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We present a numerical study of competing orders in the 1D #-J model with long-range RKKY-like staggered
spin interactions. By circumventing the constraints imposed by Mermin-Wagner’s theorem, this Hamiltonian can
realize long-range Néel order at half filling. We determine the full phase diagram as a function of the exchange
and particle density using the density matrix renormalization group (DMRG) method. We show that pairing is
disfavored and the AFM insulator and metallic phases are separated by a broad regime with phase segregation,
before spin-charge separation re-emerges at low densities. Upon doping, interactions induce a confining potential
that binds holons and spinons into full fledged fermionic quasiparticles in a range of parameters and densities.
We numerically calculate the photoemission spectrum of the model, showing the appearance of a coherent
quasiparticle band splitting away from the holon-spinon continuum with a width determined by J that survives
at finite doping. Comparison with analytical results using the self-consistent Born approximation (SCBA) and
by solving the spinon-holon problem offer insight into the internal structure of the quasiparticles and help us
explain the different features in the spectrum. We discuss how this simple toy model can teach us about the
phenomenology of its higher-dimensional counterpart.
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I. INTRODUCTION

Understanding the properties of doped antiferromagnets
has been a topic of great theoretical interest for the past few
decades [1,2]. This is motivated by the lack of a universal
theory of high-temperature superconductors that can explain
the mechanisms behind the formation of Cooper pairs in
this kind of materials, where strong electronic correlations
are assumed to play a dominant role. Most of the research
in this area has been focused on the study of paradigmatic
simple model Hamiltonians that are supposed to capture all
the basic ingredients for high temperature superconductivity
such as the Hubbard and # — J models and variations of them
[1,3=7]. In this context, much effort has been devoted to
their low-dimensional versions [8-26]. Particularly, in one
dimension the physics of these systems can be universally
described in the framework of Luttinger liquid (LL) theory
[27-32]: the natural excitations in 1D are described in terms
of spin and charge excitations that propagate coherently with
different velocities and are characterized by distinct energy
scales, leading to the concept of spin-charge separation. The
spectrum of a spin-full LL is determined by a convolution
of the spin and charge spectra, which leads to a continuum
without well defined Landau quasiparticles and Fermi-edge
singularities instead of quasiparticle peaks [33,34]. Interest-
ingly, the Hubbard model in 1D admits an exact solution in
terms of the Bethe ansatz [35-37], and the + — J model also
realizes an exactly soluble “supersymmetric” point at J/t = 2
[38-42], allowing one to infer information about the nature of
the excitations.
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An important difference between one and two dimensions
is established by the Mermin-Wagner theorem [43,44]: At
zero temperature, gapless one-dimensional local Hamiltoni-
ans cannot realize long-range order, while two-dimensional
systems can display spontaneous symmetry breaking. At half
filling, where the physics can be more easily understood in
the context of the Heisenberg model, the ground state of a 1D
chain is a spin-liquid with algebraically decaying correlations
and domain-wall-like spin excitations (spinons) that carry spin
S = 1/2. On the other hand, the ground state in two dimen-
sions displays Néel order, and excitations are magnons that
condense into Goldstone modes [45].

Besides the omnipresent question concerning the role of
antiferromagnetism as a glue for pairing, a more basic and
fundamental one has also remained central to the problem:
Is it possible for spin-charge separation to survive in two
dimensions? [46—65]. Alternatively, one can postulate the
opposite question: What is the fate of spin-charge separa-
tion in the presence of long-range antiferromagnetic order?
The spin-charge separation phenomenon is usually consid-
ered as a manifestation of 1D physics, and whether it exists
in higher dimensions is a topic of debate, especially in the
context of understanding high-7, superconductivity [55] and
recent experiments in cold-atom systems [66—82]. Over the
past decades it has become quite clear that a definitive an-
swer to these questions can only be obtained numerically.
Unfortunately, quantum Monte Carlo (QMC) has not been
able to provide evidence since calculations are carried out
at finite temperature and with the use of difficult to control
analytic continuation [83-86]. At the same time, the success
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of the density matrix renormalization group method (DMRG)
[87,88] and tensor networks has only partially extrapolated to
two dimensions [8§9-92].

One possible avenue to circumvent these hurdles and
study the dimensional crossover consists of introducing
long-range interactions in one dimension since [93-99]: (i)
they effectively increase the dimensionality of the problem
through all-to-all interactions; (ii) overcome the limitations
of Mermin-Wagner theorem allowing one to probe for true
long-range order and spontaneous symmetry breaking; (iii)
they offer a relatively simple and intuitive playground where
to test for higher-dimensional physics within the reach of
powerful numerical techniques such as the DMRG method.

In this paper, we focus on understanding the role of
long-range interactions in a doped one-dimensional antiferro-
magnet using an extended ¢t — J model with RKKY-like AFM
long-range interactions:

H = H,_; + Hgggy ()
H,_; =—t Z(CzGCH_LG + H.c.)

Lo 1
+J Z (si -Sip1 — Znini+1) )

Hggky = A Z (.—.(Si -S)), 3)

where the operator CL creates an electron on site i along the

chain with spin o =1, |, n; is the electron number operator,
S represents spin S = 1/2 operators. The constants J and A
parametrize the magnitude of the spin exchange and RKKY
interactions that decay as a power law with exponent «. In
the rest of the paper and for simplicity, we focus on the case
A = J and we study finite chains of length L. The ¢+ — J model
describes the low-energy physics of the Hubbard model when
the Coulomb repulsion is very large compared to the hopping
constant ¢, that we take as our unit of energy. In this context, a
constraint forbidding double occupancy is implicitly assumed.

The quantum phase diagram of conventional ¢ — J model
in 1D has been extensively studied [100,101]. At half filling,
this Hamiltonian reduces to the one-dimensional Heisenberg
chain. Upon doping and for large J, spins prefer to form an-
tiferromagnetic domains and clump together phase separating
into electron-rich and hole-rich regions. In the metallic phase
with J/t < 2, the low energy physics can be well described
in terms of Luttinger liquid theory. In this phase, the low en-
ergy excitations are holons carrying charge with characteristic
velocity v, and a bandwidth determined by the hopping ¢,
and spinons carrying spins with velocity v, and a bandwidth
proportional to J.

In addition to the Luttinger liquid metallic phase, in the in-
termediate J/t range the  — J model exhibits a Luther-Emery
regime at low densities with a spin gap and dominant pairing
correlations and a superconducting phase at high densities
between the metallic LL phase and phase separation [see
Fig. 2(a)].

One can in principle assume that the origin of the RKKY
term can be the proximity to a two dimensional layer with
long-range antiferromagnetic order [63]. Notice that the sign
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FIG. 1. Particle number as a function of chemical potential for
the (a) conventional t — J model (¢ = o0) and (b) @ = 2 for several
values of J in descending order from left to right. (c) Charge and spin
gaps for a conventional ¢+ — J chain with L = 64 sites.

of the interactions alternates between antiferro- and ferro-
magnetic depending on the sublattice and it enhances the
tendency of the spins to antiferromagnetically align. At half
filling, this translates into a regime with spontaneous symme-
try breaking and long-range order for @ small enough o <
2.2 [94]. While the elementary excitations of the Heisenberg
chain are deconfined domain-wall-like spinons, an effective
confining potential emerges as a consequence of the long-
range interactions that binds spinons together to form coherent
magnon-like gapless excitations above the antiferromagnetic
ground state. In this paper, we aim at describing and un-
derstanding how similar effects can alter the spin-charge
separation picture and induce confinement between spinons
and holons such that they bind forming composite quasiparti-
cle states that carry both, spin and charge degrees of freedom.
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FIG. 2. (a) Phase diagram of the conventional # — J chain. Re-
gions A and B represent regimes where the occupation changes by
AN =1 and AN = 2 with varying the chemical potential, respec-
tively. The solid and dashed blue curve are the phase boundaries
of the paired and Luther-Emery phase, respectively. [(b),(c)] Phase
diagrams for the  — J chain with long-range spin interactions and
(b) « =2 and (¢) @ = 1.6. The dotted-dashed line indicates the
boundary between phase separation and fermionic quasiparticles (see
text). All results are for a chain with L = 64 sites.

Moreover, we observe that with these modifications to the
t — J model, excitations will no longer display a linear dis-
persion at the Fermi level and LL theory will not apply in its
conventional formulation [102].

This paper is organized as follow: Firstly we study the
quantum phase diagram for + — J chain with long-range spin
couplings and show the dominant orders in different phases
in Sec. II. In Sec. III we discuss the stability of composite

quasiparticles using energetic considerations. We support this
evidence by means of numerical and analytical calculations of
the spectral function for a single hole in Sec. IV using DMRG,
the self-consistent Born approximation (SCBA) and by solv-
ing the spinon-holon problem. We extend these considerations
to finite doping in Sec. V. We finally close with a summary
and discussion of the results.

II. PHASE DIAGRAM

In order to determine the quantum phase diagram of the
model, we use the DMRG method with open boundary con-
ditions to calculate the ground-state energies Eo(J, N) by
varying J in steps of 0.1 and changing the total particle
number N between O and L, where L is the length of the
chain. In all calculations we chose the bond dimension such
that the truncation error is always below 10~°. Interestingly,
despite the long-range interaction, we observe that the entan-
glement does not grow dramatically, allowing us to maintain
all sources of error under control (basically, by using enough
DMRG states). We use the Maxwell construction to obtain the
N versus chemical potential i curves and determine the stable
ground-state densities, as shown in Fig. 1 (basically, for a fixed
chemical potential p, the corresponding density is determined
by the minimum of Ey — uN). For validation, we include
results for the conventional ¢ — J chain of length L = 64. We
can identify different behaviors in terms of how the density
N jumps from one value to the next as u is varied. One can
distinguish three regimes, summarized in the phase diagram
Fig. 2(a): (i) a metallic phase where the occupation changes
in steps of one particle (AN = 1) labeled as “A”; (ii) a region
“B” where it changes in steps of two (AN = 2); and finally
(iii) the occupation abruptly jumps between an intermediate
value and n = N/L = 1. This sudden change is associated
to phase segregation: for large J the system splits between
hole-rich regions and domains with density n = 1 and AFM
correlations. The steps AN = 2 can be interpreted as an in-
dication of pairing. However, it turns out that an alternative
explanation is possible: because of spin-charge separation, the
creation of a hole translates into the excitation of both a spinon
and a holon that, as we mentioned, have characteristic veloc-
ities vy and vy,. This means that in the regime with v; > vy, it
is energetically more favorable to create two holons without
exciting any spinons, rather than a single holon and a spinon
[42,103]. This is expected to occur for large enough J, which
is precisely where this is observed in the phase diagram. To
support this argument, we define the singlet-triplet spin gap:

As=EN,5=1)—E(N,5 =0)
and the charge gap:
Ac=EWN+1,85=1/2)+ EWN—-1,5=1/2)
—2E(N, §* = 0). “
In Fig. 1(c) we show both quantities for L = 64 and density
n=N/L = 0.75. As one can see, the charge gap has a very
weak dependence on J and is essentially determined by the
level spacing A, ~ 4¢/L = 0.0625. Both gaps extrapolate to

zero in the L — oo limit (not shown) but in finite systems
they display a crossing at precisely the value of J where
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FIG. 3. Left panel: Binding energy between two holes, extrap-
olated to the thermodynamic limit with second-order polynomial
fit for n = 0.5, o« = 2. The exchange J varies through region B
in phase diagram Fig. 2(b). Right panel: Spin gap extrapolated to
thermodynamic limit with second-order polynomial fit obtained with
DMRG for density n = 0.25 and « = 2; the exchange J ranges from
metallic phase to the phase separation boundary.

the steps change from AN =1 to AN = 2. Hence, this is a
finite-size effect since both spinons and holons are gapless in
the thermodynamic limit. However, it is a feature that should
remain observable in finite chains and can help us as a guide
in our search for pairing, since that should also manifest itself
as steps AN = 2 as well. As a matter of fact, pairing is known
to be stable in this regime [101], as shown in the same figure.
There are two distinct paired phases: a gapless one with alge-
braically decaying but dominant pair-pair correlations, and a
spin-gapped Luther-Emery phase.

In Figs. 2(b) and 2(c) we show similar phase diagrams for
the + — J model with long-range RKKY interactions and for
two values of exponent o = 1.6,2.0. We firstly recall that
at half filling the system undergoes a transition from spin
liquid for large o to Néel AFM for small o at a value of
o, ~ 2.2. The long-range interaction plays the role of en-
hancing the AFM order. As a consequence, upon doping with
holes, electrons tend to clump together in a large ordered do-
main, displacing the holes toward the boundaries of the chain.
Therefore, smaller alpha translates into a growing phase sep-
arated region that dominates the phase diagram, also pushing
the metallic phase to lower densities. On the other hand, at a
value of @ = 2 close to the transition we see that the AN = 2
regime survives albeit in a much narrower window. However,
pairing does not survive. To show this, we calculate the pair
binding energy describing the energy gain for creating a pair
of holes

Ep = (Eanoles — Eo) — 2(Etnole — Eo)
== EO + EZhOles - 2E1h0167 (5)

where we have defined Ernples = E(N =L —2,5°=0);
Eihoe =E(N=L—-1,5=1/2),and Ey =E(N =L, S5 =
0). Finite size extrapolations of A;, and the spin gap A, are
shown in Fig. 3 clearly indicate that both are zero in the
thermodynamic limit within our error bars.
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FIG. 4. Singlet pair-pair, density-density, and spin-spin corre-
lations in real space for L = 64, n = 0.625, and o = 2. J varies
through region B in phase diagram Fig. 2(b).

To offer more insight into this issue, we also calculate the
spin-spin correlation:

S(r) = (S555) (6)
density-density correlation:
N(r) = (non,) — (no)(n:) (N
and pair-pair correlation:
P(r) = (A§A,) ®)

where AT operator represents creation operator for a singlet
pair on neighboring sites:
Z&+ _ 1 ot AT T 9
i = E(Ci,ﬁwrm CipCir1,y) ©))
In Fig. 4 we compare the long distance behavior of these
correlations for various J values, and we find no indication
of dominant pairing, in agreement with the previous consid-
erations. Therefore, we are led to conclude that the AN =2
regime is due to a mismatch between the spin and charge
velocities. As we will discuss below, for decreasing « holons
and spinons will bind into composite quasiparticles, leading
the AN =2 window to completely disappear. According to
these observations, we deduce that long-range antiferromag-
netic interactions tend to destroy pairing in favor of phase
separation, even at low densities.
We finally comment on the small steps appearing at den-
sities n ~ 1 in Fig. 1. The first step from the top shows that
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FIG. 5. Cartoon picture in the Ising limit illustrating: (a) a con-
fined holon and spinon pair; (b) a spinon a distance r = 1 from the
holon, still forming a bound pair; (c) deconfined spinon and holon.
The box highlights the position of the spin domain wall.

the single hole configuration is energetically robust. This is a
singular case, since it is a 1/L effect and speaking of phase
separation with only one hole has no significance. However,
in open chains we find that the first few holes may tend to
cluster at the edges of the chains.

III. QUASTPARTICLE REGIME

As a consequence of the attraction between spinons and
holons, it is possible to realize composite fermionic states that
propagate coherently and carry both spin and charge degrees
of freedom. These states have been referred to in the literature

s “polarons”, “mesons”, or “string states” (see e.g., Ref.
[65] for a discussion). In this paper we favor the idea of a
composite state in which spinon and holon “orbit” each other
as in a Rydberg-like atom or diatomic molecule where the
potential that holds them together, or glue, is a consequence of
the long-range antiferromagnetic interactions. The argument
in favor of quasiparticle formation is more easily understood
when presented in the limit of Ising-like interactions in the
t — J, model [104-114]: as a hole is created in the antiferro-
magnetic background, it does so accompanied by a domain
wall, a spinon (see Fig. 5). A contact-like local potential pro-
portional to J tends to bind them, but is easily overcome by the
kinetic energy of the hole. However, in the presence of RKKY
interactions, the effective binding potential is nonlocal and
grows sub-linearly with the separation distance r between hole
and spinon due to the string of unaligned spins left behind, as
shown in Fig. 5(c):

Vi(r)= Elsing(r) - EIsing(r =1, (10)
(0, r|SzS310,
Exing(r) = Y (1) s 07 'a Dy
Py li = Jl

where the state |i, j) represents a holon at position i and
a spinon at position j. In Fig. 6(c) we show the profile of
this potential for different values of « obtained in the Ising
limit. Due to the long-range nature of the interactions, the
corresponding energy cost would grow with the number of
anti-aligned spins. As a result, holon and spinon will now
energetically prefer to stick together as a composite object.

In the fully SU (2) spin rotational case, we can numerically
calculate the binding energy A, between holon and spinon
following a prescription proposed in Refs. [109,110]. This

a
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FIG. 6. Binding energy between holon and spinon as a function
of (a) « for fixed J/ = 1 and (b) as a function of J for different values
of «, extrapolated to the thermodynamic limit using chains of lengths
L =4m and L = 4m + 2 (see text). (c) Confining potential between
holon and spinon in the Ising limit.

quantity can be obtained as

A(L) = E,(L) — E(L) — Ex(L)
=[E(L,L,0)+E(L,L—1,1/2)]
~MEQL-1,L-1,1/2)+EL+1,L+1,1/2)]
~MEL-1,L-2,00+EL+1,L,0)] (12

where E(L, N, S°) represents the ground state energy of a
system with length L, particle number N and total spin S, and
L is taken to be even in this definition. The spinon energy Ej is
determined by the average ground state of chains with L & 1
sites at half filling; the holon energy E}, is obtained by adding
one hole; finally, the spinon-holon quasiparticle energy E,, is
given by the ground state of chains with L sites at half filling
with and without one hole. In these calculations we used
periodic boundary conditions with 1600 DMRG states to keep
the truncation error under 10~° for system sizes up to L = 44.
In order to obtain a better extrapolation to the thermodynamic
limit we divided the calculation into two groups using (i)
L=4mand L=4m—1 (i) L=4m+2 and L =4m + 1,
with m € Z. To make the extrapolation better conditioned, we
flip the sign of hopping term to transfer the lowest energy from
k =m to k =0 for the chains with length 4m 4 1 and one
hole (see Ref. [109] for details). The extrapolated results as
a function of « are shown in Fig. 6(a). When « is increased
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FIG. 7. Spin-spin correlation in momentum space for J = 1 and
(a) @ = 1.6 and (b) @ = 2 and several densities.

through the antiferromagnetic transition into the spin-liquid
phase, the binding energy vanishes. We also notice that the
data for both L = 4m and L = 4m + 2 have consistent ex-
trapolations, so we only include the results for L = 4m + 2
sector in Fig. 6(b), which shows the dependence with J for
different values of . Our results indicate a dramatic increase
(practically exponential) of the binding energy upon entering
into the antiferromagnetically ordered phase.

Notice that similar arguments can be used to explain pair-
ing near half filling, since the same confining potential would
also act between two holes. However, in the presence of
RKKY interactions this potential is so strong that it forces the
holes to clump together and the system to phase separate, as
observed to occur in the phase diagram near half filling.

When the system is deep in the metallic phase, a spin-
density wave instability appears as a cusp at k = 2kg in the
spin correlations in momentum space:

| [N
S@p:ZEZJWf%$$) (13)
iJ

In Fig. 7 we show the spin-structure factor for several values
of J and total density n = N/L. One can see that as the density
increases, a dominant peak appears at k = m, induced by the
RKKY exchange term. The boundary between the low-density
metallic phase and the high-density regime with antiferromag-
netic spin correlations is demarked by a dot-dashed line in
Figs. 2(b) and 2(c). As observed here, this double-peak struc-
ture is not related to phase separation. We postulate that in
this window of the phase diagram labeled as “QP”, fermionic
composite quasiparticles are stable, and that the AFM order
survives inside the quasiparticles, which can have a large
characteristic “size”.

As the density is lowered and we enter into the metallic
phase, antiferromagnetic correlations are still dominant and
the composite quasiparticles persist for a small range of pa-
rameters before spinon and holon finally deconfine. We offer
two indirect indications that this is the case. The first evidence
of fermionic composite states comes from the momentum
distribution function n(k), that displays a kink around k = kg
right after crossing the boundary in the phase diagram, as
seen in Fig. 8(a). This implies the possibility of a jump or
discontinuity, instead of a singularity, a sign of finite quasipar-
ticle weight (unfortunately numerical uncertainty makes the
calculation of this quantity very unreliable). We also define

gl T 0
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FIG. 8. (a) Momentum distribution function. (b) Spin-spin cor-
relations across the hole as defined in the text. The inset shows an
enlarged part of the main figure. Results are for a chain of length
L = 64, density n = 0.75, and parameters in the legend.

the correlations across the hole [58,75] as (nj,0S,.5%), where
the hole is projected on the reference site O which is taken to
be at the center of the chain. The results shown in Fig. 8(b) are
normalized by (n;, ). In the quasiparticle regime we find that
spins equidistant from the hole are aligned in the same direc-
tion. This is consistent with a charge and spin configuration
as the one depicted in Fig. 5(a), corresponding to a composite
state of a spinon and a holon. Notice that the correlations at
distance r = 1 in Fig. 8(b) are antiferromagnetic, indicating
fluctuations with a heavy contribution from the configurations
in Fig. 5(b), that is to be expected since the quasiparticle
moves combining hopping and spin-flip processes. Outside
of the quasiparticle regime, the correlations across the hole
tend to oscillate with momentum 2k indicating deconfined
spinons and holons, as illustrated in Fig. 5(c). The presence
of coherent quasiparticles will be supported by calculations of
the photoemission spectra in the following section.

IV. SINGLE HOLE SPECTRAL FUNCTION
A. DMRG at half filling

We are seeking signatures of coherent quasiparticles in
the photoemission spectrum of the generalized t — J model
with long-range RKKY interactions using the time-dependent
DMRG method (tDMRG) [115-118]. We follow the standard
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FIG. 9. Photoemission spectrum at half filling n = 1 for / = 1 and different values of « (o = oo indicates the conventional  — J model).
The lower panels display cuts in frequency along the k£ = /2 line showing the development of a coherent quasiparticle peak.

prescription detailed in the original paper [115] and subse-
quent studies of the Hubbard model [119,120]. We calculate
the two-time correlator:

(el (Deor (0) = (Yole™'clye™ M eop ), (14)

where ¢, here is defined at the center of the chain, and r is
the distance from center. By Fourier transforming to momen-
tum and frequency, we reconstruct the momentum resolved
spectral function. This procedure is carried out numerically
over a finite time window t,,,, with #,,,, = 20 unless otherwise
stated. In order to attenuate artificial ringing we use standard
windowing techniques. The spectrum will exhibit an artificial
broadening that is inversely proportional to #,,,. The long-
range terms in the Hamiltonian make it convenient to use
a time-step targeting procedure with a Krylov expansion of
the time-evolution operator [121] and a time step 6t = 0.1
(time is measured in units of hopping ¢! and ¢ is our unit
of energy). We study chains of length L = 48 using up to 400
DMRG states that guarantees that the truncation error remains
smaller than 107 over the time window. In all results shown
here we introduced a shift in w given by u = E; — Ey, where
Ey is the energy of the ground state |i) with N =L and
Ei = (Wi lHI 1) /(W1 191) with [91) = el o).

We show results at half filling in Fig. 9 for J/t = 1 and
varying « across the transition from Néel to spin liquid. The
spectral function of the conventional t+ — J is displayed in
panel Fig. 9(d). The spectrum displays features of both spinon
and holon dispersions [122,123]: Assuming holon and spinons
dispersions €;(g;) and €4(qgy), one can construct all possible
energies with momentum k as e(k) = €,(q;) + €,(g;s), with

k = qn + gq,. Clearly, this construction will yield a contin-
uum of energies with momentum k. The figures show the
development of a coherent quasiparticle peak as we cross the
critical value of o, ~ 2.2 from above. In addition, we observe
that the dispersion develops two minima. This is explained
by realizing that the composite quasiparticles will have to
move by means of a combination of hopping and spin flips.
Therefore, the particle will effectively acquire a second (next-
nearest) neighbor hopping contribution since each spin flip
moves a spinon by two sites. In the lower panels of the same
figure we show cuts along the k = kr = 7 /2 line. We can
clearly resolve the quasiparticle peak splitting from the upper
edge of the continuum (ringing oscillations are artifacts of the
Fourier transform, as noted above).

In Fig. 10 we compare the behavior with varying J at a
fixed value of o = 1.6, deep into the AFM ordered phase,
where we see an increase of spectral weight in the quasi-
particle band with increasing J. Looking more carefully, we
notice the development of new structures inside the incoherent
continuum. In order to resolve these new features, we plot
the spectral weight in a log scale in Fig. 11. The “ladder”
appearing inside the continuum is not a numerical artifact
but a manifestation of the string confining potential (10).
These “string” excitations are not stable, and decay into a
spinon and a holon as we discuss below. We also look at
two extreme cases with o« = 1.1 and small J/ = 0.2 and 0.4
in panels (a) and (b) of the same figure, where we observe just
one or two prominent string states. One way to interpret the
energy spacing between them is by considering a simplistic
picture in which spinons cannot move and holes behave as
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FIG. 10. Top row: Photoemission spectrum at half filling n = 1
for « = 1.6, deep into the Néel phase and different values of J.
Bottom row: Cuts in frequency along the k = 7 /2 line showing
the development of a coherent quasiparticle band splitting from the
continuum.

particles trapped by the confining potential of Fig. 6. In a lin-
ear potential, these bound states would be Airy functions with
equally spaced energy levels [106]. In our case, the behavior is
less trivial, but analogous, with a spacing that increases with
increasing J or with smaller . We provide a more detailed
theoretical description and analysis in the following sections.

B. SCBA

In order to gain further physical insight, we compare
the DMRG photoemission spectra with the predictions of
an analytic approach that correctly describes the motion
of a hole tightly coupled with the semiclassical spin-wave
excitations of an antiferromagnetic state, giving rise to a
spin-polaron quasiparticle. Hence, we have calculated the sin-
gle hole spectral functions by means of the self-consistent
Born approximation (SCBA) [124-127], a method that has
been proven to compare quantitatively very well with exact
diagonalization (ED) results on finite two-dimensional clus-
ters with short-range interactions in different antiferromagnets
[124,128-131]. It is one of the more reliable and checked
analytical methods up to date to calculate the hole Green’s
function, and in particular, its QP dispersion relation. In or-
der to do such calculation, we follow standard procedures
[124]. On one hand, the magnetic elementary excitations
are obtained treating the Heisenberg exchange terms of the
Hamiltonian at the linear spin-wave (LSW) approximation.
Thus, we restrict this description to the long-range magneti-
cally ordered regime of the phase diagram, whose magnetic
spectrum consists of semiclassical magnons within the LSW
approximation. In this sense, the SCBA will have the abil-
ity to exhibit the physics of a single hole interacting with

(a) J=0.2; a=1.1; n=1
.‘~‘

(b) J=04; a=1.1; n=1

|

FIG. 11. Photoemission spectrum for a single hole for several
values of J and « in a color log scale, showing features associated
with strings inside the continuum.

one-dimensional magnons only, excluding other possible ex-
citations like spinons. On the other hand, the electron creation
and annihilation operators in the hopping terms are mapped
into holons in the slave-fermion representation (details in the
Supplemental Material of Ref. [132]). Within SCBA, we ar-
rive at an effective Hamiltonian:

Hesr = ) oxyb + f Z(quh h—qfq +Hee). (15)
k

where there is no hole tight-binding-like free hopping term,
since the ground-state magnetic pattern consists in a 180°
antiferromagnetic Néel order. The magnon dispersion relation
wk is given by [93,94]:

o =5t — & (16)

L2 L2
cos(2nk) — 1
=2JS —2JS _—
€k Z (2 nXZ]: (2”)0‘
cos[(2n — 1)k]
= -2JS , 17
8k Z Tem—TE (17)
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FIG. 12. Photoemission spectrum at half filling n =1 for J =
1 and different values of o obtained with the self-consistent Born
approximation (SCBA). In the lower panels (c) and (d), we show
cuts in frequency along the k = 7 /2 line.

and Myq is the vertex interaction that couples the hole with
magnons:

Myq = 2t[cos(k)ug_q + cos(q)vi—q], (18)

where u; and v, are the usual Bogoliubov coefficients. We
have evaluated the sums in (17) up to where convergence is
reached within a given tolerance. The self energy is calculated
within the SCBA taking into account noncrossing diagrams
only, which leads to the self consistent equation

|qu|2
@)=~y ——
L P +ie —wp_g — Ly(w — wr—y)

19)

from which the hole spectral function is obtained.

In Fig. 12 the SCBA spectrum is shown. All the SCBA
results are for L = 100 sites, as it was checked that it already
accurately describes the thermodynamic limit. Similar to the
DMRG results, Fig. 10, the SCBA spectrum also shows a
well defined quasiparticle band and a high energy continuum.
However, in this case, the high energy spectrum is clearly
composed of strings. Strings are well known manifestations
of chains of misaligned spins left behind by the hole as it hops
[124,125]. As previously discussed, as the hole hops, mis-
aligned spins are left behind, creating an energy potential that

(b) /=04; a=1.1
-0.5

(a) J=0.2; a=1.1

0.5 0
kin
141(c) J=0.2; a=1.1; k=kr

0.5 0.5

0
kim
(d) J=0.4; a=1.1;

kp

0.8
0.6

0.4

057 3 5 -

FIG. 13. Photoemission spectrum at half filling n =1 for o =
1.1 and different values of J obtained with the self-consistent Born
approximation (SCBA). In the lower panels (c) and (d), we show cuts
in frequency along the k = 7 /2 line.

binds the hole, promoting its return to the original position. As
in 1D there are no closed Trugman loops [133], the only op-
tion for the hole to “cure” the strings of wrongly aligned spins
is to retrace its path. In this picture, the energy cost of moving
the hole increases with distance, such that it is favorable for
the hole to return to its original position by reabsorbing the
magnetic excitations, in this case magnons, in reverse order
of creation. These processes produce noncrossing diagrams
that are precisely what lies underneath the SCBA. However,
the presence of spin-flip interactions in the Hamiltonian offers
an alternative channel for the magnetic fluctuations to repair
the misaligned spins, giving the hole the possibility of moving
coherently. These processes are responsible for the QP peak in
the spectrum. In the case of the t — J; Ising case, it has been
shown that the (k-independent) spectrum consists of several
strings [111]. In our model the same physics appears when
o >~ 1, as the magnetic order becomes almost classical, with
a very low probability of spin-flip processes. As o« increases
and the long-range order is weakened, the QP spectral weight
decreases, and the high energy string continuum gains weight,
but the SCBA picture remains essentially the same.

In Fig. 13 we show the SCBA spectra at low «, where
the order is more rigid, varying J/t. At low J/t, where the
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characteristic time of magnetic fluctuations is much larger
than that of the hole hopping, strings are manifested.

On one hand, the QP spectrum of the SCBA and DMRG
show good qualitative agreement in the ordered regime of
the phase diagram, i.e., for o < 2.2. This indicates that the
QP in the ordered regime is effectively a magnetic polaron,
where the hole dynamics is determined by its interaction with
magnons. However, the high energy spectrum of the SCBA
and DMRG differ, especially when J/t and o are not very
low. For low « both methods show a string picture. However,
strings are unstable at high energies and decay into a contin-
uum of spinon-holon excitations. On the other hand, in the
SCBA approximation, strings spread over the entire energy
range and are mostly responsible for the incoherent part of the
spectrum. The noticeable differences between both methods
in the intermediate to high energy sector arise because in the
SCBA, due to the linear spin-wave treatment of the magnetic
spectrum, spinons are absent, and spin-charge separation is
not possible.

Hence, it can be concluded that the exact DMRG spectrum
exhibits a spin-polaron quasiparticle at the lowest energy,
and a few unstable strings for low «, a typical behavior in
higher dimension antiferromagnets. This QP is the result of
the confinement of the holon and spinon excitations at low
energies, while for higher energies there are signatures of
spin-charge separation even for @ < 2.2, where there is long-
range order. Hence, the 1D RKKY system displays signatures
of a dimensional crossover as a function of the energy, with
the 1D physics surviving at high energies.

C. Spinon-holon problem

In order to provide an intuitive physical picture that ac-
counts for spin-charge separation and can allow us to peek
into the internal structure of the composite quasiparticle, we
start from the Ising limit, in which the ground state without a
hole is just a trivial classical Néel order. When the insulator
is doped with a hole it introduces a domain wall (a spinon) in
the AFM background, as shown in Fig. 5(a). Besides the mo-
tion of the hole, we consider additional quantum fluctuations
mediated by spin-flip processes that allow the domain wall to
move, ignoring processes that create new spinons for being
energetically too costly (this includes long-range spin-flips).

In order to make this scenario more concrete, we explicitly
solve the two-body problem of a spinon and a holon. As noted
previously, the spinon propagates by fwo sites with each spin-
flip, and therefore it has a dispersion €,(k) = J cos (2k), while
the holon dispersion is €,(k) = —2t cos (k). Both particles
interact via a confining potential V (r), Eq. (10), where r is the
separation between the two. The formulation we use to study
the two particle bound state has been extensively applied in a
number of scenarios in the literature, including Hubbard-like
models [134-140], the formation of excitons in multiband
problems [141], and magnons [98]. In our case, as the hole and
spinon move apart, they leave behind a string of anti-aligned
spins in the antiferromagnetic background that, unlike the
conventional 1D ¢t — J model, costs an energy that grows with
the relative distance between spinon and holon—the length of
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FIG. 14. Spectrum of the spinon-holon problem for two different
values of J and o = 2.

the string. In our case, we assume the following Hamiltonian:

Hrg, ra) = —t([rg, rn + 1) + [rg, ra — 1))
+J/2(|rs + 29 rh) + |rS - 27 rh))
+Vrs = rDlrs, ra), (20)

where r; and r;, refer to the position of the spinon and holon
respectively, and the potential V is given by Eq. (10). We
consider periodic boundary conditions, which allows us to
construct a basis of states that are translationally invariant and
labeled by a momentum k:

=
Ink)y=—=) &“Tlr,=0,r,=r)
ﬁ x=0
L-1
1 ikx
=—Ze |re =x,r, =71+ x). 21

\/Z x=0

In this basis, the Hamiltonian matrix can be easily obtained
and numerically diagonalized for each momentum sector. The
spectrum of a chain with L = 40 sites is shown in Fig. 14
fora =2,J = 0.4 and 1. Without interactions, the spectrum
consists of a continuum with a lower edge given by w(k) =
€5(k) — €,(k = 0) = €4(k) — 2. Long-range interactions favor
the formation of composite fermionic bound states splitting
from the spinon-holon continuum, resembling our numerical
results obtained with DMRG and the SCBA in previous sec-
tions. However, in this picture the spinon-holon continuum
is manifest while the SCBA cannot account for it. Despite
being a crude approximation, it offers intuition about the
nature of the quasiparticle excitations: the hole and spinon
form a Rydberg-like state or diatomic molecule, confined by
the string potential of Fig. 6. In order to move coherently,
the spinon-holon pair has to do it in two steps: first, a spin
flip moves the spinon by two sites; second, the holon needs
to follow and settle in between the two parallel spins. As a
consequence, the dispersion of the “polaron” will display two
minima, as already observed, with a bandwidth determined
primarily by J.
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FIG. 15. Photoemission spectrum at density n = 0.75 for J = 1,
o = 1.6 and the conventional + — J model (¢ = co). We show cuts
in frequency along the k = kr line showing the development of a
coherent quasiparticle peak.

V. PHOTOEMISSION AT FINITE DOPING

At finite doping the existence of coherent quasiparticles in
one dimension is less expected. One argument against it is the
presence of pervasive nesting at all densities, making Fermi
liquid theory unstable and LL theory apparently unavoidable.
However, in Fig. 15 we show the spectrum at momentum
k = kp at density n = 0.75 for the conventional t — J model
displaying a Fermi edge singularity, and o = 2, showing a
coherent peak that seems to split from the continuum. This
numerical evidence suggests that indeed quasiparticles may
be stable, at least in a range of (relatively high) densities. We
postulate, without offering a proof, that this occurs whenever
the spin correlations have a dominant AFM peak at k = 7, the
region labeled as “QP” in Fig. 2.

VI. CONCLUSIONS

We have studied the stability of fermionic quasiparticles
in a doped antiferromagnet in a relatively simple one-
dimensional model that realizes much of the phenomenology
of the higher-dimensional ¢ — J model. At half filling, the
all-to-all-interactions lead to a transition to a phase with
spontaneous symmetry breaking and Néel order. Interestingly,

pairing is no longer stable and gets replaced by a large re-
gion where phase separation into AFM and hole-rich domains
takes place: Long-range interactions lead to holes clumping,
or clustering, indicating that in order to stabilize and have
mobile pairs, a weaker confining potential might be required.
Such scenarios have been explored in the conventional t — J
model with a staggered magnetic field where the potential is
linear and pairing is robust [106], or in a square lattice with
long-range AFM order but where the holes are allowed to
move only along the x direction [63]. In the context of our
model, one possible way to counteract the instability toward
phase separation is by including a long-range Coulomb repul-
sion and second-neighbor hopping to increase the hole kinetic
energy. Work in this direction is underway.

Upon doping the antiferromagnet with a hole, we observe
spinons and holons binding to form composite quasiparticles
in the regime with long-range antiferromagnetism for small
«, while they remain deconfined in the spin-liquid phase for
o > o, ~ 2.2. These excitations appear in the photoemission
spectrum in the form of a coherent band splitting from the
edge of the continuum of width determined by the exchange
J and the exponent «. This band has also been observed in
calculations on the 2D Hubbard model [15,25,26,86,142] and
t —J model [65]. The composite nature of the quasiparticles
is supported by calculations of the spinon-holon binding en-
ergy that show a dramatic enhancement upon transitioning to
the Néel phase and it is analogous to the observed physics
in doped two-dimensional antiferromagnets [124,130,143].
This picture is further confirmed by SCBA calculations and
the spectra of the spinon-holon problem. While the system
exhibits well defined fermionic quasiparticles, their internal
structure can be described as a spinon and holon oscillating
around a common center of mass. Also, the SCBA calcula-
tions exhibit high energy strings in the long-range ordered
regime, but this physics is present in the DMRG calculations
only at very low o, where the magnetic order is very rigid.
This leads us to conclude that a single hole, even in the ordered
phase, couples at high energies to magnetic excitations that are
spinons instead of magnons.

The physical size of the composite quasiparticle can be
quite large, and will be dictated by both J and « and will di-
verge at the transition point «.. As a matter of fact, it might be
possible that close enough to «, the size of the “polaron” can
be larger than the chain length, in which case one would only
see spin-charge separation. At higher energies, both spinon
and holon deconfine and we observe a continuum that can
be associated with the original dispersions of the two ob-
jects. Therefore, while the system exhibits higher-dimensional
physics at low energies, the 1D physics of spin-charge separa-
tion re-emerges at higher energies. This implies that at finite
temperature, larger than the binding energy between holon
and spinon, the quasiparticles would decay into their origi-
nal constituents, establishing a limitation to our experimental
ability to resolve them.

At finite doping, upon crossing the phase separated region,
we encounter evidence of surviving quasiparticles near the
Fermi points. This is a quite puzzling surprise, since one
would expect a 1D metal to be a Luttinger Liquid due to
nesting and the fact that the Fermi surface consists only of
discrete points (we are loosely referring to the regime with
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spin-charge separation as the LL phase, even though the
excitation spectrum is no longer linear in the presence of
long-range interactions). In fact, at low densities, the AFM
order melts and spin-charge separation re-emerges. However,
it may seem as though the confining potential is strong enough
to induce dominant AFM interactions and coherent quasipar-
ticles even away from half filling, albeit in a narrow window
of densities. We point out that one-dimensional metals with
fermionic quasiparticles are indeed possible, but this typically
occurs in gapped systems, such as ladders [144—147]. In these
systems the spin and charge gap may survive at finite doping
[148]. However, our model Eq. (3) is gapless in both channels.
Further numerical and theoretical work is needed to elucidate
the mechanisms that might possibly stabilize fermionic quasi-
particles in this regime.

Finally, this paper demonstrates the interesting phe-
nomenology that can arise from the inclusion on long-range
interactions and, in particular, establishes Eq. (3) as a rich
toy model Hamiltonian to study higher-dimensional physics
with methods usually considered more amenable to one-
dimensional problems.
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