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On the Hochschild homology of proper Lie groupoids
Markus J. Pflaum, Hessel Posthuma, and Xiang Tang

Abstract. We study the Hochschild homology of the convolution algebra of a proper Lie groupoid
by introducing a convolution sheaf over the space of orbits. We develop a localization result for the
associated Hochschild homology sheaf, and we prove that the Hochschild homology sheaf at each
stalk is quasi-isomorphic to the stalk at the origin of the Hochschild homology of the convolution
algebra of its linearization, which is the transformation groupoid of a linear action of a compact
isotropy group on a vector space. We then explain Brylinski’s ansatz to compute the Hochschild
homology of the transformation groupoid of a compact group action on a manifold. We verify
Brylinski’s conjecture for the case of smooth circle actions that the Hochschild homology is given
by basic relative forms on the associated inertia space.

1. Introduction

Let M be a smooth manifold and €°° (M) the algebra of smooth functions on M. Connes’
version [11] of the seminal Hochschild—Kostant—Rosenberg theorem [26] states that the
Hochschild homology of €°°(M) is isomorphic to the graded vector space of differential
forms on M. In this paper, we aim to establish tools for a general Hochschild—Kostant—
Rosenberg-type theorem for proper Lie groupoids.

Recall that a Lie groupoid G = M is properifthemapG — M x M, g+ (s5(g),1(g))
is a proper map, where s(g) and 7(g) are the source and target of g € G. When the source
and target maps are both local diffeomorphisms, the groupoid G == M is called étale.
Through the efforts of many authors, notably [6,9, 11-13,20,43,49], the Hochschild and
cyclic homology theory of étale Lie groupoids has been unveiled. The Hochschild and
cyclic homology of a proper étale Lie groupoid was explicitly computed by Brylinksi
and Nistor [9], and later extended and refined by Crainic [13] and Ponge [43] for general
étale groupoids. Let us explain this result in the case of a finite group action on a smooth
manifold using the transformation groupoid I' x M = M, where a finite group I" acts on
the manifold M.

The groupoid convolution algebra associated to the transformation groupoid I' x M =
M is the crossed product algebra €°°(M) x I' which consists of €% (M )-valued func-
tions on I' equipped with the convolution product, e.g. for f,g € € (M) x T,

fxgy) =Y B (f(@)-g(B).

af=y
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The algebra €>° (M) x I is naturally a Fréchet algebra. The Hochschild homology of the
algebra € (M) x I as a bornological algebra is given by the following formula the proof
of which is recalled in Corollary B.8:
r
HH.(€®(M) xT) = (D e (M") .

yel

where M7 is the y-fixed point submanifold and T" acts on the disjoint union [ [, M”
by v/ (v, x) = (y'y(¥)7, ¥'x). Recall that the so-called loop space Ag(T', M) of the
transformation groupoid I' x M =% M is defined as

Ao(T. M) := [ M7,
yel

equipped with the same action of I" as above. In other words, the Hochschild homology
of €*°(M) x T is the space of differential forms on the quotient Ao (I, M)/ I", which is
called the associated inertia orbifold. We would like to remark that, just as the classical
Hochschild—Kostant—Rosenberg theorem, the above identification can be realized as an
isomorphism of sheaves over the quotient M/ I". This makes Hochschild and cylic homol-
ogy of €% (M) x I the right object to work with in the study of orbifold index theory;
see e.g. [38].

Our goal in this project is to extend the study of Hochschild homology of proper étale
groupoids to general proper Lie groupoids, which are natural generalizations of transfor-
mation groupoids for proper Lie group actions. The key new challenge from the study
of (proper) étale groupoids is that orbits of a general proper Lie groupoid have different
dimensions. This turns the orbit space of a proper Lie groupoid into a stratified space with
a significantly more complicated singularity structure than an orbifold.

Our main result is to introduce a sheaf H{JH, on the orbit space X := M /G of a proper
Lie groupoid G = M, whose space of global sections computes the Hochschild homology
of the convolution algebra of G. To achieve this, we start with introducing a sheaf A
of convolution algebras on the orbit space X in Definition 2.1. Using the localization
method from [4] we introduce the Hochschild homology sheaf {7, (A) for 4 as a sheaf
of bornological algebras over X . Moreover, we prove the following sheafification theorem
for the Hochschild homology of the convolution algebra « of the groupoid G.

Theorem 3.3. Let A be the convolution sheaf of a proper Lie groupoid G. Then the natural
map in Hochschild homology

HHo(A(X)) > HHo(A)(X) = T(X, HHo(A))
is an isomorphism.

To determine the homology sheaf H{I.(4), we study its stalk at an orbit @ € X.
Using the linearization result of proper Lie groupoid developed by Weinstein and Zung
(cf. [15,16,39,51,53]), we obtain a linear model of the stalk HIH, ¢ () in Proposition 4.5
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as a linear compact group action on a vector space. This result leads us to focus on the
Hochschild homology of the convolution algebra €*°(M) x G associated to a compact
Lie group action on a smooth manifold M in the second part of this article.

The Hochschild homology of compact Lie group actions was studied by several au-
thors, e.g. [3,7, 8]. Brylinski [7, 8] proposed a geometric model of basic relative forms
along the idea of the Grauert—Grothendieck forms to compute the Hochschild homology.
However, a major part of the proof is missing in [7, 8]. We decided to turn this result into
the main conjecture of this paper in Section 6.

Conjecture 6.7. The Hochschild homology of the crossed product algebra €*° (M) x G
associated to a compact Lie group action on a smooth manifold M is isomorphic to the
space of basic relative forms on the loop space

Ao(Gx M) ={(g.p) €GxM|gp=p}.

Block and Getzler [3] introduced an interesting Cartan model for the cyclic homology
of the crossed product algebra €©°°(M) x G. However, the Block—Getzler model is not a
sheaf on the orbit space M/ G, but a sheaf on the space of conjugacy classes of G. This
makes it impossible to localize the sheaf to an orbit of the group action in the orbit space.
It is worth pointing out that the truncation of the Block—Getzler Cartan model at E !-page
provides a complex to compute the Hochschild homology of €*°(M) x G. However,
the differential ¢ introduced in [3, Section 1] is nontrivial, and makes it challenging to
explicitly identify the Hochschild homology of €°°(M) x G as the space of basic relative
forms. We refer the reader to Remark 5.3 for a more detailed discussion about the Block—
Getzler model.

In the last part of this paper, we prove Conjecture 6.7 in the case where the group G
is S!; see Proposition 7.9. Our proof relies on a careful study of the stratification of the
loop space Ao(S! x M) C S' x M. The crucial property we use in our computation
is that at its singular point, A¢(S! x M) locally looks like the union of the hyperplane
{xo = 0} and the line {x; = --- = x,, = 0} in R”™1, which are transverse to each other.
The loop space Ag(G x M) for a general G-manifold M is much more complicated to
describe. This has stopped us from extending our result for S!-actions to more general
compact group actions. It is foreseeable that some combinatorial structures describing the
stratifications of the loop spaces and real algebraic geometry tools characterizing basic
relative forms on the loop spaces are needed to solve Conjecture 6.7 in full generality. We
plan to come back to this problem in the near future.

As mentioned above, the Hochschild and cyclic homologies of the convolution alge-
bra of a proper Lie groupoid are closely related to groupoid index theory; see e.g. [38,
40]. We expect that the study of the Hochschild homology and the generalized Connes—
Hochschild—Kostant—Rosenberg theorem in this paper will lead to the correct definition
of basic relative forms for proper Lie groupoids and to a geometric description of their
(periodic) cyclic homology. We hope that eventually this will open up a path to establish
a general index theorem for proper Lie groupoids.
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2. The convolution sheaf of a proper Lie groupoid

Throughout this paper, G = M denotes a Lie groupoid over a base manifold M . Elements
of M are called points of the groupoid; those of G are its arrows. The symbols 5,7 : G — M
denote the source and target map, respectively, and ¥ : M — G the unit map. By definition
of a Lie groupoid, s and ¢ are assumed to be smooth submersions. This implies that the
space of k-tuples of composable arrows

Gr :={(g1.....gk) € G~ | 5(g:) = t(git1) fori =1,....k —1}

is a regular submanifold of G¥, and multiplication of arrows

m:Gy—G, (g1,82) g142

is a smooth map.

If g € Gis an arrow with s(g) = x and #(g) = y, we denote such an arrow sometimes
by g : y < x, and write G(y, x) for the space of arrows with source x and target y. The
s-fiber over x, i.e., the manifold s~ (x), is denoted by G(—, x), the ¢-fiber over y by
G(y, —). Note that for each object x € M multiplication of arrows induces on G(x, x) a
group structure. This group is called the isotropy group of x and is denoted by G. The
union of all isotropy groups

Ao6:= | G ={geG|s(e) =1(2)
xeM

is called the loop space of G.

Given a Lie groupoid G = M, two points x, y € M are said to lie in the same orbit
if there is an arrow g : y < x. In the following, we will always write @, for the orbit
containing x, and M/G for the space of orbits of the groupoid G. We assume further that
the orbit space always carries the quotient topology with respect to the canonical map
7 : M — M/G. Note that M /G need not be Hausdorff unless G is a proper Lie groupoid,
which means that the map (s,7) : G — M x M is a proper map.

Sometimes, we need to specify to which groupoid a particular structure map be-
longs to. In such a situation we will write sg, mg, 7g, and so on.

In the following, we will define a sheaf of algebras 4 on M /G in such a way that the
algebra A.(M/G) of compactly supported global sections of /4 coincides with the smooth
convolution algebra of the groupoid. To this end, we use a smooth left Haar system on G.

Recall that by a smooth left Haar system on G we understand a family of measures
(A%)xem such that the following properties hold true.

(H1) Forevery x € Gg, A* is a positive measure on G(x, —) with supp A* = G(x, —).

(H2) For every g € G, the family (A*)yeps is invariant under left multiplication

Lg :G(s(g),—) = 6(t(g).—), hr> gh
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or in other words

/ u(gh) d2*@ (h) = / u(h) dA'® (h) forallu € €°(G).
6(s(8).~) 6(t(2).-)

(H3) The system is smooth in the sense that for every u € €°(G) the map

M—C, x~ u(h) dA*(h)

G(x,—)
is smooth.

Let us fix a smooth left Haar system (A*)eps on G. Given an open set U C M/G, we first
put

k
Up:=n"YU), Up:=s"Uy)CGy, and Ugyy :=ﬂo;1(Uk)cek+1 2.1)
i=1
for all k € N*, where 0; : Gg+1 — Gk, (g1, -5 8k+1) = (€15 -+ &i&i+1 -+ » &k+1)-
Then we define

AU) :={f € €>(U) | supp f is longitudinally compact}. (2.2)

Hereby, a subset K C G is called longitudinally compact if for every compact subset
C C M/G the intersection K N s~!7~1(C) is compact. Obviously, every +(U) is a linear
space, and the map which assigns to an open U C M/G the space 4 (U ) forms a sheaf on
M /G which in the following is denoted by # or by g if we want to emphasize the under-
lying groupoid. The section space 4(U) over U C M/G open becomes an associative
algebra with the convolution product

fix folg) = / AW St g dNOW),  fi. fr € AU g 6. (2.3)

G(2(2),7)

The convolution product is compatible with the restriction maps, hence 4 becomes a sheaf
of algebras on M/G.

Let us assume from now on that the groupoid G is proper. Recall from [39] that then
the orbit space M/G carries the structure of a differentiable stratified space in a canonical
way. The structure sheaf ‘Gﬁ/G coincides with the sheaf of continuous functions ¢ : U — R
with U C M/G open such that ¢ o 7 € €°°(U;). Now observe that the action

Cipo(U) x AU) = AU), (¢, f) = of = (Ui 3 g+ ¢(ns(g)) f(g) € R)
commutes with the convolution product, and turns # into a E’}“’;/G-module sheaf.

Proposition and Definition 2.1. Given a proper Lie groupoid G = M, the associated
sheaf A is a fine sheaf of algebras over the orbit space M /G which in addition carries
the structure of a fﬁ/e-module sheaf. The space A.(M/G) of global sections of A with
compact support coincides with the smooth convolution algebra of G. We call 4 the con-
volution sheaf of G.
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For later purposes, we equip the spaces A(U) with a locally convex topology and a
convex vector bornology. To this end, observe first that for every longitudinally compact
subset K C Uy the space

A(M/G; K) := {f € €°(G) | supp f C K}

inherits from €°°(G) the structure of a Fréchet space. Moreover, since €°°(G) is nuclear,
A(M/G; K) has to be nuclear as well by [48, Proposition 50.1]. By separability of U
there exists a (countable) exhaustion of U; by longitudinally compact sets, i.e., a family
(K»)nen of a longitudinally compact subset of Uy such that K,, C K,‘:H forallm € N,
and such that |,y Kn = Uj. The space #4(U) can then be identified with the induc-
tive limit of the strict inductive system of nuclear Fréchet spaces (A(M/G; K;;))neN-
It is straightforward to check that the resulting inductive limit topology on A(U) does
not depend on the particular choice of the exhaustion (K, ),en. Thus, A(U) becomes a
nuclear LF-space, where nuclearity follows from [48, Proposition 50.1]. As an LF-space,
A(U) carries a natural bornology given by the von Neumann bounded sets, i.e., by the
sets S C A(U) which are absorbed by each neighborhood of 0. In other words, a subset
S C A(U) is bounded if all f € S are supported in a fixed longitudinally compact sub-
set K C Uy, and if the set of functions D(.S) is uniformly bounded for every compactly
supported differential operator D on Uj.

Remark 2.2. (1) We refer to Appendix B and [27] for basic definitions and fundamentals
on bornological vector spaces. Bornological tensor products and their completions are
defined in Appendix B and [32].

(2) In this paper, we always assume the bornologies to be convex vector bornolo-
gies. We also often make use of the fact that for two nuclear LF-spaces V; and V5 their
completed bornological tensor product V; ® V5 naturally coincides (up to natural equiva-
lence) with the completed inductive tensor product V; @)t V> endowed with the bornology
of von Neumann bounded sets. Moreover, V; ®l V5 is again a nuclear LF-space. We refer
to [32, Section A.1.4] for a proof of these propositions. Note that for Fréchet spaces the
projective and inductive topological tensor product coincide.

(3) For LF-spaces like the convolution algebras, we consider here that the projective
and inductive topological tensor products do in general not coincide. The bornological
point of view therefore is not only particularly convenient but even crucial when consid-
ering tensor products of such spaces, since the (completed) bornological tensor product is
the natural distinguished tensor product which needs to be used when the projective topo-
logical tensor product fails to work and since it has all the necessary properties needed in
cyclic homology theory; see [32] for details.

For our purposes, the following observation is fundamental.

Proposition 2.3. Let G = M and H = N be proper Lie groupoids. Denote by M /G and
N/H their respective orbit spaces. Then M /G x N/H is diffeomorphic as a differentiable
stratified space to the orbit space of the product groupoid G x H = M x N. Moreover,
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there is a natural isomorphism between the completed bornological tensor product of the
convolution algebras over G and H and the convolution algebra of the product groupoid
G X H. More precisely, for every pair of open sets U C M/G and V C N/H, there is a
natural isomorphism

Ac(U) ® Au(V) = Agxu(U x V), (2.4)

where & denotes the completed bornological tensor product.

Proof. The first claim is a consequence of the fact that two elements (x, y), (x, y’) €
M x N lie in the same (G x H)-orbit if and only if x and x’ lie in the same G-orbit and
y and y’ lie in the same H-orbit. Let us prove the second claim. Let (K,),en be an
exhaustion of U := sg 7z 1(U) by longitudinally compact subsets and (L )men an
exhaustion of V; := s;; ;1 (V) by such sets. Since ¢ (U) coincides with the inductive
limit colim,en Ac(M/G; K;) and Ay (V') with colimyen An(N/H; Ly,), Corollary 2.30
in [32] entails that

Ac(U) ® Au(V) = colim A¢(M/G: K») ® Au(N/H: Ly). (2.5)

Now observe that sg(M/G; K,) & Au(N/H; L) 2= Acxn(M/G x N/H; K, X L) by
[48, Proposition 51.6], and that (K, X L,),eN is an exhaustion of U x V by longitudi-
nally compact subsets. Together with equation (2.5) this proves the claim. ]

3. Localization of the Hochschild chain complex

In this section, we apply the localization method in Hochschild homology theory, partially
following [4], to the Hochschild chain complex of the convolution algebra.

3.1. Sheaves of bornological algebras over a differentiable space

We start with a (reduced separated second countable) differentiable space (X, €*°) and
assume that #4 is a sheaf of R-algebras on X. We will denote by A = A(X) its space of
global sections. We assume further that -4 is a €¢°-module sheaf and that every section
space A(U) with U C X open carries the structure of a nuclear LF-space such that each
of the restriction maps #4(U) — A(V') is continuous for every open subset V' of U, and
multiplication in A(U) is separately continuous. Finally, it is assumed that the action
€*®WU) x AU) — A(U) is continuous.

As a consequence of our assumptions, each of the spaces A(U) carries a natural
bornology, namely the one consisting of all von Neumann bounded subsets, i.e., of all
subsets B C 4A(U) which are absorbed by every neighborhood of the origin. Moreover, by
[33, Lemma 1.30], separate continuity of multiplication in 4 (U) entails that the product
map is a jointly bounded map, hence induces a bounded map A(U) & A(U) — A(U)
on the completed bornological tensor product of A(U) with itself. We therefore call a
sheaf of algebras + defined over the differentiable space (X, €g°) such that the above
assumptions are fulfilled a sheaf of bornological algebras over X .
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Definition 3.1. A sheaf of bornological algebras + over the differentiable space (X, €y°)
is called

(1)  asheaf of unital bornological algebras or just unital if all section spaces A(U)
are unital algebras and the restriction maps 4(U) — (V') are unital homo-
morphisms, and

(i1)  a sheaf of H-unital bornological algebras or briefly H-unital if every section
space A (U ) is an H-unital algebra that is if the Bar complex of A (U) is acyclic.

Example 3.2. (1) The structure sheaf €° of a differentiable space (X, €g°) is an example
of a sheaf of unital bornological algebras over (X, €¢°).

(2) Given a proper Lie groupoid G, the convolution sheaf 4 is a sheaf of H-unital
bornological algebras over the orbit space (X, €¢°) of the groupoid. This follows by con-
struction of # and [14, Proposition 2], which entails H-unitality of each of the section
spaces A(U).

3.2. The Hochschild homology sheaf

Assume that » is a sheaf of bornological algebras over the differentiable space (X, €g°).
We will construct the Hochschild homology sheaf HJH, () associated to +4 as a general-
ization of Hochschild homology for algebras; see [30] for the latter and Appendix B for
basic definitions and notation used.

For each k € N*, let Cx (+) denote the presheaf on X which assigns to anopen U C X
the (k + 1)-fold completed bornological tensor product A4(U)®*+1 Note that in general,
Cr (+4) is not a sheaf. We denote by @k (+) the sheafification of Cf (). Observe that for
V c U C X open the Hochschild boundary

b : Cr(A)U) — Cr_1 (A)U)
commutes with the restriction maps
ry : Cr(A)(U) — Cr(A)(V),

hence we obtain a complex of presheaves (Co(4), b) and by the universal property of the
sheafification a sheaf complex (Co(s4), ). The Hochschild homology sheaf I, (A) is
now defined as the homology sheaf of (Ce (), b) that means

HIHy (A) = ker (b : C(A) = Cr_1(A))/im (b : Cpy1(A) = Cr(A)).

By construction, the stalk HHy (A)g, 6 € X coincides with the k-th Hochschild homology
H Hj (Ap) of the stalk #4p. On the other hand, H Hy (A(X)) need in general not coincide
with the space HHy (A)(X) of global sections of the k-th Hochschild homology sheaf.
The main goal of this section is to prove the following result which is crucial for our study
of the Hochschild homology of the convolution algebra of a proper Lie groupoid, but also
might be interesting by its own. Its proof will cover the remainder of this section.
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Theorem 3.3. Let A be the convolution sheaf of a proper Lie groupoid G. Then the natural
map in Hochschild homology

HH.(A(X)) — HHo(A)(X) = I‘(X, J{}C.(A))
is an isomorphism.

Before we can spell out the proof we need several auxiliary tools and results.

3.3. The localization homotopies

Throughout this paragraph, we assume that 4 (X)) is an admissible sheaf of bornological
algebras over the differentiable space (X, €¢°).
To construct the localization morphisms, observe that the complex Co(A) inherits from
A = A(X) the structure of a €°°(X)-module. More precisely, the corresponding action
is given by
C2(X) x Ci(A) — Ci(4),
(p.a0 @+ ®ag) — (pag) ®a1 ® -+ ® ai.

It is immediate from its definition that the €°° (X )-action commutes with the operators b
and b" and hence induces a chain map €*°(X) x Ce(A) — Co(A). In a similar fashion,
we define an action of €®(X**1) = (€°(X))®*+1D on Cy(A) by

3.1)

(o ® - R gr.ag®--- @ ag) > (poao) ® - @ (prag). (3.2)

This allows us to speak of the support of a chain ¢ € C(A). It is defined as the comple-
ment of the largest open subset U in X*T1 such that ¢ - ¢ = 0 for all ¢ € €°(X) with
suppgp C U.

Next choose a metric d : X x X — R such that the function d? lies in € (X x X).
Such a metric exists by Corollary A.4. Then fix a smooth function ¢ : R — [0, 1] which
has support in (—oo, %] and satisfies o(r) = 1 for r < % For ¢ > 0, we denote by o, the
rescaled function r +— Q(E%). Now define functions Wy ; , € €®(X*k+1) for k € N and

i=0,...kby

i—1
Wi ie(xo, oo xk) = [ [ oe(d?(xj, xj41)), (33)
j=0
where xg,...,xx € X and xg4; 1= xo. Moreover, put Wy, := Wy ;4 .. Using the

€ (Xk+1)_action on Cx(A), we obtain for each & > 0 a graded map of degree 0
W, 1 Co(A) = Co(A), Ci(A) 3¢ Y ,c.

We immediately check that W, commutes with the face maps b; and the cyclic operator
tx. Hence, W, is a chain map. We even have more.

Lemma 3.4. Let A be a sheaf of H-unital bornological algebras over the differentiable
space (X, €%®), and put A := A(X). Let d be a metric on X such that d? is smooth and



110 M. J. Pflaum, H. Posthuma, and X. Tang

Sfix a smooth map o : R — [0, 1] with support in (—oo, %] such that Q|(oo,%] = 1. Then, for
each ¢ > 0, the chain map WV, : Co(A) — Co(A) is homotopic to the identity morphism on
Co(A).

Proof. Let us first consider the case, where # is a sheaf of unital algebras. The Hochschild
chain complex then is a simplicial module with face maps b; and the degeneracy maps

Ski P Cr(A) = Crp1(4), ao® - Qar—>ap®---Qa; @1 Qa1 @ ® ag,

where k € N,i =0,..., k. Define €°° (X )-module maps 1 ; s : Cx(A) = Cr+1(A) for
keN,i=1,...,k+2and e > 0 by

Ytt,ie - Skjim1c0) fori <k +1,

34
0 fori =k + 2. G4

Nk.ie (C) = {

Moreover, put C_;(A4) := {0} and let n—1,1,, : C—1(4) = Cp(A) be the 0-map. For k > 1
andi = 2,...,k, we then compute

i—2
(Pkie + Me—1i6b)e = (1) 7 Wi o0+ W16 Y (=1 sp1iabi je
j=0
i—1
+ (D' Wriec + Wi e Z(—l)] Sk—1,i—1bg, jc.
j=0

For the case i = 1, we obtain
Ok, 1,6 + Nie—1,1,6D)¢ = ¢ = Wi 1,6¢ + Wi 1 6Sk—1,0bk0C,
and fori =k + 1
BNk k+1,6 + Mk—1.k+1,6D)C

k—1

= Wko (=D e+ Wppe Y (=1 skt h—rbr e + (=D e
=0

Finally, we check fork = 0andi = 1
(bno,1,e + N-1,1,6b)c = bno,1,cc = 0.
These formulas immediately entail that the maps

k+1
Hie =Y (=1)"neie s Ci(A) > Cry1(A)

i=1
form a homotopy between the identity and the localization morphism W,. More precisely,

(bHy e + Hx—1,b)c =c — Ve forallk € N and ¢ € Ci(A). 3.5

This finishes the proof of the claim in the unital case.
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Now let us consider the general case, where +4 is assumed to be a sheaf of H-unital
but not necessarily unital algebras. Consider the direct sum of sheaves A @ €g°, denote
it by A, and put A= J];(X ). We turn A into a sheaf of unital bornological algebras by
defining the product of ( f1,h1), (f2,h2) € A:(U) as

(f1,h1) - (f2,h2) = (hy f1 + ha f1 + f1f2. hiho). (3.6)

We obtain a split short exact sequence in the category of bornological algebras

q

0 A A&?_

€ (X) —— 0.

This gives rise to a diagram of chain complexes and chain maps

0 — ket gu— Co(A) 2 Co(€®(X)) — 0

| ix
4

Co(A),

where the row is split exact, and ¢ denotes the canonical embedding. Since A is H-unital,
¢ is a quasi-isomorphism. Because the chain complexes kero ¢« and Ce(A) are bounded
from below, there exists a chain map x which is left inverse to ¢. Note that the components
k) need not be bounded maps between bornological spaces. By construction, W, acts on
each of the chain complexes within the diagram, and all chain maps (besides possibly «)
commute with this action. By the first part of the proof we have an algebraic homotopy
H : Co(A) = Copq(A) such that

id—W, =bH + Hb.

Define F': Co(A) — Cot1(A) by F 1=k (id—i.q+) Ht. Note that F is well defined indeed,
since ¢« (id —i«q«) = 0. Now compute for ¢ € Cy(A4)

(bF 4+ Fb)c = k(id—ixq«)(bH 4+ Hb)ic = k(id —ixqx)(tc — Weic) = ¢ — Wec.
Hence F is a homotopy between the identity and W, and the claim is proved. ]

Lemma 3.5. Let A be a sheaf of H-unital bornological algebras over the differentiable
space (X, €), put A .= A(X), and let the metric d and the cut-off function ¢ as in the
preceding lemma. Assume that (¢;);eN is a smooth locally finite partition of unity and
that (g1)1eN Is a sequence of positive real numbers. Then

Ui Co(A) — Co(A), Cr(A) 3¢ Zgollllslc (3.8)
leN

is a chain map and there exists a homotopy between the identity on Ce(A) and V.



112 M. J. Pflaum, H. Posthuma, and X. Tang

Proof. Recall that the action of €°°(X) commutes with the Hochschild boundary and that
each W, is a chain map. Since (¢7);en is a locally finite smooth partition of unity, W then
has to be a chain map by construction.

Now assume that » is a sheaf of unital algebras. Let He 4, : Co(A) — Coq1 be the
homotopy from the preceding lemma which fulfills equation (3.5) with ¢ = ¢;. For all
k € N, let Hy be the map

Hy : Ci(A) = Cry1(4), ¢+~ Z Hy ¢, 010.
leN

Then

(bHy + Hy_1b)c = Z (prc =W, i) =c—We forall k e N and ¢ € Ci(4). (3.9)
lieN
Hence H is a homotopy between the identity and W which proves the claim in the unital
case.
In the non-unital case, define the unitalizations 4 and A as before and let s Tses Ly K
denote the chain maps as in diagram (3.7). Let H : C, (A) - C.+1(,Zf) be the algebraic
homotopy constructed for the unital case. In particular, this means that

id—W¥ =bH + Hb.

Defining F : Co(A) = Coy1(A) by F := k(id —i«qx) H then gives a homotopy between
the identity on Co(A) and W. [

Lemma 3.6. Let A be a sheaf of H-unital bornological algebras over the differentiable
space (X, €°), put A := A(X), and let ¢ € C(A) be a Hochschild cycle. If the support
of ¢ does not meet the diagonal, then c is a Hochschild boundary.

Proof. Assume that the support of the Hochschild cycle ¢ does not meet the diagonal
and let U = X**1\ suppc. Then U is an open neighborhood of the diagonal. By Corol-
lary A.4, there exists a complete metric d : X x X — R such that d? € €®°(X x X).
Choose a compact exhaustion (K, ),en of X which means that each K, is compact,

K, C Ky, foralln e Nand | J K, = X.

neN
For each n € N, there then exists a &, > 0 such that all (xq,...,x;) € K,’f“ are in U
whenever d(xj, Xjy1) <&y for j =0,..., k and xp41 := x¢. Choose a locally finite

smooth partition of unity (¢;);en subordinate to the open covering (K, )nen and let W :
Co(A) — Co(A) be the associated chain map defined by (3.8). According to Lemma 3.5,
there then exists a chain homotopy H between the identity on Co(A) and W. Since the
support of ¢ does not meet U, we obtain

¢ =c—VY =bH(c),

so ¢ is a Hochschild boundary indeed. [
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Proposition 3.7. Consider a proper Lie groupoid with orbit space X and convolution
sheaf A. Let A = A(X) and let Co () be the sheaf complex of Hochschild chains. Denote
for each 6 € X and each chain ¢ € Co(A(U)) defined on a neighborhood U C X of o by
[c]o the germ of ¢ at o that is the image of ¢ in the stalk é.,@(eA) =colimy e (o) Co (A(V)),
where N (0) denotes the filter basis of open neighborhoods of 6. Then the chain map

n:Ce(A) —> F(X, é.(A)), ¢ ([C]@)@ex

is a quasi-isomorphism.

Proof. Consider a section s € I' (X, @k (+)). Then there exists a (countable) open covering
(Uy)ier of the orbit space X and a family (c;);es of k-chains ¢; € Cr(A(U;)) such that
[cile = s(o) for all i € I and 6 € U;. After possibly passing to a finer (still countable)
and locally finite covering, we can assume that there exists a partition of unity (¢;)iers
by functions ¢; € €*°(X) such that supp¢; € U; for all i € I. If 5 is a cycle, then we
can achieve after possible passing to an even finer locally finite covering that each ¢; is a
Hochschild cycle as well. Choose a metric d : X x X — R such that d? € €®(X x X).
For each i, there then exists &; > 0 such that the space of all 6 € X with d (o, supp ¢;) <
(k + 1)&; is a compact subset of U;. The chain Wy, (¢;c;) then has compact support in
Ul.k‘H. Extend it by 0 to a smooth function on X**1! and denote the thus obtained k-chain
also by W, (¢;c;). Now put

ci= ) W (gich). (3.10)

iel

Then ¢ € Ci(A) is well defined since the sum in the definition of ¢ is locally finite. For
every o € X now choose an open neighborhood W, meeting only finitely many of the
elements of the covering (U;);er. Denote by I the set of indices i € I such that U; N
Wy # @. Then each I is finite. Next let H; : Co(A(U;)) — Coy1(A(U;)) be the homotopy
operator constructed in the proof of Lemma 3.4 such that

bH; + H;b = id —,,.
Let e; = Hj(gpic;) fori € Iy and put ey = Zielﬁ ei|W£+z. Then ey € Ciy1(AWp)).

Now compute for ¢ € Wy

s(@) —[cle = Y _lpicil@) — Ve (ic)], = Y [beida + [Hilgibei)],

iEI@ iEI@

= [besle + Z [Hi(gibei)],-

iGI@
Hence we obtain, whenever s is a cycle,
s(e) —[cle = [besle forallo € X, @ € Wp.

This means that s and 7(c) define the same homology class. So the induced morphism
between homologies Hen: HHo(A) — Ho(I'(X, Co(A))) is surjective. It remains to show
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that H,n is injective. To this end assume that e € Ci(A) is a cycle such that Hen(e) = 0.
Then n(e) = bs for some s € I'(X, ék+1 (+A)). As before, associate to s a sufficiently fine
locally finite open cover (U;);er together with a subordinate smooth partition of unity
(¢i)ier and ¢; € Cry1(A(U;)) such that [¢;]s = s(6) for all 6 € U;. Let Wy and I, also
be as above. Define ¢ € Cy41(A) by equation (3.10). Now compute for ¢ € W

[bc —ele = Z [bYe, (pici)], — [piele = Z [We, (pibei)], — [viela

iEI@ iEI@
= > lpibeila = lpiela = Y (pibs)(@) — (gibs)(e) = 0.
i€lp i€lp

Therefore, bc — e € Ci(A) is a k-cycle such that its support does not meet the diagonal.
By Lemma 3.6, bc — e is a boundary which means that the homology of e is trivial. Hence
H,n is an isomorphism. =

Now we have all the tools to verify our main localization result.

Proof of Theorem 3.3. First note that we can regard every chain complex of sheaves D, as
a cochain complex of sheaves under the duality D" := D_, for all integers n. We there-
fore have the hypercohomology H,, (X, D.) := H™" (X, D°) (see [50, Appendix]), where
the case of cochain complexes of sheaves not necessarily bounded below as we have it
here is considered. Observe that (é.(a‘\)), b) and (HH. (), 0) are quasi-isomorphic sheaf
complexes, hence their hypercohomologies coincide. Recall that for a cochain complex of
fine sheaves D°
H"(X.D®) = H"(F'(X, D*)).

Since both @.(A) and HI e (A) are complexes of fine sheaves, these observations together
with Proposition 3.7 now entail for natural » that

HH,(A(X)) = Hy (T (X, €a(A))) = Hy (X, Ca(4))
= H, (X, HH(A)) = Hy(T(X, HI))
= I'(X, HH, (A)).

This is the claim. u

4. Computation at a stalk

Recall that G = M is a proper Lie groupoid, X is its orbit space, and + is the convolution
sheaf of G (Definition 2.1). Given an orbit ® € X of G, we introduce in this section a linear
model of the groupoid around the stalk and use it in Proposition 4.5 to construct a quasi-
isomorphism between the stalk complex é.,@ (#4g) and the corresponding of the linear
model. We divide the construction into two steps.
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4.1. Reduction to the linear model

Let us recall the linearization result for the groupoid G around an orbit ©. Let NO — O be
the normal bundle of the closed submanifold O in M, and let G5 = O be the restriction of
the groupoid G to O. G| acts on N O canonically. And we use Gjp x NO = NO to denote
the associated transformation groupoid. As in Definition 2.1, let Ay be the sheaf of
convolution algebras on Xy = NO/G|s, with the orbit space associated to the groupoid
Gjp X NO. Accordingly, we can consider the presheaf of chain complexes Co(An) and
the associated sheaf complex Co (AnNe) as in Proposition 3.7. In what follows, we will
explain how to identify the stalk é.,@(a‘\se) with the linearized model é.,@(ff\’ No), which
is the stalk of the sheaf Co (AnNp) at the zero section of NO.

The main tool to identify the above two stalks are the linearization results for proper
Lie groupoids of Weinstein [51] and Zung [53] (see also [15, 16, 39]). The particular
approach we take below is from [39]. Fix a transversely invariant Riemannian metric g
on M . Given a function § : © — R+, let Tg’ No be the 8-neighborhood of the zero section
in NO. According to [39, Theorem 4.1], there exists a continuous map § : ® — R~ such
that the exponential map

.7é 5. 8
eXpirs,, - Tone = Tp :=exp(Tg yo) CM

is a diffeomorphism. Furthermore, the exponential map eXpirs lifts to an isomorphism
© of the following groupoids ’
O : (Gp ¥ N@)W

6,N6

- 1)

Lemma 4.1. For each orbit © C M, the pullback map ®* defines a quasi-isomorphism
e 0 from the stalk complex Co 5(Ag) to the stalk complex Co 6(ANe).

Proof. We explain how ©, 4 is defined on @.,@(AG). Let[fo® - ® fr] € ék,@(eAG) be a
germ of a k-chain at © € X. Let U be a neighborhood of © in X such that fy ® -+ ® fi is
a section of Cg (A(U)) which is mapped to [ fo ® - ® fi] in the stalk complex @.,@(,AG)
under the canonical map 7 from Proposition 3.7. By (2.2), the support of each of the maps
fo,-.., fr is longitudinally compact. In particular,

supp(f;) Ns 1 O) (i =0,....k)

is compact. Therefore,
s(supp(f;) N s~H(0)) = t(supp(f;) Ns~'(0))

and the union Ky, 5 = Uf:o s(supp( f;) N s~1(0)) is also compact in O.

Let K be a precompact open subset of O containing Kz, . 7 as a proper subset.
Observe that the closure of K is compact in O0. Hence, there is a positive constant ¢ such
that the e-neighborhood T of K is contained inside the §-neighborhood T2, the range of
the linearization map ® in (4.1). Applying the homotopy map W, defined in Lemma 3.4 to
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fo® - ® fr, we may assume without loss of generality that the support of fo, ..., fy is
contained inside 7, and therefore inside the §-neighborhood T@’S . Accordingly, the pull-
back function ®*(fo ® --- ® fx) is well defined and supported in

(G|@ X N@)IQ_I(TIS() X X (G‘@ X N@)|®—1(T;é)~

Let U¢ be the e-neighborhood of 0 in N O/Ge. By the definition of @, it is not difficult to
check that ®*( f;) is supported inside (G|g X N@)|®—1(T,§) fori = 0,...,k and therefore
O*(fo®---® fi) is a well-defined k-chain in Cx(Ane(Uf)). Define Qe 6([ fo®- - ® fx])
€ é.,@(AN@) to be the germ of ®*(fy ® --- ® fr) at the point O in the orbit space
Xno = NO/G|p. It is worth pointing out that the construction of @ 5([fo ® --- ® fk])
is independent of the choices of the subset K and the constant . Analogously, using the
inverse map ®~!, we can construct the inverse morphism (@7 1), 5 from @.,@ (Anp) to
@.,@ (+g), and therefore prove that ®, s is a quasi-isomorphism. We leave the details to
the diligent reader. ]

4.2. Computation of the linear model

We compute in this subsection the cohomology of Ce(+4 ). Our method is inspired by
the work of Crainic and Moerdijk [14].

To start with, recall that we prove in [39, Corollary 3.11] that for a proper Lie groupoid
G =2 M, given x € M, there is a neighborhood U of x in M diffeomorphic to O x Vy,
where O is an open ball in the orbit © through x centered at x, and Vi is a G, — the
isotropy group of G at x — invariant open ball in N, O centered at the origin. Under this
diffeomorphism, G|y is isomorphic to the product of the pair groupoid O x O = O and
the transformation groupoid G, x Vx = V. Applying this result to the transformation
groupoid Gjo x NO = N O, we conclude that given any x € O, there is an open ball O of
X in O such that the restricted normal bundle U, := N 0o is diffeomorphic to NyO x O
and (Gjp X NO)|y, is isomorphic to the product of the pair groupoid O x O and the
transformation groupoid G, x N, 0.

Following the above local description of G5 x NO, we choose an open covering
(Ox)xep of the orbit O, and therefore also a covering (Uy)xep, Uy := Ox X NxO, of NO.
Furthermore, we choose a locally finite countable subcovering U := (O; ), of O and the
associated covering (U;);e; of NO. Choose ¢; € €X°(0) such that ((piz)ie 7 is a partition
of unity subordinate to the open covering (O;);es of 0. Lift ¢; € € (0) to ¢; € € (NO)
that is let it be constant along the fiber direction. As ¢; is compactly supported, ¢; is longi-
tudinally compactly supported and therefore belongs to # ys. Now consider the groupoid
Hy over the disjoint union | | U;, such that arrows from U; to U; are arrows in Gjg x NO
starting from U; and ending in U;. Observe that Hy inherits the Lie groupoid structure
from the Lie groupoid G|, x NO and thus becomes Morita equivalent to Gjg X NO. As
a consequence of this, the orbit spaces of the groupoids G x NO and Hy are natu-
rally homeomorphic, actually even diffeomorphic in the sense of differentiable spaces.
We therefore identify them.
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The following lemma is essentially due to Crainic and Moerdijk [14].
Lemma 4.2. The map A : A(Gjp x NO) := T'(Ag,xNo) = A(Hu) := I'(An,) defined
by
ACS) = (@i f @i
is an algebra homomorphism which induces a quasi-isomorphism Ao of complexes of

Hochschild chains from Co(A(Gjo X N O)) to Ce(A(Hu)). In addition, A induces a quasi-
isomorphism of sheaf complexes

Ae: Ca(hg ) = Calhiy)
over their joint orbit space NO/G|s = (Hu)o/Hu.

Proof. The proof of the claim is a straightforward generalization of the one of [14,
Lemma 5]. The slight difference here is that we work with the algebras A(G;s x NO)
and A(Hy) instead of the algebra of compactly supported functions. We skip the proof
here to avoid repetition. [

Next, the groupoid Hy can be described more explicitly as follows. Firstly, index the
open sets in the covering (U;);e; by natural numbers meaning that either / = {1,..., N}
or that / coincides with the set of positive integers. Secondly, given i, write x € U; as
(Xy, Xo) where x, € Ny, 0 and x, € O;. Choose a diffeomorphism v; : O; — R¥, where
k = dim(0). Thirdly, forany i € I \ {1} choose an arrow g; € G from x; to x;. The arrow
g; induces an isomorphism between Ny, O and Ny, O, and conjugation by g; defines an
isomorphism from Gy; to Gy, . Accordingly, g; induces a groupoid isomorphism between
Gx, X Ny, 0 and Gy, x Ny, 0.

Lemma 4.3. The groupoid Hy is isomorphic to the product groupoid
Huz := (G, X Ny, 0) x (I x I) x (RF x R¥),
Proof. We define groupoid morphisms
®:Hy - Hy; and W:Hy; — Hy.
Given an arrow & € Hy with source in U; and target in U, we consider
(s(h)o.xi) € O; x O; and  (t(h)o.xj) € Oj x O;.

Define hy; € (Gx; X Ny;0) X (O; x O;) (and hy; € (Gx; X Ny;0) x (O; x O;)) by hy; =
((id, 0), (s(h)o, x;)) (and hy; = ((id, 0), (¢(/1)o. x;))). The arrow gj_lh;jlhhxi gi belongs
to Hyy, and its component in O x Oy is (x1, x1). The arrow ® (/) now is defined to be

®(h) := (gj_lh;jlhhx,-gi, (i, ). ¥ (s(hij).1(hij))) € Huz.
Similarly, given (k, (i, j), (yi. ¥j)) € Hu,1, define

hy 1= (Gd 0), (i () i) € Gy 2= (G 0), (V57 (7). %)) € G
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and hy := (k, (x1,x1)) € G|y,. Notice that g;h1g;! is an arrow in Hy starting from x;
and ending at x;. We can now define W(k, (i, j). (y;, y;)) to be

(k. (i, ). (vi.y))) = hy,gih1g; b} € Hy.

It is straightforward to check that ® and W are groupoid morphisms and inverse to each
other. [

Let A(Hu,r) be the space of global sections of the convolution sheaf Ay, ;. With the
maps ® and ¥ introduced in Lemma 4.3, we have the following induced isomorphisms of
chain complexes:

Do : Co(A(Hu,1)) = Co(A(Hu)). W : Co(A(Hu)) — Co(A(Hu,1)).

Since they are induced by an isomorphism of groupoids, we also obtain isomorphisms of
sheaf complexes that are inverses of each other:

Dy Ca(Ary ;) = Coldhy), et Calhiy) = ColAry ).

Observe that both groupoids / x I and R¥ x R¥ have only one orbit. Therefore, lon-
gitudinally compactly supported functions on them are the same as compactly supported
functions. Observe that € (G, x Ny, 0) is the algebra of longitudinally compactly sup-
ported smooth functions on Gy, x Ny, O. By Lemma 4.3, the groupoid algebra A(Hy) is
isomorphic to A(Hy, 7). The latter can be identified with

€®(Gy, X Ny, 0) & RI¥ & €% (RF x RF),

where R7*! is the space of finitely supported functions on I x I. Note that / x I and
R¥ x R¥ both carry the structure of a pair groupoid, so the corresponding products on
RI*I and €% (R* x R¥) are given in both cases by convolution which we denote as
usual by . Let 77 be the trace on R/*! defined by

u(d) =Y diy. d=(di)ije €R™

4

and let tpx be the trace on € (R* x R¥) given by
TRi (@) 1= / a(x,x)dx, ac€®RFxRF),
Rk

where dx is the Lebesgue measure on R¥. Define a map
Tt C (€% (Gxy X Ny, 0) ® RIT @ €°(RF x RF)) — € (€% (G, X Ny, 0))
as follows:
((fo® ® fin) ®(do @+ @ dm) ® (g ® -+ ® ty))
= 1r(do * -k doy)TRE (0o % - % W) fOR -+ @ frns
foreoos fin € €®(Gy, X NyyO),  do.....dm e RT g, ... 0y € EX(RF x RF).
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It is easy to check using the tracial property of 77 and TR« that 7, is a chain map. More-
over, observe that the whole argument works not only for the global section algebra
€(Gyx, X Ny, 0) but for any of the section algebras €>°(Gy, x V) with V C N0 an
open Gy, -invariant subspace. So eventually we obtain a morphism of sheaf complexes

T ¢ (s (uy 1)) = Colhes(sy, iy, 0))

over the orbit space Ny, O/Gy,.

Lemma 4.4. The above chain map te is a quasi-isomorphism. More generally,
To : Cal(emo iy ) = Colhem (s, iy, 0))

is an isomorphism of complexes of sheaves.

Proof. Choose a function B € €° (R¥) such that
/ BA(x)dx = 1.
Rk

Leta € €2 (RF x RF) be the function 8 ® . Define an algebra morphism
Ja 1 €®(Gy, X Ny, 0) = €X(Gy, x Ny, 0) & RI @ €2°(RF x RF)

by

Ja(f) = f ®da,1 @«
where §(1 1) is the function on / x [ thatis 1 on (1, 1) and 0 otherwise. jq,o is the induced
map on the cochain complex. It is easy to check that 7e 0 jy.e = id. Applying jy.e © Te tO

(fo® @ fm) Ry @+ ®dm) ®(0tg ® -+ @ tty)
gives
r(do* - % gm)tpi (o * - %am)(fo® - ® fn) ® (61,1 Q- ®351,1)R(@® - Q).

Following the proof of Lemma 3.4, we consider the unital algebra ‘goo(G x1 X Nx, 0)
which is the direct sum of € (Gy, X Ny, 0) with € (N, 0)%1 and product structure
given by equation (3.6). We then have the following split exact sequence in the category
of bornological algebras

0 — €%®(Gy, X Ny,0) = €®(Gy, X Ny, 0) — €®(Ny,)%1 — 0. 4.2)

It is not hard to see that the chain maps 7, and jy e extend to the corresponding ver-
sions of the algebras g‘x’(le X Ny, 0) and €2 (Ny,)%1. As both algebras are unital, the
homotopy maps constructed in the proof of [14, Lemma 6] can be applied to conclude
that jo e7e is @ quasi-isomorphism for € (Gx, X Ny, 0) and € (Ny,)%1. As the algebra
€% (Gy, X Ny,) is H-unital, we consider the long exact sequence associated to the short
exact sequence (4.2). As jq,o and 7, are quasi-isomorphisms on ‘€°°(le X Ny, 0) and
€% (Ny, )®*1, we conclude by the five lemma that te and j e are also quasi-isomorphisms
for ©%°(Gy, X Ny, 0). The argument generalizes immediately to the sheaf case. |
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Combining Lemma 4.1-Lemma 4.4, we thus obtain the following local model for the
stalk complex Cq 5 (Ag).

Proposition 4.5. For every orbit © € X, the composition Le s 1= Te0 © We g © Ae ©
Oe,0, Where 140, We 0, and Ae o denote the respective sheaf morphisms localized at the
zero sections, is a quasi-isomorphism,

~ B¢ ~ Aep ~
Lo,@ : eo,@(’AG) —_— e.,@(AG‘@b(Nﬁ) — eo,O('AHu_)

lI’o,O ~ Te,0 ~
— GO,O('A’Hu,]) — e',O(Ale D<Nx1@)'

5. Basic relative forms

Let M be a smooth manifold equipped with a left action of a compact Lie group G which
we write as (g, x) — gx, for g € G,x € M. Associated to this action is the Lie groupoid
G x M = M with source map given by the projection (g, x) — x and target given by the
action (g, x) — gx. The loop space Ao(G x M) C G x M coincides in this case with
the disjoint union of all fixed point sets M8 C M for g € G:

Ao(GwxM):={(g.p) €GxM |gp=p}=|]lg}xM5.
geG

For fixed g € G, the connected components of the fixed point subset M€ C M are closed
submanifolds which can wildly vary as g runs through G. Therefore, the loop space
Ao(G x M) is a singular subset of G x M. Actually, Ao(G x M) carries even the struc-
ture of a stratified space as shown in [18, 19]. If one lets G act on G x M by

h-(g,p):= (hgh_l,hp), heG, (g,p)eGxM,

this action preserves Ag(G x M) C G x M and sends M8 to M 1n [7,8], Brylinski
introduces the notion of basic relative forms of which we will give a sheafified ver-
sion in the following. Intuitively, a basic relative k-form is a smooth family (wg)geG €
I 2€G Qk (M #) of differential forms on fixed point subspaces which are

(i) horizontal that is ig, , wg = O forall g € G and § € Lie(Gy), and

(i)  G-invariant which means that h*wg = wp-14p forall g, h € G.
Here, G := Z(g) denotes the centralizer of g € G, which acts on M &. Because of the

singular nature of A, one needs to make sense of what is exactly meant by a smooth
family of differential forms. There are two solutions for this illustrated in the following.

(A) Sheaf theory. In the sense of Grauert—Grothendieck and following Brylinski [8], we
define the sheaf of relative forms on A(G x M) as the quotient sheaf

Qfel,Ao = L_I(ngMeG/(é”ngMaG + drelo(l N Q]é_le—>G )
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Here, Q’(‘;K M denotes the sheaf of k-forms on G x M relative to the projection pry :
G x M — G and ( the canonical injection

Aog(Gx M) — G x M.

A form w € Q’(‘;K M _)G(ﬁ ) for UcGxM open is given by a smooth global section of
the vector bundle s* A¥ T*M that is by an element w € I'®(U, s* Ak T*M). The de
Rham differential on M defines a differential

drel : QG1><M—>G - QG1><M—>G

Finally, § denotes the vanishing ideal of smooth functions on G x M that restrict to zero
on Aog(G x M) C G x M. Note that

FQLoxm—c T dead N Lourm—c

is a differential graded ideal in the sheaf complex (Q’éb< MG drel), SO Qr'el’ Ao becomes
a sheaf of differential graded algebras on the loop space. For open U C A¢(G x M),

an element of Qrel A, (U) can now be understood as an equivalence class [w]a, of forms
w € QGKM%G(U) defined on some open U CGxMsuchthatU = U N Ao(G x M).

This explains the definition of the sheaf complex of relative forms on the singular space
Ao(G x M); confer also to [41]. Next observe that the map which associates to each
p € M the conormal space N, := (T, M/T,0,)" is a generalized subdistribution of the
cotangent bundle 7* M in the sense of Stefan—Suessmann; cf. [28,46,47]. In the language
of [17], N* is a cosmooth generalized distribution. The restriction of N * to each orbit, and
even to each stratum of M of a fixed isotropy type, is a vector bundle; cf. [39]. Henceforth,
the pullback distribution s* A N* is naturally a cosmooth generalized subdistribution of
ART*G x M. We define the space Qﬁrel, Aoc(U) of horizontal relative k-forms on the loop
space (over U) as the subspace

Qo a0s(U) = {[0]a, € 2K, 4,6 (U) | 0(g,p) € AXN forall (g. p) € U}.

This implements the above condition (i). Observe that the action of G on TN leaves
the orbits invariant, hence induces also an action on the conormal distribution N* in a

canonical way [39, Section 3]. Call a section [w]a, € Qhrel A, \U) invariant if

Ongh—1 hp(hV1, ... hog) = @, py(V1, ..., k) (5.1)

forall (g, p) € U C A¢G, h € G suchthat (hgh™',hp) € U and vy, ..., v € N,. Note that
the invariance of [w]A, does not depend on the particular choice of the representative w
such that w, € Nk N, *. Condition (ii) is covered by defining the space Qbrel Ao (U) of basic
relative k-forms on the loop space (over U) now as the space of all invariant horizontal

relative k-forms [w]a, € Qhrel Aoc(U). Obviously, one thus obtains sheaves Qhrel A, @nd

Q{;’rel’AO on the loop space Ag(G x M). We will call the push forward s Q{frel’AO by
the source map s and canonical projection 7 : M — X = M/G sheaf of basic relative
functions as well and denote it also by the symbol Q{fml’ Ao- This will not lead to any
confusion. The interpretation of basic relative forms as smooth families of forms on the
fixed point manifolds is still missing, but will become visible in the following approach.
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(B) Differential geometry. From a more differential geometric perspective, we consider
the family of vector bundles F — A defined by F(g, p):=T, M# for (g, p) € Ao(GX M).
Of course, this does not define a (topological) vector bundle over the inertia space
Ao(G x M) because in general the rank jumps discontinuously but it is again a cos-
mooth generalized distribution. Using the canonical projection s*T*M |5, — F, we say
that a local section w € I'(U, AKF) over U C Ay is smooth if for each (g, p) € U there
exist open neighborhoods O C G of g and V C M of p together with a locally represent-
ing smooth k-form wop,y € T®(0 x V, A¥s*T*M) such that (O x V) N Ay C U and
Oh,q) = 0o, v]n,qg) forall (h,q) € (O x V)N Ao(G x M). Hence a smooth section w can
be identified with the smooth family (wg) ¢ epr,; (v) Of forms wg € Qk(s(U N ({g) x M?)))
which are uniquely defined by the condition that wg ;¢ = yewo,y forall g € O and all
pairs (O, V') with locally representing forms wo,y as before. The ty¢ : V& < V hereby
are the canonical embeddings of the fixed point manifolds V€. We denote the space of all
smooth sections of AK F over U by I'® (U, AK F) or F/‘iﬁ r (U). Obviously, I‘/°\<,§ F becomes
a sheaf on Ay.

Proposition 5.1. The canonical sheaf morphism

k. —1poo [e'9)
0 T TR egsns = Dok p

factors through a unique epimorphism of sheaves ®F : Q:el, Ao Fi?( r making the fol-
lowing diagram commutative:

[—11-oo o e
Aks*T*M Ak F
l /

Qrel,Ao

Proof. The claim follows by showing that for open UcGxMandU:=0nN Ao(Gx M)
the canonical map 9{‘7 :TRU, Aks*T* M) — T®°(U, A¥F), o + [w] is surjective and
has

K(O) := O, A*T*M) + dra §(0) AT®O, NF15*T* M)

contained in its kernel.
The sheaf Fi‘,’( pisa €, -module sheaf, hence a soft sheaf. This entails surjectivity
of 9(’21. Assume that @ € ['®(U, AKs*T*M) is of the form w = fo for some f € $(U)

and o € 1"°°((7, /\ks*T*M). Then
0L (@) (g.0) = 0 (fO)g.p) = F(d, P)og.py =0 forall (g, p) € U.

Now assume that w = d f A @ with f as before and ¢ € (U, AF=1s*T*M). To
prove that 95 (w) = 0, it suffices to show that t;‘]ga) = 0 for all g € prg(U). Fix some
8
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geprg(U) and p € Ué" and choose an open coordinate neighborhood V' C M with
coordinates (x1,...,xg) : V < R? such that V C Ug, (x1jvg., ... Xkys) 1 VE — R*
is a local coordinate system of M€ over V¢ and such that V¢ is the zero locus of the
coordinate functions (Xgy1....,xq): V < R4k After possibly shrinking V, there exists
an open neighborhood O of g in G suchthat O x V C U . Extend the coordinate functions
(x1,...,Xx4) to smooth functions on O x V constant along the fibers of the source map.

Then we have
f
relf Z a_

Since ax (g p) =0for pe V&and 1 <[ <k and since (},,dx; = 0fork <[ < d, one

gets
d

* * * 8f

et = e (draf 1 Q) = ; (zvg i )(lvgdxz) A s0) =0,
where, by slight abuse of notation, we have also used the symbol ty¢ for the embedding
V& U, p+>(g,p). So* uE® = 0 and K (U) is in the kernel of Qk Hence Gk factors
through some linear map

OF : Q& 4, (U) —» T®(U,AFF).
This proves the claim. [

Remark 5.2. Conjecturally, the morphism @ is an isomorphism, showing that the sheaf
theoretic approach (A) and the differential geometric approach (B) above lead to the same
definition of basic relative forms. Below, in Section 7, we prove this conjecture for the
case of an S'-action. In the general case, this conjecture remains open.

Note that the image of the sheaf of horizontal relative k-forms under ®* coincides
exactly with those families of forms (wg)gepr,;(v) fulfilling condition (i) above. Since
G naturally acts on the generalized distribution F and ©F is obviously equivariant by
construction, the original conditions by Brylinski are recovered now also in the differential
geometric picture of relative forms.

Remark 5.3. In [3], Block and Getzler define a sheaf on G whose stalk at g € G is
given by the space of G,-equivariant differential forms on M. There are two differen-
tials on this sheaf, d and ¢, together constituting the equivariant differential D := d + ¢,
which, under an HKR-type map correspond to the Hochschild and cyclic differential on
the crossed product algebra G x C°°(M). Taking cohomology with respect to ¢ only leads
to a very similar definition of basic relative forms as above, however notice that the basic
relative forms defined above form a sheaf over the quotient M /G, not the group G.

6. The group action case

In this section, we consider the action of a compact Lie group G on a complete bornolog-
ical algebra A and then specialize to the case where A is the algebra of smooth functions



124 M. J. Pflaum, H. Posthuma, and X. Tang

on a smooth G-manifold M. More precisely, by a G-action on A one understands a map
a:G —> Aut(A) suchthat & : G x A — A, (g,a) — a(g)(a) = g - a is continuous in
the natural locally convex topology induced by the bornology on A and such that «(G) is
an equicontinuous set of continuous automorphisms of A. The other general assumption
we always make is that the map @ : G X A — A is smooth in the sense of [29] which
means that each smooth curve in G x A is mapped to a smooth curve in A. These condi-
tions are automatically guaranteed when G acts by diffeomorphisms on the manifold M
and A = €°°(M). Under the assumptions made, the associated smooth crossed product
G x A is given by €*°(G, A) equipped with the product

(S1* f2)(g) == /G fi)(h- fa(h™ ) dh,  fi. f» € €X(G,4), g €G.  (6.])

6.1. The equivariant Hochschild complex

To compute the Hochschild homology of the smooth crossed product G x A, consider the
bigraded vector space

C=P Cpg. with Cpy:=€2(GPHTD 4®E@HD)
Pr.4=0

There exists a bi-simplicial structure on C given by face maps 8} : Cp g — Cpy—1,0 <
i <gand 5}“ :Cpq = Cp_1,4,0 < j < p defined as follows. The vertical maps are given
by

bqi(F(go.---.8p)) for0<i <q-—1,

-1 )
bty (F(go.....8p)) fori=gq,

where the b, ; for 0 <i < g — 1 are the first ¢ — 1 simplicial face maps multiplying the
i’th and i 4+ 1’th entry in A®@*+D underlying the Hochschild chain complex of A (see
e.g. Appendix B.2), and b§ ; is the g-twisted version of the last one:

8§/ (F)(go.....8p) =

bfiq(ao®---®aq) =(g-ag)a0®a1 ® - ®ag—1, dap,....ag €A, gei.

The horizontal maps are defined by

Jo F(go.....8.87"¢gj....gp—1)dg for0<j<p-—1,
8;1(F)(g07-~~7gp—1) = 1 .
Jog F(g7'g0.81.....8p-1.8)dg forj =p,

where, in the second line, g acts diagonally on A®@*1_ The following observations now
hold true.

(i). The diagonal complex diag(Cee) := Py Ckk equipped with the differential

ddiag = Z(_I)IS?SZ
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is isomorphic to the Hochschild complex Ci (G x A) = €®°(G*+D A®K+D) of the
smooth crossed product algebra G x A via the isomorphism

(=) : diag(Ce.e) — Co(G x A),
F > F defined by
F(go, .-, &)
=g 8 ®g g ® ®g) Flgo.....8). FECkr. (62)
where the pre-factor on the right-hand side acts componentwise via the action of G on A.

(ii). The vertical differential " in the total complex is given by a twisted version of the
standard Hochschild complex of the algebra A. The horizontal differential §" in the g-th
row can be interpreted as the Hochschild differential of the convolution algebra €*°(G)
with values in the G-bimodule €*°(G, A®2@+1) with bimodule structure given by

(g- ) :=g(f(g '), (f o)) = f(hg), feC€(G, AP ¢ heg.

The homology of this complex is isomorphic to the group homology of G with values
in the adjoint module € (G, A®U@*D), 4 given by €®°(G, APU@D) equipped with the
diagonal action:

H.(€%(G). €®(G, A®UTD)) = HIT(G,€®(G, A®UtD),).
Observe that the diagonal action commutes with the vertical face maps.

Lemma 6.1. Forall g € G and f € €®°(G, AU+, one has§¥(g- f) =g -8 f.

Proof. 1t suffices to show the claim for f of the form f = ao ® -+ ® a4, where a; :
G — Ais smooth. For all 1 € G, we can then write f(h) = ao(h) @ --- @ a,(h), where
ao(h), ... ,aq,(h) are elements in A. Now compute

8y f(h) = (h(ag(h)))ao(h) @ --- ® ag—1(h)

and

(g-85(N))h) = (hg(ag(g™" hg)))g(ao(g " hg)) ® --- @ g(ag—1(g~ " hg)).
On the other hand,

g f(h) = g(ao(g 'hg)) ® glai(g ' hg)) ® - ® g(aq(g~'hg))
and
85(g - /()
= (hg(ag(g~"hg)))g(ao(g ' hg)) ® g(ar(g™'hg)) ® -+ ® g(ag—1(g~ " hg)).

Hence one obtains g -8, (f) = d;(g - /). The equalities g - 87 (f) =] (g - f) for0 <i <gq
are obvious, so the claim follows. [
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It is proved in [2] that the group homology complex computes the derived functor of
taking coinvariants. For a compact Lie group, integration with respect to the Haar measure
of volume 1 shows that coinvariant and invariant spaces are isomorphic, and therefore its
group homology vanishes except for the zeroth degree. In our case, this gives

€%(G, AR@TD)n  for k =0,

g diff G.€>® G,A®(q+1) ad) =
e ( ha) =1, for k > 0.

Observe that a smooth function f : G — A®@TD hereby is an element of the invariant
space €®(G, ABW@TD) if and only if gf(g~'hg) = f(h) for all g, h € G. Note also
that by the lemma the vertical differential §* maps €% (G, A®@ D) 15 €® (G, A®)nv,

(iii). Filtering the total complex by rows, we obtain a spectral sequence with E!-terms
Ej, =€®(G, A%ty pl =0 forp>1.

The spectral sequence therefore collapses and the cohomology of the total complex is
computed by the complex

C.G (A) = \GOO(G’ A®(o+l))inv

equipped with the twisted Hochschild differential

q—1
BV f)(8) = 8"f(8) := Y _(~D)'bgi(f (&) + (—1)*H'b5 [ (£()),

i=0
[ e €®(G, APUtD) ¢ cG.

This complex is called the equivariant Hochschild complex in [3].

(iv). By the Eilenberg—Zilber theorem, the diagonal complex is quasi-isomorphic to the
total complex Tot(Ce o) with §7° := §" + §¥ where the horizontal and vertical differentials
are given by the usual formulas §™V := > (1) 8? *. There is an explicit formula for the
map EZ : diag(Ce.,.) — Tot(C, ) implementing this quasi-isomorphism.

Combining items (i)—(iv), above we conclude that the following holds.

Proposition 6.2. Given a complete bornological algebra A with a smooth left G-action,
the composition

—_—

)1 Ca(G w 4) 2 diag(C)e £ Tot(Can) — CE (4)

is a quasi-isomorphism of complexes. The explicit formula is given by mapping a chain
F € Cr(€*(G, A)) to the equivariant Hochschild chain F € C,f (A) defined by

F(g) 5=/k(g71h1"'hk®1®h1 ® - Qhy---hr_1)
G

x F(hi' - h7 g hy. .. hg) dhy - dhy.
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Remark 6.3. This result has originally been proved by Brylinski in [7, 8]. Observe that a
right G-action 8 on an algebra A can be changed to a left G-action « on an algebra A by
a(g)(a) :== B(g~1)(a). Let A be the opposite algebra of A and assume that 8 defines a
right G action on A°P. Use AP xg G to denote the (right) crossed product algebra defined
by the right G action on A°°. Define a map ® : GoxA4 — A%® xg G by ®(f)(g) :=
f(g™"). One directly checks the following identity,

Q(f1 *Gaxa [2) = P(f2) *a0rxz6 P(f1),

and concludes that the map ® induces an isomorphism of algebras
GoxA = (AP xg G).

Furthermore, notice that for a general algebra 2I, the algebra % ® 2°P is naturally iso-
morphic to AP ® A and therefore HHo (W) = HH.(AP) since the corresponding Bar
resolutions coincide. Applying this observation to (AP xg G)°P, one concludes that

HHo(GoxA) = HHo(A® x5 G),

and that Proposition 6.2 holds also true for a smooth right G-action on an algebra A
meaning that there is a quasi-isomorphism of chain complexes

() : Co(A % G) — CS(A%P).

Note that for a right G-action the convolution product on €*°(G, A) is given by

(f1* f2)(8) == /G (ith)-(h7')) fo(h™'g)dh,  fi. f» € €%(G, A), g € G. (6.3)

Throughout this paper, as it is more natural to have a left G-action on a manifold M, we
will work with a right G-action on €*°(M).

6.2. The G -manifold case

Let M be a manifold endowed with a smooth left G-action. Denote by X = M/G the
space of G-orbits in M and by 7 : M — X the canonical projection. We consider the
action groupoid G = G x M = M and the corresponding convolution sheaf A = Agw s
over X. It is straightforward to check that in the case of A = €°°(M) the product defined
by equation (6.3) coincides with the convolution product on A(M/G) = €*°(G x M) =
€>°(G, A) given by equation (2.3). Hence A(M/G) coincides with A x G. According
to Proposition 6.2 and Remark 6.3, we then have for each G-invariant open V C M a
quasi-isomorphism between Hochschild chain complexes

To compute the Hochschild homology HH.(A(V/G)), it therefore suffices to deter-
mine the homology of the complex Co(€°(V), A(V/G)) which we will consider in the
following. Recall that A (V/G) is isomorphic as a bornological vector space to the com-
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pleted tensor product €°(G) ® €°°(V) and that A(V/G) carries the (twisted) € (V)-
bimodule structure

EXV)® AV/G) REX(V) — AV/G),
f®a® [+ (GxV>(gv) flgvalgv)f'(v) €R).

Since the bimodule structure is compatible with restrictions rI(,J for G-invariant open sub-
sets V. C U C M, one obtains a complex of presheaves which assigns to every open V/G
with V' C M open and G-invariant the complex Co(€*°(V), A(V/G)). Sheafification
gives rise to a sheaf complex which we denote by Co (€22, A). Since

CL(E® (V). AV/G)) = A(V/G) Resyy Ci(EX(V)) 2 €X(G) ® €°(V)BE+D

for all G-invariant open V' C M and k € N, the section spaces of this sheaf complex inherit
the diagonal G action from (ii) above. Moreover, this action is compatible with restric-
tions, so Ce(€}7 . A) becomes a G-sheaf complex. We now have the following result.

Proposition 6.4. Assume to be given a G-manifold M, let A be the convolution sheaf
of the associated action groupoid G x M = M on the orbit space X = M /G, and put
A = A(X). Then the chain map

0: Co(€X(M), A) = T(X.Cu(€f. A)). ¢ (Iclo)oex

which associates to every k-chain ¢ € Cy (€ (M), A) the section ([¢]p)oex, where [c]o
denotes the germ of ¢ in the stalk Co 5 (Cpy, ), is an equivariant quasi-isomorphism.

Proof. Observe that the sheaves ék (€37 A) are fine and that
00 : Co(EX (M), A) — T (X, Co(€55, A))

is the identity morphism. Using again the homotopies from Section 3.3, the proof that o
is a quasi-isomorphism is completely analogous to the one of Proposition 3.7, hence we
skip the details. Equivariance of ¢ is immediate by definition. [

Next, we compare the sheaf complex Co (€57, A) with the complex of relative forms
by constructing a morphism of sheaf complexes between them.

Proposition 6.5. Under the assumptions of the preceding proposition, define for each
open G-invariant subset V.C M and k € N a €*°(V/G)-module map by

Drv/G: Ck(‘C’OO(V), A(V/G)) = AV/G) ® Ck(‘C’OQ(V)) — Qfe],AO (AO(G X V)),
fo® f1® @ fi > [ fod(sGuy S1) A-ee A d(sngfk)]AO-
Then the ®y v/ are the components of a morphism of sheaf complexes
@y 1 Ca(C55. A) = T (5|00)5 s Ap -

where the differential on Q. Ao I8 8iven by the zero differential. The image of a cycle
under ®, lies in the sheaf complex of horizontal relative forms Qp Ao
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Proof. Let fo € A(V/G)and f1,..., fi € € (V). Observe first that y y/6(fo ® f1 ®
-+ ® fi) is a relative form indeed since d (s, f) € QEKV_)G(G x M) for all f €
€>®(V). Now let (g, p) € Ao(G x V') and compute

Pr-1,v/6b(fo® L ®--- @ fi)(g. p)

= fo& PV i (Pd(5Guar ) A+ 7 Gy [ ] g, p)
+ Ii(—l)ffo(g, PP GGy 1) Ao 7 d Gy fi-1)
= A d(sgwy fis) A A d (S fi)) o)
+ IS(—l)ifo(g, P) fier(P)[d($Guy 1) A= A d(sGucy fi)
i=1 Nd(sEwy fiv2) Ao A dsGay )] )

+ (=D fie(gp) fo(g. P)[A(SEuy J1) A+ A (G fi1)] g py = O-

Hence ®, y/¢ is a chain map in the sense that it intertwines the Hochschild boundary with
the zero differential.

It remains to show that the image of ®, /¢ is in the space of horizontal relative forms.
To this end, assume for a moment that V' is a G-invariant open ball around the origin in
some Euclidean space R” which is assumed to carry an orthogonal G-action. Consider
the Connes—Koszul resolution of €°°(V') provided in (B.2). A chain map between the
Connes—Koszul resolution and the Bar resolution of €°° (V') over the identity map ideoo (1)
in degree 0 is given by the family of maps

Wiy : TRV x V, Ex) — Bp(€®(V)) = €°(V x V) ® €2 (VF),

> (v, w, X1, ..., xK) B 0w (Y(x1,w), ... Y (g, w))).

Tensoring the Connes—Koszul resolution of €% (V') with A (V' / G) results in the follow-
ing complex:

Yexy va

QL e QGKV%G(V) 2 e (G x V) — 0, (6.4)

where Yoy : G X V — s*TV is defined by Ygxy (g, v) = v — gv. The composition of
idyeo(v/6) ®\I/k’y with @ v/ then is the map which associates to each relative form
w € Q’éxv_)G(V) its restriction [w] A, to the loop space. It therefore suffices to show that
for w € Q’éxv_)G(V) with iy, @ = 0 the restriction to the loop space is a horizontal
relative form. To verify this, let £ be an element of the Lie algebra g of G and again
(g,v) € Ag(G x V). Then

d
0= (lYGxVa))(e ~tkg, v)|t -0 =(= lYGxV’EGd o+ ig,0)(g,0) = (i, ©)(g,0),



130 M. J. Pflaum, H. Posthuma, and X. Tang

where d ¢ denotes the exterior differential with respect to G and £g and £y are the funda-
mental vector fields of £ on G and V, respectively. So ig, w € g(V)Q’&;IV ¢ (V), which
means that (@], € Qﬁrel £, (G X V). |

Proposition 6.6. Let M be a G-manifold with only one isotropy type and assume that the
orbit space M /G is connected. Then the following holds true.

(1) The quotient space M/ G carries a unique structure of a smooth manifold such
thatw : M — M/ G is a submersion.
(2) The loop space Ao(G x M) is a smooth submanifold of G x M.
(3) Let p € M be a point and V,, C M a slice to the orbit through p that is
(SL1) Vj is a Gp-invariant submanifold which is transverse to the orbit O, :== Gp
at p,
(SL2) V := GV, is an open neighborhood of the orbit O, and V), is closed in V,
(SL3) there exists a G-equivariant diffeomorphism n : NO, — V mapping the
normal space N, = T,M | T,0, onto V).
Then for every k, the map

Ve,/Gy - Lrerng (Mo(G X GVp)) = Q4 (Mo(Gpx Vp)). @0 0)a0G,m1y)

is an isomorphism and the space of basic relative k-forms Q{fm,Ao (Ao (Gp x V)
coincides naturally with €°°(GP)GP ® Qk(Vp).
(4) The chain map

Dupr/G ¢ (Co(€®(M), AM/G)). D) — (Lhrera, (Ao(G x M)),0)

is a quasi-isomorphism when the graded module Qf.lrel,Ao (Ao(GXM)) is endowed
with the zero differential.

Proof. ad (1). It is a well-known result about group actions on manifolds that under the
assumptions made, the quotient space M/ G carries a unique manifold structure such that
7 : M — M/G is a submersion; see e.g. [5, Section IV.3] or [37, Theorem 4.3.10].

ad (2). This has been proved in [18, Proposition 4.4]. Let us outline the argument since
we need it for the following claims, too. By the assumptions made, there exists a compact
subgroup K C G such that every point of M has isotropy type (K). Let p € M be a point
and G, its isotropy group. Without loss of generality, we can assume that G, = K. Let
V, C M be aslice to the orbit O through p. The isotropy group of an element g € V), then
has to coincide with K, so VPK = V). Therefore, the map

1:G/KxV,—> M, (gK.q)+ gq

is a G-equivariant diffeomorphism onto a neighborhood of @. Now choose a small enough
open neighborhood of eK in G/K and a smooth section o : U — G of the fiber bundle
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G — G/K. The map
T:GxUxV,—Gxt(UxV,), (hgK.q)r (0(gK)ho(gK)™" 0(gK)q)
then is a diffeomorphism onto the open set G x t(U x V},) of G x M. One observes that
T(KxU xVp) = (Gxt(UxV,)NAg(Gx M),

which shows that A¢(G x M) is a submanifold of G x M, indeed.
ad (3). Put K = G, as before, let N = GV, and denote by g and f the Lie algebras
of G and K, respectively. Choose an Ad-invariant inner product on g and let m be the
orthogonal complement of ¥ in g. Next choose for each ¢ € N an element s, € G such
that 1,9 € V). Then
nN:N—>@p, ql—)h;Ip

is an equivariant fiber bundle. Let TN — N be the tangent bundle of the total space
and VN — N the vertical bundle. Note that 7N and VN inherit from N the equivariant
bundle structures. Now put for g € N

HyN = span{(Adhgl(g))N(q) eTyN | &€ m},

where £y denotes the fundamental vector field of £ on N. Then HN — N becomes
an equivariant vector bundle complementary to VN — N. Let PY: TN — VN be the
corresponding fiberwise projection along HN. By construction, PV is G-equivariant.
After these preliminary considerations let @ € Q]grel, Ao (Ao(G x GV)p)). The restriction
®|aq(kxV,) then is a basic relative form again, so Wy v, /k is well defined. Let us show
that it is surjective. Assume that o € Q{fml’AO (Ao(K x V})). We then put for (g,q) €
Ao(Gx N)and Xq,...,Xx € TyN

Cl)(g,q)(Xl, ey Xk) = Q(hqghq_l,hqq)(Thq (Pv(Xl)), ey Thq(PV(Xk))), (65)

where Th: TN — TN for h € G denotes the derivative of the action of 2 on N. Since Tk
for k € K acts as identity on 7'V, C VN, the value w(g 4)(X1, ..., Xi) does not depend
on the particular choice of a group element £, such that i1, € V,,. Moreover, since for
fixed go € N one can find a small enough neighborhood U and choose /, to depend
smoothly on ¢ € U, w is actually a smooth differential form on N. By construction, it
is a relative form. If X; € H;N for some [, then wg 4)(X1, ..., Xx) = 0 by definition.
If X; = (Adhgl(é))N(q) for some § € ¥, then PVX; = X; and ThyX;(q) = én(hgq)
which entails by (6.5) that wg 4)(X1, ..., Xx) = 0 again since ¢ is a horizontal form. So
w is a horizontal form. It remains to show that it is G-invariant. Let # € G and (g, ¢) and
X1,..., X} as before. Then

Ohgh-1,hg)(ThX1,....,ThXy)
= Qi g (Tha TR (PY(THX D). Thg Th™ (PY(ThX))

= w(g’q)(Xl, oy Xi),
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so w is G-invariant and therefore a basic relative form. Hence ‘Ijk,Vp /K 1s surjective. To
prove injectivity of Wy y sk observe that if € Q]grel’AO (Ao(G x GV)p)) and o is the
restriction @] KxVp) then equation (6.5) holds true since w is G-invariant and hori-
zontal. But this implies that if wlAO(Kpr) = 0, then w must be 0 as well, so lIJk,Vp/K is
injective. It remains to show that

Qf . a, (Mo(K x V) = €2(K)X & Q% (V).

To this end, observe that A¢(K x V,) = K x V), since VPK = V,, which in other words
means that very K-orbit in V), is a singleton. The claim now follows immediately.

ad (4). By Theorem 3.3, it suffices to verify the claim for the case where M = GV,
where p is a point and V), a slice to the orbit © through p. As before let K be the
isotropy G. By the slice theorem, there exists a K-equivariant diffeomorphism ¢ : V,, —
I7p C N,O onto an open zero neighborhood of the normal space N,®. Choose a K-
invariant inner product on N, and a G-invariant inner product on the Lie algebra g.
Again as before, let m be the orthogonal complement of the Lie algebra ¢ in g. The inner
product on g induces a G-invariant Riemannian metric on G which then induces a G-
invariant Riemannian metric on the homogeneous space G/K by the requirement that
G — G/K is a Riemannian submersion. Now observe that the map G/K x V, — M,
(gK,v) — gv is a G-invariant diffeomorphism, so we can identify M with G/K x V).
The chosen Riemannian metrics on G/K and V), then induce a G-invariant metric on M.
Since C is faithfully flat over R, we can assume without loss of generality now that smooth
functions and forms on M and G x M are all complex valued, including elements of the
convolution algebra. Let e € N,0 = T,V), be a vector of unit length, and let Z be the
vector field on M which maps every point to e (along the canonical parallel transport).
Next choose a symmetric open neighborhood U of the diagonal of G/K x G/K such that
for each pair (gK, hK) € U there is a unique & € Adjy(m) such that gK = exp(§)hK.
Denote that £ by expﬁ((gl(). Let y : G/K x G/K — [0, 1] be a function with support
contained in U and such that y = 1 on a neighborhood of the diagonal. Now define the
vector field Y : M x M — pr5(TM) by

Y ((gK.v), (hK,w)) = x(gK,hK)(exp,x(gK),v —w)
+ V=11 (¢K. hK)Z ((gK. ), (hK, w)),

where pr, : M x M — M is projection onto the second coordinate and where the smooth
cut-off function y’ : G/K x G/K — [0, 1] vanishes on a neighborhood of the diagonal
and is identical 1 on the locus where y # 1. Finally, put Ey := prj (AKT*M). Then, by
[11, Lemma 44], the complex

T®(M X M, Egmm) — ++ - T(M x M, E1) 2> €°(M x M) — €>°(M)

is a (topologically) projective resolution of €*° (M) as a €°>°(M)-bimodule. Tensoring
this resolution with the convolution algebra A(G x M) gives the following complex of
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relative forms:
dim M ivg Yo 4 -~
Qoem—oc(Gx M) — -+ — Qe (G X M) = €CF(Gx M), (6.6)
where Y : G x M — prj;TM is the vector field
(g. (hK.,v))> x(ghK,hK)(exp, g (ghK).0)+~—1) (ghK.,hK)Z((ghK,v), (hK,v)).

The vector field Y vanishes on (g, (2K, v)) if and only if g € hKh™!, that is if and only
if (g, (hK,v)) € Aog(G x M). We will use the parametric Koszul resolution (Proposi-
tion B.11) to show that the complex (6.6) is quasi-isomorphic to the complex of horizontal
relative forms

QUMM (Ao(G & M)) = -+ = QL ) (Ag(G & M)) = €X(Ag(G & M)). (6.7)

This will then entail the claim. So it remains to show that (6.6) and (6.7) are quasi-
isomorphic. We first consider the case where V), consist just of a point. Then M coincides
with the homogeneous space G/ K and Y is a Euler-like vector field on its set of zeros

S ={(g.hK)e GxG/K|gehKh™'} C M.

Note that S is a submanifold on M. That Y is Euler-like on S indeed follows from the
equality

d B d _
7 exph}( (exp(té)ghK)‘tzo =7 exph}( (exp(té)hK)‘tzo =

forall (g,hK) € S, & € Adgp () = Ady(m). Hence, by Proposition B.11, the complex

. i i
QUnGIK (G xG/K) ~% - 5 QL ok (G w G/K) — €(G x G/K)

is quasi-isomorphic to
0—-—0—>C%().

Since Qﬁrel,AO (Ao(G x G/K)) = 0 for k > 1, the claim follows in the case V, = {p}.
Now consider the case M = G/K x V), with V), an arbitrary manifold on which K acts
trivially. Observe that in this situation

Qum—6(Gx M) = B Qgx-c(Gx G/K) @ (V)
o<l<k

and that Y acts, near its zero set S = Ao (G x M), only on the first components
l
Qeng/k—6(G x G/K).
Hence the chain complex (6.6) is then quasi-isomorphic to the chain complex

€ (Ao(G x G/K)) & Q°(V})
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with zero differential. But since
Qfea, (Ao(G x M)) = € (Ao(G x G/K)) & QX (V).
the claim is now proved. [

Conjecture 6.7 (Brylinski [7, Proposition 3.4] and [8, p. 24, Proposition]). Let M be
G-manifold and regard Q7 Ao (Ao(G x M) as a chain complex endowed with the zero
differential. Then the chain map

Do m/6G - C.(‘€°°(M), eAa(M/G)) — Q}'lrel’AO (AO(G X M))
is a quasi-isomorphism.

Remark 6.8. Proposition 6.6 shows that Brylinski’s conjecture holds true for G-mani-
folds having only one isotropy type. Corollary B.8 tells that Brylinski’s conjecture is true
for finite group actions. In the following section, we will verify it for circle actions.

7. The circle action case

7.1. Rotation in a plane

Let us consider the case of the natural S'-action on R? by rotation. First, we describe
the ideal sheaf § C €&y, p, which consists of smooth functions on open sets of St x R?
vanishing on A¢(S! x R?). To this end, denote by x; : ST x R? > R, j = 1,2, the
function given by the first, respectively second, Cartesian coordinate of R? and by

7: S\ {1} xR? - (=7, 7)

the function given by (g,v) > Arg(g). We denote by r := /x? + x3 the radial coordinate

and by B, (v) the open disc of radius ¢ > 0 around a point v € R2. Note that the loop space
Ao(S! x R2) is the disjoint union of the strata {(1,0)}, {1} x (R?\ {0}), and (S' \ {1}) x
{0} and that the loop space is smooth outside the singular point (1, 0).

Proposition 7.1. Around the point (1,0), the vanishing ideal $((S' \ {—1}) x B,(0))
consists of all smooth f = (S'\ {—1}) x By(0) — R which can be written in the form

f = fitx1 + fotxa,  where fi, f» € €°((S'\ {~1}) x B,(0)). (7.1)
Around the stratum {1} x (R? \ {0}), a function
fee™((S'\ {-1}) x (R*\ {0}))

lies in the ideal $((S' \ {—1}) x (R2\ {0})) ifand only if f is of the form ht for some h €
E®((ST\ {~1}) x (R2\ {0})). Finally, around the stratum (S \ {1}) x {0}, a function
f € €X((SY\ {1}) x R?) vanishes on Ao(S' x R?) if and only if it is of the form fi1x +
faxa with fi, fo € €X((ST\ {1}) x R?).
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Proof. Since the loop space is smooth at points of the strata {1} x (R?\ {0}) and (S*\{1})
x {0}, only the case where f is defined on a neighborhood of the singular point (1, 0) is
non-trivial. So let us assume that

fee™((S"\ {~1}) x B,(0))

vanishes on Ao (S! x R?). Using the coordinate functions, we can consider f as a func-
tion of t € (—m, ) and x € R?. By the Malgrange preparation theorem, one then has an
expansion

ft,x)+1=c(t,x)(r + ao(x)).

where ¢ and aq are smooth and a((0) = 0. Since t = c(¢,0)¢ for all ¢ € (—m, ), one has
c(t,0) = 1. Putting t = 0 gives 0 = ¢ (0, x)ao(x) for all x € B,(0). Since ¢(0,0) =1,
one obtains ag(x) = 0 for all x in a neighborhood of the origin. After possibly shrinking
B,(0), we can assume that ap = 0. Hence

f(t.x) = (c(t,x) = 1)z (7.2)

Taylor expansion of ¢(t, x) — 1 gives
c(t,x)—1=x1r1(t,x) + x2r2(t, x),
where )
ri(t, x) =/0 (1 =s)djc(t,sx)ds, j=1.2.
Since the functions r; are smooth, this expansion together with (7.2) entails (7.1). ]
Lemma 7.2. The vector fields
Y = Ygixge : S! xR?2 > R2,  (g,x) > x —gx

and x+gx

Z = ZgixRr2 :S'xR?* - R?, (g,x) >

) . oy 9 9 _ 9 )
have coordinate representations Y =Y e + YZE and Z = 74 o + sz with coef-
ficients given by

Y1 =x1(1 —cost) —xpsint and Y, = xp(l —cost) 4+ xysint (7.3)
respectively by
Z1 =x1(1 +cost)+xpsint and Z, = x(1 + cost) — xq sint. (7.4)
Moreover, the vector fields Y and Z have square norms
IY]?2 = 2r2(1 —cost) = r2t2(Eo1) and ||Z||*> = 2r%(1 + cos 1), (7.5)

where & is holomorphic with positive values over (—m, w) and value 1 at the origin.
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Proof. The representations
. 0 . 0
Y|si—1pxrz = (x1(1 —cos ) — xpsin7) — + (x2(1 — cos ) + xy sin7) —
0xq 0x2
and
. 0 ) ad
Z|(s1\{-1})xR2 = (xl(l + cos 7) + X3 sin r)— + (x2(1 + cos 7) — xq sin r)—
0x1 0x

are immediate by definition of ¥ and Z and since S! acts by rotation. Note that these
formulas still hold true when extending t to the whole circle by putting t(—1) = 7. At
g = —1, the extended 7 is not continuous then, but compositions with the trigonometric
functions cos and sin are smooth on S'. For the norms of Y and Z, one now obtains

1Y]? = x12(1 —cos7)? + x% sin? T + x%(l —cos1)? + xl2 sin? 7 = 2r?(1 —cos 1)
and
1Z)* = xf(l +cos7)? + x% sin? 7 + x%(l +cos7)? + xf sin? 7 = 2r2(1 + cos 7).
By power series expansion of 1 — cos ¢, one obtains the statement about . [

Lemma 7.3. For all open subsets U of the loop space Ag = Ao(S' x R?) and all k € N,
the map
Of 1 QK A, (U) > T®(U.AFF)

Jrom Proposition 5.1 is injective.

Proof. Since Q7)) ) (U) =€®(U) = T*(U,A°F) and ©F, = id, we only need to prove
the claim for k > 1. To this end, we have to show that for w € 1"°°((7, /\ks*T*M) with
[w]F = O the relation [w]a, = 0 holds true. Here, as before, U cS'xR?is an open
subset such that U = U N Ao(S! x R2). In other words, we have to show that each such
 has the form

w = Zfla)l +Zdrelhj A1y,

leL jeJ

where L, J are finite index sets,
fi b € $(U), w; e T, A s*T*M), and 15 € DU, AF1s*T*M).

Since the involved sheaves are fine, we need to show the claim only locally. So let (g, v) €
Ao(S! x R?). Choose 0 > 0 and & > 0 with ¢ < 7 such that 0 ¢ B,(v) if v # 0 and such
that e¥~1'g =£ 1 for all # with |¢| < e if g # 1. Let

U= {(eﬁ’g, w) € S'xR? | |1| < gand [v—w| < o}

Using the coordinate maps t, X, X2, we now consider three cases.
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Case 1: g = 1 and v = 0. Then F(y 4) = Tu’ﬁRz, hence (1) = O for all w such that
(1,w) € U N Ay. Hence

w =T E Wiy, ..., ,‘kdxil /\'H/\d)C,'k

1<ij<-<ip<2

with w;,,..;, € €°°(l7). Now observe that Tx; € g(ﬁ) for j = 1,2 and that dyei(tx;) =
tdx;. Therefore, w € diJ(U) AT (U, A= T M.

Case2: g # 1 and v = 0. Then F, 0 = 0 for all 1 € S! with (h,0) € U N Ay. Hence
 can be any k-form on U. But over U one has x1, x» € ' (U ) which entails that

o= Y o dXi A Adxi € dead(O) AT AT T M),

1<ij<-<ip<2

Case 3: g = 1 and v # 0. Then F(j ) = T*R? for all w such that (1, w) € U N A,.
Hence
w =T Z Wiy ..., ,-kdxl/\m/\a’xik
1<ij<-<ip<2
with w;, i, € ©°°(U). Since T € (U), one obtains w € §(U)T°(U, Aks*T*M).
So in all three cases,  is in the differential graded ideal

J(OT®U, A S*T* M) + dia g (U) AT, ANV s*T* M)
and [w]p, = 0. Hence G)’{] is injective. |
Lemma 7.4. For every S'-invariant open V- C R2, the restriction morphism

[_]AO : SHXV—)SI(S X V) - Qrel Ao (AO(SI X V))

maps the space of cycles Z . (22 (S'%V'), Y ) onto the space Qhrel AO(AO(S1 xV))

SixV—S!
of horizontal relative forms.

Proof. Since the sheaf Qhrel Ao is fine, it suffices to verify this claim for V' C R2 of the
form V' = B,(0) or V = B,(0) \ By (0), where 0 < 0 < . So assume that k = 1,2 and
[@]a, € SZfreLAO(AO(S1 x V) for some relative form w € SZglKV_)SI(S1 x V). Now
observe that

N =Rdr forallv e R?\ {0},

where dr = 1(dx; + dx;). Hence, w|yxy = 0 if k = 2 and o|gyx@\(op = ¢ dr
with ¢ € €°(V \ {0}) if k = 1. Since the claim for k = 2 has just been proved, we
assume from now on that k = 1. In Cartesian coordinates, @ = wi;dx; + wydx, with

€ €X(S! x (V'\ {0})), j = 1,2. Comparing with the expansion in polar coordinates
gives the following equality over V' \ {0}

w;(1,—) = %x,- for j = 1,2. (7.6)
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Note that if the origin is an element of V/, then w(y 0y = 0, hence (w;)1,0) =0, j = 1,2.
Choose a smooth cut-off function y : S — [0, 1] such that y is equal to 1 near = 1 and
equal to 0 near r = —1. Now define the k-form & € Q¥ (S! x V) by

x(8)e(x) ) m2
By = o Z(g,x),—) 1 R> > R for g € supp y and x € V \ {0},

forg € S\ supp y or x € VN {0}.

where (—, —) is the Euclidean inner product on R2. It needs to be verified that @ is smooth
on a neighborhood of S! x {0} in case the origin is in V. To simplify notation, we denote
the composition of a function f : ¥ — R with the projection S' x V' — again by f and
likewise for a function f : S — R. With this notational agreement, the formula for Z in
(7.4) entails by (7.6) over (S \ {—1}) x (V' \ {0})

Ol s1\{-1)x(\{0})
X9

B r+/2(1 + cos 1)

= +(((1 + cos T)wy + sin ra)z)dxl + ((1 + cos T)w, — sin ra)l)dxz).

v2(1 4 cos 1)

The right-hand side can be extended by 0 to a smooth form on S! x V', hence & is smooth.

(((1 + cost)xy + sintxz)dxy + ((1 + cos T)xp — sin Tx1)dx,)

Moreover, the restriction of & to {1} x V coincides with the restriction w|(;yxy . Finally,
check that for x # 0 and g € S! \ {~1}

. x(g)¢(x)
Y(g.x)a0g,x) = m(x +gx,x —gx)=0.
Hence @ € Zk(Qélbd,_)Sl(S1 x V), Y1) and [@]a, = [®]A,- m

Proposition 7.5. For each S'-invariant open V C R?, the chain map
[0 (Q 1y g1 (8T % V). Y1) = (R 4, (Ao(S" x 1)), 0)
is a quasi-isomorphism.

Proof. It remains to prove that every o € Zy (g, ., 1 (S! x V), Y ) that satisfies the
condition [@]a, = 0 is of the form w = Y .y for some 7 € Qgﬁ}v»gl (S' x V). Let us
show this. We consider the three non-trivial cases k = 0,2, 1 separately.

Case 1: k = 0. Then w is a smooth function on S! x V vanishing on A. By Proposi-
tion 7.1, the function @ can be expanded over S! \ {—1} x V' in the form

olsi\(—1}xy = ©1TX] + 27Xy, Where 1, w; € X (ST \ {1} x V).

Moreover, the interior product of a form n = 1n1dxy + n2dx, € Qé]KV—)Sl (S' % V) with
the vector field Y has the form

Y=Y + Yan = (x1(1 —cos ) — xzsin 7)1 + (x2(1 — cos ) — xq sin7) 7.
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This means that it suffices to find 1y, 7, € €°(S! x V) which solve the system of equa-
tions
w1T = (1 —cost + (sint)ny,
1 ( . )+ ( 2 a.7)
wyT = —(sint)n; + (1 —cos )n,.
The 1-form n = n1dxy + nadx, will then satisfy Y 1y = @ which will prove the first case.
The functions

(1 —cost) Tsint T Tsint
n= (1 — cos 7)2 + sin? twl a (1 — cos 7)2 + sin? rwz — 9T 2(1 —cos 1) @2
Tsint (1 —cos 1) Tsint T
2= (1 —cos )2 + sin? T ! (1 —cos )2 + sin? 2T 2(1 —cos 1) @1 52

now are well defined and smooth over (S' x V) \ ({1} x R?). They also solve (7.7). We are
done when we can show that they can be extended smoothly to the whole domain S' x V.
But this is clear since the function (—m, ) \ {0} — R, ¢ 2&2‘; 7y has a holomorphic
extension near the origin as one verifies by power series expansion.

Case2: k =2. Letw € QF,, ;i (S'x V) and Y uw = 0. Then w = ¢dx; A dx, for
some smooth function ¢ € S! x V' — S!. Now compute using (7.3)

0=Yuw=9¢-(Y1—Y,) =go-(x1(1 —cosT) —Xxps8int — xp(1 —cos7) — X1 sint)
=¢-(x;1 —x3)- (1 —cost —sinT).
Hence ¢ = 0and w = 0.

Case 3: k = 1. Observe that in this case w can be written in the form v = w1dx; + w2dx;
with oy, w, € (S x V) C €®(S! x V). By equation (7.1), wjl(s1\{—1yxy = T82; for
Jj = 1,2 and functions Q; € €®((S' \ {—1}) x V). The condition ¥ _w = 0 implies that

Y1$21 + Y292 = Y1w1 + Y2w2 =0. (78)

Now define the function ¢ : (S x V)\ Ag — R by ¢ = W(—Yzwl + Y1w2)|(Sle)\A0'
Since ||Y||2 = 2r%(1 — cos 1), the vector field ¥ vanishes nowhere on (S! x V) \ Ag, so
¢ is well defined and smooth. By (7.8) one computes

Plgx)  ifg# 1x#0and Vi(g.2) # 0,
FA(g.x) ifg # 1,x #0and Ya(g, x) # 0.

Assume that ¢ can be extended smoothly to S! x V. Then n = ¢dx; A dx; is a smooth
form on S' x V which satisfies

p(g, x) = {

YJT] = (p(Yld)CQ - dexl) =w.

So it remains to verify that ¢ can be smoothly extended to S' x V. To this end, we use the
complex coordinate z = x; + ~/—1x, of V and introduce the complex valued function
Q = Q; + ~/—1Q5. Moreover, we define y : S x V — C, (g.z) ~ z — gz. Then

y=(l—eV M)z =y, + V_1Y» (7.9)
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and, by equation (7.8),
1 = _
E(yQ—i-yQ): Y1Q1 + Y22, =0. (7.10)

Next observe that 1 — ¢V~17 = —+v—1t(1 — ~/—17(¢ o 7)) for some holomorphic func-
tion ¢ : C — C which fulfills ¢(0) = % Then equation (7.10) entails

(1 — «/—_lt(é‘ o r))z§_2 = (1 + «/—_IT(EO t))EQ.

By power series expansion, it follows that %—§| z=0 = 0 for all k € N. Hence, by Tay-
lor’s theorem © = z® for some smooth ® : S! x V — C. Since by Lemma 7.2 | Y ||> =
r272(£ o 1) for some holomorphic function £ not vanishing on (—, ), the following
equalities hold over (S' \ {£1}) x (V' \ {0}):

1 VA ~

=—— (-1 + Y1) = ——(Q —yQ
¥ ”2(501)( 2821 + Y1Q22) 2”2(501)0’ y&2)
1 - —
= m((1 —V—-11((01))2Z® + (1 + V—17({ 0 1))2Z D)
1 _
= —(l—v—lt(é‘or))cb .
(o) (ST IDx(V\(0)

Since the right-hand side has a smooth extension to S! \ {—1} x V, the function ¢ can be
smoothly extended to S! x V and the claim is proved. [

7.2. S! rotation in R2™

In this subsection, we work with complex-valued functions, and differential forms over
complex numbers. Since tensoring an R-vector space with C is a faithfully flat functor,
our results in this section still hold true for the algebra of real-valued functions.

We consider a linear representation of S! on R?™. We identify R?™ with C™, and
decompose C” into the following two subspaces:

C" =V W, (7.11)

where Vj is the subspace of C™ on which S! acts trivially, and V; is the S!-invariant
subspace of C™ orthogonal to V; with respect to an S!-invariant Hermitian metric on C™.
Furthermore, V is decomposed into irreducible unitary representations of S!, i.e.,

t
Vl = @(ij»
=1

where Cy; is an irreducible representation py,; of S! with the weight 0 # w; € Z, i.e.,

pu; (exp2r/=1)t)(z) := exp(Qw; v/~ 11)z.
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We observe that € (C™) x S is isomorphic to (€ (V) ® € (V1)) x S'. As ST acts
on V) trivially, we have

CX(C™) xSt = €®(Vp) ® (€>°(V1) x ST).
The Kiinneth formula for the Hochschild homology [30, Theorem 4.2.5] gives
HH.(€®°(C™)xS") = HH.(€%®(Vy)) ® HHo (€ (V1) x S').

The Connes—Hochschild—Kostant—Rosenberg theorem asserts that H He (€*°(Vp)) is iso-
morphic to 2°(V,). Hence, we have reduced the computation of HH,(€®(C™) x S!) to
that of HH,(€> (V1) x S'). Without loss of generality, we assume in the remainder of
this subsection that C” = 17, i.e.,

m
C" =P Cu,. 0#w; €.
j=1
Let w be the lowest common multiplier of wy, . .., w,. We observe that for ¢ € [0, 1),

ift # é J =0,....,w— 1, the fixed point subspace of ¢ is {0}; if t = % the fixed point
subspace of ¢ is
kal @ e @ kalv

for wg, . ..., wg, that w divides jwy,, ..., jwy,. Hence the loop space Ao(S! x C™) has
the following form:
Ao(S! x C™) = {(exp(an/—lt),(O,...,Zwkl,...,zwkl,o,...)) |
(0,...,zwkl,...,zwkl,O,...) e C", twy,,...,.twg, € Zw}.
Let o : Ao(S! x C™) — S! be the projection onto the first factor. Following Propo-

sition 6.5 and equation (6.4), the Hochschild homology of €2 (C™) x S! is computed by
the S!-invariant part of the cohomology of the following Koszul-type complex:

ly, 1xcm iy, Ixcm
Q2 g1 (ST x C™) < 5 Q1 emgt (ST X C™)
Pstum oo (gl m
(st x €M) - 0, (7.12)

where Ygiycm @ ST x C™ — s*TC™ is defined by Ygi,cm(g,v) = v — gv. Below,
we sometimes abuse notation by denoting Ysi.cm by Y. Fix a choice of coordinates
(z15-+.,2m) for z; € Cy;. The vector field ¥ := Ygi,cm (exp(27r+/—11), z) is written as

Y = Yglxcm(exp(ZH\/ —1[),2)

= Z (exp(2m v/ —lwgt) — l)zki + (exp(—2m v/ —lwgt) — 1)5ki.
0zk 0Zg

k=1
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Define an analytic function a(z) on C by

exp(2m/—1z) — 1

z

a(z) =

Then we have
exp2r v/ —lwgt) — 1 = wita(wgt),
exp(=2nv—lwgt) — 1 = wrta(wgt).

Observe that for r € R, a(t) = a(t), and a(t) # 0 for all ¢ sufficiently close to 0. For a
sufficiently small ¢, the vector field ¥ on (—¢, &) x C™ is of the following form:

m
i —_ 0
Y =t Z Wi (a(wkt)zk— + a(wgt)zg f)
= 0z 0Zk
This leads to the following property of the vector field Y.

Lemma 7.6. The vector field Y : S x C™ — C™, (g,z) — z — gz has a coordinate
representation Y = Z;"zl Ykzk% + YKz, % with coefficients given by

Y*(exp2rnv/—11)) = exp(2r v/ —lwyt) — 1.

Set w = lem(wy, ..., wy,). There exists an & > 0 such that

e ifty = %,forO <j<w,on (% —&, é + ¢), Y* is of the following form:
Y*(exp2rv/—11)) = wy (t - L)a(wk (t — L)), forwij € Zw,
w w

where a(wi (t — %)) # 0forallt € (é —e, # + ¢),
o fork withwyj ¢ Zw, Y*(exp(2~/—11)) # 0 forall t € (é — &, # + &),
o ifto# L Y*(expQr/=11)) # 0forallt € (to — &ty + ¢).
The next lemma provides a local expression for the vanishing ideal ¢ of the loop

space Ag(S! x C™) associated to the S'-action on C™ defined by equation (7.11). We
write By(Zo) C C™ for the open ball of radius ¢ > 0 around Zy € C™.

Lemma 7.7. The vanishing ideal § of Ao(S' x C™) has the following local form. For

each (exp 2 ~/—1ty, Zo) € S' x C™, there exist €, 0 > 0 such that

e ifty= %, Zo = 0, then the vanishing ideal g((é —e, i + &) x B,(0)) consists of all
smooth functions f € ‘6“((# —&, % + &) x B, (0)) which can be written in the form

f= (t - i) Yo Grfitma) + Y. Crfi+ kg
kawipjewZ kwrjEwZ

with fie. gk € €°((5 —&. % +€) X By(0)),

w
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e ifty= %, Zo # 0 with exp(Zn«/—l%)Z = Z, then the vanishing ideal ;’((# —e,

% + &) X By(2)) consists of all smooth functions [ € f”((% —e, # +¢&) x By(2))
which can be written in the form

f= (t - i)f + > Grfe+ Egn)
k,wkj¢wZ
for f. fi. gk € €X((L —&. L + ) x Bo(2)),

o ifty # %, Zy = 0, then the vanishing ideal §((to — &, to + €) x By (0)) consists of all
smooth functions f € €®((to — e,tg + &) x By(0)) which can be written in the form

=Y Crfi + Zxgr),
k=1

Jor fi. gk € €X((ty — &.ty + €) x By (0)).

Proof. We will prove the case around the most singular point (1,0) € S' x C™. A similar
proof works for the other points. We leave the details to the reader.

For (1,0) € S! x C™, choose a sufficiently small ¢ > 0 such that there is no other
point in the interval (—e, €) of the form % for an integer 0 < j < w. We identify (—e¢, ¢)
with a neighborhood of 1 in S! via the exponential map. For a positive o, the loop space
Ao(S! x C™) in (—¢, &) x B,(0) is of the form

Ao(S' x C™) 0,0y = {(0.2) | z € Bo(0)} U {(1,0)}.

A smooth function f on (—¢, €) x B,(0) belongs to & ((—¢,¢) x B,(0)) if and only if

f(0,2) = f(t,0) = 0.

We consider f as a function of 7 € (—e¢, ¢). By the Malgrange preparation theorem, we
have the expansion

f(t,2) + 1 =c(t,2)(t + ao(2)),

where c(t, z) and ao(z) are smooth and a¢(0) = 0. Since t = ¢(¢,0)¢ for all r € (—¢,¢),
c(t,0) = 1. Putting t = 0 gives 0 = ¢(0, z)ao(z) for all z € B,(0). Recall that ¢(0,0) = 1.
Therefore, ag(z) = 0 for all z in a neighborhood of 0. After possibly shrinking o, we can
assume that ag(z) = 0 on B,(0). Hence, we conclude that

ft,z)= t(c(t,z) — 1).
Taking the parametric Taylor expansion of ¢ (¢, z) — 1 gives
m
clt.2)=1=> "z fjt.2) + Zg(1.2).
j=1

where f; and g; are smooth functions on (—e¢, ) x B,(0). [
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In the following, we compute the cohomology of the complex (7.12). We observe that
the complex (28, cm_ g1 (S' x C™),iy) for Y := Ygi,cm forms a sheaf of complexes
over S! via the map o : Ag(S! x C™) — S!. Accordingly, we compute the cohomology
(Q&1em_st (S x C™),iy) as a sheaf over S'.

Proposition 7.8. For all open subsets U of the loop space Ay = Ao(S' x C™) and all
k € N, the map
OF : QK 4, (U) — T®(U,AFF)

from Proposition 5.1 is injective.

Proof. We will prove the case around the most singular point (1,0) € S! x C™. A similar
proof works for the other points. We leave the detail to the reader.

Recall that we show in Lemma 7.7 that near (1, 0), the vanishing ideal g ((—¢, ) x
B,(0)) for a sufficiently small ¢ > 0 and a ball B,(0) C C™ centered at O with a sufficiently
small radius o > 0 consists of all smooth functions f* € €% ((—¢, &) x B,(0)) which can
be written in the form

m
=1 Crfi+ Zkgr).
k=1
for fir.gr € €°((—¢, €) x B,(0)). Recall that by definition, Qrel A, ((=8,8) X By(0)) is
the quotient

ng)l,x(cm_,gl ((_87 ‘9) X BQ(O))/gQ 1xCm_S1 + dg A QSID((C’"—)SI ((_8»8) 2 BQ(O))

In the following, we will describe Qil A0((—1»3, €) X By(0)) in more details and, for ease
of notation, will use the symbols QSI cm_sgt and Qil Ao 1O stand for the spaces
Qplx(cmﬁsl(( &, €) X B,(0)) and Qrel Ao ((—e, &) x By(0)), respectively, and ¢ for the
vanishing ideal ((—¢, €) X By(0)).

In degree p = 0, Q° A, coincides with the quotient of € ((—¢, &) x B,(0)) by
9((~e.) x By(0).

In degree p = 1, we know by Lemma 7.7 that d ¢ consists of 1-forms which can be
expressed as follows:

rel,

£y (fidzk + gedZi),  fio 8k € €F((—&,8) X Bo(0)).
k=1

Hence, d ¢ is of the form tQélxchSl’ which contains gQéGCm_)Sl. Note that if
(0,z) € S x C™, then Fo.z) coincides with T*C™. Forw = Y}, fxdzk + gkdZk €
ere] Ao’ if ®(w) = 0, then

f1x(0,2) = gx(0,2z) =0 forl <k <m.

Therefore, taking the parametric Taylor expansion of fi, gk at (0, z), we have that there
are fk and g in €°((—¢, €) x By(0)) such that f = tfk and gx = tgy. Hence, w =
1Y fedzi + §1dZ € d g and [0] = 0 in Qrel’Ao.
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In degree p > 1, the above description of Qrel A, generalizes with the above expression

fordg. As Qslxcm—>§1 is of the form
k—1 5 k—1
ZdZ} AN QSID((Cm—)Sl +de VAN QS‘KC”’%S"
J

we conclude that d § A QSIKCm—)Sl can be identified as 1 Q% which contains

X SIxCm—S1»
gQSTxcm g1 as a subspace.

We notice that at (O,Z)ES1 x(C"’,/\kF(O,Z) is AkT (0 )(Cm Forw = ZIJfI Jdzr A
ANdzpg NdZg Ao NdZy,withl < <o <Ig<mand1 < Jsgyy <---<Jp <m,

if ®(w) = 0, we then get f7,7(0,z) = O0forall 7, J. And we can conclude from the Taylor
expansion that there exists f1, Jsuchthat f7 7 =1t f1 J,and

C()ZI‘X:f[,JdZ]1 /\--~/\dZ[S/\d§JS+1 /\---/\dfjk

which is an element in d § A QSID((C'”—)SI Therefore, [w] = 0 in Qrel A, and the proof is
complete. ]

Proposition 7.9. For each S'-invariant open V.C C™ the chain map

R (Qneygt (ST X V) Y1) > (Qera, (Ao(S! x 1)), 0)
given by restriction, R(w) := [®]a,, is a quasi-isomorphism.

Proof. We consider both sides as sheaves over S!, and prove that #t is a quasi-isomor-
phism of sheaves over S!. Since both sheaves are fine, it is sufficient to prove the quasi-
isomorphism J at each stalk; cf. [45, Section 6.8, Theorem 9]. We split our proof into two
parts according to the point #o in S!:

(1) atexp(2m+/—1to) with 7y # L " for0 < j <wand? €[0,1),
(2) atexp(2m+/—1 #) for0 < j < w.
Case (1). We prove that

. . 1
SReXP(27“/—7110) : (QSlkVﬁSl,exp(Zﬂ«/jlto)(S x V), Y")

: 1
Qhrel,AO,exp(znﬂto)(AO(S X V))

is a quasi-isomorphism for #y # % for 0<j <w and ty €0, 1). It is crucial to observe that
for a sufficiently small ¢ > 0, on (9 — &, 9 + &) x C™, the vector field Y is of the form
“ 0 d
Y = Z (exp(Zn\/—let) — l)ng + (exp(—2rrv—let) — 1) j—
J

zZ .
‘ ]321'
Jj=1 ;

Observe that the vector field Y vanishes exactly at (¢, 0). Moreover,

(Qéle%Sl,eprn«/—ilto) ((10 —&,tg+ )X (Cm)7 Y_l)
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is a smooth family of generalized Koszul complexes over ¢ € (9 — ¢, + ¢). Using Propo-
sition B.10, its cohomology can be computed as

H* (28

SIKV—>Sl,exp(2n«/—71to)((to —e.to+e) xC"). Y )

'€°o(l0—8,lo+8), k=0,
0, otherwise.
At the same time, for every ¢ in (ty — &, ty + ¢€), the fixed point of exp(2w+/—1¢) is

0 in C™. Therefore, the complex Qp , A ((fo — &, 7o + €) x C™) which coincides with
' ((tyg — &, t9 + €) x {0}, A®*F) is given as follows:

C®(tg —e.tg+¢€) fork =0,
T ((to — &, 1o + £) x {0}, AFF) = ( )
otherwise.

From the above computation, it is straightforward to conclude that Sfiexp(zn Vi) 15 @
quasi-isomorphism.

Case (2). We prove that at exp(27w+/ —1%), the morphism ERCXP(M Vi) is a quasi-
isomorphism. Following Lemma 7.6, we write the vector field ¥ as a sum of two compo-

nents:
Y=Y+ 7Y,
d d
Yi = YEzp— + Y¥5 —,
! Z “k 3Zk + “k afk
kkj¢wZ
j 0 0
Y, = (l — L) Z Wk (akaa— + ﬁkfka—),
W ke kjewz “k “k

where ar = a(wy (t — %)). Define Y5 to be Zk,kjewZ wk(akzk% + &kfk%). Then
we have the following expression for Y:

Y =Y, + (I—L)E.
w
Accordingly, we can decompose C™ as a direct sum of two subspaces, that is write C”* =

S1 & S, with
S1 = @ ka, Sz = @ (ka.
kkj¢wZ kkjewZ

Both S; and S, are equipped with S!-actions such that the above decomposition of C™
is S'-equivariant. As our argument is local, we can assume to work with an open set V,
which is of the product form V = V; x V5 such that V; (resp. V>) is an Sl-invariant
neighborhood of 0 in S (and S3).
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We consider

. J J .
(QSID(VI_)SI((E — ¢, » —i—e) X V]),lyl) for/ =1,2.

Observe that each complex QSIKVI—)SI ((] J —|— s) X Vl) is a f”(% —e, % + &)-
module, and their tensor product over the algebra ‘€°°( L_¢, # + ¢) defines a bicomplex

» jo  oa jo
5ty ((E ~Hw T 8) x Vl) Do (s —s, 4 +5) Lsixry 81 ((E —& "‘5) x Vz)

with iy, ® 1 being the horizontal differential and 1 ® iy, being the vertical one. The total
complex of this double complex is exactly

. J J
QSIIXV—>§1 ((E — &, " + 8) X V)

with the differential iy =iy, ® | + 1 ® iy,. The E-page of the spectral sequence asso-
ciated to the bicomplex

. J J . J J
QSIXV1—>§1 ((w — €&, E +8) XV]) ®f°°(%—8,%+£)QSIKV2—>S1 ((E — &, E +8) XV2)
(s (4o ) )

o a J J
®eoo(s e, 4 +6) Lincry st ((E —& T 8) x VZ)’

with the differential 1 ® iy,. We observe that Yy vanishes only at 0 for every fixed 7.
Therefore, (QSlle sl (( — ¢, % + &) x V1), iy,) is a smooth family of generalized
Koszul complexes. Its cohomology is computed by Proposition B.10 as follows:

. . .] J . \600( — &, —+8) .ZO,
" ( SW‘*SI((E_S’E +8) ) V‘)’ZY‘) - {0 o #0.

Therefore, we get the following expression of E{*:

E{MI — leszeSl ((# —-é& % ) x V2) p= 0,
0, p #0.

Next we compute the cohomology of (£, 0.4 ,iy,). Recall by Lemma 7.6 that Y 2 has the
form Y, = (t — )Yz, where Y, vanishes exactly at 0 for every fixed € (— —g, L & e
At degree g, we notlce that if an element w € QSNVZ%S L (( —g L 5 +e) xV2) belongs
to ker(iy,), then (t — )z > = 0. Thus, w belongs to ker(l ) Hence we have reached
the equation

ker(iy,) = ker(if,z).
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It is also easy to check that

. J J AR J J
lYZQéTNIVZﬁSI ((E — &, E + 8) X Vz) = (l — E)lfzggj—llez—)Sl ((E — &, E +8) X Vz)

g+1
QSIIX

) J\. g+l J J
ker(lf,z)/ (t — E)IY29SIKV2—>S1 ((5 —&, " + 8) X Vz).

Recall that the cohomology of (€2 1y S ((%
follows:

e ] ] / foo(i_g»i+8)9 CI=07
() (T 1

Therefore, for all g, we conclude that

; +1 J J .

q+1
QSIK

We conclude that the quotient ker(iy,)/ iy,
phic to

V,—>S1 ((% — &, % + &) x V3) is isomor-

—e L +e)x 1), ig,) is computed as

and the quotient ker(iy,)/ iy, — ((% —&, % + &) x V3) is isomorphic to

ker(if,z)/(t - ]5) ker(ig, ).

As the E, page has only nonzero component when p = 0, the spectral sequence col-
lapses at the E2 page, and we conclude that the cohomology of the total complex, which
is the cohomology of Q¢ |, ((% — &, % + ¢) x V') with the differential iy, ® 1 +
1 ® iy,, is equal to the quotient

ker(if,z)/ (t - %) ker(i;z)

for the contraction iy, on Qg,, |, (L —e. L +e)x ).
We now prove that the morphism

R (e (ST X V)Y L) = (24, (Ao(S' x 1)), 0)

is a quasi-isomorphism. The above discussion and description of Ao((£ — &, é +e)x V)
reduces us to prove that the morphism

Ny (QélezﬁSl ((i — &, i + 8) X Vz), YzJ)
N (Q;rel,Ao (Ao((é —e, i + s) x Vz)),O)

is a quasi-isomorphism. We prove this by examination of 3, in degree ¢. Hereby, we will
work with A® F as its smooth section space is isomorphic to 7, A, DY Proposition 7.8.
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Case g > 1. Recall that F°°((’ —e L + e) X Vo, N1F) is N1 F 2 We observe that
the vector field Y2 att = commdes W1th the fundamental vector ﬁeld of the S action
on V,. Hence, if ¢ € A? F i) is horizontal, ¢ satisfies the equation lY (L, )¢ =0. As
the cohomology of the (£2° (Vz) I%, . Z)) at degree g vanishes, there is a degree q + 1 form
¥ € Q*(V2) such that iy 9 ¥ = ¢. Define w € QSlezeSl((j —&, L +¢6)xV,) by
w =iy Y, where ¥ is viewed as an element in lexV —>Sl(( w + €) x V3) con-
stant along the ¢ direction. Then we can easily check that belongs to the kernel of i
and R, (¥) = ¢. We conclude that i, is surjective.
For the injectivity of i, we suppose that w € ker(iy, ). Hence,

E}tz(w)(é,z) = a)(%,z) =0.

Then by the parametrized Taylor expansion, we can find a form

J J
o € QSID(Vz—)S] ((E —e, w + s) X Vz)

such thatw = (t — £)@. As 0 = ig @ = (t — 5)ig, @, i5,® = 0. Hence w = (t — )&

belongs to (t — %) keriy , and [@] is zero in the cohomology of iy, .

Case ¢ = 0. Recall that Y is of the form

P2 oD

where a(wg (t — —)) #0forallt e (j —& L + ¢). Therefore, the space (t — —)le is

of the form )
J -
1= = ;
( w) E zZk Ji + Zk 8k

which is exactly the Vamshlng ideal 5( ((— —g L +8) x V3). This shows that the
cohomology of (Qsle2—>Sl(( w + &) x Vz) Y>.) at degree O coincides with
P (Ao(S! x Vz))|( J e teyxVy One concludes that 9N, is an isomorphism in degree 0,
and the proof is complete [
7.3. Stitching it all together

We are now in a position to prove Conjecture 6.7 in the case of circle actions:

Theorem 7.10. Let M be an S'-manifold and regard Qp Ao (Ao(S! x M)) as a chain
complex endowed with the zero differential. Then the chain map

Dy pryst 1 Co(CX(M), AM/SY)) — Qb 4, (Ao(S' x M))

is a quasi-isomorphism.
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Proof. Since ®, p/s1 is the global sections of a morphism of fine sheaves on M/ St it
suffices to prove that

P, : @.(‘61?,,", A) — 7T*(S|A0)*Qr.e1,Ao

is a quasi-isomorphism of sheaf complexes, i.e., that the induced map on the stalks ®o o
is a quasi-isomorphism for all orbits @ C M. By properness of the action, the isotropy
group is a compact subgroup of S!, leaving us with two cases:

(i)  when the isotropy subgroup I'y C S! of a point x € S! is a finite group, this
follows from the (proof of) Corollary B.8. Indeed, it is easily checked that the
morphism &, is the composition of the morphism of Proposition 4.5 reducing
to the local model, with the one inducing the isomorphism of Corollary B.8;

(ii)  when the isotropy group is S! itself, Proposition 7.9 entails that ®, @ is a quasi-
isomorphism.

This finishes the proof. ]

A. Tools from singularity theory

A.1. Differentiable stratified spaces

Assume that X C R” is a locally closed subspace that is the intersection of an open and a
closed subset of the ambient R”. The sheaf €¢° of smooth functions on X then is defined
as the quotient sheaf €°/dx v, where U C R" open is chosen such that X C U is rel-
atively closed, €7 is the sheaf of smooth functions on U, and Jx u the ideal sheaf of
smooth functions on open subsets of U vanishing on X. Note that €¢° does not depend
on the particular choice of the ambient open subset U C R”.

Definition A.1. A commutative locally ringed space (A4, O) is called an affine differen-
tiable space if there is a closed subset X C R” and an isomorphism of ringed spaces
(i F):(A,0) = (X,E).

By a differentiable stratified space, we understand a commutative locally ringed space
(X,€°) consisting of a separable locally compact topological Hausdorff space X equipped
with a stratification § on X in the sense of Mather [31] (cf. also [37, Section 1.2]) and a
sheaf €% of commutative local C-rings on X such that for every point x € X there is an
open neighborhood U together with ¢1,. .., ¢, € €°°(U) having the following properties:

(DS1) themap ¢ : U — R"*, y = (¢1(¥), ..., ¢n(y)) is a homeomorphism onto a
locally closed subset U= @(U) C R" and induces an isomorphism of ringed
spaces ¢ : (U, ‘€|°L‘,°) — ((7,‘6(9;);

(DS2) the map ¢ endows (U, ‘6‘%’) with the structure of an affine differentiable space
which means that (¢, ¢*) : (U, tfﬁj’) — (U, ‘C%") is an isomorphigm of ringed
spaces, where ‘C’g’ denotes the sheaf of smooth functions on U as defined
above;
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(DS3) for each stratum S C U, the map ¢|sny is a diffeomorphism of S N U onto a
submanifold ¢(S N U) C R".

A map ¢ : U — R” fulfilling the axioms (DS1) to (DS3) is often called a singular chart
of X (cf. [37, Section 1.3]).

A differentiable stratified space is in particular a reduced differentiable space in the
sense of Spallek [44] or Gonzéles—de Salas [34]. Moreover, differentiable stratified spaces
defined as above coincide with the stratified spaces with smooth structure as in [37].

Proposition A.2 (cf. [37, Theorem 1.3.13]). The structure sheaf of a differentiable strat-
ified space is fine.

To formulate the next result, we introduce the commutative ringed space (R, I?H%ooo).
It is defined as the limit of the direct system of ringed spaces (R", €g%), tum)n,meN, n<m
where t;,,, : R” < R™ is the embedding given by

tim(V1, ..., 0) = (V1,...,0,,0,...,0).

Note that for each open set U C R the section space €3, (U) coincides with the inverse

limit of the projective system of nuclear Fréchet algebras (€5 (U NR™), 17, )n.meN, n<m-
Hence the €g3%,(U) and, in particular, €3, (R°°) are nuclear Fréchet algebras by [48,
Proposition 50.1].

Proposition A.3. For every differentiable stratified space (X, €°), there exists a proper
embedding ¢ : (X,€°) — (R, €g%).

Proof. Since X is separable and locally compact, there exists a compact exhaustion, that
is, a family (Kj)ren of compact subsets K C X such that K C KI:—H for all k € N
and such that UkeN K, = X. By [37, Lemma 1.3.17], there then exists an inductively
embedding atlas that is a family (¢x)ken of singular charts ¢ : K7, — R" together
with a family (Ug)ren of relatively compact open subsets Uy € K}/ 41 such that Ky C
Uk and ¢ 11lu, = tngngy, © @klu, for all k € N. Now define ¢ : X — R by ¢(x) =
@i (x) whenever x € Uy. Then ¢ is well defined and an embedding by construction. By a
straightforward partition of unity argument, one constructs a smooth function ¥ : X — R
such that ¥ (x) > k forall x € Ki41 \ K}. The embedding (¢, ¥) : X — R xR = R*®

then is proper, and the claim is proved. [

Corollary A.4. Let (X, €%) be a differential stratified space. Then there exists a complete
metricd : X x X — R such that d> € €°(X x X).

Proof. The Euclidean inner product (—, —)gs extends uniquely to an inner product
(—, —)re on R such that (j,(x), jn(¥))re = (x, y)rns for alln € N and x, y € R”,
where j, : R” < R is the canonical embedding (x1,...,x,) > (x1,...,X,,0,...,0,...).
The associated metric dge : R® x R® — R, (x,y) = /(X — ¥, x — y)reo then is related
to the Euclidean metric drr by dreo (jn(X), ju(y)) = drn(x, y) for x, y € R”. Now
choose a proper embedding X < R and denote the restriction of dre to X by d. By
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construction, d? then is smooth. Moreover, d is a complete metric since the embedding is
proper and each of the metrics dgrn is complete. ]

B. The cyclic homology of bornological algebras

B.1. Bornological vector spaces and tensor products

We recall some basic notions from the theory of bornological vector spaces and their
tensor products. For details we refer to [27] and [33, Chapter 1].

Definition B.1 (cf. [27, Chapter I, 1:1 Definition]). By a bornology on a set X, one under-
stands a set B of subset of X such that the following conditions hold true:

(BS) B is a covering of X, B is hereditary under inclusions, and B is stable under
finite unions.

Amap f: X — Y froma set X with bornology B to a set Y carrying a bornology D
is called bounded, if the following is satisfied:

(BM) the map f preserves the bornologies, i.e., f(B) € D for all B € B.

If V is a vector space over k = R or k = C, a bornology 3B is called a convex vector
bornology on V if the following additional properties hold true:

(BV) the bornology B is stable under addition, under scalar multiplication, under
forming balanced hulls, and finally under forming convex hulls.

A set together with a bornology is called a bornological set, and a vector space with a
convex vector bornology is called a bornological vector space. For clarity, we sometimes
denote a bornological vector space as a pair (V, B), where V' is the underlying vector
space, and B is the corresponding convex vector bornology.

A bornological vector space (V, B) is called separated if the condition (S) below is
satisfied. If in addition condition (C) holds true as well, (V, B) is called complete.

(S) The subspace {0} is the only bounded subvector space of V.

(C) Every bounded set is contained in a bounded completant disk, where by a com-
pletant disk one understands a non-empty balanced convex subset D C V such
that the space Vp spanned by D and semi-normed by the gauge of D is a Banach
space.

As for the category of topological vector spaces, there exist functors of separation and
completion within the category of bornological vector spaces; see e.g. [32, Sections A.1.1
and A.1.3].

Example B.2. Let IV be a locally convex topological vector space. The von Neumann
bornology on V consists of all (von Neumann) bounded subsets of V', i.e., all B C V that
are absorbed by every 0-neighborhood. One immediately checks that the von Neumann
bornology is a convex vector bornology on V. We sometimes denote this bornology by
BoN.
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Definition B.3. The bornological tensor product of two bornological vector spaces
(V1, 8B1) and (V3, B,) is defined as the algebraic tensor product V; ® V5 endowed with
the smallest bornology on V; & V5, containing all the tensor product sets B; ® B,, where
B € B; and B, € B,. The completion of the bornological tensor product is denoted by
Vi ® V5, and called the bornological tensor product.

Similarly to the topological case, the bornological tensor product satisfies a universal
property. The proof is straightforward.

Proposition B.4. Given two bornological vector spaces (Vy, 8B1) and (V,, B5), the borno-
logical tensor product (V1 ® Va, By ® By) together with the canonical bounded map
V1 x Vo — V1 ® V; satisfies the following universal property: for each bornological vec-
tor space (W, B) and bounded bilinear map A : Vi x Vo — W, there exists a unique
bounded linear map LVi@Vs—>W making the diagram

Vix Vo2 w

| 4

Vi@V,

>

commute.

Remark B.S. Since tensor products of topological vector spaces are also needed in this
paper, let us briefly recall that the completed projective (resp. inductive) topological ten-
sor product ®, (resp. ®,) can be defined as the (up to isomorphism) unique bifunctor
on the category of complete locally convex topological vector spaces which is universal
with respect to jointly (resp. separately) continuous bilinear maps with values in complete
locally convex topological vector spaces. For Fréchet spaces, the completed projective and
completed inductive tensor products coincide, since separately continuous bilinear maps
on Fréchet spaces are automatically jointly continuous. See [23,33] for details.

B.2. The Hochschild chain complex

In this section, we recall the construction of the Hochschild bicomplex associated to a
possibly non-unital complete bornological algebra A. To this end, note first that the space
of Hochschild k-chains C(A) := A®**D is defined using the completed bornological
tensor product ®. Together with the face maps

br,i : Ck(A) = Cr—1(4),

Ay ® - ®aai - Qa for0<i <k,

a0®"‘®akH ‘
Ao @ -+ ® Ap_1 fori =k

and the cyclic operators

tr 1 Cr(A) — Cr(A), ap® - Qap +— (—l)kak Ray @ Qadk—1,
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the graded linear space of Hochschild chains Ce(A) := (Cx(A))ken then becomes a pre-
cyclic object; see e.g. [30, Sections 1.1 and 2.5] for details. This means that the following
commutation relations are satisfied:

br—1,ibk,j = bi—1,j—1br; for0<i < j <k,

beity = —tg—1bgi—1 forl <i =<k,
! (—D¥bgi  fori =0,

k+1 _
=1

From the pre-cyclic structure, one obtains two boundary maps, namely the one of the
Bar complex b’ : Cx(A) — Cr—1(A),b" := Z;:é (=1)" by ; and the Hochschild boundary
b:Cr(A)— Cr_1(A),b:=b"+ (—l)kbk,k. The commutation relations for the face maps
by,; immediately entail that b = (b’)? = 0. This gives rise to the two-column bicomplex

Ca(A) = Cy(4)
b b’
Ci(A) = C,(4)

b —b’

Co(A) <=1 Cy(A).

We will denote this two-column bicomplex by Ce «(A4)?}. By definition, the homology of
its total complex is the Hochschild homology

HH.(A) := Ho(Tote(Ca o(A4)'?)). (B.1)

In case A is a unital complete bornological algebra and M a unitary complete bornological
A-bimodule, or more generally if A is H-unital and M H-unitary as explained in [52,
Section 9], then the Hochschild homology H He(A, M) of A in the bimodule M is given
by the homology of the chain complex Co(A4, M) = M ®A®A Co(A) endowed with the
induced Hochschild boundary b.

B.3. A twisted version of the Connes—Hochschild—-Kostant—Rosenberg theorem

The classical theorem by Hochschild—Kostant—Rosenberg identifies the Hochschild ho-
mology of the algebra of regular functions on a smooth affine variety with the graded
module of Kihler forms of that algebra [26]. In his seminal paper [11], Connes proved
that for compact smooth manifolds an analogous result holds true which means that the



On the Hochschild homology of proper Lie groupoids 155

(continuous) Hochschild homology of the algebra of smooth functions on a manifold coin-
cides naturally with the complex of differential forms over the manifold (see [36] for the
non-compact case of that result). We will refer to this result as the Connes—Hochschild—
Kostant—Rosenberg theorem. In the following, we prove a twisted version which originally
goes back to [9, Lemma 5.2]. Here we provide an alternative proof which is closer to
Connes’ proof of the manifold version of the Hochschild—Kostant—Rosenberg theorem;
cf. also [6].

Assume that / is an orthogonal transformation acting on some Euclidean space R¢.
Let V be an open ball around the origin of R¢. Then we denote by #€% (V) the space
€ (V) with the h-twisted €°°(V')-bimodule structure

EX(V)@Me* ) ®€®(V) - Mex(),
f®a® f'+ (Vove f(hv)a()f'(v) € R).

In the following, we compute the rwisted Hochschild homology He(€®(V),"€®(V))
which by definition is the homology of the chain complex Co(€*°(V), €% (V)). Denote
by (—, —) the Euclidean inner product on R?. By the orthogonality assumption, (—, —) is
G-invariant, hence so is V. Recall that for every topological projective resolution Re —
CX(V)of €%°(V) as a €>°(V)-bimodule, the Hochschild homology groups Hy (€*°(V),
h€%° (1)) are naturally isomorphic to the homology groups Hy (Rs, "€ (V)); see [25].
Recall further that a topological projective resolution of the €%°(V')-bimodule €*°(V') is
given by the Connes—Koszul resolution [11, p. 127ff]

TOW xV,Eg) L oo I T x V, Ey) 25 €V x V) - €2(V) > 0, (B2)

where Ey is the pull-back bundle pr; (A*T*R9) along the projection pr, : R¢ x R? —
R4, (v, w) — w, and iy denotes contraction with the vector field Y : V x V — prj(TRd),
(v, w) — w — v. By tensoring the Connes—Koszul resolution with €% (1), one obtains
the chain complex

dgyy T Yooty Db oo
QUV) 2L ... QY (V) B e®(V) > 0, (B.3)

where the vector field Y, : V — TR is given by Y, (v) = v — hv. Denote by V" the
fixed point set of 1 in V, let 1, : V" < V be the canonical embedding, and 7, : V — V'
the restriction of the orthogonal projection onto the fixed point space (R)". One obtains
the following commutative diagram:

d iYh iYh iYh
QUV) —S - — = QI (V) ——=€®(V)

* * *

Qd(Vh) 0. .. 0 Eﬂl(Vh) 0 \600(1/h) (B.4)

* * *
| -

d iy, iy, 1 iy,
QUYV)—— - —— Q) ——=€>(V).
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Proposition B.6. The chain maps t; and t;; are quasi-isomorphisms.

Proof. Since the restriction of the vector field Y}, to V" vanishes, the diagram (B.4) com-
mutes, and the ¢ and 7 are chain maps indeed. Let W be the orthogonal complement
of (RY)" in R4, m = dim W, and 7y := idy —m, the orthogonal projection onto W .
Since the h-action on W is orthogonal and has as only fixed point the origin, there exists
an orthonormal basis wy, ..., w,, of W, anatural [ < %, and 0y,...,0; € (—m, ) \ {0}
such that the following holds:

cos 0;wo;—1 + sin 6; wy; ifk =2i —1withi </,
hwy = § —sin@;wa;_1 + cos Ojw,; if k = 2i withi </,
— Wi if2l <k <m.

Denote by ¢; : R — R?, ¢ € R the flow of the complete vector field Y}, or in other words
the solution of the initial value problem %(p, = (idy —h)¢;, o = idy. Then ¢, v = v for
allv € (RY)", and

(17036 (cos(t sin ;) wpi—1 + sin(f sin 6;)wy;), if k=2i—1 withi </,
@ (wr) =4 eI (—gin(f sin 0; )wa;—1 +cos(t sin 6 )wy;), if k = 2i withi <1,

e wg, if2l <k <m.
(B.5)
Now let vy, ..., v, be a basis of Vh, and denote by vl o v, wl, ..., w™ the basis of
V'’ dual to vy, ..., Vy, W1, ..., Ws. Then every k-form w on V is the sum of monomials
dvit A e A dvl A wi,,....i;» where

I<iy<-<ip<n and  j,_ij = iy rorvy @ € T AKX T*W).

Let d be the restriction of the exterior differential to I'*° (7, A*T*W) and define S :
Qk (V) — QK*t1(V) by its action on the monomials:

0

k
So=>" > dv' A ndvt /\/ ofdwawi,.. ) dt.
1 o0

=0 1<iyj<-<ij<n -

Note that the integral is well defined since ¢, (V) C V for all ¢ < 0 by equation (B.5).
Observe that ¢;, Y, = Y}, by construction of ¢, and that the fibers of the projection 7y, are
left invariant by ¢,. Hence one concludes by Cartan’s magic formula

(Siy, +iy,S)w

k 0
=Y > vt Andvt /\/ (dwiy, + iv,dw)g wi,.. i dt

=0 1<ij<-<ij<n o0

0

k
— Z Z dvil Ao A dvil /\/ th(p;k(,l)il’“_,il dt

1=0 1<ij<-<ij<n o
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k ) . 0 g
_ Z Z Aot A - A doY Af Egot*a)il ..... i dt

=0 1<ij<-<ij<n

k—1

[=01<i1<-<ij<n
+ Z dv't A A dVE A (w4 — TGO i)
15i1<---<ik§n
=w-n, 0. (B.6)
To verify the second last equality observe that the w;,
satisfy

i, are smooth functions which

.....

Thus equation (B.6) proves the claim. ]

The proposition entails the following twisted version of the Connes—Hochschild—
Kostant—Rosenberg theorem:

Theorem B.7. Let h : R? — R? be an orthogonal linear transformation and V C R4
an open ball around the origin. Then the Hochschild homology He(€®(V),"€®(V))
is naturally isomorphic to Q*(V"), where V" is the fixed point manifold of h in V. A
quasi-isomorphism inducing this identification is given by
Ce(e> ). e>v)) — @ (M),
Jo® 1 ®+® fi > foyynd frjyn A--- A d fiepyn.
Proof. As explained above, the homology of the chain complex (B.3) coincides natu-
rally with the Hochschild homology He(€%°(V),€%(V)). By commutativity of diagram
(B.4) and by Proposition B.6, the chain complex (B.3) is quasi-isomorphic to the chain
complex
Qd(vhy L. Loty ey o,

hence Hy (€%°(V),"€%°(V')) can be identified with Q¥ (V") for all k. The explicit form of
the quasi-isomorphism is obtained by composing the quasi-isomorphism ¢, with the quasi-
isomorphism between the Hochschild chain complex of the twisted module #€%° (V) and
the chain complex (B.3). ]

Next we consider a finite subgroup I of the orthogonal group O(R?). Let VV C R¥ be
an open ball around the origin that is invariant with respect to the I" action on R¢. We can
apply the quasi-isomorphism

(D) : Co(€®(V) 1 T) - CF(e®(V)) = Cu(€®(V), €®(V) % T)"

from Section 6.2 to identify HH.(€*°(V) x I') with the homology of the complex
Cr(€e>(V)). Since T is a finite group, the crossed product algebra € (V) x T" can be
identified with the direct sum B, . €©°(V') endowed with the convolution product and
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the twisted €°°(1')-bimodule structure. Hence the homology of
cre>w)) = c.(e®v), e*v)xT)"

is computed as the invariant part of the direct sum P, cp He(€*(V),Y€X(V)). As a
corollary to Theorem B.7, we thus obtain the following computation of the Hochschild
homology of €*°(V) x I':

Corollary B.8. The Hochschild homology HHe(€° (V) x I') is naturally isomorphic to

(@QQ(VV))F — @ QO(VV)Z(V),
yel (y)€Conj(I")

where T acts on the disjoint union [[,cp V¥ by y'(y, x) = (y'y(y")~L, ¥'x), Conj(y)
denotes the set of conjugacy classes of T, and Z(y) is the centralizer of an element y € T'.

Remark B.9. In the case of a smooth affine algebraic variety, Corollary B.8 has been
proved in [6, Theorem 2.19]. The cyclic homology theory of finite group actions on mani-
folds has been considered in other work as well. Early ideas can be traced back to the work
by Burghelea [10], Feigin—Tsygan [21], Baum—Connes [1], and also Wassermann [49].
As already mentioned, Brylinski—Nistor [9] provided the first full proof of a twisted
Connes—Hochschild—Kostant—Rosenberg theorem for finite group actions. Getzler—Jones
constructed in [22] an isomorphism on the level of cyclic homology theory for crossed
product algebras of discrete group actions. In [35], Nistor examines the localization of
periodic cyclic homology of crossed products by algebraic groups at maximal ideals of
the algebra of class functions on the group. As already pointed out before, Block—Getzler
introduced in [3] a Cartan model for the cyclic homology of the crossed product algebra
of a Lie group action on a manifold and derived from it a quasi-isomorphism which they
call equivariant Hochschild—Kostant—Rosenberg map. More recently, Ponge [42,43] con-
structed a quasi-isomorphism of “twisted” mixed complexes from which the above can be
derived as well.

Let us end with a generalization of Proposition B.6 which will serve as a useful tool in
our computations. Observe that in the complex (B.3) the vector field Y}, can be extended
to be a more general linear vector field Yz : R” — TR of the form Yy (v) = H(v) €
T,R? where H : R — R is a diagonalizable linear map. A construction similar to
the homotopy operator S in the proof of Proposition B.6 (see also [49]) computes the
homology of (R2°(V), iy, ) to be (Q*(VH),0) where VH = ker(H). Furthermore, if
H : S — End(R?) is a smooth family of diagonalizable linear operators parametrized by
a smooth manifold S, H is called regular if H satisfies the following properties:

(1) the kernel ker(H) := {ker(H(s))}ses C S x R? is a smooth subbundle of the
trivial vector bundle S x ]Rd;

(2) near every s¢ € S, there is a local frame of S x R% on a neighborhood Uy, of s
in S consisting of &1, ..., &; such that

» the collection {£1, ..., &} is a local frame of the subbundle ker(H) on Us,,
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o forevery j =k +1,...,d, there is a smooth eigenfunction A, (s) defined on
U, satistying H(s)&;(s) = Aj(s)&;(s) and A;(s) # O for all s € Us,.

The proof of Proposition B.6 generalizes to the following result.

Proposition B.10. Let H : S — End(R¢) be a smooth family of diagonalizable linear
operators parametrized by a smooth manifold S. Assume that H is regular. Let

ier(ery - ker(H) — S x RY

be the canonical embedding, and Q2°(ker(H)) the restriction of €*°(S,Q2°(V')) to ker(H)
along ixer(m). Then the restriction map Ryerrry : (€ (S,2°%(V)). 1y, ) — (R2°(ker(H)),0)
is a quasi-isomorphism.

In a certain sense, the following proposition is a variant of the preceding one. To
formulate our final result recall that by a Euler-like vector field for an embedded smooth
manifold S < M, one understands a vector field Y : M — T M such that S is the zero set
of Y and such that for each f € €°°(M) vanishing on S the function Y/ — f vanishes
to second order on S'; cf. [24, Definition 1.1].

Proposition B.11. Let M be a smooth manifold of dimension d, S — M an embedded
submanifold, and Y : M — T M a smooth vector field which is Euler-like with respect
to S. Then the complex

QM) L vy B e (M) — e®(S) - 0 (B.7)

is exact and called the parametrized Koszul resolution of €*°(S).

Proof. The claim is an immediate consequence of the Koszul resolution as for example
stated in [49, Section V]. [ |
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