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Abstract

We study a generalized quantum spin ladder with staggered long range interactions that
decay as a power-law with exponent a. Using large scale quantum Monte Carlo (QMC)
and density matrix renormalization group (DMRG) simulations, we show that this model
undergoes a transition from a rung-dimer phase characterized by a non-local string or-
der parameter, to a symmetry broken Néel phase. We find evidence that the transition is
second order. In the magnetically ordered phase, the spectrum exhibits gapless modes,
while excitations in the gapped phase are well described in terms of triplons — bound
states of spinons across the legs. We obtain the momentum resolved spin dynamic struc-
ture factor numerically and find a well defined triplon band that evolves into a gapless
magnon dispersion across the transition. We further discuss the possibility of deconfined
criticality in this model.
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1 Introduction

The study of exotic phases of matter of quantum origin is one of the cornerstones of modern
condensed matter physics, motivating a quest for materials and models that could exhibit
novel unconventional properties, such as fractionalized excitations that cannot be described
as Landau quasiparticles, topological states that do not admit a local order parameter, and
quantum phase transitions that defy the Landau-Ginzburg paradigm.

Quantum magnets exhibit a vast and varied phenomenology and offer a relatively simple
and intuitive playground where to test and verify these ideas. A prototypical example of phase
transition that has been extensively studied is the one between a disordered dimer phase and
a Néel ordered antiferromagnet(AFM) [1-3]. On both sides of the critical point, excitations
carry spin S = 1: triplons in the magnetically disordered gapped phase; gapless magnons in the
ordered phase. At the transition, besides two gapless Goldstone modes, a massive amplitude
mode (also referred-to as the Higgs mode) is expected. Remarkably, this behavior has has been
experimentally observed under pressure in TICuCl; [4-7].

A crucial reason explaining why the theoretical study of these phenomena has been lim-
ited to two and three spatial dimensions is justified by the Mermin-Wagner theorem [8], that
establishes that quantum Hamiltonians with short range interactions cannot spontaneously
break a continuous symmetry in dimensions lower than D = 2. Even in 2D systems, this can
only occur at zero temperature T = 0. In this work, we circumvent these restrictions by intro-
ducing long range non-frustrating interactions to the problem. We can thus conceive a ladder
Hamiltonian that exhibits true long range Néel order and apply numerical techniques that
are well suited for studying low-dimensional problems. Explicitly, the model of interest is a
conventional Heisenberg ladder with additional algebraically decaying all-to-all couplings:
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where the spin operators S; are localized at positions 7; = (x;, y;) on a two leg 2 x L ladder
with y; = 1,2. The alternating sign on the interactions ensures that they will be AFM be-
tween spins on opposite sublattices, and ferromagnetic otherwise (See Fig. 1 for a graphical
representation). One could in principle envision such interactions emerging from a proximity
coupling with a higher dimensional antiferromagnet or other ladders in a perturbative sense.
The only free parameter in the problem is the exponent a; for large a we expect the ground
state to be in the same phase as the conventional Heisenberg ladder and the physics is well
understood: the correlation length is short, of a few lattice spaces, and the gap is of the order
of the coupling J [9-20]. This ground state is adiabatically connected to the trivial limit of
the conventional Heisenberg ladder corresponding to anisotropic couplings along the legs and
rungs Jyyng > Jie,- In this “strong rung coupling limit” the ground state is a product of rung
dimers, the single-triplet gap is of order O(J,,,g) and excitations are rung triplets that can
propagate coherently along the ladder.

Notoriously, unlike the case of dimerized chains, this “rung singlet phase” does not break
any lattice symmetry, and even though it is adiabatically connected to a product state in the
limit of J,,, — 09, it is characterized by a broken “hidden” symmetry [21-25] described in
terms of a “string” order parameter [26-28]:
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with §JZ = SJ"? a1t S]".'2 connects spins along one of the diagonals between two rungs. The
connection between ladders and the topological aspects of the Haldane chain were noticed

while back [26].
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Figure 1: Exchange interaction between two spins at distance x along the same and
opposite leg, for a value of a = 1.8.

On the other hand, in the model described by Eq.(1) we anticipate that the all-to-all un-
frustrating interactions will yield a ground state with long-range AFM (Néel) order and gapless
excitations for relatively small a. These expectations are based on previous studies of Hamilto-
nian (1) in 1D chains [29-34], where a transition between a gapless spin-liquid and a gapless
ordered phase was revealed.

In this work, we focus on identifying and characterizing the quantum critical point, as
well as understanding the excitation spectrum at and away from the transition. Given that the
model described by Eq.(1) does not have a sign problem we use QMC to study the properties of
the transition while using the time-dependent density matrix renormalization group method
(tDMRG) [35-38] to understand the low-energy excitations. The behavior of the gap and order
parameters is discussed in Sec. 2, offering compelling evidence for a continuous quantum
phase transition between the Néel and rung-dimer phases at a. = 2.519(1). In Sec. 4 we
present results for the dynamic spin structure factor S*(q, w). We finally close with a summary
and discussion of our findings.

2 Quantum critical point

In this section, we present several complementary methods to estimate the position of the
quantum critical point a.. We first focus on determining the critical point using the correlation
length exponent v using QMC on periodic ladders of length up to L = 96. We also develop a
method to determine the critical point using the dynamic exponent calculated from finite size
gaps obtained from DMRG [39, 40] calculations.

To study the ground state properties we use projector QMC with a trial state that is given by
an amplitude product state in the valance bond basis [32,41,42]. We use the same trial state
for all values of a. This state has long range Néel order to help reduce the number of projector
steps needed to reach the ground state in the Néel phase. In the rung-dimer phase, this trial
state has little effect on the number of projector steps required because of the finite gap in the
thermodynamic limit. We study two different order parameters that define the order on either
side of the transition. If the transition point is determined to be the same using both order
parameters, we can exclude the possibility of an intermediate phase between the rung-dimer
and Néel phases. For the Néel order we use the Binder Cumulant defined as:

3 1 (M2)
S .

where M, = Zi(—l)xi+y i§7. In our QMC simulations we exploit the full SU(2) symmetry of
the ground state [41,42].
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Figure 2: Binder Cumulant B (solid lines) and the log string-order parameter ratio
R (dotted lines) as a function of a for different system sizes. Note the scale for B
and R are on the left and right side of the frame respectively. The error bars for both
quantities are smaller than the symbols.

For the rung-dimer phase we use the string order parameter O, defined in Eq.(2). Much
like a correlation function, we observe that in a finite size system O, has a non-vanishing value
due to finite-size effects. To systematically study the convergence to the thermodynamic we
look at the ratio between O; measured at two lengths, L/2 and L /4, and analyze the following
quantity as a function of a and system size L [43]:

R =log (%) . )
Or/4
In order to measure O; we use the standard estimator calculated from the S* basis of the QMC
simulation. Because of the non-local nature of this order parameter, the results have more
noise compared to the Binder cumulant.

Considering a functional form O; = f;4+C (where f; is an asymptotically decaying function)
there are a few possible outcomes for R in the thermodynamic limit. For C > 0, R — 0 as
L — oo. In the other hand, for C = O the asymptotic behavior of R is determined by the
behavior of f;. If f; decays as a stretched exponential (or faster) R diverges as L — oo, while
for f; decaying slower, R — const < 0, i.e. for a power-law decay this constant will be negative.

In Fig. 2 we show both B and R as a function of a for various system sizes. We observe that
B monotonically increases for decreasing a. This behavior indicates the onset of long-range
Néel order for small values of a. On the other hand, R, which is always negative by definition,
is growing in absolute value as a decreases. For larger values of a, in the gapped phase, R tends
to 0 with increasing system size, implying that O > 0. In the Néel phase (small a) R converges
to a finite value, indicating that O = 0. The “steepness” of the B and R curves increases with
increasing system size. This observation is consistent with the finite-size behavior one would
expect from a phase transition [43].

Both B and R represent different types of order and they serve as means to independently
determine the critical point. If the transition occurs between two ordered phases, one would
expect that B and R will share the same critical point and correlation length exponent v. We
have specifically chosen the forms for B and R to allow us to systematically extract the critical
point and correlation length exponent from finite-size calculations.
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Figure 3: Crossing points for both the Binder cumulant B (circles) and the log string-
order parameter ratio R (triangles) as a function of 1/L for different system sizes.
The dashed lines show the extrapolation to the thermodynamic limit and the legend
indicates the extrapolated value along with the normalized y?2 value for the fit.

To determine the location of the critical point we look at the crossing points between two
curves (either B or R) corresponding to different system sizes. Because of finite-size scaling
(FSS) corrections, the crossing points will drift closer to the critical point as the system sizes
increase [43]. Specifically, we look at the crossing points between curves corresponding to
system sizes L and 2L, that we denote as a*(L).

We can also extract the correlation length exponent v from B and R because they both have
a scaling dimension of 0. From the FSS form for this type of observable it is possible to show
that the value of v can be determined by the following limit:

8aY(a*(L),2L))]_1 ’ -

— i k k —
v=fim vi(L), ()= [logz( 2, Y(a*(1), L)
where Y (a, L) corresponds to either B or R. This can easily be seen by looking at the FSS form
for an observable with scaling dimension 0 [43].

Since in practice one can only study a finite number of values of a, we interpolate those
points with a polynomial. Using the interpolation for L and 2L we can calculate both a*(L)
and v*(L). To account for the statistical errors coming from the QMC sampling we use the
bootstrapping method. This involves drawing a new set of values for B and R from a normal
distribution with a mean and standard deviation given by the QMC mean and standard error
for each point respectively. After drawing the new points, a polynomial is fitted from which
a*(L) and v*(L) are obtained. This procedure is repeated for many random realizations of
the data points. Each realization has independent values of a*(L) and v*(L). From this set of
values the mean and standard deviation are calculated. In this work we use 10000 realizations
to generate the mean and standard deviation corresponding to the points and error bars shown
in Figs. 3 and 4.

The results for a*(L) and their respective estimates in the thermodynamic limit for both
B and R are show in Fig. 3. The extrapolation is done using a power-law fit of the form
a*(L) = a.+ b/L" for both, B and R. The two order parameters give a critical point of 2.520
within error bars. We also use a linear expression to extrapolate the values of v*(L) for both
B and R, as shown in Fig. 4, yielding a value of v = 1.79 within error bars. These results are a
strong indication that there is a direct transition between the rung-dimer phase and the Néel



Scil SciPost Phys. 13, 060 (2022)

21 1 1 1 1 1 -

-“’
2.0 | t- oo

R e - > [ ]
e vr=1.78(3)
% 1.8 | e X% = 0.90 -
N v =179(1) -
@ 1.6 [ XZB = 1.09 .
* A
R 1.5 -
1.4 4
1.3 | =
1 1 1 1 1
0.00 0.01 0.02 0.03 0.04
1/L

Figure 4: Extrapolation of the exponent v*(L) for both the Binder cumulant B (cir-
cles) and the log string-order parameter ratio R (triangles) as a function of 1/L for
different system sizes. The legend indicates the extrapolated values for v along with
the normalized y2 values for each fit.

phase. Our next goal is to establish if the transition is continuous or first order.

3 Gap and dynamic exponent 2

The dynamic exponent z can provide useful information about the behavior of excitations as
well as whether or not the transition is continuous. In order to obtain z we use finite size
extrapolations of the spin-triplet gap, calculated using the DMRG method. What makes this
problem particularly challenging is the possibility of a volume law entanglement law due to
the presence of all-to-all interactions. However, in the gapped phase, the correlation length
remains finite and the entanglement remains under control. Surprisingly, the entanglement
entropy does not grow dramatically in the gapless phase and across the transition. This may
appear to be a general feature of one-dimensional models with long-range interactions as has
been observed in quantum spin chains, which display a log (L) behavior [33,44-46]. The main
numerical cost lies on the fact that the number of terms in the Hamiltonian grows quadratically
with system size. In the calculations presented here we have studied ladders of size L x 2 sites
with L up to 48, with open boundary conditions and adjusting the bond dimension such that
the truncation error is kept under 107, translating into up to 1000 states.

As discussed in the previous subsection, in the limit a — ©o the problem reduces to the
conventional Heisenberg ladder Hamiltonian with nearest neighbor interactions. As the value
of a is decreased, the antiferromagnetic correlations are enhanced and the gap is reduced. In
the left panel of Fig. 5 we show the behavior of both the gap extrapolated to the thermodynamic
limit as a function of a. To carry out the extrapolation to the thermodynamic limit we use a
second order polynomial fit of finite-size data as a function of 1/L, as shown in the inset. We
do not see a closing of the gap at @ = 2.520 due to the strong sublinear scaling behavior
that introduces corrections that require larger system sizes (as we describe below, a power-
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Figure 5: (left) Gap extrapolated to the thermodynamic limit as a function of a.
The inset shows the finite-size gaps, obtained with DMRG, used in the extrapolation
of A, with second order polynomial fit. (right) Dynamic critical exponent z(L) as
a function of a for various system sizes. The circles correspond to z(L) calculated
using the gaps obtained from DMRG. The curves are the best fit using fourth order
polynomials.

law extrapolation is ill-conditioned for this small dataset). We point out that the upturn of
the curve for small a is likely an artifact of the extrapolation that becomes less reliable as the
spectrum becomes more singular at the ordering wave vector. Even though, once the system
orders, the spectrum is expected to remain gapless, we do not discard the possibility of a gap
reopening for small 1 < a < 2, since the long range interactions violate Goldstone’s theorem
hypotheses and symmetry breaking could be accompanied by a gap [47-49] (we discuss this
point in more detail in the Conclusions).

Given the power-law nature of the interactions, the finite-size effects are much stronger
compared to a local Hamiltonian making the dynamic exponent difficult to extract. We can
account for these corrections by expressing the gap as:

A(L) =aL™*(1+ fa(L)). 6)

Here we include all finite-size corrections in fo(L) such that, in the thermodynamic limit,
fa(L) — 0. Instead of fitting the gap directly, we can define an approximation of the dynamic
exponent for a finite-size system by calculating the log of the ratio of the gap between system

sizes L and 2L,
A(L) 1+ fa(L)
z(L) = logz (A(ZL)) =2+ logz (TAAQL)) . (7

When L — oo the second term on the right side will vanish. Using z(L) allows one to directly
extrapolate the dynamic exponent removing any bias in trying to guess the functional form of
finite-size corrections.

At a transition between a gapless and gapped phase, z will have a discontinuous jump at the
critical point from O to a finite value, much like the Binder cumulant for an order parameter.
For finite-size systems the non-analytic behavior becomes smooth but the evidence of this
discontinuity becomes more pronounced as system sizes become larger. As a result, we use
the crossing points between two system sizes to extrapolate the location of the critical point.
The crossing points in the right panel of Fig. 5 indicate that the dynamic exponent is going to
0 above a,, while approaching a value larger than 0 below the transition.

We can also use z(L) to determine whether this transition is first or second order. In the
continuous case, z(L) at the critical point will tend towards a finite value in the thermodynamic
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Figure 6: (left) Extrapolation of crossing point of the curves in the right panel of
Fig. 5 to the thermodynamic limit using power-law (e.g. Quoss(L) = a, + b/LF)
and quadratic fits shown in the plot as orange and green lines respective. (right)
Extrapolation of z(L) values at the crossing points with a power-law and quadratic
fits shown in the plot as orange and green lines respective. The error bars for each
point are calculated from the co-variance matrix of the polynomial interpolations
and the error bar for the critical point and dynamic exponent in the figure have been
calculated the bootstrap method. The y2 value for the fit is shown in the figures. We
have normalized it by the number of left-over degree’s of freedom, in this case is one.

limit while for a first order transition z(L) will tend to infinity. There is no indication in our
results of a divergence in the dynamic exponent for any of the values of a we looked at, thus
providing evidence for a second order transition.

Using the crossing points between system sizes L and L + 4, we can estimate the critical
point by extrapolating them to the thermodynamic limit as a function of 1/L. We show the
results for our extrapolation in the left panel of Fig. 6. To fit the data we use an expression
¥ = ¥o + b/LP due to the limited number of points. We find that the critical point is around
2.5 based on the two different extrapolation methods.

It is worth noting that a value of z = 1 would indicate the possibility of an underlying
conformal invariance and, consequently, a deconfined quantum critical point. To determine
the value of z at the critical point one can extrapolate the values of z(L) at the crossing points
just as we did for the Binder cumulant [43]. The results are shown in the left panel of Fig. 6.
Unlike in the critical point estimate, the extrapolated values differ significantly between the
power-law and the quadratic extrapolations indicating there are larger finite-size corrections
to this quantity. In this case, we cannot provide an accurate estimate for the critical exponent.

4 Spin dynamics

In order to calculate the spin dynamic structure factor we used the time-dependent DMRG
method (tDMRG) [35, 36], a well established technique described in detail in the original
work Refs. [35,50] and reviews Refs. [37,38]. The longitudinal two-time spin-spin correlation
function is defined as:

(S2(£)SE(0)) = (ole P SZe IS |vp,) (8

where we take S§ at the center of the one of the legs of the ladder, and r is the distance from
the middle. The spectral function is obtained by Fourier transforming from real space and time
to momentum space and frequency. This procedure is carried out over a finite time range (in

8



SciPost Phys. 13, 060 (2022)

(a) a=1.8

N
=

i
i

I
~

B P
. [E===
Sl — —
b A=
—_——LA
F——— ]
:=.\—-
A=
e ]
é-—../ NN—
05 _' =
=

¢

|

"0 12345601234560123456012345°6
(O] () ()

Figure 7: Longitudinal dynamic spin structure factor S(k,w) for a 20 x 2 ladder
with long range interactions and different exponent a across the quantum critical
point, obtained with tDMRG. Upper(lower) row show the symmetric (antisymmetric)
channel. Ringing at high energies is due to the finite time integration window (see
text). Also shown are the linear spin-wave dispersion and results for the conventional

ladder with only nearest-neighbor terms, o = c0.

our case t,,,, = 10). For this reason, the poles in the spectral function will not be well defined
deltas, but will display artifacts such as artificial ringing that can be attenuated by means of
standard windowing techniques also used in signal processing. As a consequence, the width
of the spectral features will be inversely proportional to the width of our time window. Due
to the long-range nature of the terms in the Hamiltonian, we employ a time-step targeting
procedure with a Krylov expansion of the time-evolution operator [50]. We fixed the time step
5t = 0.05 (measured in units of J~). We fixed the maximum truncation error to 10~ in
the time range considered. All results shown here are for a relatively small ladder of length
L = 20. Unlike the ground-state calculations, the entanglement entropy grows rapidly in time,
together with the number of states required to keep the error under bounds which can be as
large as m = 1500. In addition, as mentioned before, the number of terms in the Hamiltonian
makes the time evolution very time consuming.

Our results for the longitudinal spin dynamic structure factor are shown in Fig. 7, for
both the symmetric (ky = 0) and antisymmetric (ky = 71) channels, together with the linear
spin-wave (SW) dispersion. We show a similar color density plot in Fig. 8 focusing on the
antisymmetric sector with k,, = 7. Notice that the SW results agree very well with the DMRG
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data in the gapless phase, but as the gap open, the differences become more obvious, since
spin-wave theory cannot describe the gapped phase of the Heisenberg ladder [9]. Elementary
excitations on a two leg ladder are conventionally understood as rung triplons: a spin will pair
with another one on the opposite leg forming a triplet excitation that costs an energy A ~ J.
The energy is lowered by propagating the triplet via spin-flips, in what can be qualitatively
interpreted as a hard-core boson moving in a vacuum of rung-singlets. For @ > a. we observe a
gapped coherent band in the symmetric channel with vanishing spectral weight around k, = 0,

since S7 ., = 0. The antisymmetric channel presents coherent features at high energies, but

the spectrum broadens as the momentum approaches k= (7, ) (this is more clearly seen in
Fig. 7(8)).

As the value of a is reduced and approaches the quantum critical point, the two dispersive
branches condense at k = (0,0) and (7, ), respectively. The excitations display a sharp elastic
peak at the ordering vector (7, 7r), and we can observe how the bandwidth increases.

Interestingly, the width of the continuum in the symmetric k, = 0 channel seems to get

smaller as we approach k = (0, ) and both the magnon band and the spinon continuum
seem to merge into a single sharp coherent dispersion. We also notice that the high energy
features near the center of the Brillouin zone evolve adiabatically and are insensitive to the
phase transition. It is thus reasonable to assume that in this region, magnons and triplons do
not differ qualitatively. In fact, the same could be said about the symmetric branch, and the
main distinction becomes question of semantics: in one case they are gapless, and in the other
gapped, but otherwise, they are both interpreted as bound states of spinons.

In Fig. 8 we observe a very sharp peak at the ordering vector and a range of intermediate
values of energies with little spectral weight below what looks like a separate branch. Since
spin-wave theory is expected to work in the ordered phase, there is in principle no reason
to expect two dispersive branches. Another, more reasonable possibility, is that in reality the
space between the upper coherent band and the large elastic peak is occupied by an incoherent
continuum with very small spectral weight, but finite size effects should not be discarded.
Unfortunately, our limited resolution and the sublinear dispersion with a large slope near
w = 0 prevent us from fully answering this issue.

5 Summary and Conclusions

Our numerical evidence points at a second order phase transition at a. ~ 2.5 from a gapped,
magnetically disordered rung dimer phase with triplon excitations, to an antiferromagnetic
phase with long range order and magnon excitations. However, the possibility of a weak first
order transition should not be discarded. Our results in Fig. 1 are conspicuous enough to
grant the question: is there a gap opening for a < a.? If we trust that our extrapolation to
the thermodynamic limit is indeed within error bars, this is definitely possible. In the quan-
tum magnetism folklore, it is assumed that symmetry breaking is directly associated to the
presence of gapless Goldstone modes [51-54]. However, it is easy to see that in the case of
a = 0 our model would realize symmetry breaking, but also that the energy would become su-
perextensive, with a huge gap to the first excitation proportional to the system size [29]. The
presence of a gap in systems with long range interactions should not come as a surprise; after
all, Goldstone’s theorem relies on the condition that the Hamiltonian is relatively local, with
short range interactions (rigorously speaking, the soft modes should no longer be referred-to
as “Goldstone modes” in the presence of non-local interactions). In addition, the assumption
that the spin-wave dispersion should be linear is no longer valid in our case.

While triplons are intuitively easy to visualize as rung triplet excitations that propagate
coherently, spin-waves are rather understood as fluctuations of the order parameter around

10
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kn

Figure 8: Longitudinal dynamic spin structure factor S(k, w) with k,, = 7, fora 20 x 2
ladder with long range interactions and different exponent a across the quantum
critical point, obtained with tDMRG.

a symmetry broken ordered state [51,52]. In the case of the pressure induced transition in
TICuCls, the triplon excitations condense at the transition and become gapless spin waves on
the ordered phase [1] and excitations remain coherent throughout the transition. However,
we notice that the “disordered” phase of our ladder system realizes hidden topological order
characterized by a non-local string order parameter. Thus, one question that emerges from
our studies is whether deconfined criticality can be realized or not [55-59]: while Landau’s
arguments forbid a direct second order phase transition between phases with order parameters
that describe different symmetries, it is possible that in certain cases the transition could be
continuous and that, when this occurs, quasiparticle excitations would not be well defined at
the critical point, with the spectrum displaying a broad incoherent continuum. While these
arguments rely on a direct transition between two ordered phases with incompatible local
ordered parameters, in our case one of the phases has topological order. In our results, the
peculiar features observed in the spectrum around k = (m, m) offers suggestive evidence of
deconfined excitations, possibly in terms of spinons that carry spin S = 1/2 [60]. A deconfined
critical point would also be characterized by a critical exponent z = 1, but our results are not
conclusive. It is natural to ask whether the critical point can be identified with a conformal
field theory or a new kind of criticality, but we do not have enough information to answer
this question, since the algebra is not well defined in a finite volume because the theory is
non-local. Quantum criticality connecting a topological ordered phase and a conventional

11
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Landau ordered phase could represent a new paradigm in our understanding of quantum
phase transitions.

In systems with long range interactions one typically finds sublinear dispersion with z < 1
[30,61-69]. However, the anti-ferromagnetic transverse field Ising chain with long-range
interactions shows critical exponents that correspond to the standard 1D transverse field Ising
chain indicating the possibility of a CFT critical point in a long-range interacting model [70].
More work needs to be done in order to establish the universality class of the transition.
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