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ABSTRACT

Dynamic participation support is an important feature of Bitcoin’s
longest-chain protocol and its variants. But these protocols suffer
from long latency as a fundamental trade-off. Specifically, the la-
tency depends at least on the following two factors: 1) the desired
security level of the protocol, and 2) the actual participation level of
the network. Classic BFT protocols, on the other hand, can achieve
constant latency but cannot make progress under dynamic partic-
ipation. In this work, we present a protocol that simultaneously
supports dynamic participation and achieves constant latency. Our
core technique is to extend the classic BFT approach from static
quorum size to dynamic quorum size, i.e., according to the current
participation level, while preserving important properties of static
quorum. We also present a recovery mechanism for rejoining nodes
that is efficient in terms of both communication and storage. Our ex-
perimental evaluation shows our protocol has much lower latency
than a longest-chain protocol, especially when there is a sudden
decrease of participation.
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1 INTRODUCTION

Byzantine fault-tolerant (BFT) consensus [24], the underlying tech-
nology of blockchains [28], allows parties to reach consensus in the
presence of malicious parties who behave arbitrarily. Classic BFT
consensus protocols [10, 24, 32] assume a static and known partici-
pation model, i.e., all participants know each other in advance and
all participants stay active in the protocol all the time. A central
innovation of Nakamoto’s Bitcoin protocol [28] is the support for
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dynamic participation, i.e., participants are not known beforehand
and they can leave or join the system at will at any time.

The Bitcoin protocol invented an elegant “longest-chain” para-
digm, where winners of random proof-of-work lotteries extend the
longest chain of blocks in their views. Subsequent works extend
the Bitcoin’s longest-chain paradigm to proof-of-stake to avoid the
expensive proof-of-work [4, 13, 14, 31]. Naturally, these protocols
inherit the Bitcoin’s support for dynamic participation, but also
its fundamental drawback of long latency. More specifically, their
latency is at least Q(X2) where « is a security parameter, A is the
network delay bound, and y < 11is the fraction of actual participants
(compared to the anticipated level of participation). The dependence
on the security parameter is due to the k-confirmation rule. A block
is decided only after k subsequent blocks are generated, where k
depends linearly on the desired security level. The block interval of
longest-chain protocols must be noticeably larger than A [14, 30].
The block interval further increases if the actual participation level
suddenly drops, reducing the total hash rate or active stakeholders
(which is why the latency is inverse proportional to y).

On the other hand, classic BFT protocols can achieve (expected
or amortized) latency of O(A) [1, 19]. This motivates the following
natural question:

Can we design BFT consensus protocols that simultaneously support
dynamic participation and achieve O(A) latency?

In order to answer this question, we must formalize the consen-
sus problem and the model of dynamic participation. We will focus
on the BFT atomic broadcast problem [8, 12], where parties agree
on a ledger (a linearlizable log). As for the model, our starting point
will be the sleepy model of Pass and Shi [31] (and we will further
relax the model later). The sleepy model assumes that the number
of honest participants can fluctuate at the adversary’s control, with
the constraint that there are more honest parties than Byzantine
parties at any time.

The above question has recently been studied and partly ad-
dressed from two different angles. Goyal et al. [20] achieves O(kA)
latency by building on Algorand [11, 19]; In other words, the la-
tency of their protocol no longer depends on the participation
level but still depends on the security parameter. From another
angle, Prism [5], Parallel Chains [18], and TaiJi [25] remove the
dependence on the security parameter k but the dependence on
participation level remains, i.e., Q(%) latency.

In this work, we answer the above question in the affirmative
by resolving both of these trade-offs. Specifically we show the
following result:

THEOREM 1.1 (INFORMAL). Assuming a verifiable random func-
tion (VRF) and public-key infrastructure (PKI), there exists a BFT
atomic broadcast protocol in the sleepy model that tolerates minority
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faults and has an expected O(A) latency during periods of stable
participation.

We proceed to elaborate more on our result and key technical
challenges below.

Adopting classic BFT approach. Our protocol follows the classic
BFT approach. We first design a quorum-based graded agreement
(GA) protocol [1, 17, 22, 27], and build an atomic broadcast protocol
using GA. Adapting the quorum-based approach to the sleepy model
brings several challenges. First, the quorum threshold in a classic
protocol is set based on the total number of parties, which is fixed
and known in advance. Obviously, such a static quorum threshold
does not work in the sleepy model since the participation level is
unknown and can fluctuate over the execution. This problem was
also pointed out by Pass and Shi [31]: “.. the problem then becomes
how to set the (quorum) threshold, as the protocol is not aware of
how many players are actually awake.” Partly due to this technical
difficulty, they and most prior works had to follow the longest-chain
paradigm and inherit its long latency.

This is also the technical difficulty this paper sets out to address:
we would like to adapt classic quorum-based approach to the sleepy
model. Our first natural idea is to use a dynamic quorum where the
quorum size is defined based on each party’s “perceived” participa-
tion level. To elaborate, participants announce that they are active.
If a party perceives that m parties are currently participating in the
protocol, then it locally considers the quorum size to be |[m/2] + 1,
i.e., majority of its perceived participants.

However, this brings another challenge. In classic BFT proto-
cols, a quorum of votes (with digital signatures) on a value, often
called a quorum certificate, is transferable. In other words, a quorum
certificate recognized by one party is also recognized as a quorum
certificate by all other parties at all times. This trivial fact for static
quorum does not hold for dynamic quorums, because the perceived
participation level may differ across parties. This can happen be-
cause malicious parties may announce themselves to some honest
parties but not others. To make the matters worse, even if all par-
ticipants currently recognize a quorum certificate, they may stop
recognizing it if more malicious parties announce themselves later
to raise the perceived participation level and hence the required
quorum size. In particular, newly joined parties cannot tell whether
or not the quorum certificate was ever valid in the past. The main
technical contribution of this paper is to restore this transferablility
property with dynamic quorums.

Efficient recovery. The original sleepy model assumes that a party,
upon rejoining the protocol, immediately receives all messages sent
to it during its sleep. While simple in theory, this is an unrealis-
tic assumption because it essentially requires each party to keep
track of and re-transmit every single message it has ever sent or
received. To avoid this issue, we design an efficient recovery mech-
anism for rejoining nodes where only ledger contents and recent
protocol messages (independent of the length of its sleep) need
to be re-transmitted. More specifically, our protocol periodically
identifies points in the execution where parties can “forget” older
messages. This also avoids the impractical storage requirement for
past messages in the original sleepy model.
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Experimental evaluation. To demonstrate the improvement of
our protocol, we implement and evaluate our basic protocol and
compare with the longest-chain protocol in [31]. Our experiments
show the expected results. Specifically, the longest-chain protocol
suffers from long latency even when all parties are active, due to
the dependence on the security parameter k. Its latency further
deteriorates when the participation level suddenly drops due to the
dependence on y. In contrast, our protocol has low latency, except
during periods of wild fluctuation.

Additional advantage and assumption. We remark on one more
advantage and one (reasonable) extra assumption of our protocol.

Our protocol tolerates minority faults, which in the sleepy model
means that the number of malicious parties f is at most n/2 where
n is the minimum number of active participants over the course of
the protocol execution. This f < n/2 condition has been shown to
be necessary in the sleepy model [31]. This is another advantage of
our protocol over existing dynamic participation protocols, all of
which tolerate only f < (1/2 — €)n where € is a positive constant.

Our protocol makes progress only in periods of “stable partici-
pation”, i.e., periods during which the participants do not change
too wildly (formalized in Section 3). We believe this is a reasonable
assumption in practice since it seems highly unlikely that the par-
ticipation level fluctuates wildly all the time. Note that our protocol
maintains safety even during arbitrarily wildly fluctuating periods
and will start making progress again whenever the participation
stabilize.

Summary of results. In summary, we have the following results
in this work:

(1) We present a BFT atomic broadcast protocol in the sleepy model
with expected O(A) latency (Section 5). Our protocol is built
from a graded agreement (GA) protocol (Section 4) using a
quorum-based design.

(2) We relax the sleepy model and present an efficient recovery
mechanism for our protocol (Section 6).

(3) We experimentally evaluated our protocol and compared with
the longest-chain protocol (Section 7).

2 RELATED WORKS

Classic BFT protocols assume static participation where all parties
always participate. Nakamoto’s longest-chain proof-of-work par-
adigm is the first BFT protocol to support dynamic participation.
Recent works extend the longest-chain paradigm to proof-of-stake
and inherit the long latency drawback [4, 13, 14, 31].

Multi-chain protocols. Multi-chain approach [5, 18, 25] has been
studied for removing the dependence on the security parameter
k. They speed up the confirmation of blocks (or transaction) by
running multiple longest-chains in parallel. Since the block interval
of each longest-chain is subject to the total hash rate (or active
stakeholders) their latency still depend on the active participation
level y. Prism and TaiJi still use the energy-inefficient proof-of-work
approach.

Goyal et al. Goyal et al. [20] also takes the classic quorum-based
approach to achieve O(kA) latency in the sleepy model. It adopts
Algorand’s approach of sampling a committee of size Q(x) at every
step [11, 19]. Since the committee size is fixed in advance, their
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protocol requires there to be at least n = Q(x) participants at
any time. On the other hand, our protocol works with any n > 0
participants. For the concrete latency, their protocol costs 18kA,
which is much worse (even for low security level, e.g., k = 10),
compared to 37A of our protocol.

Unknown participation model. Another recent work [23] studies
Byzantine agreement in the unknown participation model where the
number of participants n is unknown to the parties but remains fixed
over time. They considers an unauthenticated setting and tolerate
only f < n/3 faults. They also present protocols with dynamic
participation support. However, their model is still stronger than
the sleepy model. In their model, an honest party, when it goes
offline, can announce its absence to the network. On the other hand,
in the sleepy model, honest parties go offline without giving any
advance notice.

Crash fault tolerance. If there are only crash faults and no Byzan-
tine faults, supporting dynamic participation becomes much easier.
In this case, parties will announce themselves honestly to the net-
work, so a protocol can correctly observe the current participation
level and does not run into the transferability problem. There exist
prior works on crash fault tolerant dynamic atomic broadcast [6, 7].
These protocols also take the quorum-based approach.

Asynchronous fallback. Synchronous communication is neces-
sary in the sleepy model [31]. To resolve this problem, ebb-and-
flow [29] and checkpointed longest-chain [33] study ways to bal-
ance dynamic participation and partition tolerance. Their protocols
output two ledgers: a longest-chain ledger and a BFT ledger. The
longest-chain ledger supports dynamic participation while the BFT
ledger tolerates asynchrony but does not support dynamic par-
ticipation. Our protocol can replace the longest-chain ledger to
improve the latency of their protocols.

3 MODEL AND DEFINITIONS

This paper considers a Byzantine fault-tolerant (BFT) atomic broad-
cast problem in the sleepy model [31]. We consider a system of
N total parties communicating over a synchronous network. Note
that network synchrony is necessary [31] for the sleepy model. For
simplicity, we use A to denote both bounds on communication delay
and clock skew. An adversary is adaptive and can corrupt parties
anytime during the protocol execution. Faulty parties are Byzantine
and behave arbitrarily. A party that is not faulty throughout the
execution is said to be honest and faithfully executes the protocol.

Loosely synchronized clocks. We assume all parties have access
to their own local clocks that differ by at most A and start from 0 at
the beginning of the protocol execution. Without loss of generality,
we can use the local time of the first party to start as a reference
time, also called the global time. This way, when the global time is
t, each party p’s local time is 7, = t — ) where 0 < 6p < A.

The sleepy model. Our protocols in Section 4 and 5 assumes the
sleepy model introduced in [31]. A party is either awake or asleep.
An awake party actively participates in the execution, while an
asleep party does not execute any code or send/receive any message.
The status of each party can change at the adversary’s control, at
any time, without any advance notice. In the real world, this means
parties are allowed to leave the execution at will without notifying
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other parties. The number of awake parties at each global time ¢ is
denoted 0 < n; < N; out of these at most f < n;/2 can be faulty.
All faulty parties are awake all the time. The message delivery
assumption is that if an honest party p is awake at global time ¢,
then p has received all messages that were sent to it by honest
parties by global time ¢ — A.

Atomic broadcast. Atomic broadcast allows parties to agree on a
growing sequence of values [xg, x1, x2, .. .] called a log. It provides
the following guarantees:

’

(1) Safety.If two honest parties decide logs [xo, X1, .., xj] and [xé, X5 o

then x; = x{ for all i < min(j, j*).

(2) Liveness. If an honest party inputs a value x, then there exists
a global time ¢ such that all honest parties awake at any global
time ¢’ > t decide a log containing x.

The above safety condition is also called total order and the
liveness condition is also called censorship resistance or fairness [9,
26]. Some previous works [9, 26] define another property called
agreement that says "if an honest party decides a value x, all honest
parties also decide x". This is implied by our safety and liveness,
and is hence redundant.

Eventually stable participation. As mentioned, when the number
of awake honest parties fluctuate wildly, our protocol maintains
safety but cannot make progress. To ensure liveness, we need an
additional assumption called eventually stable participation (inspired
by the well-known eventual synchrony model [16]). We say a party
is insomniac during [t,t’] if it stays awake at all time during [z, ¢'].

Definition 3.1 (T-eventually stable participation). There exists a
global time T; > 0 (unknown to the parties) such that for all t > Tg,
more than a/2 honest parties are insomniac during [¢,t + T] where
« is the number of parties ever awake at some time during (¢, t+T].

Our protocol assumes 7A-eventually stable participation. Intu-
itively, this means after the stabilization time Ts, awake parties
are replaced slowly such that any time window of length at least
T = 7A has sufficiently many parties that stay awake throughout.
We remark that requiring stable participation at all time after T is
for theoretical convenience, just like the well established eventual
synchrony model [16]. In practice, the protocol will make progress
in any sufficiently long period of stable participation. Also note
that, since Ts is unknown, a protocol’s safety cannot depend on this
assumption.

Cryptographic assumptions. We make use of of digital signa-
tures and a public-key infrastructure (PKI). We use (x), to denote
a message x signed by a party p. We also assume verifiable ran-
dom function (VRF). Each party p with its secret key can evaluate
(p, ) < VRF,(p) on any input p. The output is a deterministic
pseudorandom value p along with a proof . Using 7 and the public
key of party p, anyone can verify whether p is a correct evaluation
of VRF;, on input .

3.1 Sleepy Model with Recovery

The original sleepy model assumes that an asleep party, upon wak-
ing up (i.e., rejoining the network), immediately receives all past

’
X
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messages that were sent to it during its sleep (subject to communi-
cation delay). While simplifying the model, this is an impractical
assumption as discussed in Section 1.

In Section 6, we remove this unrealistic assumption from the
sleepy model and replace it with a concrete and practical recovering
mechanism. In our model, a party is in one of three statuses: awake,
asleep, and recovering. When an asleep party rejoins the network,
it becomes recovering and has a grace period of T' (discussed later)
before it becomes awake. If an honest party p, awake or recovering,
sends a message x at global time t to a party g who is awake
or recovering at all time during [t,¢ + A], then g receives x by
global time ¢ + A. In particular, our relaxed model does not assume
reliable transmission of messages sent to an asleep party. Any
subset of these messages can be lost. In other words, we show that
a recovering node does not have to receive all missed messages.
Instead, we will give an explicit mechanism for a recovering party
and show that retrieving recent missed messages is sufficient.

Bound on recovery delay. In theory, a grace period of T’ = 2A is
sufficient for recovering: upon rejoining the execution, the recover-
ing party p multi-casts a recovery request, which is received within
A by all awake honest parties, who respond with messages and data
p missed, which takes another A. In practice, the recovery process
may take longer if a lot of data needs to be transmitted. Therefore,
in this paper, we treat I' > 2A as an independent parameter. Each
party can independently choose its own I based on how much data
it needs to catch up.

Relation to crash-recovery. Once we provide an explicit recovery
mechanism, the sleepy/recovering process can be thought of as the
crash/recovery process in the distributed computing literature [8].
And our protocol can be thought of as one that tolerates any number
of crash-recovery faults plus minority Byzantine faults. In this paper,
however, we will use the awake/asleep terminology following [31].

3.2 Additional Remark on the Sleepy Model

Here, we emphasize again the real-world scenario we hope to cap-
ture with the sleepy model: we think of an asleep party as a party
who temporarily leaves the system (i.e., knowingly shut down their
computers), rather than a party who experiences sporadic delay of
the network. This leads to an important difference in the model.
A model that captures sporadic delays may assume that a party
experiencing long network delays is unaware of it and keeps partic-
ipating in the protocol [21]. These protocols still assume a majority
of parties are honest and have good networks at any time, so they
do not attempt the dynamic participation problem.

In contrast, to support dynamic participation, it is necessary for
us to assume that an asleep party knowingly went to sleep and does
not take any actions during its sleep. We briefly prove the necessity
of this assumption below.

Proof sketch. Suppose parties do not know whether they are
awake or asleep. Consider a network of two groups of parties P
and Q. Parties in P are asleep and parties in Q are awake. No party
is malicious. The adversary delays all messages between P and Q
(this is possible because P is asleep). Because the protocol works
under any level of participation, and asleep parties do not know
they are asleep, both P and Q need to eventually decide. With no
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communication between them, they will decide differently. There-
fore, without the knowledge of awake/asleep, any protocol in the
sleepy model will lose safety.

4 GRADED AGREEMENT

This section presents a graded agreement subroutine, which will
be an important building block of our atomic broadcast protocol
discussed later.

Graded Agreement (GA). In our graded agreement, each party has
an input value (possibly empty 1) and outputs (possibly multiple!)
pairs of (b, g) of value b and grade bit g € {0,1} providing the
following guarantees for a certain time T.

(1) Consistency. If an honest party outputs (b, 1), then every hon-
est party awake at time ¢t > T outputs (b, *).

(2) Integrity. If no honest party inputs a value b, no honest party
outputs (b, *).

(3) Validity. If all honest parties awake at the beginning (time 0)
has the same input value b, then all honest parties that stay
awake all the time outputs (b, 1).

The validity property our protocol achieves will be a little more
complex than the one above, but for ease of exposition, let us use
the above simple version for the time being.

In the classic model. In the classic static participation model,
one can easily come up with a quorum-based protocol with honest
majority, i.e., N = n = 2f + 1, as follows: In round 1 (time 0), each
party multi-casts a vote for its own input. f + 1 votes for the same
value is often called a quorum certificate (or certificate for short)
for that value. If a party receives a certificate for b at the end of
round 1 (time A), it outputs the value b with grade 1, and forward
the certificate to all other parties. If it receives the certificate in
round 2 or later (time t > A), it outputs the value b with grade 0.
Note that certificate transferrability is crucial for consistency. An
honest party who outputs (b, 1) will forward the certificate, and all
honest parties will also recognize the certificate and output (b, 0).

4.1 Warmup: A Lockstep GA

To aid understanding, let us first construct a GA in the lockstep
round model where parties have access to a common clock, ie.,
every party’s local time equals the global time. The lockstep proto-
col is given in Figure 1 and we explain the key challenges and our
techniques below.

Dynamic quorum. Our first natural idea is to make the quorum
threshold based on the “perceived” participation level, i.e., the num-
ber of parties that have announced themselves to the network. This
ensures that the number of honest parties awake in the voting
round can meet the quorum threshold. Specifically, in our protocol,
each party multi-casts (awake, 3) in round 3 (i.e., the voting round),
and the quorum threshold is based on the number of (awake, 3)
received so far, denoted as Ms.

However, as mentioned, dynamic quorums do not automatically
provide certificate transferability; in other words, a certificate rec-
ognized by one party may not be recognized as a certificate by other

10ur GA is weaker than classic graded agreement because we allow multiple outputs.
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Each party p runs the following four-round algorithm.

(1) Round 1 (time t = 0). Multi-cast (awake, 1),. If it has non-
empty input b, # L, multi-cast (echo, by).

(2) Round 2 (time ¢ = A). Set E(b) for any b to be the number
of parties from whom p received (echo, b).

(3) Round 3 (time ¢t = 2A). Multi-cast (awake, 3),. Set &(b) to
be the number of parties from whom p received (echo, b),
and M to be the number of parties from whom p received
(awake, 1). For all b, if E(b) > M;/2, multi-cast (vote, b),.

(4) After Round 3 (time t > 3A). Update M, the number of
parties from whom p received (awake, 1). Set M3 to be the
number of parties from whom p received (awake, 3). Let V (b)
be the number of parties from whom p received (vote, b). If
p was awake in round 2 and E(b) > My/2, output (b, 1). If
V(b) > M3/2, output (b,0).

At any time, forward any echo and awake message received.

Figure 1: Warmup: Lockstep GA in the sleepy model

parties. This is because, in the sleepy model, perceived participa-
tion level, and hence quorum threshold, can differ across parties,
if Byzantine parties announce themselves to some parties but not
others or withhold their announcements and release them later to
newly joined parties to change the quorum threshold.

Transferablility of dynamic quorum certificates. To restore
transferability of certificates, we need parties to collect votes from a
majority of the actual participation level (i.e., the number of awake
parties in the voting round) instead of the perceived participation
level. Since the perceived participation level of any party does not
exceed the actual participation level, a certificate consisting of votes
from a majority of the actual participation level will be recognized
by all parties at all times, even those who joined later. Therefore,
our idea is to make sure all honest and awake parties (which is a
majority of actual participation) vote, using the following technique.

Time-shifted quorum. We introduce a new technique called time-
shifted quorum. In round 1, each party sends an echo message for
its input value along with an awake message for round 1. Each
party tracks the number of echo for any value b, denoted & (b), and
the perceived participation level of round 1, denoted M. Note that
these two variables may change over time. In round 3, if a party
observes a majority of echo for a value b, ie., E(b) > Mj/2, it
votes for b. Finally, after round 3, if the number of echo received
by time A still meets the majority, i.e., &(b) > My /2, a party can
be assured that all honest parties awake in round 3 voted for b (we
will prove this next), and it can output (b, 1).

Suppose an honest party p outputs (b, 1) after round 3 (say round
i). Then, p must have been awake in round 2 and fixed ey := E(b)
to be the number of parties from whom it has received (echo, b) by
then. Let g be any honest party that is awake in round 3, and e4 :=
&(b) be the number of parties from whom it has received (echo, b)
by then. Since p forwards all messages and g (awake in round 3)
receives them, ep < eq. Let mqg be the number of parties from whom
q has received (awake, 1) by round 3, and mp be the number of
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parties from whom p has received (awake, 1) by round i. Since
q forwards all messages and p (awake in round i) receives them,
mg < my. Since p outputs (b, 1), we have e, > m, /2. Since ey < ¢4
and mg < mp, we have eq > mq/ 2. Therefore, all honest parties
awake in round 3 multi-cast (vote, 2) along with (awake, 3). Since
there are always more awake honest parties than faulty parties, all
honest parties awake after round 3 observe V(b) > Ms/2 (i.e., the
certificate is transferable) and output (b, *) (ensuring consistency).

4.2 Our GA Protocol under Loosely
Synchronized Clocks

We now present the non-lockstep version of our GA protocol in
Algorithm 1, where parties have loosely synchronized clocks that
can differ by up to A.

The basic idea is to reserve 2A time for each round. Then, even
when two parties’ local clocks differ by A, a message sent in round
r always arrives at the recipient by the end of round r from the
recipient’s perspective. This simple trick would be sufficient to
transform a lockstep protocol to loosely synchronized clocks in the
classic model.

However, the sleepy model brings a new challenge. Note that
our protocol instructs a party to send a message at a particular
(local) time ¢t. If a party is asleep at its local time ¢, it would not send
this message. In particular, this may cause a party to skip sending
its vote even when it observes a majority echo. Our time-shifted
quorum argument would then break down.

We solve this problem with the following simple modification:
we give a party a A time window to send a message. Suppose the
lockstep protocol instructs a party to send a message at its local
time t. Then, in the modified protocol, the party sends the message
anytime during [¢, £ + A]. In other words, if a party is asleep at local
time ¢ but wakes up before t + A, the party sends the message when
it wakes up. This way, all honest parties awake at global time ¢ + A
will send the message, because their local clocks must be within
[t, t + A] at that time.

Line 1 and 8 are applying the above trick. For example, in the
voting step, a party votes during its local time [4A, 5A]. Thus, all
honest parties awake at global time 5A will vote (if the condition is
met), which is enough to form a transferable certificate.

Potential for a generic transformation. We remark that Pass and
Shi [31] mentioned very briefly (without proof) a generic transfor-
mation from lockstep to loosely synchronized clocks in the sleepy
model. But they did not describe how to handle the issue described
above, so it is unclear how to apply their transformation to our
protocol. Moreover, even if there were a way to apply their transfor-
mation, our solution is more efficient; their transformation makes
every single round 3A. It is of independent interest whether our
technique constitutes a generic transformation. As of now, we only
prove it works for our specific protocol.

Conflict of messages. In Figure 1, we let each party forward all
echo messages. This can incur unbounded communication, because
a faulty party can send echo for infinitely many different values. To
avoid this problem, we define conflict between messages. Specifi-
cally, (echo, b),, conflicts with (echo, b"),, for any b” # b. Similarly,
(vote, b), conflicts with (vote, b’),. Our protocol only forwards a
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Algorithm 1 Graded agreement in the sleepy model.

At the beginning of the execution, initialize outputs = 0.
Party p executes the following algorithm at every local time 7 > 0.

/ corresponds to round 1
: if 0 < 7 < A then do the following once
multi-cast (awake, 1),
if p has an input value b, # L then
multi-cast {echo, by ),

'/ corresponds to round 2
5: if 7 = 2A then
6: for all b # L such that p has received (echo, b) do
7: E(b) — [{q | p has received {echo, b)4 without conflict }|

/ corresponds to round 3
8: if 4A < 7 < 5A then do the following once
9: multi-cast (awake, 3),

10: for all b # L such that p has received (echo, b) do
11: &(b) « |{q | p has received (echo, b)q }|
12: M — |{q | p has received (awake, 1) }|
13: for all b such that &(b) > m1/2 do
14: multi-cast (vote, b),
/ corresponds to after round 3
15: if 7 > 7A then
16: My « |{q | p has received (awake, 1) }|
17: if p was awake at time 2A then
18: for all b such that E(b) > M;/2 do
19: outputs « outputs U {(b,1) }
20: V(b) « [{q | p has received (vote, b)4}|
21: M3 — |{q | p has received (awake, 3)q }|
22: for all b such that V(b) > Ms/2 do
23: outputs « outputs U {(b,0) }

24: multi-cast all messages (without conflict) received but not yet forwarded

message if no other message conflicts with it (line 24). Also note
that a party counts (echo, b)4 into &(b) only if no other message
conflicts with it (line 7). This makes sure every counted echo is
always forwarded to all other parties, which is important for the
time-shifted quorum argument.

4.3 Correctness of the Protocol

We prove consistency, integrity and validity of Algorithm 1. Since
our GA protocol runs during the execution of our atomic broad-
cast protocol, when we refer to global/local time, it is the relative
time from the beginning of the GA protocol. More specifically,
suppose a GA protocol is supposed to start at time T; when we
say “global/local time t”, we mean global/local time T + ¢ (in this
Section 4.3). Note that t can be negative.

LEMMA 4.1 (CONSISTENCY). Ifan honest party outputs a pair (b, 1),
all honest parties awake at their local time t > 7A output (b, *).

PRrROOF. Suppose an honest party p outputs a pair (b,1) at a
global time ¢, then t > 7A and p must have been awake at its local
time 2A. Let H be the set of honest parties awake at global time 5A.
All parties in H must execute lines 10-15, because their local time
must be [4A, 5A] at global time 5A. Suppose a party g € H executes
lines 9-14 at global time ¢’ € [4A, 5A].
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Let mg be the number of parties from whom g received (awake, 1)
by global time ', and m;, be the number of parties from whom p
received (awake, 1) by global time ¢. Since q forwards all awake
messages received from other parties and p receives them by time
t >t + A, we have mg < mp.

Similarly, let e, be the number of parties from whom p received
(echo, b) by its local time 2A, and eq be the number of parties from
whom q received {echo, b) by global time ¢’. Since p forwards every
(echo, b) message that is counted in &(b) by its local time 2A and
q (awake at t’) receives these, we have eq < ep.

Since p outputs (b, 1) at global time ¢, we have e, > m,, /2. Since
eqg < ¢ep and mp < mg, we have eq > mq/2. Thus, all parties in H
must have sent (vote, b) along with (awake, 3) by global time 5A.
Here, some honest parties may wake up after global time 5A and
send (awake, 3) until global time 6A due to clock offsets. But by the
same argument that we made for H, they also send (vote, b). Since
there are less than |H| faulty parties (at all time), for any t”” > 7A,
any honest party r awake at global time "’ observes V (b) > Ms/2,
and hence r outputs (b, *) after its local time reaches 7A. ]

LEmMMA 4.2 (INTEGRITY). If no honest party inputs b, no honest
party outputs (b, *).

PRrooF. Let H be the set of honest parties awake at global time
A. Then, all parties in H must multi-cast (awake, 1) by global time
A because their local time must be [0, A] at global time A. Since
no honest party sends (echo, b) and there are less than |H| faulty
parties (at all time), for any t > 4A, any honest party awake at
global time t must observe &(b) < Mj/2. Therefore, no honest
party sends (vote, b). Let H’ be the set of honest parties awake
at global time 5A. All parties in H” must multi-cast (awake, 3) by
time 5A because their local time must be [4A, 5A] at global time 5A.
Since no honest party sends (vote, b) and there are less than |H’|
faulty parties (at all time), for any ¢ > 6A, any honest party awake
at time ¢’ must observe V(b) < Mj/2. Therefore, no honest party
outputs (b, *). o

Our protocol achieves the following validity property which
is a little more complex than what is defined at the beginning of
this section. Recall that Ty is the stabilization time after which the
participation is always stable, and a party is said to be insomniac
during [¢, ¢'] if it stays awake at all time during [¢,t] (as defined
in Section 3).

LEmMA 4.3 (VALIDITY). Suppose the protocol starts at global time
T > Ts + 5A. If every honest party insomniac during global time
[-5A, 2A] has the same input b, then every honest party insomniac
during global time [2A, 9A] outputs (b, 1) and does not output (b’, *)
foranyb” +b.

PRroOF. Let P be the set of insomniac honest parties during global
time [—5A, 2A] that have the same input b. All parties in P must
multi-cast (echo, b) along with (awake, 1) by global time A. Let Q
be the set of insomniac honest parties during [2A, 9A], and « be
the number of parties that are ever awake sometime during [0, 2A].
Due to the 7A-eventual stable participation assumption, we have
|P| > /2. Therefore, all parties in Q must observe &(b) > M /2 at
their local time 7A. Hence, every party in Q outputs (b, 1). Moreover,
at their local time 4A, they must observe E(b’) < M; /2 for any
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Algorithm 2 Atomic broadcast

At the beginning of the execution, initialize variables notarized =
{(L,0)}, lock = 0, candidate = (L,0), 2 = 0.

In each view v, party p executes the following algorithm at every local
time 0 < 7 < 37A w.r.t view o, and enter the next view o + 1.

1: if 0 < 7 < A then do the following once
2: h « candidate.value, b < new block
3: (p, ) < VRFp.eval(v)
4: multi-cast {propose, b, h, v, p, 7)p
5: if 2A < 7 < 3A then do the following once
6: Let L be the party from whom p received the largest valid VRF
7: Let (propose, b, h, v, p, 7)1, be the proposal from L
8: if Ju > lock such that (h, u) € notarized then
9: multi-cast (block, b, h, v},
10: start GA, 1 with input H (k||b)
11: else
12: start GA,; with input L
13: if 9A < 7 < 10A then do the following once
14: if GAy1 outputs a pair (h, 1) and no (K, ¥) for b’ # h then
15: start GA, 2 with input h
16: else
17: start GA, 2 with input L
18: fori € {3,4,5} do
19: if (7i —5)A < 7 < (7i — 4)A then do the following once
20: if GAy,i—1 outputs a pair (h, 1) then
21: start GA,; with input h
22: else
23: start GA,; with input L
// The following events may occur after view v has ended
24: upon GA outputs (h, *) forv > o
25: notarized <« notarized U {(h, v) }
26: upon GAy 3 outputs (h, *) forv > o
27: if v > candidate.view then
28: candidate « (h, )
29: upon GA, 4 outputs (h, *) forv > o
30: lock « max(lock, v)
31: upon GA,5 outputs (h,*) forov > 0
32 decide a log A identified by the hash h
33: 00

b’ # b. Hence, no party in Q sends (vote, b’). Let &’ be the number
of parties ever awake sometime during global time [2A, 9A]. Due
to 7A-eventual stable participation, we have |Q| > a’/2. Therefore,
every honest party awake at its local time 7A or later must observe
V(b") < Ms/2, and will not output (b’, *). O

5 ATOMIC BROADCAST IN SLEEPY MODEL

This section presents an atomic broadcast protocol (Algorithm 2)
building on the graded agreement protocol presented in the previ-
ous section.

View-based construction. Our protocol follows the standard view-
by-view paradigm. Each view lasts for 37A time. So view v starts
at local time 37(v — 1)A and ends at local time 37vA. (The first
view is view 1.) For ease of exposition, we will use relative time
with respect to a view, i.e., local time 7 of view v means local time
37(v—1)A+7. Each view consists of roughly two phases. In the first

2301

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

phase (line 1-4), each party proposes a new block (e.g., a batch of
transactions) along with a VRF lottery. In the second phase (line 5-
23), a proposal from an elected leader is decided through a series of
graded agreement (GA) instances.

Blocks and chaining. A set of values (parties’ inputs) are batched
into a block b (with values inside a block totally ordered). A log is
then naturally represented by a list of blocks A = [b1, by, ..]. Each
log A is uniquely identified by a hash H(A) defined as follows. An
empty log [] is defined to have hash value L. The hash of a log
A’ = Al|b is defined recursively as H(A") = H(H(A)||b).

Propose and leader election. A proposal (line 4) consists of a new
block b and a hash h of alog A (which has been already disseminated
in the previous views). This proposes the new log A||b. The proposal
also includes a VRF evaluation on the current view number, which
acts as a leader election lottery. At the beginning of the second
phase (line 6), each party considers the leader of this view to be
the party from whom it has received a proposal (of the current
view) with the largest VRF. Here, an adversary cannot guess the
VRF evaluations of honest parties before they send their proposals.
Therefore, an adversary cannot launch a targeted attack on the
elected leader (i.e., corrupt or make the leader asleep). Since there
are more awake honest parties than faulty parties, with probability
at least 1/2, all honest parties recognize the same honest party as
the leader.

Deciding phase. However, with constant probability, the leader
election can be unsuccessful, i.e., honest parties elect different lead-
ers and proposals. The second phase (line 5-23) therefore deter-
mines whether the locally elected leader’s proposal can be decided
or not. A proposal of an elected leader L is processed through a
series of five graded agreements denoted GA,; for 1 < i < 5.
The proposed log, represented by a pair (b, h), has a hash H(h||b),
which is input to first GA (i.e., GAy 1 on line 10). After that, output
of GAy; (for 1 < i < 4) with grade 1 is passed into GA ;41 as input
(line 14-15, 20-21). Intuitively, the deciding phase is further sepa-
rated into four sub-phases “notary-candidate-lock-decide”, which
helps maintain safety and liveness of our protocol. This construc-
tion is inspired by the the three phases of HotStuff [34] (sometimes
called “key-lock-commit” [2, 3]). The latter three phases have essen-
tially the same role as the three phases of HotStuff. We have another
phase called “notary” that is straightforward in classic protocols
but becomes non-trivial in the sleepy model. We elaborate on each
phase below.

Notary. A log (or its hash h) is first notarized in its proposed view
v when GA, 2 outputs its hash (with either grade 0 or 1). This is
maintained by a set notarized of pairs of notarized value h and its
view v (line 24-25). Intuitively, the notary of a log confirms the
uniqueness of the log in the view, i.e., there is no other log notarized
in the view, which ensures safety within a view. To this end, an
output h of the first GA, 1 is passed to the second GAy only if
there is no other output b’ # h with either grade 0 or 1 (line 14).
Recall that our GA definition allows multiple outputs. However,
consistency of GA, ; allows honest parties to detect inconsistent
outputs and prevent multiple notaries generated in the same view.

Candidate. Each party keeps track of the highest view v such
that GAy 3 outputs a hash h, and maintains in a pair candidate of
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the hash h and the view v (line 26-28). The hash and view can be
accessed by candidate.value and candidate.view, respectively.

Lock. Each party always lock on the highest view v such that GA, 4
outputs a hash h and its corresponding notary for A (line 29-30).
Moreover, a proposal (b, h) of a leader is input to GA, 1 only if the
party observes a notary (h,u) € notarized of view u < v higher
than the locking view (the safety guard condition on line 8). If
an honest party decides a log of hash h in a view v, all honest
parties will lock on the view v and h is only a notarized value in the
view (due to consistency and integrity of GA). By the safety guard
condition above, in the next view v + 1, only proposals extending h
can be decided, which ensures safety across views. Looking back,
candidate always pass the safety guard condition. This is because
if an honest party lock on a view v, all honest parties will update
candidate in the view (due to consistency and integrity of GA).
Therefore, a proposal from an honest leader will always be decided,
which ensures liveness.

Decide. Finally, if GA, 5 outputs a hash, the party decides a log
identified by the hash (line 31-32). Here, parties can always obtain
the corresponding log because all blocks in the decided log are
forwarded in their views (line 9).

These variables may be updated after the corresponding view
(i.e., view v where GA, . trigger updates) has ended. Here, these
variables are not useful for lower views than a decided view because
these are always updated at the end of the decided view. Therefore,
our protocol keeps track of the highest decided view @ (line 33), and
update variables only for view v > 7 (line 24,26,29,31).

5.1 Correctness of the protocol.
We prove safety and liveness of Algorithm 2.

LEMMA 5.1. For all i € {2,3,4,5} and v, if GAy; of an honest
party outputs (b, ), then for all honest party awake at its local time
T 2 (7i = 5)A of view v, its GAyi—1 outputs (b, *).

Proor. If GA,; of an honest party outputs (b, *), then by the
integrity of GA, at least an honest party (say p) must have input
b to GAy,;. This implies GAy ;1 of the party p must have output
(b, 1). By the consistency of GA, for all honest party awake at its
local time 7 > (7i — 5)A of view v (i.e., at least 7A after GAy;_1
starts), its GA, ;—1 outputs (b, *). O

Based on the above lemma, we prove the following lemma that
shows (i) every decided log (its hash) is notarized, and (ii) once a
log is decided, no conflicting log can be notarized ever after. Here,
we say two logs A and A’ conflict with each other if neither is a
prefix of the other.

LEMMA 5.2. If an honest party p decides a log A in view v, then
(i) p observes (H(A),v) € notarized at that time, and (ii) for any
u > v and log A’ that conflicts with A, no honest party observes
(H(A),u) € notarized at any time.

Proor. If an honest party p decides a log A of view v at global
time ¢, then GA, 5 must have output (h, *) where h := E(A), and
t > 37A of view v. By Lemma 5.1, for all honest parties awake at
their local time 7 > 30A of view v, and hence for all honest parties
awake at global time ¢, GA, 4 must have output (h, *). Applying the
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same logic inductively, for all honest parties awake at global time
t (which must include p), GA, 2 must have output (A, ). Hence p
must have observed (h,v) € notarized at global time ¢; (i) is proven.

Next we prove (ii) by induction. We first prove the base case of
u = v. Applying Lemma 5.1 one more time, for all honest parties
awake at their local time 7 > 9A of view v, GA, 1 must have output
(h, %), and hence no honest party could have input &’ # h to GAy2.
Due to the integrity of GA, no honest party outputs (', *) from
GAy 2 and hence no honest party observes (h’,v) € notarized.

We have shown in the proof of (i) that for all honest parties
awake at their local time 7/ > 30A of view v, GAy4 must have
output (h, ). Hence, they must have set lock > v. Therefore, none
of them could have observed (h’, w) € notarized with w > lock
and h’ # h. Then, no honest party could have input h” := H(A')
for any log conflicting log A” to GAy41,1. By the integrity of GA, no
honest party outputs (h”, %) from GAyy1,1. By the same logic, no
honest party outputs (h”/, ) from GAgy41,2. Therefore, no honest
party could have observed (h”/,v+ 1) € notarized at any time. This
completes the inductive step, and proves that for all u > v, no
honest party observes (H(A’), u) € notarized at any time. o

We can then show the safety of our protocol.

LEMMA 5.3 (SAFETY). Honest parties do not decide two different
values at the same log height.

Proor. Honest parties decide two different values at the same
log height implies they decide two conflicting logs. Suppose for
the sake of contradiction that honest parties p and q decide two
conflicting logs A and A” in view v and u, respectively. Without loss
of generality, we assume v < u. By (i) of Lemma 5.2, (H(A),v) €
notarized for the party p and (H(A'),u) € notarized for the party
q- However, this contradicts the (ii) of Lemma 5.2. O

Before proving the liveness, we first show the following lemma
that honest party can always obtain a log that corresponds to a
decided hash (i.e., output of the fifth GA).

LEMMA 5.4. If GAy5 of an honest party outputs (h, ), then all
honest parties awake at their local time T > 37/ of view v observe a
log A such that H(A) = h.

Proor. If GAy 5 of an honest party outputs (h, *), then at least
an honest party p must have input h to GA, ;. Then p must have
multi-cast (block, by, hy._q,v) where h = H(hg_1||bg), which im-
plies p must have observed (hr_q,u) € notarized for a view u < v
during local time [2A, 3A] of view v. Then, at least an honest party
q must have input hg_; to GA, 1. Then ¢ must have multi-cast
(block, bg_1, hg_o, u) where H(hy_s||bg_1) = hg_1, which implies
q must have observed (hi_,, w) € notarized during local time
[2A,3A] of view u. Applying this logic repeatedly, there is a log
A [b1, by, .., by ] such that for all i € [1,k], at least an hon-
est party must have multi-cast (block, b;, hj_1,*) where hj_q
H([b1, ba, ..bi_1]). Therefore, all honest parties awake at their local
time 7 > 37A of view v observe a log A identified by the hash h. O

Next we show the following lemma which intuitively says that
every honest party’s proposal passes the safety check on line 8.
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LEMMA 5.5. Let h be the candidate.value of an honest party p
awake at some global time t € [0, A] of view v. Then, any honest
party q awake at any global time t’ € [2A, 3A] of view v observes
(h,u) € notarized for some u > lock.

Proor. We consider two cases: his L or not. If h = 1, it is
clear that the party q observes lock = 0 (and (L,0) € notarized
from initialization); Otherwise, for some view w < v, GA,, 4 of q
must have output some value by global time ¢ of view v. Then, by
Lemma 5.1, GA,, 3 of p must have output some value by global time
t of view v, and h could not have been L.

If h # 1, there exists a view u < v such that GA;, 3 of p must
have output (h, ) by global time ¢ of view v. Then, by Lemma 5.1,
GAy2 of ¢ must have output (h, *) by global time ¢’ of view v.
Therefore, the party ¢ must have observed (h,u) € notarized at
global time t’. Let w > 0 be the value of lock that q observes at
global time ¢’ (if w = 0, the lemma is obvious), then GA,, 4 of ¢
must have output (h’, %) for a value h’ by time ¢’ of view v. Then,
by Lemma 5.1, GA,,3 of p must have output (h’, %) by time ¢ of
view v. Since p always updates candidate based on the output of
GA, 3 of the highest view, u > w. O

Now we show the liveness of our protocol.

LEMMA 5.6 (LIVENESS). If an honest party inputs a value x, then
there exists a time t such that all honest parties awake at global time
t decides a log that contains x.

PrOOF. Leto be a view after the stabilization time Ts. Let P be the
set of insomniac honest parties during [0, 2A] of view v. Then, all
parties in P multi-cast their own proposals by global time A of view
v. Let a be the number of parties awake at some time during [0, 2A].
Due to 7A-eventual stable participation, |P| > «/2. Therefore, with
probability more than 1/2, all honest parties awake at their local
time 2A of view v observe the same honest leader L of view v and
its proposal.

Suppose the above good event happens, i.e., an honest leader L
is elected at view v. Let (propose, b, h o, p, 7)1, be the proposal of
the leader L. Let Q be the set of insomniac honest parties during
[2A, 4A] of view v. Then, all parties in Q input h = H(h||b) to GAy 1
at their local time 2A of view v by Lemma 5.5. Let S be the set of
insomniac honest parties during [4A, 11A] of view v. By the validity
of GA, all parties in S output (A, 1) at their local time 9A of view v
and do not output (h’, %) for any h’ # h. Then, all parties in S input
h to GAy at their local time 9A of view v. Let @’ be the number
of parties awake at some time during [9, 11A] of view v. Due to
7A-eventual stable participation, |S| > a’/2. Applying the validity
of GA inductively, for some honest parties, GA, 5 outputs (h, 1). By
the consistency of GA, for all honest parties awake at their local
time 7 < 37A of view v, GA, 5 must output (h, ). By Lemma 5.4,
they all obtain and decide a log A such that H(A) = h.

Since the above good event happens in each view with probability
> 1/2, it must happens eventually and repeatedly (except with
negligibly small probability). Therefore, the honest party’s input x
will eventually be included in a decided log. O

Finally, our protocol achieves an expected O(A) latency under
stable participation as formalized below.
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Algorithm 3 Atomic broadcast with efficient recovery

At the beginning of the execution, initialize variables notarized =
{(L,0)}, lock = 0, candidate = (L,0),0=0,0=0.
In each view o, party p executes the following algorithm at every local
time 0 < 7 < 44A w.rt view o, and enter the next view v + 1.

1: // same as line 1-33 of Algorithm 2 except a sixth GA step is added to
keep track of the critical view v

. fori € {3,4,5,6} do

// update the critical view
upon GA, ¢ outputs (h, *) forv > v
Ve

34:
35:

/ respond to recovery request

36: upon receiving (recover, u)q

37: Ag « the log of view u that p decided

38: Ap « the log of view o that p decided

39: forallb € Ap \ Ay do

40: send to q the corresponding (block, b, =, =)

41: for all w > v do

42: send to q all messages of view w (without any conflict).

// for recovering party p
Upon joining the execution, p multi-casts (recover, 3),,, wait for T, and
resume the execution of lines 1-42

43:

THEOREM 5.7 (LATENCY). If an honest party inputs a value x at
global time t > Ty, then there exists a timet’ = t + O(A) such that
all honest parties awake at global time t’ decide a log that contains x
in expectation.

Proor. The honest party’s input x is disseminated to all honest
parties by A, and will be included in their proposals. At least in O(1)
views (in expectation) after that, an honest party’s proposal is de-
cided. Since each view takes O(A) time, the input x is incorporated
into a decided log within O(A). O

6 ATOMIC BROADCAST WITH PRACTICAL
RECOVERY

This section augments our atomic broadcast protocol from the pre-
vious section with an efficient recovery mechanism, where newly
joined parties recover only necessary information of past views.
The augmented protocol is described in Algorithm 3.

Our basic protocol (Algorithm 2), described for the original sleepy
model, requires each party to send O(I(nL + kn)) amount of infor-
mation to help a recovering party g that slept for [ views where L is
the size of a block and « is the digital signature size. The O(nL) term
is due to sending all proposals in each view, and the O(xn) term is
due to GA messages. Our augmented protocol reduces the recovery
data size to (expected) O(IL + nL + kn) under stable participation.
Intuitively, each party only needs to send messages of recent views
(of size O(nL + kn)), plus the decided log contents (of size O(IL))
during the recovering party’s sleep.

Similarly, the augmented protocol saves storage. In our basic
protocol, each party must store all past messages. In the augmented
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protocol, parties only store messages of recent views (plus log
contents).

Identifying the critical view. Reducing the O(InL) term to O(IL)
is not hard because non-decided proposals in those views are not
useful. The recovering party q sends a recovery request with its
latest decided view ¢ (line 43), and each party just needs to send
the decided log contents of view ¢ or higher (line 37-40).

Reducing from O(xIn) to O(kn), on the other hand, is challeng-
ing since missing GA messages in these views can lead to incorrect
updates to state variables (i.e., notary, candidate, lock, and decide),
which is the key to the safety and liveness of our atomic broadcast.
To this end, each party p needs to identify the oldest view v of which
it needs to send GA messages to the recovering party g. Recall that,
in Algorithm 2, only GAs of the highest decided view ¢ or later
trigger variable updates. Therefore, g only requires messages of
view v > o where 0 is the highest view of which g will decide a
log immediately after the recovery is completed. However, p does
not know the value of 7 of ¢, which can be different from o of p
if they receive different messages. To solve this problem, we add
another GA step, i.e., GAy. If GAy 6 outputs some value, parties
update v with view o (line 34-35). If an honest party outputs some
value from GA,, then all honest parties must output the value
from GAy 5 (by consistency and integrity of GA). Therefore, the
recovering party q always sets @ to be at least v that p observes,
and p needs to send only messages of view v or higher (line 41-42).
Since v is updated every constant views (in expectation), parties
send messages of only the recent few views (plus log contents) to
recovering parties.

Conflict of messages. Since faulty parties can send propose and
block messages for infinitely many different blocks in the same
view, we define conflict of these messages to avoid unbounded
communication in the recovery phase. Specifically, two different
propose (or block) messages of the same view v signed by the same
party conflict with each other.

6.1 Correctness of the Protocol

We prove safety and liveness of Algorithm 3. We say a party is
up-to-date with respect to view v at (global or local) time ¢ if the
party has received all messages of view v (without conflict) sent (or
forward) by time ¢t — A by all honest parties.

Proof sketch. The proof has two main parts. First, Lemma 6.1
says, all honest parties awake in view v or v + 1 are up-to-date w.r.t.
view 0. Then, the time-shifted quorum argument and the security
of GA still hold just as in the basic protocol. Next, Lemma 6.3 says
that parties can recover all messages of view ¢ or higher. This
helps prove that parties can correctly update their states for safety
(Lemma 6.4) and for liveness (Lemma 6.6).

LEMMA 6.1 (RECOVERY FOR CURRENT VIEW). Any honest party
awake at a global time within a view v or v + 1 is up-to-date w.r.t
view v at that time.

PRrROOF. Suppose an honest party p; is awake at global time #;
within a view o or v + 1. Let t] be the last time when p; became
awake. (If p; was awake all the time, the lemma is obvious.) Then,
p1 must have rejoined the execution at global time ¢; — T, and its
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recover message must have been received by an honest party p
that is awake at global time t; < ¢/ — T +A. By the end of view v +1,
p2 (in fact, any party) must have v < v, so by time #3, p2 must have
sent p; all messages of view v. These messages will be received by
p1 by global time ¢] (since ' > 2A). Applying this logic repeatedly,
we can define a list of parties [p1, p2, .., pi] where the last party p;
stays awake from the beginning of view v to global time ¢;. Then,
pi must be up-to-date w.r.t view v at global time t;. Moreover, if
P is up-to-date at global time #, then py_; is also up-to-date at
global time #;_; (because p; sends to pj_; all messages of view v
received by global time ;). Therefore, by induction, by global time
11, p1 must receive all messages of view v and hence be up-to-date
w.r.t view v. O

The consistency and integrity of GAy « just need minor modifi-
cations. They now apply to parties that are up-to-date w.r.t. view .
The statement of validity stays the same as in Lemma 4.3.

(1) Consistency. If an honest party p up-to-date w.r.t view v out-
puts (b, 1), all honest parties awake and up-to-date w.r.t view
v at their local time 7 > 7A output (b, ).

(2) Integrity. If no honest party inputs b, then no honest party up-
to-date w.r.t view v outputs (b, ).

The proofs are almost the same as Lemma 4.1, 4.2, and 4.3, once
we argue that parties involved in the proofs (e.g., parties p and g in
the time-shifted quorum argument) are up-to-date w.r.t view v, due
to Lemma 6.1.

LEMMA 6.2. Foralli € {2,3,4,5,6} and v, if GAy; outputs (b, *)
for an honest party up-to-date w.r.t viewv at global timet > (7i+2)A,
then for any honest party up-to-date w.r.t view v at its local time
7> (7i — 5)A of viewov, GAy i—1 outputs (b, *).

Proor. If GA,; of an honest party up-to-date w.r.t view v at
global time ¢ > (7i+ 2)A outputs (b, %), then by the integrity of GA,
atleast an honest party (say p) must have input b to GA; at a global
time ¢” within view . This implies GA, ;1 of the party p must have
output (b, 1). Since p has been awake at global time ¢" within view
v, it must have been up-to-date w.r.t view v by Lemma 6.1. By the
consistency of GA, for any honest party up-to-date w.r.t view v at
its local time 7 > (7i — 5)A, its GAy,;—1 outputs (b, *). m]

LEMMA 6.3 (RECOVERY ACROSS VIEWS). If an honest party p is
awake and observes 0 at global time t, then p is up-to-date w.r.t any
viewov > 0 at global time t.

ProoF. Let t’ < ¢ be the last time the party p became awake. (If
p is awake all the time, the lemma is obvious.) p must have rejoined
the execution at global time ¢’ — T and multi-cast recover, which
must have been received by all honest parties awake at global time
t’ — T + A and they must have sent all messages of v and higher,
and all of these messages must have reached p by global time ¢’
(since T’ > 2A). Let g1 be an honest party awake at global time
t1 =t' =T + A, and let o, be the value of v it observes. Again, let
t; < t; be the last time q; became awake. The party q;’s recover
message must have been received by some honest party g, awake
at global time t; = t; — ' + A, who observes v, as the value of v.
This way, we can define a list of parties Q = [q1, g2, ..] and their
corresponding views V = [0,,9,,..]. Let u be the highest view in
V. Then, any party ¢; € Q must have been up-to-date w.r.t view
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u at global time t;. Therefore, p must be up-to-date w.r.t view u at
global time t. Let j be the index such that v ;= Then, GAy ¢ of q;
must have output (h, 1) for some h by global time ¢;. By Lemma 6.2,
GAy 5 of p must have output (h, ) at global time ¢, and hence p
must observe o > u at global time t. Therefore, p is up-to-date w.r.t
any view v > ¢ at global time . ]

LEMMA 6.4. If an honest party p decides a log A in view v, then
(i) p observes (H(A),v) € notarized at that time, and (ii) For any
u > v and log A’ that conflicts with A, no honest party observes
(H(A"),u) € notarized at any time.

Proor. If an honest party p decides a log A in view v at global
time ¢, then GA, 5 must have output (h, *) where h := H(A), and
t > 37A of view v. Since honest parties decide in view ¢ or higher,
p must have been up-to-date w.r.t view v at that time by Lemma 6.3.
By Lemma 6.2, for all honest parties awake at their local time 30A
of view v (who must have been up-to-date w.r.t view v), GA, 4 must
have output (h, ). Applying Lemma 6.2 inductively, for all honest
parties up-to-date w.r.t view v at global time ¢ (including p), GAy 2
must have output (h, *). Hence p observes (h,v) € notarized at
global time t. (i) is proven.

Next we prove (ii). We first prove for u = v. Applying Lemma 6.2
inductively, for all honest parties awake at global time [9A, 10A] of
view v, GAy 1 must have output (h, ), and hence no honest party
could have input b’ # h to GAy 2. Due to the integrity of GA, for
any t’ > 0, no honest party up-to-date w.r.t view v at global time ¢’
could have output (h’, %). Here, if an honest party adds some pair
(*,0) to notarized, the party must be up-to-date w.r.t view v (by
Lemma 6.3). Therefore, no honest party observes (h’,v) € notarized
at any time; (ii) is proven for u = v.

By Lemma 6.2, for all honest parties awake at global time [2A, 4A]
of view v + 1, GAy 4 must have output (h, %), and hence they must
have observed lock > v. Therefore, none of them could have ob-
served (h’,w) € notarized for w > lock and b’ # h. Then, no
honest party could have input &’ := H(A’) for any log A’ that
conflicts with A to GAy41,1. By the integrity of GA, no honest party
awake at global time [9A, 11A] could have output (h”, %) from
GAy+1,1. By the same logic, no honest party up-to-date w.r.t view
v + 1 could have output (h”, *) from GAy41 2. Therefore, no honest
party observes (h’”/,v + 1) € notarized at any time. This completes
the inductive step, and proves that for all # > v, no honest party
observes (H(A’), u) € notarized at any time. O

We can prove safety using Lemma 6.4 similar to the proof of
Lemma 5.3 in Section 5.

LEMMA 6.5. If an honest party p observes candidate.view = v (or
lock = v), then p is up-to-date w.r.t any viewu > v.

Proor. Suppose for the sake of contradiction that p is not up-to-
date w.r.t view v or higher. Then, p must observes o > v. Let w be
the view p observes as d. Then, p must have output some value from
GA,, 5 by then. By Lemma 6.4, p must have output the value from
GA,, 4 and GA,, 3, and updated candidate.view and lock with w > v
by then. This contradicts that p observes candidate.view =0. O

LEMMA 6.6. Let h be the candidate.value of an honest party p
awake at global time t € [0, A] of view v. Then, every honest party
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q awake at global time t’ € [2A,3A] of view v observes (h,u) €
notarized for some u > lock.

Proor. We consider two cases: h is L or not.

Case 1: h = L. We will prove that party g observes lock = 0 at global
time ¢’ (we have (0,0) € notarized from initialization). Suppose for
the sake of contradiction that g observes lock # 0 at global time
t’. Then, there exists a view u < v such that ¢ must have output
some value from GA,, 4 and updated lock based on the output. At
that time, g must have been up-to-date w.r.t view u by Lemma 6.5.
Also, by Lemma 6.5, p must have been up-to-date w.r.t view u at
global time t, because p observes candidate.view = 0 (because
h = 1). By Lemma 6.2, p must have output some value from GA,3
by global time ¢, which must have triggered updating candidate.
This contradicts with h = L. Therefore, g observes lock = 0 at
global time ¢’, and we complete the proof for the first case.

Case 2: h # L. There exists a view u < v in which p outputs
(h, %) from GA, 3 and updates candidate based on this output. By
Lemma 6.5, p must have been up-to-date w.r.t view u at that time.
Let u be the highest such view.

We can prove that ¢ must have been up-to-date w.r.t view u at
global time ¢’. Otherwise, ¢ must have observed ¢ > u at global
time ¢’ (by Lemma 6.3). This implies g must have output some value
from GA,, 5 for some w > u (when it is up-to-date w.r.t view w).
Since p observes candidate.view = u, it must have been up-to-date
w.r.t view w > u at global time ¢ (by Lemma 6.5). Therefore, p must
have output some value from GA,, 3 (by Lemma 6.2), and updated
candidate based on the output. However, this contradicts with u
being the highest such view.

Now, we have that p outputs (h, *) from GA, 3 when it is up-
to-date w.r.t view u, and q is also up-to-date w.r.t view u at global
time ¢’. By Lemma 6.2, ¢ must have output (h, *) from GA2 by
global time t’. Therefore, ¢ must have observed (h, u) € notarized
at global time ¢’

Finally, we show that q observes u > lock at global time #’. Let
s be the value of lock that g observes at global time ¢’ (if lock = 0,
the lemma is obvious), then g must have output some value from
GAs 4 (When it is up-to-date w.r.t. view s). By the same logic as
above, p must have been up-to-date w.r.t view s at global time ¢. By
Lemma 6.2, p must have output some value from GA; 3 by global
time t. Since p always updates candidate based on the output of
GA. 3 of the highest view, u > s. O

Finally, we can prove liveness based on Lemma 6.6 as in the basic
protocol (Lemma 5.6).

7 EXPERIMENTAL EVALUATION

To demonstrate the low latency of our protocol, we implemented
and evaluated our basic protocol and the longest-chain protocol
in [31] under varying participation level. Our experiment was con-
ducted with 100 parties with each party executed on an Amazon EC2
t2.large instance. We executed our protocol and the longest-chain
protocol under the same schedule of participation level (shown in
the bottom of Figure 2) generated as follows.

(1) Stable participation. At the beginning of the execution, 50
parties are awake, and until 1110 seconds (30 views for our
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protocol), it randomly increases or decreases by one party every
second.

(2) Unstable participation. During the next 1110 seconds (until
2220 seconds), the participation level is selected independently
randomly from 1 to 100 parties every second.

(3) High participation level. The third period (next 1110 seconds)
starts with 66 parties (two thirds) and randomly increases or
decreases by one party every second, but never drops below 66
parties.

(4) Low participation level. Finally, the last period starts with 33
parties (1/3), and randomly increases or decreases by one party
every second, but never exceeds 33 parties.

We set the synchrony bound A = 1 second. For the longest-chain
protocol, we used the block generation rate for each party 4 =
1/3700 per seconds so that a block is generated at about the same
interval as our protocol when all parties are awake. This provides
the fault tolerance of f/n ~ 0.49 [31]. For the confirmation length,
we use k = 10. This is quite low a security level; the probability of
safety violation is at least 0.001 if an adversary controls more than
20% stake and simply launches a private mining attack [28].

Figure 2 shows the latency and log length over time. The log
length at each time is the number of blocks decided so far. The
latency at each time is the time it takes for the next proposed
block to be decided. In other words, if b is the first block proposed
after time ¢ and b is decided at time ¢’, then we plot the latency
at time ¢t to be t’ — t. The latency of the longest-chain protocol
after 3097 seconds is not reported because after 3097 seconds takes,
it takes too long to produce a block, and no block gets decided
when we terminate the experiment. We give some analysis on the
experimental results below.

Dependency on the security parameter. First, the latency of the
longest-chain protocol is always longer than that of our protocol
(labeled as Constant Sleepy), due to the dependence on the security
parameter k in the longest-chain protocol: a block is decided only
after k = Q(x) subsequent blocks are proposed. As a block is
proposed at most every 37 seconds in expectation, the latency is at
least a few hundred seconds (the best case is 239 seconds). This is
why it took 750 seconds for the longest-chain protocol to decide its
first block, compared to 74 seconds (2 views) in our protocol. The
confirmation length k must be much larger to get a higher security
level, i.e., a smaller probability of safety violation, and the latency
of the longest-chain protocol will be much longer.

Dependency on the participation level. The log in our protocol
grows consistently in our protocol (except during the unstable par-
ticipation period). In sharp contrast, in the longest-chain protocol,
the growth speed of log length heavily depends on the participation
level (due to the y term in the asymptotic latency). Remarkably,
the log of the longest-chain protocol grew by 25 blocks in the high
participation period (2220-3330 seconds) but by only 5 blocks in
the low participation period (3330-4440 seconds). The average par-
ticipation levels of these two periods are 87 and 27, respectively.
For the same reason, the latency of the longest-chain protocol is
at the minimum of 239 seconds around the beginning of the high
participation period and increases as it gets closer to the low par-
ticipation period. As mentioned, we could not report latency of the
longest-chain protocol after 3097 seconds because it is taking too
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Figure 2: Experimental result. The bottom figure shows the
participation level over time, and the top and middle figures
show the latency and log length, respectively, of both our
protocol and the longest-chain protocol in [31].

long to produce blocks during low participation, which is in itself a
demonstration of its poor latency.

Unstable participation period. As mentioned, our protocol does
not guarantee progress when the participation level fluctuates
wildly. We indeed observe that during the unstable participation
period (1110-2220 seconds), 17 out of 30 views failed to decide
blocks. Nonetheless, our protocol decided blocks in some of these
views. This is because the stability condition (Definition 3.1) is
sufficient but not necessary; it may be further relaxed to weaker
(but less clean, hence not adopted) forms. For example, our protocol
can decide a block in view v if a majority of awake parties at the
beginning of GA,; are also awake at time 2A of GA,;_ for all
1 < i < 5. As we randomly generated the schedule of participation
level, our protocol decided blocks in some lucky views that satisfy
this condition. Our protocol would not make progress at all if an
adversary carefully controls the participation level. In comparison,
the longest-chain protocol grows its log length (16 blocks) almost
proportionally to the average participation level (49 parties).
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8 DISCUSSION

Communication complexity. Our protocols costs (excluding re-
covery cost) O((kfi® + LA)N) bits of communication in total per
block, where i = max;>o(n;) is the maximum number of awake
parties throughout the execution, « is the signature length, and L
is the size of a block. The k2N term is due to nodes forwarding
every echo that includes a hash of block, and the LAN term is due
to each node sending a block once before the start of the first GA
(line 9 of Algorithm 2). On the other hand, the longest-chain proto-
col (also excluding recovery cost) in [31] costs O((k7 + Lii)N) bits
of communication per block. Thus, our protocol’s communication
cost is higher than that of longest-chain protocol if the block size L
is small, but becomes comparable when the block size L is big.

On the necessity of randomization. Our protocol uses random-
ized leader election. Randomization is necessary for low latency.
It is well known that Q(f) round is necessary for deterministic
protocols [15], which applies to the sleepy model (since sleepy is
strictly harder than the classic model).

Our protocol as well as all existing protocols in the sleepy model
only achieve almost-surely termination, i.e., the probability of ter-
mination approaches 1 as the protocol keeps running but never
becomes 1. This is inherent to leader-based protocols in the sleepy
model, because the adversary always has a (decreasing but positive)
chance to guess the leader and make the leader go to sleep. It is an
interesting open question whether this is inherent or avoidable by
leaderless protocols.

9 CONCLUSION AND FUTURE DIRECTIONS

We present a BFT atomic broadcast protocol that simultaneously
supports dynamic participation and achieves expected O(A) latency.
Our protocol follows the quorum-based design by extending the
classic static quorums to dynamic quorums. To restore the transfer-
ability of quorum certificate, we introduce a new technique called
time-shifted quorum. We also present an efficient recovery process
for rejoining nodes.

Our protocol makes progress only during periods of stable par-
ticipation. It is an interesting open question whether it is possible
to make progress even during wildly fluctuating periods while
achieving O(A) latency. A possible solution may be to adopt the
multi-chain paradigm [5, 18, 25] without longest-chain protocols.
The multi-chain paradigm takes a different approach from ours
to remove the dependency on «. It is interesting to see if we can
further remove from it the dependence on y. The remaining chal-
lenge is that existing multi-chain protocols either require proof-
of-work [5, 25] or still depend on « to decide between conflicting
transactions [5, 18].
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