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On the Hochschild homology of proper Lie groupoids

Markus J. Pflaum, Hessel Posthuma, and Xiang Tang

Abstract. We study the Hochschild homology of the convolution algebra of a proper Lie groupoid
by introducing a convolution sheaf over the space of orbits. We develop a localization result for the
associated Hochschild homology sheaf, and we prove that the Hochschild homology sheaf at each
stalk is quasi-isomorphic to the stalk at the origin of the Hochschild homology of the convolution
algebra of its linearization, which is the transformation groupoid of a linear action of a compact
isotropy group on a vector space. We then explain Brylinski’s ansatz to compute the Hochschild
homology of the transformation groupoid of a compact group action on a manifold. We verify
Brylinski’s conjecture for the case of smooth circle actions that the Hochschild homology is given
by basic relative forms on the associated inertia space.

1. Introduction
LetM be a smooth manifold and C1.M/ the algebra of smooth functions onM . Connes’
version [11] of the seminal Hochschild–Kostant–Rosenberg theorem [26] states that the
Hochschild homology of C1.M/ is isomorphic to the graded vector space of differential
forms on M . In this paper, we aim to establish tools for a general Hochschild–Kostant–
Rosenberg-type theorem for proper Lie groupoids.

Recall that a Lie groupoid G�M is proper if the map G!M �M , g 7! .s.g/; t.g//

is a proper map, where s.g/ and t .g/ are the source and target of g 2 G. When the source
and target maps are both local diffeomorphisms, the groupoid G � M is called étale.
Through the efforts of many authors, notably [6, 9, 11–13, 20, 43, 49], the Hochschild and
cyclic homology theory of étale Lie groupoids has been unveiled. The Hochschild and
cyclic homology of a proper étale Lie groupoid was explicitly computed by Brylinksi
and Nistor [9], and later extended and refined by Crainic [13] and Ponge [43] for general
étale groupoids. Let us explain this result in the case of a finite group action on a smooth
manifold using the transformation groupoid � ËM � M , where a finite group � acts on
the manifold M .

The groupoid convolution algebra associated to the transformation groupoid � ËM �
M is the crossed product algebra C1.M/ Ì � which consists of C1.M/-valued func-
tions on � equipped with the convolution product, e.g. for f; g 2 C1.M/ Ì � ,

f � g.
/ D
X

˛ˇD


ˇ�
�
f .˛/

�
� g.ˇ/:
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The algebra C1.M/ Ì � is naturally a Fréchet algebra. The Hochschild homology of the
algebra C1.M/Ì � as a bornological algebra is given by the following formula the proof
of which is recalled in Corollary B.8:

HH�

�
C1.M/ Ì �

�
Š

�M

2�

��.M 
 /
��

;

where M 
 is the 
 -fixed point submanifold and � acts on the disjoint union
`


2� M



by 
 0.
; x/ D .
 0
.
 0/�1; 
 0x/. Recall that the so-called loop space ƒ0.�; M/ of the
transformation groupoid � ËM � M is defined as

ƒ0.�;M/ WD
a

2�

M 
 ;

equipped with the same action of � as above. In other words, the Hochschild homology
of C1.M/ Ì � is the space of differential forms on the quotient ƒ0.�;M/=� , which is
called the associated inertia orbifold. We would like to remark that, just as the classical
Hochschild–Kostant–Rosenberg theorem, the above identification can be realized as an
isomorphism of sheaves over the quotientM=� . This makes Hochschild and cylic homol-
ogy of C1.M/ Ì � the right object to work with in the study of orbifold index theory;
see e.g. [38].

Our goal in this project is to extend the study of Hochschild homology of proper étale
groupoids to general proper Lie groupoids, which are natural generalizations of transfor-
mation groupoids for proper Lie group actions. The key new challenge from the study
of (proper) étale groupoids is that orbits of a general proper Lie groupoid have different
dimensions. This turns the orbit space of a proper Lie groupoid into a stratified space with
a significantly more complicated singularity structure than an orbifold.

Our main result is to introduce a sheaf HH� on the orbit space X WDM=G of a proper
Lie groupoid G�M , whose space of global sections computes the Hochschild homology
of the convolution algebra of G. To achieve this, we start with introducing a sheaf A

of convolution algebras on the orbit space X in Definition 2.1. Using the localization
method from [4] we introduce the Hochschild homology sheaf HH�.A/ for A as a sheaf
of bornological algebras overX . Moreover, we prove the following sheafification theorem
for the Hochschild homology of the convolution algebra A of the groupoid G.

Theorem 3.3. Let A be the convolution sheaf of a proper Lie groupoid G. Then the natural
map in Hochschild homology

HH�

�
A.X/

�
! HH�.A/.X/ D �

�
X;HH�.A/

�
is an isomorphism.

To determine the homology sheaf HH�.A/, we study its stalk at an orbit O 2 X .
Using the linearization result of proper Lie groupoid developed by Weinstein and Zung
(cf. [15,16,39,51,53]), we obtain a linear model of the stalk HH�;O.A/ in Proposition 4.5
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as a linear compact group action on a vector space. This result leads us to focus on the
Hochschild homology of the convolution algebra C1.M/ Ì G associated to a compact
Lie group action on a smooth manifold M in the second part of this article.

The Hochschild homology of compact Lie group actions was studied by several au-
thors, e.g. [3, 7, 8]. Brylinski [7, 8] proposed a geometric model of basic relative forms
along the idea of the Grauert–Grothendieck forms to compute the Hochschild homology.
However, a major part of the proof is missing in [7, 8]. We decided to turn this result into
the main conjecture of this paper in Section 6.

Conjecture 6.7. The Hochschild homology of the crossed product algebra C1.M/ Ì G
associated to a compact Lie group action on a smooth manifold M is isomorphic to the
space of basic relative forms on the loop space

ƒ0.G ËM/ D
®
.g; p/ 2 G �M j gp D p

¯
:

Block and Getzler [3] introduced an interesting Cartan model for the cyclic homology
of the crossed product algebra C1.M/ Ì G. However, the Block–Getzler model is not a
sheaf on the orbit space M=G, but a sheaf on the space of conjugacy classes of G. This
makes it impossible to localize the sheaf to an orbit of the group action in the orbit space.
It is worth pointing out that the truncation of the Block–Getzler Cartan model at E1-page
provides a complex to compute the Hochschild homology of C1.M/ Ì G. However,
the differential � introduced in [3, Section 1] is nontrivial, and makes it challenging to
explicitly identify the Hochschild homology of C1.M/ÌG as the space of basic relative
forms. We refer the reader to Remark 5.3 for a more detailed discussion about the Block–
Getzler model.

In the last part of this paper, we prove Conjecture 6.7 in the case where the group G
is S1; see Proposition 7.9. Our proof relies on a careful study of the stratification of the
loop space ƒ0.S1 Ë M/ � S1 �M . The crucial property we use in our computation
is that at its singular point, ƒ0.S1 Ë M/ locally looks like the union of the hyperplane
¹x0 D 0º and the line ¹x1 D � � � D xn D 0º in RnC1, which are transverse to each other.
The loop space ƒ0.G ËM/ for a general G-manifold M is much more complicated to
describe. This has stopped us from extending our result for S1-actions to more general
compact group actions. It is foreseeable that some combinatorial structures describing the
stratifications of the loop spaces and real algebraic geometry tools characterizing basic
relative forms on the loop spaces are needed to solve Conjecture 6.7 in full generality. We
plan to come back to this problem in the near future.

As mentioned above, the Hochschild and cyclic homologies of the convolution alge-
bra of a proper Lie groupoid are closely related to groupoid index theory; see e.g. [38,
40]. We expect that the study of the Hochschild homology and the generalized Connes–
Hochschild–Kostant–Rosenberg theorem in this paper will lead to the correct definition
of basic relative forms for proper Lie groupoids and to a geometric description of their
(periodic) cyclic homology. We hope that eventually this will open up a path to establish
a general index theorem for proper Lie groupoids.
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2. The convolution sheaf of a proper Lie groupoid

Throughout this paper, G�M denotes a Lie groupoid over a base manifoldM . Elements
ofM are called points of the groupoid; those of G are its arrows. The symbols s; t W G!M

denote the source and target map, respectively, and u WM ! G the unit map. By definition
of a Lie groupoid, s and t are assumed to be smooth submersions. This implies that the
space of k-tuples of composable arrows

Gk WD
®
.g1; : : : ; gk/ 2 Gk

j s.gi / D t .giC1/ for i D 1; : : : ; k � 1
¯

is a regular submanifold of Gk , and multiplication of arrows

m W G2 ! G; .g1; g2/ 7! g1g2

is a smooth map.
If g 2 G is an arrow with s.g/D x and t .g/D y, we denote such an arrow sometimes

by g W y  x, and write G.y; x/ for the space of arrows with source x and target y. The
s-fiber over x, i.e., the manifold s�1.x/, is denoted by G.�; x/, the t -fiber over y by
G.y;�/. Note that for each object x 2 M multiplication of arrows induces on G.x; x/ a
group structure. This group is called the isotropy group of x and is denoted by Gx . The
union of all isotropy groups

ƒ0G WD
[

x2M

Gx D
®
g 2 G j s.g/ D t .g/

¯
is called the loop space of G.

Given a Lie groupoid G � M , two points x; y 2 M are said to lie in the same orbit
if there is an arrow g W y  x. In the following, we will always write Ox for the orbit
containing x, and M=G for the space of orbits of the groupoid G. We assume further that
the orbit space always carries the quotient topology with respect to the canonical map
� WM !M=G. Note that M=G need not be Hausdorff unless G is a proper Lie groupoid,
which means that the map .s; t/ W G!M �M is a proper map.

Sometimes, we need to specify to which groupoid a particular structure map be-
longs to. In such a situation we will write sG, mG, �G, and so on.

In the following, we will define a sheaf of algebras A on M=G in such a way that the
algebra Ac.M=G/ of compactly supported global sections of A coincides with the smooth
convolution algebra of the groupoid. To this end, we use a smooth left Haar system on G.

Recall that by a smooth left Haar system on G we understand a family of measures
.�x/x2M such that the following properties hold true.

(H1) For every x 2 G0, �x is a positive measure on G.x;�/ with supp�x D G.x;�/.

(H2) For every g 2 G, the family .�x/x2M is invariant under left multiplication

Lg W G
�
s.g/;�

�
! G

�
t .g/;�

�
; h 7! gh
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or in other wordsZ
G.s.g/;�/

u.gh/ d�s.g/.h/ D

Z
G.t.g/;�/

u.h/ d�t.g/.h/ for all u 2 C1
c .G/:

(H3) The system is smooth in the sense that for every u 2 C1
c .G/ the map

M ! C; x 7!

Z
G.x;�/

u.h/ d�x.h/

is smooth.

Let us fix a smooth left Haar system .�x/x2M on G. Given an open set U �M=G, we first
put

U0 WD �
�1.U /; U1 WD s

�1.U0/� G1; and UkC1 WD

k\
iD1

��1
i .Uk/� GkC1 (2.1)

for all k 2 N�, where �i W GkC1 ! Gk , .g1; : : : ; gkC1/ 7! .g1; : : : ; gigiC1; : : : ; gkC1/.
Then we define

A.U / WD
®
f 2 C1.U1/ j suppf is longitudinally compact

¯
: (2.2)

Hereby, a subset K � G is called longitudinally compact if for every compact subset
C �M=G the intersectionK \ s�1��1.C / is compact. Obviously, every A.U / is a linear
space, and the map which assigns to an open U �M=G the space A.U / forms a sheaf on
M=G which in the following is denoted by A or by AG if we want to emphasize the under-
lying groupoid. The section space A.U / over U � M=G open becomes an associative
algebra with the convolution product

f1 � f2.g/ WD

Z
G.t.g/;�/

f1.h/f2.h
�1g/ d�t.g/.h/; f1; f2 2 A.U /; g 2 G: (2.3)

The convolution product is compatible with the restriction maps, hence A becomes a sheaf
of algebras on M=G.

Let us assume from now on that the groupoid G is proper. Recall from [39] that then
the orbit space M=G carries the structure of a differentiable stratified space in a canonical
way. The structure sheaf C1

M=G coincides with the sheaf of continuous functions ' WU !R
with U �M=G open such that ' ı � 2 C1.U1/. Now observe that the action

C1
M=G.U / �A.U /! A.U /; .'; f / 7! 'f WD

�
U1 3 g 7! '

�
�s.g/

�
f .g/ 2 R

�
commutes with the convolution product, and turns A into a C1

M=G-module sheaf.

Proposition and Definition 2.1. Given a proper Lie groupoid G � M , the associated
sheaf A is a fine sheaf of algebras over the orbit space M=G which in addition carries
the structure of a C1

M=G-module sheaf. The space Ac.M=G/ of global sections of A with
compact support coincides with the smooth convolution algebra of G. We call A the con-
volution sheaf of G.
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For later purposes, we equip the spaces A.U / with a locally convex topology and a
convex vector bornology. To this end, observe first that for every longitudinally compact
subset K � U1 the space

A.M=GIK/ WD
®
f 2 C1.G/ j suppf � K

¯
inherits from C1.G/ the structure of a Fréchet space. Moreover, since C1.G/ is nuclear,
A.M=GIK/ has to be nuclear as well by [48, Proposition 50.1]. By separability of U
there exists a (countable) exhaustion of U1 by longitudinally compact sets, i.e., a family
.Kn/n2N of a longitudinally compact subset of U1 such that Kn � K

ı
nC1 for all n 2 N,

and such that
S

n2N Kn D U1. The space A.U / can then be identified with the induc-
tive limit of the strict inductive system of nuclear Fréchet spaces .A.M=GIKn//n2N .
It is straightforward to check that the resulting inductive limit topology on A.U / does
not depend on the particular choice of the exhaustion .Kn/n2N . Thus, A.U / becomes a
nuclear LF-space, where nuclearity follows from [48, Proposition 50.1]. As an LF-space,
A.U / carries a natural bornology given by the von Neumann bounded sets, i.e., by the
sets S � A.U / which are absorbed by each neighborhood of 0. In other words, a subset
S � A.U / is bounded if all f 2 S are supported in a fixed longitudinally compact sub-
set K � U1, and if the set of functions D.S/ is uniformly bounded for every compactly
supported differential operator D on U1.

Remark 2.2. (1) We refer to Appendix B and [27] for basic definitions and fundamentals
on bornological vector spaces. Bornological tensor products and their completions are
defined in Appendix B and [32].

(2) In this paper, we always assume the bornologies to be convex vector bornolo-
gies. We also often make use of the fact that for two nuclear LF-spaces V1 and V2 their
completed bornological tensor product V1 y̋ V2 naturally coincides (up to natural equiva-
lence) with the completed inductive tensor product V1 y̋ � V2 endowed with the bornology
of von Neumann bounded sets. Moreover, V1 y̋ � V2 is again a nuclear LF-space. We refer
to [32, Section A.1.4] for a proof of these propositions. Note that for Fréchet spaces the
projective and inductive topological tensor product coincide.

(3) For LF-spaces like the convolution algebras, we consider here that the projective
and inductive topological tensor products do in general not coincide. The bornological
point of view therefore is not only particularly convenient but even crucial when consid-
ering tensor products of such spaces, since the (completed) bornological tensor product is
the natural distinguished tensor product which needs to be used when the projective topo-
logical tensor product fails to work and since it has all the necessary properties needed in
cyclic homology theory; see [32] for details.

For our purposes, the following observation is fundamental.

Proposition 2.3. Let G � M and H � N be proper Lie groupoids. Denote by M=G and
N=H their respective orbit spaces. Then M=G �N=H is diffeomorphic as a differentiable
stratified space to the orbit space of the product groupoid G � H � M � N . Moreover,



On the Hochschild homology of proper Lie groupoids 107

there is a natural isomorphism between the completed bornological tensor product of the
convolution algebras over G and H and the convolution algebra of the product groupoid
G � H. More precisely, for every pair of open sets U � M=G and V � N=H, there is a
natural isomorphism

AG.U / y̋ AH.V / Š AG�H.U � V /; (2.4)

where y̋ denotes the completed bornological tensor product.

Proof. The first claim is a consequence of the fact that two elements .x; y/; .x0; y0/ 2

M � N lie in the same .G � H/-orbit if and only if x and x0 lie in the same G-orbit and
y and y0 lie in the same H-orbit. Let us prove the second claim. Let .Kn/n2N be an
exhaustion of U1 WD s�1

G ��1
G .U / by longitudinally compact subsets and .Lm/m2N an

exhaustion of V1 WD s
�1
H ��1

H .V / by such sets. Since AG.U / coincides with the inductive
limit colimn2N AG.M=GIKn/ and AH.V / with colimm2N AH.N=HILm/, Corollary 2.30
in [32] entails that

AG.U / y̋ AH.V / Š colim
n2N

AG.M=GIKn/ y̋ AH.N=HILn/: (2.5)

Now observe that AG.M=GIKn/ y̋ AH.N=HILm/ Š AG�H.M=G � N=HIKn � Lm/ by
[48, Proposition 51.6], and that .Kn � Ln/n2N is an exhaustion of U � V by longitudi-
nally compact subsets. Together with equation (2.5) this proves the claim.

3. Localization of the Hochschild chain complex

In this section, we apply the localization method in Hochschild homology theory, partially
following [4], to the Hochschild chain complex of the convolution algebra.

3.1. Sheaves of bornological algebras over a differentiable space

We start with a (reduced separated second countable) differentiable space .X;C1/ and
assume that A is a sheaf of R-algebras on X . We will denote by A D A.X/ its space of
global sections. We assume further that A is a C1

X -module sheaf and that every section
space A.U / with U � X open carries the structure of a nuclear LF-space such that each
of the restriction maps A.U /! A.V / is continuous for every open subset V of U , and
multiplication in A.U / is separately continuous. Finally, it is assumed that the action
C1.U / �A.U /! A.U / is continuous.

As a consequence of our assumptions, each of the spaces A.U / carries a natural
bornology, namely the one consisting of all von Neumann bounded subsets, i.e., of all
subsetsB �A.U /which are absorbed by every neighborhood of the origin. Moreover, by
[33, Lemma 1.30], separate continuity of multiplication in A.U / entails that the product
map is a jointly bounded map, hence induces a bounded map A.U / y̋ A.U /! A.U /

on the completed bornological tensor product of A.U / with itself. We therefore call a
sheaf of algebras A defined over the differentiable space .X; C1

X / such that the above
assumptions are fulfilled a sheaf of bornological algebras over X .



108 M. J. Pflaum, H. Posthuma, and X. Tang

Definition 3.1. A sheaf of bornological algebras A over the differentiable space .X;C1
X /

is called

(i) a sheaf of unital bornological algebras or just unital if all section spaces A.U /

are unital algebras and the restriction maps A.U /! A.V / are unital homo-
morphisms, and

(ii) a sheaf of H-unital bornological algebras or briefly H-unital if every section
space A.U / is an H-unital algebra that is if the Bar complex of A.U / is acyclic.

Example 3.2. (1) The structure sheaf C1
X of a differentiable space .X;C1

X / is an example
of a sheaf of unital bornological algebras over .X;C1

X /.
(2) Given a proper Lie groupoid G, the convolution sheaf A is a sheaf of H-unital

bornological algebras over the orbit space .X;C1
X / of the groupoid. This follows by con-

struction of A and [14, Proposition 2], which entails H-unitality of each of the section
spaces A.U /.

3.2. The Hochschild homology sheaf

Assume that A is a sheaf of bornological algebras over the differentiable space .X;C1
X /.

We will construct the Hochschild homology sheaf HH�.A/ associated to A as a general-
ization of Hochschild homology for algebras; see [30] for the latter and Appendix B for
basic definitions and notation used.

For each k 2N�, let Ck.A/ denote the presheaf onX which assigns to an openU �X
the .kC 1/-fold completed bornological tensor product A.U /

y̋ .kC1/. Note that in general,
Ck.A/ is not a sheaf. We denote by yCk.A/ the sheafification of Ck.A/. Observe that for
V � U � X open the Hochschild boundary

b W Ck.A/.U /! Ck�1.A/.U /

commutes with the restriction maps

rU
V W Ck.A/.U /! Ck.A/.V /;

hence we obtain a complex of presheaves .C�.A/; b/ and by the universal property of the
sheafification a sheaf complex .yC�.A/; b/. The Hochschild homology sheaf HH�.A/ is
now defined as the homology sheaf of .yC�.A/; b/ that means

HHk.A/ WD ker
�
b W yCk.A/! yCk�1.A/

�
= im

�
b W yCkC1.A/! yCk.A/

�
:

By construction, the stalk HHk.A/O, O 2X coincides with the k-th Hochschild homology
HHk.AO/ of the stalk AO. On the other hand, HHk.A.X// need in general not coincide
with the space HHk.A/.X/ of global sections of the k-th Hochschild homology sheaf.
The main goal of this section is to prove the following result which is crucial for our study
of the Hochschild homology of the convolution algebra of a proper Lie groupoid, but also
might be interesting by its own. Its proof will cover the remainder of this section.
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Theorem 3.3. Let A be the convolution sheaf of a proper Lie groupoid G. Then the natural
map in Hochschild homology

HH�

�
A.X/

�
! HH�.A/.X/ D �

�
X;HH�.A/

�
is an isomorphism.

Before we can spell out the proof we need several auxiliary tools and results.

3.3. The localization homotopies

Throughout this paragraph, we assume that A.X/ is an admissible sheaf of bornological
algebras over the differentiable space .X;C1

X /.
To construct the localization morphisms, observe that the complexC�.A/ inherits from

A D A.X/ the structure of a C1.X/-module. More precisely, the corresponding action
is given by

C1.X/ � Ck.A/! Ck.A/;

.'; a0 ˝ � � � ˝ ak/ 7! .'a0/˝ a1 ˝ � � � ˝ ak :
(3.1)

It is immediate from its definition that the C1.X/-action commutes with the operators b
and b0 and hence induces a chain map C1.X/ � C�.A/! C�.A/. In a similar fashion,
we define an action of C1.XkC1/ Š .C1.X//

y̋ .kC1/ on Ck.A/ by

.'0 ˝ � � � ˝ 'k ; a0 ˝ � � � ˝ ak/ 7! .'0a0/˝ � � � ˝ .'kak/: (3.2)

This allows us to speak of the support of a chain c 2 Ck.A/. It is defined as the comple-
ment of the largest open subset U in XkC1 such that ' � c D 0 for all ' 2 C1.X/ with
supp' � U .

Next choose a metric d W X � X ! R such that the function d2 lies in C1.X � X/.
Such a metric exists by Corollary A.4. Then fix a smooth function % W R! Œ0; 1� which
has support in .�1; 3

4
� and satisfies %.r/ D 1 for r � 1

2
. For " > 0, we denote by %" the

rescaled function r 7! %. s
"2 /. Now define functions ‰k;i;" 2 C1.XkC1/ for k 2 N and

i D 0; : : : ; k by

‰k;i;".x0; : : : ; xk/ D

i�1Y
jD0

%"

�
d2.xj ; xjC1/

�
; (3.3)

where x0; : : : ; xk 2 X and xkC1 WD x0. Moreover, put ‰k;" WD ‰k;kC1;". Using the
C1.XkC1/-action on Ck.A/, we obtain for each " > 0 a graded map of degree 0

‰" W C�.A/! C�.A/; Ck.A/ 3 c 7! ‰k;"c:

We immediately check that ‰" commutes with the face maps bi and the cyclic operator
tk . Hence, ‰" is a chain map. We even have more.

Lemma 3.4. Let A be a sheaf of H-unital bornological algebras over the differentiable
space .X;C1/, and put A WD A.X/. Let d be a metric on X such that d2 is smooth and
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fix a smooth map % W R! Œ0; 1� with support in .�1; 3
4
� such that %j.1; 1

2 � D 1. Then, for
each " > 0, the chain map‰" W C�.A/! C�.A/ is homotopic to the identity morphism on
C�.A/.

Proof. Let us first consider the case, where A is a sheaf of unital algebras. The Hochschild
chain complex then is a simplicial module with face maps bi and the degeneracy maps

sk;i W Ck.A/! CkC1.A/; a0 ˝ � � � ˝ ak 7! a0 ˝ � � � ˝ ai ˝ 1˝ aiC1 ˝ � � � ˝ ak ;

where k 2 N, i D 0; : : : ; k. Define C1.X/-module maps �k;i;" W Ck.A/! CkC1.A/ for
k 2 N, i D 1; : : : ; k C 2 and " > 0 by

�k;i;".c/ WD

´
‰kC1;i;" � .sk;i�1c/ for i � k C 1;

0 for i D k C 2:
(3.4)

Moreover, put C�1.A/ WD ¹0º and let ��1;1;" W C�1.A/! C0.A/ be the 0-map. For k � 1
and i D 2; : : : ; k, we then compute

.b�k;i;" C �k�1;i;"b/c D .�1/
i�1‰k;i�1;"c C‰k;i�1;"

i�2X
jD0

.�1/j sk�1;i�2bk;j c

C .�1/i‰k;i;"c C‰k;i;"

i�1X
jD0

.�1/j sk�1;i�1bk;j c:

For the case i D 1, we obtain

.b�k;1;" C �k�1;1;"b/c D c �‰k;1;"c C‰k;1;"sk�1;0bk;0c;

and for i D k C 1

.b�k;kC1;" C �k�1;kC1;"b/c

D ‰k;k;".�1/
kc C‰k;k;"

k�1X
jD0

.�1/j sk�1;k�1bk;j c C .�1/
kC1‰k;"c:

Finally, we check for k D 0 and i D 1

.b�0;1;" C ��1;1;"b/c D b�0;1;"c D 0:

These formulas immediately entail that the maps

Hk;" D

kC1X
iD1

.�1/iC1�k;i;" W Ck.A/! CkC1.A/

form a homotopy between the identity and the localization morphism ‰". More precisely,

.bHk;" CHk�1;"b/c D c �‰"c for all k 2 N and c 2 Ck.A/: (3.5)

This finishes the proof of the claim in the unital case.
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Now let us consider the general case, where A is assumed to be a sheaf of H-unital
but not necessarily unital algebras. Consider the direct sum of sheaves A˚ C1

X , denote
it by zA, and put zA WD zA.X/. We turn zA into a sheaf of unital bornological algebras by
defining the product of .f1; h1/; .f2; h2/ 2 zA.U / as

.f1; h1/ � .f2; h2/ WD .h1f1 C h2f1 C f1f2; h1h2/: (3.6)

We obtain a split short exact sequence in the category of bornological algebras

0 // A // zA
q

// C1.X/
i

oo
// 0:

This gives rise to a diagram of chain complexes and chain maps

0 // ker� q�
� � //

�

��

C�. zA/
q� // C�

�
C1.X/

�
i�

oo
// 0

C�.A/;

�

OO

(3.7)

where the row is split exact, and � denotes the canonical embedding. Since A is H-unital,
� is a quasi-isomorphism. Because the chain complexes ker� q� and C�.A/ are bounded
from below, there exists a chain map � which is left inverse to �. Note that the components
�k need not be bounded maps between bornological spaces. By construction, ‰" acts on
each of the chain complexes within the diagram, and all chain maps (besides possibly �)
commute with this action. By the first part of the proof we have an algebraic homotopy
H W C�. zA/! C�C1. zA/ such that

id�‰" D bH CHb:

DefineF WC�.A/!C�C1.A/ byF WD �.id�i�q�/H�. Note thatF is well defined indeed,
since q�.id�i�q�/ D 0. Now compute for c 2 Ck.A/

.bF C Fb/c D �.id�i�q�/.bH CHb/�c D �.id�i�q�/.�c �‰"�c/ D c �‰"c:

Hence F is a homotopy between the identity and ‰" and the claim is proved.

Lemma 3.5. Let A be a sheaf of H-unital bornological algebras over the differentiable
space .X;C1/, put A WD A.X/, and let the metric d and the cut-off function % as in the
preceding lemma. Assume that .'l /l2N is a smooth locally finite partition of unity and
that ."l /l2N is a sequence of positive real numbers. Then

‰ W C�.A/! C�.A/; Ck.A/ 3 c 7!
X
l2N

'l‰"l
c (3.8)

is a chain map and there exists a homotopy between the identity on C�.A/ and ‰.
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Proof. Recall that the action of C1.X/ commutes with the Hochschild boundary and that
each ‰"l

is a chain map. Since .'l /l2N is a locally finite smooth partition of unity,‰ then
has to be a chain map by construction.

Now assume that A is a sheaf of unital algebras. Let H�;"l
W C�.A/! C�C1 be the

homotopy from the preceding lemma which fulfills equation (3.5) with " D "l . For all
k 2 N, let Hk be the map

Hk W Ck.A/! CkC1.A/; c 7!
X
l2N

Hk;"l
'lc:

Then

.bHk CHk�1b/cD
X
li2N

.'lc �‰"l
'lc/D c �‰c for all k 2N and c 2Ck.A/: (3.9)

Hence H is a homotopy between the identity and ‰ which proves the claim in the unital
case.

In the non-unital case, define the unitalizations zA and zA as before and let q�, i�, �, �
denote the chain maps as in diagram (3.7). Let H W C�. zA/! C�C1. zA/ be the algebraic
homotopy constructed for the unital case. In particular, this means that

id�‰ D bH CHb:

Defining F W C�.A/! C�C1.A/ by F WD �.id�i�q�/H� then gives a homotopy between
the identity on C�.A/ and ‰.

Lemma 3.6. Let A be a sheaf of H-unital bornological algebras over the differentiable
space .X;C1/, put A WD A.X/, and let c 2 Ck.A/ be a Hochschild cycle. If the support
of c does not meet the diagonal, then c is a Hochschild boundary.

Proof. Assume that the support of the Hochschild cycle c does not meet the diagonal
and let U D XkC1 n supp c. Then U is an open neighborhood of the diagonal. By Corol-
lary A.4, there exists a complete metric d W X � X ! R such that d2 2 C1.X � X/.
Choose a compact exhaustion .Kn/n2N of X which means that each Kn is compact,

Kn � K
ı
nC1 for all n 2 N and

[
n2N

Kn D X:

For each n 2 N, there then exists a "n > 0 such that all .x0; : : : ; xk/ 2 K
kC1
n are in U

whenever d.xj ; xjC1/ < "n for j D 0; : : : ; k and xkC1 WD x0. Choose a locally finite
smooth partition of unity .'l /l2N subordinate to the open covering .Kı

n/n2N and let ‰ W
C�.A/! C�.A/ be the associated chain map defined by (3.8). According to Lemma 3.5,
there then exists a chain homotopy H between the identity on C�.A/ and ‰. Since the
support of c does not meet U , we obtain

c D c �‰"c D bH.c/;

so c is a Hochschild boundary indeed.
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Proposition 3.7. Consider a proper Lie groupoid with orbit space X and convolution
sheaf A. LetADA.X/ and let yC�.A/ be the sheaf complex of Hochschild chains. Denote
for each O 2 X and each chain c 2 C�.A.U // defined on a neighborhood U � X of O by
Œc�O the germ of c at O that is the image of c in the stalk yC�;O.A/DcolimV 2N .O/C�.A.V //,
where N .O/ denotes the filter basis of open neighborhoods of O. Then the chain map

� W C�.A/! �
�
X; yC�.A/

�
; c 7!

�
Œc�O

�
O2X

is a quasi-isomorphism.

Proof. Consider a section s 2 �.X; yCk.A//. Then there exists a (countable) open covering
.Ui /i2I of the orbit space X and a family .ci /i2I of k-chains ci 2 Ck.A.Ui // such that
Œci �O D s.O/ for all i 2 I and O 2 Ui . After possibly passing to a finer (still countable)
and locally finite covering, we can assume that there exists a partition of unity .'i /i2I

by functions 'i 2 C1.X/ such that supp 'i b Ui for all i 2 I . If s is a cycle, then we
can achieve after possible passing to an even finer locally finite covering that each ci is a
Hochschild cycle as well. Choose a metric d W X �X ! R such that d2 2 C1.X �X/.
For each i , there then exists "i > 0 such that the space of all O 2 X with d.O; supp 'i / �

.k C 1/"i is a compact subset of Ui . The chain ‰"i
.'ici / then has compact support in

U kC1
i . Extend it by 0 to a smooth function on XkC1 and denote the thus obtained k-chain

also by ‰"i
.'ici /. Now put

c WD
X
i2I

‰"i
.'ici /: (3.10)

Then c 2 Ck.A/ is well defined since the sum in the definition of c is locally finite. For
every O 2 X now choose an open neighborhood WO meeting only finitely many of the
elements of the covering .Ui /i2I . Denote by IO the set of indices i 2 I such that Ui \

WO¤;. Then each IO is finite. Next letHi WC�.A.Ui //!C�C1.A.Ui // be the homotopy
operator constructed in the proof of Lemma 3.4 such that

bHi CHib D id�‰"i
:

Let ei D Hi .'ici / for i 2 IO and put eO D
P

i2IO
ei jW kC2

O
. Then eO 2 CkC1.A.WO//.

Now compute for Q 2 WO

s.Q/ � Œc�Q D
X
i2IO

Œ'ici �.Q/ �
�
‰"i

.'ici /
�
Q
D

X
i2IO

Œbei �Q C
�
Hi .'ibci /

�
Q

D ŒbeO�Q C
X
i2IO

�
Hi .'ibci /

�
Q
:

Hence we obtain, whenever s is a cycle,

s.Q/ � Œc�Q D ŒbeO�Q for all O 2 X; Q 2 WO:

This means that s and �.c/ define the same homology class. So the induced morphism
between homologiesH�� WHH�.A/!H�.�.X; yC�.A/// is surjective. It remains to show
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that H�� is injective. To this end assume that e 2 Ck.A/ is a cycle such that H��.e/ D 0.
Then �.e/ D bs for some s 2 �.X; yCkC1.A//. As before, associate to s a sufficiently fine
locally finite open cover .Ui /i2I together with a subordinate smooth partition of unity
.'i /i2I and ci 2 CkC1.A.Ui // such that Œci �O D s.O/ for all O 2 Ui . Let WO and IO also
be as above. Define c 2 CkC1.A/ by equation (3.10). Now compute for Q 2 WO

Œbc � e�Q D
X
i2IO

�
b‰"i

.'ici /
�
Q
� Œ'ie�Q D

X
i2IO

�
‰"i

.'ibci /
�
Q
� Œ'ie�Q

D

X
i2IO

Œ'ibci �Q � Œ'ie�Q D
X
i2IO

.'ibs/.Q/ � .'ibs/.Q/ D 0:

Therefore, bc � e 2 Ck.A/ is a k-cycle such that its support does not meet the diagonal.
By Lemma 3.6, bc � e is a boundary which means that the homology of e is trivial. Hence
H�� is an isomorphism.

Now we have all the tools to verify our main localization result.

Proof of Theorem 3.3. First note that we can regard every chain complex of sheaves D� as
a cochain complex of sheaves under the duality Dn WD D�n for all integers n. We there-
fore have the hypercohomology Hn.X;D�/ WDH�n.X;D�/ (see [50, Appendix]), where
the case of cochain complexes of sheaves not necessarily bounded below as we have it
here is considered. Observe that .yC�.A/; b/ and .HH�.A/; 0/ are quasi-isomorphic sheaf
complexes, hence their hypercohomologies coincide. Recall that for a cochain complex of
fine sheaves D�

Hn.X;D�/ D Hn
�
�.X;D�/

�
:

Since both yC�.A/ and HH�.A/ are complexes of fine sheaves, these observations together
with Proposition 3.7 now entail for natural n that

HHn

�
A.X/

�
D Hn

�
�
�
X; yC�.A/

��
D Hn

�
X; yC�.A/

�
D Hn

�
X;HH�.A/

�
D Hn

�
�.X;HH�/

�
D �

�
X;HHn.A/

�
:

This is the claim.

4. Computation at a stalk

Recall that G�M is a proper Lie groupoid,X is its orbit space, and AG is the convolution
sheaf of G (Definition 2.1). Given an orbit O 2X of G, we introduce in this section a linear
model of the groupoid around the stalk and use it in Proposition 4.5 to construct a quasi-
isomorphism between the stalk complex yC�;O.AG/ and the corresponding of the linear
model. We divide the construction into two steps.
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4.1. Reduction to the linear model

Let us recall the linearization result for the groupoid G around an orbit O. LetNO!O be
the normal bundle of the closed submanifold O inM , and let GjO �O be the restriction of
the groupoid G to O. GjO acts on NO canonically. And we use GjO ËNO � NO to denote
the associated transformation groupoid. As in Definition 2.1, let ANO be the sheaf of
convolution algebras on XNO D NO=GjO, with the orbit space associated to the groupoid
GjO Ë NO. Accordingly, we can consider the presheaf of chain complexes C�.ANO/ and
the associated sheaf complex yC�.ANO/ as in Proposition 3.7. In what follows, we will
explain how to identify the stalk yC�;O.AG/ with the linearized model yC�;O.ANO/, which
is the stalk of the sheaf yC�.ANO/ at the zero section of NO.

The main tool to identify the above two stalks are the linearization results for proper
Lie groupoids of Weinstein [51] and Zung [53] (see also [15, 16, 39]). The particular
approach we take below is from [39]. Fix a transversely invariant Riemannian metric g
onM . Given a function ı WO!R>0, let T ı

O;NO
be the ı-neighborhood of the zero section

in NO. According to [39, Theorem 4.1], there exists a continuous map ı W O! R>0 such
that the exponential map

exp
jT ı

O;NO
W T ı

O;NO ! T ı
O WD exp.T ı

O;NO/ �M

is a diffeomorphism. Furthermore, the exponential map exp
jT ı

O;NO
lifts to an isomorphism

‚ of the following groupoids

‚ W .GjO ËNO/
jT ı

O;NO
! G

jT ı
O
: (4.1)

Lemma 4.1. For each orbit O � M , the pullback map ‚� defines a quasi-isomorphism
‚�;O from the stalk complex yC�;O.AG/ to the stalk complex yC�;O.ANO/.

Proof. We explain how‚�;O is defined on yC�;O.AG/. Let Œf0˝ � � � ˝ fk � 2 yCk;O.AG/ be a
germ of a k-chain atO 2X . Let U be a neighborhood ofO inX such that f0˝ � � � ˝ fk is
a section of Ck.A.U // which is mapped to Œf0 ˝ � � � ˝ fk � in the stalk complex yC�;O.AG/

under the canonical map � from Proposition 3.7. By (2.2), the support of each of the maps
f0; : : : ; fk is longitudinally compact. In particular,

supp.fi / \ s
�1.O/ .i D 0; : : : ; k/

is compact. Therefore,

s
�

supp.fi / \ s
�1.O/

�
D t

�
supp.fi / \ s

�1.O/
�

and the union Kf0;:::;fk
WD

Sk
iD0 s.supp.fi / \ s

�1.O// is also compact in O.
Let K be a precompact open subset of O containing Kf0;:::;fk

as a proper subset.
Observe that the closure of K is compact in O. Hence, there is a positive constant " such
that the "-neighborhood T "

K of K is contained inside the ı-neighborhood T ı
O , the range of

the linearization map‚ in (4.1). Applying the homotopy map‰" defined in Lemma 3.4 to
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f0 ˝ � � � ˝ fk , we may assume without loss of generality that the support of f0; : : : ; fn is
contained inside T "

K , and therefore inside the ı-neighborhood T ı
O . Accordingly, the pull-

back function ‚�.f0 ˝ � � � ˝ fk/ is well defined and supported in

.GjO ËNO/j‚�1.T "
K / � � � � � .GjO ËNO/j‚�1.T "

K /:

Let U "
O be the "-neighborhood of O inNO=GjO. By the definition of‚, it is not difficult to

check that ‚�.fi / is supported inside .GjO ÌNO/j‚�1.T "
K / for i D 0; : : : ; k and therefore

‚�.f0˝� � �˝fk/ is a well-defined k-chain in Ck.ANO.U
"
O//. Define‚�;O.Œf0˝� � �˝fk �/

2 yC�;O.ANO/ to be the germ of ‚�.f0 ˝ � � � ˝ fk/ at the point O in the orbit space
XNO D NO=GjO. It is worth pointing out that the construction of ‚�;O.Œf0 ˝ � � � ˝ fk �/

is independent of the choices of the subset K and the constant ". Analogously, using the
inverse map ‚�1, we can construct the inverse morphism .‚�1/�;O from yC�;O.ANO/ to
yC�;O.AG/, and therefore prove that ‚�;O is a quasi-isomorphism. We leave the details to
the diligent reader.

4.2. Computation of the linear model

We compute in this subsection the cohomology of C�.ANO/. Our method is inspired by
the work of Crainic and Moerdijk [14].

To start with, recall that we prove in [39, Corollary 3.11] that for a proper Lie groupoid
G � M , given x 2 M , there is a neighborhood U of x in M diffeomorphic to O � Vx ,
where O is an open ball in the orbit O through x centered at x, and Vx is a Gx – the
isotropy group of G at x – invariant open ball in NxO centered at the origin. Under this
diffeomorphism, GjU is isomorphic to the product of the pair groupoid O �O � O and
the transformation groupoid Gx Ë Vx � Vx . Applying this result to the transformation
groupoid GjO ËNO � NO, we conclude that given any x 2 O, there is an open ball O of
x in O such that the restricted normal bundle Ux WD NOjO is diffeomorphic to NxO �O

and .GjO Ë NO/jUx
is isomorphic to the product of the pair groupoid O � O and the

transformation groupoid Gx ËNxO.
Following the above local description of GjO Ë NO, we choose an open covering

.Ox/x2O of the orbit O, and therefore also a covering .Ux/x2O, Ux WDOx�NxO, of NO.
Furthermore, we choose a locally finite countable subcovering U WD .Oi /i2I of O and the
associated covering .Ui /i2I of NO. Choose 'i 2 C1

c .O/ such that .'2
i /i2I is a partition

of unity subordinate to the open covering .Oi /i2I ofO. Lift 'i 2C1
c .O/ to z'i 2C1.NO/

that is let it be constant along the fiber direction. As 'i is compactly supported, z'i is longi-
tudinally compactly supported and therefore belongs to ANO. Now consider the groupoid
HU over the disjoint union

F
Ui , such that arrows from Ui to Uj are arrows in GjO ËNO

starting from Ui and ending in Uj . Observe that HU inherits the Lie groupoid structure
from the Lie groupoid GjO Ë NO and thus becomes Morita equivalent to GjO Ë NO. As
a consequence of this, the orbit spaces of the groupoids GjO Ë NO and HU are natu-
rally homeomorphic, actually even diffeomorphic in the sense of differentiable spaces.
We therefore identify them.
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The following lemma is essentially due to Crainic and Moerdijk [14].

Lemma 4.2. The map ƒ W A.GjO Ë NO/ WD �.AGjOËNO/! A.HU/ WD �.AHU
/ defined

by
ƒ.f / WD .z'if z'j /i;j

is an algebra homomorphism which induces a quasi-isomorphism ƒ� of complexes of
Hochschild chains from C�.A.GjO ËNO// to C�.A.HU//. In addition,ƒ induces a quasi-
isomorphism of sheaf complexes

ƒ� W
yC�.AGjOË/! yC�.AHU

/

over their joint orbit space NO=GjO Š .HU/0=HU.

Proof. The proof of the claim is a straightforward generalization of the one of [14,
Lemma 5]. The slight difference here is that we work with the algebras A.GjO Ë NO/

and A.HU/ instead of the algebra of compactly supported functions. We skip the proof
here to avoid repetition.

Next, the groupoid HU can be described more explicitly as follows. Firstly, index the
open sets in the covering .Ui /i2I by natural numbers meaning that either I D ¹1; : : : ; N º
or that I coincides with the set of positive integers. Secondly, given i , write x 2 Ui as
.xv; xo/ where xv 2 Nxi

O and xo 2 Oi . Choose a diffeomorphism  i W Oi ! Rk , where
k D dim.O/. Thirdly, for any i 2 I n ¹1º choose an arrow gi 2 G from x1 to xi . The arrow
gi induces an isomorphism between Nx1O and Nxi

O, and conjugation by gi defines an
isomorphism from Gxi

to Gx1 . Accordingly, gi induces a groupoid isomorphism between
Gx1 ËNx1O and Gxi

ËNxi
O.

Lemma 4.3. The groupoid HU is isomorphic to the product groupoid

HU;I WD .Gx1 ËNx1O/ � .I � I / � .R
k
�Rk/:

Proof. We define groupoid morphisms

ˆ W HU ! HU;I and ‰ W HU;I ! HU:

Given an arrow h 2 HU with source in Ui and target in Uj , we consider�
s.h/o; xi

�
2 Oi �Oi and

�
t .h/o; xj

�
2 Oj �Oj :

Define hxi
2 .Gxi

ËNxi
O/� .Oi �Oi / (and hxj

2 .Gxj
ËNxj

O/� .Oi �Oi /) by hxi
D

..id; 0/; .s.h/o; xi // (and hxj
D ..id; 0/; .t.h/o; xj //). The arrow g�1

j h�1
xj
hhxi

gi belongs
to HUjU1

and its component in O1 �O1 is .x1; x1/. The arrow ˆ.h/ now is defined to be

ˆ.h/ WD
�
g�1

j h�1
xj
hhxi

gi ; .i; j /;  
�
s.hij /; t.hij /

��
2 HU;I :

Similarly, given .k; .i; j /; .yi ; yj // 2 HU;I , define

hyi
WD

�
.id; 0/;

�
 �1

i .yi /; xi

��
2 GjUi

; hyj
WD

�
.id; 0/;

�
 �1

j .yj /; xj

��
2 GjUj

;
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and h1 WD .k; .x1; x1// 2 GjU1
. Notice that gjh1g

�1
i is an arrow in HU starting from xi

and ending at xj . We can now define ‰.k; .i; j /; .yi ; yj // to be

‰
�
k; .i; j /; .yi ; yj /

�
WD hyj

gjh1g
�1
i h�1

yi
2 HU:

It is straightforward to check that ˆ and ‰ are groupoid morphisms and inverse to each
other.

Let A.HU;I / be the space of global sections of the convolution sheaf AHU;I
. With the

mapsˆ and ‰ introduced in Lemma 4.3, we have the following induced isomorphisms of
chain complexes:

ˆ� W C�

�
A.HU;I /

�
! C�

�
A.HU/

�
; ‰� W C�

�
A.HU/

�
! C�

�
A.HU;I /

�
:

Since they are induced by an isomorphism of groupoids, we also obtain isomorphisms of
sheaf complexes that are inverses of each other:

ˆ� W
yC�.AHU;I

/! yC�.AHU
/; ‰� W

yC�.AHU
/! yC�.AHU;I

/:

Observe that both groupoids I � I and Rk �Rk have only one orbit. Therefore, lon-
gitudinally compactly supported functions on them are the same as compactly supported
functions. Observe that C1.Gx1 ËNx1O/ is the algebra of longitudinally compactly sup-
ported smooth functions on Gx1 Ë Nx1O. By Lemma 4.3, the groupoid algebra A.HU/ is
isomorphic to A.HU;I /. The latter can be identified with

C1.Gx1 ËNx1O/ y̋ RI�I y̋ C1
c .Rk

�Rk/;

where RI�I is the space of finitely supported functions on I � I . Note that I � I and
Rk � Rk both carry the structure of a pair groupoid, so the corresponding products on
RI�I and C1

c .Rk � Rk/ are given in both cases by convolution which we denote as
usual by �. Let �I be the trace on RI�I defined by

�I .d/ WD
X

i

di i ; d D .dij /i;j2I 2 RI�I

and let �Rk be the trace on C1
c .Rk �Rk/ given by

�Rk .˛/ WD

Z
Rk

˛.x; x/ dx; ˛ 2 C1
c .Rk

�Rk/;

where dx is the Lebesgue measure on Rk . Define a map

�m W Cm

�
C1.Gx1 ËNx1O/ y̋ RI�I y̋ C1

c .Rk
�Rk/

�
! Cm

�
C1.Gx1 ËNx1O/

�
as follows:

�m

�
.f0 ˝ � � � ˝ fm/˝ .d0 ˝ � � � ˝ dm/˝ .˛0 ˝ � � � ˝ ˛m/

�
WD �I .d0 � � � � � dm/�Rk .˛0 � � � � � ˛m/f0 ˝ � � � ˝ fm;

f0; : : : ; fm 2 C1.Gx1 ËNx1O/; d0; : : : ; dm 2 RI�I ; ˛0; : : : ; ˛m 2 C1
c .Rk

�Rk/:
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It is easy to check using the tracial property of �I and �Rk that �� is a chain map. More-
over, observe that the whole argument works not only for the global section algebra
C1.Gx1 Ë Nx1O/ but for any of the section algebras C1.Gx1 Ë V / with V � NxO an
open Gx1 -invariant subspace. So eventually we obtain a morphism of sheaf complexes

�� W yC�.AC1.HU;I //! yC�.AC1.Gx1 ËNx1O//

over the orbit space Nx1O=Gx1 .

Lemma 4.4. The above chain map �� is a quasi-isomorphism. More generally,

�� W yC�.AC1.HU;I //! yC�.AC1.Gx1 ËNx1O//

is an isomorphism of complexes of sheaves.

Proof. Choose a function ˇ 2 C1
c .Rk/ such thatZ

Rk

ˇ2.x/ dx D 1:

Let ˛ 2 C1
c .Rk �Rk/ be the function ˇ ˝ ˇ. Define an algebra morphism

j˛ W C
1.Gx1 ËNx1O/! C1.Gx1 ËNx1O/ y̋ RI�I y̋ C1

c .Rk
�Rk/

by
j˛.f / D f ˝ ı.1;1/ ˝ ˛;

where ı.1;1/ is the function on I � I that is 1 on .1; 1/ and 0 otherwise. j˛;� is the induced
map on the cochain complex. It is easy to check that �� ı j˛;� D id. Applying j˛;� ı �� to

.f0 ˝ � � � ˝ fm/˝ .d0 ˝ � � � ˝ dm/˝ .˛0 ˝ � � � ˝ ˛m/

gives

�I .d0 � � � � � gm/�Rk .˛0 � � � � �˛m/.f0˝ � � �˝ fm/˝ .ı1;1˝ � � �˝ ı1;1/˝ .˛˝ � � �˝˛/:

Following the proof of Lemma 3.4, we consider the unital algebra zC1.Gx1 Ë Nx1O/

which is the direct sum of C1.Gx1 Ë Nx1O/ with C1.Nx1O/
Gx1 and product structure

given by equation (3.6). We then have the following split exact sequence in the category
of bornological algebras

0! C1.Gx1 ËNx1O/!
zC1.Gx1 ËNx1O/! C1.Nx1/

Gx1 ! 0: (4.2)

It is not hard to see that the chain maps �� and j˛;� extend to the corresponding ver-
sions of the algebras zC1.Gx1 ËNx1O/ and C1.Nx1/

Gx1 . As both algebras are unital, the
homotopy maps constructed in the proof of [14, Lemma 6] can be applied to conclude
that j˛;��� is a quasi-isomorphism for zC1.Gx1 ËNx1O/ and C1.Nx1/

Gx1 . As the algebra
C1.Gx1 Ë Nx1/ is H -unital, we consider the long exact sequence associated to the short
exact sequence (4.2). As j˛;� and �� are quasi-isomorphisms on zC1.Gx1 Ë Nx1O/ and
C1.Nx1/

Gx1 , we conclude by the five lemma that �� and j˛;� are also quasi-isomorphisms
for C1.Gx1 ËNx1O/. The argument generalizes immediately to the sheaf case.
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Combining Lemma 4.1–Lemma 4.4, we thus obtain the following local model for the
stalk complex yC�;O.AG/.

Proposition 4.5. For every orbit O 2 X , the composition L�;O WD ��;0 ı ‰�;0 ı ƒ�;0 ı

‚�;O, where ��;0, ‰�;0, and ƒ�;0 denote the respective sheaf morphisms localized at the
zero sections, is a quasi-isomorphism,

L�;O W
yC�;O.AG/

‚�;O

���! yC�;O.AGjOËNO/
ƒ�;0

���! yC�;0.AHU
/

‰�;0

��! yC�;0.AHU;I
/

��;0

��! yC�;0.AGx1 ËNx1O
/:

5. Basic relative forms

Let M be a smooth manifold equipped with a left action of a compact Lie group G which
we write as .g; x/ 7! gx, for g 2 G;x 2M . Associated to this action is the Lie groupoid
G ËM �M with source map given by the projection .g; x/ 7! x and target given by the
action .g; x/ 7! gx. The loop space ƒ0.G ËM/ � G �M coincides in this case with
the disjoint union of all fixed point sets M g �M for g 2 G:

ƒ0.G ËM/ WD
®
.g; p/ 2 G �M j gp D p

¯
D

[
g2G

¹gº �M g :

For fixed g 2 G, the connected components of the fixed point subsetM g �M are closed
submanifolds which can wildly vary as g runs through G. Therefore, the loop space
ƒ0.G ËM/ is a singular subset of G �M . Actually, ƒ0.G ËM/ carries even the struc-
ture of a stratified space as shown in [18, 19]. If one lets G act on G �M by

h � .g; p/ WD .hgh�1; hp/; h 2 G; .g; p/ 2 G �M;

this action preservesƒ0.G ËM/�G �M and sendsM g toM hgh�1
. In [7,8], Brylinski

introduces the notion of basic relative forms of which we will give a sheafified ver-
sion in the following. Intuitively, a basic relative k-form is a smooth family .!g/g2G 2Q

g2G �
k.M g/ of differential forms on fixed point subspaces which are

(i) horizontal that is i�M g!g D 0 for all g 2 G and � 2 Lie.Gg/, and

(ii) G-invariant which means that h�!g D !h�1gh for all g; h 2 G.

Here, Gg WD ZG.g/ denotes the centralizer of g 2 G, which acts on M g . Because of the
singular nature of ƒ0, one needs to make sense of what is exactly meant by a smooth
family of differential forms. There are two solutions for this illustrated in the following.

(A) Sheaf theory. In the sense of Grauert–Grothendieck and following Brylinski [8], we
define the sheaf of relative forms on ƒ0.G ËM/ as the quotient sheaf

�k
rel;ƒ0

WD ��1
�
�k

GËM!G=.J�
k
GËM!G C drelJ ^�

k�1
GËM!G/

�
:
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Here, �k
GËM!G denotes the sheaf of k-forms on G �M relative to the projection pr1 W

G �M ! G and � the canonical injection

ƒ0.G ËM/ ,! G ËM:

A form ! 2 �k
GËM!G.

zU/ for zU � G ËM open is given by a smooth global section of
the vector bundle s� ^k T �M that is by an element ! 2 �1. zU ; s� ^k T �M/. The de
Rham differential on M defines a differential

drel W �
k
GËM!G ! �kC1

GËM!G :

Finally, J denotes the vanishing ideal of smooth functions on G �M that restrict to zero
on ƒ0.G ËM/ � G �M . Note that

J��
GËM!G C drelJ ^�

�
GËM!G

is a differential graded ideal in the sheaf complex .�k
GËM!G ; drel/, so ��

rel;ƒ0
becomes

a sheaf of differential graded algebras on the loop space. For open U � ƒ0.G Ë M/,
an element of �k

rel;ƒ0
.U / can now be understood as an equivalence class Œ!�ƒ0 of forms

! 2 �k
GËM!G.

zU/ defined on some open zU � G ËM such that U D zU \ƒ0.G ËM/.
This explains the definition of the sheaf complex of relative forms on the singular space
ƒ0.G Ë M/; confer also to [41]. Next observe that the map which associates to each
p 2M the conormal space N �

p WD .TpM=TpOp/
� is a generalized subdistribution of the

cotangent bundle T �M in the sense of Stefan–Suessmann; cf. [28,46,47]. In the language
of [17],N � is a cosmooth generalized distribution. The restriction ofN � to each orbit, and
even to each stratum ofM of a fixed isotropy type, is a vector bundle; cf. [39]. Henceforth,
the pullback distribution s� ^k N � is naturally a cosmooth generalized subdistribution of
^kT �G ËM . We define the space�k

hrel;ƒ0G
.U / of horizontal relative k-forms on the loop

space (over U ) as the subspace

�k
hrel;ƒ0G.U / WD

®
Œ!�ƒ0 2 �

k
rel;ƒ0G.U / j !.g;p/ 2 ^

kN �
p for all .g; p/ 2 U

¯
:

This implements the above condition (i). Observe that the action of G on TN leaves
the orbits invariant, hence induces also an action on the conormal distribution N � in a
canonical way [39, Section 3]. Call a section Œ!�ƒ0 2 �

k
hrel;ƒ0

.U / invariant if

!hgh�1;hp.hv1; : : : ; hvk/ D !.g;p/.v1; : : : ; vk/ (5.1)

for all .g;p/ 2U �ƒ0G, h 2G such that .hgh�1;hp/ 2U and v1; : : : ; vk 2Np . Note that
the invariance of Œ!�ƒ0 does not depend on the particular choice of the representative !
such that !p 2 ^

kN �
p . Condition (ii) is covered by defining the space�k

brel;ƒ0
.U / of basic

relative k-forms on the loop space (over U ) now as the space of all invariant horizontal
relative k-forms Œ!�ƒ0 2 �

k
hrel;ƒ0G

.U /. Obviously, one thus obtains sheaves �k
hrel;ƒ0

and
�k

brel;ƒ0
on the loop space ƒ0.G Ë M/. We will call the push forward ��s��

k
brel;ƒ0

by
the source map s and canonical projection � W M ! X D M=G sheaf of basic relative
functions as well and denote it also by the symbol �k

brel;ƒ0
. This will not lead to any

confusion. The interpretation of basic relative forms as smooth families of forms on the
fixed point manifolds is still missing, but will become visible in the following approach.
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(B) Differential geometry. From a more differential geometric perspective, we consider
the family of vector bundles F!ƒ0 defined by F.g;p/ WDT

�
p M

g for .g; p/2ƒ0.GËM/.
Of course, this does not define a (topological) vector bundle over the inertia space
ƒ0.G Ë M/ because in general the rank jumps discontinuously but it is again a cos-
mooth generalized distribution. Using the canonical projection s�T �M jƒ0 ! F , we say
that a local section ! 2 �.U;^kF / over U � ƒ0 is smooth if for each .g; p/ 2 U there
exist open neighborhoodsO � G of g and V �M of p together with a locally represent-
ing smooth k-form !O;V 2 �

1.O � V;^ks�T �M/ such that .O � V / \ ƒ0 � U and
!.h;q/D Œ!O;V �.h;q/ for all .h;q/2 .O �V /\ƒ0.G ËM/. Hence a smooth section! can
be identified with the smooth family .!g/g2prG.U / of forms!g 2�

k.s.U \ .¹gº �M g///

which are uniquely defined by the condition that !g jV g D �
�
V g!O;V for all g 2 O and all

pairs .O; V / with locally representing forms !O;V as before. The �V g W V g ,! V hereby
are the canonical embeddings of the fixed point manifolds V g . We denote the space of all
smooth sections of^kF over U by �1.U;^kF / or �1

^kF
.U /. Obviously, �1

^kF
becomes

a sheaf on ƒ0.

Proposition 5.1. The canonical sheaf morphism

�k
W ��1�1

^ks�T �M
! �1

^kF

factors through a unique epimorphism of sheaves ‚k W �
�

rel;ƒ0
! �1

^kF
making the fol-

lowing diagram commutative:

��1�1

^ks�T �M

�k
//

��

�1

^kF

�
�

rel;ƒ0

‚k

66

Proof. The claim follows by showing that for open zU �G�M and U WD zU\ƒ0.GËM/

the canonical map �k
zU
W �1. zU ;^ks�T �M/! �1.U;^kF /, ! 7! Œ!� is surjective and

has

K. zU/ WD J. zU/�1. zU ;^ks�T �M/C drelJ. zU/ ^ �
1. zU ;^k�1s�T �M/

contained in its kernel.
The sheaf �1

^kF
is a C1

ƒ0
-module sheaf, hence a soft sheaf. This entails surjectivity

of �k
zU

. Assume that ! 2 �1. zU ;^ks�T �M/ is of the form ! D f% for some f 2 J. zU/

and % 2 �1. zU ;^ks�T �M/. Then

�k
zU
.!/.g;p/ D �

k
U .f%/.g;p/ D f .q; p/%.q;p/ D 0 for all .g; p/ 2 U:

Now assume that ! D drelf ^ % with f as before and % 2 �1. zU ;^k�1s�T �M/. To
prove that �k

U .!/ D 0, it suffices to show that ��
U

g
g
! D 0 for all g 2 prG.U /. Fix some
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g 2 prG.U / and p 2 U g
g and choose an open coordinate neighborhood V � M with

coordinates .x1; : : : ; xd / W V ,! Rd such that V � Ug , .x1jV g ; : : : ; xk jV g / W V g ,! Rk

is a local coordinate system of M g over V g and such that V g is the zero locus of the
coordinate functions .xkC1; : : : ;xd / W V ,!Rd�k . After possibly shrinking V , there exists
an open neighborhoodO of g inG such thatO � V � zU . Extend the coordinate functions
.x1; : : : ; xd / to smooth functions on O � V constant along the fibers of the source map.
Then we have

drelf D

dX
lD1

@f

@xl

dxl :

Since @f
@xl
.g; p/ D 0 for p 2 V g and 1 � l � k and since ��V gdxl D 0 for k < l � d , one

gets

��V g �
�

U
g
g
! D ��V g .drelf ^ %/ D

dX
lD1

�
��V g

@f

@xl

�
.��V gdxl / ^ .�

�
V g%/ D 0;

where, by slight abuse of notation, we have also used the symbol �V g for the embedding
V g ,! U , p 7! .g; p/. So ��

U
g
g
! D 0 and K. zU/ is in the kernel of �k

zU
. Hence �k

zU
factors

through some linear map

‚k
U W �

k
rel;ƒ0

.U /! �1.U;^kF /:

This proves the claim.

Remark 5.2. Conjecturally, the morphism ‚k is an isomorphism, showing that the sheaf
theoretic approach (A) and the differential geometric approach (B) above lead to the same
definition of basic relative forms. Below, in Section 7, we prove this conjecture for the
case of an S1-action. In the general case, this conjecture remains open.

Note that the image of the sheaf of horizontal relative k-forms under ‚k coincides
exactly with those families of forms .!g/g2prG.U / fulfilling condition (i) above. Since
G naturally acts on the generalized distribution F and ‚k is obviously equivariant by
construction, the original conditions by Brylinski are recovered now also in the differential
geometric picture of relative forms.

Remark 5.3. In [3], Block and Getzler define a sheaf on G whose stalk at g 2 G is
given by the space of Gg -equivariant differential forms on M g . There are two differen-
tials on this sheaf, d and �, together constituting the equivariant differential D WD d C �,
which, under an HKR-type map correspond to the Hochschild and cyclic differential on
the crossed product algebraG ËC1.M/. Taking cohomology with respect to � only leads
to a very similar definition of basic relative forms as above, however notice that the basic
relative forms defined above form a sheaf over the quotient M=G, not the group G.

6. The group action case
In this section, we consider the action of a compact Lie group G on a complete bornolog-
ical algebra A and then specialize to the case where A is the algebra of smooth functions
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on a smooth G-manifold M . More precisely, by a G-action on A one understands a map
˛ W G ! Aut.A/ such that L̨ W G � A! A, .g; a/ 7! ˛.g/.a/ D g � a is continuous in
the natural locally convex topology induced by the bornology on A and such that ˛.G/ is
an equicontinuous set of continuous automorphisms of A. The other general assumption
we always make is that the map L̨ W G � A! A is smooth in the sense of [29] which
means that each smooth curve in G � A is mapped to a smooth curve in A. These condi-
tions are automatically guaranteed when G acts by diffeomorphisms on the manifold M
and A D C1.M/. Under the assumptions made, the associated smooth crossed product
G Ë A is given by C1.G;A/ equipped with the product

.f1 � f2/.g/ WD

Z
G

f1.h/
�
h � f2.h

�1g/
�
dh; f1; f2 2 C1.G;A/; g 2 G: (6.1)

6.1. The equivariant Hochschild complex

To compute the Hochschild homology of the smooth crossed product G ËA, consider the
bigraded vector space

C D
M

p;q�0

Cp;q; with Cp;q WD C1.G.pC1/; A˝.qC1//:

There exists a bi-simplicial structure on C given by face maps ıv
i W Cp;q ! Cp;q�1, 0 �

i � q and ıh
j W Cp;q ! Cp�1;q , 0 � j � p defined as follows. The vertical maps are given

by

ıv
i .F /.g0; : : : ; gp/ WD

8<: bq;i

�
F.g0; : : : ; gp/

�
for 0 � i � q � 1;

b
.g0���gp/�1

q;q

�
F.g0; : : : ; gp/

�
for i D q;

where the bq;i for 0 � i � q � 1 are the first q � 1 simplicial face maps multiplying the
i ’th and i C 1’th entry in A˝.qC1/ underlying the Hochschild chain complex of A (see
e.g. Appendix B.2), and bg

q;q is the g-twisted version of the last one:

bg
q;q.a0 ˝ � � � ˝ aq/ WD .g � aq/a0 ˝ a1 ˝ � � � ˝ aq�1; a0; : : : ; aq 2 A; g 2 G:

The horizontal maps are defined by

ıh
j .F /.g0; : : : ; gp�1/ WD

8<:
R

G
F.g0; : : : ; g; g

�1gj ; : : : gp�1/ dg for 0 � j � p � 1;R
G
g � F.g�1g0; g1; : : : ; gp�1; g/ dg for j D p;

where, in the second line, g acts diagonally on A˝.qC1/. The following observations now
hold true.

(i). The diagonal complex diag.C�;�/ WD
L

k�0 Ck;k equipped with the differential

ddiag WD
X

i

.�1/iıh
i ı

v
i
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is isomorphic to the Hochschild complex Ck.G Ë A/ D C1.G.kC1/; A˝.kC1// of the
smooth crossed product algebra G Ë A via the isomorphism

.�/ W diag.C�;�/! C�.G Ë A/;

F 7! xF defined by

xF .g0; : : : ; gk/

WD .g�1
k � � �g

�1
0 ˝ g

�1
k � � �g

�1
1 ˝ � � � ˝ g

�1
k / � F.g0; : : : ; gk/; F 2 Ck;k ; (6.2)

where the pre-factor on the right-hand side acts componentwise via the action of G on A.

(ii). The vertical differential ıv in the total complex is given by a twisted version of the
standard Hochschild complex of the algebra A. The horizontal differential ıh in the q-th
row can be interpreted as the Hochschild differential of the convolution algebra C1.G/

with values in the G-bimodule C1.G;A˝.qC1// with bimodule structure given by

.g � f /.h/ WD g
�
f .g�1h/

�
; .f � g/.h/ WD f .hg/; f 2 C1.G;A˝.qC1//; g; h 2 G:

The homology of this complex is isomorphic to the group homology of G with values
in the adjoint module C1.G; A˝.qC1//ad given by C1.G; A˝.qC1// equipped with the
diagonal action:

H�

�
C1.G/;C1.G;A˝.qC1//

�
Š H diff

�

�
G;C1.G;A˝.qC1//ad

�
:

Observe that the diagonal action commutes with the vertical face maps.

Lemma 6.1. For all g 2 G and f 2 C1.G;A˝.qC1//ad, one has ıv.g � f / D g � ıvf .

Proof. It suffices to show the claim for f of the form f D a0 ˝ � � � ˝ aq , where aj W

G ! A is smooth. For all h 2 G, we can then write f .h/ D a0.h/˝ � � � ˝ aq.h/, where
a0.h/; : : : ; aq.h/ are elements in A. Now compute

ıv
qf .h/ D

�
h
�
aq.h/

��
a0.h/˝ � � � ˝ aq�1.h/

and �
g � ıv

q.f /
�
.h/ D

�
hg

�
aq.g

�1hg/
��
g
�
a0.g

�1hg/
�
˝ � � � ˝ g

�
aq�1.g

�1hg/
�
:

On the other hand,

g � f .h/ D g
�
a0.g

�1hg/
�
˝ g

�
a1.g

�1hg/
�
˝ � � � ˝ g

�
aq.g

�1hg/
�

and

ıv
q.g � f /.h/

D
�
hg

�
aq.g

�1hg/
��
g
�
a0.g

�1hg/
�
˝ g

�
a1.g

�1hg/
�
˝ � � � ˝ g

�
aq�1.g

�1hg/
�
:

Hence one obtains g � ıv
q.f /D ı

v
q.g � f /. The equalities g � ıv

i .f /D ı
v
i .g � f / for 0� i < q

are obvious, so the claim follows.
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It is proved in [2] that the group homology complex computes the derived functor of
taking coinvariants. For a compact Lie group, integration with respect to the Haar measure
of volume 1 shows that coinvariant and invariant spaces are isomorphic, and therefore its
group homology vanishes except for the zeroth degree. In our case, this gives

H diff
k

�
G;C1.G;A˝.qC1//ad

�
D

´
C1.G;A˝.qC1//inv

ad for k D 0;

0 for k > 0:

Observe that a smooth function f W G ! A˝.qC1/ hereby is an element of the invariant
space C1.G; A˝.qC1//inv

ad if and only if gf .g�1hg/ D f .h/ for all g; h 2 G. Note also
that by the lemma the vertical differential ıv maps C1.G;A˝.qC1//inv

ad to C1.G;A˝q/inv
ad .

(iii). Filtering the total complex by rows, we obtain a spectral sequence with E1-terms

E1
0;q Š C1.G;A˝.qC1//inv; E1

p;q D 0 for p � 1:

The spectral sequence therefore collapses and the cohomology of the total complex is
computed by the complex

CG
� .A/ WD C1.G;A˝.�C1//inv

equipped with the twisted Hochschild differential

.btwf /.g/ WD ıvf .g/ WD

q�1X
iD0

.�1/ibq;i

�
f .g/

�
C .�1/qC1bg�1

q;q

�
f .g/

�
;

f 2 C1.G;A˝.qC1//; g 2 G:

This complex is called the equivariant Hochschild complex in [3].

(iv). By the Eilenberg–Zilber theorem, the diagonal complex is quasi-isomorphic to the
total complex Tot.C�;�/with ıTot WD ıhC ıv where the horizontal and vertical differentials
are given by the usual formulas ıh;v WD

P
i .�1/

iı
h;v
i . There is an explicit formula for the

map EZ W diag.C�;�/! Tot.C�;�/ implementing this quasi-isomorphism.
Combining items (i)–(iv), above we conclude that the following holds.

Proposition 6.2. Given a complete bornological algebra A with a smooth left G-action,
the composition

e.�/ W C�.G Ë A/
.�/
��! diag.C /�

EZ
��! Tot.C�;�/! CG

� .A/

is a quasi-isomorphism of complexes. The explicit formula is given by mapping a chain
F 2 Ck.C

1.G;A// to the equivariant Hochschild chain zF 2 CG
k
.A/ defined by

zF .g/ WD

Z
Gk

.g�1h1 � � � hk ˝ 1˝ h1 ˝ � � � ˝ h1 � � � hk�1/

� F.h�1
k � � � h

�1
1 g; h1; : : : ; hk/ dh1 � � � dhk :



On the Hochschild homology of proper Lie groupoids 127

Remark 6.3. This result has originally been proved by Brylinski in [7, 8]. Observe that a
right G-action ˇ on an algebra A can be changed to a left G-action ˛ on an algebra A by
˛.g/.a/ WD ˇ.g�1/.a/. Let Aop be the opposite algebra of A and assume that ˇ defines a
rightG action on Aop. Use Aop Ìˇ G to denote the (right) crossed product algebra defined
by the right G action on Aop. Define a map ˆ W G˛ËA ! Aop Ìˇ G by ˆ.f /.g/ WD
f .g�1/. One directly checks the following identity,

ˆ.f1 �G˛ËA f2/ D ˆ.f2/ �AopÌˇ G ˆ.f1/;

and concludes that the map ˆ induces an isomorphism of algebras

G˛ËA Š .Aop Ìˇ G/
op:

Furthermore, notice that for a general algebra A, the algebra A ˝ Aop is naturally iso-
morphic to Aop ˝ A and therefore HH�.A/ Š HH�.A

op/ since the corresponding Bar
resolutions coincide. Applying this observation to .Aop Ìˇ G/

op, one concludes that

HH�.G˛ËA/ Š HH�.A
op Ìˇ G/;

and that Proposition 6.2 holds also true for a smooth right G-action on an algebra A
meaning that there is a quasi-isomorphism of chain complexes

b.�/ W C�.A ÌG/! CG
� .A

op/:

Note that for a right G-action the convolution product on C1.G;A/ is given by

.f1 � f2/.g/ WD

Z
G

�
f1.h/ � .h

�1g/
�
f2.h

�1g/ dh; f1; f2 2 C1.G;A/; g 2 G: (6.3)

Throughout this paper, as it is more natural to have a left G-action on a manifold M , we
will work with a right G-action on C1.M/.

6.2. The G -manifold case

Let M be a manifold endowed with a smooth left G-action. Denote by X D M=G the
space of G-orbits in M and by � W M ! X the canonical projection. We consider the
action groupoid GD G ËM �M and the corresponding convolution sheaf ADAGËM

over X . It is straightforward to check that in the case of A D C1.M/ the product defined
by equation (6.3) coincides with the convolution product on A.M=G/Š C1.G ËM/Š

C1.G; A/ given by equation (2.3). Hence A.M=G/ coincides with A Ì G. According
to Proposition 6.2 and Remark 6.3, we then have for each G-invariant open V � M a
quasi-isomorphism between Hochschild chain complexes

b.�/jV=G W C�

�
A.V=G/

�
! CG

�

�
C1.V /

�
Š C�

�
C1.V /;A.V=G/

�inv
:

To compute the Hochschild homology HH�.A.V=G//, it therefore suffices to deter-
mine the homology of the complex C�.C

1.V /;A.V=G// which we will consider in the
following. Recall that A.V=G/ is isomorphic as a bornological vector space to the com-
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pleted tensor product C1.G/ y̋ C1.V / and that A.V=G/ carries the (twisted) C1.V /-
bimodule structure

C1.V / y̋ A.V=G/ y̋ C1.V /! A.V=G/;

f ˝ a˝ f 0
7!

�
G � V 3 .g; v/ 7! f .gv/a.g; v/f 0.v/ 2 R

�
:

Since the bimodule structure is compatible with restrictions rU
V for G-invariant open sub-

sets V � U �M , one obtains a complex of presheaves which assigns to every open V=G
with V � M open and G-invariant the complex C�.C

1.V /;A.V=G//. Sheafification
gives rise to a sheaf complex which we denote by yC�.C

1
M ;A/. Since

Ck

�
C1.V /;A.V=G/

�
Š A.V=G/ y̋ C1.V / Ck

�
C1.V /

�
Š C1.G/ y̋ C1.V /

y̋ .kC1/

for allG-invariant open V �M and k 2N, the section spaces of this sheaf complex inherit
the diagonal G action from (ii) above. Moreover, this action is compatible with restric-
tions, so yC�.C

1
M ;A/ becomes a G-sheaf complex. We now have the following result.

Proposition 6.4. Assume to be given a G-manifold M , let A be the convolution sheaf
of the associated action groupoid G ËM � M on the orbit space X D M=G, and put
A D A.X/. Then the chain map

% W C�

�
C1.M/;A

�
! �

�
X; yC�.C

1
M ;A/

�
; c 7! .Œc�O/O2X

which associates to every k-chain c 2 Ck.C
1.M/; A/ the section .Œc�O/O2X , where Œc�O

denotes the germ of c in the stalk yC�;O.C
1
M ;A/, is an equivariant quasi-isomorphism.

Proof. Observe that the sheaves yCk.C
1
M ;A/ are fine and that

%0 W C0

�
C1.M/;A

�
! �

�
X; yC0.C

1
M ;A/

�
is the identity morphism. Using again the homotopies from Section 3.3, the proof that %
is a quasi-isomorphism is completely analogous to the one of Proposition 3.7, hence we
skip the details. Equivariance of % is immediate by definition.

Next, we compare the sheaf complex yC�.C
1
M ;A/ with the complex of relative forms

by constructing a morphism of sheaf complexes between them.

Proposition 6.5. Under the assumptions of the preceding proposition, define for each
open G-invariant subset V �M and k 2 N a C1.V=G/-module map by

ˆk;V=G W Ck

�
C1.V /;A.V=G/

�
Š A.V=G/ y̋ Ck

�
C1.V /

�
! �k

rel;ƒ0

�
ƒ0.G Ë V /

�
;

f0 ˝ f1 ˝ � � � ˝ fk 7!
�
f0d.s

�
GËV f1/ ^ � � � ^ d.s

�
GËV fk/

�
ƒ0
:

Then the ˆk;V=G are the components of a morphism of sheaf complexes

ˆ� W
yC�.C

1
M ;A/! ��.sjƒ0

/��
�
rel;ƒ0

;

where the differential on ��
rel;ƒ0

is given by the zero differential. The image of a cycle
under ˆ� lies in the sheaf complex of horizontal relative forms ��

hrel;ƒ0
.



On the Hochschild homology of proper Lie groupoids 129

Proof. Let f0 2A.V=G/ and f1; : : : ; fk 2 C1.V /. Observe first thatˆk;V=G.f0˝ f1˝

� � � ˝ fk/ is a relative form indeed since d.s�GËV f / 2 �
1
GËV !G.G Ë M/ for all f 2

C1.V /. Now let .g; p/ 2 ƒ0.G Ë V / and compute

ˆk�1;V=Gb.f0 ˝ f1 ˝ � � � ˝ fk/.g; p/

D f0.g; p/f1.p/
�
d.s�GËV f2/ ^ � � � ^ d.s

�
GËV fk/

�
.g;p/

C

k�1X
iD1

.�1/if0.g; p/fi .p/
�
d.s�GËV f1/ ^ � � � ^ d.s

�
GËV fi�1/

^ d.s�GËV fiC1/ ^ � � � ^ d.s
�
GËV fk/

�
.g;p/

C

k�1X
iD1

.�1/if0.g; p/fiC1.p/
�
d.s�GËV f1/ ^ � � � ^ d.s

�
GËV fi /

^ d.s�GËV fiC2/ ^ � � � ^ d.s
�
GËV fk/

�
.g;p/

C .�1/kfk.gp/f0.g; p/
�
d.s�GËV f1/ ^ � � � ^ d.s

�
GËV fk�1/

�
.g;p/

D 0:

Henceˆ�;V=G is a chain map in the sense that it intertwines the Hochschild boundary with
the zero differential.

It remains to show that the image ofˆ�;V=G is in the space of horizontal relative forms.
To this end, assume for a moment that V is a G-invariant open ball around the origin in
some Euclidean space Rn which is assumed to carry an orthogonal G-action. Consider
the Connes–Koszul resolution of C1.V / provided in (B.2). A chain map between the
Connes–Koszul resolution and the Bar resolution of C1.V / over the identity map idC1.V /

in degree 0 is given by the family of maps

‰k;V W �
1.V � V;Ek/! Bk

�
C1.V /

�
D C1.V � V / y̋ C1.V k/;

! 7!
�
.v; w; x1; : : : ; xk/ 7! !.v;w/

�
Y.x1; w/; : : : ; Y.xk ; w/

��
:

Tensoring the Connes–Koszul resolution of C1.V / with A1.V=G/ results in the follow-
ing complex:

�d
GËV !G.V /

iYGËV
����! � � �

iYGËV
����! �1

GËV !G.V /
iYGËV
����! C1.G Ë V /! 0; (6.4)

where YGËV W G Ë V ! s�T V is defined by YGËV .g; v/ D v � gv. The composition of
idA1.V=G/ y̋‰k;V with ˆk;V=G then is the map which associates to each relative form
! 2 �k

GËV !G.V / its restriction Œ!�ƒ0 to the loop space. It therefore suffices to show that
for ! 2 �k

GËV !G.V / with iYGËV
! D 0 the restriction to the loop space is a horizontal

relative form. To verify this, let � be an element of the Lie algebra g of G and again
.g; v/ 2 ƒ0.G Ë V /. Then

0 D
d

dt
.iYGËV

!/.e�t� g;v/

ˇ̌
tD0
D .�iYGËV

i�G
dG! C i�V

!/.g;v/ D .i�V
!/.g;v/;
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where dG denotes the exterior differential with respect to G and �G and �V are the funda-
mental vector fields of � on G and V , respectively. So i�V

! 2 J.V /�k�1
GËV !G.V /, which

means that Œ!�ƒ0 2 �
k
hrel;ƒ0

.G Ë V /.

Proposition 6.6. LetM be a G-manifold with only one isotropy type and assume that the
orbit space M=G is connected. Then the following holds true.

(1) The quotient space M=G carries a unique structure of a smooth manifold such
that � WM !M=G is a submersion.

(2) The loop space ƒ0.G ËM/ is a smooth submanifold of G �M .

(3) Let p 2M be a point and Vp �M a slice to the orbit through p that is

(SL1) Vp is aGp-invariant submanifold which is transverse to the orbitOp WDGp

at p,

(SL2) V WD GVp is an open neighborhood of the orbit Op and Vp is closed in V ,

(SL3) there exists a G-equivariant diffeomorphism � W NOp ! V mapping the
normal space Np D TpM=TpOp onto Vp .

Then for every k, the map

‰k;Vp=Gp
W�k

brel;ƒ0

�
ƒ0.G ËGVp/

�
!�k

brel;ƒ0

�
ƒ0.Gp ËVp/

�
; ! 7!!jƒ0.GpËVp/

is an isomorphism and the space of basic relative k-forms�k
brel;ƒ0

.ƒ0.Gp Ë Vp//

coincides naturally with C1.Gp/
Gp y̋ �k.Vp/.

(4) The chain map

ˆ�;M=G W
�
C�

�
C1.M/;A.M=G/

�
; b
�
!

�
��

hrel;ƒ0

�
ƒ0.G ËM/

�
; 0
�

is a quasi-isomorphism when the graded module��
hrel;ƒ0

.ƒ0.GËM// is endowed
with the zero differential.

Proof. ad (1). It is a well-known result about group actions on manifolds that under the
assumptions made, the quotient space M=G carries a unique manifold structure such that
� WM !M=G is a submersion; see e.g. [5, Section IV.3] or [37, Theorem 4.3.10].

ad (2). This has been proved in [18, Proposition 4.4]. Let us outline the argument since
we need it for the following claims, too. By the assumptions made, there exists a compact
subgroupK � G such that every point ofM has isotropy type .K/. Let p 2M be a point
and Gp its isotropy group. Without loss of generality, we can assume that Gp D K. Let
Vp �M be a slice to the orbit O through p. The isotropy group of an element q 2 Vp then
has to coincide with K, so V K

p D Vp . Therefore, the map

� W G=K � Vp !M; .gK; q/ 7! gq

is aG-equivariant diffeomorphism onto a neighborhood ofO. Now choose a small enough
open neighborhood of eK in G=K and a smooth section � W U ! G of the fiber bundle
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G ! G=K. The map

z� W G � U � Vp ! G � �.U � Vp/; .h; gK; q/ 7!
�
�.gK/h�.gK/�1; �.gK/q

�
then is a diffeomorphism onto the open set G � �.U � Vp/ of G �M . One observes that

z�.K � U � Vp/ D
�
G � �.U � Vp/

�
\ƒ0.G ËM/;

which shows that ƒ0.G ËM/ is a submanifold of G �M , indeed.
ad (3). Put K D Gp as before, let N D GVp , and denote by g and k the Lie algebras

of G and K, respectively. Choose an Ad-invariant inner product on g and let m be the
orthogonal complement of k in g. Next choose for each q 2 N an element hq 2 G such
that hqq 2 Vp . Then

�N
W N ! Op; q 7! h�1

q p

is an equivariant fiber bundle. Let TN ! N be the tangent bundle of the total space
and VN ! N the vertical bundle. Note that TN and VN inherit from N the equivariant
bundle structures. Now put for q 2 N

HqN WD span
®�

Adh�1
q
.�/

�
N
.q/ 2 TqN j � 2 m

¯
;

where �N denotes the fundamental vector field of � on N . Then HN ! N becomes
an equivariant vector bundle complementary to VN ! N . Let P v W TN ! VN be the
corresponding fiberwise projection along HN . By construction, P v is G-equivariant.
After these preliminary considerations let ! 2 �k

brel;ƒ0
.ƒ0.G Ë GVp//. The restriction

!jƒ0.KËVp/ then is a basic relative form again, so ‰k;Vp=K is well defined. Let us show
that it is surjective. Assume that % 2 �k

brel;ƒ0
.ƒ0.K Ë Vp//. We then put for .g; q/ 2

ƒ0.G ËN/ and X1; : : : ; Xk 2 TqN

!.g;q/.X1; : : : ; Xk/ WD %.hqgh�1
q ;hqq/

�
T hq

�
P v.X1/

�
; : : : ; T hq

�
P v.Xk/

��
; (6.5)

where T h W TN ! TN for h 2G denotes the derivative of the action of h onN . Since T k
for k 2 K acts as identity on T Vp � VN , the value !.g;q/.X1; : : : ; Xk/ does not depend
on the particular choice of a group element hq such that hqq 2 Vp . Moreover, since for
fixed q0 2 N one can find a small enough neighborhood U and choose hq to depend
smoothly on q 2 U , ! is actually a smooth differential form on N . By construction, it
is a relative form. If Xl 2 HqN for some l , then !.g;q/.X1; : : : ; Xk/ D 0 by definition.
If Xl D .Adh�1

q
.�//N .q/ for some � 2 k, then P vXl D Xl and T hqXl .q/ D �N .hqq/

which entails by (6.5) that !.g;q/.X1; : : : ; Xk/ D 0 again since % is a horizontal form. So
! is a horizontal form. It remains to show that it is G-invariant. Let h 2 G and .g; q/ and
X1; : : : ; Xk as before. Then

!.hgh�1;hq/.T hX1; : : : ; T hXk/

D %.hqgh�1
q ;hqq/

�
T hqT h

�1
�
P v.T hX1/

�
; : : : ; T hqT h

�1
�
P v.T hXk/

��
D !.g;q/.X1; : : : ; Xk/;
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so ! is G-invariant and therefore a basic relative form. Hence ‰k;Vp=K is surjective. To
prove injectivity of ‰k;Vp=K observe that if ! 2 �k

brel;ƒ0
.ƒ0.G Ë GVp// and % is the

restriction !jƒ0.KËVp/, then equation (6.5) holds true since ! is G-invariant and hori-
zontal. But this implies that if !jƒ0.KËVp/ D 0, then ! must be 0 as well, so ‰k;Vp=K is
injective. It remains to show that

�k
brel;ƒ0

�
ƒ0.K Ë Vp/

�
Š C1.K/K y̋ �k.Vp/:

To this end, observe that ƒ0.K Ë Vp/ D K � Vp since V K
p D Vp which in other words

means that very K-orbit in Vp is a singleton. The claim now follows immediately.
ad (4). By Theorem 3.3, it suffices to verify the claim for the case where M D GVp ,

where p is a point and Vp a slice to the orbit O through p. As before let K be the
isotropy Gp . By the slice theorem, there exists aK-equivariant diffeomorphism ' W Vp !

zVp � NpO onto an open zero neighborhood of the normal space NpO. Choose a K-
invariant inner product on NpO and a G-invariant inner product on the Lie algebra g.
Again as before, let m be the orthogonal complement of the Lie algebra k in g. The inner
product on g induces a G-invariant Riemannian metric on G which then induces a G-
invariant Riemannian metric on the homogeneous space G=K by the requirement that
G ! G=K is a Riemannian submersion. Now observe that the map G=K � Vp ! M ,
.gK; v/ 7! gv is a G-invariant diffeomorphism, so we can identify M with G=K � Vp .
The chosen Riemannian metrics on G=K and Vp then induce a G-invariant metric on M .
Since C is faithfully flat over R, we can assume without loss of generality now that smooth
functions and forms on M and G ËM are all complex valued, including elements of the
convolution algebra. Let e 2 NpO Š TpVp be a vector of unit length, and let Z be the
vector field on M which maps every point to e (along the canonical parallel transport).
Next choose a symmetric open neighborhood U of the diagonal of G=K �G=K such that
for each pair .gK; hK/ 2 U there is a unique � 2 Adh.m/ such that gK D exp.�/hK.
Denote that � by exp�1

hK
.gK/. Let � W G=K � G=K ! Œ0; 1� be a function with support

contained in U and such that � D 1 on a neighborhood of the diagonal. Now define the
vector field Y WM �M ! pr�2.TM/ by

Y
�
.gK; v/; .hK;w/

�
D �.gK; hK/

�
exp�1

hK.gK/; v � w
�

C
p
�1�0.gK; hK/Z

�
.gK; v/; .hK;w/

�
;

where pr2 WM �M !M is projection onto the second coordinate and where the smooth
cut-off function �0 W G=K � G=K ! Œ0; 1� vanishes on a neighborhood of the diagonal
and is identical 1 on the locus where � ¤ 1. Finally, put Ek WD pr�2.^

kT �M/. Then, by
[11, Lemma 44], the complex

�1.M �M;Edim M /
iY
�! � � �

iY
�! �1.M �M;E1/

iY
�! C1.M �M/! C1.M/

is a (topologically) projective resolution of C1.M/ as a C1.M/-bimodule. Tensoring
this resolution with the convolution algebra A.G Ë M/ gives the following complex of
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relative forms:

�dim M
GËM!G.G ËM/

iYG
��! � � �

iYG
��! �1

GËM!G.G ËM/! C1.G ËM/; (6.6)

where YG W G �M ! pr�2 TM is the vector field�
g; .hK;v/

�
7!�.ghK;hK/

�
exp�1

hK.ghK/;0
�
C
p
�1�0.ghK;hK/Z

�
.ghK;v/; .hK;v/

�
:

The vector field YG vanishes on .g; .hK; v// if and only if g 2 hKh�1, that is if and only
if .g; .hK; v// 2 ƒ0.G Ë M/. We will use the parametric Koszul resolution (Proposi-
tion B.11) to show that the complex (6.6) is quasi-isomorphic to the complex of horizontal
relative forms

�dim M
hrel;ƒ0

�
ƒ0.G ËM/

� 0
�! � � �

0
�! �1

hrel;ƒ0

�
ƒ0.G ËM/

� 0
�! C1

�
ƒ0.G ËM/

�
: (6.7)

This will then entail the claim. So it remains to show that (6.6) and (6.7) are quasi-
isomorphic. We first consider the case where Vp consist just of a point. ThenM coincides
with the homogeneous space G=K and YG is a Euler-like vector field on its set of zeros

S D
®
.g; hK/ 2 G �G=K j g 2 hKh�1

¯
�M:

Note that S is a submanifold on M . That YG is Euler-like on S indeed follows from the
equality

d

dt
exp�1

hK

�
exp.t�/ghK

�ˇ̌̌
tD0
D

d

dt
exp�1

hK

�
exp.t�/hK

�ˇ̌̌
tD0
D �

for all .g; hK/ 2 S , � 2 Adgh.m/ D Adh.m/. Hence, by Proposition B.11, the complex

�
dim G=K

GËG=K!G
.G ËG=K/

iYG
��! � � �

iYG
��! �1

GËG=K!G.G ËG=K/! C1.G ËG=K/

is quasi-isomorphic to
0! � � � ! 0! C1.S/:

Since �k
hrel;ƒ0

.ƒ0.G Ë G=K// D 0 for k � 1, the claim follows in the case Vp D ¹pº.
Now consider the case M D G=K � Vp with Vp an arbitrary manifold on which K acts
trivially. Observe that in this situation

�k
GËM!G.G ËM/ Š

M
0�l�k

�l
GËG=K!G.G ËG=K/ y̋ �k�l .Vp/

and that YG acts, near its zero set S D ƒ0.G ËM/, only on the first components

�l
GËG=K!G.G ËG=K/:

Hence the chain complex (6.6) is then quasi-isomorphic to the chain complex

C1
�
ƒ0.G ËG=K/

�
y̋ ��.Vp/
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with zero differential. But since

�k
hrel;ƒ0

�
ƒ0.G ËM/

�
Š C1

�
ƒ0.G ËG=K/

�
y̋ �k.Vp/;

the claim is now proved.

Conjecture 6.7 (Brylinski [7, Proposition 3.4] and [8, p. 24, Proposition]). Let M be
G-manifold and regard ��

hrel;ƒ0
.ƒ0.G ËM// as a chain complex endowed with the zero

differential. Then the chain map

ˆ�;M=G W C�

�
C1.M/;A.M=G/

�
! ��

hrel;ƒ0

�
ƒ0.G ËM/

�
is a quasi-isomorphism.

Remark 6.8. Proposition 6.6 shows that Brylinski’s conjecture holds true for G-mani-
folds having only one isotropy type. Corollary B.8 tells that Brylinski’s conjecture is true
for finite group actions. In the following section, we will verify it for circle actions.

7. The circle action case

7.1. Rotation in a plane

Let us consider the case of the natural S1-action on R2 by rotation. First, we describe
the ideal sheaf J � C1

S1ËR2 which consists of smooth functions on open sets of S1 �R2

vanishing on ƒ0.S1 Ë R2/. To this end, denote by xj W S1 � R2 ! R, j D 1; 2, the
function given by the first, respectively second, Cartesian coordinate of R2 and by

� W S1
n ¹�1º �R2

! .��; �/

the function given by .g;v/ 7!Arg.g/. We denote by r WD
q
x2

1 C x
2
2 the radial coordinate

and byB%.v/ the open disc of radius % > 0 around a point v 2R2. Note that the loop space
ƒ0.S1 Ë R2/ is the disjoint union of the strata ¹.1; 0/º, ¹1º � .R2 n ¹0º/, and .S1 n ¹1º/�

¹0º and that the loop space is smooth outside the singular point .1; 0/.

Proposition 7.1. Around the point .1; 0/, the vanishing ideal J..S1 n ¹�1º/ � B%.0//

consists of all smooth f W .S1 n ¹�1º/ � B%.0/! R which can be written in the form

f D f1�x1 C f2�x2; where f1; f2 2 C1
�
.S1
n ¹�1º/ � B%.0/

�
: (7.1)

Around the stratum ¹1º � .R2 n ¹0º/, a function

f 2 C1
��

S1
n ¹�1º

�
�
�
R2
n ¹0º

��
lies in the ideal J..S1 n ¹�1º/� .R2 n ¹0º// if and only if f is of the form h� for some h 2
C1..S1 n ¹�1º/ � .R2 n ¹0º//. Finally, around the stratum .S1 n ¹1º/ � ¹0º, a function
f 2 C1..S1 n ¹1º/�R2/ vanishes onƒ0.S1 Ë R2/ if and only if it is of the form f1x1C

f2x2 with f1; f2 2 C1..S1 n ¹1º/ �R2/.
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Proof. Since the loop space is smooth at points of the strata ¹1º�.R2n¹0º/ and .S1n¹1º/

� ¹0º, only the case where f is defined on a neighborhood of the singular point .1; 0/ is
non-trivial. So let us assume that

f 2 C1
��

S1
n ¹�1º

�
� B%.0/

�
vanishes on ƒ0.S1 Ë R2/. Using the coordinate functions, we can consider f as a func-
tion of t 2 .��; �/ and x 2 R2. By the Malgrange preparation theorem, one then has an
expansion

f .t; x/C t D c.t; x/
�
t C a0.x/

�
;

where c and a0 are smooth and a0.0/ D 0. Since t D c.t; 0/t for all t 2 .��; �/, one has
c.t; 0/ D 1. Putting t D 0 gives 0 D c.0; x/a0.x/ for all x 2 B%.0/. Since c.0; 0/ D 1,
one obtains a0.x/ D 0 for all x in a neighborhood of the origin. After possibly shrinking
B%.0/, we can assume that a0 D 0. Hence

f .t; x/ D
�
c.t; x/ � 1

�
t: (7.2)

Taylor expansion of c.t; x/ � 1 gives

c.t; x/ � 1 D x1r1.t; x/C x2r2.t; x/;

where

rj .t; x/ D

Z 1

0

.1 � s/@j c.t; sx/ ds; j D 1; 2:

Since the functions rj are smooth, this expansion together with (7.2) entails (7.1).

Lemma 7.2. The vector fields

Y D YS1ËR2 W S1
�R2

! R2; .g; x/ 7! x � gx

and
Z D ZS1ËR2 W S1

�R2
! R2; .g; x/ 7!

x C gx

2

have coordinate representations Y D Y1
@

@x1
C Y2

@
@x2

andZ DZ1
@

@x1
CZ2

@
@x2

with coef-
ficients given by

Y1 D x1.1 � cos �/ � x2 sin � and Y2 D x2.1 � cos �/C x1 sin � (7.3)

respectively by

Z1 D x1.1C cos �/C x2 sin � and Z2 D x2.1C cos �/ � x1 sin �: (7.4)

Moreover, the vector fields Y and Z have square norms

kY k2 D 2r2.1 � cos �/ D r2�2.� ı �/ and kZk2 D 2r2.1C cos �/; (7.5)

where � is holomorphic with positive values over .��; �/ and value 1 at the origin.
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Proof. The representations

Y j.S1n¹�1º/�R2 D
�
x1.1 � cos �/ � x2 sin �

� @

@x1

C
�
x2.1 � cos �/C x1 sin �

� @

@x2

and

Zj.S1n¹�1º/�R2 D
�
x1.1C cos �/C x2 sin �

� @

@x1

C
�
x2.1C cos �/ � x1 sin �

� @

@x2

are immediate by definition of Y and Z and since S1 acts by rotation. Note that these
formulas still hold true when extending � to the whole circle by putting �.�1/ D � . At
g D �1, the extended � is not continuous then, but compositions with the trigonometric
functions cos and sin are smooth on S1. For the norms of Y and Z, one now obtains

kY k2 D x2
1.1 � cos �/2 C x2

2 sin2 � C x2
2.1 � cos �/2 C x2

1 sin2 � D 2r2.1 � cos �/

and

kZk2 D x2
1.1C cos �/2 C x2

2 sin2 � C x2
2.1C cos �/2 C x2

1 sin2 � D 2r2.1C cos �/:

By power series expansion of 1 � cos t , one obtains the statement about �.

Lemma 7.3. For all open subsets U of the loop spaceƒ0 Dƒ0.S1 Ë R2/ and all k 2N,
the map

‚k
U W �

k
rel;ƒ0

.U /! �1.U;^kF /

from Proposition 5.1 is injective.

Proof. Since�0
rel;ƒ0

.U /D C1.U /D �1.U;^0F / and‚0
U D id, we only need to prove

the claim for k � 1. To this end, we have to show that for ! 2 �1. zU ;^ks�T �M/ with
Œ!�F D 0 the relation Œ!�ƒ0 D 0 holds true. Here, as before, zU � S1 � R2 is an open
subset such that U D zU \ƒ0.S1 Ë R2/. In other words, we have to show that each such
! has the form

! D
X
l2L

fl!l C

X
j2J

drelhj ^ �j ;

where L; J are finite index sets,

fl ; hj 2 J. zU/; !l 2 �
1. zU ;^ks�T �M/; and �j 2 �

1. zU ;^k�1s�T �M/:

Since the involved sheaves are fine, we need to show the claim only locally. So let .g; v/ 2
ƒ0.S1 Ë R2/. Choose % > 0 and " > 0 with " < � such that 0 … B%.v/ if v ¤ 0 and such
that e

p
�1tg ¤ 1 for all t with jt j < " if g ¤ 1. Let

zU D
®
.e

p
�1tg;w/ 2 S1

�R2
j jt j < " and kv � wk < %

¯
:

Using the coordinate maps �; x1; x2, we now consider three cases.
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Case 1: g D 1 and v D 0. Then F.1;w/ D T
�
wR2, hence !.1;w/ D 0 for all w such that

.1; w/ 2 zU \ƒ0. Hence

! D �
X

1�i1<���<ik�2

!i1;:::;ikdxi1 ^ � � � ^ dxik

with !i1;:::;ik 2 C1. zU/. Now observe that �xj 2 J. zU/ for j D 1; 2 and that drel.�xj / D

�dxj . Therefore, ! 2 drelJ. zU/ ^ �
1. zU ;^k�1s�T �M/.

Case 2: g ¤ 1 and v D 0. Then F.h;0/ D 0 for all h 2 S1 with .h; 0/ 2 zU \ƒ0. Hence
! can be any k-form on zU . But over zU one has x1; x2 2 J. zU/ which entails that

! D
X

1�i1<���<ik�2

!i1;:::;ikdxi1 ^ � � � ^ dxik 2 drelJ. zU/ ^ �
1. zU ;^k�1s�T �M/:

Case 3: g D 1 and v ¤ 0. Then F.1;w/ D T
�R2 for all w such that .1; w/ 2 zU \ ƒ0.

Hence
! D �

X
1�i1<���<ik�2

!i1;:::;ikdx1 ^ � � � ^ dxik

with !i1;:::;ik 2 C1. zU/. Since � 2 J. zU/, one obtains ! 2 J. zU/�1. zU ;^ks�T �M/.
So in all three cases, ! is in the differential graded ideal

J. zU/�1. zU ;^ks�T �M/C drelJ. zU/ ^ �
1. zU ;^k�1s�T �M/

and Œ!�ƒ0 D 0. Hence ‚k
U is injective.

Lemma 7.4. For every S1-invariant open V � R2, the restriction morphism

Œ��ƒ0 W �
�

S1ËV !S1.S
1 Ë V /! ��

rel;ƒ0

�
ƒ0.S

1 Ë V /
�

maps the space of cyclesZk.�
�

S1ËV !S1.S
1ËV /;Yy/ onto the space �k

hrel;ƒ0
.ƒ0.S1ËV //

of horizontal relative forms.

Proof. Since the sheaf ��
hrel;ƒ0

is fine, it suffices to verify this claim for V � R2 of the
form V D B%.0/ or V D B%.0/ n xB� .0/, where 0 < � < %. So assume that k D 1; 2 and
Œ!�ƒ0 2 �

k
hrel;ƒ0

.ƒ0.S1 Ë V // for some relative form ! 2 �k
S1ËV !S1.S

1 Ë V /. Now
observe that

N �
v D R dr for all v 2 R2

n ¹0º;

where dr D 1
r
.dx1 C dx2/. Hence, !j¹1º�V D 0 if k D 2 and !j¹1º�.V n¹0º/ D ' dr

with ' 2 C1.V n ¹0º/ if k D 1. Since the claim for k D 2 has just been proved, we
assume from now on that k D 1. In Cartesian coordinates, ! D !1dx1 C !2dx2 with
!j 2 C1.S1 � .V n ¹0º//, j D 1; 2. Comparing with the expansion in polar coordinates
gives the following equality over V n ¹0º

!j .1;�/ D
'

r
xi for j D 1; 2: (7.6)
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Note that if the origin is an element of V , then !.1;0/ D 0, hence .!j /.1;0/ D 0, j D 1; 2.
Choose a smooth cut-off function � W S1 ! Œ0; 1� such that � is equal to 1 near � D 1 and
equal to 0 near � D �1. Now define the k-form y! 2 �k.S1 � V / by

y!.g;x/ D

8<: �.g/'.x/
kZ.g;x/k

˝
Z.g; x/;�

˛
W R2 ! R for g 2 supp� and x 2 V n ¹0º;

0 for g 2 S1 n supp� or x 2 V \ ¹0º:

where h�;�i is the Euclidean inner product on R2. It needs to be verified that y! is smooth
on a neighborhood of S1 � ¹0º in case the origin is in V . To simplify notation, we denote
the composition of a function f W V ! R with the projection S1 � V ! again by f and
likewise for a function Qf W S1 ! R. With this notational agreement, the formula for Z in
(7.4) entails by (7.6) over .S1 n ¹�1º/ � .V n ¹0º/

y!j.S1n¹�1º/�.V n¹0º/

D
�'

r
p
2.1C cos �/

��
.1C cos �/x1 C sin �x2

�
dx1 C

�
.1C cos �/x2 � sin �x1

�
dx2

�
D

�p
2.1C cos �/

��
.1C cos �/!1 C sin �!2

�
dx1 C

�
.1C cos �/!2 � sin �!1

�
dx2

�
:

The right-hand side can be extended by 0 to a smooth form on S1 � V , hence y! is smooth.
Moreover, the restriction of y! to ¹1º � V coincides with the restriction !j¹1º�V . Finally,
check that for x ¤ 0 and g 2 S1 n ¹�1º

Y.g; x/yy!.g;x/ D
�.g/'.x/

kx C gxk
hx C gx; x � gxi D 0:

Hence y! 2 Zk.�
�

S1ËV !S1.S
1 Ë V /; Y y/ and Œy!�ƒ0 D Œ!�ƒ0 .

Proposition 7.5. For each S1-invariant open V � R2, the chain map

Œ��ƒ0 W
�
��

S1ËV !S1.S
1 Ë V /; Y y

�
!

�
��

hrel;ƒ0

�
ƒ0.S

1 Ë V /
�
; 0
�

is a quasi-isomorphism.

Proof. It remains to prove that every ! 2 Zk.�
�

S1ËV !S1.S
1 Ë V /; Y y/ that satisfies the

condition Œ!�ƒ0 D 0 is of the form ! D Y y� for some � 2 �kC1
S1ËV !S1.S

1 Ë V /. Let us
show this. We consider the three non-trivial cases k D 0; 2; 1 separately.

Case 1: k D 0. Then ! is a smooth function on S1 Ë V vanishing on ƒ0. By Proposi-
tion 7.1, the function ! can be expanded over S1 n ¹�1º � V in the form

!jS1n¹�1º�V D !1�x1 C !2�x2; where !1; !2 2 C1
�
S1
n ¹�1º � V

�
:

Moreover, the interior product of a form �D �1dx1C �2dx2 2�
1
S1ËV !S1.S

1 Ë V / with
the vector field Y has the form

Y y� D Y1�1 C Y2�2 D
�
x1.1 � cos �/ � x2 sin �

�
�1 C

�
x2.1 � cos �/ � x1 sin �

�
�2:
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This means that it suffices to find �1; �2 2 C1.S1 Ë V / which solve the system of equa-
tions

!1� D .1 � cos �/�1 C .sin �/�2;

!2� D �.sin �/�1 C .1 � cos �/�2:
(7.7)

The 1-form �D �1dx1C �2dx2 will then satisfy Y y�D ! which will prove the first case.
The functions

�1 D
�.1 � cos �/

.1 � cos �/2 C sin2 �
!1 �

� sin �
.1 � cos �/2 C sin2 �

!2 D
�

2
!1 �

� sin �
2.1 � cos �/

!2;

�2 D
� sin �

.1 � cos �/2 C sin2 �
!1 C

�.1 � cos �/
.1 � cos �/2 C sin2 �

!2 D
� sin �

2.1 � cos �/
!1 C

�

2
!2

now are well defined and smooth over .S1 �V / n .¹1º �R2/. They also solve (7.7). We are
done when we can show that they can be extended smoothly to the whole domain S1 � V .
But this is clear since the function .��; �/ n ¹0º ! R, t 7! t sin t

2.1�cos t/
has a holomorphic

extension near the origin as one verifies by power series expansion.

Case 2: k D 2. Let ! 2 �2
S1ËV !S1.S

1 Ë V / and Y y! D 0. Then ! D 'dx1 ^ dx2 for
some smooth function ' 2 S1 Ë V ! S1. Now compute using (7.3)

0 D Y y! D ' � .Y1 � Y2/ D ' �
�
x1.1 � cos �/ � x2 sin � � x2.1 � cos �/ � x1 sin �

�
D ' � .x1 � x2/ � .1 � cos � � sin �/:

Hence ' D 0 and ! D 0.

Case 3: kD 1. Observe that in this case! can be written in the form!D!1dx1C!2dx2

with !1; !2 2 J.S1 � V / � C1.S1 � V /. By equation (7.1), !j j.S1n¹�1º/�V D ��j for
j D 1; 2 and functions�j 2 C1..S1 n ¹�1º/ � V /. The condition Y y! D 0 implies that

Y1�1 C Y2�2 D Y1!1 C Y2!2 D 0: (7.8)

Now define the function ' W .S1 �V / nƒ0!R by 'D 1
kY k2 .�Y2!1C Y1!2/

ˇ̌
.S1�V /nƒ0

.
Since kY k2 D 2r2.1 � cos �/, the vector field Y vanishes nowhere on .S1 � V / nƒ0, so
' is well defined and smooth. By (7.8) one computes

'.g; x/ D

´
!2

Y1
.g; x/ if g ¤ 1; x ¤ 0 and Y1.g; x/ ¤ 0;

�!1

Y2
.g; x/ if g ¤ 1; x ¤ 0 and Y2.g; x/ ¤ 0:

Assume that ' can be extended smoothly to S1 � V . Then � D 'dx1 ^ dx2 is a smooth
form on S1 � V which satisfies

Y y� D '.Y1dx2 � Y2dx1/ D !:

So it remains to verify that ' can be smoothly extended to S1 � V . To this end, we use the
complex coordinate z D x1 C

p
�1x2 of V and introduce the complex valued function

� D �1 C
p
�1�2. Moreover, we define y W S1 � V ! C, .g; z/ 7! z � gz. Then

y D .1 � e
p
�1� /z D Y1 C

p
�1Y2 (7.9)
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and, by equation (7.8),

1

2
.y x�C Ny�/ D Y1�1 C Y2�2 D 0: (7.10)

Next observe that 1 � e
p
�1� D �

p
�1�.1 �

p
�1�.� ı �// for some holomorphic func-

tion � W C ! C which fulfills �.0/ D 1
2

. Then equation (7.10) entails�
1 �
p
�1�.� ı �/

�
z x� D

�
1C
p
�1�.x� ı �/

�
Nz�:

By power series expansion, it follows that @�
@ Nz
jzD0 D 0 for all k 2 N. Hence, by Tay-

lor’s theorem � D zˆ for some smooth ˆ W S1 � V ! C. Since by Lemma 7.2 kY k2 D
r2�2.� ı �/ for some holomorphic function � not vanishing on .��; �/, the following
equalities hold over .S1 n ¹˙1º/ � .V n ¹0º/:

' D
1

� r2.� ı �/
.�Y2�1 C Y1�2/ D

p
�1

2� r2.� ı �/
.y x� � Ny�/

D
1

2r2.� ı �/

��
1 �
p
�1�.� ı �/

�
z Nz x̂ C

�
1C
p
�1�.x� ı �/

�
z Nzˆ

�
D

1

.� ı �/

�
1 �
p
�1�.� ı �/

�
x̂

ˇ̌̌̌
.S1n¹˙1º/�.V n¹0º/

:

Since the right-hand side has a smooth extension to S1 n ¹�1º � V , the function ' can be
smoothly extended to S1 � V and the claim is proved.

7.2. S1 rotation in R2m

In this subsection, we work with complex-valued functions, and differential forms over
complex numbers. Since tensoring an R-vector space with C is a faithfully flat functor,
our results in this section still hold true for the algebra of real-valued functions.

We consider a linear representation of S1 on R2m. We identify R2m with Cm, and
decompose Cm into the following two subspaces:

Cm
D V0 ˚ V1; (7.11)

where V0 is the subspace of Cm on which S1 acts trivially, and V1 is the S1-invariant
subspace of Cm orthogonal to V0 with respect to an S1-invariant Hermitian metric on Cm.
Furthermore, V1 is decomposed into irreducible unitary representations of S1, i.e.,

V1 D

tM
jD1

Cwj
;

where Cwj
is an irreducible representation �wj

of S1 with the weight 0 ¤ wj 2 Z, i.e.,

�wj

�
exp.2�

p
�1/t

�
.z/ WD exp.2wj�

p
�1t/z:
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We observe that C1.Cm/ Ì S1 is isomorphic to .C1.V0/˝ C1.V1// Ì S1. As S1 acts
on V0 trivially, we have

C1.Cm/ Ì S1
Š C1.V0/˝

�
C1.V1/ Ì S1

�
:

The Künneth formula for the Hochschild homology [30, Theorem 4.2.5] gives

HH�

�
C1.Cm/ Ì S1

�
D HH�

�
C1.V0/

�
˝HH�

�
C1.V1/ Ì S1

�
:

The Connes–Hochschild–Kostant–Rosenberg theorem asserts that HH�.C
1.V0// is iso-

morphic to��.V0/. Hence, we have reduced the computation ofHH�.C
1.Cm/ Ì S1/ to

that of HH�.C
1.V1/ Ì S1/. Without loss of generality, we assume in the remainder of

this subsection that Cm D V1, i.e.,

Cm
D

mM
jD1

Cwj
; 0 ¤ wj 2 Z:

Let w be the lowest common multiplier of w1; : : : ; wm. We observe that for t 2 Œ0; 1/,
if t ¤ j

w
; j D 0; : : : ; w � 1, the fixed point subspace of t is ¹0º; if t D j

w
, the fixed point

subspace of t is
Cwk1

˚ � � � ˚Cwkl
;

for wk1
; : : : ; wkl

that w divides jwk1
; : : : ; jwkl

. Hence the loop space ƒ0.S1 Ë Cm/ has
the following form:

ƒ0.S
1 Ë Cm/ D

®�
exp.2�

p
�1t/; .0; : : : ; zwk1

; : : : ; zwkl
; 0; : : :/

�
j

.0; : : : ; zwk1
; : : : ; zwkl

; 0; : : :/ 2 Cm; twk1
; : : : ; twkl

2 Zw
¯
:

Let � W ƒ0.S1 Ë Cm/! S1 be the projection onto the first factor. Following Propo-
sition 6.5 and equation (6.4), the Hochschild homology of C1.Cm/ Ì S1 is computed by
the S1-invariant part of the cohomology of the following Koszul-type complex:

�2m
S1ËCm!S1.S

1 Ë Cm/
iY

S1ËCm

������! � � �

iY
S1ËCm

������! �1
S1ËCm!S1.S

1 Ë Cm/

iY
S1ËCm

������! C1.S1 Ë Cm/! 0; (7.12)

where YS1ËCm W S1 Ë Cm ! s�TCm is defined by YS1ËCm.g; v/ D v � gv. Below,
we sometimes abuse notation by denoting YS1ËCm by Y . Fix a choice of coordinates
.z1; : : : ; zm/ for zj 2 Cwj

. The vector field Y WD YS1ËCm.exp.2�
p
�1t/; z/ is written as

Y WD YS1ËCm

�
exp.2�

p
�1t/; z

�
D

mX
kD1

�
exp.2�

p
�1wkt / � 1

�
zk

@

@zk

C
�

exp.�2�
p
�1wkt / � 1

�
Nzk

@

@ Nzk

:
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Define an analytic function a.z/ on C by

a.z/ WD
exp.2�

p
�1z/ � 1

z
:

Then we have

exp.2�
p
�1wkt / � 1 D wkta.wkt /;

exp.�2�
p
�1wkt / � 1 D wkt Na.wkt /:

Observe that for t 2 R, a.t/ D Na.t/, and a.t/ ¤ 0 for all t sufficiently close to 0. For a
sufficiently small ", the vector field Y on .�"; "/ �Cm is of the following form:

Y D t

mX
kD1

wk

�
a.wkt /zk

@

@zk

C a.wkt /Nzk

@

@ Nzk

�
:

This leads to the following property of the vector field Y .

Lemma 7.6. The vector field Y W S1 � Cm ! Cm, .g; z/ 7! z � gz has a coordinate
representation Y D

Pm
kD1 Y

kzk
@

@zk
C xY k Nzk

@
@ Nzk

with coefficients given by

Y k
�

exp.2�
p
�1t/

�
D exp.2�

p
�1wkt / � 1:

Set w D lcm.w1; : : : ; wm/. There exists an " > 0 such that

• if t0 D
j
w

, for 0 � j < w, on . j
w
� "; j

w
C "/, Y k is of the following form:

Y k
�

exp.2�
p
�1t/

�
D wk

�
t �

j

w

�
a

�
wk

�
t �

j

w

��
; for wkj 2 Zw;

where a.wk.t �
j
w
// ¤ 0 for all t 2 . j

w
� "; j

w
C "/,

• for k with wkj … Zw, Y k.exp.2�
p
�1t// ¤ 0 for all t 2 . j

w
� "; j

w
C "/,

• if t0 ¤
j
w

, Y k.exp.2�
p
�1t// ¤ 0 for all t 2 .t0 � "; t0 C "/.

The next lemma provides a local expression for the vanishing ideal J of the loop
space ƒ0.S1 Ë Cm/ associated to the S1-action on Cm defined by equation (7.11). We
write B%.Z0/ � Cm for the open ball of radius % > 0 around Z0 2 Cm.

Lemma 7.7. The vanishing ideal J of ƒ0.S1 Ë Cm/ has the following local form. For
each .exp 2�

p
�1t0; Z0/ 2 S1 �Cm, there exist "; % > 0 such that

• if t0 D
j
w

,Z0 D 0, then the vanishing ideal J.. j
w
� "; j

w
C "/�B%.0// consists of all

smooth functions f 2 C1.. j
w
� "; j

w
C "/ �B%.0// which can be written in the form

f D

�
t �

j

w

� X
k;wkj2wZ

.zkfk C Nzkgk/C
X

k;wkj…wZ

.zkfk C Nzkgk/;

with fk ; gk 2 C1.. j
w
� "; j

w
C "/ � B%.0//,
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• if t0 D
j
w

, Z0 ¤ 0 with exp.2�
p
�1 j

w
/Z D Z, then the vanishing ideal J.. j

w
� ";

j
w
C "/�B%.Z// consists of all smooth functions f 2 C1.. j

w
� "; j

w
C "/�B%.Z//

which can be written in the form

f D

�
t �

j

w

�
f C

X
k;wkj…wZ

.zkfk C Nzkgk/;

for f; fk ; gk 2 C1.. j
w
� "; j

w
C "/ � B%.Z//,

• if t0 ¤
j
w

, Z0 D 0, then the vanishing ideal J..t0 � "; t0 C "/ �B%.0// consists of all
smooth functions f 2 C1..t0 � "; t0 C "/ � B%.0// which can be written in the form

f D

mX
kD1

.zkfk C Nzkgk/;

for fk ; gk 2 C1..t0 � "; t0 C "/ � B%.0//.

Proof. We will prove the case around the most singular point .1; 0/ 2 S1 �Cm. A similar
proof works for the other points. We leave the details to the reader.

For .1; 0/ 2 S1 � Cm, choose a sufficiently small " > 0 such that there is no other
point in the interval .�"; "/ of the form j

w
for an integer 0 < j < w. We identify .�"; "/

with a neighborhood of 1 in S1 via the exponential map. For a positive %, the loop space
ƒ0.S1 Ë Cm/ in .�"; "/ � B%.0/ is of the form

ƒ0.S
1
�Cm/.0;0/ D

®
.0; z/ j z 2 B%.0/

¯
[
®
.t; 0/

¯
:

A smooth function f on .�"; "/ � B%.0/ belongs to J..�"; "/ � B%.0// if and only if

f .0; z/ D f .t; 0/ D 0:

We consider f as a function of t 2 .�"; "/. By the Malgrange preparation theorem, we
have the expansion

f .t; z/C t D c.t; z/
�
t C a0.z/

�
;

where c.t; z/ and a0.z/ are smooth and a0.0/ D 0. Since t D c.t; 0/t for all t 2 .�"; "/,
c.t; 0/D 1. Putting t D 0 gives 0D c.0; z/a0.z/ for all z 2 B%.0/. Recall that c.0; 0/D 1.
Therefore, a0.z/ D 0 for all z in a neighborhood of 0. After possibly shrinking %, we can
assume that a0.z/ D 0 on B�.0/. Hence, we conclude that

f .t; z/ D t
�
c.t; z/ � 1

�
:

Taking the parametric Taylor expansion of c.t; z/ � 1 gives

c.t; z/ � 1 D

mX
jD1

zjfj .t; z/C Nzjgj .t; z/;

where fj and gj are smooth functions on .�"; "/ � B%.0/.
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In the following, we compute the cohomology of the complex (7.12). We observe that
the complex .��

S1ËCm!S1.S
1 Ë Cm/; iY / for Y WD YS1ËCm forms a sheaf of complexes

over S1 via the map � W ƒ0.S1 Ë Cm/! S1. Accordingly, we compute the cohomology
.��

S1ËCm!S1.S
1 Ë Cm/; iY / as a sheaf over S1.

Proposition 7.8. For all open subsets U of the loop space ƒ0 D ƒ0.S1 Ë Cm/ and all
k 2 N, the map

‚k
U W �

k
rel;ƒ0

.U /! �1.U;^kF /

from Proposition 5.1 is injective.

Proof. We will prove the case around the most singular point .1; 0/ 2 S1 �Cm. A similar
proof works for the other points. We leave the detail to the reader.

Recall that we show in Lemma 7.7 that near .1; 0/, the vanishing ideal J..�"; "/ �

B%.0// for a sufficiently small "> 0 and a ballB%.0/�Cm centered at 0with a sufficiently
small radius % > 0 consists of all smooth functions f 2 C1..�"; "/ � B%.0// which can
be written in the form

f D t

mX
kD1

.zkfk C Nzkgk/;

for fk ; gk 2 C1..�"; "/ � B%.0//. Recall that by definition, �p
rel;ƒ0

..�"; "/ � B%.0// is
the quotient

�
p

S1ËCm!S1

�
.�"; "/ � B%.0/

�
=J�

p

S1ËCm!S1 C dJ ^�
p

S1ËCm!S1

�
.�"; "/ � B%.0/

�
:

In the following, we will describe �p
rel;ƒ0

..�"; "/ � B%.0// in more details and, for ease
of notation, will use the symbols �p

S1ËCm!S1 and �
p
rel;ƒ0

to stand for the spaces
�

p

S1ËCm!S1..�"; "/ � B%.0// and �p
rel;ƒ0

..�"; "/ � B%.0//, respectively, and J for the
vanishing ideal J..�"; "/ � B%.0//.

In degree p D 0, �0
rel;ƒ0

coincides with the quotient of C1..�"; "/ � B%.0// by
J..�"; "/ � B%.0//.

In degree p D 1, we know by Lemma 7.7 that dJ consists of 1-forms which can be
expressed as follows:

t

mX
kD1

.fkdzk C gkd Nzk/; fk ; gk 2 C1
�
.�"; "/ � B%.0/

�
:

Hence, dJ is of the form t�1
S1ËCm!S1 , which contains J�1

S1ËCm!S1 . Note that if
.0; z/ 2 S1 � Cm, then F.0;z/ coincides with T �

z Cm. For ! D
Pm

kD1 fkdzk C gkd Nzk 2

�1
rel;ƒ0

, if ‚.!/ D 0, then

fk.0; z/ D gk.0; z/ D 0 for 1 � k � m:

Therefore, taking the parametric Taylor expansion of fk ; gk at .0; z/, we have that there
are Qfk and Qgk in C1..�"; "/ � B%.0// such that fk D t Qfk and gk D t Qgk . Hence, ! D
t
Pm

kD1
Qfkdzk C Qgkd Nzk 2 dJ and Œ!� D 0 in �1

rel;ƒ0
.
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In degree p > 1, the above description of�1
rel;ƒ0

generalizes with the above expression
for dJ. As �k

S1ËCm!S1 is of the formX
j

dzj ^�
k�1
S1ËCm!S1 C d Nzj ^�

k�1
S1ËCm!S1 ;

we conclude that dJ ^ �k�1
S1ËCm!S1 can be identified as t�k

S1ËCm!S1 , which contains
J�k�1

S1ËCm!S1 as a subspace.
We notice that at .0;z/2S1 �Cm,^kF.0;z/ is^kT �

.0;z/
Cm. For!D

P
I;J fI;JdzI1 ^

� � � ^ dzIs ^ d NzJsC1 ^ � � � ^ d NzJk
, with 1� I1< � � �<Is �m and 1� JsC1< � � �<Jk �m,

if‚.!/D 0, we then get fI;J .0; z/D 0 for all I;J . And we can conclude from the Taylor
expansion that there exists QfI;J such that fI;J D t QfI;J , and

! D t
X
I;J

QfI;JdzI1 ^ � � � ^ dzIs ^ d NzJsC1 ^ � � � ^ d NzJk

which is an element in dJ ^�k�1
S1ËCm!S1 . Therefore, Œ!� D 0 in �k

rel;ƒ0
and the proof is

complete.

Proposition 7.9. For each S1-invariant open V � Cm the chain map

R W
�
��

S1ËV !S1.S
1 Ë V /; Y y

�
!

�
��

hrel;ƒ0

�
ƒ0.S

1 Ë V /
�
; 0
�

given by restriction, R.!/ WD Œ!�ƒ0 , is a quasi-isomorphism.

Proof. We consider both sides as sheaves over S1, and prove that R is a quasi-isomor-
phism of sheaves over S1. Since both sheaves are fine, it is sufficient to prove the quasi-
isomorphism R at each stalk; cf. [45, Section 6.8, Theorem 9]. We split our proof into two
parts according to the point t0 in S1:

(1) at exp.2�
p
�1t0/ with t0 ¤

j
w

for 0 � j < w and t 2 Œ0; 1/,

(2) at exp.2�
p
�1 j

w
/ for 0 � j < w.

Case (1). We prove that

Rexp.2�
p
�1t0/ W

�
��

S1ËV !S1;exp.2�
p
�1t0/

.S1 Ë V /; Y y
�

! ��

hrel;ƒ0;exp.2�
p
�1t0/

�
ƒ0.S

1 Ë V /
�

is a quasi-isomorphism for t0¤
j
w

for 0�j <w and t02 Œ0; 1/. It is crucial to observe that
for a sufficiently small " > 0, on .t0 � "; t0 C "/ �Cm, the vector field Y is of the form

Y D

mX
jD1

�
exp.2�

p
�1wj t / � 1

�
zj

@

@zj
C

�
exp.�2�

p
�1wj t / � 1

�
zj

@

@ Nzj
:

Observe that the vector field Y vanishes exactly at .t; 0/. Moreover,�
��

S1ËV !S1;exp.2�
p
�1t0/

�
.t0 � "; t0 C "/ �Cm

�
; Y y

�
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is a smooth family of generalized Koszul complexes over t 2 .t0 � "; t0C "/. Using Propo-
sition B.10, its cohomology can be computed as

H k
�
��

S1ËV !S1;exp.2�
p
�1t0/

�
.t0 � "; t0 C "/ �Cm

�
; Y y

�
D

8<:C1
�
t0 � "; t0 C "

�
; k D 0;

0; otherwise:

At the same time, for every t in .t0 � "; t0 C "/, the fixed point of exp.2�
p
�1t/ is

0 in Cm. Therefore, the complex ��
hrel;ƒ0

..t0 � "; t0 C "/ � Cm/ which coincides with
�1..t0 � "; t0 C "/ � ¹0º;^

�F / is given as follows:

�1
�
.t0 � "; t0 C "/ � ¹0º;^

kF
�
D

8<:C1
�
t0 � "; t0 C "

�
for k D 0;

0 otherwise:

From the above computation, it is straightforward to conclude that Rexp.2�
p
�1t0/ is a

quasi-isomorphism.

Case (2). We prove that at exp.2�
p
�1 j

w
/, the morphism Rexp.2�

p
�1

j
w /

is a quasi-
isomorphism. Following Lemma 7.6, we write the vector field Y as a sum of two compo-
nents:

Y D Y1 C Y2;

Y1 D

X
k;kj…wZ

Y kzk

@

@zk

C xY k
Nzk

@

@ Nzk

;

Y2 D

�
t �

j

w

� X
k;kj2wZ

wk

�
akzk

@

@zk

C Nak Nzk

@

@zk

�
;

where ak D a.wk.t �
j
w
//. Define zY2 to be

P
k;kj2wZ wk.akzk

@
@zk
C Nak Nzk

@
@zk
/. Then

we have the following expression for Y :

Y D Y1 C

�
t �

j

w

�
zY2:

Accordingly, we can decompose Cm as a direct sum of two subspaces, that is write Cm D

S1 ˚ S2 with
S1 WD

M
k;kj…wZ

Cwk
; S2 WD

M
k;kj2wZ

Cwk
:

Both S1 and S2 are equipped with S1-actions such that the above decomposition of Cm

is S1-equivariant. As our argument is local, we can assume to work with an open set V ,
which is of the product form V D V1 � V2 such that V1 (resp. V2) is an S1-invariant
neighborhood of 0 in S1 (and S2).
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We consider�
��

S1ËVl!S1

��
j

w
� ";

j

w
C "

�
� Vl

�
; iYl

�
for l D 1; 2:

Observe that each complex ��

S1ËVl!S1..
j
w
� "; j

w
C "/ � Vl / is a C1. j

w
� "; j

w
C "/-

module, and their tensor product over the algebra C1. j
w
� "; j

w
C "/ defines a bicomplex

�
p

S1ËV1!S1

��
j

w
� ";

j

w
C "

�
�V1

�
˝

C1.
j
w �";

j
w C"/

�
q

S1ËV2!S1

��
j

w
� ";

j

w
C "

�
�V2

�
with iY1 ˝ 1 being the horizontal differential and 1˝ iY2 being the vertical one. The total
complex of this double complex is exactly

��

S1ËV !S1

��
j

w
� ";

j

w
C "

�
� V

�
with the differential iY D iY1 ˝ 1C 1˝ iY2 . The E1-page of the spectral sequence asso-
ciated to the bicomplex

��

S1ËV1!S1

��
j

w
� ";

j

w
C "

�
�V1

�
˝

C1.
j
w �";

j
w C"/

��

S1ËV2!S1

��
j

w
� ";

j

w
C "

�
�V2

�
is

H �

�
��

S1ËV1!S1

��
j

w
� ";

j

w
C "

�
� V1

�
; iY1

�
˝

C1.
j
w �";

j
w C"/

�
q

S1ËV2!S1

��
j

w
� ";

j

w
C "

�
� V2

�
;

with the differential 1 ˝ iY2 . We observe that Y1 vanishes only at 0 for every fixed t .
Therefore, .��

S1ËV1!S1..
j
w
� "; j

w
C "/ � V1/; iY1/ is a smooth family of generalized

Koszul complexes. Its cohomology is computed by Proposition B.10 as follows:

H �

�
��

S1ËV1!S1

��
j

w
� ";

j

w
C "

�
� V1

�
; iY1

�
D

´
C1

�
j
w
� "; j

w
C "

�
� D 0;

0 � ¤ 0:

Therefore, we get the following expression of Ep;q
1 :

E
p;q
1 D

´
�

q

S1ËV2!S1

��
j
w
� "; j

w
C "

�
� V2

�
; p D 0;

0; p ¤ 0:

Next we compute the cohomology of .E0;q
1 ; iY2/. Recall by Lemma 7.6 that Y2 has the

form Y2 D .t �
j
w
/ zY2, where zY2 vanishes exactly at 0 for every fixed t 2 . j

w
� "; j

w
C "/.

At degree q, we notice that if an element ! 2 �q

S1ËV2!S1..
j
w
� "; j

w
C "/ � V2/ belongs

to ker.iY2/, then .t � j
w
/i zY2

! D 0. Thus, ! belongs to ker.i zY2
/. Hence, we have reached

the equation
ker.iY2/ D ker.i zY2

/:
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It is also easy to check that

iY2�
qC1

S1ËV2!S1

��
j

w
� ";

j

w
C "

�
�V2

�
D

�
t �

j

w

�
i zY2
�

qC1

S1ËV2!S1

��
j

w
� ";

j

w
C "

�
�V2

�
:

We conclude that the quotient ker.iY2/=iY2�
qC1

S1ËV2!S1..
j
w
� "; j

w
C "/ � V2/ is isomor-

phic to

ker.i zY2
/=

�
t �

j

w

�
i zY2
�

qC1

S1ËV2!S1

��
j

w
� ";

j

w
C "

�
� V2

�
:

Recall that the cohomology of .��

S1ËV2!S1..
j
w
� "; j

w
C "/ � V2/; i zY2

/ is computed as
follows:

H q

�
��

S1ËV2!S1

��
j

w
� ";

j

w
C "

�
� V2

�
; i zY2

�
D

´
C1

�
j
w
� "; j

w
C "

�
; q D 0;

0; q ¤ 0:

Therefore, for all q, we conclude that

i zY2
�

qC1

S1ËV2!S1

��
j

w
� ";

j

w
C "

�
� V2

�
D ker.i zY2

/;

and the quotient ker.iY2/=iY2�
qC1

S1ËV2!S1..
j
w
� "; j

w
C "/ � V2/ is isomorphic to

ker.i zY2
/=

�
t �

j

2

�
ker.i zY2

/:

As the E2 page has only nonzero component when p D 0, the spectral sequence col-
lapses at the E2 page, and we conclude that the cohomology of the total complex, which
is the cohomology of ��

S1ËV !S1..
j
w
� "; j

w
C "/ � V / with the differential iY1 ˝ 1 C

1˝ iY2 , is equal to the quotient

ker.i zY2
/=

�
t �

j

2

�
ker.i zY2

/

for the contraction i zY2
on ��

S1ËV2!S1..
j
w
� "; j

w
C "/ � V2/.

We now prove that the morphism

R W
�
�

q

S1ËV !S1.S
1 Ë V /; Y y

�
!

�
��

hrel;ƒ0

�
ƒ0.S

1 Ë V /
�
; 0
�

is a quasi-isomorphism. The above discussion and description ofƒ0..
j
w
� "; j

w
C "/� V /

reduces us to prove that the morphism

R2 W

�
��

S1ËV2!S1

��
j

w
� ";

j

w
C "

�
� V2

�
; Y2y

�
!

�
��

hrel;ƒ0

�
ƒ0

��
j

w
� ";

j

w
C "

�
� V2

��
; 0

�
is a quasi-isomorphism. We prove this by examination of R2 in degree q. Hereby, we will
work with ^�F as its smooth section space is isomorphic to ��

rel;ƒ0
by Proposition 7.8.



On the Hochschild homology of proper Lie groupoids 149

Case q � 1. Recall that �1.. j
w
� "; j

w
C "/ � V2;^

qF / is ^qF
.

j
w ;z/

. We observe that
the vector field zY2 at t D j

w
coincides with the fundamental vector field of the S1 action

on V2. Hence, if � 2 ^qF
.

j
w ;z/

is horizontal, � satisfies the equation i zY2.
j
w ;z/

� D 0. As
the cohomology of the .��.V2/; i zY2.0;z// at degree q vanishes, there is a degree qC 1 form
 2 ��.V2/ such that i zY2.

j
w ;z/

 D �. Define ! 2 ��

S1ËV2!S1..
j
w
� "; j

w
C "/ � V2/ by

! WD i zY2
 , where  is viewed as an element in ��

S1ËV2!S1..
j
w
� "; j

w
C "/ � V2/ con-

stant along the t direction. Then we can easily check that ! belongs to the kernel of i zY2

and R2. / D �. We conclude that R2 is surjective.
For the injectivity of R2, we suppose that ! 2 ker.i zY2

/. Hence,

R2.!/

�
j

w
; z

�
D !

�
j

w
; z

�
D 0:

Then by the parametrized Taylor expansion, we can find a form

z! 2 ��

S1ËV2!S1

��
j

w
� ";

j

w
C "

�
� V2

�
such that ! D .t � j

w
/z!. As 0 D i zY2

! D .t � j
w
/i zY2
z!2, i zY2

z! D 0. Hence ! D .t � j
w
/z!

belongs to .t � j
w
/ ker i zY2

, and Œ!� is zero in the cohomology of iY2 .

Case q D 0. Recall that zY2 is of the formX
k

wk

�
a

�
wk

�
t �

j

w

��
zk

@

@zk

C Na

�
wk

�
t �

j

w

���
Nzk

@

@ Nzk

;

where a.wk.t �
j
w
// ¤ 0 for all t 2 . j

w
� "; j

w
C "/. Therefore, the space .t � j

w
/i zY2

is
of the form �

t �
j

w

�X
k

zkfk C Nzkgk ;

which is exactly the vanishing ideal J.. j
w
� "; j

w
C "/ � V2/. This shows that the

cohomology of .��

S1ËV2!S1..
j
w
� "; j

w
C "/ � V2/; Y2y/ at degree 0 coincides with

C1.ƒ0.S1 Ë V2//j. j
w �";

j
w C"/�V2

. One concludes that R2 is an isomorphism in degree 0,
and the proof is complete

7.3. Stitching it all together

We are now in a position to prove Conjecture 6.7 in the case of circle actions:

Theorem 7.10. Let M be an S1-manifold and regard ��
hrel;ƒ0

.ƒ0.S1 ËM// as a chain
complex endowed with the zero differential. Then the chain map

ˆ�;M=S1 W C�

�
C1.M/;A.M=S1/

�
! ��

hrel;ƒ0

�
ƒ0.S

1 ËM/
�

is a quasi-isomorphism.
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Proof. Since ˆ�;M=S1 is the global sections of a morphism of fine sheaves on M=S1, it
suffices to prove that

ˆ� W
yC�.C

1
M ;A/! ��.sjƒ0

/��
�
rel;ƒ0

is a quasi-isomorphism of sheaf complexes, i.e., that the induced map on the stalks ˆ�;O

is a quasi-isomorphism for all orbits O � M . By properness of the action, the isotropy
group is a compact subgroup of S1, leaving us with two cases:

(i) when the isotropy subgroup �x � S1 of a point x 2 S1 is a finite group, this
follows from the (proof of) Corollary B.8. Indeed, it is easily checked that the
morphism ˆ� is the composition of the morphism of Proposition 4.5 reducing
to the local model, with the one inducing the isomorphism of Corollary B.8;

(ii) when the isotropy group is S1 itself, Proposition 7.9 entails thatˆ�;O is a quasi-
isomorphism.

This finishes the proof.

A. Tools from singularity theory

A.1. Differentiable stratified spaces

Assume that X � Rn is a locally closed subspace that is the intersection of an open and a
closed subset of the ambient Rn. The sheaf C1

X of smooth functions on X then is defined
as the quotient sheaf C1

U =JX;U , where U � Rn open is chosen such that X � U is rel-
atively closed, C1

U is the sheaf of smooth functions on U , and JX;U the ideal sheaf of
smooth functions on open subsets of U vanishing on X . Note that C1

X does not depend
on the particular choice of the ambient open subset U � Rn.

Definition A.1. A commutative locally ringed space .A;O/ is called an affine differen-
tiable space if there is a closed subset X � Rn and an isomorphism of ringed spaces
.f; F / W .A;O/! .X;C1

X /.
By a differentiable stratified space, we understand a commutative locally ringed space

.X;C1/ consisting of a separable locally compact topological Hausdorff spaceX equipped
with a stratification � on X in the sense of Mather [31] (cf. also [37, Section 1.2]) and a
sheaf C1 of commutative local C-rings on X such that for every point x 2 X there is an
open neighborhoodU together with '1; : : : ; 'n 2C1.U / having the following properties:

(DS1) the map ' W U ! Rn, y 7! .'1.y/; : : : ; 'n.y// is a homeomorphism onto a
locally closed subset zU WD '.U / � Rn and induces an isomorphism of ringed
spaces ' W .U;C1

jU
/! . zU ;C1

zU
/;

(DS2) the map ' endows .U;C1
jU
/ with the structure of an affine differentiable space

which means that .'; '�/ W .U;C1
jU
/! . zU ;C1

zU
/ is an isomorphism of ringed

spaces, where C1
zU

denotes the sheaf of smooth functions on zU as defined
above;
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(DS3) for each stratum S � U , the map 'jS\U is a diffeomorphism of S \ U onto a
submanifold '.S \ U/ � Rn.

A map ' W U ! Rn fulfilling the axioms (DS1) to (DS3) is often called a singular chart
of X (cf. [37, Section 1.3]).

A differentiable stratified space is in particular a reduced differentiable space in the
sense of Spallek [44] or Gonzáles–de Salas [34]. Moreover, differentiable stratified spaces
defined as above coincide with the stratified spaces with smooth structure as in [37].

Proposition A.2 (cf. [37, Theorem 1.3.13]). The structure sheaf of a differentiable strat-
ified space is fine.

To formulate the next result, we introduce the commutative ringed space .R1;C1
R1/.

It is defined as the limit of the direct system of ringed spaces ..Rn;C1
Rn/; �nm/n;m2N; n�m,

where �nm W Rn ,! Rm is the embedding given by

�nm.v1; : : : ; vn/ D .v1; : : : ; vn; 0; : : : ; 0/:

Note that for each open set U �R1 the section space C1
R1.U / coincides with the inverse

limit of the projective system of nuclear Fréchet algebras .C1
Rn.U \Rn/; ��nm/n;m2N; n�m.

Hence the C1
R1.U / and, in particular, C1

R1.R1/ are nuclear Fréchet algebras by [48,
Proposition 50.1].

Proposition A.3. For every differentiable stratified space .X;C1/, there exists a proper
embedding ' W .X;C1/ ,! .R1;C1

R1/.

Proof. Since X is separable and locally compact, there exists a compact exhaustion, that
is, a family .Kk/k2N of compact subsets Kk � X such that Kk � K

ı
kC1

for all k 2 N
and such that

S
k2N Kk D X . By [37, Lemma 1.3.17], there then exists an inductively

embedding atlas that is a family .'k/k2N of singular charts 'k W K
ı
kC1
! Rnk together

with a family .Uk/k2N of relatively compact open subsets Uk b Kı
kC1

such that Kk �

Uk and 'kC1jUk
D �nknkC1

ı 'kjUk
for all k 2 N. Now define ' W X ! R1 by '.x/ D

'k.x/ whenever x 2 Uk . Then ' is well defined and an embedding by construction. By a
straightforward partition of unity argument, one constructs a smooth function  W X ! R
such that  .x/ � k for all x 2KkC1 nK

ı
k

. The embedding .'; / W X !R1 �RŠR1

then is proper, and the claim is proved.

Corollary A.4. Let .X;C1/ be a differential stratified space. Then there exists a complete
metric d W X �X ! R such that d2 2 C1.X �X/.

Proof. The Euclidean inner product h�; �iRn extends uniquely to an inner product
h�;�iR1 on R1 such that hjn.x/; jn.y/iR1 D hx; yiRn for all n 2 N and x; y 2 Rn,
where jn WRn ,!R1 is the canonical embedding .x1; : : : ;xn/ 7!.x1; : : : ;xn;0; : : : ;0; : : :/.
The associated metric dR1 WR1 �R1!R, .x;y/ 7!

p
hx � y; x � yiR1 then is related

to the Euclidean metric dRn by dR1.jn.x/; jn.y// D dRn.x; y/ for x; y 2 Rn. Now
choose a proper embedding X ,! R1 and denote the restriction of dR1 to X by d . By
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construction, d2 then is smooth. Moreover, d is a complete metric since the embedding is
proper and each of the metrics dRn is complete.

B. The cyclic homology of bornological algebras

B.1. Bornological vector spaces and tensor products

We recall some basic notions from the theory of bornological vector spaces and their
tensor products. For details we refer to [27] and [33, Chapter 1].

Definition B.1 (cf. [27, Chapter I, 1:1 Definition]). By a bornology on a setX , one under-
stands a set B of subset of X such that the following conditions hold true:

(BS) B is a covering of X , B is hereditary under inclusions, and B is stable under
finite unions.

A map f W X ! Y from a set X with bornology B to a set Y carrying a bornology D

is called bounded, if the following is satisfied:

(BM) the map f preserves the bornologies, i.e., f .B/ 2 D for all B 2 B.

If V is a vector space over k D R or k D C, a bornology B is called a convex vector
bornology on V if the following additional properties hold true:

(BV) the bornology B is stable under addition, under scalar multiplication, under
forming balanced hulls, and finally under forming convex hulls.

A set together with a bornology is called a bornological set, and a vector space with a
convex vector bornology is called a bornological vector space. For clarity, we sometimes
denote a bornological vector space as a pair .V;B/, where V is the underlying vector
space, and B is the corresponding convex vector bornology.

A bornological vector space .V;B/ is called separated if the condition (S) below is
satisfied. If in addition condition (C) holds true as well, .V;B/ is called complete.

(S) The subspace ¹0º is the only bounded subvector space of V .

(C) Every bounded set is contained in a bounded completant disk, where by a com-
pletant disk one understands a non-empty balanced convex subset D � V such
that the space VD spanned by D and semi-normed by the gauge of D is a Banach
space.

As for the category of topological vector spaces, there exist functors of separation and
completion within the category of bornological vector spaces; see e.g. [32, Sections A.1.1
and A.1.3].

Example B.2. Let V be a locally convex topological vector space. The von Neumann
bornology on V consists of all (von Neumann) bounded subsets of V , i.e., all B � V that
are absorbed by every 0-neighborhood. One immediately checks that the von Neumann
bornology is a convex vector bornology on V . We sometimes denote this bornology by
BvN.
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Definition B.3. The bornological tensor product of two bornological vector spaces
.V1;B1/ and .V2;B2/ is defined as the algebraic tensor product V1 ˝ V2 endowed with
the smallest bornology on V1 ˝ V2 containing all the tensor product sets B1 ˝ B2, where
B1 2 B1 and B2 2 B2. The completion of the bornological tensor product is denoted by
V1 y̋ V2 and called the bornological tensor product.

Similarly to the topological case, the bornological tensor product satisfies a universal
property. The proof is straightforward.

Proposition B.4. Given two bornological vector spaces .V1;B1/ and .V2;B2/, the borno-
logical tensor product .V1 ˝ V2;B1 ˝ B2/ together with the canonical bounded map
V1 � V2! V1 ˝ V2 satisfies the following universal property: for each bornological vec-
tor space .W;B/ and bounded bilinear map � W V1 � V2 ! W , there exists a unique
bounded linear map x� W V1 ˝ V2 ! W making the diagram

V1 � V2
� //

��

W

V1 ˝ V2

x�

;;

commute.

Remark B.5. Since tensor products of topological vector spaces are also needed in this
paper, let us briefly recall that the completed projective (resp. inductive) topological ten-
sor product y̋ � (resp. y̋ �) can be defined as the (up to isomorphism) unique bifunctor
on the category of complete locally convex topological vector spaces which is universal
with respect to jointly (resp. separately) continuous bilinear maps with values in complete
locally convex topological vector spaces. For Fréchet spaces, the completed projective and
completed inductive tensor products coincide, since separately continuous bilinear maps
on Fréchet spaces are automatically jointly continuous. See [23, 33] for details.

B.2. The Hochschild chain complex

In this section, we recall the construction of the Hochschild bicomplex associated to a
possibly non-unital complete bornological algebra A. To this end, note first that the space
of Hochschild k-chains Ck.A/ WD A

y̋ .kC1/ is defined using the completed bornological
tensor product y̋ . Together with the face maps

bk;i W Ck.A/! Ck�1.A/;

a0 ˝ � � � ˝ ak 7!

´
a0 ˝ � � � ˝ aiaiC1 ˝ � � � ˝ ak for 0 � i < k;

aka0 ˝ � � � ˝ ak�1 for i D k

and the cyclic operators

tk W Ck.A/! Ck.A/; a0 ˝ � � � ˝ ak 7! .�1/kak ˝ a0 ˝ � � � ˝ ak�1;
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the graded linear space of Hochschild chains C�.A/ WD .Ck.A//k2N then becomes a pre-
cyclic object; see e.g. [30, Sections 1.1 and 2.5] for details. This means that the following
commutation relations are satisfied:

bk�1;ibk;j D bk�1;j�1bk;i for 0 � i < j � k;

bk;i tk D

´
�tk�1bk;i�1 for 1 � i � k;

.�1/kbk;k for i D 0;

tkC1
k
D 1:

From the pre-cyclic structure, one obtains two boundary maps, namely the one of the
Bar complex b0 W Ck.A/! Ck�1.A/, b0 WD

Pk�1
iD0 .�1/

ibk;i and the Hochschild boundary
b WCk.A/!Ck�1.A/, b WD b0C .�1/kbk;k . The commutation relations for the face maps
bk;i immediately entail that b2 D .b0/2 D 0. This gives rise to the two-column bicomplex

:::

��

:::

��

C2.A/

b

��

C2.A/
1�too

�b0

��

C1.A/

b

��

C1.A/
1�too

�b0

��

C0.A/ C0.A/:
1�too

We will denote this two-column bicomplex by C�;�.A/
¹2º. By definition, the homology of

its total complex is the Hochschild homology

HH�.A/ WD H�

�
Tot�.C�;�.A/

¹2º/
�
: (B.1)

In caseA is a unital complete bornological algebra andM a unitary complete bornological
A-bimodule, or more generally if A is H-unital and M H-unitary as explained in [52,
Section 9], then the Hochschild homology HH�.A;M/ of A in the bimodule M is given
by the homology of the chain complex C�.A;M/ D M y̋

A y̋A C�.A/ endowed with the
induced Hochschild boundary b.

B.3. A twisted version of the Connes–Hochschild–Kostant–Rosenberg theorem

The classical theorem by Hochschild–Kostant–Rosenberg identifies the Hochschild ho-
mology of the algebra of regular functions on a smooth affine variety with the graded
module of Kähler forms of that algebra [26]. In his seminal paper [11], Connes proved
that for compact smooth manifolds an analogous result holds true which means that the
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(continuous) Hochschild homology of the algebra of smooth functions on a manifold coin-
cides naturally with the complex of differential forms over the manifold (see [36] for the
non-compact case of that result). We will refer to this result as the Connes–Hochschild–
Kostant–Rosenberg theorem. In the following, we prove a twisted version which originally
goes back to [9, Lemma 5.2]. Here we provide an alternative proof which is closer to
Connes’ proof of the manifold version of the Hochschild–Kostant–Rosenberg theorem;
cf. also [6].

Assume that h is an orthogonal transformation acting on some Euclidean space Rd .
Let V be an open ball around the origin of Rd . Then we denote by hC1.V / the space
C1.V / with the h-twisted C1.V /-bimodule structure

C1.V / y̋ hC1.V / y̋ C1.V /! hC1.V /;

f ˝ a˝ f 0
7!

�
V 3 v 7! f .hv/a.v/f 0.v/ 2 R

�
:

In the following, we compute the twisted Hochschild homology H�.C
1.V /; hC1.V //

which by definition is the homology of the chain complex C�.C
1.V /; hC1.V //. Denote

by h�;�i the Euclidean inner product on Rd . By the orthogonality assumption, h�;�i is
G-invariant, hence so is V . Recall that for every topological projective resolution R� !

C1.V / of C1.V / as a C1.V /-bimodule, the Hochschild homology groupsHk.C
1.V /;

hC1.V // are naturally isomorphic to the homology groups Hk.R�;
hC1.V //; see [25].

Recall further that a topological projective resolution of the C1.V /-bimodule C1.V / is
given by the Connes–Koszul resolution [11, p. 127ff]

�1.V � V;Ed /
iY
�! � � �

iY
�! �1.V � V;E1/

iY
�! C1.V � V /! C1.V /! 0; (B.2)

where Ek is the pull-back bundle pr�2.ƒ
kT �Rd / along the projection pr2 W R

d � Rd !

Rd , .v;w/ 7!w, and iY denotes contraction with the vector field Y W V � V ! pr�2.TRd /,
.v; w/ 7! w � v. By tensoring the Connes–Koszul resolution with hC1.V /, one obtains
the chain complex

�d .V /
iYh
��! � � �

iYh
��! �1.V /

iYh
��! C1.V /! 0; (B.3)

where the vector field Yh W V ! TRd is given by Yh.v/ D v � hv. Denote by V h the
fixed point set of h in V , let �h W V h ,! V be the canonical embedding, and �h W V ! V h

the restriction of the orthogonal projection onto the fixed point space .Rd /h. One obtains
the following commutative diagram:

�d .V /
iYh //

��
h

��

� � �
iYh // �1.V /

iYh //

��
h

��

C1.V /

��
h

��

�d .V h/
0 //

��
h

��

� � �
0 // �1.V h/

0 //

��
h

��

C1.V h/

��
h

��

�d .V /
iYh // � � �

iYh // �1.V /
iYh // C1.V /:

(B.4)
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Proposition B.6. The chain maps ��
h

and ��
h

are quasi-isomorphisms.

Proof. Since the restriction of the vector field Yh to V h vanishes, the diagram (B.4) com-
mutes, and the ��

h
and ��

h
are chain maps indeed. Let W be the orthogonal complement

of .Rd /h in Rd , m D dimW , and �W WD idV ��h the orthogonal projection onto W .
Since the h-action on W is orthogonal and has as only fixed point the origin, there exists
an orthonormal basis w1; : : : ; wm of W , a natural l � m

2
, and �1; : : : ; �l 2 .��; �/ n ¹0º

such that the following holds:

hwk D

8̂̂<̂
:̂

cos �iw2i�1 C sin �iw2i if k D 2i � 1 with i � l;

� sin �iw2i�1 C cos �iw2i if k D 2i with i � l ;

�wk if 2l < k � m:

Denote by 't WRd !Rd , t 2R the flow of the complete vector field Yh or in other words
the solution of the initial value problem d

dt
't D .idV �h/'t , '0 D idV . Then 'tv D v for

all v 2 .Rd /h, and

't .wk/D

8̂̂<̂
:̂
e.1�cos �i /t

�
cos.t sin �i /w2i�1 C sin.t sin �i /w2i

�
; if kD2i�1 with i� l ;

e.1�cos �i /t
�
� sin.t sin �i /w2i�1Ccos.t sin �i /w2i

�
; if k D 2i with i � l;

e2twk ; if 2l < k � m:
(B.5)

Now let v1; : : : ; vn be a basis of V h, and denote by v1; : : : ; vn; w1; : : : ; wm the basis of
V 0 dual to v1; : : : ; vn; w1; : : : ; wm. Then every k-form ! on V is the sum of monomials
dvi1 ^ � � � ^ dvil ^ !i1;:::;il , where

1 � i1 < � � � < il � n and !ii ;:::;il D ivi1
^���^vil

! 2 �1.��
Wƒ

k�lT �W /:

Let dW be the restriction of the exterior differential to �1.��
Wƒ

�T �W / and define S W
�k.V /! �kC1.V / by its action on the monomials:

S! D

kX
lD0

X
1�i1<���<il�n

dvi1 ^ � � � ^ dvil ^

Z 0

�1

'�
t .dW !i1;:::;il / dt:

Note that the integral is well defined since 't .V / � V for all t � 0 by equation (B.5).
Observe that 't�Yh D Yh by construction of 't and that the fibers of the projection �h are
left invariant by 't . Hence one concludes by Cartan’s magic formula

.SiYh
C iYh

S/!

D

kX
lD0

X
1�i1<���<il�n

dvi1 ^ � � � ^ dvil ^

Z 0

�1

.dW iYh
C iYh

dW /'
�
t !i1;:::;il dt

D

kX
lD0

X
1�i1<���<il�n

dvi1 ^ � � � ^ dvil ^

Z 0

�1

LYh
'�

t !i1;:::;il dt
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D

kX
lD0

X
1�i1<���<il�n

dvi1 ^ � � � ^ dvil ^

Z 0

�1

d

dt
'�

t !i1;:::;il dt

D

k�1X
lD0

X
1�i1<���<il�n

dvi1 ^ � � � ^ dvil ^ !i1;:::;il

C

X
1�i1<���<ik�n

dvi1 ^ � � � ^ dvik ^ .!i1;:::;ik � �
�
h �

�
h!i1;:::;ik /

D ! � ��
h �

�
h!: (B.6)

To verify the second last equality observe that the !i1;:::;ik are smooth functions which
satisfy

lim
t!�1

'�
t !i1;:::;ik D �

�
h �

�
h!i1;:::;ik :

Thus equation (B.6) proves the claim.

The proposition entails the following twisted version of the Connes–Hochschild–
Kostant–Rosenberg theorem:

Theorem B.7. Let h W Rd ! Rd be an orthogonal linear transformation and V � Rd

an open ball around the origin. Then the Hochschild homology H�.C
1.V /; hC1.V //

is naturally isomorphic to ��.V h/, where V h is the fixed point manifold of h in V . A
quasi-isomorphism inducing this identification is given by

Ck

�
C1.V /; hC1.V /

�
! �k.V h/;

f0 ˝ f1 ˝ � � � ˝ fk 7! f0jV h df1jV h ^ � � � ^ dfk jV h :

Proof. As explained above, the homology of the chain complex (B.3) coincides natu-
rally with the Hochschild homologyH�.C

1.V /;hC1.V //. By commutativity of diagram
(B.4) and by Proposition B.6, the chain complex (B.3) is quasi-isomorphic to the chain
complex

�d .V h/
0
�! � � �

0
�! �1.V h/

0
�! C1.V h/! 0;

henceHk.C
1.V /;hC1.V // can be identified with�k.V h/ for all k. The explicit form of

the quasi-isomorphism is obtained by composing the quasi-isomorphism ��
h

with the quasi-
isomorphism between the Hochschild chain complex of the twisted module hC1.V / and
the chain complex (B.3).

Next we consider a finite subgroup � of the orthogonal group O.Rd /. Let V � Rd be
an open ball around the origin that is invariant with respect to the � action on Rd . We can
apply the quasi-isomorphism

b.�/ W C�

�
C1.V / Ì �

�
! C �

�

�
C1.V /

�
Š C�

�
C1.V /;C1.V / Ì �

��

from Section 6.2 to identify HH�.C
1.V / Ì �/ with the homology of the complex

C �
� .C

1.V //. Since � is a finite group, the crossed product algebra C1.V / Ì � can be
identified with the direct sum

L

2� C1.V / endowed with the convolution product and
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the twisted C1.V /-bimodule structure. Hence the homology of

C �
�

�
C1.V /

�
Š C�

�
C1.V /;C1.V / Ì �

��

is computed as the invariant part of the direct sum
L


2� H�.C
1.V /; 
 C1.V //. As a

corollary to Theorem B.7, we thus obtain the following computation of the Hochschild
homology of C1.V / Ì �:

Corollary B.8. The Hochschild homology HH�.C
1.V / Ì �/ is naturally isomorphic to�M


2�

��.V 
 /
��

D

M
h
i2Conj.�/

��.V 
 /Z.
/;

where � acts on the disjoint union
`


2� V

 by 
 0.
; x/ D .
 0
.
 0/�1; 
 0x/, Conj.
/

denotes the set of conjugacy classes of � , and Z.
/ is the centralizer of an element 
 2 � .

Remark B.9. In the case of a smooth affine algebraic variety, Corollary B.8 has been
proved in [6, Theorem 2.19]. The cyclic homology theory of finite group actions on mani-
folds has been considered in other work as well. Early ideas can be traced back to the work
by Burghelea [10], Feigin–Tsygan [21], Baum–Connes [1], and also Wassermann [49].
As already mentioned, Brylinski–Nistor [9] provided the first full proof of a twisted
Connes–Hochschild–Kostant–Rosenberg theorem for finite group actions. Getzler–Jones
constructed in [22] an isomorphism on the level of cyclic homology theory for crossed
product algebras of discrete group actions. In [35], Nistor examines the localization of
periodic cyclic homology of crossed products by algebraic groups at maximal ideals of
the algebra of class functions on the group. As already pointed out before, Block–Getzler
introduced in [3] a Cartan model for the cyclic homology of the crossed product algebra
of a Lie group action on a manifold and derived from it a quasi-isomorphism which they
call equivariant Hochschild–Kostant–Rosenberg map. More recently, Ponge [42, 43] con-
structed a quasi-isomorphism of “twisted” mixed complexes from which the above can be
derived as well.

Let us end with a generalization of Proposition B.6 which will serve as a useful tool in
our computations. Observe that in the complex (B.3) the vector field Yh can be extended
to be a more general linear vector field YH W Rn ! TRd of the form YH .v/ D H.v/ 2

TvRd where H W Rd ! Rd is a diagonalizable linear map. A construction similar to
the homotopy operator S in the proof of Proposition B.6 (see also [49]) computes the
homology of .��.V /; iYH

/ to be .��.V H /; 0/ where V H D ker.H/. Furthermore, if
H W S ! End.Rd / is a smooth family of diagonalizable linear operators parametrized by
a smooth manifold S , H is called regular if H satisfies the following properties:

(1) the kernel ker.H/ WD ¹ker.H.s//ºs2S � S � Rd is a smooth subbundle of the
trivial vector bundle S �Rd ;

(2) near every s0 2 S , there is a local frame of S � Rd on a neighborhood Us0 of s0
in S consisting of �1; : : : ; �d such that

• the collection ¹�1; : : : ; �kº is a local frame of the subbundle ker.H/ on Us0 ,



On the Hochschild homology of proper Lie groupoids 159

• for every j D k C 1; : : : ; d , there is a smooth eigenfunction �j .s/ defined on
Us0 satisfying H.s/�j .s/ D �j .s/�j .s/ and �j .s/ ¤ 0 for all s 2 Us0 .

The proof of Proposition B.6 generalizes to the following result.

Proposition B.10. Let H W S ! End.Rd / be a smooth family of diagonalizable linear
operators parametrized by a smooth manifold S . Assume that H is regular. Let

iker.H/ W ker.H/! S �Rd

be the canonical embedding, and��.ker.H// the restriction of C1.S;��.V // to ker.H/
along iker.H/. Then the restriction mapRker.H/ W .C

1.S;��.V //; iYH
/! .��.ker.H//;0/

is a quasi-isomorphism.

In a certain sense, the following proposition is a variant of the preceding one. To
formulate our final result recall that by a Euler-like vector field for an embedded smooth
manifold S ,!M , one understands a vector field Y WM ! TM such that S is the zero set
of Y and such that for each f 2 C1.M/ vanishing on S the function Yf � f vanishes
to second order on S ; cf. [24, Definition 1.1].

Proposition B.11. Let M be a smooth manifold of dimension d , S ,! M an embedded
submanifold, and Y W M ! TMa smooth vector field which is Euler-like with respect
to S . Then the complex

�d .M/
iY
�! � � �

iY
�! �1.M/

iY
�! C1.M/! C1.S/! 0 (B.7)

is exact and called the parametrized Koszul resolution of C1.S/.

Proof. The claim is an immediate consequence of the Koszul resolution as for example
stated in [49, Section V].
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