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question. Some recent works derive concrete bounds by working

out the constants in these asymptotic analyses [3, 16], but the re-

sulting settlement bounds are very weak; for Bitcoin, the results

come to thousands of hoursÐorders of magnitude larger than what

is used in practice. Only recently, Li et al. [17] derived the first

practically viable settlement time upper bounds; their results are

still a few hours larger than corresponding lower bounds.

Our results. We lay out a new proof technique for analyzing con-

sistency of proof-of-work blockchains with an eye toward explicit

settlement times. Our method offers striking improvements over

the best previous workÐtypically by a factor of 10 or moreÐin

explicit settlement times for both the Bitcoin setting (with long

interblock arrival times) and the Ethereum setting (with short in-

terblock arrival times).1 In both settings, the settlement times we

obtain are within minutes of optimality.

1.1 An Overview of the Analysis

We capture the schedule of mining successes and the output of a

concrete execution by a characteristic string and a PoW-tree respec-

tively, two notions introduced for this purpose in the context of

proof-of-stake [13] and adapted to proof-of-work (PoW) in [1, 10].

Our analysis departs almost immediately from [10] by shifting its

focus to serialization. Given a sequence of mining successes, the

longest-chain algorithm will produce a łhash tree” of blocks, where

edges are given by the predecessor hashes in the generated blocks.

The partial order assigned to blocks by this tree may be incon-

sistent with the łreal” order in which they were generated due

both to network delays and adversarial players postponing delivery

of their blocks. But there is always a reordering of the block cre-

ation events for which the tree has a simple łtemporally consistent”

explanationÐsuch a reordering is a serialization. Motivated by the

fact that the analysis is more tractable in the lockstep-synchronous

setting, we will first carry out the analysis there. We then study the

serializations that can arise with network delays, and then rely on

the lockstep results to analyze the serialized executions.

Ultimately, we are interested in studying the longest chain rule in

a continuous-time model C[Δr] where honest parties and the adver-

sary both create proofs of work according to independent Poisson

processes with rates 𝑟ℎ and 𝑟𝑎 , respectively, and the adversary may

selectively delay honest block delivery by up to Δr time (łr” stands

for łreal”). One way to capture this setting is to consider discrete

slots corresponding to very short intervals of length 𝑡 (𝑡 ≪ Δr) and

to appropriately adjust the network model so that honest parties

are not guaranteed to see messages that were sent to them at most

Δ ≜ ⌈Δr/𝑡⌉ slots ago. Call this model D[Δ, 𝑡], where the two pa-

rameters record the maximum delay in slots and the duration of

the slot, respectively. This is the approach taken in [10, 14, 20]; and

taking 𝑡 → 0makes this model approach C[Δr] [10]. However, one

difficulty in tackling this model is in keeping track of the complex

delay patterns that can occur as each individual message can be

delayed by anywhere between 0 to Δr/𝑡 slots.

The alternative approach that we propose in this work is to

introduce two ładjacent” discrete models. The first model D[0,Δr]

is a lockstep-synchronous model, dividing time into relatively long

1A concurrent work obtains simple and close-form bounds that are tight for the Bitcoin
setting but loose for the Ethereum setting [12].

slots of length Δr. Honest players producing blocks in the same slot

are not apprised of each other’s blocks, but the network is assumed

to deliver all created (honest) blocks at the end of each slot. Of

course, the adversary always operates with full knowledge of all

adversarial and honest blocks produced in any slot. The second

model D[1,Δr] is similar, and a slot still represents a Δr-long time

interval, but an honest block may now be delivered at the end of

the next slot, i.e., the slot following the one in which the block was

created; this effectively permits that some messages are delayed by

up to 2Δr.

It is easy to observe that C[Δr] and D[Δ, 𝑡] are łsandwiched”

between these two models

D[0,Δr] ⪯ D[Δ, 𝑡], C[Δr] ⪯ D[1,Δr]

in the sense that any valid execution in a model on the left-hand

side of ⪯ is also valid in the model on the right-hand side, as the

restriction on delays gets more permissive as we move to the right.

Therefore, an upper bound on the probability of settlement failure

in a right-hand side model is also an upper bound in a left-hand side

one; in other words, the D[0,Δr] model settles more quickly than

the model of interest D[Δ, 𝑡], while D[1,Δr] settles more slowly.

We first analyze consistency inD[0,Δr] in Section 3. The analy-

sis follows essentially the same lockstep trajectory of [6] and can be

given fairly succinctly. We then shift our attention in Section 4 to

D[1,Δr] where the core technical difficulty lies. Our approach here

is to show how to serialize an execution in theD[1,Δr] model to an

execution in D[0,Δr]. We can then rely on upper bounds obtained

in the simpler D[0,Δr] model.

We evaluate numerically our results in Section 5.1. We then com-

pare our upper bound results with lower bounds, which we obtain

in Section 5.2 by analyzing the success probability of the private

mining attack in theD[0,Δr] model. Recall that theD[0,Δr] model

settles more slowly than the D[Δ, 𝑡] model and the private mining

attack may not be the most effective adversarial strategy. Therefore,

this gives a lower bound on the consistency failure (or settlement

times) of PoW blockchains.

In the rest of the paper, we reserve the symbol Δ to denote the

maximummessage delay in slots. Hence, in Section 3 (resp. 4), which

employs the model D[0,Δr] (resp. D[1,Δr]), we consider Δ = 0

(resp. Δ = 1). However, recall that in both these models, a slot itself

has duration Δr.

We remark that our analysis does not consider difficulty adjust-

ments that are present in PoW protocols. This is well justified by the

fact that block settlement time is much shorter than the difficulty

adjustment period (hours vs. weeks).

1.2 Sample Results Generated by our Method

As mentioned, our results provide very sharp estimates for Bitcoin

in the region of practical interest: see Figure 1.With a 10% adversary

and a bound of 10 seconds on network delay, we obtain a settlement

error of no more than 4.489% after one hour. This can be directly

compared with a lower bound of 4.261%, which is obtained by

analyzing the private mining attack. Notably, these results are łonly

minutes” apart: 90 seconds before the one hour mark, the lower

bound is 4.494%. So the upper bound is less than 90 seconds away

from optimal. Alternatively, our results yield a 0.48% settlement
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Figure 1: Our upper and lower bounds on settlement failure

probability for Bitcoin with a 10% adversary and 10 second

network delays; results from [17] included for comparison

error guarantee for the 6-block confirmation rule that is common

used in practice.

In the case of Ethereum,2 recall that blocks are comparatively

small and have 13 second interblock time. With 2 second network

delays and a 10% adversary, our methods bound settlement failure

probability after four minutes within 0.1097% and 0.02518%. As

expected, we observe a larger gap than in the łnearly lockstep-

synchronous” Bitcoin case. However, the result is still less than one

minute away from the optimum: at the five minute mark the upper

bound has fallen to 0.02219%. These results improve the settlement

failure estimates of previous work by well over an order of mag-

nitude in the regime of interest. See Figure 2 for a representative

example of our results for Ethereum and a comparison with [17]. A

more comprehensive discussion of both time-based and block-based

settlement appears in Section 5.1.

2 PRELIMINARIES

Notation. Throughout the paper, N = {0, 1, 2, . . .} denotes the set

of natural numbers (including zero). For 𝑛 ∈ N, [𝑛] denotes the

set {1, . . . , 𝑛} (hence [0] = ∅). For a set 𝑋 , we let P(𝑋 ) denote the

power set of 𝑋 .

For a word of length 𝑛 over alphabet Σ, we use the notation𝑤 =

𝑤1 . . .𝑤𝑛 ∈ Σ
𝑛 . We denote by𝑤𝑖:𝑗 its subword𝑤𝑖𝑤𝑖+1 . . .𝑤 𝑗 , and

#𝑎 (𝑤) denotes the number of occurrences of the symbol 𝑎 ∈ Σ in𝑤 .

We denote by ∥ the concatenation of words and by ◦ the concate-

nation of languages, i.e., 𝐿1 ◦ 𝐿2 ≜ {𝑤1 ∥𝑤2 | 𝑤1 ∈ 𝐿1 ∧𝑤2 ∈ 𝐿2}.

2.1 Modeling Proof-of-Work Blockchains with
Network Delays

Our modeling of the protocol and its execution environment ex-

tends the model in [10], which we summarize here for completeness.

A PoW blockchain protocol is carried out by a set of parties of

two types: honest parties follow the protocol and adversarial parties

2Note that while Ethereum considers uncle blocks for difficulty recalculation and
rewards distribution, these blocks do not affect its chain-selection rule, hence Ethereum
is fully covered by our analysis.
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Figure 2: Our upper and lower bounds on settlement failure

probability for Ethereum with a 10% adversary and 2 second

network delays; results from [17] included for comparison.

may diverge arbitrarily. All parties actively engage in searching for

łproofs-of-work” (PoWs), which afford them the right to contribute

to the ledger. We divide time into slots of length Δr and use a

characteristic string to indicate a summary of the outcomes of the

proof-of-work lottery in each slot.

More concretely, our main alphabet of interest in this paper

will be Σ∞ ≜ {0, h,H} × N. Intuitively, a single symbol (𝑠, 𝑎) ∈

{0, h,H} × N from this alphabet captures the outcome of the proof-

of-work lottery in a given time slot, at a level of precision that

will be most convenient for our treatment. The natural number 𝑎

simply captures the number of adversarial successes; the symbol

𝑠 ∈ {0, h,H} captures the number of honest successes as follows:

0 represents no honest successes, h represents one and only one

honest success, and H denotes more than one honest successes in

the considered slot.

Note that a characteristic string symbol does not capture the

full outcome of the lottery in a given slot: it merely describes the

numbers of successes and their attribution to party types, but not

their ordering within a slot. Looking ahead, it will be clear that our

analysis implicitly assumes that this ordering is the best possible

for the adversary, in line with our effort to obtain upper bounds on

error probabilities.

For notational convenience when treating our imprecise account-

ing of honest successes described above, we define the following

helper łrounding” function roundH : N → {0, h,H}. Let ℎ be the

number of honest successes in a given time slot and define

roundH (ℎ) ≜





0 if ℎ = 0 ,

h if ℎ = 1 ,

H if ℎ ≥ 2 .

(1)

We consider characteristic strings𝑤 (i.e., words) drawn from the

set Σ𝐿∞; these describe the outcomes of the proof-of-work lottery

over a period of 𝐿 slots. We write

𝑤 = (𝑤1, . . . ,𝑤𝐿) = ((𝑠1, 𝑎1), . . . , (𝑠𝐿, 𝑎𝐿)) .

Let 𝜀 denote the empty characteristic string (i.e., 𝐿 = 0).
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The Bitcoin protocol calls for parties to exchange blockchains,

each of which is an ordered sequence of blocks beginning with a

distinguished łgenesis block,” known to all parties. Each proof-of-

work success confers on that party the right to add exactly one

block to an existing blockchain. (In fact, the party must identify

the previous chain on which she wishes to build ahead of time, but

this will not affect our analysis.) Honest parties follow the longest-

chain rule which dictates that they always choose to add to the

longest blockchain they have observed thus far and broadcast the

result to all other parties. The basic dynamics of the system, with a

particular characteristic string𝑤 and an adversary, can be described

as follows.

Let C𝑡 denote the collection of all blockchains created by time 𝑡

and let 𝐻 (C𝑡 ) denote the subset of all chains in C𝑡 whose last block

was created by an honest party. Set C0 = {𝐺}, where𝐺 denotes the

unique chain consisting solely of the genesis block. The genesis

block is łhonest”; thus 𝐻 (C0) = C0. It is convenient to adopt the

convention that C−𝑡 = 𝐻 (C−𝑡 ) = {𝐺} for any negative integer

−𝑡 < 0. Then the protocol execution proceeds as follows. For each

slot 𝑡 = 1, 2, . . .:

• Initiate C𝑡 := C𝑡−1 and 𝐻 (C𝑡 ) := 𝐻 (C𝑡−1).

• If𝑤𝑡 = (0, 𝑎), the adversary may repeat the following adver-

sarial iteration 𝑎 times: select a single blockchain 𝐶 from C𝑡
and add a block to create a new chain 𝐶′, which is added to

C𝑡 . 𝐻 (C𝑡 ) remains unchanged.

• If 𝑤𝑡 = (h, 𝑎), the same 𝑎 adversarial iterations happen as

above, but they are arbitrarily interleaved with a single hon-

est iteration defined as follows: the adversary may select any

collection of chains V for which 𝐻 (C𝑡−1−Δ) ⊆ V ⊆ C𝑡 .

This is the łview” of the honest player, who applies the

longest chain rule to V , selects the longest chain 𝐿 ∈ V

where ties are broken by the adversary, and adds a new

block to create a new chain 𝐿′ that is added to C𝑡 and also

𝐻 (C𝑡 ).

• If𝑤𝑡 = (H, 𝑎), then the execution of 𝑎 adversarial iterations

is arbitrarily interleaved with at least two honest iterations.

In each time step 𝑡 we also maintain the set of Δ-dominant chains

D𝑡 ⊆ C𝑡 , determined entirely by C𝑡 and 𝐻 (C𝑡−1−Δ): namely,D𝑡 is

the set of all chains in C𝑡 that are at least as long as the longest chain

in 𝐻 (C𝑡−1−Δ). The intuition behind the definition of Δ-dominant

chains is that, in a time slot 𝑡 , it is in principle possible for the adver-

sary to manipulate an honest party into adopting any Δ-dominant

chain, as the adversary is only obligated to deliver those chains in

𝐻 (C𝑡−1−Δ) and the chains in D𝑡 are at least as long as those in

𝐻 (C𝑡−1−Δ).

Note that the synchrony assumption is reflected in the descrip-

tion of the honest iteration: the adversary is obligated to deliver all

chains produced by honest players that are Δ slots old. Although

we keep the presentation general, recall that as explained in the

introduction, this work focuses on the two models D[0,Δr] and

D[1,Δr], and hence always considers Δ ∈ {0, 1}.

Considering that the adversary selects both the viewV of each

honest player and is empowered to break ties, the structure of the

resulting sequence of chains (that is, the directed acyclic graph nat-

urally formed by the blocks) is determined entirely by the adversary

and the characteristic string.

We make two final remarks. First, we permit the adversary to

have full view of the characteristic string during this process. Of

course, in practice a Bitcoin adversary must make decisions łon-

line,” so our modeling only makes the adversary stronger. Second,

we have placed an implicit constraint on the adversary: the only

means of producing a new chain is to append a block (associated

with a proof-of-work success) to an existing chain. In practice, this

constraint is guaranteed with cryptographic hash functions.

In the context of ledger protocols, one is usually interested in

preserving two properties, consistency and liveness, formulated in [9,

15, 22]. Consistency means that once a block (or equivalently, a

transaction within it) is settled, then it remains settled forever. We

consider two settlement rules in this paper: a time-based one and a

block-based one.

• Consistency for time-based settlement; with parame-

ter 𝜏 . A block 𝐵 that is mined before time ℓ and contained

in some chain in D𝑡 where 𝑡 ≥ ℓ + 𝜏 is contained in every

chain 𝐶 ∈ D𝑡 ′ for all 𝑡
′ ≥ 𝑡 .

• Consistency for block-based settlement; with parame-

ter 𝑘 . A block 𝐵 that is 𝑘 blocks deep in some chain in D𝑡 is

contained in every chain 𝐶 ∈ D𝑡 ′ for all 𝑡
′ ≥ 𝑡 .

Intuitively, the above settlement rules state that, when an honest

player examines the longest chain to its knowledge at time 𝑡 , it

considers all blocks mined at least 𝜏 time earlier (in the case of

time-based settlement) or buried 𝑘 blocks deep (in the case of block-

based settlement) settled. The focus of this paper is to bound the

error probability (from both above and below) as a function of the

settlement delay, i.e., of the parameters 𝜏 or 𝑘 in the above two

settlement rules, respectively.

We also remark that our definitions of consistency and its er-

ror probability above are applicable to individual blocks. One can

also phrase the consistency as a global property of the protocol

by requiring the above to hold for all blocks. However, the error

probability of such a global consistency property will depend on

the total running time of the blockchain protocol and is hard to

characterize accurately.

For completeness, we also mention the liveness property [10].

• Liveness; with parameter 𝑢. For any two slots 𝑡1, 𝑡2 > 0

with 𝑡1 + 𝑢 ≤ 𝑡2, and any chain 𝐶 ∈ D𝑡2 , there is a time

𝑡 ′ ∈ {𝑡1, . . . , 𝑡1 +𝑢} and a chain𝐶
′ ∈ 𝐻 (C𝑡 ′ ) \𝐻 (C𝑡 ′−1) such

that 𝐶′ is a prefix of 𝐶 .

2.2 Proof-of-Work Blocktrees

We formally capture the above protocol dynamics by the combina-

torial notion of a PoW Δ-tree. It is a variant of the łfork” concept

first considered for the proof-of-stake case in [2, 5, 13] and more

recently also employed for PoW-analysis [1, 10].

Definition 2.1 (PoW Δ-tree). Let Δ, 𝐿 ∈ N. A PoW Δ-tree for the

string 𝑤 ∈ Σ
𝐿
∞ is a directed, rooted tree 𝐹 = (𝑉 , 𝐸) (in the graph-

theoretic sense) with a pair of functions

l# : 𝑉 → {0, . . . , 𝐿} and ltype : 𝑉 → {h, a}

satisfying the axioms below. Edges are directed ławay from” the

root so that there is a unique directed path from the root to any

vertex. The value l# (𝑣) is referred to as the label of 𝑣 . The value
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Figure 3: A PoW 1-tree 𝐹 for the characteristic string 𝑤 . Honest vertices are shown with double-struck boundaries, while

adversarial vertices are simple circles. Vertices are labeled with l# (·). The tree indicates a successful double spend attackÐgiven

by the red and blue chainsÐin a circumstance where the simple private-chain attack does not succeed: in particular, the tree

constructs two alternate chains with disjoint suffixes of length 5, while only three adversarial proofs of work are discovered

over this period. We remark that 𝐹 ≡ 𝐹
⌈1
, since the last symbol of𝑤 is (0, 0), and that 𝐹

⌈1
is obtained by removing the adversarial

vertex with label 8. Thus len(𝐹
⌈1
) = 5, this maximum length achieved by the blue chain. Note, then, that the two chains indicated

in red and blue each have 1-advantage equal to zero, and both are 1-dominant. Considering that these chains share no vertices

after the root, they witness 𝛽11 (𝐹 ) ≥ 0 for the tree 𝐹 and hence for the characteristic string𝑤 .

ltype (𝑣) is referred to as the type of the vertex: when ltype (𝑣) = h,

we say that the vertex is honest; otherwise it is adversarial.

(A1) the root 𝑟 ∈ 𝑉 is honest and is the only vertex with label

l# (𝑟 ) = 0;

(A2) the sequence of labels l# () along any directed path is non-

decreasing;

(A3) if 𝑤𝑖 = (𝑠𝑖 , 𝑎𝑖 ), then the number ℎ𝑖 of honest vertices of 𝐹

with the label 𝑖 satisfies roundH (ℎ𝑖 ) = 𝑠𝑖 , and there are no

more than 𝑎𝑖 adversarial vertices of 𝐹 with the label 𝑖;

(A4) for any pair of honest vertices 𝑣,𝑤 for which l# (𝑣) + Δ <

l# (𝑤), len(𝑣) < len(𝑤), where len() denotes the depth of

the vertex.

We will often refer to PoW Δ-trees simply as trees whenever Δ is

clear from the context. Unless explicitly stated otherwise, through-

out the paper we reserve the term ‘tree’ for the above PoW-specific

structure, as opposed to the underlying graph-theoretic notion.

A PoW Δ-tree abstracts a protocol execution with a simple but

sufficiently descriptive discrete structure. Its vertices and edges

stand for blocks and their connecting hash links (in reverse direc-

tion), respectively. The root represents the genesis block, and for

each vertex 𝑣 , l# (𝑣) and len(𝑣) denote the slot in which the corre-

sponding block was created and the block’s depth, respectively.

It is easy to see the correspondence between the above axioms

and the constraints imposed in the protocol execution. In particular,

(A1) corresponds to the trusted nature of the genesis block; (A2)

reflects that the blocks’ ordering in a chain must be consistent with

the order of their creation; (A3) reflects that honest players produce

exactly one block per PoW success, while the adversary might forgo

a block-creation opportunity; finally (A4) reflects the fact that given

sufficient time, as needed for block propagation in the network, an

honest party will take into account the blocks produced by previous

honest parties.

Definition 2.2 (Tree notation). We write 𝐹 ⊢Δ 𝑤 to indicate that

𝐹 is a Δ-tree for the string 𝑤 . If 𝐹 ′ ⊢Δ 𝑤 ′ for a prefix 𝑤 ′ of 𝑤 , we

say that 𝐹 ′ is a subtree of 𝐹 , denoted 𝐹 ′ ⊑ 𝐹 , if 𝐹 contains 𝐹 ′ as a

consistently-labeled subgraph. Given a Δ-tree 𝐹 , we denote by 𝐹 the

maximal subtree of 𝐹 having all leaves honest. We call two trees 𝐹1
and 𝐹2 equivalent, denoted 𝐹1 ≡ 𝐹2, if their underlying graphs and

the ltype (·) functions are identical. Note that equivalent trees may

only differ in their l# (·) functions; whenever useful, we indicate

the tree to which a labeling function belongs by a superscript (e.g.

l𝐹# (·)).

An individual blockchain constructed during the protocol exe-

cution is represented by the notion of a chain, defined next.

Definition 2.3 (Chains). A path in a tree 𝐹 originating at the root

is called a chain (note that chains do not necessarily terminate at

a leaf). As there is a one-to-one correspondence between directed

paths from the root and vertices of a tree, we routinely overload

notation so that it applies to both chains and vertices. Specifically,

we let len(𝑇 ) denote the length of the chain, equal to the number

of edges on the path; recall that len(𝑣) also denotes the depth of a

vertex. We sometimes emphasize the tree from which 𝑣 is drawn

by writing len𝐹 (𝑣). We further overload this notation by letting

len(𝐹 ) denote the length of the longest chain in a tree 𝐹 . Likewise,

we let l# (·) apply to chains by defining l# (𝑇 ) ≜ l# (𝑣), where 𝑣 is

the terminal vertex on the chain 𝑇 . We say that a chain is honest if

the last vertex of the chain is honest. For a vertex 𝑣 in a tree 𝐹 , we

denote by 𝐹 (𝑣) the chain in 𝐹 terminating in 𝑣 .

For two chains 𝑇,𝑇 ′ of a tree 𝐹 , we write 𝑇 ∼ℓ 𝑇 ′ if the two

chains share a vertex with a label greater or equal to ℓ .

Intuitively, 𝑇 ∼ℓ 𝑇
′ guarantees that the respective blockchains

agree on the state of the ledger up to time slot ℓ . Looking ahead,

the adversary can make two honest parties disagree on the state

of the ledger up to time ℓ only if she makes them hold two chains

𝑇 ≁ℓ 𝑇
′.

Definition 2.4 (Tree trimming; dominance). For a string 𝑤 =

𝑤1 . . .𝑤𝑛 and some 𝑘 ∈ N, we let 𝑤
⌈𝑘

= 𝑤1 . . .𝑤𝑛−𝑘 denote

the string obtained by removing the last 𝑘 symbols. For a tree

𝐹 ⊢Δ 𝑤1 . . .𝑤𝑛 we let 𝐹
⌈𝑘
⊢Δ 𝑤

⌈𝑘
denote the tree obtained by re-

taining only those vertices labeled from the set {1, . . . , 𝑛 − 𝑘}. We
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say that a chain 𝑇 in 𝐹 is Δ-dominant if len(𝑇 ) ≥ len(𝐹⌈Δ) and

simply call it dominant if Δ is clear from the context.

Observe that honest chains appearing in 𝐹
⌈Δ
are those that are

necessarily visible to honest players at the end of the last time

slot of the characteristic string. Correspondingly, the notion of a

Δ-dominant chain matches the use of this term in Section 2.1.

2.3 Advantage and Margin

Definition 2.5 (Advantage 𝛼Δ
𝐹
). For a Δ-tree 𝐹 ⊢Δ 𝑤 , we define

the Δ-advantage of a chain 𝑇 ∈ 𝐹 as

𝛼Δ𝐹 (𝑇 ) = len(𝑇 ) − len(𝐹⌈Δ) .

Observe that 𝛼Δ
𝐹
(𝑇 ) ≥ 0 if and only if 𝑇 is Δ-dominant in 𝐹 .

Definition 2.6 (Margin 𝛽Δℓ ). For ℓ ≥ 1, we define the Δ-margin of

a tree 𝐹 as

𝛽Δℓ (𝐹 ) = max
𝑇 ∗≁ℓ𝑇

𝑇 ∗ is Δ-dominant

𝛼Δ𝐹 (𝑇 ) ,

this maximum extended over all pairs of chains (𝑇,𝑇 ∗) where

𝑇 ∗ is Δ-dominant and 𝑇 ≁ℓ 𝑇 ∗. We call the pair (𝑇 ∗,𝑇 ) the Δ-

witness chains for 𝐹 if the above conditions are satisfied; i.e., 𝑇 ∗ is

Δ-dominant, 𝑇 ∗ ≁ℓ 𝑇 , and 𝛽Δℓ (𝐹 ) = 𝛼Δ
𝐹
(𝑇 ). Note that there might

exist multiple such pairs in 𝐹 , but under the condition ℓ ≥ 1 there

will always exist at least one such pair, as the trivial chain 𝑇0 con-

taining only the root vertex satisfies 𝑇0 ≁ℓ 𝑇 for any 𝑇 and ℓ ≥ 1,

in particular 𝑇0 ≁ℓ 𝑇0. For this reason, we will always consider 𝛽
Δ

ℓ
only for ℓ ≥ 1.

We overload the notation and let

𝛽Δℓ (𝑤) = max
𝐹⊢Δ𝑤

𝛽Δℓ (𝐹 ) .

We call a tree 𝐹 ⊢Δ 𝑤 a Δ-witness tree for 𝑤 if 𝛽Δℓ (𝑤) = 𝛽Δℓ (𝐹 );

again many Δ-witness trees may exist for a string𝑤 .

Intuitively, 𝛼Δ
𝐹
(𝑇 ) captures the length advantage (or deficit) of

the chain𝑇 against the longest honest chain created at least Δ slots

before the upcoming slot, which is hence now known to all honest

parties. Consequently, 𝛽Δℓ (𝐹 ) records the maximal advantage of

any chain 𝑇 in 𝐹 that potentially disagrees with some Δ-dominant

chain𝑇 ∗ about the chain state up to slot ℓ . A negative 𝛽Δℓ (𝐹 ) hence

indicates that the adversary cannot make an honest party holding

𝑇 ∗ switch to any 𝑇 that would potentially cause a revision of its

ledger state up to slot ℓ . This connection between margin and

consistency/settlement is exploited in previous work, for the PoW

case it was made formal in [10, Lemma 1] in which the following

fact is implicit:

Lemma 2.7 ([10]). Consider an execution of a PoW blockchain for 𝐿

slots as described in Section 2.1, resulting in a characteristic string

𝑤 = 𝑤1 . . .𝑤𝐿 . Let 𝐵 be a block produced in slot ℓ ∈ [𝐿], and let

𝑡 > ℓ be such that 𝐵 is contained in some chain 𝐶 ∈ D𝑡 . If for every

𝑡 ′ ∈ {𝑡, . . . , 𝐿} we have 𝛽Δℓ (𝑤1:𝑡 ′ ) < 0 then 𝐵 is contained in every

𝐶′ ∈ D𝑡 ′ for all 𝑡
′ ∈ {𝑡, . . . , 𝐿}.

This statement motivates our effort to upper-bound 𝛽Δℓ (𝑤) in

the following sections.

Remark. One can define and study an analogous notion of con-

sistency for protocols with unbounded lifetimes and, in fact, the

explicit upper bounds we compute later in the paper reflect this

stronger notion. Specifically, for a characteristic string𝑤 = 𝑤1𝑤2 . . .

and a finite ℓ , this requires that 𝛽Δℓ (𝑤1:𝑡 ′ ) < 0 for all 𝑡 ′ ≥ ℓ .

3 THE LOCKSTEP-SYNCHRONOUS ANALYSIS

In this section we focus on the simpler, so-called lockstep-synchro-

nous setting, where all messages are delivered at the end of the slot

in which they were sent, this corresponds to Δ = 0 (the D[0,Δr]

model). Throughout the section, as no confusion can arise, we omit

the index 0 and write 𝐹 ⊢ 𝑤 , 𝛼𝐹 (), 𝛽ℓ (), in place of 𝐹 ⊢0 𝑤 , 𝛼0
𝐹
(),

𝛽0
ℓ
(), respectively. Note that now 𝛼𝐹 (𝑇 ) = len(𝑇 ) − len(𝐹 ).

Our main goal will be to obtain a simple recursive description of

the margin quantity 𝛽ℓ (𝑤) for a characteristic string𝑤 ∈ Σ
∗
∞. Look-

ing ahead, we will obtain an exact characterization (Theorem 3.6)

that will then serve us later in Section 4 when establishing bounds

for the margin 𝛽1ℓ (𝑤) in the case with delays Δ = 1.

3.1 The Fully Serialized Setting (Σser = {h, a})

We begin the analysis of the lockstep-synchronous setting by con-

sidering an additional simplifying assumption that block creations

are fully serialized, i.e., exactly one block is created in each time slot.

Specifically, we work with a reduced alphabet Σser = {(h, 0), (0, 1)}

for characteristic strings, and use the abbreviations h = (h, 0) and

a = (0, 1); thus we treat characteristic strings over the alphabet

{h, a}. The definition of tree remains unchanged.

The following exact characterization of 𝛽ℓ in the lockstep (i.e.,

Δ = 0), fully serialized (i.e., with alphabet Σser) setting was given

in prior work [1] and serve as an instructive starting point of our

investigation. Recall that 𝜀 is the empty characteristic string.

Lemma 3.1 ([1, Lemma 1]). Fix ℓ ≥ 1. We consider characteristic

strings𝑤 ∈ Σ∗ser. By definition 𝛽ℓ (𝜀) = 0. We have

𝛽ℓ (𝑤a) = 𝛽ℓ (𝑤) + 1 ,

𝛽ℓ (𝑤h) =

{
𝛽ℓ (𝑤), if 𝛽ℓ (𝑤) = 0 and |𝑤h| < ℓ ,

𝛽ℓ (𝑤) − 1, otherwise.

Thus, prior to slot ℓ , 𝛽ℓ performs a biased barrier walk with a

barrier at 0; after round ℓ , it performs a standard biased random

walk (without any barriers).

3.2 The Multi-Honest Setting (Σmh = {h,H, a})

We now slightly generalize the treatment of Section 3.1 and con-

sider characteristic strings over an alphabet that allows for multiple

honest (hence the łmh” subscript) successes in a single slot. Namely,

we consider Σmh = {(h, 0), (H, 0), (0, 1)} ⊂ Σ∞, and use the short-

hands {h,H, a} for these three symbols, respectively. The definition

of a tree again remains unchanged.
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Lemma 3.2. Fix ℓ ≥ 1. We consider characteristic strings𝑤 ∈ Σ∗
mh

.

By definition 𝛽ℓ (𝜀) = 0. We have

𝛽ℓ (𝑤a) = 𝛽ℓ (𝑤) + 1,

𝛽ℓ (𝑤h) =

{
𝛽ℓ (𝑤), if 𝛽ℓ (𝑤) = 0 and |𝑤h| < ℓ ,

𝛽ℓ (𝑤) − 1, otherwise,

𝛽ℓ (𝑤H) =

{
𝛽ℓ (𝑤), if 𝛽ℓ (𝑤) = 0,

𝛽ℓ (𝑤) − 1, otherwise.

(2)

Informally, the reason why H has a different effect on 𝛽ℓ than h

after slot ℓ is as follows. If 𝛽ℓ (𝑤) = 0, this means that there are two

competing chains of the same, maximal length that can be served

to honest parties; now the adversary can orchestrate things so that

the two (or more) honest successes occurring in this slot contribute

to both of these chains equally, and hence they don’t improve the

situation for the honest parties. We call this effect a neutralization

of honest successes. Note that, in contrast, a unique honest success

h improves the situation for the honest parties in the łtie” case of

𝛽 (𝑤) = 0, as it extends only one of the chains, creating a unique

longest chain.

The proof of Lemma 3.2 is an extension of the proof of Lemma 3.1

that appeared in [1], accounting for presence of H symbols in the

considered characteristic string, we defer it to the full version of

this paper [11].

3.3 The General Case (Σ∞ = {0, h,H} × N)

We finally consider the full alphabet Σ∞ = {0, h,H} ×N. Intuitively,

our approach here is to assign to any łrich” characteristic string𝑤 ∈

Σ
∗
∞ a set of łpossible serializations”𝑅0 (𝑤) ⊆ Σ

∗
mh

such that any tree

over𝑤 can be interpreted (via relabeling) as a tree over one of these

Σmh-serializations, and vice versa. This then allows to precisely

characterize 𝛽ℓ (𝑤) in terms of 𝛽ℓ () of these Σmh-serializations,

which are already understood in Lemma 3.2.

Serialization of the general alphabet. We define a serialization

mapping 𝑅0 : Σ∞ → P(Σ
∗
mh
) as follows:

𝑅0 (0, 𝑘) =
{
a𝑘

}
,

𝑅0 (h, 𝑘) =
{
𝑟 ∈ {a, h}∗ | #h (𝑟 ) = 1 ∧ #a (𝑟 ) = 𝑘

}
,

𝑅0 (H, 𝑘) =
{
𝑟 ∈ {a, h,H}∗ | #a (𝑟 ) = 𝑘 ∧ (#h (𝑟 ) ≥ 2 ∨ #H (𝑟 ) ≥ 1)

}
.

Moreover, we naturally extend the mapping 𝑅0 (·) to strings 𝑤 =

𝑤1 . . .𝑤𝑛 ∈ Σ
∗
∞ by the convention

𝑅0 (𝑤) ≜ 𝑅0 (𝑤1) ◦ · · · ◦ 𝑅0 (𝑤𝑛) ⊆ Σ
∗
mh .

Lemma 3.3. Let𝑤 ∈ Σ𝑛∞ and 𝐹 ⊢ 𝑤 . Then there is a characteristic

string𝑤 ′ ∈ 𝑅0 (𝑤) and a tree 𝐹
′ ⊢ 𝑤 ′ such that 𝐹 ′ ≡ 𝐹 .

Proof. Consider the fragment of a PoW-tree

𝐹 ⊢ 𝑤 = 𝑤1 . . .𝑤𝑛 ∈ Σ
𝑛
∞

induced by vertices attributed to a particular symbol𝑤𝑖 ∈ Σ∞. This

is a (potentially disconnected) forest of trees. (The word łtree” here

and throughout this proof is used in its standard graph-theoretic

sense, as opposed to referring to a PoW tree.) Partitioning this forest

according to depthÐas measured in the original tree 𝐹Ðwe write

the vertices of the forest as a disjoint union 𝑉𝑑 ∪ · · · ∪𝑉𝐷 , where 𝑑

is the smallest depth appearing in the forest, 𝐷 is the largest depth,

and 𝑉𝑗 contains those vertices of depth 𝑗 . Now associate with each

𝑉𝑗 the string

𝑤 ( 𝑗 ) =





a𝑘 if 𝑉𝑗 contains no honest vertices,

ha𝑘 if 𝑉𝑗 contains one honest vertex,

Ha𝑘 if 𝑉𝑗 contains multiple honest vertices,

where 𝑘 is the number of adversarial vertices appearing in 𝑉𝑗 . By

construction, there is a straightforward labeling of each set 𝑉𝑗
by the string 𝑤 ( 𝑗 ) that maintains the classification of vertices as

adversarial or honest and satisfies axioms (A2) and (A3). Finally,

let 𝑤 ′𝑖 = 𝑤 (𝑑 ) . . .𝑤 (𝐷 ) . Combining the labelings of each 𝑉𝑗 in-

duces a labeling of the trees by the string 𝑤 ′𝑖 that likewise satis-

fies (A2) and (A3). It follows that 𝐹 can be (re)labeled by the string

𝑤 ′1 . . .𝑤
′
𝑛 ∈ 𝑅0 (𝑤) so as to satisfy all of the PoW tree axioms; this

relabeling determines the PoW tree 𝐹 ′, as desired. □

Lemma 3.4. Let 𝑤 ∈ Σ
∗
∞ and 𝑤 ′ ∈ 𝑅0 (𝑤). Then for any tree

𝐹 ′ ⊢ 𝑤 ′ there exists a tree 𝐹 ⊢ 𝑤 such that 𝐹 ≡ 𝐹 ′.

Proof. Let 𝑣 be a vertex in 𝐹 ′ with l# (𝑣) = 𝑗 ∈ [|𝑤 ′ |], and let

𝑖 ∈ [|𝑤 |] be the index in𝑤 = 𝑤1 . . .𝑤 |𝑤 | such that the 𝑗-th symbol

in𝑤 ′ belongs to the expansion 𝑅0 (𝑤𝑖 ) of𝑤𝑖 . Then it suffices to set

the label of 𝑣 in 𝐹 as l𝐹# (𝑣) = 𝑖 . The correctness of this construction

follows directly from the definition of 𝑅0. □

Lemmas 3.3 and 3.4 immediately imply the following corollary.

Corollary 3.5. Let𝑤 ∈ Σ∗∞. Then

𝛽ℓ (𝑤) = max
𝑤′∈𝑅0 (𝑤 )

𝛽ℓ ′ (𝑤
′) ,

where ℓ′ is the appropriate index in𝑤 ′ corresponding to ℓ in𝑤 .

Proof. Let 𝐹 ⊢ 𝑤 be a witness tree, and let 𝑤∗ ∈ 𝑅0 (𝑤) and

𝐹 ∗ ≡ 𝐹 be such that 𝐹 ∗ ⊢ 𝑤∗ as guaranteed by Lemma 3.3. Let ℓ∗

be the appropriate index in𝑤∗ corresponding to ℓ in𝑤 . We have

𝛽ℓ (𝑤) = 𝛽ℓ (𝐹 ) = 𝛽ℓ∗ (𝐹
∗) ≤ 𝛽ℓ∗ (𝑤

∗) ≤ max
𝑤′∈𝑅0 (𝑤 )

𝛽ℓ ′ (𝑤
′)

where ℓ′ is defined as in the statement of the lemma, establishing

the first inequality.

For the opposite inequality, let

𝑤∗ ≜ arg max
𝑤′∈𝑅0 (𝑤 )

𝛽ℓ ′ (𝑤
′)

for ℓ′ as defined in the statement, let ℓ∗ be the respective value

for 𝑤∗, and let 𝐹 ∗ ⊢ 𝑤∗ be its witness tree. Let 𝐹 ⊢ 𝑤 be the tree

satisfying 𝐹 ≡ 𝐹 ∗ as guaranteed by Lemma 3.4. Then

max
𝑤′∈𝑅0 (𝑤 )

𝛽ℓ ′ (𝑤
′) = 𝛽ℓ∗ (𝑤

∗) = 𝛽ℓ∗ (𝐹
∗) = 𝛽ℓ (𝐹 ) ≤ 𝛽ℓ (𝑤)

as desired. □

Now we are ready to establish the main result of this section.
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Theorem 3.6. Fix ℓ ≥ 1. We consider characteristic strings 𝑤 ∈

Σ
∗
∞ = ({0, h,H} × N)∗. By definition 𝛽ℓ (𝜀) = 0. We have

𝛽ℓ (𝑤 (0, 𝑎)) = 𝛽ℓ (𝑤) + 𝑎,

𝛽ℓ (𝑤 (h, 𝑎)) =

{
𝛽ℓ (𝑤) + 𝑎, if 𝛽ℓ (𝑤) = 0 ∧ |𝑤 | + 1 < ℓ ,

𝛽ℓ (𝑤) + 𝑎 − 1, otherwise,

𝛽ℓ (𝑤 (H, 𝑎)) =

{
𝛽ℓ (𝑤) + 𝑎, if −𝑎 ≤ 𝛽ℓ (𝑤) ≤ 0,

𝛽ℓ (𝑤) + 𝑎 − 1, otherwise.

Proof. The statements are shown independently for each case,

always applying Corollary 3.5, the definition of the mapping 𝑅0,

and Lemma 3.2. Concretely, in the simplest case we have

𝛽ℓ (𝑤 (0, 𝑎)) = max
𝑤′∈𝑅0 (𝑤 (0,𝑎) )

𝛽ℓ ′ (𝑤
′) = max

𝑤′′∈𝑅0 (𝑤 )
𝛽ℓ ′ (𝑤

′′a𝑎)

= max
𝑤′′∈𝑅0 (𝑤 )

𝛽ℓ ′ (𝑤
′′) + 𝑎 = 𝛽ℓ (𝑤) + 𝑎 .

The other two cases are fully analogous, additionally taking into

account subcases depending on the value of 𝛽ℓ (𝑤) and ℓ when

invoking Lemma 3.2. □

4 THE ANALYSIS WITH DELAYS

We now move our attention to the case of Δ = 1. Contrary to the

previous section, we will not derive an exact description of 𝛽1ℓ (𝑤);

nonetheless, we will define an easy-to-compute recurrent function

that we show can give us a good upper-bound on 𝛽1ℓ (𝑤).

4.1 Weak Serialization via Deferrals

We start by defining the set D1 (𝑤) of so-called deferrals of𝑤 that

will play a somewhat similar role in this section as the set of se-

rializations 𝑅0 (𝑤) in Section 3. The important difference is that

while 𝑅0 partially serialized the block-creation events captured

in𝑤 , deferrals have a different goal: they account for the possible

1-slot delay of these successes without actually fully serializing

them. A deferral is hence still a characteristic string over the rich,

unserialized alphabet Σ∞.

Definition 4.1 (Realizations and deferrals). Consider a character-

istic string 𝑤 = ((𝑠1, 𝑎1), . . . , (𝑠𝑛, 𝑎𝑛)) ∈ Σ
𝑛
∞. A realization of 𝑤

is a string 𝑟 = ((ℎ1, 𝑎1), . . . , (ℎ𝑛, 𝑎𝑛)) ∈ (N × N)
𝑛 where for each

𝑖 ∈ [𝑛] we have 𝑠𝑖 = roundH (ℎ𝑖 ). Let

𝑟 = ((ℎ1, 𝑎1), . . . , (ℎ𝑛, 𝑎𝑛))

𝑟 ′ = ((ℎ′1, 𝑎
′
1), . . . , (ℎ

′
𝑛, 𝑎
′
𝑛), (ℎ

′
𝑛+1, 𝑎

′
𝑛+1))

be two realizations, where each (ℎ𝑖 , 𝑎𝑖 ) and (ℎ
′
𝑖 , 𝑎
′
𝑖 ) are elements of

N
2. We say that 𝑟 ′ is a 1-deferral of 𝑟 if

(1) for each 𝑡 ∈ {0, . . . , 𝑛},
∑𝑡
𝑖=1 𝑎𝑖 ≤

∑𝑡+1
𝑖=1 𝑎

′
𝑖 ≤

∑𝑡+1
𝑖=1 𝑎𝑖 , and

(2) for each 𝑡 ∈ {0, . . . , 𝑛},
∑𝑡
𝑖=1 ℎ𝑖 ≤

∑𝑡+1
𝑖=1 ℎ

′
𝑖 ≤

∑𝑡+1
𝑖=1 ℎ𝑖 ,

where we adopt the convention that 𝑎𝑛+1 = ℎ𝑛+1 = 0. Finally,

consider two characteristic strings

𝑤 = ((𝑠1, 𝑎1), . . . , (𝑠𝑛, 𝑎𝑛)) ∈ Σ
𝑛
∞ ,

𝑤 ′ = ((𝑠′1, 𝑎
′
1), . . . , (𝑠

′
𝑛, 𝑎
′
𝑛), (𝑠

′
𝑛+1, 𝑎

′
𝑛+1)) ∈ Σ

𝑛+1
∞ .

We say that𝑤 ′ is a 1-deferral of𝑤 if there are realizations 𝑟 (of𝑤 )

and 𝑟 ′ (of𝑤 ′) so that 𝑟 ′ is a 1-deferral of 𝑟 . Let D1 (𝑤) denote the

set of all 1-deferrals of𝑤 . As we only consider 1-deferrals in this

work, we sometimes simply call them deferrals.

The following lemma is an analogue of Lemma 3.3, showing that

any 1-tree of𝑤 can be seen as a 0-tree of some 1-serialization of𝑤 .

We prove it in the full version [11].

Lemma 4.2. Let 𝑤 ∈ Σ
𝑛
∞ and 𝐹 ⊢1 𝑤 . Then there is a 1-deferral

𝑤 ′ ∈ D1 (𝑤) and an equivalent tree 𝐹 ′ ≡ 𝐹 such that 𝐹 ′ ⊢0 𝑤
′.

We can now establish the following lemma, which is again an

analogue of Corollary 3.5, and is proven in the full version [11].

Lemma 4.3. Let𝑤 ∈ Σ𝑛∞, then

𝛽1ℓ (𝑤) ≤ max
𝑤′∈D1 (𝑤 )

𝛽0ℓ+1 (𝑤
′) + 2 .

4.2 The Recurrence Bℓ (·)

In this section we define an easily computable recurrent function Bℓ
that we later use to upper-bound 𝛽ℓ of a particular string 𝑤 . The

definition of Bℓ will be composed of several basic functions that we

define first. After that, we give a recursive description of how Bℓ

can be computed using these basic constituent operations.

The basic intuition underlying the computation of Bℓ (𝑤) is to

internally simulate the computation of 𝛽0
ℓ
(𝑤 ′) on all possible defer-

rals𝑤 ′ ∈ D1 (𝑤), as 𝛽
0
ℓ
(𝑤 ′) is precisely described in Theorem 3.6.

More concretely, Bℓ returns a tuple

Bℓ (𝑤) = ((𝛽0, 𝑎0), (𝛽H, 𝑎H), (𝛽h, 𝑎h)) ∈ (Z × N)
3

where each pair (𝛽𝑠 , 𝑎𝑠 ) for 𝑠 ∈ {0,H, h} keeps track of the best

(in a well-defined sense detailed below) achievable margin 𝛽𝑠 and

the number of delayed adversarial successes 𝑎𝑠 after processing a

deferral of𝑤 that: (0) does not produce an honest carry-over from

slot |𝑤 | to |𝑤 | + 1; (h) produces a single such honest carry-over; or

(H) produces a multi-honest such carry-over. The definition of Bℓ
then describes how to update this tuple Bℓ (𝑤) to arrive at Bℓ (𝑤𝑧)

for any 𝑧 ∈ Σ∞.

Basic operations. For any (𝛽, 𝑎, 𝑎′) ∈ Z ×N ×N we introduce the

following functions:

NHE(𝛽, 𝑎, 𝑎′) ≜ (𝛽 + 𝑎, 𝑎′) ,

HE(𝛽, 𝑎, 𝑎′) ≜ (𝛽 + 𝑎 − 1, 𝑎′) ,

NO(𝛽, 𝑎, 𝑎′) ≜





(max{0, 𝛽 + 𝑎}, 𝑎′ +min{0, 𝛽 + 𝑎})

if 𝛽 ∈ {−𝑎 − 𝑎′, . . . , 0},

HE(𝛽, 𝑎, 𝑎′) otherwise.

(3)

Their names stand for (no) honest effect and neutralization oppor-

tunity, respectively. Intuitively, these functions will be invoked in

the update step computing Bℓ (𝑤𝑧) from Bℓ (𝑤) with their inputs

(𝛽, 𝑎) being one of the pairs (𝛽𝑠 , 𝑎𝑠 ) in Bℓ (𝑤) for some 𝑠 , and 𝑎′

being the number of adversarial successes in the currently pro-

cessed symbol 𝑧. The functions then return a new, updated value

pair (𝛽∗, 𝑎∗) if (NHE) there was no honest effect on 𝛽ℓ in this round

(e.g., no delayed honest success from previous slot and no honest

success in this slot either); or (HE) there was an effect of an honest

success that decreased 𝛽ℓ by 1; or (NO) there was a neutralization

opportunity and whether an honest effect occurred depends on the

current running value of 𝛽 .

Note that which of these basic functions are invoked when com-

puting Bℓ (𝑤𝑧) from Bℓ (𝑤) depends on information external to

these functions: the honest carry from previous slot (i.e., which 𝑠 is
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used to index into the previous tuple Bℓ (𝑤)), the honest success(es)

recorded in the current symbol 𝑧, and the desired honest carry to

the next slot (i.e., which pair of the new value Bℓ (𝑤𝑧) is being

computed). In all cases, these functions are chosen to match the

behavior of 𝛽0
ℓ
on the respective deferral as described by Theo-

rem 3.6. Looking ahead, this inductive property will be established

in Lemma 4.5.

For notational convenience, we also introduce a function HE𝑡
ℓ

that behaves as NO or HE depending on two parameters ℓ, 𝑡 ∈ N; ℓ

will be the usual parameter of 𝛽ℓ and 𝑡 will be the current slotÐHE
𝑡
ℓ

will hence be used to distinguish the łpre-ℓ” and łpost-ℓ” settings:

HE𝑡ℓ (𝛽, 𝑎, 𝑎
′) ≜

{
NO(𝛽, 𝑎, 𝑎′) if 𝑡 < ℓ,

HE(𝛽, 𝑎, 𝑎′) if 𝑡 ≥ ℓ .

To reason about these basic functions, we introduce a binary

relation ⪯ on the elements (𝛽, 𝑎) ∈ Z × N as follows:

(𝛽1, 𝑎1) ⪯ (𝛽2, 𝑎2) :⇔ [(𝛽1 + 𝑎1 < 𝛽2 + 𝑎2) ∨

∨ (𝛽1 + 𝑎1 = 𝛽2 + 𝑎2 ∧ 𝑎1 ≤ 𝑎2)] . (4)

It is easy to verify that ⪯ is in fact a total order on Z × N. We use

the standard notation 𝑥 ≺ 𝑦 for (𝑥 ⪯ 𝑦 ∧ 𝑥 ≠ 𝑦). For convenience,

let us define an operator max≺ that, given a tuple {(𝑥𝑖 , 𝑦𝑖 )}
𝑛
𝑖=1 of

pairs from Z × N, returns the maximum pair with respect to the

total order ⪯. Finally, let ⊥ represent the pair (−∞, 0); to handle ⊥

we sometimes abuse the notation and extend ⪯ to (Z ∪ {−∞}) ×N

in the natural way. We also sometimes treat ⊥ as a ternary function

(akin to NHE, HE, NO) that always returns (−∞, 0), which will

always be clear from the context.

Formal description of Bℓ . Let Bℓ (𝜀) ≜ ((0, 0),⊥,⊥). Furthermore,

if Bℓ (𝑤) = ((𝛽0, 𝑎0), (𝛽H, 𝑎H), (𝛽h, 𝑎h)) and |𝑤 | + 1 = 𝑡 then

Bℓ (𝑤 (0, 𝑎
′)) = (max≺





NHE(𝛽0, 𝑎0, 𝑎
′)

NO(𝛽H, 𝑎H, 𝑎
′)

HE𝑡
ℓ
(𝛽h, 𝑎h, 𝑎

′)





,⊥,⊥) ,

Bℓ (𝑤 (H, 𝑎
′)) = (max≺





NO(𝛽0, 𝑎0, 𝑎
′)

NO(𝛽H, 𝑎H, 𝑎
′)

NO(𝛽h, 𝑎h, 𝑎
′)





,max≺





NHE(𝛽0, 𝑎0, 𝑎
′)

NO(𝛽H, 𝑎H, 𝑎
′)

NO(𝛽h, 𝑎h, 𝑎
′)





,

max≺





NO(𝛽0, 𝑎0, 𝑎
′)

NO(𝛽H, 𝑎H, 𝑎
′)

NO(𝛽h, 𝑎h, 𝑎
′)





) ,

Bℓ (𝑤 (h, 𝑎
′)) = (max≺





HE𝑡
ℓ
(𝛽0, 𝑎0, 𝑎

′)

NO(𝛽H, 𝑎H, 𝑎
′)

NO(𝛽h, 𝑎h, 𝑎
′)





,⊥,max≺





NHE(𝛽0, 𝑎0, 𝑎
′)

NO(𝛽H, 𝑎H, 𝑎
′)

HE𝑡
ℓ
(𝛽h, 𝑎h, 𝑎

′)





) .

We additionally introduce some notation that allows us to conve-

niently reason about Bℓ . For some

Bℓ (𝑤) = ((𝛽0, 𝑎0), (𝛽H, 𝑎H), (𝛽h, 𝑎h))

and 𝑠 ∈ {0,H, h} we use the notation Bℓ (𝑤) [𝑠] to refer to the pair

(𝛽𝑠 , 𝑎𝑠 ) in Bℓ (𝑤). Moreover, we let

𝐵ℓ (𝑤) ≜ max
𝑠∈{0,H,h}

𝛽𝑠 + 𝑎𝑠 .

Intuitively, given some 𝑤 ∈ Σ
∗
∞ and 𝑧 ∈ Σ∞, the final step of

computation of Bℓ (𝑤𝑧) (processing the trailing symbol 𝑧 ∈ Σ∞) can

be seen as determined by a three-dimensional table of 33 = 27 cells,

each cell specifying a single operation op ∈ {NHE,HE𝑡
ℓ
,NO,⊥} that

needs to be applied to Bℓ (𝑤) [𝑠prev] if the łhonest carry” from the

previous step is 𝑠prev, the honest part of the current symbol 𝑧 is 𝑠cur
(i.e., 𝑧 = (𝑠cur, 𝑎

′)), and the desired honest carry to the next slot is

𝑠next; with all 𝑠prev, 𝑠cur, 𝑠next ∈ {0,H, h}. We sometimes explicitly

refer to this operation as op[𝑠prev,𝑠cur,𝑠next ] ∈ {NHE,HE
𝑡
ℓ
,NO,⊥}.

For example op[0,0,0] ≡ NHE, op[H,0,0] ≡ NO, op[h,0,0] ≡ HE𝑡
ℓ
,

op[0,0,𝑠 ] ≡ ⊥ for any 𝑠 ∈ {0, h,H}, and so on.

Monotonicity.We conclude this section by stating a simple mono-

tonicity property of all the basic functions NHE, HE, NO and HE𝑡
ℓ

underlying Bℓ . Given partial orders (𝑆, ≺𝑆 ) and (𝑇, ≺𝑇 ), recall that

a function 𝑓 : 𝑆 → 𝑇 is called (weakly) monotone if

∀𝑥,𝑦 ∈ 𝑆 : (𝑥 ⪯𝑆 𝑦 ⇒ 𝑓 (𝑥) ⪯𝑇 𝑓 (𝑦)) .

We defer the proof of the following lemma to the full version [11].

Lemma 4.4. For any fixed 𝑎′ ∈ N and 𝑡, ℓ ≥ 1, the functions

NHE(·, ·, 𝑎′), HE(·, ·, 𝑎′), HE𝑡
ℓ
(·, ·, 𝑎′) and NO(·, ·, 𝑎′) mapping Z ×

N→ Z × N are monotone with respect to the total order ⪯ of (4).

4.3 Upper-bounding Deferral Margin by Bℓ (·)

The following lemma is the key technical result that formalizes the

intuition behind the definition of Bℓ . We provide an outline of its

proof below, deferring a detailed treatment to the full version [11].

Lemma 4.5. Let 𝑤 ∈ Σ
𝑛
∞ and let 𝑤 ′ ∈ D1 (𝑤). Writing 𝑤 ′ =

𝑥 ′ (𝑠′𝑛+1, 𝑎
′
𝑛+1), so that 𝑥

′ ∈ Σ𝑛∞ consists of the first 𝑛 symbols of 𝑤 ′

and (𝑠′𝑛+1, 𝑎
′
𝑛+1) ∈ {0,H, h} × N is the last symbol. Then we have

(
𝛽0ℓ (𝑥

′), 𝑎′𝑛+1

)
⪯ Bℓ (𝑤) [𝑠

′
𝑛+1] .

Proof outline. We proceed by induction on the length 𝑛 ∈ N

of 𝑤 ∈ Σ
∗
∞. The base case is straightforward, hence we focus on

the induction step.

Let 𝑤 ∈ Σ
𝑛
∞ and 𝑤 ′ ∈ D1 (𝑤). Write 𝑤 = 𝑥 (𝑠𝑛, 𝑎𝑛), where 𝑥

consists of the first 𝑛 − 1 symbols of𝑤 . We will first construct 𝑥 ′

that is a deferral of 𝑥 and shares the first 𝑛 − 1 symbols as 𝑥 ′. We

observe that𝑤 ′ naturally gives rise to a deferral of 𝑥 . To describe

this, let 𝑟 = (ℎ1, 𝑎1), . . . , (ℎ𝑛, 𝑎𝑛) and 𝑟
′
= (ℎ′1, 𝑎

′
1), . . . , (ℎ

′
𝑛+1, 𝑎

′
𝑛+1)

be realizations of𝑤 and𝑤 ′, respectively, for which 𝑟 ′ is a deferral

of 𝑟 . Letting 𝑞 denote the first 𝑛 − 1 symbols of the realization 𝑟 , it’s

clear that 𝑞 is a realization of 𝑥 . Then we observe that an adaptation

of the suffix of 𝑟 ′ (and 𝑤 ′) yields a deferral of 𝑥 (the prefix of 𝑤 ).

Specifically, defining (ℎ
′
𝑛, 𝑎
′
𝑛) = (ℎ

′
𝑛, 𝑎
′
𝑛) + (ℎ

′
𝑛+1, 𝑎

′
𝑛+1) − (ℎ𝑛, 𝑎𝑛)

(where arithmetic is coordinatewise) it is easy to confirm that 𝑞′ ≜

(ℎ′1, 𝑎
′
1), . . . , (ℎ

′
𝑛−1, 𝑎

′
𝑛−1), (ℎ

′
𝑛, 𝑎
′
𝑛) is a deferral of the realization 𝑞.

To reiterate and organize the notation, we arrange these in a

table, where we use the notation 𝑤 ← 𝑟 to indicate that 𝑟 is a

realization of the string 𝑤 , and 𝑤 ⇝ 𝑤 ′ to indicate that 𝑤 ′ is a

1-deferral of𝑤 .

𝑤 ← 𝑟 = (ℎ1, 𝑎1), . . . , (ℎ𝑛, 𝑎𝑛)

⇝

𝑤 ′ ← 𝑟 ′ = (ℎ′1, 𝑎
′
1), . . . , (ℎ

′
𝑛, 𝑎
′
𝑛), (ℎ

′
𝑛+1, 𝑎

′
𝑛+1)

𝑥 ← 𝑞 = (ℎ1, 𝑎1), . . . , (ℎ𝑛−1, 𝑎𝑛−1)

⇝

𝑥 ′ ← 𝑞′ = (ℎ′1, 𝑎
′
1), . . . , (ℎ

′
𝑛−1, 𝑎

′
𝑛−1), (ℎ

′
𝑛, 𝑎
′
𝑛)
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Let 𝑧′ be the (𝑛 − 1)-prefix of𝑤 ′ (or 𝑥 ′) and let 𝑠′𝑛 ∈ {0, h,H} be

the łrounded” version of ℎ
′
𝑛 , i.e., 𝑠

′
𝑛 ≜ roundH (ℎ

′
𝑛). By induction

hypothesis we have (𝛽0
ℓ
(𝑧′), 𝑎′𝑛) ⪯ Bℓ (𝑥) [𝑠

′
𝑛].

The inductive step of the argument is now established in a se-

quence of manipulations that respect the ordering ⪰. Namely, we

will prove that

Bℓ (𝑤) [𝑠
′
𝑛+1]

(a)
= max≺





op[0,𝑠𝑛,𝑠′𝑛+1 ]
(Bℓ (𝑥) [0], 𝑎𝑛)

op[H,𝑠𝑛,𝑠′𝑛+1 ]
(Bℓ (𝑥) [H], 𝑎𝑛)

op[h,𝑠𝑛,𝑠′𝑛+1 ]
(Bℓ (𝑥) [h], 𝑎𝑛)





(b)
⪰ op[𝑠𝑛,𝑠𝑛,𝑠′𝑛+1 ]

(
Bℓ (𝑥)

[
𝑠′𝑛
]
, 𝑎𝑛

)

(c)
⪰ op[𝑠𝑛,𝑠𝑛,𝑠′𝑛+1 ]

(
𝛽0ℓ (𝑧

′), 𝑎′𝑛, 𝑎𝑛

)

(d)
=

(
𝛽0ℓ (𝑥

∗), 𝑎∗
) (e)
⪰

(
𝛽0ℓ (𝑥

′), 𝑎′𝑛+1

)
,

(5)

where 𝑥∗, 𝑎∗ are simple modifications of 𝑥 ′, 𝑎′𝑛+1 that we precisely

define. Note that establishing (5) concludes the inductive step and

hence also the whole proof of the lemma.

Equation (a) follows from the definition ofBℓ , recall that op[𝑠,𝑠𝑛,𝑠′𝑛+1 ]
is the operation that is used in the computation of Bℓ in the cell

where the honest carry from previous slot is 𝑠 , the honest part of

the symbol in the current slot is 𝑠𝑛 , and the desired honest carry

to the next slot is 𝑠′𝑛+1. Step (b) then follows by definition of max≺ .

Step (c) is a direct application of the induction hypothesis and the

monotonicity of op[𝑠𝑛,𝑠𝑛,𝑠′𝑛+1 ]
with respect to its first two inputs,

as established in Lemma 4.4.

The main effort in establishing the induction case lies in ver-

ifying the other part of step (d), namely, the first component of

op[𝑠𝑛,𝑠𝑛,𝑠′𝑛+1 ]

(
𝛽0
ℓ
(𝑧′), 𝑎′𝑛, 𝑎𝑛

)
being equal to 𝛽0

ℓ
(𝑥∗). This amounts

to verifying that, intuitively, the operation performed in the cell of

the definition of Bℓ determined by (𝑠𝑛, 𝑠𝑛, 𝑠
′
𝑛+1) is identical to how

𝛽0
ℓ
(𝑥∗) = 𝛽0

ℓ
(𝑧′𝑥∗𝑛) evolves from 𝛽0

ℓ
(𝑧′) when processing the last

symbol 𝑥∗𝑛 of 𝑥∗. Luckily, this behavior of 𝛽0
ℓ
is exactly described

by Theorem 3.6, and hence this claim can be verified by a straight-

forward case analysis considering each of the cells separately and

comparing it to the behavior guaranteed by Theorem 3.6. Finally,

establishing (e) turns out to be easy. □

Given Lemma 4.5, we can now establish our main result.

Theorem 4.6. Let𝑤 ∈ Σ∗∞. Then 𝛽1ℓ (𝑤) ≤ 𝐵ℓ+1 (𝑤) + 2 .

Proof. First, Lemma 4.3 gives us

𝛽1ℓ (𝑤) ≤ max
𝑤′∈D1 (𝑤 )

𝛽0ℓ+1 (𝑤
′) + 2 .

Let 𝑤∗ ∈ D1 (𝑤) be the 1-deferral of 𝑤 that maximizes 𝛽0
ℓ+1 (·)

above, and as before let 𝑤∗ = 𝑥∗ (𝑠∗𝑛+1, 𝑎
∗
𝑛+1) with 𝑥∗ ∈ Σ

𝑛
∞ and

(𝑠∗𝑛+1, 𝑎
∗
𝑛+1) ∈ {0,H, h} × N. Let

Bℓ+1 (𝑤) = ((𝛽0, 𝑎0), (𝛽H, 𝑎H), (𝛽h, 𝑎h)) ,

then we have

𝛽0ℓ+1 (𝑤
∗)

(a)
≤ 𝛽0ℓ+1 (𝑥

∗) + 𝑎∗𝑛+1

(b)
≤ max

𝑠∈{0,H,h}
𝛽𝑠 + 𝑎𝑠 = 𝐵ℓ+1 (𝑤)

as desired, where inequality (a) follows from Theorem 3.6, and

inequality (b) is a direct consequence of Lemma 4.5. □

Finally, we remark that for characteristic strings of the special

form 𝑤 = 𝑤 ′ (0, 0), i.e. terminating with a success-free slot, we

clearly have 𝛽1ℓ (𝑤) = 𝛽0
ℓ
(𝑤), this leads to a stronger statement

without the additional additive term +2 for this special case.

5 EXPLICIT BOUNDS

In this section, we study explicit bounds provided by our analysis.

As described, we are interested in the setting where honest and

adversarial block production are determined by Poisson processes

with parameters 𝑟ℎ and 𝑟𝑎 , while network delay of block delivery

is upper bounded Δr time.

We collect results for both a Bitcoin-like systemÐwith 600 second

inter-block time corresponding to a 1/600 rate Poisson processÐ

and an Ethereum-like systemÐwith 13 second inter-block periods

corresponding to a 1/13 rate process. The 90th percentile block

propagation time for Bitcoin (resp. Ethereum) has been measured

to be around 4 seconds [18] (resp. around 2 seconds [7], partly due

to smaller block sizes); we will use these values as the values of Δr

in the respective settings. To provide more data that are directly

comparable with a previous work [17], we will also give results for

a 10 seconds delay bound for Bitcoin and a 5 seconds delay bound

for Ethereum.

5.1 Numerical Evaluation of the Upper Bounds

The distribution of the characteristic string 𝑤 is as follows. Each

symbol 𝑤𝑖 = (𝑠𝑖 , 𝑎𝑖 ) ∈ {0, h,H} × N is independent and: (i) 𝑎𝑖
follows a Poisson distribution with parameter 𝑟𝑎Δr, and (ii) 𝑠𝑖 is

determined by a Poisson random variable 𝑋 with parameter 𝑟ℎΔr

so that 𝑠𝑖 = roundH (𝑋 ) (refer to (1)). Let 𝐷 (𝑟𝑎, 𝑟ℎ,Δr;𝑛) denote the

distribution on ({0, h,H} × N)𝑛 given by this rule.

Temporal settlement rules. Examining the conclusions of the pre-

vious section and, in particular, the recursive description of the

tuple Bℓ , it is clear that one can efficiently determine the value

Bℓ (𝑤) for any particular characteristic string𝑤 . Furthermore, con-

sidering that the distribution 𝐷 (𝑟𝑎, 𝑟ℎ,Δr;𝑛) calls for independent

symbols, it is straightforward to determine the exact distribution

of Bℓ (𝑤𝑎), where 𝑎 is an additional independent symbol, from that

of Bℓ (𝑤). Specifically, we consider a łsix-dimensional” table 𝑇𝑛 ,

with one cell for each possible value of Bℓ (thus a value has the

form (𝛽0, 𝑎0, 𝛽h, 𝑎h, 𝛽H, 𝑎H)), whose cells are populated with the

probabilities that this value emerges in Bℓ (𝑤) (with𝑤 drawn from

𝐷 (𝑟𝑎, 𝑟ℎ,Δr;𝑛)). Given the łkernel” distribution for the next sym-

bol 𝑎, each cell of the corresponding table 𝑇𝑛+1 can be determined

as an appropriate convex combination of the entries in 𝑇𝑛 with the

kernel distribution. The symbol distribution has infinite support;

however, the Poisson distribution decays very rapidly, allowing us

to use finite approximations that suitably control errors.

Initially, we must settle on a distribution of Bℓ at time ℓ (corre-

sponding to the moment in time when the transaction of interest

was submitted to the blockchain). While this does depend on ℓ ,

the distribution converges quickly to an exponentially decaying

distribution (in the sense that the entries are exp(−𝜆(𝛽0 +𝑎0))). For

this reason, rather than selecting some particular ℓ in our numerical

evaluation, we choose a very large ℓ that corresponds to the steady

state of the blockchain. Specifically, we select a large enough ℓ so

that the difference in total variation observed by evolving for an
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additional step is bounded by 10−5. (Intuitively, this initial distribu-

tion reflects the number of private blocks that the adversary may

have, along with any deferred honest blocks from slot ℓ .)

For simplicity, we append a concluding (0, 0) onto the end of the

generated characteristic string which, recalling the semantics of Bℓ ,

permits us to focus on a single pair, (𝛽0, 𝑎0); as the string does not

terminate with any honest victories, we may neglect the + 2 of

Theorem 4.6 and the event of interest is simply 𝛽0+𝑎0 ≥ 0, in which

case the adversary can launch a successful łdouble spend” attack.

Note that this postpended (0, 0) in fact corresponds to an observable

eventśit can be guaranteed by witnessing a łquiet” region of length

2Δr. Finally, we compute the probability that the margin should

ever climb above zero after our threshold of interest, by continuing

to evolve the probability forward in time, but effectively łfreezing”

any probability mass on positive values of margin. We then evolve

the system forward until the (exponentially decaying) contributions

from further evolution are negligible.

Block-based settlement rules. We also consider the settlement

rule that is actually used in Bitcoin łWait for the transaction to be

buried by 𝑘 blocks.” This requires a small adaptation to the frame-

work above because an individual symbol may generate multiple

blocks: in this case, one maintains a graded data structure that

reflects the probabilities conditioned on observing a particular total

number of block-creation events. A further complication arises in

the interpretation of margin for this stopping time. In particular,

this stopping time is quite different from the simple stopping time

łwait for 𝑘 block creation events,” which is not even an observable

event. For example, note that if 𝛽ℓ () is 2𝑘 at time ℓ , an adversary can

immediately activate the settlement of łburied by 𝑘 blocks” and can

double spend. Observe that if 𝛽ℓ (𝑤) = 𝑠 at time ℓ (so that |𝑤 | = ℓ),

then at least 2𝑘 − 𝑠 block creation events must take place in order

for the adversary to successfully create a double spend (which will

expose 2𝑘 blocks to the observer). With this observation in place,

we carry out the natural numerical evolution, conditioned on the

value of 𝛽 arising at𝑤 = ℓ . (We specifically use 𝛽0 + 𝑎0.)

5.2 Lower Bounds from Private Mining Attacks

We obtain lower bounds on the consistency failure probability by

analyzing the well known private mining attack strategy. This at-

tack strategy simply attempts to build a competing chain in private

that tries to double spend a target transaction. If there ever comes a

point in time after the target transaction has been settled, that the

adversary’s private chain becomes longer than the public honest

chain, the adversary releases its private chain and the private min-

ing attack succeeds. If such a time never occurs, the private mining

attack fails. In more detail, the private mining attack consists of two

stages. Before time ℓ (the time when the target transaction appears

in the system), the attacker tries to build a longer private chain: if

its private chain is longer than or equally long as the public chain,

it tries to extend its private chain; however, if its private chain is

overtaken by the public chain, it gives its private chain, and tries

to mine a new private chain from the tip of the public chain. After

time ℓ , the attacker goes all-in and keeps mining on the private

chain that double spends the target transaction.

We calculate the success probability of the private mining attack

in the lock-step model D[0,Δr] and assuming that neutralization
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Figure 4: Bitcoin temporal settlement failure for a 10% adver-

sary, results from [17] for comparison.

never occurs. These assumptions weaken the capabilities of the

adversary. Note that the private mining attack is not optimal when

the network delay is non-zero, as shown in [6]. Hence, computing

the success probability of this strategy with a weakened adversary

gives a lower bound on the probability of consistency failures.

We also provide simulation results for the success probability

of the private mining attack in the actual continuous time model

C[Δr]. For each parameter setting, we run the private mining attack

10000 times in 10 experiments and then plot its success rate with

one standard deviation. Since the simulation results account for

neutralization, they give better (but noisy) lower bounds. Since our

upper and lower bounds already match closely for Bitcoin parame-

ters, we only carry out simulation for Ethereum parameters. We

also remark that we can only provide simulation results when the

settlement failure probability is relatively high (i.e., short confirma-

tion time or few confirmation blocks); when the settlement failure

probability is extremely small, we would have needed a very large

number of simulation runs to make reasonable estimates.

5.3 Results

Figures 4 and 5 give our results for temporal settlement in Bitcoin

and Ethereum, respectively. These figures depict both lower bounds

and upper bounds on the settlement error as a function of time.

More results for temporal settlement are given in Table 1. Results

for the block-based settlement rule are summarized in Figures 6

and 7, and a more detailed record is given in Table 2.

Figure 4, in particular, clearly shows that our method obtains

highly accurate settlement times for the temporal settlement rule

for Bitcoin. To elaborate (and as mentioned earlier in the paper), our

upper and lower bounds are merely minutes away. For example, for

Bitcoin with Δr = 10𝑠 delays and a 10% adversary, settlement error

probability at the one-hour mark is at most 4.489% (from the upper

bound computed in 1-deferral setting), while 90 seconds before

that, the settlement error probability is at least 4.494% (due to the

lower bound given by private mining attack). (These results are not

included in the provided tables, but are obtained using the methods

we described in this section.)
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Figure 5: Ethereum temporal settlement failure for a 10%

adversary, results from [17] for comparison.
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Figure 6: Bitcoin block-based settlement failure for a 10%

adversary.
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Figure 7: Ethereum block-based settlement failure for a 10%

adversary.

Towards comparing with prior art [17], we plot the upper bound

results from [17] in Figures 4 and 5. As an example, their method

concludes that for a 10% adversary and Δr = 10𝑠 , a Bitcoin block is

settled with at most 0.1% error probability after 5 hours 20 minutes,

while our new results bound it within 2 hours and 30 minutes.
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Figure 8: Bitcoin settlement method comparison: time- vs.

block-based, for a 10% adversary and Δr = 10𝑠.

Furthermore, our new results are no more than 2 minutes and

30 seconds away from the optimum. The comparison is similarly

favorable to our results for the Ethereum parametrization.

Comparing settlement modes. It is interesting to compare the

settlement error probability for the temporal rule and block-based

rule. At the first glance, one may intuitively feel that łwaiting for 6

blocks” should provide similar consistency guarantees as łwaiting

for 60 minutes.” We give this comparison for Bitcoin in Figure 8

where we plot the upper bounds on the temporal settlement error

as a function of time (as indicated by Figure 4), alongside with the

upper bound on the block-based settlement error (as indicated by

Figure 6) as a function of the expected time it takes for the particular

number of blocks to appear under honest operation. As the graph

illustrates, in the above-mentioned case of 60 minutes vs. 6 blocks,

the block-based settlement guarantees are an order of magnitude

better. This illustrates that under normal operation of the protocol,

users are able to arrive at their desired settlement guarantee sig-

nificantly faster if they apply a block-based settlement rule. This

is because the block-based settlement rule naturally adapts to ad-

versarial behavior in the sense that withholding adversarial blocks,

in general, will cause the users to wait for longer before observing

the requisite number of blocks.

6 CONCLUSIONS

Practical relevance.Thiswork aims to provide concrete settlement-

delay advice to all deployed PoW blockchains. Indeed, while the con-

crete results we quote are parametrized for Bitcoin and Ethereum,

the two currently dominant PoW deployments, our methods can be

directly applied to compute these statistics for any other choice of

block interval, block propagation delay Δr, and assumed adversarial

share of mining power. The value Δr can be estimated based on

measurements, as we’ve done in Section 5.1 using existing work.

Estimating the fraction of adversarial mining power is more difficult

and ultimately comes down to each user’s belief. Nonetheless, our

results allow each individual user to choose their settlement times

or blocks based on their own beliefs about the system and their

acceptable failure probability (perhaps depending on the transacted

amount).
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Time

(min)

upper bounds lower bounds

Δr = 10𝑠 Δr = 4𝑠 Δr = 10𝑠 Δr = 4𝑠

Bitcoin; 10% adversary

20 0.304519 0.298281 0.295002289 0.294517617

30 0.182942 0.177858 0.175313516 0.175442853

40 0.112861 0.109011 0.10716052 0.106774039

50 0.0707863 0.0679664 0.066656956 0.066352072

60 0.0448913 0.0428636 0.041949497 0.041845542

70 0.0286956 0.0272542 0.026621323 0.026448959

80 0.0184528 0.0174364 0.017000505 0.016874481

90 0.011922 0.0112094 0.010910293 0.010819242

100 0.00773178 0.00723447 0.007029835 0.006964646

Bitcoin; 20% adversary

20 0.505249 0.498112 0.494926979 0.492990797

30 0.383382 0.376117 0.373064366 0.371644562

40 0.295733 0.288859 0.286104409 0.284040603

50 0.230435 0.224161 0.221742068 0.219810527

60 0.180805 0.175197 0.173106136 0.17163273

70 0.142594 0.137653 0.135862886 0.134299714

80 0.11291 0.1086 0.107077575 0.105704297

90 0.0896948 0.0859628 0.084675044 0.083480911

100 0.0714434 0.0682312 0.067145976 0.066115746

Time

(min)

upper bounds lower bounds

Δr = 5𝑠 Δr = 2𝑠 Δr = 5𝑠 Δr = 2𝑠

Ethereum; 10% adversary

2 0.137626 0.0279521 0.015828578 0.011812983

3 0.0527935 0.00548293 0.002145191 0.001584263

4 0.0203159 0.0010971 0.000410932 0.000251815

5 0.00782799 0.000221883 6.9340E-05 3.615E-05

6 0.003018 4.51668e-05 1.0273E-05 5.61563E-06

7 0.00116389 9.23251e-06 2.0634E-06 9.38321E-07

8 0.00044892 1.89193e-06 3.6112E-07 1.48653E-07

9 0.000173164 3.87677e-07 5.5071E-08 2.23033E-08

10 6.67978e-05 7.87459e-08 1.1272E-08 3.57683E-09

Ethereum; 20% adversary

2 0.384056 0.156394 0.117232788 0.092808469

3 0.245871 0.0697603 0.043623877 0.033041265

4 0.158287 0.0317031 0.019425505 0.012949768

5 0.102233 0.0145709 0.008178393 0.004849916

6 0.0661652 0.00674751 0.003249166 0.001899153

7 0.0428818 0.00314153 0.001500296 0.000774062

8 0.0278188 0.00146854 0.000650086 0.00030802

9 0.0180596 0.000688627 0.000264363 0.000119565

10 0.0117302 0.000323706 0.000123975 4.80722E-05

Table 1: The failure probability of the temporal settlement

rule for Bitcoin and Ethereum under different settlement

time, adversary ratio and network delays.

Future work. The main open question remaining unresolved after

our work is to provide analogous practically relevant settlement

bounds also for other Nakamoto-style (i.e., longest-chain) ledger

consensus protocols, employing different Sybil-protection mech-

anisms such as proof of stake [5] and proof of space [4]. These

Confs.
upper bounds lower bounds

Δr = 10𝑠 Δr = 4𝑠 Δr = 10𝑠 Δr = 4𝑠

Bitcoin; 10% adversary

2 0.118882 0.111154 0.091072133 0.090289244

3 0.0402842 0.0368385 0.029544274 0.029154201

4 0.0137891 0.0123524 0.009793747 0.009616722

5 0.00476516 0.00418514 0.003294434 0.003217994

6 0.00165992 0.00143009 0.001120043 0.00108804

7 0.000582003 0.000492027 0.000383901 0.000370782

8 0.000205151 0.000170222 0.000132434 0.000127138

9 7.2633e-05 5.91573e-05 4.5926E-05 4.38129E-05

10 2.58108e-05 2.06366e-05 1.5996E-05 1.51607E-05

Bitcoin; 20% adversary

2 0.466437 0.45271 0.319646859 0.317452323

3 0.288865 0.277594 0.188866365 0.186940123

4 0.177784 0.169269 0.113180954 0.111647534

5 0.109524 0.103348 0.068498618 0.06733905

6 0.0676876 0.0633137 0.041762682 0.040912987

7 0.0419841 0.0389337 0.025608615 0.024999029

8 0.0261309 0.0240265 0.015775657 0.015344919

9 0.016314 0.0148737 0.009755295 0.009454384

10 0.0102126 0.00923299 0.006051757 0.005843401

Confs.
upper bounds lower bounds

Δr = 5𝑠 Δr = 2𝑠 Δr = 5𝑠 Δr = 2𝑠

Ethereum; 10% adversary

2 0.554298 0.256406 0.13124146 0.103613076

3 0.38244 0.120911 0.056912431 0.037008885

4 0.264554 0.0571909 0.025438212 0.013695484

5 0.183481 0.0271947 0.011522827 0.005185141

6 0.12746 0.0129908 0.005263762 0.001993565

7 0.0886243 0.00622754 0.002419679 0.000774795

8 0.0616519 0.00299308 0.001117841 0.000303492

9 0.0428996 0.00144124 0.000518528 0.000119582

10 0.0298552 0.000694936 0.000241348 4.73342E-05

Ethereum; 20% adversary

2 1.03875 0.673397 0.410871826 0.351521687

3 0.889277 0.479654 0.282740403 0.219222634

4 0.749407 0.337735 0.198320599 0.139166224

5 0.628655 0.237452 0.140561678 0.089448203

6 0.526782 0.167208 0.100281703 0.058018531

7 0.441386 0.118012 0.071879557 0.037893876

8 0.369901 0.0834758 0.051707349 0.024883864

9 0.310061 0.0591607 0.037305049 0.016411126

10 0.259949 0.0419967 0.026980289 0.010861279

Table 2: The failure probability of the block-based settlement

rule for Bitcoin and Ethereum under different number of

confirmations, adversary ratio and network delays.

are, alongside PoW, also deployed in existing blockchain projects

currently carrying billions of dollars in value.
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