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Distributed Bayesian Inference in Massive
Spatial Data
Rajarshi Guhaniyogi, Cheng Li, Terrance Savitsky and Sanvesh Srivastava

Abstract. Gaussian process (GP) regression is computationally expensive
in spatial applications involving massive data. Various methods address this
limitation, including a small number of Bayesian methods based on dis-
tributed computations (or the divide-and-conquer strategy). Focusing on the
latter literature, we achieve three main goals. First, we develop an extensible
Bayesian framework for distributed spatial GP regression that embeds many
popular methods. The proposed framework has three steps that partition the
entire data into many subsets, apply a readily available Bayesian spatial pro-
cess model in parallel on all the subsets, and combine the posterior distri-
butions estimated on all the subsets into a pseudo posterior distribution that
conditions on the entire data. The combined pseudo posterior distribution
replaces the full data posterior distribution in prediction and inference prob-
lems. Demonstrating our framework’s generality, we extend posterior com-
putations for (nondistributed) spatial process models with a stationary full-
rank and a nonstationary low-rank GP priors to the distributed setting. Sec-
ond, we contrast the empirical performance of popular distributed approaches
with some widely-used, nondistributed alternatives and highlight their rela-
tive advantages and shortcomings. Third, we provide theoretical support for
our numerical observations and show that the Bayes L2-risks of the combined
posterior distributions obtained from a subclass of the divide-and-conquer
methods achieves the near-optimal convergence rate in estimating the true
spatial surface with various types of covariance functions. Additionally, we
provide upper bounds on the number of subsets to achieve these near-optimal
rates.

Key words and phrases: Distributed Bayesian inference, Gaussian process,
low-rank Gaussian process, massive spatial data, Wasserstein barycenter.

1. INTRODUCTION

A fundamental challenge in geostatistics is the analy-
sis of massive spatially-referenced data. Such data sets
provide scientists with an unprecedented opportunity to
hypothesize and test complex theories; see, for example,
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Cressie and Wikle (2011), Banerjee, Carlin and Gelfand
(2015). This has led to the development of complex and
flexible GP-based models that are computationally in-
tractable for a large number of spatial locations, denoted
as n, due to the O(n3) computational cost and the O(n2)

storage cost. An overwhelming number of methods exists
to address this issue that develop either efficient alterna-
tives to the GP model or efficient approximations of the
likelihood. We broadly refer to these approaches as the
nondistributed methods. An emerging class of Bayesian
methods addresses this problem using distributed com-
putations, where the scalability of an existing, possibly
nondistributed, spatial GP regression model is enhanced
multiple folds by suitably distributing the computations
and storage of data subsets across many machines. This
article proposes a novel class of distributed Bayesian
framework for process-based geostatistical models that
contains many popular approaches, presents a compara-
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tive study of important approaches within this class and
contrasts their performance with representative nondis-
tributed methods.

1.1 Nondistributed Methods for GP Modeling of
Massive Spatial Data

Efficient GP-based models for massive spatial data have
received extensive attention due to their great practical
importance (Heaton et al., 2019). A common idea in GP-
based modeling is to seek dimension-reduction by endow-
ing the spatial covariance matrix either with a low-rank or
a sparse structure. Low-rank structures on the spatial co-
variance matrix are the most widely used tool for efficient
spatial computation. They represent the spatial surface us-
ing r a priori chosen basis functions with associated com-
putational complexity of O(nr2 + r3) (Cressie and Johan-
nesson, 2008, Banerjee et al., 2008, Finley et al., 2009,
Guhaniyogi et al., 2011, Wikle, 2010); however, a major
shortcoming of the above methods is that a small (r/n)-
ratio yields inaccurate GP approximations, resulting in the
propensity to oversmooth the spatial data (Stein, 2014,
Simpson, Lindgren and Rue, 2012).

A specific form of sparse structure, called covariance
tapering, uses compactly supported covariance functions
to create sparse spatial covariance matrices that approxi-
mate the full covariance matrix (Kaufman, Schervish and
Nychka, 2008, Furrer, Genton and Nychka, 2006, Daley,
Porcu and Bevilacqua, 2015, Bevilacqua, Caamaño-
Carrillo and Porcu, 2022). Covariance tapering still re-
quires expensive determinant evaluation of the massive
covariance matrix, and the choice of the taper range can
be difficult for spatial data over irregularly spaced loca-
tions (Anderes et al., 2013). An alternative approach is to
introduce sparsity in the inverse covariance (precision)
matrix of the GP likelihoods using products of lower-
dimensional conditional distributions (Vecchia, 1988,
Rue, Martino and Chopin, 2009, Stein, Chi and Welty,
2004), or via composite likelihoods (Eidsvik et al., 2014,
Bai, Song and Raghunathan, 2012, Bevilacqua and Gae-
tan, 2015). Extending these ideas, recent approaches in-
troduce sparsity in the inverse covariance (precision) ma-
trix of process realizations, and hence enable “kriging”
at arbitrary locations (Datta et al., 2016, Guinness, 2018,
Finley et al., 2019). In related literature on computer ex-
periments, localized approximations of GP models are
proposed; see, for example, Gramacy and Apley (2015),
Gramacy and Haaland (2016). These methods scale well
with the sample size and are able to capture local spatial
variations.

The remaining variants of dimension-reduction meth-
ods combine the benefits of low rank and sparse covari-
ance functions. Examples include nonstationary models
(Banerjee, Carlin and Gelfand, 2015) and multi-resolution
models (Nychka et al., 2015, Katzfuss, 2017, Guinness,

2021, Katzfuss and Guinness, 2021, Guhaniyogi and
Sanso, 2020). Multiresolution models are difficult to im-
plement and lack large sample theoretical guarantees,
but they successfully capture spatial variation at mul-
tiple scales and are computationally efficient. The GP
with Matérn covariance can be viewed as the solution
of a stochastic partial differential equation. This obser-
vation has motivated GP approximations (Lindgren, Rue
and Lindström, 2011, Bolin and Lindgren, 2013), includ-
ing a recent extension to multivariate non-Gaussian mod-
els with marginal Matérn covariance functions (Bolin
and Wallin, 2020). This class of methods work well for
Matérn covariance functions but are inapplicable in scal-
ing GP with low-rank or nonstationary covariance func-
tions.

1.2 Distributed Bayes

Rooted in the divide-and-conquer technique, the dis-
tributed Bayesian methods do not belong to any of the
classes of methods in Section 1.1. They instead fit an
existing model on different data subsets exploiting the
distributed computing architecture. The results from the
subsets are combined using an aggregation algorithm.
These methods were first proposed in machine learning,
including consensus Monte Carlo (Scott et al., 2016), the
Weierstrass sampler (Wang and Dunson, 2013), the semi-
parametric density product (Neiswanger, Wang and Xing,
2014), the median posterior (Minsker et al., 2014) and the
Wasserstein posterior (Srivastava et al., 2015). Most of
these methods are developed only for independent data.
Recently, distributed Bayes has been applied to a vari-
ety of statistical problems in both modeling and com-
putation, such as density estimation (Su, 2020), model-
ing of multivariate binary data (Mehrotra et al., 2021),
sequential Monte Carlo (Lindsten et al., 2017), random
partition trees (Wang et al., 2015), etc. For GP mod-
els, Zhang and Williamson (2019) propose to combine
GP fitted on different data subsets via an importance-
sampled mixture-of-experts model. Theoretical results on
distributed GP inference have been developed recently
(Cheng and Shang, 2017, Szabó and van Zanten, 2019,
Shang, Hao and Cheng, 2019). Nevertheless, these the-
oretical works and applications have mainly focused on
univariate domains for nonparametric regression and have
not considered the GP-based models used in spatial appli-
cations such as GP with Matérn covariance on a spatial
domain.

On the spatial front, Barbian and Assunção (2017) pro-
pose combining point estimates of spatial parameters ob-
tained from different subsets, but they do not provide
combined inference on the spatial processes or predic-
tions. Similarly, Heaton, Christensen and Terres (2017)
partition the spatial domain and assume independence
between the data in different partitions. Guhaniyogi and
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Banerjee (2018), Guhaniyogi and Banerjee (2019) pro-
pose the idea of “meta-posterior,” a computationally ef-
ficient approximation to the full data posterior. This ap-
proach does not assume independence across data blocks
and enables accurate prediction with uncertainty (Heaton
et al., 2019); however, Guhaniyogi and Banerjee (2018)
does not offer any theoretical guidance on choosing the
number of subsets for optimal inference on the spatial sur-
face.

Instead of developing a new spatial GP regression
model, we describe a general class of three-step dis-
tributed Bayesian approaches for extending an exist-
ing process-based geostatistical model, which includes
a number of important special cases. To implement the
general approach, the n spatial locations are divided into
k subsets such that each subset has representative data
samples from all regions of the spatial domain with the
j th subset containing mj data samples. Second, posterior
computations are implemented in parallel on the k sub-
sets using any chosen spatial process model after raising
the model likelihood to a power of n/mj in the j th subset.
The pseudo posterior distribution obtained using the mod-
ified likelihood is called the “subset pseudo posterior dis-
tribution.” Since j th subset pseudo posterior distribution
conditions on (mj/n)-fraction of the full data, the modifi-
cation of the likelihood by raising it to the power of n/mj

ensures that variance of each subset pseudo posterior is of
the same order (as a function of n) as that of the full data
posterior distribution. Third, the k subset pseudo poste-
rior distributions are combined into a single pseudo prob-
ability distribution, called the combined pseudo posterior,
that conditions on the full data and replaces the computa-
tionally expensive full data posterior distribution for pre-
diction and inference. Our distributed framework lever-
ages existing spatial GP regression models and enhances
their scalability by embedding them within the three-step
framework. For example, Section 3.1 embeds full-rank
and low-rank spatial GP regression models within the
distributed framework and Section 3.3 discusses various
methods for combining the k subset pseudo posteriors.

The proposed framework builds on the recent works
that combine the subset pseudo posterior distributions
through their geometric centers (e.g., mean, median) and
guarantee wide applicability under general assumptions
(Minsker et al., 2014, Srivastava et al., 2015, Li, Srivas-
tava and Dunson, 2017, Minsker et al., 2017, Savitsky
and Srivastava, 2018, Srivastava, Li and Dunson, 2018,
Minsker, 2019, Wang and Srivastava, 2021). The theory
and practice of such distributed approaches are limited
to parametric models. In contrast, the framework pro-
posed here is tuned for accurate and computationally effi-
cient posterior inference in nonparametric Bayesian mod-
els based on GP priors. In particular, we develop a new ap-
proach to modify the likelihood for computing the subset

pseudo posterior distribution of an unknown function, an
infinite-dimensional parameter, that subsumes the para-
metric distributed methods. We offer novel theoretical re-
sults on the convergence rate of the combined pseudo pos-
terior to the true function. Finally, we also provide guid-
ance on choosing k depending on the covariance function
and n such that the combined pseudo posterior maintains
near minimax optimal performance as n → ∞. The pro-
posed distributed framework delivers principled Bayesian
inference and predictions without any restrictive data- or
model-specific assumptions, such as the independence be-
tween data subsets or independence between blocks of pa-
rameters.

A related focus of this article is to present a comparative
study of the proposed class of distributed approaches with
important nondistributed approaches for modeling mas-
sive spatial data. We illustrate the application of the dis-
tributed framework for enhancing the scalability of spa-
tial models with a low-rank nonstationary GP prior called
the modified predictive process (MPP) prior (Finley et al.,
2009). This prior is commonly used for estimating spa-
tial surfaces in applications with massive sample size, but
it struggles to provide accurate inference in a manage-
able time beyond (approximately) 104 observations. We
embed MPP within our distributed framework and scale
it to spatial applications of much bigger sizes and assess
its performance relative to other distributed and state-of-
the-art nondistributed alternatives for efficient spatial GP
modeling. Unfortunately, there is no theoretical guaran-
tee for convergence of the Markov chain to its stationary
distribution, where MCMC samples are drawn from the
subset pseudo posteriors with an MPP prior on spatial ef-
fects; however, we find strong empirical evidence for it
and propose to develop the theoretical support elsewhere.

2. BAYESIAN INFERENCE IN GP-BASED SPATIAL
MODELS

Consider the model for the data observed at location s
in a compact domain D,

y(s) = x(s)T β +w(s) + ε(s),(1)

where y(s) and x(s) are the response and a p × 1 predic-
tor vector, respectively, at s, β is a p × 1 predictor co-
efficient, w(s) is the value of an unknown spatial func-
tion w(·) at s and ε(s) is the value of a white-noise pro-
cess ε(·) at s, which is independent of w(·). The Bayesian
implementation of the model in (1) customarily assumes
that (a) β a priori follows N(μβ , �β ) and (b) w(·) and
ε(·) a priori follow mean 0 GPs with covariance functions
Cα(s1, s2) and Dα(s1, s2) that model cov{w(s1),w(s2)}
and cov{ε(s1), ε(s2)}, respectively, where α are the pro-
cess parameters indexing the two families of covariance
functions and s1, s2 ∈ D; therefore, the parameters are
��� = {α,β}. The training data consists of predictors and
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responses observed at n spatial locations, denoted as S =
{s1, . . . , sn}.

Standard Markov chain Monte Carlo (MCMC) algo-
rithms exist for performing posterior inference on ���

and w(·) at a set of locations S∗ = {s∗
1, . . . , s∗

l }, where
S∗ ∩S = ∅, and for predicting y(s∗) for any s∗ ∈ S∗
(Banerjee, Carlin and Gelfand, 2015). Given S , the
prior assumptions on w(·) and ε(·) imply that wT =
{w(s1), . . . ,w(sn)} and εT = {ε(s1), . . . , ε(sn)} are in-
dependent and follow N{0,C(α)} and N{0,D(α)}, re-
spectively, with the (i, j)th entries of C(α) and D(α)

are Cα(si , sj ) and Dα(si , sj ), respectively. The hierar-
chy in (1) is completed by assuming that α a priori
follows a distribution with density π(α). The MCMC
algorithm for sampling ���, w∗T = {w(s∗

1), . . . ,w(s∗
l )},

and y∗T = {y(s∗
1), . . . , y(s∗

l )} cycle through the follow-
ing three steps until sufficient MCMC samples are drawn
post convergence:

1. Integrate over w in (1) and
(a) sample β given y, X, α from N(mβ ,Vβ), where

Vβ = {
XT V(α)−1 X+�−1

β

}−1
,(2)

mβ = Vβ

{
XT V(α)−1 y+�−1

β μβ

}
,

X = [x(s1) : · · · : x(sn)]T is the n × p matrix of
predictors, with p < n, V(α) = C(α) + D(α); and

(b) sample α given y, X, β using the Metropolis–
Hastings algorithm with a normal random walk
proposal.

2. Sample w∗ given y, X, α, β from N(m∗,V∗), where

V∗ = C∗,∗(α) − C∗(α)V(α)−1 C∗(α)T ,(3)

m∗ = C∗(α)V(α)−1(y−Xβ),

C∗(α) and C∗,∗(α) are l ×n and l × l matrices, respec-
tively, and the (i, j)th entries of C∗,∗(α) and C∗(α) are
Cα(s∗

i , s∗
j ) and Cα(s∗

i , sj ), respectively.
3. Sample y∗ given α, β , w∗ from N{X∗ β +w∗,D(α)},

where X∗T = [x(s∗
1) : · · · : x(s∗

l )].
Many spatial models can be formulated in terms of (1)
by assuming different forms of Cα(s1, s2) and Dα(s1, s2);
see Banerjee, Carlin and Gelfand (2015) and Supplemen-
tary Material (Guhaniyogi et al., 2023) for details on the
MCMC algorithm. Irrespective of the form of D(α), if no
additional assumptions are made on the structure of C(α),
then the three steps require O(n3) flops in computation
and O(n2) memory units in storage in every MCMC iter-
ation. Spatial models with this form of posterior compu-
tations are based on a full-rank GP prior, which are infea-
sible to compute for big data.

There are methods which either impose a low-rank
structure or a sparse structure on C(α) to address this
computational issue (Banerjee, Carlin and Gelfand, 2015).

Methods with a low-rank structure on C(α) expresses
C(α) in terms of r � n basis functions, in turn inducing a
low-rank GP prior. Again, a class of sparse structure uses
compactly supported covariance functions to create C(α)

with overwhelming zero entries (Kaufman, Schervish and
Nychka, 2008, Furrer, Genton and Nychka, 2006), where
as another variety of sparse structure imposes a Markov
random field model on the joint distribution of y (Vecchia,
1988, Rue, Martino and Chopin, 2009, Stein, Chi and
Welty, 2004) or w (Datta et al., 2016, Guinness, 2018).
We use the MPP prior as a representative example of
this broad class of computationally efficient methods. Let
S(0) = {s(0)

1 , . . . , s(0)
r } be a set of r locations, known as

the “knots,” which may or may not intersect with S . Let
c(s,S(0)) = {Cα(s, s(0)

1 ), . . . ,Cα(s, s(0)
r )}T be an r × 1

vector and C(S(0)) be an r × r matrix whose (i, j)th en-
try is Cα(s(0)

i , s(0)
j ). Using c(s1,S(0)), . . . , c(sn,S(0)) and

C(S(0)), define the diagonal matrix δ = diag{δ(s1), . . . ,

δ(sn)} with δ(si ) = Cα(si , si ) − cT (si ,S(0))C(S(0))−1 ×
c(si ,S(0)), i = 1, . . . , n. Let 1(a = b) = 1 if a = b and 0
otherwise. Then MPP is a GP with covariance function

C̃α(s1, s2) = cT (
s1,S(0)) C

(
S(0))−1 c

(
s2,S(0))

+ δ(s1)1(s1 = s2),
(4)

where s1, s2 ∈ D, C̃α(s1, s2) depends on the covariance
function of the parent GP and the selected r knots, which
define C(S(0)), cT (s1,S(0)) and cT (s2,S(0)). We have
used a ˜ in (4) to distinguish the covariance function of
a low-rank GP prior from that of its parent full-rank GP.
If C̃(α) is a matrix with (i, j)th entry C̃α(si , sj ), then
the posterior computations using MPP, a low-rank GP
prior, replace C(α) by C̃(α) in the steps 1(a), 1(b) and
2. The (low) rank r structure imposed by C(S(0)) implies
that C̃(α)−1 computation requires O(nr2) flops using the
Woodbury formula (Harville, 1997); however, massive
spatial data require that r = O(

√
n), leading to the com-

putational inefficiency of low-rank methods.
The next section discusses a general three-step dis-

tributed framework to scale the posterior computations in
spatial GP regression models with full-rank and low-rank
GP priors. Briefly, the first and second steps divide the
full data and fit a low-rank or full-rank spatial GP regres-
sion model on each data subset after modifying the sub-
set likelihood, respectively, and the third step combines
draws from the all the subset pseudo posteriors. We dis-
cuss a few popular alternatives for combining draws from
the subset pseudo posteriors and offer novel convergence
rate results for an important subclass of combination ap-
proaches.
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3. DISTRIBUTED FRAMEWORK FOR BAYESIAN
INFERENCE IN SPATIAL REGRESSION MODELS

3.1 First Step: Partitioning of Spatial Locations

We partition the n spatial locations into k nonoverlap-
ping subsets. The default partitioning scheme is to ran-
domly allocate the locations into k possibly nonover-
lapping subsets (referred to as the random partitioning
scheme hereon) to ensure that each subset has represen-
tative data samples from all subregions of the domain. We
provide discussion on the choice of k later.

Let Sj = {sj1, . . . , sjmj
} denote the set of mj spa-

tial locations in subset j (j = 1, . . . , k). Conceptually, a
spatial location can belong to multiple subsets, though
for this work we have assumed disjoint subsets, so that∑k

j=1 mj = n and ∪k
j=1Sj = S , where sji = si′ for some

si′ ∈ S and for every i = 1, . . . ,mj and j = 1, . . . , k.
Denote the data in the j th partition as {yj ,Xj } (j =
1, . . . , k), where yj = {y(sj1), . . . , y(sjmj

)}T is a mj × 1
vector and Xj = [x(sj1) : · · · : x(sjmj

)]T is a mj × p ma-
trix of predictors corresponding to the spatial locations in
Sj with p < mj . In modern grid or cluster computing en-
vironments, all the machines in the network have similar
computational power, so the performances of distributed
Bayesian methods are optimized by choosing similar val-
ues of m1, . . . ,mk .

One can choose more sophisticated partitioning
schemes than random partitioning. For example, it is
possible to cluster the data based on centroid cluster-
ing (Knorr-Held and Raßer, 2000) or hierarchical cluster-
ing based on spatial gradients (Anderson, Lee and Dean,
2014, Heaton, Christensen and Terres, 2017), and then
construct subsets such that each subsets contains repre-
sentative data samples from each cluster. Detailed explo-
ration later shows that even random partitioning leads to
desirable inference in the various simulation settings and
in the sea surface data example. Perhaps more sophis-
ticated blocking methods may provide further improve-
ment in the cases where spatial locations are drawn based
on specific designs; for example, sophisticated partition-
ing schemes have inferential benefits when a subdomain
shows substantial local behavior compared to the others
(Guhaniyogi and Sanso, 2020), or sampled locations are
chosen based on a specific survey design. Since they are
atypical examples in the spatial context, we will pursue
them elsewhere.

The univariate spatial GP regression model for any lo-
cation sji ∈ Sj ⊂ D is

y(sji) = x(sji)
T β +w(sji) + ε(sji),

i = 1, . . . ,mj .
(5)

Let wT
j = {w(sj1), . . . ,w(sjmj

)} and εT
j = {ε(sj1), . . . ,

ε(sjmj
)} be the realizations of GP w(·) and white-

noise process ε(·), respectively, in the j th subset. After

marginalizing over wj in the GP-based model for the j th
subset, the likelihood of ��� = {α,β} is given by �j (���) =
N{yj | Xj β,Vj (α)}, where Vj (α) = Cj (α)+Dj (α) and

Vj (α) = C̃j (α) + Dj (α) for full-rank and low-rank GP
priors, respectively, and Cj (α), C̃j (α), Dj (α) are ob-
tained by extending the definitions of C(α), C̃(α), D(α)

to the j th subset. The likelihood of wj given yj , Xj and ���

is �j (wj ) = N{yj −Xj β | wj ,Dj (α)}. The likelihoods
in �j (���) and �j (wj ) yield the posterior distributions for
β , α, w∗, y∗ (w∗ and y∗ have already been defined in the
second paragraph of Section 2) based on full-rank or low-
rank GP priors and are called j th subset pseudo posterior
distributions.

3.2 Second Step: Sampling from Subset Pseudo
Posterior Distributions

We define subset pseudo posterior distributions by
modifying the likelihoods in �j (���) and �j (wj ). More
precisely, the density of the j th subset pseudo posterior
distribution of ��� is given by

πmj
(��� | yj ) = {�j (���)}n/mj π(���)∫ {�j (���)}n/mj π(���)d ���

,(6)

where we assume that
∫ {�j (���)}n/mj π(���)d ��� < ∞, and

the subscript “mj ” denotes that the density conditions on
mj data samples in the j th subset. The modification of
likelihood to yield the subset pseudo posterior density
in (6) is called stochastic approximation (Minsker et al.,
2014). Raising the likelihood to the power of n/mj is
equivalent to replicating every y(sji) n/mj times (i =
1, . . . ,mj ), so stochastic approximation accounts for the
fact that the j th subset pseudo posterior distribution con-
ditions on a (mj/n)-fraction of the full data and ensures
that its variance is of the same order (as a function of n) as
that of the full data posterior distribution. Unlike paramet-
ric models, stochastic approximation in spatial regression
models has not been studied previously in the literature.

We address this gap using the proposed stochastic ap-
proximation in (6). The full conditional densities of j th
subset pseudo posterior distributions for prediction and
inference follow from their full data counterparts. The j th
full conditional densities of β and α in the GP-based mod-
els are

πmj
(β |yj ,α) = {�j (���)}n/mj π(β)∫ {�j (���)}n/mj π(β) d β

,

πmj
(α |yj ,β) = {�j (���)}n/mj π(α)∫ {�j (���)}n/mj π(α) d α

,

where π(β) = N(μβ ,�β), π(α) is the prior density
of α, and we assume that

∫ {�j (���)}n/mj π(β) d β and∫ {�j (���)}n/mj π(α) d α, respectively, are finite. The j th
full conditional densities of y∗ and w∗ are calculated after
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modifying the likelihood of wj using stochastic approxi-
mation. Given yj , Xj and ���, straightforward calculation
yields that the j th subset pseudo posterior predictive den-
sity of w∗ is πmj

(w∗ | yj ,���) = N(w∗ | mj∗,Vj∗), with

Vj∗ = C∗,∗(α) − C∗j (α)Vj (α)−1 C∗j (α)T ,

mj∗ = C∗j (α)Vj (α)−1(yj −Xj β),

where Vj (α) = Cj (α) + (n/mj )
−1 Dj (α) and Vj (α) =

C̃j (α) + (n/mj )
−1 Dj (α) for full-rank and low-rank GP

priors, respectively, and C∗,∗(α), C∗j (α) are l × l, l ×mj

matrices obtained by extending the definition in (3) to
subset j for full-rank and low-rank GP priors with co-
variance functions Cα(·, ·) and C̃α(·, ·), respectively. We
note that the stochastic approximation exponent, n/mj ,
scales Dj (α) in Vj (α) so that the uncertainty in subset
and full data posterior distributions are of the same order
(as a function of n). The j th subset pseudo posterior pre-
dictive density of y∗ given the MCMC samples of w∗ and
��� in the j th subset is N{y∗ | X∗ β +w∗,Dj (α)}.

We specialize the sampling algorithm (Steps 1–3) in-
troduced in Section 2 to subset j (j = 1, . . . , k), sampling
{β,α,y∗,w∗} in each subset across multiple MCMC iter-
ations; see the Supplementary Material for subset pseudo
posterior sampling algorithms in the full-rank and low-
rank GP priors. The computational complexity of j th
subset pseudo posterior computations follows from their
full data counterparts if we replace n by mj . Specifi-
cally, the computational complexities for sampling a sub-
set pseudo posterior are O(m3) and O(mr2) flops per it-
eration if the model in (5) uses a full-rank or a low-rank
GP prior, respectively, where m = maxj mj . Performing
subset pseudo posterior computations in parallel across k

servers also alleviates the need to store large covariance
matrices. We hereon refer to subset pseudo posterior as
subset posterior.

Our second step in the distributed framework resem-
bles some existing methods based on the composite likeli-
hood (Varin, Reid and Firth, 2011); for example, Chandler
and Bate (2007) and Ribatet, Cooley and Davison (2012)
construct pseudo likelihood to replace the full data likeli-
hood, where the pseudo likelihood attempts to capture im-
portant features of the full data likelihood while offering
computational efficiency. In the context of geostatistical
modeling with GP or its variants, for computational ef-
ficiency, the pseudo likelihood will naturally be based on
independence of data blocks at some level. To make up for
the incorrect asymptotic distribution of the posterior dis-
tribution due to the incorrect independence assumption,
they propose a number of adjustments in the composite
log likelihood (e.g., the margin adjustment and the curva-
ture adjustment). Similar to these approaches, the likeli-
hood adjustment in each subset for the second step of our

general distributed approach is also born out of consid-
eration to scale the asymptotic variance of subset poste-
riors to the same order as the asymptotic variance of the
full posterior; however, unlike these composite likelihood
approaches, the distributed approaches we focus on do
not assume any restrictive structure (e.g., block indepen-
dence) in the data likelihood. In fact, there is no guarantee
that the induced data likelihood that leads to the combined
pseudo posterior for any distributed method assumes any
block independence form. Moreover, Savitsky and Srivas-
tava (2018) represents an example of embedding a com-
posite likelihood in a distributed setup that computes the
Wasserstein barycenter. Likewise, we believe that most of
these “flexible” composite likelihoods can be used in ex-
tensions of the distributed framework for subset sampling
in models where the true likelihood is unavailable or ex-
pensive to compute.

3.3 Third Step: Combination of Subset Posterior
Distributions

We now discuss strategies for combining subset poste-
riors to construct a “combined pseudo posterior,” which is
used as an computationally efficient alternative to the full
data posterior. The combination strategies discussed here
include representative approaches used for the distributed
Bayesian inference in independent data, but they have not
been studied empirically or theoretically for correlated
spatial data setting. Specifically, we compare the follow-
ing combination schemes with our approach: (i) consen-
sus Monte Carlo (CMC); (ii) double parallel Monte Carlo
(DPMC) and (iii) combination through the Wasserstein
barycenter.

3.3.1 Consensus Monte Carlo (CMC). For a scalar or
vector parameter of interest θ , consensus Monte Carlo
(CMC) (Scott et al., 2016) draws samples from an ap-
proximation of the full posterior. In our setting, θ can
be taken as β , α, w∗, y∗, their individual components
or any functional of these parameters. Let {θ(j)

1 , . . . , θ
(j)
T }

denote the T posterior samples of θ generated from subset
j post convergence. Based on the Bernstein–von Mises
(BvM) theorem, Scott et al. (2016) proposed to use the
weighted average

∑k
j=1 wjθ

(j)
i , i = 1, . . . , T to approx-

imate T samples from the full data posterior, where the
BvM theorem says that the full data posterior tends to
a normal distribution centered around the true parameter
value as n grows and wj is the inverse of the empirical co-

variance matrix of {θ(j)
1 , . . . , θ

(j)
T }. This algorithm is exact

when the samples are independent and each subset poste-
rior is Gaussian, but this assumption is rarely satisfied in
spatial applications.

3.3.2 Double parallel Monte Carlo (DPMC). Follow-
ing the notation for CMC, let θ be the parameter of in-
terest. Denote the average of θ draws on the subset j
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as θ
(j) = (θ

(j)
1 + · · · + θ

(j)
T )/T (j = 1, . . . , k) and θ =

(θ
(1) + · · · + θ

(k)
)/k be their average. DPMC (Xue and

Liang, 2019) recenters each of the subset posteriors to θ

and then uses the mixture of recentered subset posteri-

ors, given by 1
k

∑k
j=1 πmj

(θ − θ + θ
(j)|yj ), to approxi-

mate the full data posterior. Following the implementa-
tion of DPMC in the context of independent data, we sim-

ply transform θ
(j)
t to θ + (θ

(j)
t − θ

(j)
) (t = 1, . . . , T ; j =

1, . . . , k) and treat them as draws from the combined pos-
terior distribution.

3.3.3 Combining subset posteriors using Wasserstein
barycenter. This combination algorithm relies on the no-
tion of Wasserstein barycenter (Srivastava et al., 2015).
If ν1, . . . , νk are the k subset posterior distributions of θ ,
then the combined pseudo posterior ν is the Wasserstein
barycenter defined as

ν = argmin
ν∈P2(	)

1

k

k∑
j=1

W 2
2 (ν, νj ),

W 2
2 (μ, ν) = infπ∈
(μ,ν)

∫
	×	

‖x − y‖2 dπ(x, y),

(7)

where ‖ · ‖ is a metric on the parameter space 	, P(	)

be the space of all probability measures on 	, P2(	) =
{μ ∈ P(	) : ∫

	 ‖θ − θ0‖2μ(dθ) < ∞}, W2(μ, ν) is the
Wasserstein distance between μ,ν ∈ P2(	) and 
(μ,ν)

is the space of all joint distributions of 	×	 with μ, ν as
marginals. It is known that ν exists and is unique (Agueh
and Carlier, 2011).

In practice, νj is replaced by its empirical approxima-
tion obtained using the θ draws from subset j . A va-
riety of efficient algorithms are available to provide an
empirical approximation of ν (j = 1, . . . , k) (Cuturi and
Doucet, 2014). This approach for combining subset pos-
teriors leads to the combined pseudo posterior referred to
as the Wasserstein posterior (WASP), which is preferred
over several other combination methods for independent
data (Srivastava, Li and Dunson, 2018); for example, di-
rectly averaging over many subset posterior densities with
different means can usually result in an undesirable mul-
timodal pseudo posterior distribution, but the WASP does
not have this problem; see Figure 1 in Srivastava, Li and
Dunson (2018). Besides, the WASP does not rely on the
asymptotic normality of the subset posterior distributions
as in other approaches, such as the CMC.

3.3.4 Computing the WASP with constraints. Comput-
ing the WASP is inefficient if k is large, so ν is computed
with additional constraints (Srivastava and Xu, 2021).
One such approach constrains θ to be a one-dimensional
functional of β , α, w∗ or y∗. For a scalar parameter, the
Wasserstein barycenter of θ can be easily obtained by av-
eraging empirical subset posterior quantiles (Li, Srivas-
tava and Dunson, 2017). We refer to this approach as dis-

tributed kriging (DISK) and the combined pseudo poste-
rior is called as the DISK posterior. Let ν and νj be the
full posterior and j th subset posterior distribution of θ ,
and ν be the Wasserstein barycenter of ν1, . . . , νk as in
(7). For any q ∈ (0,1), let ν̂

q
j be the qth empirical quan-

tile of νj based on the MCMC samples from νj , and ν̂
q

be the qth quantile of the empirical version of ν. Then ν̂
q

can be computed as

ν̂
q = 1

k

k∑
j=1

ν̂
q
j , q = ξ,2ξ, . . . ,1 − ξ,(8)

where ξ is the grid-size of the quantiles. If the ξ -grid is
fine enough, then the θ draws from the marginal DISK
distribution are obtained by inverting the empirical distri-
bution function supported on the quantile estimates (Li,
Srivastava and Dunson, 2017). In practice, the primary
interest often lies in the posterior distribution of some
one-dimensional functional of θ ; therefore, the univari-
ate WASP obtained by averaging quantiles in (8) accom-
plishes this with great generality and convenient imple-
mentation. Our simulation studies in Section 4 investi-
gate if the multivariate combination approaches in CMC,
DPMC or WASP lead to any notable improvement over
the univariate quantile combination in (8).

The choice of the grid size is mainly determined by the
Monte Carlo approximation error of each subset poste-
rior. In general, the Monte Carlo approximation error to
subset posteriors can be measured in terms of the size of
MCMC samples (say T ). This error is evaluated by taking
T to infinity and differs from the statistical error, where
n tends to infinity. In the context of distributed Bayesian
inference for independent data, Theorem 3 in the supple-
mentary material of Li, Srivastava and Dunson (2017) has
shown that the Monte Carlo error is usually in some poly-
nomial order of T such as O(T −1/2) and O(T −1/4) de-
pending on the distance measure and is independent of the
statistical error defined in terms of n. Following this intu-
ition, in application, we usually draw at least 104 MCMC
samples for each subset posterior and use all of them to
construct the quantiles.

A key feature of the combination scheme for the four
distributed approaches is that given the subset posterior
MCMC samples, the combination step is agnostic to the
choice of a model. Specifically, given MCMC samples
from the k subset posterior distributions, (8) remains the
same for models based on a full-rank GP prior, a low-
rank GP prior, such as MPP or any other model described
in Section 1.1. Since the combination step over k subsets
takes O(k) flops for all four combination schemes and
k < n, the total time for computing the empirical quantile
estimates of the combined pseudo posterior in inference
or prediction requires O(k)+O(m3) and O(k)+O(rm2)
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flops in models based on full-rank and low-rank GP pri-
ors, respectively. Assuming that we have abundant com-
putational resources, k is chosen large enough so that
O(m3) computations are feasible. This would enable ap-
plications of the proposed distributed framework in mod-
els based on both full-rank and low-rank GP priors in mas-
sive n settings.

3.4 Bayes L2-Risk: Bias-Variance Decomposition
and Convergence Rates

In the distributed Bayesian setup, it is already known
that when the data are independent and identically dis-
tributed (i.i.d.), the combined posterior distribution using
the Wasserstein barycenter of subset posteriors approxi-
mates the full data posterior distribution at a near optimal
parametric rate, under certain conditions as n, k,m1, . . . ,

mk → ∞ (Li, Srivastava and Dunson, 2017, Srivastava, Li
and Dunson, 2018); however, in models based on spatial
process, data are not i.i.d. and inference on the infinite-
dimensional true spatial surface is of primary impor-
tance. Few formal theoretical results are available in this
nonparametric distributed Bayes setup. The recent work
(Szabó and van Zanten, 2019) has shown that combina-
tion using Wasserstein barycenter has optimal Bayes risk
and adapts to the smoothness of w0(·), the true but un-
known w(·), in the Gaussian white noise model, which is
a special case of (1) with additional smoothness assump-
tions on w0(·).

We mainly focus on the theoretical properties of the
DISK posterior of the mean surface x(·)T β +w(·), and
our theoretical framework can be possibly extended to
the other three combination schemes described in Sec-
tion 3.3. For ease of presentation, we assume that m1 =
· · · = mk = m and k = n/m. Determining the appropriate
order for k in terms of n is one of the key issues for all
distributed statistical methods. Our theory below reveals
that the number of subsets k cannot increase too fast with
n, or equivalently, the subset size m cannot be too small,
mainly because a small subset size m will result in larger
random errors in the estimation from subset posterior dis-
tributions.

We formally explain the model setup for our theory de-
velopment. Suppose that the data generation process fol-
lows the model (1) with the true parameter value ���0 =
(α0,β0) and the true spatial surface w0(·). We focus on
the Bayes L2-risk of the DISK predictive posterior for
the mean function in (1); that is, x(s∗)T β +w(s∗) for any
testing location s∗ ∈ S . To ease the complexity of our the-
ory, we first present two theorems below for the simplified
model

y(si ) = w(si ) + ε(si ),

ε(si ) ∼ N
(
0, τ 2)

,w(·) ∼ GP
{
0, λ−1

n Cα(·, ·)},(9)

for i = 1, . . . , n. Compared to the spatial model (1), the
model (9) does not contain the regression term x(s)T β;

however, our theory includes this regression term later by
modifying the covariance function; see Corollary 3.3 be-
low. The tuning parameter λn is a user-chosen determin-
istic sequence that depends on n. In real applications, one
can simply set λn = 1, but one can also choose λn such
that the posterior convergence rate is minimax optimal;
see Theorem 3.2 below and the discussions therein.

We introduce some theoretical definitions used in stat-
ing our results. Let α0 be the true kernel parameter.
Let Ps be a design distribution of s over D, L2(Ps)

be the L2 space under Ps, the inner product in L2(Ps)

is defined as 〈f,g〉L2(Ps) = EPs(fg) for any f,g ∈
L2(Ps) where EPs(·) represents an expectation taken
with with respect to the distribution, Ps. For any f ∈
L2(Ps) and s ∈ D, define the linear operator (Tα0f )(s) =∫
D Cα0(s, s′)f (s′) d Ps(s′). According to the Mercer’s the-

orem, there exists an orthonormal basis {ϕi(s)}∞i=1 in
L2(Ps), such that Cα0(s, s′) = ∑∞

i=1 μiϕi(s)ϕi(s′), where
μ1 ≥ μ2 ≥ · · · ≥ 0 are the eigenvalues and {ϕi(s)}∞i=1
are the eigenfunctions of Tα0 . The trace of the kernel
Cα0 is defined as tr(Cα0) = ∑∞

i=1 μi . Any f ∈ L2(Ps)

has the series expansion f (s) = ∑∞
i=1 θiϕi(s), where

θi = 〈f,ϕi〉L2(Ps). The reproducing kernel Hilbert space
(RKHS) H attached to Cα0 is the space of all functions
f ∈ L2(Ps) such that the H-norm ‖f ‖2

H
= ∑∞

i=1 θ2
i /μi <

∞. The RKHS H is the completion of the linear space of
functions defined as

∑I
i=1 aiCα0(si , ·), where I is a posi-

tive integer, si ∈ D and ai ∈ R (i = 1, . . . , I ); see van der
Vaart and van Zanten (2008) for more details on RKHS.

We impose the following assumptions:

A.1 (Sampling) The locations S = {s1, . . . , sn} and s∗
are independently drawn from the same sampling distri-
bution Ps. S1, . . . ,Sk is a random disjoint partition of S ,
each with size m = n/k.

A.2 (True model) The true function w0 is an element
of the RKHS H attached to the kernel Cα0 . At a location
s, the observation is y(s) = w0(s) + ε(s), where ε(s) is a
white noise process with the true variance τ 2

0 < ∞.
A.3 (Trace class kernel) tr(Cα0) < ∞.
A.4 (Moment condition) There are positive constants

ρ and q > 4 such that EPs{ϕ2q
i (s)} ≤ ρ2q for every i ∈ N.

The random partition in A.1 guarantees that each indi-
vidual subset Sj (j = 1, . . . , k) is a random sample from
Ps. In general, the RKHS H in A.2 can be a smaller
space relative to the support of the GP prior. While we
use w0 ∈ H in A.2 mainly for technical simplicity, this
assumption can be possibly relaxed by considering sieves
with increasing H-norms, similar to Assumption B′ and
Theorem 2 in Zhang, Duchi and Wainwright (2015). Fur-
thermore, A.2 only requires that the true unknown error
distribution to have a finite variance. Although we fit the
data using the normal error in model (9), our theory below
allows this error distribution to be misspecified and not
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normal; therefore, our posterior convergence rate results
also hold for heavy-tailed error distributions such as t4,
which are more general than van der Vaart and van Zan-
ten (2011) whose techniques fully depend on the normal
error assumption. In A.3, tr(Cα) measures the size of the
covariance function and imposes conditions on the regu-
larity of functions that DISK can learn. A.4 on the eigen-
functions controls the error in approximating Cα0(s, s′) by
a finite sum, similar to Assumption A in Zhang, Duchi and
Wainwright (2015).

We first consider the case where both the error variance
τ 2 and the kernel parameter α are fixed and known, simi-
lar to van der Vaart and van Zanten (2011). We extend our
results to a special case where τ 2 is assigned a prior with
bounded support in Corollary 1.1 of the Supplementary
Material.

A.5 (Fixed parameters) α and τ 2 are fixed at their true
values α = α0, τ 2 = τ 2

0 .

We begin by examining the Bayes L2-risk of the DISK
posterior for estimating w0 in (9). Let w(s∗) be a ran-
dom variable that follows the DISK posterior for estimat-
ing w0(s∗). Let Es∗ , ES and Ey,w(s∗)|S,s∗ , respectively, be
the expectations with respect to the distributions of s∗, S
and {y,w(s∗)} given S , s∗. Given the random partition as-
sumption in A.1, each individual subset Sj (j = 1, . . . , k)
is a random sample from Ps. By A.5, we can drop the sub-
script “0” in α0 and τ 2

0 . Then w(s∗) given y, S , s∗ has the
density N(m,v), where

m = 1

k

k∑
j=1

cT
j,∗

(
Cj,j +τ 2λn

k
I
)−1

yj ,

v1/2 = 1

k

k∑
j=1

v
1/2
j ,(10)

vj = λ−1
n

{
c∗,∗ − cT

j,∗
(

Cj,j +τ 2λn

k
I
)−1

cj,∗
}
,

cT
j,∗ = [cov{w(sj1),w(s∗)}, . . . , cov{w(sjm),w(s∗)}] and

c∗,∗ = cov{w(s∗),w(s∗)}. The Bayes L2-risk of DISK in
estimating w0 is Es∗ ES Ey,w(s∗)|S,s∗{w(s∗) − w0(s∗)}2.
This risk can be used to quantify how quickly the DISK
posterior concentrates around the unknown true surface
w0(·) as the total sample size n increases to infinity. The
convergence rate of this Bayes L2-risk toward zero also
gives the posterior contraction rate of the DISK posterior
defined in the same way as in Bayesian nonparametrics,
such as van der Vaart and van Zanten (2011, Theorem 2).
When the parameters τ 2 and α are fixed and known, it is
straightforward to show (see the proof of Theorem 3.1 in
the Supplementary Material) that this Bayes L2-risk can
be decomposed into the squared bias, the variance of sub-
set posterior means and the variance of DISK posterior

terms as

bias2 = Es∗ ES
{
cT∗

(
k L+τ 2λn I

)−1 w0

− w0
(
s∗)}2

,

varmean = τ 2
Es∗ ES

{
cT∗

(
k L+τ 2λn I

)−2 c∗
}
,

varDISK = Es∗ ES
{
v
(
s∗)}

,

(11)

where v(s∗) = Ey|S[var{w(s∗) | y}], cT∗ = (cT
1,∗, . . . , cT

k,∗),
w0j = {w0(sj1), . . . ,w0(sjk)} for j = 1, . . . , k, wT

0 =
(w01, . . . ,w0k) and L is a block-diagonal matrix with
C1,1, . . . ,Ck,k along the diagonal. The next theorem pro-
vides theoretical upper bounds for each of the three terms
in (11).

THEOREM 3.1. If Assumptions A.1–A.5 hold, then

Bayes L2 risk

= Es∗ ES Ey,w(s∗)|S,s∗
{
w(s∗) − w0(s∗)

}2

= bias2 + varmean + varDISK,

bias2 ≤ 8τ 2λn

n
‖w0‖2

H

+ ‖w0‖2
H

inf
d∈N

[
8n

τ 2λn

ρ4 tr(Cα) tr
(
Cd

α

)

+ μ1R(m,n, d, q)

]
,

varmean

≤
(

2n

kλn

+ 4‖w0‖2
H

k

)
inf
d∈N

[
μd+1

+ 12n

τ 2λn

ρ4 tr(Cα) tr
(
Cd

α

) + R(m,n, d, q)

]

+ 12τ 2λn

kn
‖w0‖2

H
+ 12

τ 2

n
γ

(
τ 2λn

n

)
,

varDISK

≤ 3
τ 2

n
γ

(
τ 2λn

n

)

+ inf
d∈N

[{
4n

τ 2λ2
n

tr(Cα) + 1

λn

}
tr

(
Cd

α

)

+ λ−1
n tr(Cα)R(m,n, d, q)

]
,

(12)

where N is the set of all positive integers, A is a global
positive constant that does not depend on any of the quan-
tities here, and

b(m,d, q) = max
(√

max(q, logd),
max(q, logd)

m1/2−1/q

)
,

R(m,n, d, q) =
{
Aρ2b(m,d, q)γ (τ 2λn/n)√

m

}q

,
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γ (a) =
∞∑
i=1

μi

μi + a
for a > 0,

tr
(
Cd

α

) =
∞∑

i=d+1

μi.

These upper bounds are similar to the bounds obtained
in Theorem 1 of Zhang, Duchi and Wainwright (2015)
for the frequentist distributed estimator in kernel ridge re-
gression. Although the upper bounds in (12) appear very
complicated and involve many terms, the dominant term

among them is τ 2

n
γ (τ 2λn

n
), where the function γ (·) is re-

lated to the “effective dimensionality” of the covariance
function Cα (Zhang, 2005). This term determines how fast
the Bayes L2-risk converges to zero, as long as k is chosen
to be some proper order of n such that all the other terms
in the upper bounds of (12) can be made negligible com-

pared to τ 2

n
γ (τ 2λn

n
). In particular, the term R(m,n, d, q)

that quantifies the random error and appears in the in-
fimums in all three upper bounds of (12) generally de-
creases with m and increases with k; therefore, to ensure
the dominance of τ 2

n
γ (τ 2λn

n
), k cannot increase too fast

with n; see Theorem 3.2 below.
In contrast to the frequentist literature such as Zhang,

Duchi and Wainwright (2015), a significant difference in
our Theorem 3.1 is that our risk bounds involve two differ-
ent variance terms. Our analysis naturally introduces the
variance term varDISK that corresponds to the variance of
the DISK posterior distribution, while frequentist kernel
ridge regression only finds a point estimate of w0, and
thus does not include this variance term. Each of the three
upper bounds in Theorem 3.1 can be made close to zero as
n increases to ∞ and k is chosen to grow at an appropriate
rate depending on n. The next theorem finds the appropri-
ate order for k in terms of n, such that the DISK poste-
rior achieves nearly minimax optimal rates in its Bayes
L2-risk (12), for three types of commonly used covari-
ance functions/kernels, (i) degenerate kernels, (ii) kernels
with exponentially decaying eigenvalues and (iii) kernels
with polynomially decaying eigenvalues. The kernel Cα

is a degenerate kernel of rank d∗ if there is some constant
positive integer d∗ such that μ1 ≥ μ2 ≥ · · · ≥ μd∗ > 0
and μd∗+1 = μd∗+2 = · · · = μ∞ = 0.

THEOREM 3.2. If Assumptions A.1–A.5 hold, then as
n → ∞:

(i) if Cα is a degenerate kernel of rank d∗, λn =
1 and k ≤ cn

q−4
q−2 /(logn)

2q
q−2 for some constant c >

0, then the Bayes L2-risk of DISK posterior satisfies
Es∗ ES Ey,w(s∗)|S,s∗{w(s∗) − w0(s∗)}2 = O(n−1);

(ii) if μi ≤ c1μ exp(−c2μiκ) for some constants c1μ >

0, c2μ > 0, κ > 0 and all i ∈ N, λn = 1 and k ≤
cn

q−4
q−2 /(logn)

2(qκ+q−1)
κ(q−2) for some constant c > 0, then

the Bayes L2-risk of DISK posterior satisfies Es∗ ES ×
Ey,w(s∗)|S,s∗ {w(s∗) − w0(s∗)}2 = O{(logn)1/κ/n};

(iii) if μi ≤ cμi−2η for some constants cμ > 0, η >

q−1
q−4 and all i ∈ N, λn = 1 and k ≤ cn

(q−4)η−(q−1)
(q−2)η /

(logn)
2q

q−2 for some constant c > 0, then the BayesL2-risk
of DISK posterior satisfies Es∗ ES Ey,w(s∗)|S,s∗{w(s∗) −
w0(s∗)}2 = O(n

− 2η−1
2η ) and

(iv) if μi ≤ cμi−2η for some constants cμ > 0, η >
q−1
q−4 and all i ∈ N, λn = c1n

1/(2η+1), and k ≤ c2 ×
n

(2η−1)q−8η
(q−2)(2η+1) /(logn)

2q
q−2 for some positive constants c1,

c2, then the Bayes L2-risk of DISK posterior satisfies

Es∗ ES Ey,w(s∗)|S,s∗{w(s∗) − w0(s∗)}2 = O(n
− 2η

2η+1 ).

In Theorem 3.2, the space of w0 is the RKHS H at-
tached to Cα by Assumption A.2. In Case (i), the RKHS
of Cα is a d∗-dimensional space of functions. For exam-
ple, the covariance functions in subset of regressors ap-
proximation (Quiñonero-Candela and Rasmussen, 2005)
and predictive process (Banerjee et al., 2008) are both de-
generate with their ranks equaling the number of inducing
variables and knots, respectively. One example of Case
(ii) is the squared exponential kernel, which is popular in
machine learning. The squared exponential kernel defined
on R with Ps being a Gaussian measure has exponentially
decaying eigenvalues (Zhu et al., 1998), and it RKHS only
contains functions with infinite smoothness. The rate of
decay of the L2-risks in Case (i) and Case (ii) with κ = 2
are known to be minimax optimal (Raskutti, Wainwright
and Yu, 2012, Yang, Pilanci and Wainwright, 2017).

Cases (iii) and (iv) apply to the class of kernels with
polynomially decaying eigenvalues. For example, con-
sider the Matérn covariance function Cσ 2,φ,ν(s, s′) =
σ 2 21−ν

�(ν)
(φ‖ s− s′ ‖)ν Kν(φ‖ s− s′ ‖), where s, s′ ∈ D ⊂

R
d , σ 2 > 0, φ > 0, α = (σ 2, φ), ν ≥ d/2 is known,

�(·) is the gamma function, and Kν(·) is the modified
Bessel function of the second kind. Then the RKHS
of Cσ 2,φ,ν(s, s′) defined on a compact domain D with
Lipschitz boundary is norm equivalent to the Sobolev
space with order ν + d/2 (Wendland (2005, Corollary
10.48)). Furthermore, when Ps is the uniform distri-
bution on D, the eigenvalues of Matérn kernels decay
as μi ≤ cμi−2ν/d for all i ∈ N, such that η = ν/d in
Cases (iii) and (iv) (Santin and Schaback (2016, The-
orem 6)). In the special case of ν = 1/2 and d = 1,
Cσ 2,φ,1/2(s, s′) = σ 2 exp(−φ‖ s− s′ ‖) is the exponential
kernel, whose eigenfunctions are bounded sine and co-
sine functions, so (A.4) is also satisfied with q = +∞
(Van Trees (2001, Section 3.4.1)). It is unknown whether
the eigenfunctions of Matérn kernels can be uniformly
bounded for general ν and d .

When η = ν/d in Cases (iii) and (iv), the rateO(n− 2ν−d
2ν )

for the Bayes L2-risk in Case (iii) is not minimax opti-
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mal for estimating functions in the Sobolev space of or-

der ν + d/2, whereas the faster rate O(n− 2ν
2ν+d ) in Case

(iv) is minimax optimal. This is because (iv) has used
the additional optimal tuning parameter λn = c1n

ν/(2ν+d),
while setting λn = 1 is suboptimal in this case. The use
of a tuning parameter to achieve optimal convergence
is common in Gaussian process regression and kernel
ridge regression (Zhang, Duchi and Wainwright, 2015,
Yang, Bhattacharya and Pati, 2017). Although van der
Vaart and van Zanten (2011) have shown the minimax
optimal posterior convergence rates for the Matérn kernel
without using tuning parameters, their proof only works
when the true error distribution of ε(s) is sub-Gaussian.
In comparison, our Assumption A.1 only requires that
ε(s) has a finite variance without the normality assump-
tion, which is more general and allows the model (9) to
be misspecified in the error distribution.

For the conditions on k, in the case when q = +∞,
the upper bounds on k in (i), (ii), (iii) and (iv) re-
duce to k = O{n/(logn)2}, k = O{n/(logn)2/κ}, k =
O{nη−1

η /(logn)2} and k = O{n 2η−1
2η+1 /(logn)2}, respec-

tively. The convergence rate results in Theorem 3.2 hold
as long as k does not grow too fast with n.

We can generalize the results in Theorems 3.1 and 3.2
to the model (1). Besides A.1–A.4, we further make the
following assumption on x(·) and the prior on β:

B.1 All p components of x(·) are nonrandom functions
in S . The prior on β is N(μβ,�β) and it is independent
of the prior on w(·), which is GP{0,Cα(·, ·)}.
By the normality and joint independence in Assumption
B.1, it is straightforward to show that the mean func-
tion x(s)T β +w(s) has a GP prior GP{x(·)T μβ , Čα(·, ·)},
where the modified covariance function Čα is given by

Čα(s1, s2)

= cov
{
x(s1)

T β +w(s1),x(s2)
T β +w(s2)

}
(13)

= x(s1)
T �β x(s2) + Cα(s1, s2),

for any s1, s2 ∈ S . With this modified covariance function,
we have the following corollary.

COROLLARY 3.3. If Assumption B.1 holds, Assump-
tions A.1–A.5 hold with all Cα replaced by Čα in (13),
and μβ = 0, the conclusions of Theorems 3.1 and 3.2 hold
for the Bayes L2-risk of the mean surface x(·)T β +w(·)
in the model (1).

4. EXPERIMENTS

4.1 Simulation Setup

This section presents a comparative study of important
nondistributed and distributed approaches on large spatial

data based on the performance in learning the process pa-
rameters, interpolating the unobserved spatial surface and
predicting the response at new locations. Two simulation
studies and a real data analysis are presented. The first
simulation (Simulation 1) generates the data from a spatial
linear model, where the spatial process is simulated from
a GP with an exponential covariance function, leading to a
fairly rough (nowhere differentiable) spatial surface. Fol-
lowing Gramacy and Apley (2015), we use an analytic
function with local features to simulate the data in the sec-
ond simulation (Simulation 2). The number of locations in
the two simulations is moderately large with n = 10,000.
Our real data analysis is based on a large data subset of sea
surface temperature data with n = 1,000,000 locations.
For the two simulations and in the real data analysis, the
response at (n + l) locations is modeled as

y(si ) = β0 + x(si )β1 + w(si ) + εi,(14)

εi ∼ N(0, τ 2), si ∈ D ⊂ R
2 for i = 1, . . . , n + l, where

D is the spatial domain, y(si ), x(si ), w(si ) and εi are the
response, covariate, spatial process and idiosyncratic error
values at the location si , β0 is the intercept, β1 models
the covariate effect and l is the number of new locations
where surface interpolation and prediction are sought.

A number of popular and state-of-the-art nondistributed
Bayesian and non-Bayesian spatial models are compared
with a few important distributed Bayesian approaches in
the two simulations and in the real data analysis. Among
nondistributed Bayesian and non-Bayesian methods, we
fit: (i) Integrated nested Laplace approximation (INLA)
using the INLA package in R (Illian, Sørbye and Rue,
2012); (ii) LatticeKrig (Nychka et al., 2015) using the
LatticeKrig package in R with 3 resolutions (Nychka
et al., 2016); (iii) modified predictive process (MPP) using
the spBayes package in R with the full data; (iv) near-
est neighbor Gaussian process (NNGP) using the spN-
NGP package in R with the number of nearest neighbors
m set to be 10, 20 and 30 (Datta et al., 2016); (v) locally
approximated Gaussian process (laGP) using the laGP
package in R (Gramacy and Apley, 2015); (vi) Vecchia’s
approximation using the GPvecchia package in R with
the number of nearest neighbors m set to be 10, 20 and
30 (Katzfuss and Guinness, 2021); (vii) Fisher Scoring
of Vecchia’s Approximation using the GpGp (Guinness,
2021).

In fitting (i), (ii), (iv), (v), (vi), (vii), we assume an
exponential correlation in the random field given by
cov{w(s),w(s′)} = σ 2e−φ‖ s− s′ ‖, s, s′ ∈ D. To fit MPP
for (iii), the MPP prior on w(·) is fitted with rank r =
200,400 in Simulations 1, 2 and with r = 400,600 in the
real data analysis, where r knots are selected randomly
from D. For Bayesian model fitting, we apply a flat prior
on (β0, β1), a IG(2,0.1) prior on τ 2, an IG(2,2) prior on
σ 2 and a uniform prior on φ, where IG(a, b) is the inverse
Gamma distribution with mean b/(a − 1).
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The nondistributed approaches are compared with dis-
tributed Bayesian methods for model-free subset posterior
aggregation discussed in Section 3 of this article. They
are (viii) CMC (Scott et al., 2016); (ix) DPMC (Xue and
Liang, 2019); (x) WASP (Srivastava et al., 2015); (xi)
DISK (with ξ = 10−4), for our exposition. Identical pri-
ors, covariance functions, ranks and knots are used for the
nondistributed process models and their distributed coun-
terparts for a fair comparison. We emphasize that the dis-
tributed methods do not compete with the nondistributed
methods in (i)–(vii). Instead, each of them can be po-
tentially embedded in the second step of any of the dis-
tributed methods for improved performance because the
distributed approaches are not model-specific. More im-
portantly, MPP is not considered to be the state-of-the-
art, so it is instructive to investigate the competitiveness
of (viii)–(xi) with MPP fitted on each subset.

In the interest of space, we present the performance
comparison between distributed and nondistributed ap-
proaches only, and similar comparisons between CMC,
DISK, DPMC and WASP are presented in the Supple-
mentary Material. Because DISK shows better or similar
performance as its distributed competitors in all simula-
tions, we only present results from DISK with the nondis-
tributed methods in the main text. Notably, DISK com-
bines one-dimensional marginals of subset posteriors, but
DPMC and WASP aggregate subset posteriors of mul-
tivariate parameters; therefore, similar performances of
DISK, DPMC and WASP in the Supplementary Material
shows that combining subset posteriors of univariate pa-
rameters does not lead to any significant loss in inference
or predictions.

Any distributed method has two important choices: (A)
the value of k and (B) the construction of subsets. We
choose k in our experiments based on two broad guide-
lines: (a) available computational resources and (b) the
subset size to draw reliable inference on the spatial sur-
face with data subsets. To assess (b), we plot the his-
tograms or density estimates of subset posterior draws of
representative parameters and see if they are very far from
each other. If so, the subset posteriors fail to provide a
noisy approximation of the full data posterior, resulting
in inaccuracy of the combined pseudo posterior for a dis-
tributed approach. Empirically, we also propose comput-
ing the pairwise Wasserstein or total variation distance be-
tween the subset posteriors of representative parameters.
If the average of these distances is much larger than the
average distance between the combined and subset pos-
terior distributions, then the combined pseudo posterior
provides a poor approximation of the full data posterior.
Assuming that the fitted model can reasonably capture
variation of the data, these checks would imply that one
has to fit a distributed approach with a smaller value of k.

Regarding (B), we present performance of the dis-
tributed approaches when data subsets are constructed (a)

under a random partitioning scheme and (b) under a grid
partitioning scheme. Random partitioning scheme ran-
domly partitions the data into subsets. In contrast, grid
partitioning scheme partitions the domain into a number
of subdomains and creates each subset with representa-
tive samples from each subdomain. All tables in the main
article and in Supplementary Material show results from
both partitioning schemes.

We run all the experiments on an Oracle Grid En-
gine cluster with 2.6 GHz 16 core compute nodes. The
nondistributed methods (INLA, LatticeKrig, MPP, NNGP,
laGP, GPvecchia and GpGp) and the distributed meth-
ods (DISK, DPMC, CMC and WASP) are allotted mem-
ory resources of 64 GB and 16 GB, respectively. Every
MCMC algorithm runs for 10,000 iterations, out of which
the first 5000 MCMC samples are discarded as burn-ins
and the rest of the chain is thinned by collecting every fifth
MCMC sample. We also refer to Section 5 of the Supple-
mentary Material that presents comparison between ef-
fective sample size of model parameters averaged over
all subsets to the effective sample size of model param-
eters from the full data posterior in simulations. We com-
pare the quality of prediction and estimation of spatial
surface at predictive locations S∗ = {s∗

1, . . . , s∗
l }. If w(s∗

i′)
and y(s∗

i′) are the value of the spatial surface and response
at s∗

i′ ∈ S∗, then the estimation and prediction errors are
defined as

Est Err2 = 1

l

l∑
i′=1

{
ŵ

(
s∗
i′
) − w

(
s∗
i′
)}2

,

Pred Err2 = 1

l

l∑
i′=1

{
ŷ
(
s∗
i′
) − y

(
s∗
i′
)}2

,

(15)

where ŵ(s∗
i′) and ŷ(s∗

i′) denote the point estimates of
w(s∗

i′) and y(s∗
i′) obtained using any distributed or nondis-

tributed methods. For sampling-based methods, we set
ŵ(s∗

i′) and ŷ(s∗
i′) to be the medians of posterior MCMC

samples for w(s∗
i′) and y(s∗

i′), respectively, for i′ =
1, . . . , l. We also estimate the pointwise 95% credible or
confidence intervals (CIs) of w(s∗

i′) and predictive inter-
vals (PIs) of y(s∗

i′) for every si′ ∈ S∗ and compare the
CI and PI coverages and lengths for every method. Fi-
nally, we compare the performance of all the methods
for parameter estimation using the posterior medians and
the 95% CIs. Posterior medians are reported instead of
posterior means as point estimators since they are eas-
ily estimated for the DISK combined posterior following
equation (8).

4.2 Simulation 1: Spatial Linear Model Based on GP

Our first simulation generates data using the spatial lin-
ear model in (14). We set D = [−2,2] × [−2,2] ⊂ R

2,
n = 10,000, l = 500 and uniformly draw (n + l) spatial
locations si = (si1, si2) in D (i = 1, . . . , n+ l). The spatial
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TABLE 1
The errors in estimating the parameters β = (β0, β1), σ 2, φ, τ2 in Simulation 1. The parameter estimates for the Bayesian methods β̂ = (β̂0, β̂1),

σ̂ 2, φ̂, τ̂2 are defined as the posterior medians of their respective MCMC samples and their true values are β0 = (1,2), σ 2
0 = 1, φ0 = 4 and

τ2
0 = 0.1. The entries in the table are averaged across 10 simulation replications

‖β̂ − β0 ‖ |σ̂ 2 − σ 2
0 | |φ̂ − φ0| |τ̂2 − τ2

0 |

INLA 0.21 – – –

LaGP 0.08 – – –

NNGP (m = 10) 0.11 0.07 0.37 0.00
NNGP (m = 20) 0.12 0.09 0.51 0.00
NNGP (m = 30) 0.11 0.11 0.58 0.00

LatticeKrig 0.11 0.09 1.59 0.06
GpGp 0.08 0.11 0.64 0.01
Vecchia (m = 10) 0.10 0.11 0.51 0.01
Vecchia (m = 20) 0.10 0.10 0.55 0.01
Vecchia (m = 30) 0.10 0.38 1.13 0.01

MPP (r = 200) 0.35 0.23 1.98 0.17
MPP (r = 400) 0.19 0.09 1.88 0.07

Random Partitioning
DISK (r = 200, k = 10) 0.09 0.11 0.64 0.01
DISK (r = 400, k = 10) 0.09 0.11 0.64 0.01
DISK (r = 200, k = 20) 0.10 0.12 0.66 0.02
DISK (r = 400, k = 20) 0.10 0.12 0.66 0.02

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.09 0.12 0.62 0.01
DISK (r = 400, k = 10) 0.09 0.12 0.62 0.01
DISK (r = 200, k = 20) 0.10 0.12 0.63 0.01
DISK (r = 400, k = 20) 0.10 0.12 0.64 0.01

surface w(·) at the (n+ l) locations, {w(s1), . . . ,w(sn+l)},
is simulated from GP(0,σ 2 exp{−φ‖ s− s′ ‖)}, where s,
s′ ∈ D, φ = 4 and σ 2 = 1. The covariance function en-
sures the generated spatial surface is continuous every-
where but differentiable nowhere, which is a more fa-
miliar simulation scenario in the spatial context. Setting
β0 = 1, β1 = 2 and τ 2 = 0.1, we simulate the responses
at (n + l) locations using (14). The three-step distributed
frameworks are applied using the low-rank MPP priors
with k = 10 and k = 20, having average subset sizes 1000
and 500, respectively. We replicate this simulation ten
times.

DISK with MPP prior, NNGP and GPvecchia have sim-
ilar performance in parameter estimation (Tables 1 and 2).
The parameter estimates obtained using DISK are very
close to their true values and the estimation errors are
very similar to those of NNGP and non-Bayesian meth-
ods based on the Vecchia approximation, including GpGp
and GPvecchia. The 95% credible intervals of β0, β1, τ 2

in DISK cover the true values and their lower and upper
quantiles are very similar to those of NNGP. DISK under-
estimates σ 2 and overestimates φ slightly. Both results are
the impacts of parent MPP prior, which also shows less
accurate estimation of the posterior distribution of σ 2 and

φ for the two choices of the number of knots r . More im-
portantly, the impacts the choice of r on parameter estima-
tion are less severe in the distributed methods compared
to that in its parent MPP prior. The CIs are not available
from GPvecchia, LatticeKrig and laGP, so that the cells
corresponding these methods are kept blank in Table 2.

Despite the discrepancy in parameter estimates, the cor-
relation function estimates obtained using the combined
posteriors from distributed competitors (DISK pseudo
posterior being a representative) are very close to those
obtained using NNGP and GPvecchia (Figure 1). Simi-
lar to the observations of Sang and Huang (2012), there
is considerable discrepancy between the estimated and
true correlation functions when the MPP prior is used.
In contrast, for the same choices of r as its parent MPP
prior, DISK’s estimate of the correlation function is much
closer to the truth and is insensitive to the choice of k =
10,20. DISK estimates are similar to those obtained using
Vecchia-type approximation, except when the number of
nearest neighbor is 30 and the GPvecchia-based estimate
of the correlation function has a significant positive bias.

The predictive performance of the representative dis-
tributed competitor DISK is little inferior to that of
NNGP. NNGP, MPP and DISK have close to nominal
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TABLE 2
The estimates of parameters β = (β0, β1), σ 2, φ, τ2 and their 95% marginal credible intervals (CIs) in Simulation 1. The parameter estimates for
the Bayesian methods β̂ = (β̂0, β̂1), σ̂ 2, φ̂, τ̂2 are defined as the posterior medians of their respective MCMC samples. The parameter estimates

and upper and lower quantiles of 95% CIs are averaged over 10 simulation replications; “‘-”’ indicates that the uncertainty estimates are not
provided by the software or the competitor

β0 β1 σ 2 φ τ2

Truth 1.00 2.00 1.00 4.00 0.10

Parameter Estimates
INLA 1.00 2.00 – – –

laGP 1.01 2.00 – – –

NNGP (m = 10) 1.02 2.00 0.99 4.00 0.10
NNGP (m = 20) 0.98 2.00 0.94 4.30 0.10
NNGP (m = 30) 0.99 2.00 0.94 4.34 0.10

LatticeKrig 1.01 2.00 0.93 2.42 0.16
GpGp 0.99 2.00 0.92 4.43 0.11
Vecchia (m = 10) 0.99 2.00 0.94 3.93 0.09
Vecchia (m = 20) 0.99 2.00 0.95 3.93 0.09
Vecchia (m = 30) 1.00 2.00 1.10 3.68 0.09

MPP (r = 200) 1.26 2.00 0.77 2.02 0.27
MPP (r = 400) 1.08 2.00 0.99 2.14 0.17
DISK (r = 200, k = 10) 1.00 2.00 0.92 4.35 0.11
DISK (r = 400, k = 10) 1.00 2.00 0.92 4.35 0.11
DISK (r = 200, k = 20) 1.00 2.00 0.91 4.38 0.11
DISK (r = 400, k = 20) 1.00 2.00 0.91 4.38 0.11

95% Credible Intervals
INLA (0.26, 1.73) (1.98, 2.02) – – –

laGP (0.99, 1.03) (1.98, 2.02) – – –

NNGP (m = 10) (0.87, 1.15) (1.99, 2.01) (0.86, 1.24) (3.15, 4.70) (0.09, 0.11)
NNGP (m = 20) (0.85, 1.13) (1.99, 2.01) (0.82, 1.14) (3.46, 4.95) (0.09, 0.11)
NNGP (m = 30) (0.86, 1.12) (1.99, 2.01) (0.81, 1.11) (3.62, 5.03) (0.09, 0.11)

LatticeKrig – – – – –
GpGp (0.75, 1.23) (1.99, 2.01) – – –
Vecchia (m = 10) – – – – –
Vecchia (m = 20) – – – – –
Vecchia (m = 30) – – – – –

MPP (r = 200) (1.06,1.26) (1.98,2.00) (0.70,0.85) (2.01,2.07) (0.24,0.30)

MPP (r = 400) (0.76,1.08) (1.99,2.00) (0.91,1.08) (2.07,2.26) (0.15,0.19)

DISK (r = 200, k = 10) (0.92,1.08) (1.99,2.01) (0.86,0.98) (4.00,4.69) (0.09,0.12)

DISK (r = 400, k = 10) (0.92,1.08) (1.99,2.01) (0.86,0.98) (4.00,4.69) (0.09,0.12)

DISK (r = 200, k = 20) (0.94,1.06) (1.98,2.01) (0.86,0.96) (4.07,4.67) (0.09,0.13)

DISK (r = 400, k = 20) (0.94,1.06) (1.99,2.01) (0.86,0.96) (4.07,4.68) (0.09,0.13)

predictive coverage, but the PIs of NNGP have smaller
lengths for every choice of nearest neighbor. The PI cover-
age values and lengths of MPP and DISK are similar and
stable for the different choices of r and k. PIs in GPvec-
chia have the smallest length and their coverage values are
smaller than the nominal value for all the three choices of
nearest neighbor. Focusing on spatial surface interpola-
tion, the estimation error of DISK is smaller than that of
MPP for both choices of r when k = 10 and is slightly
larger when k = 20 and r = 400. Similarly, MPP’s cover-

age of the spatial surface is smaller than the nominal value
when r = 200, but DISK shows better coverage than its
parent MPP prior for both choices of k. Consequently,
the lengths of DISK’s credible intervals are slightly larger
than those obtained using its parent MPP prior.

In summary, the distributed methods are competitive
with state-of-the-art nondistributed methods NNGP and
GPvecchhia in inference on the spatial surface and predic-
tions, respectively. laGP is the only nondistributed com-
peting method that yields comprehensively better inferen-
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FIG. 1. Estimated covariance function using three types of GP priors on the spatial surface. The true covariance function is
cov{w(si ),w(sj )} = exp(−4‖ si − sj ‖2).

tial and predictive performance than all distributed meth-
ods, but it is not designed to provide estimates for the σ 2,
φ and τ 2. LatticeKrig has a very similar point estimation,
but inferior uncertainty quantification compared to GpGp
and GPvecchia. INLA underperforms in surface inter-
polation and prediction. Supplementary Material shows
comparative performance of distributed competitors and
also ensures that stochastic approximation does not im-

pact the mixing of the Markov chains on the subsets. The
model-free nature of the distributed methods also allows
us to fit a nearest neighbor approach, including NNGP, on
each subset to improve inference and expedite computa-
tions by multiple folds. Finally, the results show that the
random partitioning scheme yields little better point esti-
mation with similar uncertainty quantification compared
to a more sophisticated grid partitioning scheme.

TABLE 3
Inference on the values of spatial surface and response at the locations in S∗ in Simulation 1. The estimation and prediction errors are defined in
(15) and coverage and credible intervals are calculated pointwise for the locations in S∗. The entries in the table are averaged over 10 simulation

replications; “-” indicates that the estimates are not provided by the software or the competitor

Est Err Pred Err 95% CI Coverage 95% CI Length

GP Y GP Y GP Y

INLA – 0.90 – 0.80 – 0.17

laGP 0.20 0.28 0.98 0.95 2.06 1.04

NNGP (m = 10) 0.38 0.47 0.93 0.95 1.39 1.84
NNGP (m = 20) 0.38 0.47 0.93 0.95 1.38 1.81
NNGP (m = 30) 0.38 0.47 0.92 0.95 1.37 1.82

LatticeKrig 0.38 0.47 – 0.73 – 1.08
GpGp – 0.47 – – – –
Vecchia (m = 10) – 0.47 – 0.87 – 1.43
Vecchia (m = 20) – 0.47 – 0.86 – 1.41
Vecchia (m = 30) – 0.47 – 0.86 – 1.41

MPP (r = 200) 0.73 0.59 0.93 0.95 3.05 3.02
MPP (r = 400) 0.43 0.47 0.96 0.95 2.76 2.67

Random Partitioning
DISK (r = 200, k = 10) 0.55 0.64 0.97 0.97 3.20 3.45
DISK (r = 400, k = 10) 0.42 0.51 0.97 0.97 2.88 3.15
DISK (r = 200, k = 20) 0.58 0.67 0.97 0.97 3.25 3.51
DISK (r = 400, k = 20) 0.46 0.55 0.97 0.97 2.98 3.25

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.75 0.80 0.97 0.97 3.45 3.45
DISK (r = 400, k = 10) 0.65 0.72 0.97 0.97 3.15 3.15
DISK (r = 200, k = 20) 0.76 0.82 0.97 0.97 3.51 3.51
DISK (r = 400, k = 20) 0.68 0.74 0.97 0.97 3.26 3.26
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4.3 Simulation 2: Spatial Linear Model Based on
Analytic Spatial Surface

Our second simulation generates data by setting w(·)
in (14) to be an analytic function. For any s ∈ [−2,2],
define the function f0(s) = e−(s−1)2 + e−0.8(s+1)2 −
0.05 sin{8(s + 0.1)} and set w(si ) = −f0(si1)f0(si2). Al-
though the function w(·) simulated in this way is the-
oretically infinitely smooth, the response surface simu-
lated from (14) exhibits complex local behavior, which is
challenging to capture using spatial process-based mod-
els as we demonstrate later. We set β0 = 1, β1 = 0 and
τ 2 = 0.01, and use the same values of the spatial domain,
k, and r as used in the previous simulation, and replicate
this simulation 10 times.

The parameter estimation results in this simulation are
similar to those in Simulation 1 with one important ex-
ception in inference on β0 (Tables 4 and 5). All the meth-
ods except GpGp show excellent performance in estimat-
ing τ 2; however, NNGP, GPvecchia and MPP estimate
β0 with a significant bias. 95% credible intervals of β0
computed from DISK has better coverage properties than
those of NNGP. Unlike our observation in the previous

TABLE 4
The errors in estimating the parameters β , τ2 in Simulation 2. The
parameter estimates for the Bayesian methods β̂ , τ̂2 are defined as

the posterior medians of their respective MCMC samples and β0 = 1
and τ2

0 = 0.01. The entries in the table are averaged across 10
simulation replications

‖β̂ − β0‖ |τ̂2 − τ2
0 |

INLA 0.18 –

LaGP – –

NNGP (m = 10) 0.84 0.03
NNGP (m = 20) 0.84 0.03
NNGP (m = 30) 0.84 0.03

LatticeKrig – 0.01
GpGp 0.31 0.39
Vecchia (m = 10) 0.85 0.01
Vecchia (m = 20) 0.85 0.01
Vecchia (m = 30) 0.85 0.01

MPP (r = 200) 0.75 0.05
MPP (r = 400) 0.48 0.04

Random Partitioning
DISK (r = 200, k = 10) 0.18 0.04
DISK (r = 400, k = 10) 0.13 0.04
DISK (r = 200, k = 20) 0.18 0.04
DISK (r = 400, k = 20) 0.13 0.04

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.03 0.09
DISK (r = 400, k = 10) 0.03 0.09
DISK (r = 200, k = 20) 0.02 0.09
DISK (r = 400, k = 20) 0.02 0.09

section, all the methods underestimate τ 2 slightly, and the
95% credible intervals of NNGP, MPP prior and DISK
fail to cover the true value. Similar to the previous simu-
lation results, DISK performs better than its parent MPP
prior for both choices of r .

The predictive and inferential performance of dis-
tributed methods in this simulation are also very similar
to those in Simulation 1. The prediction error, PI cover-
age and PI length of all the methods except GPvecchia are
fairly similar and are close to the nominal value. The PI
length of GPvecchia is the smallest, but its coverage val-
ues are critically low for all choices of nearest neighbor;
that is, GPvecchia has a relatively inferior performance
for estimating spatial surfaces that are not simulated from
a GP. The PI coverage values of distributed method DISK
is a little higher than those of NNGP and MPP priors
while the PI lengths of DISK are very close to those of
MPP and NNGP priors. A noticeable feature of our com-
parison is that the distributed methods improve the per-
formance of their parent MPP prior when r = 200. In this
case, the CI coverage values of distributed methods for
both choices of k are greater the nominal value, whereas
the parent MPP prior has fails to cover the spatial sur-
face. Intuitively, for most competitors in this simulation
the estimation of fixed and random effects are mixed up,
whereas the overall mean effect is estimated correctly by
all competitors.

As in Simulation 1, INLA still underperforms in surface
interpolation and prediction, and laGP maintains its su-
perior predictive and inferential performance, especially
because it is tuned for inference in such analytic surfaces
with many local features (Gramacy and Apley, 2015). Lat-
ticeKrig also offers excellent performance and it outper-
forms the distributed methods in terms of surface estima-
tion and prediction. Simulation 2 shows that grid based
partitioning yields better point estimation for β0, but infe-
rior point estimation for τ 2

0 (Table 4). This leads to little
better surface estimation for random partitioning scheme
than grid-based partitioning scheme, but practically in-
distinguishable predictive performance as demonstrated
in Table 6. We conclude that the distributed methods are
promising tools even when the spatial surface is not sim-
ulated from a GP.

4.4 Real Data Analysis: Sea Surface Temperature
Data

A description of the evolution and dynamics of the SST
is a key component of the study of the Earth’s climate.
SST data (in centigrade) from ocean samples have been
collected by voluntary observing ships, buoys and mil-
itary and scientific cruises for decades. During the last
20 years or so, the SST database has been complemented
by regular streams of remotely sensed observations from
satellite orbiting the earth. A careful quantification of



DISTRIBUTED KRIGING 17

TABLE 5
The estimates of parameters β , σ 2, φ, τ2 and their 95% marginal credible intervals (CIs) in Simulation 2. The parameter estimates for the

Bayesian methods β̂ , σ̂ 2, φ̂, τ̂2 are defined as the posterior medians of their respective MCMC samples. The parameter estimates and upper and
lower quantiles of 95% CIs are averaged over 10 simulation replications; “‘-”’ indicates that the uncertainty estimates are not provided by the

software or the competitor

β σ 2 φ τ2

Truth 1.00 – – 0.01

Parameter Estimates
INLA 0.8161 – – –

laGP – – – –

NNGP (m = 10) 0.2897 0.1933 0.1075 0.0091
NNGP (m = 20) 0.3002 0.1660 0.1059 0.0092
NNGP (m = 30) 0.2892 0.1557 0.1058 0.0093

LatticeKrig – – 0.0842 0.0099
GpGp 1.0346 0.0669 0.2643 0.1620
Vecchia (m = 10) 0.2792 0.4063 0.7796 0.0099
Vecchia (m = 20) 0.2792 0.2904 0.9479 0.0099
Vecchia (m = 30) 0.2792 0.2746 0.9587 0.0099

MPP (r = 200) 1.5634 0.1535 0.1185 0.0077
MPP (r = 400) 1.2333 0.1586 0.1200 0.0080
DISK (r = 200, k = 10) 1.0322 0.2133 0.1196 0.0087
DISK (r = 400, k = 10) 0.9830 0.2185 0.1402 0.0082
DISK (r = 200, k = 20) 1.0328 0.2133 0.1194 0.0087
DISK (r = 400, k = 20) 0.9822 0.2185 0.1402 0.0082

95% Credible Intervals
INLA (0.5320,1.2108) – – –

laGP – – – –

NNGP (m = 10) (0.2678,0.3143) (0.1568,0.2223) (0.1010,0.1339) (0.0088,0.0094)

NNGP (m = 20) (0.2801,0.3226) (0.1361,0.1906) (0.1009,0.1279) (0.0089,0.0095)

NNGP (m = 30) (0.2660,0.3103) (0.1293,0.1794) (0.1009,0.1284) (0.0090,0.0095)

LatticeKrig – – – –
GpGp (0.7090, 1.3601) – – –
Vecchia (m = 10) – – – –
Vecchia (m = 20) – – – –
Vecchia (m = 30) – – – –

MPP (r = 200) (0.9931,2.1464) (0.1307,0.1760) (0.1104,0.1327) (0.0073,0.0081)

MPP (r = 400) (0.6130,1.8412) (0.1269,0.1876) (0.1096,0.1480) (0.0076,0.0084)

DISK (r = 200, k = 10) (0.7961,1.2722) (0.1783,0.2418) (0.1088,0.1439) (0.0084,0.0091)

DISK (r = 400, k = 10) (0.8180,1.1582) (0.1743,0.2589) (0.1192,0.1773) (0.0079,0.0086)

DISK (r = 200, k = 20) (0.7987,1.2719) (0.1781,0.2417) (0.1087,0.1434) (0.0084,0.0091)

DISK (r = 400, k = 20) (0.8172,1.1568) (0.1721,0.2588) (0.1190,0.1806) (0.0079,0.0086)

variability of SST data is important for climatological re-
search, which includes determining the formation of sea
breezes and sea fog and calibrating measurements from
weather satellites (Di Lorenzo et al., 2008). A number of
articles have appeared to address this issue in recent years;
see Berliner, Wikle and Cressie (2000), Lemos and Sansó
(2009), Wikle and Holan (2011), Hazra and Huser (2021).

We consider the problem of capturing the spatial trend
and characterizing the uncertainties in the SST in the
west coast of mainland U.S., Canada and Alaska between
40◦–65◦ north latitudes and 100◦–180◦ west longitudes.

The data is obtained from NODC World Ocean Database
(https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html)
and the entire data corresponds to sea surface tempera-
ture measured by remote sensing satellites on 16th August
2016. All data locations are distinct and there is no time
replicate; therefore, we can practically ignore the tempo-
ral variation of sea surface temperature for our analysis.
After screening the data for quality control, we choose a
random subset of 1,000,800 spatial observations over the
selected domain. From these observations, we randomly
select 106 observations as training data and the remain-

https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html


18 GUHANIYOGI, LI, SAVITSKY AND SRIVASTAVA

TABLE 6
Inference on the values of spatial surface and response at the locations in S∗ in Simulation 2. The estimation and prediction errors are defined in
(15) and coverage and credible intervals are calculated pointwise for the locations in S∗. The entries in the table are averaged over 10 simulation

replications; “-” indicates that the estimates are not provided by the software or the competitor

Est Err Pred Err 95% CI Coverage 95% CI Length

GP Y GP Y GP Y

INLA – 0.1552 – 0.0755 – 0.0268

laGP 0.0004 0.0103 1.0000 0.9456 0.3890 0.3902

NNGP (m = 10) 0.5058 0.0104 0.0000 0.9439 0.1496 0.3949
NNGP (m = 20) 0.4908 0.0103 0.0000 0.9456 0.1392 0.3938
NNGP (m = 30) 0.5103 0.0103 0.0000 0.9479 0.1388 0.3969

LatticeKrig 0.0002 0.0101 0.9867 0.9463 – 0.3901
GpGp – 0.0103 – – – –
Vecchia (m = 10) – 0.0106 – 0.3559 – 0.0951
Vecchia (m = 20) – 0.0103 – 0.2815 – 0.0728
Vecchia (m = 30) – 0.0102 – 0.2612 – 0.0674

MPP (r = 200) 0.3732 0.0105 0.0000 0.9498 0.4061 0.4061
MPP (r = 400) 0.0623 0.0102 0.2946 0.9477 0.3976 0.3976

Random Partitioning
DISK (r = 200, k = 10) 0.0017 0.1035 1.0000 0.9696 0.5388 0.4449
DISK (r = 400, k = 10) 0.0009 0.1026 1.0000 0.9724 0.4477 0.4578
DISK (r = 200, k = 20) 0.0015 0.1041 1.0000 0.9646 0.5211 0.4248
DISK (r = 400, k = 20) 0.0007 0.1031 1.0000 0.9672 0.4253 0.4359

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.0394 0.1036 1.0000 0.9660 0.4452 0.4452
DISK (r = 400, k = 10) 0.0368 0.1028 1.0000 0.9594 0.4249 0.4249
DISK (r = 200, k = 20) 0.0304 0.1040 1.0000 0.9700 0.4590 0.4590
DISK (r = 400, k = 20) 0.0268 0.1030 1.0000 0.9642 0.4371 0.4371

ing observations are used to compare the performance of
distributed and nondistributed competitors. We replicate
this setup ten times. The selected domain is large enough
to allow considerable spatial variation in SST from north
to south and provides an important first step in extending
these models for analyzing global-scale SST database.

The SST data in the selected domain shows a clear
decreasing trend in SST with increasing latitude (Fig-
ure 2). Based on this observation, we add latitude as a
linear predictor in the univariate spatial regression model
(14) to explain the long-range directional variability in
the SST. Similar to Simulation 1 and 2, Section 4.4 in
the Supplementary Material shows that among distributed
competitors DISK shows identical or little better perfor-
mance than the other distributed approaches for the sea
surface data. Thus, we only present results from DISK
in this section due to space constraint considering it as
a representative distributed competitor. The detailed per-
formance comparison of all distributed competitors in
the real data can be found in Section 4.4 of the Supple-
mentary Material. To fit distributed competitors, we set
k = 300, which results in subsets of approximately 3300
locations. Since each subset has larger sample size than

the simulation studies, we increase the number of knots
in each subset for model fitting and use MPP priors with
400 and 600 knots, respectively, in each subset. All the
nondistributed competitors except laGP fail to produce re-
sults due to numerical issues. Specifically, GPvecchia and
GpGp fail after 8 and 21 iterations with an error in vec-
chia_Linv function, INLA fails with an error in GMR-
FLib_factorise_sparse_matrix_TAUCS func-
tion, spNNGP fails an error in the dpotrf function and
MPP fails from memory bottlenecks. Due to the lack of
ground truth for estimating w(s∗), we compare the DISK
and laGP in terms of their inference on ��� and prediction
of y(s∗) for s∗ ∈ S∗ in terms of MSPE and the length and
coverage of 95% posterior PIs.

DISK provides inference on the covariance function, in-
cluding credible intervals for σ 2, φ and τ 2, which are un-
available in laGP. The 50%, 2.5% and 97.5% quantiles of
the posterior distributions for ���, w(s∗) and y(s∗) for ev-
ery s∗ ∈ S∗ are used for estimation and uncertainty quan-
tification. We observe significantly higher estimation of
spatial variability than nonspatial variability from DISK
indicating local spatial variation in SST. Importantly, the
point estimate of β1 is negative and its 95% CI does not
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FIG. 2. Prediction of sea surface temperatures at the locations in S∗. Negative longitude means degree west from Greenwich. DISK uses MP-
P-based modeling with r = 400,600 on k = 300 subsets and laGP uses the ‘nn’ method. The 2.5%, 50%, and 97.5% quantile surfaces, respectively,
represent pointwise quantiles of the posterior distribution for y(s∗) for every s∗ ∈ S∗.

include zero, which confirms that SST decreases as lati-
tude increases. For every s∗ ∈ S∗, laGP’s and DISK’s es-
timates of w(s∗) and y(s∗) agree closely (Figures 2 and 3

and Table 7). The pointwise predictive coverages of laGP
and DISK match their nominal levels; however, the 95%
posterior PIs of DISK are wider than those of laGP be-

TABLE 7
Parametric inference and prediction in SST data. DISK uses MPP-based modeling with r = 400,600 on k = 300 subsets. For parametric inference

posterior medians are provided along with The 95% credible intervals (CIs) in the parentheses, where available. Similarly mean squared
prediction errors (MSPEs) along with length and coverage of 95% predictive intervals (PIs) are presented, where available. The upper and lower

quantiles of 95% CIs and PIs are averaged over 10 simulation replications; “-” indicates that the parameter estimate or prediction is not provided
by the software or the competitor

β0 β1 σ 2 φ τ2

Parameter Estimate
laGP 32.98 -0.37 – – –
DISK (r = 400) 32.33 -0.32 11.82 0.04 0.18
DISK (r = 600) 32.33 -0.32 11.85 0.04 0.18

95% Credible Interval
laGP – – – – –
DISK (r = 400) (31.72,32.93) (−0.33,−0.31) (11.24,12.43) (0.0373,0.0412) (0.18,0.19)

DISK (r = 600) (31.72,32.93) (−0.33,−0.31) (11.25,12.45) (0.0372,0.0413) (0.18,0.19)

Predictions
MSPE 95% PI 95% PI

Coverage Length

laGP 0.24 0.95 1.35
DISK (r = 400) 0.43 0.95 2.65
DISK (r = 600) 0.36 0.95 2.34
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FIG. 3. Interpolated spatial surface w at the locations in S∗. Negative longitude means degree west from Greenwich. DISK uses MPP-based
modeling with r = 400,600 on k = 300 subsets and laGP uses the ‘nn’ method. The 2.5%, 50%, and 97.5% quantile surfaces, respectively,
represent pointwise quantiles of the posterior distribution for w(s∗) for every s∗ ∈ S∗.

cause DISK accounts for uncertainty due to the error term
and unknown parameters (Figure 2 and Table 7). As a
whole, SST data analysis reinforces our findings on the
importance of distributed Bayesian methods as computa-
tionally efficient and flexible tools for full Bayesian infer-
ence.

5. DISCUSSION

This article presents a comparative study of a class
of distributed Bayesian and popular nondistributed meth-
ods that are tuned for spatial GP regression in massive
data settings. As part of our exposition, we have demon-
strated through simulated and real data analyses that dis-
tributed Bayesian methods compare well with state-of-
the-art nondistributed methods. Motivated by the promis-
ing empirical performance, we provide theoretical support
for our numerical results. In particular, under commonly

assumed regularity conditions, we have provided explicit
upper bound on the number of subsets k depending on the
analytic properties of the spatial surface so that the Bayes
L2-risk of the combined pseudo posterior for a subclass
of distributed methods is nearly minimax optimal. Addi-
tional empirical and theoretical results in the Supplemen-
tary Material shed light on the relative empirical perfor-
mances of different distributed Bayesian methods in sim-
ulations and in the real data analyses.

The simplicity and generality of distributed frameworks
enable scaling of any spatial model. For example, recent
applications have confirmed that the NNGP prior requires
modifications if scalability is desired for even a few mil-
lions of locations (Finley et al., 2019). While computing
subset posteriors with MCMC algorithm, we have tacitly
assumed that the MCMC chain converges to the subset
posterior. While there is no theoretical result to support
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this, we find enough empirical evidence regarding conver-
gence of the MCMC chain for each subset posterior. We
plan to explore this issue theoretically in a future work. In
the future, we also aim to scale ordinary NNGP and other
multiscale approaches to tens of millions of locations with
distributed frameworks.

We have focused on developing the distributed frame-
work for spatial modeling due to the motivating appli-
cations from massive geostatistical data. The distributed
frameworks, however, are applicable to any mixed effects
model where the random effects are assigned a GP prior,
which includes Bayesian nonparametric regression using
GP prior. We plan to explore more general applications in
the future with high-dimensional covariates.
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