
PHYSICAL REVIEW B 106, 165111 (2022)

Neural network representation for minimally entangled typical thermal states

Douglas Hendry, Hongwei Chen , and Adrian Feiguin
Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA

(Received 2 May 2022; revised 23 September 2022; accepted 27 September 2022; published 12 October 2022)

Minimally entangled typical thermal states are a construction that allows one to solve for the imaginary
time evolution of quantum many-body systems. By using wave functions that are weakly entangled, one can
take advantage of efficient representations in the form of matrix product states. We generalize these ideas to
arbitrary variational wave functions and we focus, as an illustration, on the particular case of restricted Boltzmann
machines. The imaginary time evolution is carried out using stochastic reconfiguration (natural gradient descent)
combined with Monte Carlo sampling. Since the time evolution takes place on the tangent space, deviations
between the actual path in the Hilbert space and the trajectory on the variational manifold can be important,
depending on the internal structure and expressivity of the variational states. We show how these differences
translate into a rescaled temperature and demonstrate the application of the method to quantum spin systems in
one and two spatial dimensions.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) is a powerful method that
can be applied to problems with hundreds of degrees of free-
dom in arbitrary dimensions. However, while in principle it
can be considered an unbiased numerical technique, in many
cases it suffers from some pathological drawbacks. Among
these, there is the infamous sign problem, which appears in
fermionic and frustrated systems when the complicated nodal
structure of the wave function does not guarantee a well-
defined positive transition probability [1–9]. Other situations
arise when the Monte Carlo updates necessary to make the
simulation ergodic are complicated or numerically costly, or
when the system is close to a phase transition and global
updates are required to fight critical slowing down.

Alternatives to QMC that can overcome such drawbacks
are not many and also suffer from limitations. Useful practi-
cal approaches that rely on exact diagonalization are limited
to small system sizes [10–24]. In quasi-one-dimensional
systems, a family of methods based on the density-matrix
renormalization group can essentially provide numerically
exact results for models with frustration [25–34], and recent
advances have put quasi-two-dimensional frustrated lattice
problems within reach [35]. At this point, it is important to
point out that these approaches rely, in one way or another, on
representations of the transfer matrix or the thermal density
matrix of the quantum many-body problem in the form of
matrix product states (MPSs) or matrix product operators,
and, as a consequence, are limited by the entanglement growth
in the system as temperature is lowered, implicitly imposing a
numerical barrier that is hard to overcome. Recent proposals
using entanglement purification with neural networks provide
an interesting alternate route [36].

In a thermal state, the expectation value of observables
is identical to the value in the canonical ensemble at some

temperature T . This idea lies at the foundation of the statistical
mechanics and the canonical to microcanonical correspon-
dence, relating the thermodynamic behavior of systems at
temperature T to the microstates of a system at some energy
E (T ). A generic chaotic closed system out of equilibrium
is expected to relax to a thermal state after some time. This
problem does not require a thermal bath and, in the context
of the microcanonical ensemble energy is conserved. How-
ever, in order for this to actually occur, certain conditions
need to be satisfied: The expectations values of observables
within an energy window around E (T ) need to vary smoothly,
or, rather, to be very “similar.” This is the premise behind
the eigenstate thermalization hypothesis (ETH) [37,38], and
the idea of “typicality.” According to this, a thermal state
can be represented accurately by a typical pure state in the
microcanonical ensemble. This can be exploited to carry
out finite-temperature calculations with pure states, which
is the foundation behind “minimally entangled typical ther-
mal states” (METTSs) [39,40] and “canonical thermal pure
quantum states”(CTPQSs) [16,18,21]. In a nutshell, the recipe
is very simple: Start from a random state, such as a linear
combination of basis states with random coefficients |ψ0〉, and
evolve it with the operator |ψ (β )〉 = exp (−βH/2)|ψ0〉 (β as
customary represents the inverse temperature T ). Observables
are hence obtained as 〈Â〉T = 〈ψ (β )|Â|ψ (β )〉/〈ψ (β )|ψ (β )〉.
In the case of METTS, the initial random states are prod-
uct states, e.g., quantum spins pointing in random directions
on the Bloch sphere. Essentially, the algorithm is identical
to projector Monte Carlo [41,42], but with the initial state
being evolved using a numerically exact method. On the
other hand, METTS approaches are based on a variational

representation of the quantum many-body states in the form
of a MPS, and their remarkable accuracy relies on the ex-
traordinary representation power of these wave functions. The
fact that entanglement at finite temperatures remains under
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control when the initial state is a random product state has
enabled some outstanding progress toward understanding the
thermodynamic behavior of frustrated magnets [43].

In this work, we take a similar route but use neural network
wave functions instead. Although our considerations are gen-
eral, for illustration purposes we here focus on the simplest
form, a restricted Boltzmann machine (RBM). Same as MPS
wave functions, RBMs are agnostic to the underlying physics
of the problem and hold a remarkable representation power.

This paper is organized as follows: In Sec. II we review
how typicality can be used to calculate thermodynamic prop-
erties of quantum systems. Section III discusses the practical
implementation of these ideas using variational Monte Carlo.
Section IV demonstrates the methods with applications to
one- and two-dimensional quantum spin systems. Finally, we
close with a discussion.

II. TYPICAL THERMAL STATES

In this section we follow the reasoning outlined in Ref. [40]
to describe thermal averages in terms of typical states. We
consider a set of initial states {|φ0(ξ )〉}ξ with ξ drawn from
a probability distribution function P0(ξ ) such that

∫

dξP0(ξ )|φ0(ξ )〉〈φ0(ξ )| = 1. (1)

We have not explicitly introduced a particular form for
these states, yet. The index ξ labels a set initial random prod-
uct states. Each drawn initial state is evolved in imaginary
time β = 1/T as

|φ(β; ξ )〉 = e− 1
2 βĤ |φ0(ξ )〉.

Introducing Z (β; ξ ) = 〈φ(β; ξ )|φ(β; ξ )〉, the partition
function can expressed as Z (β ) = 〈Z (β, ξ )〉P0 and the evo-
lution operator in imaginary time as

1

Z (β )
e−βĤ =

〈|φ(β; ξ )〉〈φ(β; ξ )|〉P0

〈Z (β; ξ )〉P0

.

Then, for any observable given by operator Â, its thermal
average can be expressed as

A(β ) =
〈Z (β; ξ )A(β; ξ )〉P0

〈Z (β; ξ )〉P0

,

where

A(β; ξ ) =
〈φ|Â|φ〉

〈φ|φ〉

∣

∣

∣

∣

(β;ξ )

is the “local” expectation value of the operator in
state |φ(β; ξ )〉. Introducing a finite-temperature distribution
Pβ (ξ ) = [Z (β, ξ )/Z (β )]P0(ξ ), the thermal average can be ex-
pressed compactly as A(β ) = 〈A(β; ξ )〉Pβ

.
The importance weights Z (β, ξ )/Z (β ) can be obtained

without explicitly calculating 〈φ(β; ξ )|φ(β; ξ )〉 for each β.
Instead we only need the initial Z (0; ξ ) and, for each β, the
expectation value of the Hamiltonian:

E (β; ξ ) =
〈φ|Ĥ |φ〉

〈φ|φ〉

∣

∣

∣

∣

(β;ξ )

.

Then, we can exploit that the imaginary time evolution gives

∂

∂β
ln Z (β; ξ ) = −E (β; ξ ).

Hence,

Z (β; ξ ) = Z (0; ξ )e−
∫ β

0 dβ ′E (β ′;ξ ).

Until now, we have not imposed any conditions on the
structure of the random initial states. In the METTS algorithm,
one chooses them over a Gaussian distribution of random
product states. For instance, if the quantum degree of freedom
is spins S = 1/2 on a lattice L with N sites, they will be given
as

|φ0(ξ )〉 = ⊗l∈L

(

ξl↑| ↑〉l + ξl↓| ↓〉l
√

|ξl↑|2 + |ξl↓|2

)

. (2)

In this case, the label ξ represents the set of ξ ∈ C
N×2 com-

plex numbers that are distributed according to

P0(ξ ) =

(

1

π

)2N

exp

(

−
∑

l∈L

∑

σ=↑,↓

|ξlσ |2

)

.

This choice of distribution is not the only possible one. How-
ever, the average of the outer product has to be equal to the
identity, Eq. (1), and a Gaussian distribution is the easiest and
most straightforward choice that satisfies this condition. In
addition, it also gives us a uniform random distribution over
the Bloch sphere for each site [40].

III. METHOD

While the concepts described in the previous section offer
a prescription to calculate thermodynamic properties of quan-
tum many-body states, exact calculations can only be carried
out in small systems. To scale the computations to large sys-
tem sizes, we must make some sacrifices: We use a variational
representation of the wave functions. For this particular task,
the mathematical structure of the wave function has to be
flexible enough to be able to represent any quantum state in
the spectrum, and not just the ground state. In the original
formulation of METTS, matrix product states are used. In
our case, we generalize the method to arbitrary variational
states and we focus, as an illustration, on the particular case
of restricted Boltzmann machines.

In this section we review how to carry out the time evolu-
tion of a many-body state on a variational manifold, following
an elegant geometrical interpretation presented in Ref. [44].
The time-evolved state will describe a “trajectory” that will
be constrained to this manifold and will deviate from the
exact trajectory in the full Hilbert space. We find that these
deviations can be partially accounted by rescaling the “pro-
jected imaginary time” τ such that it corresponds to an actual
physical inverse temperature β.

A. Variational imaginary-time evolution

For each random starting state |φ0(ξ )〉, the time-evolved
wave function |φ(β, ξ )〉 is obtained by solving the first-order
differential equation ∂

∂β
|φ(β, ξ )〉 = −(1/2)Ĥ |φ(β, ξ )〉, with
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the constraint that the new wave function has to live on the
same variational manifold.

We hereby proceed to summarize projective variational
imaginary-time evolution for complex holomorphic varia-
tional wave functions. In this discussion we follow the
notation and formalism as detailed in Ref. [44]. The states
|φ(β, ξ )〉 are approximated by a class of variational wave
functions ψM which are holomorphic in terms of parameters
	θ ∈ C

M and define a submanifold in the Hilbert space H,
M = ψM(CM ) ⊂ H. The projected time evolution results in
a series of “equations of motion” for the parameters θμ(τ ),
which are completely equivalent to the well-known “stochas-
tic reconfiguration” (SR) method [45–48]—also known as
“natural gradient descent” [49]—used to carry out ground-
state calculations. In other words, SR consists of projecting
out the ground state by evolving the state in imaginary time
on the variational manifold. Therefore, any variational Monte
Carlo code that implements SR already contains all the ingre-
dients to evolve any variational state in imaginary time. We
refer the reader to a pedagogical description in Ref. [50] for a
detailed derivation.

Evolving the state in imaginary time evolution within
the manifold requires performing a local projection at each
step. The variational parameters that best represent the time-
evolved state are obtained by minimizing the projection error

∥

∥

∥

∥

P̂TH

(

d

dτ
|ψM〉 +

1

2
Ĥ |ψM〉

)∥

∥

∥

∥

2

,

where use the Fubini-Study metric to measure the “distance”
between two wave functions [51,52] with the projector P̂TH

defined as

P̂TH =

(

1 −
|ψM〉〈ψM|

〈ψM|ψM〉

)

,

which projects out radial dependence, which is given by the
|ψM〉 direction.

Algorithm 1 Imaginary-time evolution

Require: �τ (fixed imaginary time step)
Require: ξ ∼ P0 (draw random product state coefficients)
Require: θ0 (initial VWF coefficients)
Require: E0 = 〈Ĥ〉(θ0)
Require: σ 2

0 = (〈Ĥ 2〉 − 〈Ĥ〉2)(θ0)
Require: A0 = 〈Â〉(θ0)
Require: τ0 = 0, β0 = 0, Z0 = 1

while Ei not converged do

i ← i + 1
θi ← θi−1 − �τ∇θ 〈Ĥ〉(θi−1)
Ei ← 〈Ĥ〉(θi )
σ 2

i ← (〈Ĥ 2〉 − 〈Ĥ〉2)(θi )
Ai ← 〈Â〉(θi )
τi ← τi−1 + �τ

βi ← βi−1 − (Ei − Ei−1)/σ 2
i

Zi ← Zi−1 exp[−(βi − βi−1)Ei]
end while

To minimize this cost function we recast the problem
in terms of dθμ/dτ ≈ �θμ/�τ , which are defined by the

tangent space vectors of the variational manifold:

|vμ〉 = P̂TH

∂

∂θμ
|ψM〉.

The parameter updates �	θ are given in terms of the system of
equations:

gμν�θ ν = −
�τ

2

〈vμ|Ĥ |ψM〉

〈ψM|ψM〉
,

where g is the induced metric tensor:

gμν =
〈vμ|vν〉

〈ψM|ψM〉
.

The resulting evolution of |ψM〉 can be expressed com-
pactly as

P̂TH

d

dτ
|ψM〉 = −

1

2
P̂TMĤ |ψM〉,

where we introduce the variational tangent space projector:

P̂TM = Gμν |vμ〉〈vν |

〈ψM|ψM〉
, Gμνgνσ = δμ

σ ,

In practice, the procedure to time evolve an initial random
state is summarized in the Algorithm 1. As discussed above,
each initial trial wave function is drawn from a distribution
P0(ξ ) and the parameters are evolved in imaginary time by
a small fixed time step �τ . At each time step, expectation
values of the energy, variance of the energy, and observables
of interest are calculated:

E (	θ (τ ; ξ )) =
〈ψ |Ĥ |ψ〉

〈ψ |ψ〉

∣

∣

∣

∣

	θ (τ ;ξ )

, (3)

σ 2(	θ (τ ; ξ )) =
〈ψ |(Ĥ − E )2|ψ〉

〈ψ |ψ〉

∣

∣

∣

∣

	θ (τ ;ξ )

, (4)

A(	θ (τ ; ξ )) =
〈ψ |Â|ψ〉

〈ψ |ψ〉

∣

∣

∣

∣

	θ (τ ;ξ )

. (5)

These expectation values are then averaged over many initial
realizations of ξ .

B. Beta correction

Since the approximate imaginary-time evolution corre-
sponds to projecting onto the variational manifold, the
time-evolved state will deviate from the exact one. This de-
viation from the true path can be decomposed locally into two
contributions (see Fig. 1):

P̂TH

d

dτ
|ψM〉 = −

1

2
γ P̂TMĤ |ψM〉 + |η〉, (6)

where |η〉 is some error direction orthogonal to both |ψM〉 and
(Ĥ − E )|ψM〉. The factor γ ∈ [0, 1] represents the fraction
of the distance traveled in the exact imaginary time direction,
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FIG. 1. Cartoon illustrating imaginary-time evolution in the pro-
jected variational manifold. The actual time-evolved state differs
from the projected one. These difference can be accounted for by
a rescaling of the temperature (see text).

which can be explicitly calculated as

γ =
〈ψ |(Ĥ − E )P̂TM(Ĥ − E )|ψ〉

〈ψ |(Ĥ − E )2|ψ〉
= −

1

σ 2

dE

dτ
. (7)

Here we assume that the contribution from the error
direction |η〉 is fairly negligible (which is a reasonable
assumption for imaginary-time evolution as opposed to real-
time evolution). Thus, the remaining error corresponds to
the parametrization of the imaginary time. Therefore, we
reparametrize τ in terms of β as

dβ

dτ
= γ , β(τ ; ξ ) = −

∫ τ

0
dτ ′ 1

σ 2

dE

dτ ′

∣

∣

∣

∣

	θ (τ ′;ξ )

.

Following Eq. (7), this parametrization also enforces
dE/dβ = −σ 2.

C. Restricted Boltzmann machines

Although our considerations are independent of the choice
of variational wave function, in the following we focus on a
particular example for demonstration purposes: a restricted
Boltzmann machine (RBM). A RBM wave function for a
system of N spins S = 1/2 (s = ↑,↓) and Nh hidden variables
is defined as

|ψ (	θ )〉 =
∑

{	s}

ψ (	s; 	θ )|	s 〉,

where 	s = (s1, s2, . . . , sN ) and

ψ (	s; 	θ ) = e
∑

l∈L al sl

Nh
∏

i=1

cosh

(

bi +
∑

l∈L

Wil · sl

)

It is parametrized by a set of complex values 	θ = (	a, 	b, W ) ∈
C

N × C
N
h × C

Nh×N that are used as variational parameters to
minimize some cost function. This cost function is usually a
measure of the “distance” between |ψ (	θ )〉 and a target wave
function.

Besides being proposed as ground-state estimators for vari-
ational calculations [50,53–55], their representation power

FIG. 2. Specific heat of the Heisenberg chain comparing results
obtained with restricted Boltzmann machines and other methods:
(a) DMRG for L = 32, (b) L = 64 and Bethe ansatz. We use Nh =
3N hidden variables and n = 50 random initial states.

has been instrumental to a number of other applications, such
as the calculation of spectral functions [56–58].

D. Restricted Boltzmann machine initialization

To implement the procedure with RBMs, it is necessary
to first draw a random set of initial product wave functions
as described in Sec. II. Fortunately, it is possible to exactly
represent (up to an overall constant) a state |φ0(ξ )〉 in Eq. (2)
by setting bl , W = 0 and matching the al bias term to the
corresponding random spin at l:

al = 1
2 ln (ξl+/ξl−).

In practice, a very small Gaussian noise has to be added to
W, b such that the derivatives needed in the imaginary-time
evolution are not zero. Notice that there is no requirement that
the initial state has to be a product state, so the validity of the
method is not affected.

IV. NUMERICAL RESULTS

We have implemented the imaginary time evolution for the
spin S = 1/2 Heisenberg model in one and two dimensions:

Ĥ =
∑

〈i, j〉

	Si · 	S j,

where the sum sums over nearest-neighbor sites on a one-
dimensional chain or a square lattice.

Besides the energy (3), we calculate the specific heat as
Cv = −(β2/N )(dE/dβ ) = β2/Nσ 2, where σ is the standard
deviation of the energy. As an initial benchmark, in Fig. 2
we show the specific heat for chains with L = 32 and L = 64
sites and periodic boundary conditions obtained with n = 50
initial states and Nh = 3N hidden variables, together with the
finite-temperature density-matrix renormalization group [31]
and Bethe ansatz [59] results for comparison. The curves are
barely distinguishable on this scale.

Results for two-dimensional systems (Fig. 3) show good
agreement with quantum Monte Carlo data for 6 × 6 and
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FIG. 3. Specific heat of the two-dimensional Heisenberg model
comparing results obtained with restricted Boltzmann machines and
quantum Monte Carlo for two system sizes (a) 6 × 6 and (b) 8 × 8
with varying number of initial random states n and Nh = N hidden
variables. The shaded area represents the error for the dashed curve.

8 × 8 lattices [60–62]. As seen in the figure, the accuracy
varies considerably with the number n of initial states and
improves noticeably with n = 100 in the region around the
maximum, T ≈ J = 1. We have also studied the convergence
with the number of hidden variables Nh: even though a larger
Nh may help to improve the accuracy, we find that with too
many hidden variables, the natural gradient descent may get
unstable. In our case we settle for Nh = N since this choice
provides a reliable comparison.

The specific heat is directly related to the variance of the
energy. While Cv may show some deviation from the exact
results, the energy is actually very accurate, as shown in Fig. 4
where the errors are smaller than the symbol size.

On the other hand, the errors for the magnetic susceptibility
are considerably larger, as shown in Fig. 5. This is due to
the nonlocal nature of the squared magnetization M2 which

FIG. 4. Energy of the 2D Heisenberg model comparing results
obtained with restricted Boltzmann machines and quantum Monte
Carlo for two system sizes (a) 6 × 6 and (b) 8 × 8 with n = 100
initial random states n and Nh = N hidden variables. Errors are
smaller than the symbol size.

FIG. 5. Magnetic susceptibility of the two-dimensional Heisen-
berg model comparing results obtained with restricted Boltzmann
machines and quantum Monte Carlo for two system sizes (a) 6 × 6
and (b) 8 × 8 with n = 100 initial random states n and Nh = N

hidden variables. The shaded area represents the error for the dashed
curve.

involves a summation over all-to-all correlations:

χ =
1

NT
(〈M2〉 − 〈M〉2)

=
1

NT

(

∑

i, j

〈

Sz
i Sz

i

〉

−

(

∑

i

〈

Sz
i

〉

)2)

. (8)

The structure of the correlations is more sensitive and a better
measure of the expressivity or representation power of the
states. For instance, it has been established that matrix product
states can only realize exponentially decaying correlations
[63] even though the yield energies with machine precision
accuracy in one-dimensional (1D) systems.

We point out that, in these figures, the Monte Carlo sam-
pling error and the error originating from averaging over a
finite number of initial random states is plotted as a shaded
area centered at the mean. In addition, we account for part of
the systematic errors with the beta correction, as described
above. Other sources of error originating from the repre-
sentation power of the RBM wave functions are difficult to
estimate. On this scale, the QMC data are essentially exact
and the error is smaller than the symbol size.

While results improve notoriously with increasing number
n of initial random states, as mentioned earlier there seems to
be an apparent horizontal shift of the Cv and χ curves at low
temperatures. This can be partially explained in terms of the
beta correction. In Fig. 6 we show the actual β as a function
of the projected imaginary time τ for two typical runs. While
the curves seem to follow an apparent 1 : 1 scaling at small
β, deviations appear as we approach zero temperature. The
flattening of the curves for increasing β (small temperature)
indicates that the wave function is essentially converging to
the (approximate) ground state. Geometrically, this can be
interpreted as the vector −Ĥ/2|ψM〉 becoming perpendicular
to the variational manifold, as one would see in Fig. 1. For
that reason, the wave-function parameters cannot vary and
the state becomes “stuck” in parameter space. Other sources
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FIG. 6. (a) Actual inverse temperature β versus projected imag-
inary time τ . We show results for both one- and two-dimensional
lattices. The dotted line corresponds to a 1 : 1 perfect scaling. The
differences arise from projecting on the variational manifold (see
text). (b) Same data as in panel (a) but showing the physical tem-
perature T = 1/β.

for increase of these deviations could be multiple, but we
believe the most significant ones are due to (i) the presence
of a finite-size gap in the spectrum, (ii) a small overlap with
the actual ground state due to the random initial directions
of the spins, or (iii) a poor variational wave function. The
most promising route to improve the expressivity of RBMs
is by introducing lattice symmetries [64,65], which we have
not attempted here.

V. CONCLUSIONS

We have described a method to carry out thermodynamic
simulations of quantum many-body models using typicality
and variational representations of quantum states. We gen-
eralize the idea of METTS to arbitrary variational forms
and efficiently carry out the imaginary-time evolution by us-
ing natural gradient descent (or stochastic reconfiguration).
While in principle one could sample over a random choice of

arbitrary initial states as done in the CTPQS approach
[16,18,21], the choice of product states simplifies the formu-
lation considerably. In particular, these states can be exactly
represented as RBM wave functions. In addition, the low
entanglement growth makes the numerical results more con-
trollable. We point out that, unlike CTPQS, our simulations
do not account for spatial nor spin symmetries. Incorporating
them into the algorithm may result in improved accuracy.

The underlying mathematical structure of the wave func-
tions plays a crucial role in terms of the accuracy of the
method. In particular, the wave functions have to be able to
represent any state along the imaginary time path. In this
work, we pick the particular form of restricted Boltzmann ma-
chines as a proof of concept illustration due to their versatility
and representation power. We show that the path they follow
in the variational manifold differs slightly from the actual
imaginary-time evolution for temperatures T > J/2. We have
found that these deviations can be partially accounted for by
correcting the temperature with a rescaling factor that can
be easily and systematically calculated at every time step. At
lower temperatures, the wave function starts converging to the
best variational approximation to the ground state becoming
“stuck” in the variational manifold. This sets a limit for the
RBM wave functions in terms of their ability to describe the
thermodynamic behavior at low temperatures. It is to expect
that, by improving the expressivity of the wave function, it
might be possible to reach lower temperatures and simultane-
ously obtain better a ground-state description. The limitations
of the wave function can be appreciated in quantities such
as the correlation functions and, in particular, magnetic sus-
ceptibility, which include all-to-all contributions. The method
does not suffer from the sign problem and offers an alter-
native to matrix product states for studying two-dimensional
models with frustration. In addition, with a suitable choice of
variational wave function [66], it can readily be extended to
fermionic systems.
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