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ABSTRACT

Nakamoto proof-of-work ledger consensus currently underlies the
majority of deployed cryptocurrencies and smart-contract block-
chains. While a long and fruitful line of work has succeeded to
identify its exact security region—that is, the set of parametrizations
under which it possesses asymptotic security—the existing theory
does not provide concrete settlement time guarantees that are tight
enough to inform practice.

In this work we provide a new approach for obtaining concrete
and practical settlement time guarantees suitable for reasoning
about deployed systems. We give an efficient method for computing
explicit upper bounds on settlement time as a function of primary
system parameters: honest and adversarial computational power
and a bound on network delays. We implement this computational
method and provide a comprehensive sample of concrete bounds
for several settings of interest. We also analyze a well-known at-
tack strategy to provide lower bounds on the settlement times. For
Bitcoin, for example, our upper and lower bounds are within 90
seconds of each other for 1-hour settlement assuming 10 second
network delays and a 10% adversary. In comparison, the best prior
result has a gap of 2 hours in the upper and lower bounds with the
same parameters.
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1 INTRODUCTION

Nakamoto proof-of-work consensus, introduced in the 2008 Bitcoin
white paper [19], is the basic algorithmic framework supporting
the sensational Bitcoin and Ethereum blockchains. This charm-
ingly simple protocol has inspired a large body of analytic work
which—after over a decade of attention—has finally determined
the protocol’s security region: specifically, two independent recent
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articles [6, 10] determine the exact conditions under which the pro-
tocol eventually achieves consensus. In greater detail, they identify
the region of critical parameters (honest and adversarial hashing
power, network delays) under which the probability of a consis-
tency failure has the form exp(—Q(t)), where t is the amount of
time a given transaction has been included in the blockchain.

Despite offering interesting theoretical insights, such asymp-
totic guarantees tell us very little about concrete settlement times.
In particular, their proof techniques are intentionally optimized
for simplicity over precision, and they make no effort to achieve
reasonable—or even explicit—constants in the results. This state
of affairs is especially frustrating as it leaves conspicuously unan-
swered the most fundamental question faced by users of deployed
cryptocurrencies and blockchains:

How long must I wait for a transaction to settle?

One prominent feature of Nakamoto consensus is that the set-
tlement question has a parametric answer: a block (and its trans-
actions) achieves higher certainty with longer waiting times. The
ideal answer would thus determine the exact probability of a set-
tlement failure as a function of the elapsed time or the number of
subsequent blocks amassed on top of the block of interest.

Towards this end, the Bitcoin white paper [19] analyzed the
transaction settlement time under a specific attack called the private
mining attack. However, this approach is clearly unsatisfactory. The
gold standard for security analysis calls for identification of a well-
defined and widely accepted threat model that places limitations
on the adversary without prescribing its concrete actions and, in
the context of the model, a proof that the protocol remains secure
against any adversary.

The model widely adopted for analyzing blockchains, which we
also employ in this work, gives the adversary the ability to adap-
tively delay any messages sent by honest players and make corrupt
parties deviate arbitrarily from the protocol. To make the adversary
more powerful, corrupt parties are assumed to be connected by a
zero-latency network so that they can act with perfect knowledge
of each other’s states—thus the adversary can be characterized by a
single entity with the collective hashing power of all corrupt parties.
The model additionally posits an upper bound on the fraction of
hashing power controlled by corrupt parties. On the other hand,
honest players are assumed to follow the protocol to the letter (see
Section 2.1). Our model does not cover attacks exploiting rational
behavior of parties, such as the selfish-mining attacks [8], beyond
the simple expedient of considering such parties corrupt.

The main sticking point in coping with such a general model is
accounting for possible network delays. Indeed, if one is content
to assume an instantaneous network, two recent works [1, 6] pro-
vide exact analysis for proof-of-work blockchains. Most existing
blockchain analysis with network delays [3, 6, 9, 10, 14, 16, 20, 21,
23] only give asymptotic bounds and do not directly speak to the
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question. Some recent works derive concrete bounds by working
out the constants in these asymptotic analyses [3, 16], but the re-
sulting settlement bounds are very weak; for Bitcoin, the results
come to thousands of hours—orders of magnitude larger than what
is used in practice. Only recently, Li et al. [17] derived the first
practically viable settlement time upper bounds; their results are
still a few hours larger than corresponding lower bounds.

Our results. We lay out a new proof technique for analyzing con-
sistency of proof-of-work blockchains with an eye toward explicit
settlement times. Our method offers striking improvements over
the best previous work—typically by a factor of 10 or more—in
explicit settlement times for both the Bitcoin setting (with long
interblock arrival times) and the Ethereum setting (with short in-
terblock arrival times).! In both settings, the settlement times we
obtain are within minutes of optimality.

1.1 An Overview of the Analysis

We capture the schedule of mining successes and the output of a
concrete execution by a characteristic string and a PoW-tree respec-
tively, two notions introduced for this purpose in the context of
proof-of-stake [13] and adapted to proof-of-work (PoW) in [1, 10].
Our analysis departs almost immediately from [10] by shifting its
focus to serialization. Given a sequence of mining successes, the
longest-chain algorithm will produce a “hash tree” of blocks, where
edges are given by the predecessor hashes in the generated blocks.
The partial order assigned to blocks by this tree may be incon-
sistent with the “real” order in which they were generated due
both to network delays and adversarial players postponing delivery
of their blocks. But there is always a reordering of the block cre-
ation events for which the tree has a simple “temporally consistent”
explanation—such a reordering is a serialization. Motivated by the
fact that the analysis is more tractable in the lockstep-synchronous
setting, we will first carry out the analysis there. We then study the
serializations that can arise with network delays, and then rely on
the lockstep results to analyze the serialized executions.

Ultimately, we are interested in studying the longest chain rule in
a continuous-time model C[A(] where honest parties and the adver-
sary both create proofs of work according to independent Poisson
processes with rates ry, and rg, respectively, and the adversary may
selectively delay honest block delivery by up to A; time (“r” stands
for “real”). One way to capture this setting is to consider discrete
slots corresponding to very short intervals of length ¢ (t < A,) and
to appropriately adjust the network model so that honest parties
are not guaranteed to see messages that were sent to them at most
A 2 [A/t] slots ago. Call this model DA, t], where the two pa-
rameters record the maximum delay in slots and the duration of
the slot, respectively. This is the approach taken in [10, 14, 20]; and
taking t — 0 makes this model approach C[A] [10]. However, one
difficulty in tackling this model is in keeping track of the complex
delay patterns that can occur as each individual message can be
delayed by anywhere between 0 to A/t slots.

The alternative approach that we propose in this work is to
introduce two “adjacent” discrete models. The first model D[0, A,]
is a lockstep-synchronous model, dividing time into relatively long

!A concurrent work obtains simple and close-form bounds that are tight for the Bitcoin
setting but loose for the Ethereum setting [12].
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slots of length A,. Honest players producing blocks in the same slot
are not apprised of each other’s blocks, but the network is assumed
to deliver all created (honest) blocks at the end of each slot. Of
course, the adversary always operates with full knowledge of all
adversarial and honest blocks produced in any slot. The second
model D[1, A;] is similar, and a slot still represents a A;-long time
interval, but an honest block may now be delivered at the end of
the next slot, i.e., the slot following the one in which the block was
created; this effectively permits that some messages are delayed by
up to 2A,.

It is easy to observe that C[A;] and D[A, t] are “sandwiched”
between these two models

D0, Ar] < D[A,t],C[A] = D[1,A(]

in the sense that any valid execution in a model on the left-hand
side of < is also valid in the model on the right-hand side, as the
restriction on delays gets more permissive as we move to the right.
Therefore, an upper bound on the probability of settlement failure
in a right-hand side model is also an upper bound in a left-hand side
one; in other words, the D [0, A;] model settles more quickly than
the model of interest D[A, t], while D[1, A,] settles more slowly.

We first analyze consistency in D[0, A¢] in Section 3. The analy-
sis follows essentially the same lockstep trajectory of [6] and can be
given fairly succinctly. We then shift our attention in Section 4 to
DI1, A;] where the core technical difficulty lies. Our approach here
is to show how to serialize an execution in the D[1, A;] model to an
execution in D[0, A;]. We can then rely on upper bounds obtained
in the simpler D [0, A;] model.

We evaluate numerically our results in Section 5.1. We then com-
pare our upper bound results with lower bounds, which we obtain
in Section 5.2 by analyzing the success probability of the private
mining attack in the D[0, A;] model. Recall that the D [0, A;] model
settles more slowly than the D[A, t] model and the private mining
attack may not be the most effective adversarial strategy. Therefore,
this gives a lower bound on the consistency failure (or settlement
times) of PoW blockchains.

In the rest of the paper, we reserve the symbol A to denote the
maximum message delay in slots. Hence, in Section 3 (resp. 4), which
employs the model D[0,A,] (resp. D[1,Ar]), we consider A = 0
(resp. A = 1). However, recall that in both these models, a slot itself
has duration A,.

We remark that our analysis does not consider difficulty adjust-
ments that are present in PoW protocols. This is well justified by the
fact that block settlement time is much shorter than the difficulty
adjustment period (hours vs. weeks).

1.2 Sample Results Generated by our Method

As mentioned, our results provide very sharp estimates for Bitcoin
in the region of practical interest: see Figure 1. With a 10% adversary
and a bound of 10 seconds on network delay, we obtain a settlement
error of no more than 4.489% after one hour. This can be directly
compared with a lower bound of 4.261%, which is obtained by
analyzing the private mining attack. Notably, these results are “only
minutes” apart: 90 seconds before the one hour mark, the lower
bound is 4.494%. So the upper bound is less than 90 seconds away
from optimal. Alternatively, our results yield a 0.48% settlement
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Figure 1: Our upper and lower bounds on settlement failure
probability for Bitcoin with a 10% adversary and 10 second
network delays; results from [17] included for comparison

error guarantee for the 6-block confirmation rule that is common
used in practice.

In the case of Ethereum,” recall that blocks are comparatively
small and have 13 second interblock time. With 2 second network
delays and a 10% adversary, our methods bound settlement failure
probability after four minutes within 0.1097% and 0.02518%. As
expected, we observe a larger gap than in the “nearly lockstep-
synchronous” Bitcoin case. However, the result is still less than one
minute away from the optimum: at the five minute mark the upper
bound has fallen to 0.02219%. These results improve the settlement
failure estimates of previous work by well over an order of mag-
nitude in the regime of interest. See Figure 2 for a representative
example of our results for Ethereum and a comparison with [17]. A
more comprehensive discussion of both time-based and block-based
settlement appears in Section 5.1.

2

2 PRELIMINARIES

Notation. Throughout the paper, N = {0, 1,2, ...} denotes the set
of natural numbers (including zero). For n € N, [n] denotes the
set {1,...,n} (hence [0] = 0). For a set X, we let £ (X) denote the
power set of X.

For a word of length n over alphabet %, we use the notation w =
W1 ...wp € 2" We denote by w;.; its subword w;wi41 ... wj, and
#4(w) denotes the number of occurrences of the symbol a € ¥ in w.
We denote by || the concatenation of words and by o the concate-
nation of languages, i.e., Ly o Ly = {w1 || w2 | w1 € L1 A wy € Lp}.

2.1 Modeling Proof-of-Work Blockchains with

Network Delays

Our modeling of the protocol and its execution environment ex-
tends the model in [10], which we summarize here for completeness.

A PoW blockchain protocol is carried out by a set of parties of
two types: honest parties follow the protocol and adversarial parties

?Note that while Ethereum considers uncle blocks for difficulty recalculation and
rewards distribution, these blocks do not affect its chain-selection rule, hence Ethereum
is fully covered by our analysis.
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Figure 2: Our upper and lower bounds on settlement failure
probability for Ethereum with a 10% adversary and 2 second
network delays; results from [17] included for comparison.

may diverge arbitrarily. All parties actively engage in searching for
“proofs-of-work” (PoWs), which afford them the right to contribute
to the ledger. We divide time into slots of length A, and use a
characteristic string to indicate a summary of the outcomes of the
proof-of-work lottery in each slot.

More concretely, our main alphabet of interest in this paper
will be S0 £ {0, h, H} X N. Intuitively, a single symbol (s,a) €
{0, h, H} X N from this alphabet captures the outcome of the proof-
of-work lottery in a given time slot, at a level of precision that
will be most convenient for our treatment. The natural number a
simply captures the number of adversarial successes; the symbol
s € {0, h, H} captures the number of honest successes as follows:
0 represents no honest successes, h represents one and only one
honest success, and H denotes more than one honest successes in
the considered slot.

Note that a characteristic string symbol does not capture the
full outcome of the lottery in a given slot: it merely describes the
numbers of successes and their attribution to party types, but not
their ordering within a slot. Looking ahead, it will be clear that our
analysis implicitly assumes that this ordering is the best possible
for the adversary, in line with our effort to obtain upper bounds on
error probabilities.

For notational convenience when treating our imprecise account-
ing of honest successes described above, we define the following
helper “rounding” function roundy: N — {0, h, H}. Let h be the
number of honest successes in a given time slot and define

0 ifh=0,
roundy(h) £3h ifh=1, (1
H ifh>2.

We consider characteristic strings w (i.e., words) drawn from the
set 3L : these describe the outcomes of the proof-of-work lottery

over a period of L slots. We write
w=(wg...,wp) = ((s,a1),...,(sr,ar)) .

Let ¢ denote the empty characteristic string (i.e., L = 0).
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The Bitcoin protocol calls for parties to exchange blockchains,
each of which is an ordered sequence of blocks beginning with a
distinguished “genesis block,” known to all parties. Each proof-of-
work success confers on that party the right to add exactly one
block to an existing blockchain. (In fact, the party must identify
the previous chain on which she wishes to build ahead of time, but
this will not affect our analysis.) Honest parties follow the longest-
chain rule which dictates that they always choose to add to the
longest blockchain they have observed thus far and broadcast the
result to all other parties. The basic dynamics of the system, with a
particular characteristic string w and an adversary, can be described
as follows.

Let C; denote the collection of all blockchains created by time ¢
and let H(C;) denote the subset of all chains in C; whose last block
was created by an honest party. Set Cy = {G}, where G denotes the
unique chain consisting solely of the genesis block. The genesis
block is “honest”; thus H(Cy) = Cy. It is convenient to adopt the
convention that C_; = H(C-;) = {G} for any negative integer
—t < 0. Then the protocol execution proceeds as follows. For each
slott=1,2,...:

e Initiate C; := Cy—1 and H(Cy) = H(C¢-1).

o If w; = (0, a), the adversary may repeat the following adver-
sarial iteration a times: select a single blockchain C from C;
and add a block to create a new chain C’, which is added to
C:. H(Cy) remains unchanged.

o If w; = (h,a), the same a adversarial iterations happen as
above, but they are arbitrarily interleaved with a single hon-
est iteration defined as follows: the adversary may select any
collection of chains V for which H(C;—1-p) € V C C;.
This is the “view” of the honest player, who applies the
longest chain rule to V, selects the longest chain L € V
where ties are broken by the adversary, and adds a new
block to create a new chain L’ that is added to C; and also
H(Cy).

e If w; = (H, a), then the execution of a adversarial iterations
is arbitrarily interleaved with at least two honest iterations.

In each time step t we also maintain the set of A-dominant chains
Dy C Ct, determined entirely by C; and H(Cy—1-a): namely, Dy is
the set of all chains in C; that are at least as long as the longest chain
in H(C;—1-A)- The intuition behind the definition of A-dominant
chains is that, in a time slot ¢, it is in principle possible for the adver-
sary to manipulate an honest party into adopting any A-dominant
chain, as the adversary is only obligated to deliver those chains in
H(C;-1-p) and the chains in D; are at least as long as those in
H(Ci-1-a)-

Note that the synchrony assumption is reflected in the descrip-
tion of the honest iteration: the adversary is obligated to deliver all
chains produced by honest players that are A slots old. Although
we keep the presentation general, recall that as explained in the
introduction, this work focuses on the two models D[0, A;] and
D1, A¢], and hence always considers A € {0, 1}.

Considering that the adversary selects both the view V of each
honest player and is empowered to break ties, the structure of the
resulting sequence of chains (that is, the directed acyclic graph nat-
urally formed by the blocks) is determined entirely by the adversary
and the characteristic string.

1220

Peter Gazi, Ling Ren, and Alexander Russell

We make two final remarks. First, we permit the adversary to
have full view of the characteristic string during this process. Of
course, in practice a Bitcoin adversary must make decisions “on-
line,” so our modeling only makes the adversary stronger. Second,
we have placed an implicit constraint on the adversary: the only
means of producing a new chain is to append a block (associated
with a proof-of-work success) to an existing chain. In practice, this
constraint is guaranteed with cryptographic hash functions.

In the context of ledger protocols, one is usually interested in
preserving two properties, consistency and liveness, formulated in [9,
15, 22]. Consistency means that once a block (or equivalently, a
transaction within it) is settled, then it remains settled forever. We
consider two settlement rules in this paper: a time-based one and a
block-based one.

o Consistency for time-based settlement; with parame-
ter 7. A block B that is mined before time ¢ and contained
in some chain in 9; where t > ¢ + 7 is contained in every
chain C € Dy forall t’ > t.

e Consistency for block-based settlement; with parame-
ter k. A block B that is k blocks deep in some chain in Dy is
contained in every chain C € Dy for all t’ > .

Intuitively, the above settlement rules state that, when an honest
player examines the longest chain to its knowledge at time ¢, it
considers all blocks mined at least 7 time earlier (in the case of
time-based settlement) or buried k blocks deep (in the case of block-
based settlement) settled. The focus of this paper is to bound the
error probability (from both above and below) as a function of the
settlement delay, i.e., of the parameters 7 or k in the above two
settlement rules, respectively.

We also remark that our definitions of consistency and its er-
ror probability above are applicable to individual blocks. One can
also phrase the consistency as a global property of the protocol
by requiring the above to hold for all blocks. However, the error
probability of such a global consistency property will depend on
the total running time of the blockchain protocol and is hard to
characterize accurately.

For completeness, we also mention the liveness property [10].

¢ Liveness; with parameter u. For any two slots t1,t; > 0
with t; + u < ty, and any chain C € Dy,, there is a time

t' € {t1,...,t1+u} and a chain C’ € H(Cy) \H(Cy'—1) such
that C’ is a prefix of C.

2.2 Proof-of-Work Blocktrees

We formally capture the above protocol dynamics by the combina-
torial notion of a PoW A-tree. It is a variant of the “fork” concept
first considered for the proof-of-stake case in [2, 5, 13] and more
recently also employed for PoW-analysis [1, 10].

Definition 2.1 (PoW A-tree). Let A,L € N. A PoW A-tree for the
string w € >L is a directed, rooted tree F = (V, E) (in the graph-
theoretic sense) with a pair of functions

l4 : V—>H0,...,L} and ltype : V. — {h,a}

satisfying the axioms below. Edges are directed “away from” the
root so that there is a unique directed path from the root to any
vertex. The value l:(v) is referred to as the label of v. The value
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Frw= (h0) (h,0) (h,0) (H,0)

(0,2)

(h,0)

(h,0)

(h,0) (h, 1) (0,0) (0,0)

Figure 3: A PoW 1-tree F for the characteristic string w. Honest vertices are shown with double-struck boundaries, while
adversarial vertices are simple circles. Vertices are labeled with I4(-). The tree indicates a successful double spend attack—given
by the red and blue chains—in a circumstance where the simple private-chain attack does not succeed: in particular, the tree
constructs two alternate chains with disjoint suffixes of length 5, while only three adversarial proofs of work are discovered
over this period. We remark that F = F,, since the last symbol of w is (0, 0), and that F_[1 is obtained by removing the adversarial

vertex with label 8. Thus len(F,) = 5, this maximum length achieved by the blue chain. Note, then, that the two chains indicated
in red and blue each have 1-advantage equal to zero, and both are 1-dominant. Considering that these chains share no vertices
after the root, they witness /3% (F) = 0 for the tree F and hence for the characteristic string w.

ltype () is referred to as the type of the vertex: when ltype (0) = h,
we say that the vertex is honest; otherwise it is adversarial.
(A1) the root r € V is honest and is the only vertex with label
l4(r) = 0;
(A2) the sequence of labels l4() along any directed path is non-
decreasing;
(A3) if w; = (sj, a;), then the number h; of honest vertices of F
with the label i satisfies roundy (h;) = s;, and there are no
more than a; adversarial vertices of F with the label i;
(A4) for any pair of honest vertices v, w for which lx(v) + A <
l4(w), len(v) < len(w), where len() denotes the depth of
the vertex.

We will often refer to POW A-trees simply as trees whenever A is
clear from the context. Unless explicitly stated otherwise, through-
out the paper we reserve the term ‘tree’ for the above PoW-specific
structure, as opposed to the underlying graph-theoretic notion.

A PoW A-tree abstracts a protocol execution with a simple but
sufficiently descriptive discrete structure. Its vertices and edges
stand for blocks and their connecting hash links (in reverse direc-
tion), respectively. The root represents the genesis block, and for
each vertex v, l4(v) and len(v) denote the slot in which the corre-
sponding block was created and the block’s depth, respectively.

It is easy to see the correspondence between the above axioms
and the constraints imposed in the protocol execution. In particular,
(A1) corresponds to the trusted nature of the genesis block; (A2)
reflects that the blocks’ ordering in a chain must be consistent with
the order of their creation; (A3) reflects that honest players produce
exactly one block per PoW success, while the adversary might forgo
a block-creation opportunity; finally (A4) reflects the fact that given
sufficient time, as needed for block propagation in the network, an
honest party will take into account the blocks produced by previous
honest parties.

Definition 2.2 (Tree notation). We write F p w to indicate that
F is a A-tree for the string w. If F/ +p w’ for a prefix w’ of w, we
say that F’ is a subtree of F, denoted F’ C F, if F contains F’ as a
consistently-labeled subgraph. Given a A-tree F, we denote by F the
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maximal subtree of F having all leaves honest. We call two trees Fy
and F, equivalent, denoted F; = Fs, if their underlying graphs and
the ltype () functions are identical. Note that equivalent trees may
only differ in their l4(-) functions; whenever useful, we indicate
the tree to which a labeling function belongs by a superscript (e.g.

1£()).

An individual blockchain constructed during the protocol exe-
cution is represented by the notion of a chain, defined next.

Definition 2.3 (Chains). A path in a tree F originating at the root
is called a chain (note that chains do not necessarily terminate at
a leaf). As there is a one-to-one correspondence between directed
paths from the root and vertices of a tree, we routinely overload
notation so that it applies to both chains and vertices. Specifically,
we let len(T) denote the length of the chain, equal to the number
of edges on the path; recall that len(v) also denotes the depth of a
vertex. We sometimes emphasize the tree from which v is drawn
by writing leng(v). We further overload this notation by letting
len(F) denote the length of the longest chain in a tree F. Likewise,
we let I4(-) apply to chains by defining l4(T) £ lx(v), where v is
the terminal vertex on the chain T. We say that a chain is honest if
the last vertex of the chain is honest. For a vertex v in a tree F, we
denote by F(v) the chain in F terminating in v.

For two chains T, T’ of a tree F, we write T ~, T’ if the two
chains share a vertex with a label greater or equal to ?.

Intuitively, T ~p T” guarantees that the respective blockchains
agree on the state of the ledger up to time slot ¢. Looking ahead,
the adversary can make two honest parties disagree on the state
of the ledger up to time ¢ only if she makes them hold two chains
T *p T,

Definition 2.4 (Tree trimming; dominance). For a string w
wi...wn and some k € N, we let Wy = Wi...Wpog denote
the string obtained by removing the last k symbols. For a tree
F Fp wi...w, we let Fe ba W denote the tree obtained by re-
taining only those vertices labeled from the set {1,...,n — k}. We
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say that a chain T in F is A-dominant if len(T) > Ien(Fr_A) and
simply call it dominant if A is clear from the context.

Observe that honest chains appearing in F, are those that are
necessarily visible to honest players at the end of the last time
slot of the characteristic string. Correspondingly, the notion of a
A-dominant chain matches the use of this term in Section 2.1.

2.3 Advantage and Margin

Definition 2.5 (Advantage a}é). For a A-tree F +p w, we define
the A-advantage of a chain T € F as

ag (T) = len(T) - len(Fy) -
Observe that a?(T) > 0 if and only if T is A-dominant in F.

Definition 2.6 (Margin ﬁ[A) For ¢ > 1, we define the A-margin of
atree F as

e (F) = an(T),

max
T +,T

T* is A-dominant
this maximum extended over all pairs of chains (T, T*) where
T* is A-dominant and T +, T*. We call the pair (T*,T) the A-
witness chains for F if the above conditions are satisfied; i.e., T* is
A-dominant, T* +, T, and ﬁ[A(F) = alé (T). Note that there might
exist multiple such pairs in F, but under the condition ¢ > 1 there
will always exist at least one such pair, as the trivial chain Ty con-
taining only the root vertex satisfies Ty »¢ T forany T and ¢ > 1,
in particular Ty +, Tp. For this reason, we will always consider ﬁt,A
only for ¢ > 1.

We overload the notation and let

Bp (w) = max fip(F).
Fraw

We call a tree F o w a A-witness tree for w if ,B{,A(w) = ﬁ{,A(F);
again many A-witness trees may exist for a string w.

Intuitively, alé(T) captures the length advantage (or deficit) of
the chain T against the longest honest chain created at least A slots
before the upcoming slot, which is hence now known to all honest
parties. Consequently, ﬁt,A(F ) records the maximal advantage of
any chain T in F that potentially disagrees with some A-dominant
chain T* about the chain state up to slot £. A negative ﬂZA (F) hence
indicates that the adversary cannot make an honest party holding
T* switch to any T that would potentially cause a revision of its
ledger state up to slot ¢. This connection between margin and
consistency/settlement is exploited in previous work, for the PoW
case it was made formal in [10, Lemma 1] in which the following
fact is implicit:

LEmMA 2.7 ([10]). Consider an execution of a PoW blockchain for L
slots as described in Section 2.1, resulting in a characteristic string
w = wi...wr. Let B be a block produced in slot { € [L], and let
t > ¢ be such that B is contained in some chain C € Dy. If for every
t’ € {t,...,L} we have ﬂZA(wl;t/) < 0 then B is contained in every
C' € Dy forallt’ € {t,...,L}.

This statement motivates our effort to upper-bound ﬁt,A(w) in
the following sections.
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Remark. One can define and study an analogous notion of con-
sistency for protocols with unbounded lifetimes and, in fact, the
explicit upper bounds we compute later in the paper reflect this
stronger notion. Specifically, for a characteristic stringw = wiwz . ..
and a finite ¢, this requires that ﬁt,A(wa) <Oforallt/ >¢.

3 THE LOCKSTEP-SYNCHRONOUS ANALYSIS

In this section we focus on the simpler, so-called lockstep-synchro-
nous setting, where all messages are delivered at the end of the slot
in which they were sent, this corresponds to A = 0 (the D[0, A(]
model). Throughout the section, as no confusion can arise, we omit
the index 0 and write F + w, ar(), f¢(), in place of F o w, ag(),
,3?(), respectively. Note that now ar(T) = len(T) — len(F).

Our main goal will be to obtain a simple recursive description of
the margin quantity f,(w) for a characteristic string w € 3%,. Look-
ing ahead, we will obtain an exact characterization (Theorem 3.6)
that will then serve us later in Section 4 when establishing bounds
for the margin ﬁ; (w) in the case with delays A = 1.

3.1 The Fully Serialized Setting (X, = {h, a})

We begin the analysis of the lockstep-synchronous setting by con-
sidering an additional simplifying assumption that block creations
are fully serialized, i.e., exactly one block is created in each time slot.
Specifically, we work with a reduced alphabet Xser = {(h,0), (0,1)}
for characteristic strings, and use the abbreviations h = (h, 0) and
a = (0,1); thus we treat characteristic strings over the alphabet
{h, a}. The definition of tree remains unchanged.

The following exact characterization of f, in the lockstep (i.e.,
A = 0), fully serialized (i.e., with alphabet Ysr) setting was given
in prior work [1] and serve as an instructive starting point of our
investigation. Recall that ¢ is the empty characteristic string.

LeEmMA 3.1 ([1, LEMMA 1]). Fix ¢ > 1. We consider characteristic
strings w € X%,. By definition fe(e) = 0. We have

Be(wa) = fe(w) +1,

Be(w),
Pe(w) — 1,

if fe(w) = 0 and |[wh| < ¢,

otherwise.

Be(wh) = {

Thus, prior to slot ¢, f; performs a biased barrier walk with a
barrier at 0; after round ¢, it performs a standard biased random
walk (without any barriers).

3.2 The Multi-Honest Setting (=, = {h,H, a})

We now slightly generalize the treatment of Section 3.1 and con-
sider characteristic strings over an alphabet that allows for multiple
honest (hence the “mh” subscript) successes in a single slot. Namely,
we consider X, = {(h,0), (H,0), (0,1)} C 3o, and use the short-
hands {h, H, a} for these three symbols, respectively. The definition
of a tree again remains unchanged.
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LEMMA 3.2. Fix ¢ > 1. We consider characteristic stringsw € Z;h.
By definition fy(¢) = 0. We have

Be(wa) = fr(w) + 1,

Betwh) = {ﬁ[(w), i fe(w) =0 and |whi < ¢,
Be(w) — 1, otherwise, ()
_ | Be(w), if Be(w) =0,
Pe(wh) = {ﬁ[(w) —1, otherwise.

Informally, the reason why H has a different effect on f, than h
after slot ¢ is as follows. If Sy (w) = 0, this means that there are two
competing chains of the same, maximal length that can be served
to honest parties; now the adversary can orchestrate things so that
the two (or more) honest successes occurring in this slot contribute
to both of these chains equally, and hence they don’t improve the
situation for the honest parties. We call this effect a neutralization
of honest successes. Note that, in contrast, a unique honest success
h improves the situation for the honest parties in the “tie” case of
B(w) = 0, as it extends only one of the chains, creating a unique
longest chain.

The proof of Lemma 3.2 is an extension of the proof of Lemma 3.1
that appeared in [1], accounting for presence of H symbols in the
considered characteristic string, we defer it to the full version of
this paper [11].

3.3 The General Case (3. = {0,h,H} X N)

We finally consider the full alphabet 2o, = {0, h, H} X N. Intuitively,
our approach here is to assign to any “rich” characteristic string w €
2%, aset of “possible serializations” Ry(w) € 2" such that any tree
over w can be interpreted (via relabeling) as a tree over one of these
Y mh-serializations, and vice versa. This then allows to precisely
characterize f¢(w) in terms of f;() of these X,,-serializations,
which are already understood in Lemma 3.2.

Serialization of the general alphabet. We define a serialization
mapping Ry: e — P (27 ) as follows:

Ro(0.8) = {ak} .
Ro(h, k) = {r € {a,h} | #,(r) = 1A #,(r) = k} ,

Ro(H.k) = {r e {a, h, H}" | #a(r) =k A (#4(r) = 2V #p(r) 2 1)} .

Moreover, we naturally extend the mapping Ry(+) to strings w =
w1 ... wp € 2% by the convention

Ro(w) = Ro(wy) o---0Ro(wn) S =,

LEMMA 3.3. Letw € 37 and F + w. Then there is a characteristic
string w' € Ry(w) and a tree F/ + w’ such that F’ = F.

Proor. Consider the fragment of a PoW-tree
Frw=wi...w, €}

induced by vertices attributed to a particular symbol w; € 2. This
is a (potentially disconnected) forest of trees. (The word “tree” here
and throughout this proof is used in its standard graph-theoretic
sense, as opposed to referring to a PoW tree.) Partitioning this forest
according to depth—as measured in the original tree F—we write
the vertices of the forest as a disjoint union Vz U - - - U Vp, where d
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is the smallest depth appearing in the forest, D is the largest depth,
and V; contains those vertices of depth j. Now associate with each
Vj the string

ak if V; contains no honest vertices,
w) = Lhak if V;j contains one honest vertex,
Hak if V; contains multiple honest vertices,

where k is the number of adversarial vertices appearing in V;. By
construction, there is a straightforward labeling of each set V;
by the string w/) that maintains the classification of vertices as
adversarial or honest and satisfies axioms (A2) and (A3). Finally,
let w] = w(@ W) Combining the labelings of each Vj in-
duces a labeling of the trees by the string w; that likewise satis-
fies (A2) and (A3). It follows that F can be (re)labeled by the string
w1 ... wy; € Ro(w) so as to satisfy all of the PoW tree axioms; this
relabeling determines the PoW tree F’, as desired. m}

LEmMMA 34. Letw € X% and w' € Ry(w). Then for any tree
F’ + w’ there exists a tree F + w such that F = F’.

ProOF. Let v be a vertex in F” with lz(v) = j € [|w’[], and let
i € [|w]] be the index in w = wy ... w),,| such that the j-th symbol
in w” belongs to the expansion Ry(w;) of w;. Then it suffices to set
the label of v in F as I#F (v) = i. The correctness of this construction
follows directly from the definition of Ry. O

Lemmas 3.3 and 3.4 immediately imply the following corollary.

COROLLARY 3.5. Letw € X%,. Then

Br(w) = Per(w'),

max
w €Ry(w)

where ¢’ is the appropriate index in w’ corresponding to £ in w.

ProoF. Let F + w be a witness tree, and let w* € Ry(w) and
F* = F be such that F* + w* as guaranteed by Lemma 3.3. Let £*
be the appropriate index in w* corresponding to £ in w. We have

Be(w) = Be(F) = B (F*) < Per(w") < )ﬂz'(W')

max
w Ry (w

where ¢’ is defined as in the statement of the lemma, establishing
the first inequality.
For the opposite inequality, let

5
w

Per(w')

£ arg max
w €Ry(w)

for £ as defined in the statement, let £* be the respective value
for w*, and let F* + w* be its witness tree. Let F + w be the tree
satisfying F = F* as guaranteed by Lemma 3.4. Then

)ﬁz'(W') = Bor(w") = B+ (F) = Be(F) < Pe(w)

max
w ERy(w

as desired.

Now we are ready to establish the main result of this section.
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THEOREM 3.6. Fix { > 1. We consider characteristic strings w €
35, = ({0,h, H} x N)*. By definition f¢(e) = 0. We have

Pr(w(0,0)) = fr(w) +a,

) Be(w) +a, ifBr(w) =0 A |wl+1 <4,
PeCwih,a)) = {ﬁe(W) +a—1, otherwise,

_ |Pew) +a if—a < Pe(w) <0,
Pe(wlH,a)) = {ﬁf(w) +a—1, otherwise.

Proor. The statements are shown independently for each case,
always applying Corollary 3.5, the definition of the mapping Ry,
and Lemma 3.2. Concretely, in the simplest case we have

max

0, _ (w') — L (1w 2@
Pe(w(0,a)) w’eRIOI%?j((O,a))ﬂ[ (w') W/,eRO(W)ﬂf (w"a%)

)ﬂ('(W") +a=pfi(w)+a.

max
w'’€Ry(w

The other two cases are fully analogous, additionally taking into
account subcases depending on the value of fy(w) and ¢ when
invoking Lemma 3.2. O

4 THE ANALYSIS WITH DELAYS

We now move our attention to the case of A = 1. Contrary to the
previous section, we will not derive an exact description of ﬁ} (w);
nonetheless, we will define an easy-to-compute recurrent function
that we show can give us a good upper-bound on ,B} (w).

4.1 Weak Serialization via Deferrals

We start by defining the set D1 (w) of so-called deferrals of w that
will play a somewhat similar role in this section as the set of se-
rializations Ro(w) in Section 3. The important difference is that
while Ry partially serialized the block-creation events captured
in w, deferrals have a different goal: they account for the possible
1-slot delay of these successes without actually fully serializing
them. A deferral is hence still a characteristic string over the rich,
unserialized alphabet Y.

Definition 4.1 (Realizations and deferrals). Consider a character-
istic string w = ((s1,a1), ..., (Sn,an)) € E%. A realization of w
is a string r = ((h1,a1), ..., (hn,an)) € (N X N)" where for each
i € [n] we have s; = roundy (h;). Let

r=((h1,a1), ..., (hn,an))
r' = ((hy,a)),.... (hy,ap), (B p.ahey))
be two realizations, where each (h;, a;) and (h;, a}) are elements of
N2, We say that r’ is a 1-deferral of r if

(1) foreacht € {0,...,n}, ¥i_ a; < Zf:ll a; < Zf:} a;, and

(2) foreacht € {0,...,n}, T¢_ hi < ¥R < T by,
where we adopt the convention that ay+1 = hpt1 = 0. Finally,
consider two characteristic strings

w=((s;,a1),...,(sn,an)) €L,
w = ((s{, a'l), oo (Shyal), (s;Hl, a;H_l)) ezl
We say that w’ is a 1-deferral of w if there are realizations r (of w)
and r’ (of w’) so that r’ is a 1-deferral of r. Let D1 (w) denote the
set of all 1-deferrals of w. As we only consider 1-deferrals in this
work, we sometimes simply call them deferrals.
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The following lemma is an analogue of Lemma 3.3, showing that
any 1-tree of w can be seen as a 0-tree of some 1-serialization of w.
We prove it in the full version [11].

LEMMA 4.2. Letw € 3%, and F +1 w. Then there is a 1-deferral
w’ € D1(w) and an equivalent tree F’ = F such that F' +o w’.

We can now establish the following lemma, which is again an
analogue of Corollary 3.5, and is proven in the full version [11].

LEMMA 4.3. Letw € 3L, then

Bi(w) <

max

0 ’
+2.
weD;(w) ’B“-l (W )

4.2 The Recurrence B,(-)

In this section we define an easily computable recurrent function B,
that we later use to upper-bound f; of a particular string w. The
definition of B, will be composed of several basic functions that we
define first. After that, we give a recursive description of how B,
can be computed using these basic constituent operations.

The basic intuition underlying the computation of By(w) is to
internally simulate the computation of ﬁ?(w' ) on all possible defer-
rals w’ € D1(w), as ﬁ?(w’) is precisely described in Theorem 3.6.

More concretely, By returns a tuple

B{’(W) = ((ﬁo’ a0)5 ()BH’ aH)s (ﬁh’ ah)) € (Z X N)3

where each pair (fs, as) for s € {0,H, h} keeps track of the best
(in a well-defined sense detailed below) achievable margin fs and
the number of delayed adversarial successes as after processing a
deferral of w that: (0) does not produce an honest carry-over from
slot |w| to |w| + 1; (h) produces a single such honest carry-over; or
(H) produces a multi-honest such carry-over. The definition of B,
then describes how to update this tuple B;(w) to arrive at By(wz)
for any z € Y.

Basic operations. For any (f, a,a’) € Z x N x N we introduce the
following functions:

NHE(B,a,d’) = (B+a,d’),
HE(B,a,a’) = (B+a-1,d"),
(max{0, f + a}, a’ + min{0, § + a})
ifpef{-a-d,...,0},

otherwise.

®)

1>

NO(B,a,a’)
HE(S, a,a’)

Their names stand for (no) honest effect and neutralization oppor-
tunity, respectively. Intuitively, these functions will be invoked in
the update step computing By (wz) from B;(w) with their inputs
(B, a) being one of the pairs (fs, as) in B¢(w) for some s, and a’
being the number of adversarial successes in the currently pro-
cessed symbol z. The functions then return a new, updated value
pair (f*, a*) if (NHE) there was no honest effect on f in this round
(e.g., no delayed honest success from previous slot and no honest
success in this slot either); or (HE) there was an effect of an honest
success that decreased f; by 1; or (NO) there was a neutralization
opportunity and whether an honest effect occurred depends on the
current running value of f.

Note that which of these basic functions are invoked when com-
puting B;(wz) from B;(w) depends on information external to
these functions: the honest carry from previous slot (i.e., which s is
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used to index into the previous tuple B, (w)), the honest success(es)
recorded in the current symbol z, and the desired honest carry to
the next slot (i.e., which pair of the new value By(wz) is being
computed). In all cases, these functions are chosen to match the
behavior of ﬁ? on the respective deferral as described by Theo-
rem 3.6. Looking ahead, this inductive property will be established
in Lemma 4.5.

For notational convenience, we also introduce a function HE;
that behaves as NO or HE depending on two parameters £, ¢ € N; £
will be the usual parameter of ffy and ¢ will be the current slot—H EE
will hence be used to distinguish the “pre-£” and “post-£” settings:

{No(ﬁ, ad)ift < ¢,

HEL(B,a,a’) =
o(fa.a) HE(B,a,a’) if t > ¢.

To reason about these basic functions, we introduce a binary
relation < on the elements (f, a) € Z X N as follows:

(B1,a1) = (P2.az) & [(B1+a1 < fa+az) Vv
\Y (,B1+a1 :/32+a2 ANar < az)] .

©)

It is easy to verify that < is in fact a total order on Z x N. We use
the standard notation x < y for (x < y A x # y). For convenience,
let us define an operator max< that, given a tuple {(x;, yi)}_; of
pairs from Z X N, returns the maximum pair with respect to the
total order <. Finally, let L represent the pair (—oo, 0); to handle L
we sometimes abuse the notation and extend < to (ZU {—o0}) X N
in the natural way. We also sometimes treat L as a ternary function
(akin to NHE, HE, NO) that always returns (—oo,0), which will
always be clear from the context.

Formal description of B,. Let B;(¢) = ((0,0), L, L). Furthermore,
it Be(w) = ((Bo, a0), (Bu, an), (B, an)) and |w| + 1 =t then
NHE(ﬁo, ao, a’)

NO(ﬁH, ay, a’) , 4, J_) S

HE} (Bh, an. @’)

NO(ﬁo, ap, a')
NO(Bny,ap,a’) ¢, max<

NO(Bh. an,a’)

NO(fo, ao, a")
NO(Bh.an.a') ),
NO(ph, an., a’)

HE;(ﬂO’ ao, a/)

NO(ﬁH! aH! a/) s La max<
No(ﬂha ah, al)

We additionally introduce some notation that allows us to conve-
niently reason about B,. For some

B{(W) = ((ﬁOs a0)> (ﬂH> {ZH), (ﬁh’ ah))

and s € {0, H, h} we use the notation By(w)[s] to refer to the pair
(s, as) in Bp(w). Moreover, we let

B,(w(0,a")) = (max<

NHE(ﬁo, ap, a’)
B;(w(H,a’)) = (max<
NO(Bh, an, a’)

max«

B;(w(h,a’)) = (max<

By(w) £ r{nax
se{o,

+das .
OH,h}ﬂS s

Intuitively, given some w € 2}, and z € X, the final step of
computation of By (wz) (processing the trailing symbol z € 3c) can
be seen as determined by a three-dimensional table of 3% = 27 cells,
each cell specifying a single operation op € {NHE, HEZ, NO, 1} that

NO(fu, an, a)y,

NHE(fo. ao, a’)
NO(B, an.a’) 1) -
HE;(ﬁh, ap,a’)
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needs to be applied to By (w) [sprev] if the “honest carry” from the
previous step is sprey, the honest part of the current symbol z is scyr
(i.e., z = (Scur, @')), and the desired honest carry to the next slot is
Snext; With all sprev, Scur, Snext € {0, H, h}. We sometimes explicitly
refer to this operation as op| 1€ {NHE, HEZ, NO, 1}.
For example op[o,00] = NHE, op[y 0] = NO, 0p[p 0] = HE?,
op[g,0,s] = L forany s € {0,h,H}, and so on.

SprevsScursSnext

Monotonicity. We conclude this section by stating a simple mono-
tonicity property of all the basic functions NHE, HE, NO and H Ef,
underlying By. Given partial orders (S, <s) and (T, <), recall that
a function f: S — T is called (weakly) monotone if

Vr,y€S: (xssy= f(x) =1 f(y)) .
We defer the proof of the following lemma to the full version [11].

LEMMA 4.4. For any fixed a’ € N and t,¢ > 1, the functions
NHE(:, -, a’), HE(, -, d’), HEf,(-, - a’) and NO(+,-,a") mapping Z x
N — Z x N are monotone with respect to the total order < of (4).

4.3 Upper-bounding Deferral Margin by B,(-)

The following lemma is the key technical result that formalizes the
intuition behind the definition of B,. We provide an outline of its
proof below, deferring a detailed treatment to the full version [11].

LEMMA 4.5. Let w € I and let w' € Dq(w). Writing w’ =
x'(s),,1>@),,1), S0 that x” € 3T, consists of the first n symbols of w’
and (s}, a,.;) € {0,H,h} x N is the last symbol. Then we have

(B0, @) = Be()5h]

ProoF OUTLINE. We proceed by induction on the length n € N
of w € X%,. The base case is straightforward, hence we focus on
the induction step.

Let w € 3% and w’ € D1(w). Write w = x(sp, an), where x
consists of the first n — 1 symbols of w. We will first construct X’
that is a deferral of x and shares the first n — 1 symbols as x”. We
observe that w’ naturally gives rise to a deferral of x. To describe
this, let r = (h1,a1),..., (hn, an) and " = (h], a),.. ., (h;H_l, a_.;)
be realizations of w and w’, respectively, for which r’ is a deferral
of r. Letting q denote the first n — 1 symbols of the realization r, it’s
clear that q is a realization of x. Then we observe that an adaptation
of the suffix of r’ (and w’) yields a deferral of x (the prefix of w).
Specifically, defining (E;,a;, = (h),a),) + (h;l+1’ a;H) — (hn, an)
(where arithmetic is coordinatewise) it is easy to confirm that ¢’
(h'l, a'l), e (h;l_l, a;l_l), (E;,E;) is a deferral of the realization q.

To reiterate and organize the notation, we arrange these in a
table, where we use the notation w « r to indicate that r is a
realization of the string w, and w ~» w’ to indicate that w’ is a
1-deferral of w.

w e r=(hy,a1),...,(hn, an)
¢
wo—r' = (h,a)),.... (hyay), (b, an.)

x «—q=(hy,a1),...,(hp-1,an-1)
H

—, — , ’ ’ > -
X —q =(hd)),....(h,_.a,_,), (hyap)
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Let 2’ be the (n — 1)-prefix of w’ (or x”) and let 5}, € {0, h, H} be
the “rounded” version of h;, ie,3), = roundy (h:l). By induction
hypothesis we have (ﬁ?(z’), ay,) < Be(x)[55,].

The inductive step of the argument is now established in a se-
quence of manipulations that respect the ordering >. Namely, we

will prove that

(a) op[O,sn,s;lH] (Be(x)[0], an)
B(w)[sp41] = max< {OP[hs,,s7 ] (Be(x)[H], an)
OP[h,sp.s!,, ] (Be(x)[h], an)

(b)
>

(©
Z OP[5,,5,.5.,,] (ﬁ?(z'),a;, an)

0p[§n,sn,s;l+1] (B[(X) [‘E;l] ’a”) (5)

@ (e)

= (ena) = (6. an)
where x*, a* are simple modifications of x’, @], , that we precisely
define. Note that establishing (5) concludes the inductive step and
hence also the whole proof of the lemma.

Equation (a) follows from the definition of B¢, recall that op|
is the operation that is used in the computation of B, in the cell
where the honest carry from previous slot is s, the honest part of
the symbol in the current slot is s, and the desired honest carry
to the next slot is 57 ;. Step (b) then follows by definition of max <.
Step (c) is a direct application of the induction hypothesis and the
monotonicity of OP[5,,5m,50,,] with respect to its first two inputs,
as established in Lemma 4.4.

The main effort in establishing the induction case lies in ver-
ifying the other part of step (d), namely, the first component of
OP[Sp,50.5,,] (/32(2’),5;!, a,,) being equal to ﬁ? (x*). This amounts
to verifying that, intuitively, the operation performed in the cell of
the definition of B, determined by (sp, s, s;l +1) 1s identical to how
ﬂ? (x*) = ﬂ?(z’x:) evolves from ,B?(z’) when processing the last
symbol x;, of x*. Luckily, this behavior of ﬁ? is exactly described
by Theorem 3.6, and hence this claim can be verified by a straight-
forward case analysis considering each of the cells separately and
comparing it to the behavior guaranteed by Theorem 3.6. Finally,
establishing (e) turns out to be easy. O

Given Lemma 4.5, we can now establish our main result.
THEOREM 4.6. Letw € 3%,. Then ﬁ}(w) < Bpy1(w) +2.
Proor. First, Lemma 4.3 gives us

B (w) < o o (W) +2.

Let w* € Di(w) be the 1-deferral of w that maximizes ﬂgﬂ(')
above, and as before let w* = x*(s; ;. a; ;) with x* € 3, and
(st,p>an.;) € {0,H,h} x N. Let

Bei1(w) = ((Bo, a0), (Bus an), (Bh.an))

then we have

@ PR
Bop (W) < B (") +ahy, < sgr{%ﬁh}ﬂs +as = Beyr (w)

as desired, where inequality (a) follows from Theorem 3.6, and
inequality (b) is a direct consequence of Lemma 4.5. O

/
$,5n,5),4

1
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Finally, we remark that for characteristic strings of the special
form w = w’(0,0), i.e. terminating with a success-free slot, we
clearly have ﬁ; (w) = ﬂ?(w), this leads to a stronger statement
without the additional additive term +2 for this special case.

5 EXPLICIT BOUNDS

In this section, we study explicit bounds provided by our analysis.
As described, we are interested in the setting where honest and
adversarial block production are determined by Poisson processes
with parameters rj, and r,, while network delay of block delivery
is upper bounded A, time.

We collect results for both a Bitcoin-like system—with 600 second
inter-block time corresponding to a 1/600 rate Poisson process—
and an Ethereum-like system—with 13 second inter-block periods
corresponding to a 1/13 rate process. The 90th percentile block
propagation time for Bitcoin (resp. Ethereum) has been measured
to be around 4 seconds [18] (resp. around 2 seconds [7], partly due
to smaller block sizes); we will use these values as the values of A,
in the respective settings. To provide more data that are directly
comparable with a previous work [17], we will also give results for
a 10 seconds delay bound for Bitcoin and a 5 seconds delay bound
for Ethereum.

5.1 Numerical Evaluation of the Upper Bounds

The distribution of the characteristic string w is as follows. Each
symbol w; = (s;,ai) € {0,h,H} X N is independent and: (i) a;
follows a Poisson distribution with parameter r;A,, and (ii) s; is
determined by a Poisson random variable X with parameter rj,A,
so that s; = roundy (X) (refer to (1)). Let D(rq, rp, Ar; n) denote the
distribution on ({0, h, H} x N)" given by this rule.

Temporal settlement rules. Examining the conclusions of the pre-
vious section and, in particular, the recursive description of the
tuple By, it is clear that one can efficiently determine the value
B/ (w) for any particular characteristic string w. Furthermore, con-
sidering that the distribution D(rg, rp,, Ar; n) calls for independent
symbols, it is straightforward to determine the exact distribution
of By(wa), where a is an additional independent symbol, from that
of B¢(w). Specifically, we consider a “six-dimensional” table Ty,
with one cell for each possible value of B, (thus a value has the
form (o, ao, B, an, PH, an)), whose cells are populated with the
probabilities that this value emerges in By (w) (with w drawn from
D(rq, rp, Ar; n)). Given the “kernel” distribution for the next sym-
bol a, each cell of the corresponding table T;,41 can be determined
as an appropriate convex combination of the entries in T, with the
kernel distribution. The symbol distribution has infinite support;
however, the Poisson distribution decays very rapidly, allowing us
to use finite approximations that suitably control errors.

Initially, we must settle on a distribution of B, at time ¢ (corre-
sponding to the moment in time when the transaction of interest
was submitted to the blockchain). While this does depend on ¢,
the distribution converges quickly to an exponentially decaying
distribution (in the sense that the entries are exp(—A(fo +ao))). For
this reason, rather than selecting some particular ¢ in our numerical
evaluation, we choose a very large ¢ that corresponds to the steady
state of the blockchain. Specifically, we select a large enough ¢ so
that the difference in total variation observed by evolving for an
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additional step is bounded by 107>, (Intuitively, this initial distribu-
tion reflects the number of private blocks that the adversary may
have, along with any deferred honest blocks from slot £.)

For simplicity, we append a concluding (0, 0) onto the end of the
generated characteristic string which, recalling the semantics of B,
permits us to focus on a single pair, (S, ag); as the string does not
terminate with any honest victories, we may neglect the + 2 of
Theorem 4.6 and the event of interest is simply fp+a¢ > 0, in which
case the adversary can launch a successful “double spend” attack.
Note that this postpended (0, 0) in fact corresponds to an observable
event-it can be guaranteed by witnessing a “quiet” region of length
2A;. Finally, we compute the probability that the margin should
ever climb above zero after our threshold of interest, by continuing
to evolve the probability forward in time, but effectively “freezing”
any probability mass on positive values of margin. We then evolve
the system forward until the (exponentially decaying) contributions
from further evolution are negligible.

Block-based settlement rules. We also consider the settlement
rule that is actually used in Bitcoin “Wait for the transaction to be
buried by k blocks.” This requires a small adaptation to the frame-
work above because an individual symbol may generate multiple
blocks: in this case, one maintains a graded data structure that
reflects the probabilities conditioned on observing a particular total
number of block-creation events. A further complication arises in
the interpretation of margin for this stopping time. In particular,
this stopping time is quite different from the simple stopping time
“wait for k block creation events,” which is not even an observable
event. For example, note that if ¢ () is 2k at time ¢, an adversary can
immediately activate the settlement of “buried by k blocks” and can
double spend. Observe that if f,(w) = s at time £ (so that |w| = ¢),
then at least 2k — s block creation events must take place in order
for the adversary to successfully create a double spend (which will
expose 2k blocks to the observer). With this observation in place,
we carry out the natural numerical evolution, conditioned on the
value of f arising at w = ¢. (We specifically use Sy + ag.)

5.2 Lower Bounds from Private Mining Attacks

We obtain lower bounds on the consistency failure probability by
analyzing the well known private mining attack strategy. This at-
tack strategy simply attempts to build a competing chain in private
that tries to double spend a target transaction. If there ever comes a
point in time after the target transaction has been settled, that the
adversary’s private chain becomes longer than the public honest
chain, the adversary releases its private chain and the private min-
ing attack succeeds. If such a time never occurs, the private mining
attack fails. In more detail, the private mining attack consists of two
stages. Before time ¢ (the time when the target transaction appears
in the system), the attacker tries to build a longer private chain: if
its private chain is longer than or equally long as the public chain,
it tries to extend its private chain; however, if its private chain is
overtaken by the public chain, it gives its private chain, and tries
to mine a new private chain from the tip of the public chain. After
time ¢, the attacker goes all-in and keeps mining on the private
chain that double spends the target transaction.

We calculate the success probability of the private mining attack
in the lock-step model D0, A;] and assuming that neutralization
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Ay = 4s, upper bound

A; = 4s, lower bound

Ay = 10s, upper bound

Ay = 10s, lower bound
[17], Ar = 10s, upper bound

FHee

107!

Probability of failure

1072

Time (min.)

Figure 4: Bitcoin temporal settlement failure for a 10% adver-
sary, results from [17] for comparison.

never occurs. These assumptions weaken the capabilities of the
adversary. Note that the private mining attack is not optimal when
the network delay is non-zero, as shown in [6]. Hence, computing
the success probability of this strategy with a weakened adversary
gives a lower bound on the probability of consistency failures.

We also provide simulation results for the success probability
of the private mining attack in the actual continuous time model
C[A]. For each parameter setting, we run the private mining attack
10000 times in 10 experiments and then plot its success rate with
one standard deviation. Since the simulation results account for
neutralization, they give better (but noisy) lower bounds. Since our
upper and lower bounds already match closely for Bitcoin parame-
ters, we only carry out simulation for Ethereum parameters. We
also remark that we can only provide simulation results when the
settlement failure probability is relatively high (i.e., short confirma-
tion time or few confirmation blocks); when the settlement failure
probability is extremely small, we would have needed a very large
number of simulation runs to make reasonable estimates.

5.3 Results

Figures 4 and 5 give our results for temporal settlement in Bitcoin
and Ethereum, respectively. These figures depict both lower bounds
and upper bounds on the settlement error as a function of time.
More results for temporal settlement are given in Table 1. Results
for the block-based settlement rule are summarized in Figures 6
and 7, and a more detailed record is given in Table 2.

Figure 4, in particular, clearly shows that our method obtains
highly accurate settlement times for the temporal settlement rule
for Bitcoin. To elaborate (and as mentioned earlier in the paper), our
upper and lower bounds are merely minutes away. For example, for
Bitcoin with A, = 10s delays and a 10% adversary, settlement error
probability at the one-hour mark is at most 4.489% (from the upper
bound computed in 1-deferral setting), while 90 seconds before
that, the settlement error probability is at least 4.494% (due to the
lower bound given by private mining attack). (These results are not
included in the provided tables, but are obtained using the methods
we described in this section.)
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Figure 5: Ethereum temporal settlement failure for a 10%
adversary, results from [17] for comparison.
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Figure 6: Bitcoin block-based settlement failure for a 10%
adversary.
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Figure 7: Ethereum block-based settlement failure for a 10%
adversary.

Towards comparing with prior art [17], we plot the upper bound
results from [17] in Figures 4 and 5. As an example, their method
concludes that for a 10% adversary and A, = 10s, a Bitcoin block is
settled with at most 0.1% error probability after 5 hours 20 minutes,

while our new results bound it within 2 hours and 30 minutes.
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Figure 8: Bitcoin settlement method comparison: time- vs.
block-based, for a 10% adversary and A, = 10s.

Furthermore, our new results are no more than 2 minutes and
30 seconds away from the optimum. The comparison is similarly
favorable to our results for the Ethereum parametrization.

Comparing settlement modes. It is interesting to compare the
settlement error probability for the temporal rule and block-based
rule. At the first glance, one may intuitively feel that “waiting for 6
blocks” should provide similar consistency guarantees as “waiting
for 60 minutes” We give this comparison for Bitcoin in Figure 8
where we plot the upper bounds on the temporal settlement error
as a function of time (as indicated by Figure 4), alongside with the
upper bound on the block-based settlement error (as indicated by
Figure 6) as a function of the expected time it takes for the particular
number of blocks to appear under honest operation. As the graph
illustrates, in the above-mentioned case of 60 minutes vs. 6 blocks,
the block-based settlement guarantees are an order of magnitude
better. This illustrates that under normal operation of the protocol,
users are able to arrive at their desired settlement guarantee sig-
nificantly faster if they apply a block-based settlement rule. This
is because the block-based settlement rule naturally adapts to ad-
versarial behavior in the sense that withholding adversarial blocks,
in general, will cause the users to wait for longer before observing
the requisite number of blocks.

6 CONCLUSIONS

Practical relevance. This work aims to provide concrete settlement-
delay advice to all deployed PoW blockchains. Indeed, while the con-
crete results we quote are parametrized for Bitcoin and Ethereum,

the two currently dominant PoW deployments, our methods can be

directly applied to compute these statistics for any other choice of
block interval, block propagation delay A, and assumed adversarial

share of mining power. The value A; can be estimated based on

measurements, as we’ve done in Section 5.1 using existing work.
Estimating the fraction of adversarial mining power is more difficult

and ultimately comes down to each user’s belief. Nonetheless, our

results allow each individual user to choose their settlement times

or blocks based on their own beliefs about the system and their

acceptable failure probability (perhaps depending on the transacted

amount).
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Table 1: The failure probability of the temporal settlement
rule for Bitcoin and Ethereum under different settlement
time, adversary ratio and network delays.

Future work. The main open question remaining unresolved after
our work is to provide analogous practically relevant settlement
bounds also for other Nakamoto-style (i.e., longest-chain) ledger
consensus protocols, employing different Sybil-protection mech-
anisms such as proof of stake [5] and proof of space [4]. These
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Time upper bounds lower bounds Confs upper bounds lower bounds
(min) | A =10s | Ar=4s Ar=10s [ A =4s 1 Ar=10s [ Ar=4s Ar=10s | Ar=4s
Bitcoin; 10% adversary Bitcoin; 10% adversary
20 0.304519 0.298281 0.295002289 | 0.294517617 2 0.118882 0.111154 0.091072133 | 0.090289244
30 0.182942 0.177858 0.175313516 | 0.175442853 3 0.0402842 0.0368385 0.029544274 | 0.029154201
40 0.112861 0.109011 0.10716052 | 0.106774039 4 0.0137891 0.0123524 || 0.009793747 | 0.009616722
50 0.0707863 0.0679664 0.066656956 | 0.066352072 5 0.00476516 0.00418514 0.003294434 | 0.003217994
60 0.0448913 0.0428636 0.041949497 | 0.041845542 6 0.00165992 0.00143009 0.001120043 | 0.00108804
70 0.0286956 | 0.0272542 || 0.026621323 | 0.026448959 7 0.000582003 | 0.000492027 || 0.000383901 | 0.000370782
80 0.0184528 0.0174364 0.017000505 | 0.016874481 8 0.000205151 | 0.000170222 || 0.000132434 | 0.000127138
90 0.011922 0.0112094 0.010910293 | 0.010819242 9 7.2633e-05 | 5.91573e-05 4.5926E-05 | 4.38129E-05
100 | 0.00773178 | 0.00723447 || 0.007029835 | 0.006964646 10 | 2.58108e-05 | 2.06366e-05 || 1.5996E-05 | 1.51607E-05
Bitcoin; 20% adversary Bitcoin; 20% adversary
20 0.505249 0.498112 0.494926979 | 0.492990797 2 0.466437 0.45271 0.319646859 | 0.317452323
30 0.383382 0.376117 0.373064366 | 0.371644562 3 0.288865 0.277594 0.188866365 | 0.186940123
40 0.295733 0.288859 0.286104409 | 0.284040603 4 0.177784 0.169269 0.113180954 | 0.111647534
50 0.230435 0.224161 0.221742068 | 0.219810527 5 0.109524 0.103348 0.068498618 | 0.06733905
60 0.180805 0.175197 0.173106136 | 0.17163273 6 0.0676876 0.0633137 || 0.041762682 | 0.040912987
70 0.142594 0.137653 0.135862886 | 0.134299714 7 0.0419841 0.0389337 0.025608615 | 0.024999029
80 0.11291 0.1086 0.107077575 | 0.105704297 8 0.0261309 0.0240265 0.015775657 | 0.015344919
90 0.0896948 0.0859628 0.084675044 | 0.083480911 9 0.016314 0.0148737 0.009755295 | 0.009454384
100 0.0714434 0.0682312 0.067145976 | 0.066115746 10 0.0102126 0.00923299 0.006051757 | 0.005843401
Time upper bounds lower bounds Confs upper bounds lower bounds
(min) | Ar=5s | A/=2s Ar=5s | Ar=2s 1 Ar=55 [ Ar=2s Ar=5s [ Ar=2s
Ethereum; 10% adversary Ethereum; 10% adversary
2 0.137626 0.0279521 0.015828578 | 0.011812983 2 0.554298 0.256406 0.13124146 | 0.103613076
3 0.0527935 0.00548293 || 0.002145191 | 0.001584263 3 0.38244 0.120911 0.056912431 | 0.037008885
4 0.0203159 0.0010971 || 0.000410932 | 0.000251815 4 0.264554 | 0.0571909 || 0.025438212 | 0.013695484
5 | 0.00782799 | 0.000221883 || 6.9340E-05 | 3.615E-05 5 0.183481 | 0.0271947 || 0.011522827 | 0.005185141
6 0.003018 | 4.51668e-05 || 1.0273E-05 | 5.61563E-06 6 0.12746 | 0.0129908 || 0.005263762 | 0.001993565
7 0.00116389 | 9.23251e-06 || 2.0634E-06 | 9.38321E-07 7 | 0.0886243 | 0.00622754 || 0.002419679 | 0.000774795
8 | 0.00044892 | 1.89193e-06 || 3.6112E-07 | 1.48653E-07 8 | 0.0616519 | 0.00299308 || 0.001117841 | 0.000303492
9 | 0.000173164 | 3.87677e-07 || 5.5071E-08 | 2.23033E-08 9 [ 0.0428996 | 0.00144124 || 0.000518528 | 0.000119582
10 | 6.67978e-05 | 7.87459e-08 || 1.1272E-08 | 3.57683E-09 10 | 0.0298552 | 0.000694936 || 0.000241348 | 4.73342E-05
Ethereum; 20% adversary Ethereum; 20% adversary
2 0.384056 0.156394 0.117232788 | 0.092808469 2 1.03875 0.673397 0.410871826 | 0.351521687
3 0.245871 0.0697603 || 0.043623877 | 0.033041265 3 0.889277 0.479654 0.282740403 | 0.219222634
4 0.158287 0.0317031 0.019425505 | 0.012949768 4 0.749407 0.337735 0.198320599 | 0.139166224
5 0.102233 0.0145709 0.008178393 | 0.004849916 5 0.628655 0.237452 0.140561678 | 0.089448203
6 0.0661652 0.00674751 0.003249166 | 0.001899153 6 0.526782 0.167208 0.100281703 | 0.058018531
7 0.0428818 0.00314153 || 0.001500296 | 0.000774062 7 0.441386 0.118012 0.071879557 | 0.037893876
8 0.0278188 | 0.00146854 || 0.000650086 | 0.00030802 8 0.369901 | 0.0834758 || 0.051707349 | 0.024883864
9 0.0180596 | 0.000688627 || 0.000264363 | 0.000119565 9 0.310061 0.0591607 0.037305049 | 0.016411126
10 0.0117302 | 0.000323706 || 0.000123975 | 4.80722E-05 10 0.259949 0.0419967 0.026980289 | 0.010861279

Table 2: The failure probability of the block-based settlement
rule for Bitcoin and Ethereum under different number of
confirmations, adversary ratio and network delays.

are, alongside PoW, also deployed in existing blockchain projects
currently carrying billions of dollars in value.
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