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Abstract

To understand the operation of the olfactory system, it is essential to know how information is encoded in the olfactory
bulb. We applied Shannon information theoretic methods to address this, with signals from up to 57 glomeruli simultane-
ously optically imaged from presynaptic inputs in glomeruli in the mouse dorsal (dOB) and lateral (lOB) olfactory bulb, in
response to six exemplar pure chemical odors. We discovered that, first, the tuning of these signals from glomeruli to a set
of odors is remarkably broad, with a mean sparseness of 0.83 and a mean signal correlation of 0.64. Second, both of
these factors contribute to the low information that is available from the responses of even populations of many tens of
glomeruli, which was only 1.35 bits across 33 glomeruli on average, compared with the 2.58 bits required to perfectly
encode these six odors. Third, although there is considerable interest in the possibility of temporal encoding of stimulus
including odor identity, the amount of information in the temporal aspects of the presynaptic glomerular responses was
low (mean 0.11 bits) and, importantly, was redundant with respect to the information available from the rates. Fourth, the in-
formation from simultaneously recorded glomeruli asymptotes very gradually and nonlinearly, showing that glomeruli do
not have independent responses. Fifth, the information from a population became available quite rapidly, within 100 ms of
sniff onset, and the peak of the glomerular response was at 200 ms. Sixth, the information from the lOB was not additive
with that of the dOB.

NEW & NOTEWORTHY We report broad tuning and low odor information available across the lateral and dorsal bulb popula-
tions of glomeruli. Even though response latencies can be significantly predictive of stimulus identity, such contained very little
information and none that was not redundant with information based on rate coding alone. Last, in line with the emerging notion
of the important role of earliest stages of responses (“primacy”), we report a very rapid rise in information after each inhalation.

information encoding; mouse; olfactory bulb; rate encoding; temporal encoding

INTRODUCTION

There are �1,000 types of glomeruli in the rodent olfac-
tory bulb (OB), each receiving input from thousands of olfac-
tory receptor neurons (ORNs) expressing only 1 of the
>1,000 gene-specified olfactory receptors (1–3). Pre- and
postsynaptic neurons in some of the glomeruli appear to be
quite tuned to, for example, odors with particular carbon-
chain lengths (3–6). In particular, when presented at rela-
tively low (pM to nM) concentrations, tuning was very sparse
(7). Inhibitory action by “natural” odorant mixture compo-
nents on ORNs may sharpen tuning to mixtures (8). On the

other hand, broad tuning has also been reported with flow
dilutions around 0.1–10% of saturated vapor pressure (9–11),
as well as odor concentration-dependent glomerular recruit-
ment (11–14). However, there has been, as far as we know, no
previous information theoretic quantification of how popu-
lations of glomeruli encode a set of typical monomolecular
olfactory stimuli. There are a whole set of key questions,
which we aimed to investigate.

First, can a subset of glomeruli perfectly encode each of a
set of typical odors? Or are more than a subset needed, which
might be consistent with mammals utilizing �1/30th of their
genome to code for olfactory receptors, which itself is a
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strikingly large proportion of the genome? Second, how inde-
pendent is the coding by different glomeruli to a set of typi-
cal odors: does the information from different glomeruli add
up linearly, indicating independent encoding? Third, how
much information is there in the firing rates of the glomer-
uli, and howmuch information is temporally encoded by the
latency of the response of each glomerulus to an odor?
Moreover, do these two types of information add, or is any
information in the latencies redundant with respect to the
information in the rates? Fourth, how long does it take for
the information about which stimulus was presented to
become available from the responses of the glomeruli?

The only way that we know to address questions of this
type is to use Shannon information theory. Shannon informa-
tion theory (15) provides a principled approach to this type of
question, because information measures are additive if they
are independent; and the amounts of information from differ-
entmeasures can be directly compared, including for example
neuronal, functional (f)MRI, and behavioral measures (16–20).
In the research described here, we therefore used Shannon in-
formation theory to measure the encoding of a set of odors by
glomeruli in the mouse dorsal and lateral olfactory bulb. The
set of six odors used was heptanone, hexanal, amyl acetate
(AA), carvone, methyl valerate (MV), and heptanol. These
odors were chosen to represent different molecular groups, as
well as to be represented in the dorsal and lateral bulb (10, 21–
23). The responses of the glomeruli were measured with opti-
cal calcium imaging in anesthetized mice, and their general
spatial and temporal properties have been described previ-
ously (10). The signal obtained with this method reflects the
firing rates of the neurons in a glomerulus (24, 25).

Part of the importance of this research is that there has
been great interest in whether temporal encoding, for exam-
ple response latency, is important in neural encoding in the
olfactory system. The dynamic glomerular activation patterns
unfold over �200 ms across the dorsal glomerular layer after
inhalation during odor presentation (26). Mice can discrimi-
nate glomerular input activity duration differences down to
only 10ms (27) and detect temporal odor information down to
10 ms relative to the sniff cycle (28). Furthermore, mice are
able to discriminate the temporal differences in optogenetic
activation of spatially separated glomeruli across the dorsal
bulb of only 13ms, independently of sniff timing (29).

In addition, odorants present in a turbulent plume can be
both spatially and temporarily sparse (30). It appears, how-
ever, that a subset of mitral/tufted cells are able to closely
track the temporal structure thereof (31–35) and that mice are
able to discriminate fluctuations up to 40 Hz (34). They fur-
thermore can robustly navigate to the source of such odor
plumes based on odor alone (36) or ultimately also on learned
source options (37). This temporal sparseness exists in the bio-
logical reality of active sampling, which at best exposes odors
to the epithelium for a fraction of a second (38).

In fact, some behavioral decisions occur well before the
glomerular olfactory receptor neuron (ORN) responses in the
rodent olfactory bulb (OB) reach peak amplitude. The early
responses of only a subset of glomeruli may be sufficient for
accurate decisions, a phenomenon termed “primacy” (39). It
remains unclear, however, how rapidly information becomes
available about an odorant set over time and over an increas-
ing number of glomeruli. It also remains unknown as to how

much information is represented about stimuli by way of
response dynamics. To quantify the information across
response time, glomeruli, and glomerular dynamics, we
used information theory and new approaches developed
from those that we introduced previously (40, 41).

The data set used for the analyses described here are the
spatiotemporal responses of presynaptic glomeruli (i.e., ter-
minals of ORNs) from simultaneously optically imaged
OMP-GCaMP6f mouse dorsal and lateral OB (10). We used
this data set to quantify information about which stimulus
was presented and how the information was represented.
The magnitudes of the responses termed “Rates” were esti-
mated by deconvolving optically imaged calcium responses
with 140-ms decay times, based on evidence of the relation
between spike rates and the calcium signal from visual cor-
tex inmice (25).

METHODS
The acquisition of the data analyzed here has been

described previously (10). Full methods of acquiring glomeru-
lar odor responses can be found there. An abbreviated version
of the most salient aspects is provided below, followed by a
description of how the data were prepared for the information
theoretic analyses described here. Whereas in Baker et al. (10)
the analysis was primarily on the first odor responses during a
trial at two concentrations, here we analyzed data from the
first five sniff responses each time an odor was delivered at 1%
of saturated vapor (% s.v.). The focus here was on the analysis
of information encoding of odor quality rather than effects of
odor intensity in the olfactory bulb, and the information theo-
retic methods used are described below.

Surgery

Five OMP-GCaMP6f mice [generated by crossing OMP-Cre
(Jax Stock No. 006668) with GCaMP6f floxed transgenic
mice (Jax Stock No. 024105)] aged 12–20 wk, both males and
females, were used. They were anesthetized with isoflurane
(4% for induction, 1.5–2.5% for maintenance). Anesthetic
maintenance was monitored by the pedal withdrawal reflex
and supplemented as needed. Core body temperature of the
animal was maintained at �37�C with a thermostatically
controlled heating pad. After surgery, the animals were
placed in their home cage on a heating pad. Carprofen
(5 mg/kg sc) was administered before surgery and buprenor-
phine (50 μg/kg im) at the start of surgery. Mice received sup-
plemental carprofen 24 h after surgery, and weight was
monitored for the duration of the experiment. Animals were
placed in a stereotaxic holder and prepared by aseptic proce-
dures. For exposure of the dorsal olfactory bulb, the skin was
removed and the underlying bone was thinned with a dental
drill. For exposure of the lateral olfactory bulb, an enuclea-
tion of the left eye was performed and the upper and lower
eyelids were removed. The bone overlying the lateral portion
of the olfactory bulb was thinned. A seamless covering of
cyanoacrylate was applied to both the dorsal and lateral win-
dows at once. A head cap was secured with cyanoacrylate
and dental cement for stability during imaging. Animals
were given at least 24 h of recovery after surgery before
imaging to reduce any OB inflammation as a result of win-
dowing. All procedures were performed in accordance with
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protocols approved by the Pierce Animal Care and Use
Committee (PACUC). These procedures are in agreement
with the National Institutes of Health Guide for the Care and
Use of Laboratory Animals (8th ed.).

Imaging

All imaging was carried out between 24 and 72 h after sur-
gery after full recovery. Imaging was performed under keta-
mine-Dexdomitor (100-0.5 mg/kg ip, 25% boosters). Atropine
(0.03 mg/kg ip) was administered at the start of imaging and
every 2 h hereafter. Eye lubricant was used throughout
(Lubrifresh P.M. lubricant eye ointment).

Simultaneous recordings of the dorsal and lateral OB were
made with two identical setups consisting of two Hamamatsu
ORCA Flash 4.0 LT sCMOS cameras (Hamamatsu, Japan) at a
frame rate of 30 Hz and with 4� 4 binning to 512� 512 pixels.
Two high-power LED 470 nm (Thorlabs, Newark, NJ) were
driven by a T-Cube LED Driver (LEDD1B; Thorlabs, Newark,
NJ). The custom-made tandem-lens type (42) was used at a
2.7 magnification (FOV: 5� 5mm). Imaging lenses were prime
Nikon F-mount (ccd lens: 135 mm f/3.5, used at f/8; object
lens: 50 mm f/3.5, used at f/3.5). Custom code written in
LabVIEW (National Instruments) controlled simultaneous
image acquisition with both sCMOS cameras and timing con-
trols for the light source and odor delivery. Sniffing and odor
presentation data were acquired simultaneously through a
National Instruments data acquisition device.

Each imaging session consisted of manually triggered tri-
als with intertrial intervals of �2 min. Each trial consisted of
12 s of imaging where an odor was presented in one 3-s pulse
with a custom-built multichannel auto-switching flow dilu-
tion olfactometer (43) with dedicated lines for each odor to
avoid cross-contamination. Odorants were presented ortho-
nasally to the animal at concentrations of either 0.1% or 1%
of saturated vapor (% s.v.). Saturation was maintained by a
flow (0.5 or 5 mL/min for 0.1% or 1% s.v., respectively) of fil-
tered high-purity nitrogen (Airgas, NI ISP300, <0.1 ppm
THC, H2O and O2 contaminants, 99.9999%) passing through
passivated stainless steel spargers (IDEX health and science,
A-243, 2-mm inlet filter) in PFA vials (Savillex 200-30-12) con-
nected to the nose chamber (Figure 1A in Ref. 10) via an air-
dilution manifold. Odors were diluted with clean air (Airgas,
AI UZ300, ultra zero grade, <1 ppm THC, CO2 and CO con-
taminants, batch analysis: 20.8% O2, 0.023 ppm THC, 0.27
ppm moisture, 99.999%) at a flow rate of 499.5 or 495 mL/
min for 0.1% or 1% s.v., respectively, for a constant combined
air-nitrogen-odor flow rate of 500 mL/min into the nose
chamber. The nose chamber consisted of a 1 � 0.5 � 1-in.
(W � H � D) Teflon block with two 5-mm-inner diameter
(ID) channels 10 mm from the front of the block. This
allowed connection of a 1/8-in.-outer diameter (OD) Teflon
tube for diluted odor flow into one side and a vacuum con-
nection (4-mm ID, 8-mm OD Tygon) for outflow on the
opposing side. Flow of odorants was continuous and was
removed via the vacuum (2.5 L/min), which was switched off
for odorant delivery. A central channel of 6-mm ID con-
nected the orthogonal odor-vacuum stream to the frontally
placed nares. The tip of the mouse’s nose (including just the
nares, OD 2 mm) was placed just inside the chamber,
whereby there was �2 mm of space surrounding the entire

nose for unrestricted flow. Odorants (Sigma-Aldrich) usedwere
heptanone, hexanal, amyl acetate (AA), carvone, methyl valer-
ate (MV), and heptanol (stored under nitrogen in the dark).
Mice were freely breathing, which was continuously measured
by a piezoelectric strip positioned on the animal’s thorax.

Initial Data Analysis

Custom code written in LabVIEW was used to extract the
fluorescence traces from each trial. Frame subtraction was
performed by selecting video frames just before and after
odor presentation. This presented an image that highlighted
regions that responded to odor stimulation. Multiple regions
of interest (ROIs) that resembled glomeruli were manually
selected per mouse. This process was repeated for all trials,
and additional ROIs were selected to accumulate all glomer-
uli that responded in a particular mouse for all odors and all
concentrations. This accumulated list of ROIs enabled direct
comparison of the responsiveness of all glomeruli across
odors. The ROIs were used to extract mean fluorescence in-
tensity traces from time series images of all trials. All data
are presented asmeans ± SE, except where indicated.

Data Overview

For each trial the optical imaging response traces (1 txt file
for all ROIs per trial), ROI location [of the diagonally opposed
corners of the rectangular area; no more than 50 per imaged
OB area (lateral/dorsal) per animal; a txt file], and sniffing
and odor presentation timing traces (a txt file) were analyzed
in MATLAB (R2018a; The MathWorks, Natick, MA). The data
set consisted of five animals each with up to 18 trials (5 or 6
odors� 2 or 3 trials) and up to 1,000 ROIs.

All data were referenced to the very stable OB imaging
sampling times (virtually jitter-free 30.00 fps), to which odor
and sniffing data were resampled and then shifted for proper
alignment, followed by truncation. Alignment was verified
by comparing an optically imaged LED driven in parallel by
the odor-on vacuum valve with that of the odor valve txt file.
The offset between the imaged data and odor/breathing data
did not vary between trials.

First Odor Response

The start of inhalation with the piezo sensor (once band-
pass filtered) was a sharp downward deflection after a rela-
tively shallow downward slope, verified by coimaging of the
thorax movement of a mouse. The timing thereof was deter-
mined by band-pass filtering (4th order, 1–10 Hz, zero phase
shift) of the z-scored piezo voltage signal, followed by peak
detection, from which the onset could reliably be deter-
mined with the sampling rate 30/s, or the interval between
samples 33.3 ms. We identified the inhalation onset time for
each trial that evoked the first dorsal OB response during
presentation of odor (“odor on response”; odor on from 3.4
to 6.4 s) by finding the largest response within the series of
fitted responses (see below) averaged across ROIs for the pe-
riod 2.8–4.5 s. The subsequent five sniff responses were also
included in the analyses.

Estimation of Firing Rate

For the information theoretic analyses, we assessed the first
five odor sniff responses during two or three trials per odor
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per mouse (n = 10–15 responses per odor per mouse) and we
tested five or six odors per mouse (Table 1). Here we used a
well-established approach to estimate glomerular firing rate
based on the deconvolution of Ca2þ traces with the GCaMP6f
response decay filter function (24). Traces were band-pass fil-
tered (0.1–13 Hz; 4th-order Butterworth; MATLAB: filtfilt) and
deconvolved (MATLAB: deconv) with an exponentially decay-
ing filter with 0.142-s time constant using a zero-padded
kernel. This time constant is the decay time constant of
GCaMP6f in vivo in themouse visual cortex (25). The resulting
filtered traces, representing the estimated firing rate per glo-
merulus, were used for all analyses reported. We note that the
absolute firing rate is not important for the calculation of
stimulus information, as uniform scaling does not affect the
relative response to the different stimuli and its variability
that underlies the informationmeasurement (19).

Fitting of Responses

To determine the peak response amplitudes (% DF/F)
and temporal parameters (including time to reach a cer-
tain % of peak response) of the glomerular responses, we
used a custom algorithm that fitted the optical signals
from each ROI to a double-sigmoid function as described
previously (44, 45). The analysis allowed robust and objec-
tive measurement of response timing. Briefly, the signal
from each ROI, after each identified inhalation, was band-
pass filtered [2nd-order Butterworth, 0.1–7 Hz] followed by
4th-order Daubechies wavelet decomposition (MATLAB
function wden), soft thresholding of the coefficients at
level 3, and then reconstruction. The response onset time
was defined based on the time of peak in the product of
the first and the second derivatives of the optical signal of
each ROI. Starting at this time, each response was fitted
(least-squares curve fitting) with a double-sigmoid func-
tion (a sigmoid rise followed by a sigmoid fall). The time of
the peak of this response was defined as the peak in this

fitted response function rather than the peak of the raw optical
signal. The falling sigmoid was forced to asymptote to zero,
thereby avoiding negative or sustained estimated firing rates
(which could occur because of subsequent responses within
the standardized 0.5-s period of each fitted trace). The double-
sigmoidal responses were fit with low error (r = 0.86–0.94), and
only a few responses (4.4%) could not be fitted and were not
included in any of the analyses. One exception was mouse 2,
whose dorsal (d)OB and lateral (l)OB responses could not be fit-
ted for 11.0% and 7.1%, respectively. Mouse 3 was not included
in the analyses because of a low number (3) of stimuli.
Supplemental Table S1 (all Supplemental Material is available
at https://doi.org/10.6084/m9.figshare.21197914) provides fur-
ther details. A total of 28,870 individual glomerular responses
were included in this study,

For the information theoretic analyses described here, the
mean response across all glomeruli for a single trial (i.e., sniff)
to a given stimulus was set to the mean for that stimulus
across all the trials for that stimulus. This removes sniff-to-
sniff response variability that might be related to different
sniff sizes for a given stimulus and any adaptation effect. This
optimizes measurement of the information that is available
from a population of glomeruli about which stimulus was pre-
sented in any one sniff. The analysis thus measures the infor-
mation available from all glomeruli in any experiment on any
one sniff. Supplemental Table S2 provides further details.

Data Sets for Information Analysis

We generated two data sets permouse. One data set (for the
dOB dOB_traces_dblsig and for lOB lOB_traces_dblsig) was
generated to perform temporal frame-by-frame analyses (tri-
als � ROI � odor sniff � frame; maximum sizes: 3 � 50 � 5 �
15), containing traces over 15 samples (0.5 s) of odor response
based on their double-sigmoid fits. The second data set (for
dOB dOB_trial_t10_ON, dOB_trial_t50_ON dOB_trial_t90_ON,
dOB_trial_tpeak_ON; similar for lOB) was generated to test

Table 1. Information and percent correct from populations of mouse glomeruli measured from both the response
magnitude and timing, from the magnitude only, and from the timing only

Anim D/LOB nglom nstim Sparse InfTot InfRate InfTime PcTot PcRate PcTime Chance sigr sigrmin

1 D 43 6 0.87 1.48 1.76 0.07 74.7 82.3 20.3 16.7 0.69 0.02
1 L 31 6 0.88 0.94 1.07 0.20 53.2 57.0 25.3 16.7 0.58 0.00
2 D 35 6 0.63 1.29 1.36 0.00 60.7 59.6 10.1 16.7 0.82 0.17
2 L 33 6 0.86 0.28 0.47 0.01 24.7 32.6 11.2 16.7 0.58 0.01
4 D 57 6 0.85 1.47 1.65 0.21 66.7 72.7 30.3 16.7 0.56 0.00
4 L 30 6 0.80 1.92 2.07 0.37 48.5 82.8 38.4 16.7 0.84 0.41
5 D 36 5 0.84 1.25 1.27 0.10 70.3 71.6 33.8 20.0 0.45 0.00
5 L 28 5 0.87 1.22 1.18 0.07 73.0 60.8 25.7 20.0 0.61 0.00
6 D 28 6 0.81 1.33 1.53 0.03 57.3 68.5 16.9 16.7 0.64 0.00
6 L 9 6 0.86 0.96 1.11 0.06 51.7 60.7 20.2 16.7 0.67 0.09

Information and percent correct from populations of mouse glomeruli measured from both the response magnitude (rate) and timing
(InfTot), from the magnitude (InfRate) only, and from the timing only (InfTime). For this analysis, the mean response across all glomer-
uli for a single trial (i.e., sniff) to a given stimulus was set to the mean for that stimulus across all the trials for that stimulus. This
removes sniff-to-sniff response variability that might be related to different sniff sizes for a given stimulus and any adaptation effect.
This optimizes measurement of the information that is available from a population of glomeruli about which stimulus was presented in
any 1 sniff. The analysis thus measures the information available from all glomeruli in any experiment on any 1 sniff. This removes trial-
to-trial variability between sniffs. The information available from the time was for the time it took for the response to an odor to reach
its half-maximal value. The mean Rate information across experiments was 1.35 ±0.14 bits (mean ± SE), the mean information from the
temporal measures was 0.11 ±0.04 bits, and the mean total information was 1.21 ±0.14 bits. Anim, mouse number; chance, percent cor-
rect by chance (= 100/nstim); D, dorsal olfactory bulb (DOB); InfRate, information (bits) from rates; InfTime, information (bits) from tim-
ing of response to half-maximum; InfTot, information total in bits from rate and time; L, lateral olfactory bulb (LOB); nglom, number of
glomeruli; nstim, number of odor stimuli; PcRate, percent correct from rates; PcTime, percent correct from timing of response; PcTot,
percent correct rate and time; sigr, signal correlation mean; sigrmin, signal correlation minimum; sparse, sparseness.
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information content in dynamics descriptors [time to reach
10% (t10), 50% (t50), and 90% (t90) of maximum response
and peak (tpeak)] of their double-sigmoid fits (trials � ROI �
odor sniff; maximum sizes: 3� 50� 5).

For a response parameter to carry information about
which odor was presented, it must reliably be different
across the stimuli. As a first pass we therefore performed a
two-way ANOVA (MATLAB function anovan) of glomeruli
responses, odors, and their interaction on each response pa-
rameter (t10, t50, t90, and Rate). Rate invariably showed
extremely significant odor-glomeruli interactions, whereas
t90 of lOB and dOB glomeruli was significant for mice 2, 4,
and 6. It is hence unlikely for t90 in mice 1 and 5 to carry in-
formation about odors. Supplemental Table S3 provides fur-
ther details, and Supplemental Fig. S2 shows as an example
themean and SE of the t90 formouse 2.

The Information Measurement Algorithm

The aim is to measure how much information is provided
on average on a single trial, i.e., a single sniff, about which
odor stimulus was presented, using measures of the
responses of a population of glomeruli. The measures of the
responses of each glomerulus might include the firing rates
and one or more temporal measures such as the latency of
the responses. In the present study, three temporal measures
were used for each neuron, the time on each trial for the glo-
merulus to reach 10% (t10), 50% (t50), and 90% (t90) of its
maximal response. We wish to measure the information
from the rate alone, from the temporal measures alone (to
compare their magnitude), and from both the rate and the
temporal measure (to show whether there is additive infor-
mation, which would indicate independence of the rate and
temporal measures, with the alternative being redundancy).
We note again that Shannon information theory (15) pro-
vides a principled approach to this type of question, because
information measures are additive if they are independent,
and the amount of information can be directly compared
from different measures, including for example neuronal,
fMRI, and behavioral measures (16–19). In the present appli-
cation, the responses of a glomerulus are treated in the same
way as the responses of a neuron, given that the neurons in a
glomerulus have the same tuning to the stimuli and given
that the response of a glomerulus as measured here reflects
the firing rates of the neurons in the glomerulus (25).

The direct approach is to apply the Shannonmutual infor-
mationmeasure (15, 46)

I ðs; rÞ ¼
X
s2S

X
r

Pðs; rÞ log2
P ðs; rÞ

P ðsÞPðrÞ ð1Þ

where P(s,r) is a probability table embodying a relationship
between the variable s (here, the stimulus) and r (a vector
that includes the response of each neuron and might be
extended to include its firing rate and a temporal measure or
measures such as latency).

However, because the probability table of the relation
between the neuronal responses and the stimuli P(s,r) is so
large (given that there may be many stimuli and that the
response space that has to include temporal information is
very large), in practice it is difficult to obtain a sufficient num-
ber of trials for every stimulus to generate the probability table

accurately, at least with data from mammals in which the
experiment cannot usually be continued for many hours of re-
cording from a whole population of cells. To circumvent this
undersampling problem, Rolls et al. (40) developed a decoding
procedure, in which an estimate (or guess) of which stimulus
(called s0) was shown on a given trial is made from a compari-
son of the neuronal responses on that trial with the responses
made to the whole set of stimuli on other trials. One then
obtains a conjoint probability table P(s,s0), and then themutual
information based on probability estimation (PE) decoding (Ip)
between the estimated stimuli s0 and the actual stimuli s that
were shown can bemeasured:

hIpi¼
X
s2S

X
s02S

Pðs; s0Þ log2
P ðs; s0Þ

P ðsÞPðs0Þ ð2Þ

¼
X
s2S

PðsÞ
X
s02S

Pðs0jsÞ log2
P ðs0jsÞ
Pðs0Þ ð3Þ

Thesemeasurements are in the low-dimensional space of the
number of stimuli, and therefore the number of trials of data
needed for each stimulus is of the order of the number of stim-
uli, which is feasible in experiments. The information values
presented here are with this information analysis procedure in
which the probabilities that it is each of the S stimuli are taken
into account (i.e., probability estimation decoding). When pro-
viding the percent correct, this is based on the single stimulus
that on a single trial has the highest probability, and therefore
the percent correct does not follow exactly the information cal-
culated using the probability for each stimulus on a trial (see
further the SupplementalMaterial and Ref. 40).

To decode the probabilities that on a given trial each of
the stimuli had been presented, a probability estimation
leave-one-out cross-validation decoding procedure was used
as described in detail in the Supplemental Material and illus-
trated in Supplemental Fig. S1 (see also Refs. 40 and 41). The
decoding procedure allowed the information to be measured
from the rates of each glomerulus in the population, from up
to three temporal measures such as latency for each glomer-
ulus in the population, or from both.

The selectivity of each glomerulus was measured by the
sparseness measure a, which is widely used in quantitative
analyses of the selectivity of neurons or neuronal popula-
tions, partly because it can also be used in analytic research
on how sparseness influencesmemory storage in biologically
plausible memory networks (18, 47–49). The single neuron
sparseness, as, is
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where ys is the mean firing rate of the neuron to stimulus s in
the set of S stimuli. A value of sparseness of 1/S indicates
responsiveness to only 1 of the S stimuli, and a sparseness of
1.0 indicates no selectivity to the different stimuli.

RESULTS
The data from an experiment are illustrated in Fig. 1,

which shows the responses of one of the presynaptic glomer-
uli to the six odor stimuli from the dorsal olfactory bulb in
mouse 1 as a function of time after the odor delivery. For the
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information analyses, the magnitude of the response to 1% s.
v. odorants was measured as the total activity over the first
15 bins (0.5 s) after inhalation onset, and the term “Rate” is
used because the response is thought to reflect the firing rate
of the neurons in a glomerulus (25). The temporal aspects of
the response were measured by the times when the response
to 1% s.v. odorants had reached 10%, 50%, and 90% of its
maximum.

Glomeruli Have Broadly Tuned Response Profiles

The response profiles of typical glomeruli to the set of
six stimuli are shown in Fig. 2. Ten glomeruli were selected
at random from experiment 1 in the dorsal olfactory bulb.
It is clear that the glomeruli are not very selective for dif-
ferent odors. Indeed, we can see that the profiles of all
these glomeruli are somewhat similar to the first four odor
stimuli, and it is mainly for olfactory stimuli 5 (methyl val-
erate) and 6 (heptanol) that the glomeruli have differences
in their responses and could therefore provide evidence
about which odor was presented. Figure 2B shows as an
example that the correlations between the representations
of the six olfactory stimuli by the population by 43 glomer-
uli in the dorsal olfactory bulb of mouse 1 are mostly high,
and the main stimulus that is different is stimulus 6, hep-
tanol. This analysis shows that the response profiles by the
population of glomeruli to the set of six odors are quite
highly correlated with each other. That implies a poor rep-
resentation of the set of stimuli, which was investigated as
described next. Moreover, the different representation of
stimulus 6 by this set of glomeruli is evident in the Rate
responses shown in Fig. 2A.

Similar results were found in all the experiments, with
the correlations between the response profiles of each pair
of glomeruli quite high in all experiments, as shown in
Table 1 (Sigr). The mean value across experiments of this

correlation of the response profiles of glomeruli or “signal
correlation” for this set of six odor stimuli was 0.64. This
shows quantitatively that the different glomeruli did not
have on average very different tuning to the set of six stim-
uli, which implies poor encoding. At the same time, the
minimum correlation between the response profiles of
some pairs of glomeruli could be quite low (Table 1,
Sigrmin with a mean value of r = 0.07), indicating that in
most experiments some glomeruli did have different
response profiles to this set of six odor stimuli. A quantita-
tive measure of the selectivity of each glomerulus to the
set of six odors is considered next.

A Very Nonsparse Distributed Representation of Odors
as Shown by the Sparseness

The sparseness of the representation of the six stimuli is
shown for each of the 330 glomeruli in Fig. 3. Across all 330
glomeruli on all five mice together, the mean of the sparse-
ness was 0.83±0.10 (mean ± SD) (see Fig. 3 and Table 1). This
indicates quantitatively very broad tuning of each glomeru-
lus to the set of six odor stimuli and a nonsparse distributed
representation.

Information Is Encoded in the Magnitude of the
Response (Rate) with Little Temporal Information from
the Time of Arrival

The amounts of information that could be extracted from
the responses of the population of glomeruli recorded in
each experiment on any single trial (i.e., sniff) are shown in
Fig. 4 and Table 1. This shows first that there is some infor-
mation about which of the typically six odors was present
from the magnitudes of the responses (rates) of the popula-
tion of glomeruli recorded in each experiment. The mean in-
formation from the rates was 1.35 ±0.14 bits (mean ± SE). For
six odors, the amount of information needed to encode the
six stimuli is 2.58 bits (log2 of the number of stimuli), so these
sets of glomeruli imaged in each experiment were not suffi-
cient to identify which of the six odors had been delivered
from their responses on a single trial (sniff). That is reflected
in the low percent correct for the identification of which
odor was presented on a trial (mean = 65% correct for the 8
experiments with 6 stimuli for which chance = 16.7 correct as
shown in Table 1).

Second, Fig. 4 and Table 1 show that a small amount of
information was present in the temporal aspects of the
responses of the glomeruli about which odor had been
delivered on a trial (0.11 ± 0.04 bits), and, correspondingly,
the percent correct from just the temporal aspects of the
responses was just above the chance level (21.6% correct).
As described in METHODS, the temporal response informa-
tion was the time for the response to reach 10%, 50%, and
90% of its maximum response, for each glomerulus for
each of the different odors . If any one or more of these
provided reliable information for odor identification, that
would be reflected in the amount of information that could
be decoded from these temporal measures. The temporal
measure provided in Table 1 is the information from the
time to reach 50% of its maximum, and the information
available from the time to reach 10% or 90% of the maxi-
mum response was similar.
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Figure 1. Poststimulus response of a single glomerulus to show a typical
time course. This is for mouse 1 dorsal olfactory bulb glomerulus 1. The
estimated firing rates (deconvolved calcium response), labeled “glomeru-
lar response,” are shown every 33.3 ms (the calcium signal imaging frame
period) and are to each of the 6 odor stimuli. For the information theoretic
measures described later, the Rate measure used was the sum of the ac-
tivity between 0 and 500 ms. The sniff of the odor occurred at time bin 1.
The odor stimuli in order are heptanone, hexanal, amyl acetate, carvone,
methyl valerate, and heptanol.
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Third, Fig. 4 and Table 1 show that the total information
available when taking into account both the firing rate and
the temporal measure was 1.21±0.14 bits (and 54.7% correct),
no better than the information available from the rate alone.
This was confirmed by a paired t test for the total informa-
tion versus the rate information available in all 10 experi-
ments (t = �4.5, df = 9, P < 0.002). (In fact, the total
information was thus significantly lower than the informa-
tion from the rate alone, with the reason for the small
decrease of the total information that the latency informa-
tion introduced noise into the decoding performed by the in-
formation measurement algorithm). The implication is that
any information present in the temporal aspects of the neu-
ronal response is redundant with respect to the firing rate.

The concept of redundancy is described elsewhere (18, 19),
but for the present purposes the point is that the informa-
tion from the latency is not orthogonal to, i.e., is correlated
with, the information from the firing rates of the glomer-
uli. The implication is that a rate code is sufficient to
account for the encoding of information about odors by
the glomeruli in the olfactory bulb.

The Information Becomes Available from the Glomeruli
within 67 ms and Saturates by 100 ms after Odor Onset

Figure 5 shows how the information becomes available as
a function of time for a typical experiment. The information
is measured from the sum of the (GCamP6f decay time
deconvolved) responses accumulated by the end of each
time bin. By bin 3, representing the time period 0–100ms af-
ter sniff onset, the maximal information had been reached.
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Figure 2. A: response (Rate) profiles of different glomeruli to the set of odors. The examples shown are typical of the entire recorded population and are
the first 10 glomeruli in the set of 43 glomeruli imaged in the dorsal olfactory bulb ofmouse 1. The Rates were those accumulated over time bins 1–15 (0–
500 ms), as by this time the information available had reached its peak value. B: the correlations between the representations by the population by 43
glomeruli of the 6 olfactory stimuli in the dorsal olfactory bulb of mouse 1. This shows that this population of 43 glomeruli separated odor 6 (heptanol)
from the other odors, in that the correlation of the responses to odor 6 with the responses to the other odors was relatively low.
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of typically 28–57 glomeruli in the olfactory bulb provided by the magni-
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Some information was present by time bin 2, the time period
0–67 ms after sniff onset. An interesting implication of these
findings is that although the activity of the glomeruli does
continue for some time and then decreases after its peak
(Fig. 1), all the information that can be extracted from the
rates (and temporal information) is available by 100 ms after
sniff onset. The small decrease in the information and the
percent correct after the initial peak is likely to reflect vari-
ability in the later parts of the glomerular response.

The Information Increases for the First Few Glomeruli in
a Set but Then Saturates

Figure 6 shows how the information about the six odors
increased as more glomeruli were included in the analysis.
The data are from the dorsal olfactory bulb of mouse 1,
which are representative of all the experiments, and are
the total information from the rate. The average amount of
information from any one glomerulus was �0.26 bits, from
any two was �0.42 bits, and from any three was �0.62 bits.
The increase of information as more glomeruli are used for
the decoding rises steeply at first, indicating that the first
few glomeruli provide somewhat independent informa-
tion about which stimulus was presented. But after that, as
more glomeruli were included in the analysis, the amount
of information increased only slowly to a value of 1.76 bits
(and 82% correct), far below the ceiling of 2.58 bits needed
to decode which of the six odors had been presented. [The
concept of an information ceiling is described elsewhere
(40).] These findings are also reflected in the percent cor-
rect for the identification of which odor was presented on
a trial (Fig. 6).

The implication is that there are considerable correlations
between the encoding provided by different glomeruli, with
the response profiles of the glomeruli to at least this set of
stimuli showing considerable correlations (Table 1). These
correlations are associated with considerable redundancy as
the number of glomeruli in the population increases.

The overall implication is that glomeruli (at least these)
are so broadly tuned to the stimuli (at least these stimuli)

that there is much redundancy in their encoding, and a large
number of glomeruli is needed to identify a set of odors.

The Information Encoded by Hundreds of Glomeruli

The correlation matrices between the stimuli illustrated in
Fig. 2B were different for the different experiments shown in
Table 1. This suggested that the sets of glomeruli in the dif-
ferent experiments were coding for different sets of stimuli.
This in turn suggested that the representations of the stimuli
might be less correlated if all the experiments with all the
glomeruli were considered together. In information theory
terms, if all the glomeruli could be combined in the readout
of information, then the wider range of response profiles to
the set of stimuli should increase the amount of information
that could be represented.

It was possible to test this hypothesis by combining all the
glomeruli that had been tested with six stimuli (hence
excludingmouse 5). This produced 266 glomeruli for analysis
(for both the dorsal and lateral olfactory bulb, frommice 1, 2,
4, and 6 as shown in Table 1). [With nonsimultaneously
recorded neurons in this analysis, the information may be a
little lower than with simultaneous recordings, because of
trial-to-trial variation effects (40). Also, we note that by
chance several of the glomeruli in the different experiments
may have expressed the same olfactory receptor gene.] It is
shown in Fig. 7 that now the information about the six stim-
uli from the rates reaches 2.58 bits, and the percent correct is
100%.

This is an interesting result, for with a number of glomer-
uli that is close to one-quarter of the number of olfactory re-
ceptor genes, the information does reach the amount of 2.58
bits needed to encode the six odors.

There Is Redundancy of Information in the Dorsal and
Lateral Parts of the Olfactory Bulb

We tested whether the representation of information in
glomeruli in the dorsal and lateral parts of the olfactory bulb
was additive and therefore independent. It was found that
there was no greater additivity of information across these
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Figure 5. Information as a function of time after the onset of the odor. The information is measured from the sum of the responses accumulated by the
end of each time bin. This is the information from 43 glomeruli about which of the 6 odors had been presented on a trial, from the dorsal olfactory bulb
of mouse 1. The percent correct is shown on the right. By bin 3, representing the time period 0–100 ms after sniff onset, the maximal information had
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two parts of the olfactory bulb than within either part. For
example, formouse 1, if the 74 glomeruli from the dorsal and
lateral olfactory bulbs were combined, the information from
the rate about the six odors was 1.67 bits with 75.9% correct,
which is not above the information and percent correct for
either olfactory bulb alone shown in Table 1. In fact, the val-
ues are between the values for each olfactory bulb sepa-
rately, implying that in this case one bulb adds noise to the
information otherwise available from the other olfactory
bulb. Furthermore, if the performance was measured from a
sample of 43 glomeruli selected at random from the lateral
and dorsal olfactory bulb, then the information was 1.56 bits
with 74.7% correct, which again is between the values from
Table 1 if the glomeruli are from one of the bulbs alone.
Consistent findings were produced for the other experi-
ments. (For mouse 2 for 68 glomeruli the rate information
was 1.29 bits; formouse 4 for 87 glomeruli 2.02 bits; formouse

5 for 64 glomeruli 1.58 bits; and for mouse 6 for 37 glomeruli
1.54 bits.) The implication is that the information about stim-
uli that is represented in the dorsal and lateral parts of the ol-
factory bulb is not orthogonal but is similar, at least as tested
with the set of six odors used in this investigation.

DISCUSSION
The research described heremakes a number of key points

about the encoding of information by presynaptic inputs to
olfactory bulb glomeruli. We note that given that each glo-
merulus receives input from one type of ORN, the output of
each glomerulus is likely to reflect its inputs described here,
although, e.g., lateral inhibition between glomeruli might
decorrelate the glomerular outputs (50–54). First, the tuning
of the glomeruli to a set of odors is remarkably broad, i.e.,
unselective for particular odors (Figs. 1 and 2), and this is
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Figure 6. Information and percent correct as a function of the number of glomeruli. The analysis was for the information from the magnitude of the
response (Rate). There were 6 olfactory stimuli, so the chance percent correct was 16.7% (red line) and the amount of information required to identify
which odor was presented on a single trial (sniff) was 2.58 bits. The data are from the dorsal olfactory bulb ofmouse 1.
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measured by a very nonsparse representation (Fig. 3). There
are thus quite high correlations between the response pro-
files of different glomeruli to the set of stimuli [Sigr in
Table 1, known as “signal correlations” (17, 19)]. Second, both
of these factors contribute to the rather low information that
is available from the responses of even populations of tens of
glomeruli (Fig. 4). As shown in Table 1, the information from
the responses of even tens of glomeruli had a mean of 1.35
bits, whereas 2.58 bits of information are required to encode
this set of six olfactory stimuli. It was only when the informa-
tion was read from 266 glomeruli that the information
required to decode the identity of each of the six odors
reached the required 2.58 bits and the performance for iden-
tifying the most different odor became 100% correct (Fig. 7).
Third, although there is considerable interest in the possibil-
ity of temporal encoding of stimulus including odor identity
(27–29), it was shown here with information theoretic meth-
ods that the amount of information in the temporal aspects
of the glomerular responses was low and, importantly, was
redundant with respect to the information available from
the rates (Fig. 4 and Table 1). Fourth, in line with a large role
for earliest-responding neurons (35), it was found that much
of the information available to discriminate between the six
odors became available rapidly, by 100 ms (Fig. 5), well
before the peak of the response occurred (Fig. 1). Fifth, it was
shown that reasonable amounts of information were avail-
able from the lateral as well as from the dorsal olfactory bulb
(Table 1) but that the information from the lateral and dorsal
bulbs was not orthogonal (i.e., was not different about the set
of odors). Some of the implications of these advances are
now considered.

The finding that there is so little information from even
tens of glomeruli about which of six odors was presented in a
trial (Fig. 4 and Table 1) has profound biological implications.
An implication is that very large numbers of glomeruli may
be needed because the genes are able so poorly to specify very
odor-selective olfactory receptors in mammals [which of
course defines the tuning of glomeruli, in that each gene-
defined olfactory receptor type connects to a different glomer-
ulus (1–3)]. The lack of selectivity of the glomeruli is shown
also by the high signal correlations between the response pro-
files of the neurons (Sigr in Table 1). The relatively low mini-
mal value for the signal correlation (Sigrmin in Table 1)
indicates that the glomeruli could separate at least one pair of
the odors well, but the relatively high value of Sigr is evidence
that not all of the six odors were separately represented well,
for the profiles are rather highly correlated. Further evidence
for the poor selectivity of the glomeruli is that the mean
sparseness of the representation of the six odors for each of
the glomeruli was 0.83, where the scale is from 1/6 indicating
responsiveness to one odor to 1 representing equal responses
to all odors (Fig. 3). It is proposed that the evolutionary reason
why so much of the mammalian genome (1,000 genes, 1/30th
of the total number) is devoted to building 1,000 different ol-
factory receptor types is not only that the behaviorally rele-
vant odor space is large but also because each receptor type
discriminates rather poorly between a set of odors, so that
enormous numbers (1,000) of genesmust be devoted to speci-
fying all of the 1,000 receptor types.

The analysis shown in Fig. 7 with 266 glomeruli supports
these views, in that with a number of glomeruli that is close

to one-quarter of the number of olfactory receptor genes the
information reaches the 2.58 bits needed to encode the iden-
tity of each of the six odors in a single sniff. The implication
is that as more glomeruli are added to the sample, their
somewhat different response profiles gradually allow which
odor was presented to be decoded.

There is a real difference here from the taste system. In
the taste system, which encodes a much smaller stimulus
space, there are five taste qualities, sweet, sour, bitter, salty,
and umami, with a relatively small number of taste receptors
(55). The cortical neurons that represent the signals trans-
duced for the five taste types encode a great deal of informa-
tion about which taste is presented in a single trial (56). It is
suggested that because of the much easier task of specifying
taste receptors, with the high concentration of the stimuli,
genes find it much easier to specify taste receptors than
genes can define receptors for odor molecules that are typi-
cally present inmuch lower concentrations.

Odors were carefully selected 1) that activate the dorsal and
lateral OB based on 2-deoxyglucose (2-DEOG) work (57–59), 2)
that have been widely used in the optical imaging literature
(for comparisons), and that are 3) detectable and likely dis-
criminable by rodents (e.g., Refs. 60–62) and 4) relatively
small in number to allow the large number of repetitions nec-
essary to reduce bias of the information theoretic estimates.
We furthermore used monomolecular odorants to avoid mix-
ture interactions (cross-habituation, inhibition), and tested
odor quality information at 1% s.v. Although this comprehen-
sive odorant set yielded a large data set that was highly suited
for our optical information theoretic approach, these selection
criteria naturally also limit the span of the odor space of the
odorants, but it is not possible to test with very large numbers
of the possible enormous range of odorants.

Low signal-to-noise ratio could also reduce odor specificity;
however, the ANOVAs for each mouse and OB area for the
evoked rates in Supplemental Table S3 show that, invariably,
evoked estimated activity is very highly significantly (P <
0.001) dependent on odor as well as glomeruli and their inter-
action. This strongly suggests that trial-to-trial or sniff-to-sniff
variability plays a minor role in the information that can be
extracted about odor identity from the responses of the glo-
meruli and that instead a key factor in the low amount of in-
formation available is the broad tuning of the glomeruli to the
odors for which an example is provided in Fig. 1.

Furthermore, in our original paper (10) we show the av-
erage z scores of glomerular response amplitudes, relative
to preodor breathing response amplitudes (cf. Figure 2D in
Ref. 10). This demonstrates that responses to odors typi-
cally reach several times (>3) the preodor variation. Hence
the signal-to-noise ratio is high and does not explain the
lack of selectivity.

As outlined in INTRODUCTION, the sparseness of ORN
tuning has been shown to be strongly concentration de-
pendent. Thus, the relevance of our present results, based
on relatively high odor concentrations and relatively con-
tinuous odor presence (high intermittency), on popula-
tion-wide rate-based odor information may well apply
especially to conditions where the observer is close to the
odor source, e.g., during food exploration and ingestion.
Indeed, it has been reported that presenting natural stim-
uli close to the nose evokes dense glomerular activity in
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mice, equivalent to its main monomolecular analog at
equi-intense concentration (63).

Recent research has shown that 1% s.v. was typically
roughly centered of the steep concentration-response curve
of mouse ORNs across a 2-log odor concentration range
(Figures 2D, 3D, and 4D in Ref. 64). This argues in favor of
physiological relevance of the concentration used in the
present investigation.

It is interesting that in the olfactory bulb the encoding of
information is by the rate of neurons (reflected in the signal
recorded here), with no additional information provided by
the time course of the response and in particular the latency
of the glomerular responsesmeasured here. (The time course
was included in the information analysis in that it used the
times for the responses of each glomerulus to respond to
each odor with 10%, 50% and 90% of themaximum response
to each odor.) This helps to establish this principle as a gen-
eral principle of information encoding in the brain, for the
same is found in the primate inferior temporal visual cortex,
in which there is a small amount of information in the la-
tency of neuronal responses, but it is redundant with respect
to the information available from the firing rates of the neu-
rons (17–19, 41, 65–68).

We believe that the sampling rate of 33.3 ms was suffi-
ciently fast to enable possible differences in response latency
to different odors to be measured based on the following.
First, there are approximately six measures of the response
before the response reaches its peak (see, e.g., Fig. 1). These
six time points should be sufficient to decode temporal infor-
mation. It is possible, but unlikely, that at some time between
the measures spaced at 33-ms intervals there was some differ-
ence in the response that was not evident at the start or end of
any 33-ms period, but that is rather unlikely. Third, the fact
that the rate information saturates at�100 ms does not entail
at all that there is no information from the temporal aspects
of the response over the first six time bins, for the temporal in-
formation was measured in the “temporal” analysis without
taking into account at all the Rate information. Fourth, if any
temporal information was available, it would be likely to be
evident early on in the response, but as described in METHODS

the temporal information measure did take into account any
information that might be available early on at the time that
the response had reached 10% of its peak height, but there
was still little information available from the time of arrival.
We further note that the time course of glomerular responses
across the olfactory bulb spans �200 ms and differences in
t90 occur up to �100 ms (26, 45), which are discriminable
down to 15 ms (69). Higher sampling rates may hence refine
the accuracy of capturing the timing of responses, but thema-
jority of temporal variance is already captured at 30 Hz.
Increased sampling rates are hence not expected to change
the major difference in the information from the latency of
the glomerular responses to different odors.

A striking property of the glomerular responses found
here and in the optical imaging OB literature generally (e.g.,
Refs. 11, 45) is that they are relatively transient and coherent
with the sniff cycle and last for a much shorter time than the
stimulus delivery time of 3 s (Fig. 1). Figure 1 shows that the
glomerular response associated with each sniff has a peak at
�200 ms and lasts for �500 ms. This transient nature of the
response is not found in neurons with olfactory responses in

the macaque orbitofrontal cortex (a secondary cortical olfac-
tory area) (56, 70–72) and may not be very evident in human
subjective experience, in which the subjective intensity of an
odor does not wax and wane to the same extent as OB activ-
ity does with every sniff. It is likely that the recurrent collat-
eral connections in the pyriform cortex and orbitofrontal
cortex may perform this temporal smoothing by acting as
attractor networks (19).

It is also of interest that the information becomes available
relatively fast, within 100 ms of the sniff onset (Fig. 5), and
before the peak response (Fig. 1). This is in line with odor-
guided behavioral decisions occurring during the time
course of bulbar response development (e.g., Ref. 44) and
the notion of primacy coding (39). An advantage of fast proc-
essing at each stage of information processing in neural sys-
tems is that when several stages follow each other in a
hierarchy the time to the final output from the hierarchy is
made available sufficiently fast to enable a fast behavioral
response to bemade to what could be a life-threatening stim-
ulus. For comparison, there is clear evidence that the time
for each stage of the primate cortex (e.g., V1, V2, V4, inferior
temporal cortex for the visual system) is �15 ms per cortical
stage, resulting in information about the identity of a visual
stimulus to be available in the macaque inferior temporal
visual cortex within 100 ms of visual stimulus onset (18, 19,
65, 73–75).

As the olfactory processing continues up the hierarchy of
stages through the pyriform cortex to the orbitofrontal cor-
tex, the representations are expected to become more sparse
but still distributed, and less correlated, as this increases the
storage capacity of associative neuronal networks in the
brain (18, 19, 48, 49, 56). This does occur for primates (56, 70,
71, 76), andmay also occur in rodents (77, 78).

The analyses performed here show that the tuning of the
mouse glomeruli is rather broad to the set of odors and that
rather low amounts of information can be read out from the
olfactory bulb about which odor was presented on a single
trial. How the information is encoded is important for how
easily information can be read out from a population of neu-
rons. For example, it is very difficult to read out much infor-
mation about which face is being viewed from retinal
ganglion cell responses especially when the faces of individu-
als occur with different transforms of position, size, etc. on
the retina, but this can be performed easily by recording from
a few neurons in the cortex in the macaque inferior temporal
visual cortex (IT) (17, 19, 65, 73, 74, 79). The reason for this is
that the information has been recoded into an invariant repre-
sentation in the inferior temporal visual cortex that is well
suited to decoding which face has been shown independently
of transforms. The same issues may be present in the olfac-
tory system. It may be easier to read the information out from
later stages in olfactory processing about what odor was pre-
sented because of the great deal of processing performed in
cortical regions. Indeed, from only 24 neurons in themacaque
orbitofrontal cortex, it is possible to read out 1.05 bits of infor-
mation about which odor was presented (a mean of 0.044 bits
per neuron) and to identify an odor at 65% correct (56). For
the glomeruli investigated here, the information was 1.35 bits
from populations of 28–57 glomeruli, or very approximately
0.04 bits per glomerulus. Although the amount of informa-
tion per single orbitofrontal cortex neuron or whole mouse
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glomerulus is similar, a closer comparison would require the
same odors and species to be compared. But the comparison
is quite revealing, for the information in the orbitofrontal cor-
tex rises linearly with at least this number of neurons (56),
and there are tens of thousands of olfactory neurons in maca-
que cortical regions. So at least in the macaque cortex the evi-
dence about what odor was presented on a single trial is
encoded in a form that makes it likely that which odor from a
large number was presented could be identified. The encod-
ing in the mouse olfactory bulb described here may be less
suitable for an odor identification computation but instead
what is possible for the olfactory receptors/glomeruli to
encode because of their broad tuning to odors.

A potential limitation of any analysis of encoding is that
what is found is likely to depend on the stimulus set. In the
experiments described here, six odors were used that are
probably easily discriminable by mice. The considerable set
of glomeruli from which recordings were made in the 10
experiments described here did not discriminate between
this set of odors very well, but some mitral and tufted cells
(the projection neurons) in glomeruli can be quite selectively
tuned to odors (3). It will be useful to extend the investiga-
tions described here with different sets of odors. Another
potential limitation is that the responses of the glomeruli
measured under anesthesia may show more adaptation
(which we attempted to adjust for), and may be more vari-
able, than if the measurements were made in an awake ani-
mal performing an olfactory discrimination task in which
the animal would ensure efficient sample and processing of
the olfactory stimuli.

Conclusions

To our knowledge, this is the first information theoretic
analysis of how information about odor stimuli is repre-
sented across a population of glomeruli in the olfactory bulb.
It was found that the tuning of the presynaptic glomeruli to
a set of six odors was distributed and nonsparse (the mean
sparseness was 0.83), with relatively high “signal” correla-
tions between the responses of the neurons to the different
odors (mean = 0.64). Consistent with this, the information
available from any one glomerulus was typically low (�0.2
bits), and the glomeruli had relatively nonindependent
responses, so that the information increased more and more
gradually to a mean of 1.35 bits across a population of �33
glomeruli, whereas 2.58 bits were needed to encode the six
stimuli. Only when the information was decoded from 266
glomeruli across the different experiments did the informa-
tion reach 2.58 bits and 100% correct. It was found that most
of the information was available from the magnitude of the
responses, and not from the latency measures, and that the
latency measures were redundant with respect to the rate
measure. The information from a population became avail-
able quite rapidly, within 100 ms of sniff onset, whereas the
peak of the glomerular response was at 200 ms. It was also
found that the information from the lateral olfactory bulb
was not additive with that of the dorsal olfactory bulb.
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