider the initial Situation A and several related
prompts for problem posing below. How would the different prompts impact your
problem posing based on Situation A?

Situation A: ABC is an equilateral triangle. D, E, and F are midpoints of the sides of
AABC. Show that the area of ADEF is Y the area of AABC.

Prompt 1A: Based on the above problem, use the “what if not” strategy to pose two
mathematical problems.

Prompt 2A: Based on the above problem, use the “what if not” strategy to pose as many
mathematical problems as you can.
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Prompt 3A: Based on the above problem, use the “what if not” strategy to pose two
“easy” mathematical problems and two “difficult” mathematical problems, where the
relative difficulty takes into account the levels of students.

Five of us independently responded to the question (How would the different prompts
impact your problem posing based on Situation A?). A clear difference between the
prompts is in the request for the number of posed problems: two in Prompt 1A, two
easy and two difficult in Prompt 3A, and “as many as you can” in Prompt 2A. Further,
the addition of “relative difficulty” and “levels of students” in Prompt 3A is
appropriate for a problem-posing activity with teachers and can be omitted in work
with students. However, the reference to difficulty may entice problem posers to
consider a greater variety of problems and attend to what can make a problem easy or
difficult. Moreover, problem posers’ interpretation of “difficulty” can be a fruitful
venue for investigation.

Common to Prompts 1A, 2A, and 3A is the reference to the “what if not” strategy. As
such, the expected variations in problem posing can attend to any of the problem
attributes:

V1: What if ABC is a not-equilateral (right angle, isosceles, scalene) triangle? What
then is the ratio of the areas of AABC and ADEF?

V2: What if D, E, and F are not midpoints but divide the sides in some common ratio.
What then is the ratio of the areas of AABC and ADEF?

V3: What if the ratio of the areas of AABC and ADEEF is a given R. How then should
we place points D, E, and F on the sides of ABC to obtain the given ratio of the triangle
areas?

V4: What if we are not considering AABC and ADEF? What other triangles are
determined in Situation A? What is the relationship between their areas?

VS5: What if the starting figure is not a triangle but a quadrilateral (or a special
quadrilateral, like a square) and the “inner” quadrilateral is constructed by connecting
mid points (or points placed on the sides of that quadrilateral) using a given ratio. What
then is the relationship between the starting areas and the inner quadrilaterals? What if
it is not a quadrilateral but any polygon?

V6: What if we aren’t looking for areas? Can you determine any relationship between
the attributes of AABC and ADEF?

Situation A mentions the relationship between areas. As such, five of the six examples
above explicitly mention areas of triangles. But a particular focus can be on the prompt
rather than on the situation. Consider Situation B and several related prompts below.
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Situation B: D, E, and F are midpoints of the sides of equilateral triangle AABC.

Prompt 1B: Consider the (ratio of) areas of AABC and ADEF. Use the “what if not”
strategy to pose two mathematical problems.

Prompt 2B: Consider the (ratio of) areas of AABC and ADEF. Use the “what if not”
strategy to pose as many mathematical problems as you can.

Prompt 3B: Consider the (ratio of) areas of AABC and ADEF. Use the “what if not”
strategy to pose two “easy” mathematical problems and two “difficult” mathematical
problems, where the relative difficulty takes into account the levels of students.

The focus on areas appears in the theme itself in the case of Situation A and in the
prompts in the case of Situation B. This is the main difference between the two
situations so far. The problem-posing variations V1 to V6 responding to prompts 1B,
2B, and 3B are not expected to be different from those resulting from Prompts 1A, 2A,
and 3A. However, Situation B is more open and can be followed up with more
open-ended prompts:

Prompt 4B: Based on the described Situation B, pose two mathematical problems
related to ratios of measures of the attributes in the problem.

Prompt 5B: Based on the described Situation B, pose two mathematical problems
related to ratios of measures (e.g., area, lengths, perimeter) of the attributes (e.g.,
segments, areas) in the problem.

Prompt 6B: What can you say about the described Situation B? Formulate this as
questions about the different attributes and the relationships among them.

Prompts 4B and 5B both specify the number of problems as well as the focus on ratios
of measures of the attributes. However, Prompt 5B explicitly suggests what measures
and what attributes are to be considered. We consider Prompt 6B to be very open in
terms of attributes in the focus and the number of problems to be considered. The
choice to use a more open or a more specific prompt can depend on the population of
problem posers and on their previous experience. Furthermore, the last three prompts
(4B, 5B, and 6B) do not mention the “what if not” or any other particular strategy.
Although the “what if not” strategy is a good tool for starting a problem-posing
activity, other formulations can open the task for creative adventures.

For example, Prompt 6B can be modified to appeal to the affective domain of problem
posing.
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Prompt 7B: What can you say about the described Situation B? Formulate this as
questions about the different attributes and the relationships among them that for YOU
would be interesting to answer.

Prompt 7B can be used with either teachers or students. Here are several examples of
what was “prompted” by Prompt 7B for us.

V7: A turtle walks along the sides of an outer AABC and the inner ADEF, beginning at
point A and finishing at the same point. Can it walk so that every segment would be
walked only once? If yes, suggest as many as possible trails for the turtle. If not, why
not?

V8: AABC is an equilateral triangle. D, E, and F are points of the sides ofAABC that
divide the sides in the same ratio. That is, AD:DB = BE:EC = CF:FA = x:y. What
should the ratio x:y be so that AADF, ABDE, and ACEF would become: (1) an acute
angle; (2) a right angle; and (3) obtuse?

V9: AABC is an equilateral triangle. D, E, and F are points of the sides of AABC that
divide the sides in ratios X, Y, and Z. Suppose AD:DB=X; BE:EC=Y;and CF:FA=Z.
Is there a relationship between the ratios X, Y, and Z and the ratio of the areas of AABC
and ADEF (where X = Y = Z it is a variation of V8)?

V10: AABC is an equilateral triangle. D, E, and F are midpoints of the sides of triangle
ABC.

1. Show that the area of ADEF is % the area of AABC and the perimeter of DEF is
1/3 the perimeter of AABC.

2. Consider the following process: The middle triangle DEF is removed, midpoints
of the sides of three remaining triangles (AAFE, AFBD, and AEDC) are drawn,
and each of these three triangles is split into four triangles as has been done for
the initial triangle ABC. Then, again, the middle triangle in each of the three
triangles 1s removed. What would be the area and the perimeter of the figure
resulting from all the remaining triangles?

3. Imagine that the above process is repeated many times. Approximate the area
and the perimeter of the figure consisting of all the remaining triangles after 100
iterations.

4. What would be the area and the perimeter when the number of iterations
approaches infinity?
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V11: What transformation(s) can map AABC to ADEF?

V12: Reverse construction: Given ADEF, which is the “inner” triangle? Construct
AABC such that points D, E, and F are midpoints of AB, BC, and CA. Easy: Start with
equilateral ADEF. Harder: Start with scalene ADEF. Very hard: Construct AABC such
that points D, E, and F divide the sides of AABC in the given ratio.

We invite readers to examine the suggested prompts and consider which ones, if any,
they will choose when working with students or teachers in their respective
environments. What considerations determine your preference? What task variables
are featured? Further, will the choice of a prompt be different if it is intended to be used
for research data collection? What additional or different considerations will determine
your choice? We also invite readers to engage in prompt design, considering Situation
B as a prelude to the forthcoming discussion of processes and variables of problem
posing at individual, group, and classroom levels. In the following sections, we discuss
problem-posing research with regard to processes and task variables.

PROBLEM-POSING PROCESSES: PROGRESS

Mathematical problem posing (MPP) has been at the forefront of discussion for the
past few decades (Brown & Walter, 1983; Cai, 1998; Ellerton, 1986; English, 1998;
Kilpatrick, 1987; Silver, 1994; Silver & Cai, 1996). Recent years have seen increased
research activity in the domain of problem posing as reflected in journal special issues
(Cai & Hwang, 2020; Cai & Leikin, 2020; Singer, Ellerton, & Cai, 2013), books (e.g.,
Felmer, Pehkonen, & Kilpatrick, 2016; Singer, Ellerton, & Cai, 2015), and
conferences (e.g., [ICME-14: TSG 17). This increased research on problem posing has
also been reflected in the wide range of problem-posing topics studied (see Cai,
Hwang, Jiang, & Silber, 2015, and Singer et al., 2013, for examples of such topics) and
review papers (e.g., Baumanns & Rott, 2021; Cai & Leikin, 2020; Cai et al., 2015).

One of the important topics studied is the processes of problem posing as experienced
by students and teachers. Although we know that students and teachers are capable of
posing mathematical problems, we have a considerably less fine-grained
understanding of how they go about posing those mathematical problems in any given
situation. Some researchers have identified general strategies students may use to pose
problems (e.g., Brown & Walter, 1983; Cai & Cifarelli, 2005; Christou, Mousoulides,
Pittalis, & Pitta-Pantazi, 2005; Cifarelli & Cai, 2005; English, 1998; Koichu, 2020;
Koichu & Kontorovich, 2013; Pittalis, Christou, Mousoulides, & Pitta-Pantazi, 2004;
Rott, Specht, & Knipping, 2021; Silver & Cai, 1996). Others have explored some of
the variables that may influence students’ problem posing (e.g., Kontorovich, Koichu,
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Leikin, & Berman, 2012; Leung & Silver, 1997; Silber & Cai, 2017). Still others have
explored the affective processes of mathematical problem posing (e.g., Schindler &
Bakker, 2020).

However, there is not yet a general problem-posing analogue to well-established
frameworks for problem solving such as Podlya’s (1945) four phases of problem
solving, Garofalo and Lester’s (1985) cognitive-metacognitive processes of problem
solving, and Schoenfeld’s (1985) problem-solving attributes. More research is needed to
develop a broadly applicable understanding of the fundamental processes and
strategies of mathematical problem posing. For now, we remain in the beginning
stages of understanding the cognitive and affective processes of problem posing, and
this is one of the reasons for which this activity is implemented in mathematics
instruction in a rather cursory way (Cai & Hwang, 2020; Cai & Leikin, 2020).

Even though the products of problem posing (i.e., new problems) are important as they
constitute the heart of mathematical activities, problem-posing processes are equally
important because it is in the processes that problem posers come up with ideas for new
problems, evaluate those ideas, and develop or reject them (Baumanns, in press).

Earlier attempts at understanding problem-posing processes

In several earlier studies (e.g., Cai & Hwang, 2002; English, 1998; Silver & Cai, 1996),
researchers have tried to use students’ posed problems as a base for examining
problem-posing processes. For example, Cai and Hwang (2002) used pattern situations
to examine students’ problem posing and problem solving. They observed that the
sequence of pattern-based problems posed by students appeared to reflect a common
sequence of thought when solving pattern problems (gathering data, analyzing the data
for trends, making predictions). Silver and Cai (1996) found that students tend to pose
related and parallel problems when they were asked to pose three problems. They
observed a clear tendency of students to pose later problems by varying a single
element in earlier problems, which is known as the “what if not” strategy (Brown &
Walter, 1983) referred to in several of the prompts considered in the previous section.

Earlier studies have also tried to identify problem-posing strategies as a way to
understand problem-posing processes. There are consistent findings about the use of
the “what if not” strategy in problem posing (Cai & Ciffarelli, 2005; Cifarelli & Cai,
2005; Lavy & Bershadsky, 2003; Song, Yim, Shin, & Lee, 2007). For example, Lavy
and Bershadsky (2003) identified two stages to pose problems. In the first stage, all the
attributes included in the statement of the original problem are listed. In the second
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stage, each of the listed attributes is negated by asking “what if not attribute k?” and
alternatives are proposed. Each of the alternatives could yield a new problem.

Phases of the problem-posing process

For problem solving, several models of the problem-solving process have been
developed, initiated by reflections on their processes by mathematicians, most notably
Poincaré (1908) and Polya (1945). Later, researchers from mathematics education
picked up this topic; important representatives of such research are Mason, Burton, and
Stacey (1982), Fernandez, Hadaway, and Wilson (1994), and Schoenfeld (1984; see
Rott et al., 2021, for an overview). For problem posing, on the other hand, as stated
above, there 1s no well-known and generally accepted phase model (cf. Cai et al., 2015,
p. 14). Some researchers argue that both problem solving and problem posing are
strongly related and that there might be no need for a specific problem-posing-process
model; however, we argue that cognitive processes in both kinds of processes are
different enough to warrant individual models (cf. Baumanns & Rott, 2022; Pelczer &
Gamboa, 2009).

Before going into detail regarding research on problem-posing models, we ponder the
question of why such models are important. Process models can be used for normative
and descriptive purposes (Rott et al., 2021). On the one hand, normative models sketch
a (more or less) ideal process, stripped of unnecessary detours, that can be used in
teaching and instruction. For example, Polya’s four-step problem-solving model is a
rather simple model that in its sequence of steps does not account for errors, being
stuck, or realizing that the problem formulation needs to be read again. However, it
was never intended to map real processes in their “non-smooth” nature but to instruct
problem solvers in what steps to do and how to become a better problem solver or
poser, respectively. On the other hand, descriptive models are designed to account for
non-ideal sequences of steps in processes. Such models are used by researchers (or
educators) to interpret processes they have observed, make sense of their observations,
look for patterns, compare processes by experts and novices, and so on. Reviews of the
literature reveal that for problem solving, mostly normative and only very few
descriptive models have been developed (Rott et al., 2021) and, for problem posing,
only a handful of models has been developed at all (Baumanns & Rott, 2022). In their
review, Baumanns and Rott (2022) identified three models of the problem-posing
process and added their own—all of which are descriptive phase models. These five
models will now be described briefly.
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The first model identified by Baumanns and Rott is that of Cruz (2006), who described
the process of problem posing in teaching-learning situations and, thus, included
educational needs and goals (see Figure 1). After setting a goal, a teacher formulates a
problem and tries to solve it, which might fail or lead to regressions. After the problem
has been solved, the problem is reflected upon, possibly improved to meet the goals,
and then selected or rejected. This is a normative model of the problem-posing process
intended to guide teachers; actually, it is based on a professional development program
for teachers.

PROBLEM
IMPROVING [
EDUCATIVE |1 8 PROBLEM
NEEDS SOLVING
v 4
2 PROBLEM |47
FORMULATING 3

Figure 1. Problem-posing phase model by Cruz (2006)

The second model, based on an analysis of problem-posing processes, is that by
Pelczer and Gamboa (2009), who developed a descriptive phase model with five
phases, namely setup, transformation, formulation, evaluation, and final assessment.
The setup phase is the starting point, including a reflection about the context of a given
situation and the required knowledge. In the transformation phase, the given situation
is analyzed and possible modifications are reflected upon and then executed. During
the formulation phase, problem formulations and possible alterations are explored. In
the next phase, the posed problem is evaluated to see whether it satisfies the initial
conditions. In the final phase, much like Pdlya’s looking-back phase, the whole
process is reflected upon.

Koichu and Kontorovich (2013) also developed a descriptive model. Based on two
activities by prospective mathematics teachers called “success stories,” they identified
four phases of problem posing. The first phase is called warming-up, in which
spontaneous ideas and typical problems regarding a given situation are posed. The next
phase is called searching for an interesting mathematical phenomenon, in which the
initially posed problems are critically considered and modified. In the next phase,
problem posers are hiding the problem-posing process in the problem formulation,
which was a behavior that had not been observed before (Koichu & Kontorovich,
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2013, p. 82). In the final reviewing phase, the posed problems are evaluated and
possibly tested with peers.

Zhang et al. (2022) described the problem-posing process as comprised of the
following three major steps: (a) understanding the task (i.e., the context of the
problem-posing task); (b) constructing the problem involving selecting and

determining which elements to be used and recognizing the relationships among them
to construct a new problem space; and (c) expressing the problem which involves
organizing the language to express the problem space obtained in the previous stage.

Baumanns and Rott (2022) then developed their own descriptive phase model, the
development of which was based on the problem-posing processes of 64 preservice
mathematics teachers (see Figure 2). After an initial sifuation analysis, the model
allows for differentiation between activities of variation, in which a given problem is
altered, and generation, in which a new problem is generated—a differentiation that
had been proposed by Silver (1994) but that had not been made in an operationalized
way with empirical data. The duplication of Figure 2 aims to denote that after one
problem has been posed, the process can be repeated for posing the second problem,
third problem, and so on.

l Structured situation |

l

Situation

!

Situation
Analysis

Y Y
‘ Accepted or rejected problems l— ‘ Accepted or rejected problems }—I

Figure 2. Problem-posing phase model by Baumanns and Rott (2022)

As is the case for different problem-solving models, different problem-posing models
serve different goals. For example, Koichu and Kontorovich described a
problem-posing process in which one high-quality problem gradually emerges from
the pool of initial problem-posing ideas, whereas Baumanns and Rott’s (2022) model

PME 45 —2022 1-9



Cai, Koichu, Rott, Zazkis, & Jiang

attends to problem posing as a sequence of repeated problem-posing cycles where each
problem posed is considered to be a separate product.

Affective processes of problem posing

Regarding research on problem solving, the whole affective dimension, ranging from
emotions to attitudes to beliefs (Philipp, 2007), with a focus on beliefs, has proven very
useful and important (Schoenfeld, 1992). Regarding research on problem posing,
however, the affective dimension has only recently been systematically addressed by
means of a special issue in Educational Studies in Mathematics (Cai & Leikin, 2020).
This special issue, encompassing for example studies dealing with teachers’ beliefs
(Li, Song, Hwang, & Cai, 2020) or students’ motivation and self-efficacy (Voica,
Singer, & Stan, 2020), can only be the starting point of systematic research on affect in
mathematical problem posing. In our initial example, Prompt 7B capitalizes on affect
in problem posing.

TASK VARIABLES IN STUDYING PROBLEM POSING
Focusing on task variables

There are many ways in which mathematics education research might investigate the
cognitive and affective processes of problem posing in an effort to better incorporate
problem posing in the teaching and learning of mathematics (Cai et al., 2015). In this
paper, we focus on task variables to explore the affective and cognitive processes of
problem posing as has been successfully done in research on problem solving. There
are two main reasons for such a focus. The first is that we have prior research to draw
from on task variables in problem solving (Goldin & McClintock, 1984). The second
reason is that we have prior research to draw from on how specific characteristics of
mathematical tasks of different natures can affect teachers’ and students’ responses, in
terms of both thinking and instruction (e.g., Koichu & Zazkis, 2021; Liljedahl,
Chernoff, & Zazkis, 2007; Zazkis & Mamolo, 2018).

In mathematical problem-solving research conducted over the past several decades,
researchers have explored the effects of various task variables on students’ problem
solving. For example, several classifications of task variables related to problem
solving are considered in Goldin and McClintock (1984): syntax variables, content and
context variables, structure variables, and heuristic behavior variables. Syntax
variables are factors dealing with how problem statements are written. These factors,
such as problem length as well as numerical and symbolic forms within the problem,
may contribute to ease or difficulty in reading comprehension. Content variables refer
to the semantic elements of the problem, such as the mathematical topic or the field of
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application, whereas context variables refer to the problem representation and the
format of information in the problem. Structure variables refer to factors involved in
the solution process, such as problem complexity and factors related to specific
algorithms or solution strategies. Finally, heuristic process variables refer to the
interactions between the mental operations of the problem solver and the task.
Considering heuristic variables separately from subject variables (factors that differ
between the individuals solving the problem) is difficult because heuristic processes
involve the problem solver’s interactions with the task. However, the interaction
between heuristic processes and the other task variables can have a significant impact
on problem-solving ability.

Problem-posing tasks

Just as there are many types of problems and problem-solving tasks, there are many
types of problem-posing tasks. Although researchers have proposed categorization
schemes for problem posing (e.g., Baumanns & Rott, 2021; Stoyanova & Ellerton,
1996), in this paper, we adopt the idea of a problem-posing task as consisting of two
parts: situations and prompts (Cai & Hwang, in press), as exemplified in the first
section by means of an example in the context of geometry. The problem situation is
what provides the context and data that the students may draw on (in addition to their
own life experiences and knowledge) to craft problems. Figure 3 shows the various
types of problem situations (Cai & Hwang, in press).
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Figure 3. Types of problem situations in problem-posing tasks (Cai & Hwang, in
press).

In addition to a problem situation that provides context and data for students to use in
their posed problems, a problem-posing task must include a prompt that lets posers
know what they are expected to do (Cai & Hwang, in press). Depending on the goal of
the task, for the same problem-posing situation, there can be many kinds of prompts.
Some possible prompts include:

e Pose as many mathematical problems as possible

e Pose problems of different levels of difficulty (e.g., “Pose one easy problem, one
moderately difficult problem, and one difficult problem.”)

e Given a sample problem, pose similar problems (or problems that are
structurally different)

The choice of prompt can influence both the mathematical focus for the students and
the level of challenge or affective engagement that the posing task presents. Indeed,
from a research perspective, it is not yet well understood what prompts are best to pair
with a given problem situation or what prompts are most suited to achieving a desired
degree of challenge or to address particular learning goals. That is, research has not yet
illuminated the connections between different kinds of problem-posing prompts and
different cognitive processes in problem posers.

Admittedly, there are many different levels with which to approach research related to
task variables and their associated processes in problem posing. In this paper, we
describe three such levels: the individual level, group level, and classroom level.

Problem-posing prompts at the individual level

The first level with which we approach problem-posing research described in this
paper is the individual level. Research on problem-solving tasks has established that
different prompts can elicit different cognitive processes and impact students’
problem-solving performance (Goldin & McClintock, 1984). Thus, it is reasonable to
expect that the prompt in a problem-posing task also shapes students’ engagement with
the task. A few studies have investigated how different prompts in problem-posing
tasks impact students’ or teachers’ problem-posing performance and processes (e.g.,
Silber & Cai, 2017). Silber and Cai (2017) compared preservice teachers’ problem
posing using structured prompts and free prompts, finding that the preservice teachers
in the structured-posing condition more closely attended to the mathematical concepts
in each task. Moreover, the effect of the prompt depends, in part, on the setup of the
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task. For example, in their review of problem posing in textbooks, Cai and Jiang (2017)
identified four common types of problem-posing tasks: posing a problem that matches
the given/specific kinds of arithmetic operations, posing variations of a question with
the same mathematical relationship or structure, posing additional questions based on
the given information and a sample question, and posing questions based on given
information. A similar prompt (e.g., “Pose a mathematical problem.”) could be used
with many of these types of tasks, but its meaning to the student could be different for
each type.

Leung and Silver (1997) developed and analyzed a Test of Arithmetic Problem Posing
(TAPP) which they then used to examine how the presence of numerical information
affected preservice teachers’ problem-posing abilities. The instructions, which are the
prompts we are focusing on, include: “(1) Consider possible combinations of the
pieces of information given and pose mathematical problems related to the contexts;
(2) Do not ask questions that are not mathematical problems; (3) Set up as many
problems as you can think of; (4) Think of problems with a variety of difficulty levels.
Do not solve them; (5) Set up a variety of problems rather than many problems of the
same kind; (6) Include unusual problems that your peers might not be able to create; (7)
You can change the given information and/or supply more information” (Leung &
Silver, 1997, p. 8). The first prompt seems to be advice for the participants on how to
pose problems. The second prompt emphasizes that the problem posed should be
accepted by the community of mathematicians. The third through sixth prompts are
related to the “many,” “different kinds” or unusual, and “different difficulty levels”
mentioned earlier. The last prompt tells the participants what they can do with the data
(either change the given information or add more information). Responses were
analyzed along two dimensions: quality and complexity. With respect to quality, the
responses were classified as mathematical or nonmathematical, as plausible or
implausible, and as containing sufficient or insufficient information. With respect to
complexity, the responses were classified according to the arithmetic complexity of the
solution of the posed problem (i.e., the number of steps to answer the question).
Results from the TAPP indicated that the teachers performed better on tasks that
included specific numerical information than on tasks without specific numerical
information. This might “be due to their being able to ‘use the numbers’ in the given
information rather than having to supply their own numbers or rather than engaging in
the generation of qualitative reasoning problems which would not need to contain
numerical information” (Leung & Silver, 1997, p. 20). This result provides some
insight into how task variables can impact problem posing. Adapting the TAPP to
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examine how different characteristics of problem situations affect subjects’ problem
posing could offer a way to study the effect of other task variables on problem posing.

Zhang et al. (2022) replicated and extended the study by Leung and Silver (1997),
focusing on elementary school students’ problem posing. They examined the
cognitive process of mathematical problem posing in three stages: a)
input—understanding the task, b) processing—constructing the problem, and c)
output—expressing the problem. They also found that the provision of specific
numerical information in the problem-posing situation was associated with better
problem-posing performance but only in the stages of understanding the task and
constructing the problem stages. Students’ performance in the stage of expressing
posed problems did not show a significant difference with respect to provision of
specific numerical information. A similar pattern was revealed for the problem-posing
situations with or without contexts, favoring the task format with contexts. Students
performed better in all three problem-posing stages on the problem-posing situations
with contexts.

English (1998) compared third-grade children’s problem-posing performance in
formal and informal contexts. In the formal context, children were first asked to make
up a story problem to given number sentences like 12 — 8 = 4 and were then asked to
think of a completely different problem that could also be solved by the number
sentences. Three kinds of informal contexts were presented to the children. The first
informal context was a real-life situation presented in pictures. A photograph of
children playing with sets of colored items was shown to the participants, then they
were asked to make up story problems about something that could be seen in the
photographs. The second informal text was a real-life situation presented in
words—for example, a card with a statement like “Sarah has five dolls on one shelf and
four toy cars on another.” Then, the participants were asked to make the statement into
a problem they could solve. The third informal context was a piece of literature
supported with a list of numbers of native animals. English found that all children
offered a significantly greater number of basic change/part-part-whole problems for
their first attempt in the formal context, but many of them had difficulty creating a
second problem for the given number sentence. Comparatively, they generated more
compare problems in the informal context. Encouragingly, several participants even
posed multistep problems in the informal context.

Silber and Cai (2021) presented two kinds of problem-posing tasks to undergraduate
students taking a noncredited developmental mathematics course so they could be
ready to take the foundational mathematics courses required for their major. One kind
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of problem-posing task consisted of a purely mathematical context presented in a linear
graph (i.e., the Graph of a Line posing task). The other was a real-life context described
in words only (i.e., Handshakes and Making Change) or in words and pie charts (i.e.,
Food Drive). Students were required to pose three problems for each context. The
problems posed were categorized as mathematical questions, mathematical statements,
or nonmathematical responses. The mathematical questions were further analyzed
based on their solvability. Among the three real-life contexts, the Food Drive context
seemed to be the most familiar context for the participants because they possibly had
experienced it when they learned percentages and pie charts. The Making Change
context seemed to be the second most familiar because it was often used as a model for
addition and subtraction (cost + change = pay) and the model for the system of linear
equations (e.g., ten coins [dimes and half-dollars] to pay $2.20). The Handshakes
problem, which involves modelling (using points or circles to represent people and the
line between any two points as a handshake), is usually used for patterns in algebra.
The results obtained in Silber and Cai’s (2021) study revealed that the percentages of
problems that were solvable mathematical problems for Food Drive, Making Change,
Handshakes, and Graph of a Line were 98%, 90%, 88%, and 52%, respectively. Thus,
the familiarity level of the contexts might need to be taken into consideration in future
studies.

Effect of problem-posing prompts at the group level

The second level with which to approach research related to task variables in problem
posing is the group level, that is, how a small group poses mathematical problems and
how the task variables affect group problem posing (e.g., Kontorovich et al., 2012).

As early as 1987, Kilpatrick pointed out that group work can provide a fruitful setting
for mathematical problem posing because the dialogue between problem posers may
have a synergetic effect. In his words,

When students work together, they often identify problems that would be missed
if they were working alone. A poorly formulated idea brought up by one student
can be tossed around the group and reformulated to yield a fruitful problem.
Students participate in a dialogue with others that mirrors the kind of internal
dialogue that good problem formulators appear to have with themselves.
(Kilpatrick, 1987, pp. 141-142)

Despite the broad attention that this seminal article has attracted in the mathematics
education research community, research on problem posing in groups is still relatively
rare. A Google Scholar search using the key words “group problem posing” +
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“mathematics,” “collaborative problem posing” + “mathematics,” and “collective
problem posing” + “mathematics” returns dozens of results (50, 137, and 95,
respectively) as compared to the thousands of results returned by a parallel search in
which “problem posing” is replaced with “problem solving.” Furthermore, in many of
the studies identified in the search, “group,” “collaborative,” or “collective” problem
posing are mentioned merely as potential counterparts of “group,” “collaborative,” or
“collective” problem solving, with the main attention given to the latter rather than to
the former activity.

Armstrong (2014) alluded to collective problem posing as an emergent phenomenon in
school discourse. She argued that the insufficient attention paid to group problem
posing thus far could partially be explained by specific features of the mainstream line
of research on problem posing as it had been developed since the 1990s. Namely, many
of the problem-posing studies operate with written products of problem posing as a
focus of analysis and value large-size pools of participants and large collections of
problems posed that can be categorized in a variety of ways. Arguably, this focus, as
useful as it is, leaves aside problem-posing processes and in turn leaves aside
phenomena related to the dynamics of group work on problem-posing tasks, as has
been suggested by Kilpatrick (1987). Indeed, Kilpatrick’s provisional argument was
about group processes that can lead inexperienced problem posers to formulating
fruitful ideas rather than about the quantity of the resulting problems posed.

However, it is safe to say that research on problem posing at the group level is
gradually growing. While recognizing that the critical mass of studies that would
enable us to clearly identify trends has not yet accumulated, we can (tentatively)
identify four different approaches to treating group work as a variable in
problem-posing research.

In the first approach, the fact that students work on problem posing in small groups is
provided as contextual information, but the findings are reported in an aggregated
manner that hides within-group processes. A study by English and Watson (2015)
serves as a characteristic example. The study explores the problem-posing products of
20 groups of fourth-grade students working in groups of four in the context of
statistical literacy. The main results are reported per group, as the following quotation
shows: “Of the 20 groups, 9 posed three or four different types of questions, 10 created
two types, and 1 group, just one type” (English & Watson, 2015, p. 11). The
between-group differences in this study are attributed to individual differences
between students’ pre-existing knowledge and preferences but not to the dynamic
processes in the groups. Another example comes from Leung and Wu (1999), who first
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reflected on two problem-posing lessons as if each group was an individual student
(e.g., “the six groups changed the problem in three ways”; p. 113) and then stopped on
ideas of a particular student expressed in front of the class (of note is that this study can
also be considered in the section on problem posing at the classroom level).

The second approach focuses on individual students in the context of small-group
problem posing. For instance, one of the results of the study by Headrick et al. (2020) is
that even when students are organized in small groups, they tend to individually pose
problems to the teacher as opposed to their groupmates. Another study, by Koichu
(2020), showed that students in small groups who face a multistage task including
problem solving, exploration, and problem posing tend to distribute the load and work
separately on different parts of the task so that problem posing essentially turns into an
individual enterprise. These results do not contradict but rather complement the
findings by Schindler and Bakker (2020), who found that a group setting can play a
positive role in shaping an affective field of individual problem posers. In their case
study of one student working in a small group on a series of problem-posing and
problem-solving tasks, the student overcame the initial anxiety rooted in her prior
experiences, increased her interest in problem posing, and became an open-minded and
active participant in the project due to the group collaboration that provided her with
the feeling of safety and appreciation. Furthermore, Ellerton (2015) pointed out that
working in groups may either support or hinder the problem-posing progress of
individuals. Her study suggests the importance of keeping a delicate balance between
the collective and the individual in problem posing as well as the importance of
learning how to give and take feedback on the problem-posing ideas of others in
productive ways.

The third approach attends to the richness of problem-posing performance in small
groups working on the same task while featuring summative rather than dynamic
descriptions. Armstrong (2014) developed an original methodology (called
“tapestries”) that blurs the data but provides visual representations of collective
patterns of problems posed. This methodology was used in a study with four groups of
12-year-old students to compare the across-group problem-posing products as related
to the group problem-posing strategies and tactics. Armstrong introduced the term
“group’s personality” (p. 62) and compared the groups in the following manner: For
example, a group that tended to deeply explore concepts and connect participants’
ideas posed more problems than another group that tended to argue about every
problem’s formulation, aiming at reaching a consensus. In contrast, Cai (2012)
compared two groups of preservice teachers working on a task in the context of
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numerical sequences by summarizing the main mathematical ideas developed in each
group. Despite methodological differences, both studies converge to conclusions about
the opportunities embedded in well-chosen problem-posing tasks that trigger rich
mathematics discussions and learning.

Finally, the fourth approach is heavily informed by sociocultural perspectives on
teaching and learning mathematics and therefore considers within-group
problem-posing interactions as the main data to be analyzed as opposed to the written
problems as the main data. For example, English, Fox, and Watters (2005) argued for
the potential of problem posing and solving with mathematical modelling while
systematically demonstrating how problem-solving and problem-posing ideas emerge
and evolve in small-group discussions. In this study, the argument for the usefulness of
combining problem posing, problem solving, and modelling relies not only on the
demonstrated benefits of the chosen types of tasks for student learning of mathematics
but also for the development of their collaborative learning skills. Meanwhile, an
in-depth analysis of student interactions of low-track eighth-grade students who were
engaged in small-group work on a problem-posing task in the context of geometry is
the focus of a study by Agarwal (2020). The analysis of six groups revealed how the
students shifted their actions and restructured their activity towards organizing for
collective agency in mathematical problem solving while balancing risk-taking
behaviors (e.g., there is a risk to be misunderstood or mocked) and agency-driven
behaviors in favor of emotional courage and productive participation.

We conclude this section by reviewing a study by Kontorovich, Koichu, Leikin, and
Berman (2012) that has an explicit focus on handling the complexity of problem
posing in small groups. These authors present a confluence exploratory framework that
aims to explain the emergence of problem-posing products from problem-posing
processes as shaped by five facets: task organization, students’ knowledge base,
problem-posing heuristics and schemes, group dynamics and interactions, and
individual considerations of aptness. The framework is presented in Figure 4.

This framework was used to make sense of the work of two groups of tenth-grade
students who were given the Billiard Ball Mathematics Task (adapted from Silver,
Mamona-Downs, Leung, & Kenney, 1996, and used in several additional studies). The
analysis attempted to explain the quantity and quality of the resulting problems posed
in each group by systematically attending to all the facets included in the framework.
In particular, the analysis showed the role of group dynamics captured in terms of
normalization, conformity, and innovation—three social processes well-known from
the literature on group interaction and development in the context of coping with
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challenging (though not necessarily mathematical) tasks (e.g., Wit, 2007). The analysis
also shed light on the importance of functional roles that group members assumed in a
small-group discussion.

Knowledge base

Mathematical facts,
definitions, prototypical
problems, competences
of mathematical
discourse and writing

Task organization Heuristics and

schemes

Didactical decisions
that a teacher makes
when planning a
problem-posing activity

Generalized and de-
contextualized pieces
of experience of
problem posers

Problem-posing
process

Individual
considerations of
aptness

Group dynamics and
interactions

Processes of social
nature, which occur
when a group works
on a problem-posing
task

Interpretations of
explicit and implicit
requirements of a
problem-posing task

Problem-posing
products

Figure 4. A confluence framework of problem posing in small groups (Kontorovich et
al., 2012).

Along with the aforementioned studies by English et al. (2005) and Agarwal (2020), a
study by Kontorovich et al. (2012) supports and empirically substantiates Kilpatrick’s
(1987) vision of group work as a fruitful but immensely complex pedagogical setting
for further promoting problem posing in school. Needless to say, more research on
problem posing at the group level is needed.

Effect of problem-posing prompts at the classroom level

Finally, the third level with which to approach research related to task variables in
problem posing is the classroom level. Mathematics can be taught through engaging in
problem posing, and researchers have begun to explore what teaching mathematics
through problem posing looks like and to develop problem-posing cases to illustrate
problem-posing instruction (Cai & Hwang, 2020; Ellerton, 2015; Zhang & Cai, 2021).
However, it is not yet clear how we should design the problem-posing tasks used in
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such instruction so as to create greater learning opportunities for students. For
example, for a given situation in the classroom, students could be asked to pose three
mathematical problems or to pose three problems with different difficulty levels such
as easy, moderately difficult, and difficult (Cai & Hwang, 2002). How would such
different prompts impact classroom instruction and students’ learning?

The past two decades and especially recent years have seen increased research on
implementing problem posing into classrooms (Cai & Hwang, 2020; Cai et al., 2015).
Researchers have begun to explore what teaching mathematics through problem
posing looks like (Cakir & Akkog, 2020; Cai, 2022; Chen & Cai, 2020; Crespo &
Sinclair, 2008; Ellerton, 2013; Christou et al., 2005; Klaassen & Doorman, 2015;
Stoyanova & Ellerton, 1996; Zhang & Cai, 2021), develop problem-posing teaching
cases to illustrate problem-posing instruction (e.g., Chen & Cai, 2020; Zhang & Cai,
2021), and examine the impact of problem-posing instruction on students and teachers
(Akben, 2020; Bevan & Capraro, 2021; English, 1997, 1998; Li et al., 2020; Klaassen
& Doorman, 2015; Kopparla et al., 2019; Suarsana, Lestari, & Mertasari, 2019; Yang
& Xin, 2021).

In teaching through problem posing, students are encouraged to pose problems that
may be meaningful to them personally or socially. Thus, classroom activity around
problem posing involves the negotiation of socio-mathematical norms, such as in
determining criteria for what counts as a mathematically interesting problem (Cakir &
Akkog, 2020; Crespo & Sinclair, 2008).

Cai (2022) proposed a problem-posing task-based instructional model (see Figure 5).
In a lesson, there might be more than one problem-posing task or a combination of
problem-solving and problem-posing tasks. This model describes using one
problem-posing task to teach mathematics. The first step is to present a
problem-posing situation (see specifics in Figure 3), the second step is to provide a
problem-posing prompt, and the third step is for students to pose problems either
individually or in group. The later steps in Figure 5 show how teachers can handle the
posed problems based on the learning goals.

Zhang and Cai (2021) analyzed 22 problem-posing teaching cases based on the work
of Merseth (2016) and Stein, Henningsen, Smith, and Silver (2009). They described a
teaching case as the following:

A teaching case includes major elements of a lesson and related analysis, but it is
not a transcribed lesson. Teaching cases include narratives describing
instructional tasks and related instructional moves for the tasks. Cases also
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include information about the underlying thinking of major instructional
decisions as well as reflections on and discussions of those decisions. The
development of teaching cases is based on real lessons and typical instructional
events from the lessons. (Zhang & Cai, 2021, p. 962)

i Mathematics
i Teacher Presents . i
i Step 1 | Problem Situation [— Real-life i
3 Other Situations
/ 5 —| Number of Problems |:
! Teacher Presents !
E Step 2 Problem-Posing | | Difficulty of Probl i
p Prompt ifficulty of Problems ||
Other Requirements |;
i Individual i
" Step 3 Students Pose | | :
! Problems |
: In Group !
> Analyze \
; v i
i (Students and) Select i
Sipa | it * i
: Sequence
| v |
> Solve ;

Figure 5. A problem-posing task-based instructional model (Cai, 2022)
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In their analysis of problem-posing teaching cases, Zhang and Cai (2021) found that
teachers used different prompts in their problem-posing tasks, such as posing a
problem that matches the given or specific kinds of arithmetic operations, posing
problems based on given information, and posing variations on a question with the
same mathematical relationship or structure. Their analysis found no teaching case that
explored the effect of different prompts for the same problem-posing situation. In fact,
thus far, there are no studies that have studied the effect of different prompts on
students’ problem posing at the classroom level.

Using problem posing as an instructional intervention, researchers have found positive
effects of problem posing not only on teachers’ own development (Li et al., 2020) but
also on students’ learning along both cognitive and noncognitive measures (e.g.,
Akben, 2020; Bevan & Capraro, 2021). Although such positive effects of problem
posing on both students and teachers are encouraging, none of these studies include
information about the effects of problem-posing tasks with different prompts. In fact,
as Klaassen and Doorman (2015) summarized, there has been no specific investigation
of the effects of the variety of prompts researchers have used in classrooms, prompts
such as:

e Write a problem to the story so that the answer to the problem is a specific one

e Write an appropriate problem for the specific information, such as the
expression or picture

e Ask as many questions as you can, and try to put them in a suitable order
e Write a problem that you would find difficult to solve

As part of a larger research project, Cai, Muirhead, Cirillo, and Hwang (2021) began to
explore how teachers view the impact of different prompts on students’ problem
posing. Each teacher was presented with three pairs of tasks, each of which uses the
same problem situation but includes different prompts (Prompt A: Pose three different
mathematical problems that can be solved using this information; Prompt B: Pose one
easy mathematical problem, one moderately difficult mathematical problem, and one
difficult mathematical problem that can be solved using this information). Each teacher
was asked to anticipate their students’ responses to Prompt A compared to Prompt B
and to describe how these variations in the wording of the prompts might affect their
students’ responses. According to one sixth-grade teacher, Prompt A is less wordy and
more accessible for students. However, the teacher thought that Prompt B engaged
students more in their thinking because they must think about posing problems with
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different difficulty levels. Thus, Prompt B “forces” or “encourages” students to think
more. The teacher also thought that in implementing problem posing in the classroom,
teachers can scaffold problem-posing tasks with Prompt A to problem-posing tasks
with Prompt B.

In practice, it does seem that encouraging students to pose different difficulty levels of
problems has some advantages for eliciting deeper student thinking about certain kinds
of problems (Cai & Hwang, 2002) and adjusting the level of challenge of the task
relative to each student. For example, the prompt, “Create a problem that would be
difficult for you to solve,” can challenge each student to stretch toward the edge of
their own ability. Although each student may still engage in the problem-posing task at
a level that is appropriate for their existing mathematical understanding, such a prompt
could result in the overall level of challenge increasing. Ultimately, we believe that the
choice of problem-posing prompt has the potential to make a difference in how
students engage with problem-posing tasks in the classroom.

CONCLUSION

The purpose of this paper is to summarize some progress in problem-posing research
related to processes and task variables. We end by presenting some research questions
for the field of mathematics education.

As mentioned, problem-solving variables include syntax variables, content and context
variables, structure variables, and heuristic behavior variables. Can all these types of
variables be adapted to problem posing? Should the additional variables be considered
to pinpoint not only similarity of problem solving and problem posing but also
characteristic differences between these activities? How can systematic variation of
problem-posing situations and prompts inform our understanding of the relationship
between problem-posing processes and products and between problem posing and
problem solving? How do student-related variables (e.g., knowledge, affect,
experiences) interact with task-related problem-posing variables?

In addition, we not only need to continue the effort to examine the cognitive processes
of problem posing related to task variables but also affective processes of problem
posing. For example, how do beliefs influence problem-posing processes and posed
problems? How do problem-posing activities influence students’ (epistemological)
beliefs regarding mathematics? Do problem-posing activities—used in teaching
settings—impact students’ sense-making and motivation regarding mathematics? Cai
and Leikin (2020) provided additional research questions about affect in problem
posing.
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The literature offers characterizations of teacher knowledge needed to incorporate
problem solving in teaching (e.g., Chapman, 2015). Similarly, we can ask: What
teacher knowledge is needed for successful integration of problem posing in the
classroom? (In other words, we can think of task-related variables, student-related
variables, and teacher-related variables.)

In this paper, we have discussed the impact of task wvariables (specifically
problem-posing prompts) on problem posing at the individual, group, and classroom
levels. In addition to the discussion of the impact at different levels, there is also a need
to understand how teachers handle posed problems (Cai, 2022; Zhang & Cai, 2021),
because of its importance in integrating problem posing in mathematics learning and
instruction. In problem solving, we have more or less clear criteria to measure success
(i.e., successfully solved problems). In problem posing, it is much harder to determine
whether a problem-posing process was successful or not (given that posed problems
could be nonmathematical, repetitive, boring, not challenging, etc.). How do we
measure “success” in problem posing? Compared to problem solving (where you can
easily identify whether a problem has been solved), it is often unclear when a
problem-posing process is finished or whether the posed problems are “good” or not.
To effectively teach mathematics through problem posing, we have to address these
questions in general and to develop strategies to deal with students’ posed problems in
particular.

Using a clinical interview methodology or a large-sample-size survey, we could
examine how different types of problem-posing tasks with different situations and
prompts influence students’ problem-posing processes. Such research requires
coordination and international collaboration, and the ideas presented in this paper will
be a step towards establishing it.
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