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Abstract12

The Tensor Isomorphism problem (TI) has recently emerged as having connections to multiple13

areas of research within complexity and beyond, but the current best upper bound is essentially14

the brute force algorithm. Being an algebraic problem, TI (or rather, proving that two tensors15

are non-isomorphic) lends itself very naturally to algebraic and semi-algebraic proof systems, such16

as the Polynomial Calculus (PC) and Sum of Squares (SoS). For its combinatorial cousin Graph17

Isomorphism, essentially optimal lower bounds are known for approaches based on PC and SoS18

(Berkholz & Grohe, SODA ’17). Our main results are an Ω(n) lower bound on PC degree or SoS19

degree for Tensor Isomorphism, and a nontrivial upper bound for testing isomorphism of tensors20

of bounded rank.21

We also show that PC cannot perform basic linear algebra in sub-linear degree, such as comparing22

the rank of two matrices (which is essentially the same as 2-TI), or deriving BA = I from AB = I.23

As linear algebra is a key tool for understanding tensors, we introduce a strictly stronger proof24

system, PC+Inv, which allows as derivation rules all substitution instances of the implication25

AB = I → BA = I. We conjecture that even PC+Inv cannot solve TI in polynomial time either,26

but leave open getting lower bounds on PC+Inv for any system of equations, let alone those for TI.27

We also highlight many other open questions about proof complexity approaches to TI.28

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-29

graphy → (Proof complexity | Problems, reductions and completeness)30

Keywords and phrases Algebraic proof complexity, Tensor Isomorphism, Graph Isomorphism,31

Polynomial Calculus, Sum-of-Squares, reductions, lower bounds, proof complexity of linear algebra32

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.433

Funding Joshua A. Grochow: Supported by NSF CAREER award CCF-2047756.34

Toniann Pitassi: Supported by NSF grant CCF-1900460, and by the IAS School of Mathematics.35

Adrian She: Supported by NSERC Canada Graduate Scholarship.36

Acknowledgements NG and JAG would like to thank Michael Forbes for early conversation about37

the PC degree of matrix rank, which occurred at Dagstuhl Seminar 18051: Proof Complexity in38

early 2018. We would also like to thank the organizers A. Atserias, J. Nordstrom, P. Pudlák, and39

R. Santhanam for their invitation and support.40

1 Introduction41

Tensors have rapidly emerged as a fundamental data structure and key mathematical object42

of the 21st century. They play key roles in many different areas of science, engineering, and43
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4:2 On the algebraic proof complexity of Tensor Isomorphism

mathematics, from quantum mechanics and general relativity to neural networks [39] and44

mechanical engineering. They arise in theoretical computer science in many ways, including45

from (post-quantum) cryptography [41, 30], derandomization, Matrix Multiplication,46

Graph Isomorphism [26], and several different parts of Geometric Complexity Theory.47

The fundamental notion of equivalence between tensors is that of isomorphism: two48

tensors are isomorphic if one can be transformed into the other by an invertible linear49

change of basis in each of the corresponding vector spaces. For example, two 2-tensors50

(=matrices) M, M ′ are equivalent under this notion if there are invertible matrices X, Y51

such that XMY = M ′; similarly, two 3-tensors, represented by 3-way arrays Tijk, T ′
ijk are52

isomorphic if there are three invertible matrices X, Y, Z such that53 ∑
ijk

Xii′Yjj′Zkk′Tijk = T ′
i′j′k′ (1)54

for all i′, j′, k′. The problem of (3-)Tensor Isomorphism (TI) is: given two such 3-way55

arrays, to decide if they are isomorphic.56

Over finite fields, two different versions of TI sandwich the complexity of its more famous57

cousin, Graph Isomorphism. Namely, as presented above, GI reduces to TI. In the other58

direction, over a finite field =pa , one can take an n × n × n tensor and list it out “verbosely”,59

as a set of pan many n × n matrices over ; the isomorphism problem for such verbosely60

given tensors is equivalent to Group Isomorphism for a certain class of p-groups, widely61

believed to be the hardest cases of Group Isomorphism in general. As such, this verbose62

version of TI reduces to GI. Furthermore, with Babai’s quasi-polynomial-time algorithm63

[4], the running times are quite close: NO(log N) for VerboseTI and NO(log2 N) for GI (the64

exponent of the exponent was worked out by Helfgott [28]). Thus TI stands as a key obstacle65

to putting GI into P.66

In this paper, we initiate the study of (algebraic) proof complexity approaches to proving67

that two tensors are non-isomorphic. Lower bounds on the Polynomial Calculus proof system68

imply lower bounds on Gröbner basis techniques, and the latter are some of the leading69

methods for solving TI-complete problems in cryptanalysis, e.g., [49, 18]. In the context of GI,70

proof complexity plays an important role, through its connection with the Weisfeiler–Leman71

(WL) algorithm. Although this algorithm does not, on its own, solve GI in polynomial time72

[15], it is a key subroutine in many of the best algorithms for GI, both in theory [4] and in73

practice (see [36, 37]). And the picture that has emerged is that some proof systems for GI74

are known to be equivalent in power to WL [3], and some lower bounds on proof systems are75

closely related to lower bounds for WL [45, 40]. Versions of WL for groups, and in particular76

finite p-groups—and hence, by the connection above, tensors over finite fields—have only77

recently begun to be explored [12, 9, 10, 17].78

1.1 Main results79

We focus on the Polynomial Calculus (PC, or Gröbner) proof system [16], though our results80

will also hold for semi-algebraic proof systems such as Sum-of-Squares [32] as well. PC is81

used to show that a system of polynomial equations over a field is unsatisfiable over the82

algebraic closure , by deriving from the system of equations, in a line-by-line fashion, the83

contradiction 1 = 0. The degree of a PC proof is the maximum degree of any line appearing84

in the proof, and it is a fundamental result that PC proofs of constant degree can be found85

in polynomial time [16]. Much as WL informally “captures all combinatorial approaches”86

to GI, PC informally “captures all approaches based on Gröbner bases” to showing that a87

system of polynomial equations is unsatisfiable.88
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The systems of equations we study are, for two non-isomorphic tensors T, T ′, the equations89

(1) along with new matrices X ′, Y ′, Z ′, and equations saying that these are the inverses90

of X, Y, Z, resp., viz.: XX ′ = X ′X = Id, and similarly for the others. The reason for91

introducing these new matrices, despite their not appearing in (1), is that these invertibility92

equations are only degree 2. In contrast, if we instead used the determinant to indicate that93

X was invertible, then our starting equations would have degree n + 1, rather than constant94

degree ≤ 3. Since the main complexity measure we study on PC is degree, having starting95

equations of degree n would make it difficult to make meaningful lower bound statements.96

Our first main result is (two proofs of) a lower bound on such techniques.97

▶ Theorem 1.1. Over any field, there are instances of n × n × n Tensor Isomorphism98

that require PC degree Ω(n) to refute. Over R, they also require Sum-of-Squares degree Ω(n)99

to refute.100

The preceding goes by reduction from known lower bounds on PC for Graph Isomorph-101

ism [7, 8], but has the disadvantage (from the tensor point of view) that the resulting tensors102

are quite sparse: in one direction, one of the slices is supported on an Ω(n) × n matrix and103

all the others slices have support size 1. In a second proof (Section 6), we get a polynomially104

worse lower bound Ω( 4
√

n), but with a reduction from Random 3XOR that is more direct.105

Indeed, we show that 3XOR itself can be viewed as a particular instance of a tensor problem106

without gadgets; gadgets are only then needed to reduce from that tensor problem to Tensor107

Isomorphism itself. In contrast, the lower bounds on PC for GI (ibid.) already use the108

Cai–Fürer–Immerman gadgets [15] to reduce from XOR-SAT, and then even further gadgets109

are needed to reduce from GI to TI.110

Our technical contributions in the above theorem are thus three-fold:111

1. We show that the known reductions from GI to TI can be carried out in low-degree PC;112

2. We realize 3XOR very naturally as a tensor problem; and113

3. We give new reductions from 3XOR, through a series of tensor-related problems, to TI,114

that work as many-one reductions of the decision problems that can be carried out in115

low-degree PC.116

Complementing our lower bound, we also show that tensors of low rank are comparat-117

ively easy to test for (non)-isomorphism. Here, one of our upper bounds is in the weaker118

Nullstellensatz proof system (giving a stronger upper bound than only a PC upper bound).119

In the Nullstellensatz proof system, a proof that a system of equations f1 = · · · = fm = 0 is120

unsatisfiable consists of polynomials gi such that
∑

gifi = 1, and the Nullstellensatz degree is121

the maximum degree of any gifi. The PC degree is always at most the Nullstellensatz degree,122

and the gap between the two can be nearly maximal for Boolean equations: O(1) versus123

Ω(n/ log n) [13]. (For Boolean equations, there is always an O(n) upper bound, though this124

does not apply to TI, see Remark 1.3 below).125

▶ Theorem 1.2. Over any field, the Nullstellensatz degree of refuting isomorphism of two126

n × n × n tensors of tensor rank ≤ r is at most 2O(r2). If working over a finite field q and127

including the equations xq − x, the PC degree is at most O(qr2).128

In particular, isomorphism of constant-rank tensors can be decided in polynomial time.129

▶ Remark 1.3. In many settings in proof complexity, Boolean axioms such as x2
i = xi or130

x2
i = 1 are included among the system of equations, and all such unsatisfiable systems of131

equations can be refuted in degree O(n) (n =# variables). If this were the case here, the132

above would only be interesting for very small values of r. In contrast, the equations for133

TI do not include any such Boolean axioms, and as such the naive degree upper bound is134

CCC 2023
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exponential in the number of variables. For n × n × n tensors, this gives an upper bound of135

2O(n2) [48], and thus, Theorem 1.2 gives nontrivial upper bounds all the way up to r ≤ n.136

(We note that n × n × n tensors can have rank up to Θ(n2) [34].) The proof of Theorem 1.2137

shows that for rank-r tensors, TI can essentially be reduced to a system of equations in only138

O(r2) variables.139

▶ Remark 1.4. For fixed r, testing if an n×n×n tensor has rank ≤ r can be done in polynomial140

time, as follows. This will show that the algorithm of Theorem 1.2 genuinely solves the141

decision problem, and not just a promise problem. Given an n × n × n tensor T , consider its142

three n × n2 flattenings. Use Gaussian elimination to put each such flattening, separately,143

into reduced row echelon form. If any of these flattenings has rank > r, reject. Otherwise,144

we get from this a list of 3r vectors u1, . . . , ur, v1, . . . , vr, w1, . . . , wr, such that T lives in the145

r × r × r-dimensional space Span{u1, . . . , ur} ⊗ Span{v1, . . . , vr} ⊗ Span{w1, . . . , wr}. Now146

in this space we can write down the Brent equations [11] for T to have rank ≤ r, which147

will be r3 cubic equations in 3r2 variables (Brent’s equations [11, (5.06)] were specifically148

for the matrix multiplication tensor, but analogous equations are easily constructed for149

arbitrary tensors using the same idea). Since r is constant, these equations may be solved in150

polynomial time (here we assume that we are either working over a finite field, a finite-degree151

extension of the rationals—see, for example, Grigoriev [22]—or in the BSS model over an152

arbitrary field).153

Lastly, one may wonder why we focus on 3-Tensor Isomorphism, and not some of its154

many related variants. Indeed, just as there are other equivalence notions for matrices—such155

as conjugacy XMX−1 and congruence XMXT —there are many different kinds of multilin-156

ear objects that can be represented by multi-way arrays, including tensors, homogeneous157

polynomials (commutative or noncommutative), alternating matrix spaces, multilinear maps,158

and so on, each with their own corresponding notion of isomorphism. While these problems159

are indeed distinct, they are all equivalent under polynomial-time isomorphisms [19, 26];160

such problems are called TI-complete. Even isomorphism of k-way tensors (for any fixed161

k ≥ 3) is equivalent to isomorphism of 3-tensors [26]. This partially justifies our focus on162

3-Tensor Isomorphism. In the course of proving our reductions for the results stated163

above, we use many of the gadgets from [19, 26], and show that such uses also often yield164

proof complexity reductions as well. Because of the variety of gadgets used in our reductions,165

we believe that many, if not all, of the gadgets from those results would also yield proof166

complexity reductions, so the proof complexity of all the known TI-complete problems should167

be polynomially related.168

1.2 Comparison with linear algebra, a new proof system, and a169

conjecture170

As linear algebra is part of the core toolkit for understanding tensors, it is natural to wonder171

how linear algebra can help in algebraic proof complexity approaches to TI. We believe that172

even if it had the “full power” of linear algebra at its disposal “for free,” PC could still not173

solve TI efficiently. We begin to make this precise in this section.174

Some basic derivations in linear algebra are to relate the ranks of two matrices and to175

derive BA = I from AB = I (the Inversion Principle, one of the so-called “hard matrix176

identities” [47], only recently shown to have short NC2-Frege proofs [29]). Soltys [46] and177

Soltys & Cook [47] discuss the relationship between these and other standard implications in178

linear algebra. We show that PC is not strong enough to prove these in low-degree:179
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▶ Theorem 1.5. The unsatisfiable system of equations XY = Idn where X is n × r and Y180

is r × n with 1 ≤ r < n, requires degree ≥ r/2 + 1 to refute in PC, over any field.181

We refer to this system of equations as the Rank Principle, as refuting them amounts to182

showing that rk Idn > r.183

▶ Theorem 1.6. Any PC derivation of BA = I from AB = I, where A, B are n×n matrices184

with {0, 1} entries, requires degree ≥ n/2 + 1, over any field.185

We also observe that the Rank Principle can be derived in low degree from the Inversion186

Principle.187

Although it remains open whether the Inversion Principle is “complete” for linear-algebraic188

reasoning (see [46, 47]), we introduce the proof system PC+Inv in an attempt to capture189

some linear-algebraic reasoning that seems potentially useful for TI. PC+Inv has all the190

same derivation rules as PC, but in addition, for any square matrices A, B (whose entries191

may themselves be polynomials—that is, we allow substitution instances), we have the rule192

AB = I

BA = I
.193

where the antecedent represents the set of n2 equations corresponding to AB = I, and194

similarly the consequent denotes the set of n2 equations BA = I (see 2.3 for more details).195

Degree is still measured in the usual way, but this rule lets us “cut out” the high-degree196

proof that would usually be required to derive BA = I from AB = I. We now formalize our197

intuition that linear algebra should not suffice to solve TI efficiently in the following:198

▶ Conjecture 1.7. Tensor Isomorphism for n × n × n tensors requires degree Ω(n) in199

PC+Inv, over any field.200

Despite the conjecture, we do not yet know how to prove lower bounds on PC+Inv for any201

unsatisfiable system of equations, let alone those coming from TI. Mod p counting principles202

(for p different from the characteristic of the field) strike us as potentially interesting instances203

to examine for PC+Inv lower bounds, before tackling a harder problem like TI. In the final204

section, we highlight many other open questions around the proof complexity of TI.205

1.3 Organization206

In Section 2 we cover preliminaries. In Section 3 we prove the lower bounds on linear algebraic207

principles just discussed. In Section 4 we prove the upper bound for isomorphism of bounded208

rank tensors (Theorem 1.2). In Section 5 we prove Theorem 1.1 by reduction from GI. In209

Section 6 we prove the polynomially related lower bound by direct reduction from Random210

3XOR.211

2 Preliminaries212

2.1 Proof systems213

All our rings are commutative and unital. Polynomial calculus (PC) is a proof system to
prove that a given system of (multivariate) polynomial equations P over a field F of the form
p = 0, has no solution over the algebraic closure (i.e. the system is unsolvable). We usually
shorten the polynomial equation p = 0 to just p. The derivation rules of the system are the
following one:

p

xp
(multiplication), p q

ap + bq
(linear combination)

CCC 2023



4:6 On the algebraic proof complexity of Tensor Isomorphism

where x is any formal variable, a, b ∈ F and p, q are polynomials over F.214

When refuting Boolean systems of equations it is common to include the Boolean axioms215

x2
i − xi. Because we do not always include these (esp. for TI) we are explicit about our use216

of these, but do not assume they are built into the proof system—that is, if we are assuming217

them as axioms, we say so.218

A PC derivation (or proof) of a polynomial q from a set of polynomials P is a sequence219

of polynomial equations p1, . . . , pm ending with the polynomial q (so pm is q) and where220

each pi, i ∈ [m], is either an axiom p for p ∈ P, or is obtained from previous equations in221

the refutation by multiplication or linear combination. We denote this by writing P ⊢ q.222

Observe that if p is derivable in PC and q is a polynomial then, by repeated applications of223

multiplication and linear combination rules, we can derive pq. We often use this generalization224

of the multiplication in our proofs without mention.225

A PC refutation is just a PC proof of the polynomial 1. The degree of a PC derivation226

is the maximal degree of a polynomial used in the proof. The size of a polynomial p is the227

number of terms in p. The size a PC derivation p1, . . . , pm is the sum of the sizes of the228

polynomials p1, . . . , pm.229

For our upper bound in Theorem 1.2, we also consider another algebraic proof system,
known as Nullstellensatz (NS), to certify unsolvability of sets of polynomial equations.
Nullstellensatz is defined in a static form as follows: a refutation of a list P = (p1, . . . , pm)
of polynomial equations over variables x1 . . . , xn is given by the list of polynomials Q =
(q1, . . . qm) such that ∑

i∈[m]

piqi = 1

The degree of a NS refutation is the maximal degree of a polynomial in P ∪ Q. The size230

of NS proof is the sum of the number of monomials appearing in the polynomials q1, . . . , qm.231

Sum-of-Squares (SOS) is a static proof system for certifying the unsolvability of systems232

of polynomial equations and polynomial inequalities, where polynomials are usually over the233

ring R[x1 . . . , xn].234

A polynomial p is a sum-of-squares polynomial if it is in the form p =
∑

i r2
i and

the ri’s are polynomials as well. Given a system made by a set of polynomial equations
P = {p1 = 0, . . . pm = 0} and a set Q = {q1 ≥ 0, . . . qk ≥ 0} of polynomial inequalities, a
sum-of-squares proof of the polynomial inequality p ≥ 0 from P ∪ Q is given by the formal
identity

p = s0 +
∑
i∈[k]

siqi +
∑

j∈[m]

tjpj

where s0, s1, . . . , sk are sum-of-squares polynomials, while t1, . . . , tm are arbitrary polyno-235

mials. When the system P ∪ Q is unsatisfiable, a refutation of P ∪ Q is a proof of the236

inequality −1 ≥ 0, that is for p the constant polynomial −1. The degree of the proof is the237

max{deg(p), deg(s0), deg(si) + deg(qi), deg(tj) + deg(pj)|i ∈ [k], j ∈ [m]}.238

▶ Definition 2.1 (PC reduction between systems of polynomials, cf. [14, Sec. 3]). Let239

P (x1, . . . , xn) and Q(y1, . . . , ym) be two sets of polynomials over a field F. P is (d1, d2)-240

reducible to Q if:241

1. For each i ∈ [m] there is a polynomial ri(x) of degree at most d1 (which we think of as242

defining yi in terms of the x variables);243

2. There exists a degree d2 PC derivation of Q(r1(x), . . . , rm(x)) from polynomials P (x).244
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▶ Lemma 2.2 ([14, Lem. 1]). If P (x) is (d1, d2)-reducible to Q(y) and there is a degree d245

PC refutation of Q(y), then there is a degree max(d2, d1d) refutation of P (x).246

In their paper, they typically only applied this to systems of equations which were known247

to be unsatisfiable (such as PHP and Tseitin tautologies), whereas in our paper we have248

several situations we want to combine the above notion together with the usual notion of249

many-one reduction. We encapsulate this in the following definition. We say a decision250

problem Π is a polynomial solvability problem over a field if all valid instances of the problem251

are systems of polynomial equations over , and the problem is to decide whether such a252

system of equations has solutions over the algebraic closure . Thus, the difference between253

multiple polynomial solvability problems is just which systems of equations are valid inputs.254

▶ Definition 2.3 (PC many-one reduction). Let Π1, Π2 be two polynomial solvability problems255

over a field . We say that Π1 (d1, d2)-many-one reduces to Π2 if there is a polynomial-time256

many-one reduction ρ from Π1 to Π2, such that for all unsatisfiable instances F of Π1, F257

(d1, d2)-reduces to ρ(F). When this occurs with d1, d2 = O(1), we write258

Π1 ≤P C
m Π2.259

2.2 Linear algebra and tensors260

Given three vector spaces U, V, W over a field , a 3-tensor is an element of the vector space261

U ⊗ V ⊗ W , whose dimension is (dim U)(dim V )(dim W ). If ei is the i-th standard basis262

vector, then a basis for U ⊗ V ⊗ W is given by the vectors {ei ⊗ ej ⊗ ek}. One may also263

interpret the symbol ⊗ more concretely as the Kronecker product, in which ei ⊗ ej ⊗ ek264

represents a 3-way array whose only nonzero entry is in the (i, j, k) position. The vector265

space of such 3-way arrays (with coordinate-wise addition) is isomorphic to U ⊗ V ⊗ W .266

The rank of a tensor T ∈ U ⊗ V ⊗ W is the minimum r such that T =
∑r

i=1 ui ⊗ vi ⊗ wi267

for some vectors ui, vi, wi.268

Two n × m × p 3-tensors T, T ′ ∈ U ⊗ V ⊗ W are isomorphic if there exist matrices269

X ∈ GL(U), Y ∈ GL(V ), Z ∈ GL(W ) such that (X, Y, Z) · T = T ′, where the latter is270

shorthand for (1). If we treat T, T ′ as given non-isomorphic tensors, then we may treat (1)271

as a system of equations in the n2 + m2 + p2 variables Xii′ , Yjj′ , Zkk′ . To enforce that these272

variable matrices are invertible, we furthermore introduce three additional sets of variables273

X ′, Y ′, Z ′ meant to be the inverse matrices, and include also the equations274

XX ′ = X ′X = In Y Y ′ = Y ′Y = Im ZZ ′ = Z ′Z = Ip,275

where In denotes the n × n identity matrix, which is IdU in any basis. (We could have276

instead introduced new variables such as δ and the equation det(X)δ = 1, however, the277

latter equation is degree n, whereas the above equations all have degree O(1), which is more278

desirable from the point of view of algebraic proof complexity.)279

2.3 Polynomial encodings and the inversion principle280

Some principles of linear algebra can be formulated as tautologies in propositional logic and281

therefore also as a set of polynomial equations. In this paper we preliminarily consider two282

such principles.283

Rank Principle. As a first example we consider a set of unsatisfiable polynomials encoding
the principle that the product of a n× r matrix X by a r ×n matrix Y cannot be the identity

CCC 2023



4:8 On the algebraic proof complexity of Tensor Isomorphism

matrix whenever r < n. We consider variables xi,k, yj,k for i, j ∈ [n] and k ∈ [r], where r < n

to encode X and Y . Then the polynomial encoding is:

I(r, n) :=
∑
k∈[r]

xi,kyj,k − δi,j i, j ∈ [n]

where δi,j = 1 if i = j and 0 otherwise. This set of polynomials is clearly unsatisfiable as284

long as r < n.285

Inversion Principle. The second principle encodes the invertibility of a square n×n matrix286

A, expressing the tautology that AB = I → BA = I where A, B are n × n matrices and I is287

the identity matrix. Stephen A. Cook suggested this principle as a tautology that may be288

hard to prove in several proof systems.289

Let ai,j , bi,j be formal variables encoding respectively the (i, j)-th entries of A and B.290

We represent the fact that AB = I as the set of degree 2 polynomials291 ∑
k∈[n]

ai,kbk,j − δi,j i, j ∈ [n],

where δi,j = 1 if i = j and 0 otherwise. We denote this set of polynomials by AB = I. In292

Section 3, we study the degree complexity of AB = I ⊢ BA = I, that is of PC derivations of293

the polynomials BA = I from the polynomials AB = I.294

In view of the results we obtain in Section 3, in Section 1.2 we considered a polynomial
rule schema of the form

AB = I

BA = I

which we call the Inversion Rule (INV) meant to be added to PC as an extra rule. We make295

this slightly more precise here.296

A polynomial instantiation τ of the polynomials AB = I is a substitution of polynomials297

pi,j , qi,j to variables ai,j and bi,j . In PC+INV a polynomial p is derivable from a set of298

polynomials P if299

1. p is an axiom, or p ∈ P ;300

2. p is obtained by multiplication or linear combination from previous polynomials in the301

proof;302

3. p is a polynomial among a polynomial instantiation τ of BA = I, given that among the303

polynomials previously derived in the proof there are all the polynomials forming the304

instantiation τ of AB = I.305

Pigeonhole Principle. An important role in proving the results in Section 3 is played by306

the well-known Pigeonhole principle stating that any function f from [n] to [r] with r < n307

has a collision, that is there are i ̸= i′ ∈ [n] and a j ∈ [r] such that f(i) = f(i′) = j. PHP n
r308

is the set of polynomials:309

∑
k∈[r]

pi,k − 1, for i ∈ [n], pi,kpj,k, for i ̸= j ∈ [n], k ∈ [r]310

311

p2
ij − pij , for i ∈ [n], j ∈ [r]312

Razborov [43] additionally included the “functional equations” (encoding that each pigeon313

cannot be matched to more than one hole):314

pi,kpi,k′ , for i ∈ [n], k ̸= k′ ∈ [r].315



N. Galesi, J. A. Grochow, T. Pitassi, A. She 4:9

3 Linear algebra warm-up: PC for matrices316

Two matrices M, M ′ ∈ U ⊗ V are isomorphic as tensors if they are equivalent as matrices,317

meaning under left- and right-multiplication by invertible matrices X ∈ GL(U), Y ∈ GL(V ),318

that is,319

XMY = M ′.320

Since we want X, Y to be invertible, we also introduce variable matrices X ′, Y ′ as before,321

together with the equations322

XX ′ = X ′X = IdU Y Y ′ = Y ′Y = IdV .323

Then by left multiplying our initial matrix equation by Y ′, we may replace it with the new324

matrix equation325

XM = M ′Y ′.326

The latter has the advantage of being linear in X and Y ′, but the quadratic equations327

XX ′ = IdU , Y Y ′ = IdV still make even this case not totally obvious.328

3.1 A trick for PC degree329

If our focus is on PC degree, we note that the degree of the equations is unchanged if we330

first left- or right-multiply M, M ′ by invertible scalar matrices. For example, if we replace331

M by M = AMB with A, B ∈ GL(U), then we may replace X by X := XA−1, Y by332

Y := B−1Y . Then we have M ∼= M , so M ∼= M ′ iff M ∼= M ′. Furthermore, since the333

transformation X 7→ XA−1, Y 7→ B−1Y is linear and invertible, any PC proof that M ̸∼= M ′
334

can be transformed by the inverse linear transformation into a PC proof that M ̸∼= M ′ of335

the same degree.336

Now, for matrices under this equivalence relation, we have a normal form, namely every337

matrix M is equivalent to a diagonal matrix with rk(M) 1s on the diagonal and all the338

remaining entries 0, that is,
∑rk(M)

i=1 ei ⊗ ei = Ir ⊕ 0, where the latter 0 denotes a 0 matrix of339

appropriate size (n − r) × (m − r). So by using the preceding trick, we may put both M and340

M ′ in this form. The two are isomorphic iff rk(M) = rk(M ′), so for PC degree we have now341

reduced to the case of showing that Ir ⊕ 0 and Ir′ ⊕ 0 are not isomorphic when r ̸= r′.342

Note that, aside from the equations saying X and Y are invertible, this is almost identical343

to the Rank Principle (see Section 2.3). In the rest of this section we will prove PC lower344

bounds on both the Rank Principle and the Inversion Principle.345

3.2 Inversion Principle implies the Rank Principle346

▶ Lemma 3.1. If the r × r Inversion Principle has a degree d PC derivation, then there is347

a degree max{d, 3} PC refutation of the Rank Principle stating that a rank r matrix is not348

equivalent (isomorphic) to a rank n matrix, for any n > r.349

If the Inversion Principle has a degree d NS derivation, then the Rank Principle has a350

degree d + 2 NS refutation.351

Proof. Suppose the r × r Inversion Principle has a degree-d derivation. Consider the Rank352

Principle XY = In where X is n × r and Y is r × n, with n > r. Write353

X =
[
X0
X1

]
and Y =

[
Y0 Y1

]
,354
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4:10 On the algebraic proof complexity of Tensor Isomorphism

where X0, Y0 are r × r. Then, examining the upper-left r × r corner of the original equations,355

we find X0Y0 = Ir. As these are square matrices, by assumption in degree d we may then356

derive that Y0X0 = Ir as well.357

Now, multiply both sides of XY = In on the left by the matrix
[
Y0 0
0 In−r

]
. The result358

is then the set of degree-3 equations359 [
Y0X0
X1

] [
Y0 Y1

]
=

[
Y0 0
0 In−r

]
.360

Considering the upper-right r × (n − r) block of these equations, we find the equations361

Y0X0Y1 = 0.362

But now, from the equation Y0X0 = Ir, we may right-multiply by Y1 to get Y0X0Y1 = Y1.363

Combining with the equation at the end of the last paragraph, we then conclude Y1 = 0.364

Finally, consider the lower-right (n − r) × (n − r) part of the original equation XY = In,365

namely, X1Y1 = In−r. We had already derived Y1 = 0, which we can then left-multiply by366

X1 to get X1Y1 = 0. Considering any diagonal entry of these two equations, we then derive367

the contradiction 1 = 0.368

To see the NS certificate, we unwrap the above proof. First write Y0X0 − Ir as a linear369

combination of the equations X0Y0 − Ir with polynomial coefficients, in total degree d.370

Among our starting equations in the Rank Principle, we have X0Y1 and X1Y1 − In−r. Then371

the following linear combination has degree 2 more than Y0X0 − Ir, and derives 1 in any of372

its diagonal entries:373

−X1Y0X0Y1 + X1(Y0X0 − Ir)Y1 + (X1Y1 − In−r).374

◀375

▶ Observation 3.2. The n × n Inversion Principle has a proof of degree 2n + 2.376

Proof. The idea is to use Laplace expansion. We spell out the details.377

We start with XY = In, where X and Y are n × n matrices of variables. Left-multiply by378

Y to get Y XY = Y , and then right multiply by Adj(Y ) (whose entries are the (n−1)×(n−1)379

cofactors of Y , hence have degree n − 1) to get Y XY Adj(Y ) = Y Adj(Y ). Now, by Laplace380

expansion, we have Y Adj(Y ) ≡ det(Y )In, so we get Y X det(Y ) = det(Y )In.381

Next, starting from XY = In and expanding out the determinant term-by-term, we382

derive det(XY ) = 1. (Note that here, we are not simply applying the determinant to the383

matrix XY − I, as that would give us the value of the characteristic polynomial evaluated at384

1. Instead, we repeatedly use that from a − b = 0 and c − d = 0 we can derive ac − bd = 0 as385

(a − b)c+b(c − d). Similarly, we can derive (a+c)−(b+d) = 0 as (a−b)+(c−d).) Now, since386

det(XY ) ≡ det(X) det(Y ) identically as polynomials, we have derived det(X) det(Y ) = 1 in387

degree n.388

Now, from Y X det(Y ) − det(Y )In in the first paragraph, we multiply by det(X) to get389

(Y X − In)(det(X) det(Y )). From det(X) det(Y ) − 1 in the second paragraph, we multiply390

by −(Y X − In) and add to the preceding to get Y X − In, all in degree at most 2n + 2. ◀391

3.3 Lower bound on the Rank Principle (and Inversion Principle) via392

reduction from PHP393

Here we show that the Rank Principle (see Section 2.3) requires large PC degree, via a394

reduction to the Pigeonhole Principle. For the Pigeonhole principle, a tight PC degree lower395

bound is known:396
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▶ Theorem 3.3 (Razborov [43]). Any PC refutation of the Functional PHP n
r requires degree397

r/2+1 over any field.398

We use this to show:399

▶ Theorem 3.4. Let n ∈ N, n ≥ 2 and 1 ≤ r < n. I(r, n) (with or without the Boolean400

axioms) requires degree r/2 + 1 in PC over any field.401

Proof. We prove that PHP n
r is (1, 2)-reducible to I(r, n). First we consider the following

degree 1 polynomials defining x and y variables of I(r, n) in terms of the p variables of PHP n
r .

variables
xi,k = yi,k = pi,k for i ∈ [n], k ∈ [n − 1].

Second we show a degree 2 PC proof of I(r, n) from the polynomials defining the PHP n
r .

From PHP axioms pi,kpk,j for i, j ∈ [n], i ̸= j, and summing over all k ∈ [r], we get∑
k∈[r]

pi,kpk,j ,

which are exactly the axioms of I(r, n) for i ≠ j, i, j ∈ [n], after the substitution of variables.402

For a i ∈ [n], take the boolean axioms written in the form pi,kpi,k − pi,k and sum them
over k ∈ [r]: ∑

k∈[r]

pi,kpi,k −
∑
k∈[r]

pi,k

Summing this last polynomial with the PHP axiom
∑

k∈[r] pi,k − 1 we get the polynomial∑
k∈[r]

pi,kpi,k − 1,

which is the axiom of I(r, n) for i = j after the substitution of the variables. The proof has403

degree 2. The result follows immediately from Lemma 2.2 and Theorem 3.3.404

◀405

▶ Corollary 3.5. Any PC proof of AB = I ⊢ BA = I, where A, B are square n × n {0, 1}406

matrices requires degree n/2 + 1.407

Proof. Follows immediately from Theorem 3.4 and Lemma 3.1. ◀408

4 Upper bound for non-isomorphism of bounded-rank tensors409

▶ Theorem 4.1. Over any algebraically closed field, there is a function f(r) ≤ 2O(r2),410

depending only on r, such that, given two non-isomorphic tensors M, M ′ of tensor rank ≤ r,411

the Nullstellensatz degree of refuting isomorphism is at most f(r).412

If working over a finite field GF (q) and including the equations xq −x = 0 for all variables413

x, then the PC degree is at most 12qr2.414

Proof. The proof is based mainly on the so-called inheritance property of tensor rank.415

Let M =
∑r

i=1 ui ⊗ vi ⊗ wi and let M ′ =
∑r

i=1 u′
i ⊗ v′

i ⊗ w′
i be our two tensors of416

format n1 × n2 × n3. Let d1 = dim Span{u1, u2, . . . , ur, u′
1, u′

2, . . . , u′
r}, d2 similarly for the417

v’s and d3 for the w’s. Choose a basis e1, e2, . . . , en1 for n1 such that Span{e1, . . . , ed1} =418

Span{u1, . . . , ur, u′
1, . . . , u′

r}. Let f1, . . . , fn2 be a similar basis for n2 (with the first d2 vectors419

a basis for Span{v1, . . . , vr, v′
1, . . . , v′

r}), and similarly g1, . . . , gn3 . Changing everything in420
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4:12 On the algebraic proof complexity of Tensor Isomorphism

sight into the e• ⊗ f• ⊗ g• basis, we find that M, M ′ are both supported in the upper-left421

d1 × d2 × d3 sub-tensors, with all zeros outside of this. Call the corresponding d1 × d2 × d3422

tensors M, M
′. Because all the entries outside this box are zero, it is not difficult to show423

that M ∼= M ′ iff M ∼= M
′ (the so-called “Inheritance Theorem,”, see, e. g., [31, §3.7.1]); note424

that isomorphism of M with M
′ is via the much smaller group GLd1 × GLd2 × GLd3 , rather425

than GLn × GLn × GLn (the latter of which is used to determine isomorphism of M with426

M ′).427

In this basis, isomorphism of M, M
′ is solely determined by the upper-left d1 × d1428

sub-matrix of X, X ′, the upper-left d2 × d2 submatrix of Y, Y ′, and the upper-left d3 × d3429

sub-matrix of Z, Z ′. So we now only need to deal with equations in d2
1 + d2

2 + d2
3 variables.430

Since each di ≤ 2r, this is at most 12r2 variables.431

Since we have ≤ 12r2 variables, d1d2d3 cubic equations, and 6n2 quadratic equations432

(XX ′ = I = X ′X = Y Y ′ = · · · ), over an algebraically closed field Sombra’s Effective433

Nullstellensatz [48] implies that the Nullstellensatz degree of refuting our equations is then434

at most 4 · 3Θ(r2).435

Over a finite field with the extra equations xq = x, we may reduce degrees so that the436

degree of each variable is never more than q, the size of the field. In this case, the PC degree437

is at most q times the number of variables, i. e., at most 12qr2. ◀438

5 Lower bound on PC degree for Tensor Isomorphism from Graph439

Isomorphism440

▶ Definition 5.1. Given two graphs G, H with adjacency matrices A, B (resp.), the equations441

for Graph Isomorphism (the same as those used by Berkholz & Grohe [7, 8]) are as follows.442

Let Z be an n × n matrix of variables zij (where the intended interpretation is that zij = 1 iff443

an isomorphism maps vertex i ∈ V (G) to vertex j ∈ V (H)). We say that a partial map, which444

sends (i, i′) 7→ (j, j′) is a local isomorphism if (1) i = i′ iff j = j′ (it’s a well-defined map)445

and (2) (i, i′) ∈ E(G) ⇔ (j, j′) ∈ E(H). (One may also do Colored Graph Isomorphism446

and require that the colors match, c(i) = c(j), c(i′) = c(j′).) Then the equations are:447

z2
ij − zij ∀i, j All variables {0, 1}-valued

1 −
∑

i zij ∀j each j ∈ V (H) is mapped to from exactly one vertex
1 −

∑
j zij ∀i each i ∈ V (G) maps to exactly one vertex

zijzi′j′ Whenever (i, i′) 7→ (j, j′) is not a local isomorphism.

448

In this section, we prove a lower bound on PC (and SoS) for TI, by reducing from GI449

and using the known lower bounds on GI [7, 8]. Specifically, we show450

▶ Theorem 5.2. Over any field, there are instances of Tensor Isomorphism of size451

O(n) × O(n) × O(n) that require PC degree Ω(n) to refute. The same holds over the reals452

for SoS degree.453

Proof. Berkholz and Grohe [7, 8] show the same statement for n-vertex graphs of bounded454

vertex degrees, with the same PC/SoS degree bound. In Proposition 5.4 we show that455

GI reduces to Monomial Code Equivalence by a (2,4)-many-one reduction that turns456

n-vertex, m-edge graphs into m × (3m + n) matrices. in Proposition 5.5 we show that457

Monomial Code Equivalence reduces to TI by a (2,4)-many-one reduction that turns458

k × N matrices into (k + 2N) × N × (1 + 2N) tensors. By Lemma 2.2, this completes the459

proof. ◀460
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To reduce from GI to TI we use the following intermediate problem. A matrix is monomial461

if it has exactly one nonzero entry in each row and column; equivalently, a monomial matrix462

is the product of a permutation matrix and an invertible diagonal matrix.463

▶ Definition 5.3. Monomial Code Equivalence is the problem: given two k × n matrices464

C, C ′, do there exist matrices X, Y such that XCY T = C ′ where X is invertible and Y is465

invertible and monomial? Given two such matrices C, C ′, the equations for Monomial466

Code Equivalence are as follows. There are 2(k2 + n2) variables arranged into matrices467

X, X ′ (of size k × k) and Y, Y ′ (of size n × n). The equations are468

XCY T = C ′ XX ′ = X ′X = Id Y Y ′ = Y ′Y = Id469

and470

yijyij′(∀i∀j ̸= j′) yijyi′j(∀i ̸= i′, ∀j)471

y′
ijy′

ij′(∀i∀j ̸= j′) y′
ijy′

i′j(∀i ̸= i′, ∀j)472
473

(Note: there are no equations forcing the variables to take on values in {0, 1}.)474

▶ Proposition 5.4. The reduction of Petrank & Roth [42] from Graph Isomorphism to475

Linear Code Equivalence over 2 in fact gives a (2,4)-many-one reduction from Graph476

Isomorphism to Monomial Code Equivalence (sic!) over any field.477

Proof. The reduction of Petrank & Roth is as follows: given a simple undirected graph G478

with n vertices and m edges, let D(G) be its m × n incidence matrix: De,v = 1 iff v ∈ e and479

is 0 otherwise, and let M(G) be the m × (3m + n) matrix480

M(G) =
[

Im Im Im D(G)
]

.481

Many-one reduction. It was previously shown (over 2 in [42] and over arbitrary482

fields in [23, Lem. II.4]) that this gives a many-one reduction to Permutational Code483

Equivalence. Here we observe that the same reduction also gives a reduction to Monomial484

Code Equivalence. Thus, all that remains to show is that if M(G) and M(H) are485

monomially equivalent, then G must be isomorphic to H.486

In fact, what was shown in [42] (over arbitrary fields in [23]) is that, up to permutation487

and scaling of the rows, M(G) is the unique generator matrix of its code satisfying the488

following properties: (1) M(G) is m × (3m + n), (2) each row has Hamming weight ≤ 5,489

(3) any linear combination that includes two or more rows with nonzero coefficients has490

Hamming weight ≥ 6.491

Now, suppose (X, Y ) is a monomial equivalence of the codes M(G), M(H). Then the492

rowspans of M(G)Y T and M(H) are the same. Since Y is monomial, if we consider just the493

supports of the rows of M(G)Y T , up to re-ordering the rows, by the preceding paragraph,494

those supports must be the same as the supports of the rows of M(H). Thus X must also be495

monomial. Say X = DP and Y = EQ where D, E are diagonal and P, Q are permutation496

matrices. Then PM(G)QT has the same support as XM(G)Y T = M(H), and since P and497

Q are permutation matrices and M(G) and M(H) have all entries in {0, 1}, we must have498

PM(G)QT = M(H). Thus M(G) and M(H) are in fact equivalent by a permutation matrix499

(in place of the monomial matrix Y ). Thus, by the fact that (G, H) 7→ (M(G), M(H)) was a500

reduction to Permutational Code Equivalence, we conclude that G ∼= H.501

Low-degree PC reduction. Let X, X ′, Y, Y ′ be the variable matrices in the equations502

for Monomial Code Equivalence of M(G), M(H), and let Z be the variable matrix in503
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4:14 On the algebraic proof complexity of Tensor Isomorphism

the equations for Graph Isomorphism of G, H . Let n = |V (G)|, m = |E(G)|; so, X, X ′ are504

of size m, Y, Y ′ are of size 3m + n, and Z is of size n.505

Let Z(2) denote the
(

n
2
)

×
(

n
2
)

matrix whose ({i, i′}, {j, j′}) entry is zijzi′j′ + zij′zi′j .506

The idea is that if Z is a map on the vertices, then Z(2) is the corresponding map on the507

edges; the two terms come from the fact that the edge {i, i′} can be mapped to the edge508

{j, j′} either by (i, i′) 7→ (j, j′) or by (i, i′) 7→ (j′, j). Note that, since Z is a permutation509

matrix, at most one of these terms is nonzero, and thus Z(2) is also a {0, 1}-matrix (in fact,510

a permutation matrix). Let Z
(2)
E denote the |E| × |E| submatrix of Z(2) all of whose row511

indices are {i, i′} ∈ E(G) and all of whose column indices are {j, j′} ∈ E(H). Note also that512

(Z(2)
E )T = (ZT )(2)

E , so we use these notations interchangeably for convenience.513

Now consider the following substitution:514

X 7→ (Z(2)
E )T Y 7→ (ZT )(2)

E ⊕ (ZT )(2)
E ⊕ (ZT )(2)

E ⊕ (ZT )
X ′ 7→ Z

(2)
E Y ′ 7→ Z

(2)
E ⊕ Z

(2)
E ⊕ Z

(2)
E ⊕ Z

515

After making these substitutions in the equations for Monomial Code Equivalence of516

M(G), M(H), we get the equations517

(Z(2)
E )T Z

(2)
E = Z

(2)
E (Z(2)

E )T = Idm (Z(2)
E )T D(G)Z = D(H) ZZT = ZT Z = Idn (2)518

along with equations saying that Z and Z
(2)
E are monomial.519

We now show how to derive these equations in low-degree PC from the GI equations.520

The monomial equations for Z are part of the GI equations, so there is nothing to do for521

those.522

The monomial equations for Z
(2)
E are of the form (zijzi′j′ + zij′zi′j)(zkℓzk′ℓ′ + zkℓ′zk′ℓ)523

where either (1) {i, i′} = {k, k′} and {j, j′} ≠ {ℓ, ℓ′} or (2) vice versa. We expand out to get524

zijzi′j′zkℓzk′ℓ′ + zijzi′j′zkℓ′zk′ℓ + zij′zi′jzkℓzk′ℓ′ + zij′zi′jzkℓ′zk′ℓ525

We show how to get this equation in case (1); case (2) follows similarly, mutatis mutandis.526

In case (1), without loss of generality suppose that i = k, i′ = k′, and j /∈ {ℓ, ℓ′}. The first527

two terms are divisible by the GI equations zijziℓ (since i = k and j ̸= ℓ), the third term528

is divisible by zi′jzi′ℓ′ (since i′ = k′ and j ̸= ℓ′), and the last term is divisible by zi′jzi′ℓ529

similarly.530

Next, the equations ZZT = Idn are, expanded out,531 ∑
j

zijzij − 1(∀i)
∑

j

zijzkj(∀i ̸= k).532

The first is gotten by linear combination from 1 −
∑

j zij and the Boolean axioms z2
ij − zij .533

The second is a linear combination of the monomial axioms zijzkj (part of the local non-534

isomorphism axioms). Similarly for ZT Z = Id, using 1 −
∑

i zij instead.535

Next, we expand out the equations Z
(2)
E (ZT )(2)

E = Idm, to get1
536 ∑

{j,j′}∈E(H)

(zijzi′j′ + zij′zi′j)(zkjzk′j′ + zk′jzkj′) − δ{i,i′},{k,k′}(∀{i, i′}, {k, k′} ∈ E(G))537

1 We use the notation
∑

{j,j′}∈E(H) to denote a sum in the index of summation takes on the value
e ∈ E(H) for each edge of H exactly once. Because our edges are undirected, we only use such sums
when the summand expression is itself invariant under swapping the roles of j, j′. If so desired, one
could equivalently say

∑
j<j′,{j,j′}∈E(H).
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Thus, for {i, i′} ̸= {k, k′}, we need to derive538 ∑
{j,j′}∈E(H)

(zijzi′j′zkjzk′j′ + zij′zi′jzkjzk′j′ + zijzi′j′zk′jzkj′ + zij′zi′jzk′jzkj′) .539

Without loss of generality, suppose that i /∈ {k, k′}. Then the first two terms of each summand540

are divisible by the GI equation zijzkj , the third term is divisible by zijzk′j , and the last541

term is divisible by zij′zkj′ . On the other hand, when {i, i′} = {k, k′}, we need to derive542

−1 +
∑

{j,j′}∈E(H)

(
z2

ijz2
i′j′ + 2zij′zi′jzijzi′j′ + z2

ij′z2
i′j

)
.543

The middle terms of each summand are divisible by the GI equations zij′zij . For the first544

and third terms, we can use the Boolean axioms to remove the squares, and thus we are left545

to derive546

−1 +
∑

{j,j′}∈E(H)

(zijzi′j′ + zij′zi′j) (3)547

We derive this from the GI equations as follows. Consider (
∑

j zij − 1)(
∑

j′ zi′j′ − 1) +548

(
∑

j zij − 1) + (
∑

j′ zi′j′ − 1) and break up the resulting sum according to whether j = j′,549

{j, j′} ∈ E(H) or {j, j′} /∈ E(H). Then we get550 ∑
j

zijzi′j +
∑

j,j′:{j,j′}∈E(H)

zijzi′j′ +
∑

j ̸=j′{j,j′}/∈E(H)

zijzi′j′ − 1551

Every summand in the first sum is a monomial axiom since i ̸= i′. Every summand in the552

third sum is a local non-isomorphism axiom, since {i, i′} ∈ E(G) but {j, j′} /∈ E(H). Note553

that every edge {j, j′} of E(H) is represented twice in the middle sum: once as (j, j′) and554

once as (j′, j). Thus, the above simplifies to555 ∑
{j,j′}∈E(H)

(zijzi′j′ + zij′zi′j) − 1,556

which is what we sought to derive. The derivation of (Z(2)
E )T Z

(2)
E = Id is similar.557

Finally, we show how to derive the equation (Z(2)
E )T D(G)Z = D(H) from the equations558

ZA(G) = A(H)Z, where A(G) denotes the adjacency matrix of G, with A(G)ii′ = 1 iff559

{i, i′} ∈ E(G). Writing out the equations in indices, we need to derive, for all ℓ ∈ V (H) and560

all {j, j′} ∈ E(H),561 ∑
{i,i′}∈E(G),k∈V (G)

(
Z

(2)
E

)
{i,i′},{j,j′}

D(G){i,i′},kzkℓ = D(H){j,j′},ℓ562

Using the fact that D(G){i,i′},k = δik + δi′k and the definition of Z(2), this is the same as563 ∑
{i,i′}∈E(G),k∈V (G)

(zijzi′j′ + zij′zi′j) (δik +δi′k)zkℓ = δjℓ +δj′ℓ(∀ℓ ∈ V (H), ∀{j, j′} ∈ E(H))564

Thus we need to derive:565

∑
{i,i′}∈E(G)

(zijzi′j′ + zij′zi′j) (ziℓ + zi′ℓ) =
{

1 ℓ ∈ {j, j′}
0 otherwise.

566

CCC 2023



4:16 On the algebraic proof complexity of Tensor Isomorphism

Expanding out the summand, we find the four terms567

zijzi′j′ziℓ + zijzi′j′zi′ℓ + zij′zi′jziℓ + zij′zi′jzi′ℓ.568

When ℓ /∈ {j, j′}, each of these terms is divisible by one of the monomial (local non-569

isomorphism) axioms, respectively: zijziℓ, zi′j′zi′ℓ, zij′ziℓ, and zi′jzi′ℓ.570

Finally, when ℓ ∈ {j, j′}, without loss of generality suppose that ℓ = j. Then the only571

terms that are not divisible by the monomial axioms as above are z2
ijzi′j′ + zij′z2

i′j . Using572

the Boolean axioms we can easily convert each such summand to zijzi′j′ + zij′zi′j . The573

derivation of the sum of these over all {i, i′} ∈ E(G) is analogous, mutatis mutandis, to the574

derivation of (3) above. This completes the proof. ◀575

▶ Proposition 5.5. The many-one reduction from Monomial Code Equivalence to576

Tensor Isomorphism from Grochow & Qiao [25] is in fact a (2, 4)-many-one reduction.577

Proof. We recall the reduction, then prove that it is a low-degree PC reduction. Let M be578

a k × n matrix. We build a 3-tensor of size (k + 2n) × n × (1 + 2n) as follows. The first579

frontal slice is
[

M

02n×n

]
. The remaining 2n slices all have just a single nonzero entry, which580

serve to place a 2 × 2 identity matrix “behind and perpendicular” to M , one 2 × 2 matrix581

in each column. Let us index these slices by [n] × 2. Then the (i, b) slice has a 1 in entry582

(2(i − 1) + b, i), for all i ∈ [n], b ∈ [2]. Let us call this tensor r(M). Then the reduction maps583

M, M ′ to r(M), r(M ′).584

Let X, X ′, Y, Y ′, Z, Z ′ be the variable matrices for the TI equations for r(M), r(M ′), and585

let A, B, A′, B′ be the variable matrices for Monomial Code Equivalence of M, M ′ (that586

is, AMBT = M ′, A is invertible, B is monomial and invertible). Consider the substitution:587

X 7→ A ⊕ (B ⊗ I2) Y 7→ B Z 7→ 1 ⊕ (B′ ◦ B′) ⊗ I2588

589

X ′ 7→ A′ ⊕ (B′ ⊗ I2) Y ′ 7→ B′ Z ′ 7→ 1 ⊕ (B ◦ B) ⊗ I2.590

As before, B ◦ B denotes the Hadamard or entry-wise product. Let us see what the TI591

equations become under this substitution. We get592

AMBT = M ′ AA′ = A′A = Id593

594

BB′ = B′B = Id (B′ ◦ B′)(B ◦ B) = (B ◦ B)(B′ ◦ B′) = Id595

Indeed, notice that the effect of the B ⊗ I2 in X and the B in Y is that the row and column596

locations of the 2 × 2 matrix gadgets get permuted in the same way, and the gadget get597

multiplied by the square of the nonzero entries of B. These are then multiplied by the B′ ◦ B′
598

in Z.599

Now, we derive these equations from the equations for Monomial Code Equivalence.600

The first three are already present in the equations for Monomial Code Equivalence.601

The last one we expand out, to see that we need to derive:602 ∑
j

b2
ij(b′

jk)2 = δik(∀i, k)603

Now, for i ̸= k, we may take the equation
∑

j bijb′
jk and square it, to derive604 ∑

j ̸=j′

bijb′
jk + bij′b′

j′k +
∑

j

b2
ijb2

j′k.605
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Each term in the first sum is divisible by one of the monomial axioms bijbij′ since j ≠ j′,606

and the second sum is what we wanted to derive.607

Finally, for i = k, we square the equation
∑

j bijb′
ji − 1 and add to it 2

(∑
j bijb′

ji − 1
)

.608

We then proceed to cancel terms with the monomial axioms as above, and end up with609 ∑
j b2

ij(b′
ji)2 − 1, as desired. ◀610

6 Lower bound on PC degree for Tensor Isomorphism from Random611

3XOR612

We get a lower bound on PC refutations for Tensor Isomorphism through the following613

series of low-degree PC many-one reductions (Definition 2.3):614

Random 3-XOR ≤P C
m {±1}-Monomial Equivalence of (4)615

{±1}-Multilinear Noncommutative Cubic Forms (5)616

≤P C
m Monomial Equivalence of {±1} Noncommutative (6)617

Cubic Forms (7)618

≤P C
m Equivalence of {±1} Noncommutative Cubic Forms (8)619

≤P C
m Tensor Isomorphism (9)620

621

We then appeal to the following PC lower bound on Random 3-XOR:622

▶ Theorem 6.1 (Ben-Sasson & Impagliazzo [5, Thm. 3.3 & Lem. 4.7]). Let be any field of623

characteristic ̸= 2. A random 3-XOR instance with clause density ∆ = m/n requires PC624

degree Ω(n/∆2) to refute, with probability 1 − o(1).625

This allows us to prove:626

▶ Theorem 6.2. Over any field of characteristic ̸= 2, there is a random distribution of627

instances of n × n × n Tensor Isomorphism—which assigns nonzero probability to at628

least 2Ω( 4√n) log n different instances—whose associated equations require PC degree Ω( 4
√

n) to629

refute, with probability 1 − o(1).630

Note that such instances have N = 6n2 variables, so this is really only an Ω( 8
√

N) lower631

bound relative to the number of variables.632

In the following subsections we recall the definitions of the above problems and their633

associated systems of polynomial equations, and we give the reductions in the order listed634

above.635

The first two reductions are gadget constructions of linear size; the proof of correctness636

for the first uses the fact that random hypergraphs have no automorphisms, while the second637

is fairly straightforward. Reduction (8) uses a gadget from Grochow & Qiao [26], albeit for a638

new application, and shows that the reduction using this gadget also yields a low-degree PC639

reduction. Reduction (9) is based on two lemmas, which show that the many-one reduction640

for this problem in fact also gives a low-degree PC reduction.641

▶ Remark 6.3. Both of the latter two reductions have a quadratic size increase, so while we642

get a nearly-linear lower bound on PC degree for refutations of Monomial Equivalence643

of Noncommutative Cubic Forms, we only get a Ω(
√

n) degree lower bound Equival-644

ence of Noncommutative Cubic Forms and a Ω( 4
√

n) degree lower bound on Tensor645

Isomorphism. If the gadget sizes of these latter two reductions could be improved to linear,646

we would get a similarly near-linear lower bound (linear in the side length, still
√

N relative647
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to the number of variables) on PC refutations for Tensor Isomorphism as well. As many648

of the reductions in [19, 26] are of a similar flavor to the ones we consider here, we believe649

that they can all be proven in low-degree PC, so we expect the main obstacle to such an650

improvement is the size of the constructions themselves.651

6.1 From Random 3-XOR to {±1}-multilinear noncommutative cubic652

forms653

▶ Definition 6.4. A random 3-XOR instance with n variables and m clauses is obtained by654

sampling m clauses independently and uniformly from the set of all 2
(

n
3
)

parity constraints655

on 3 variables. Each parity constraint is encoded by an equation of the form xixjxk = ±1,656

and the Boolean constraints are encoded by x2
i = 1.657

By a {±1}-monomial matrix, we mean a monomial matrix in which all nonzero entries658

are one of ±1. {±1}-Monomial Equivalence of Noncommutative Cubic Forms659

is the problem of deciding, given two noncommutative cubic forms f, f ′ in n variables660

x1, . . . , xn with all nonzero coefficients ±1, whether there is a permutation π ∈ Sn and signs661

ei ∈ {±1} such that f(e1xπ(1), . . . , e2xπ(2), . . . , enxπ(n)) = f ′(x⃗). Equivalently, if we represent662

a noncommutative cubic form f by the 3-way array Tijk such that f(y⃗) =
∑

i,j,k∈[n] Tijkyiyjyk,663

the problem here asks whether there is a {±1}-monomial matrix A such that (A, A, A)·T = T ′,664

that is, whether T ′
i′j′k′ =

∑
ijk aii′ajj′akk′Tijk for all i′, j′, k′ ∈ [n].665

▶ Definition 6.5. We define the systems of equations associated to several variations of666

Equivalence of Noncommutative Cubic Forms.667

1. Given two n × n × n 3-way arrays T, T ′, the system of equations for Equivalence of668

Noncommutative Cubic Forms is the following system of equations in 2n2 variables.669

Let A, A′ be n × n matrices of independent variables aij , a′
ij, respectively.670

(A, A, A) · T = T ′ (A is an equivalence)
AA′ = A′A = Id (A is invertible with A−1 = A′)671

2. The system of equations for Monomial Equivalence of Noncommutative Cubic672

Forms includes the preceding equations, as well as:673

aijaij′ = 0 ∀i∀j ̸= j′ (at most one nonzero per row)
aijai′j = 0 ∀j∀i ̸= i′ (at most one nonzero per column)674

3. The system of equations for {±1}-Monomial Equivalence of Noncommutative675

Cubic Forms includes all the preceding equations, as well as676

aij(aij + 1)(aij − 1) = 0 ∀i, j ∈ [n] (all entries in {0, ±1})677

4. A noncommutative cubic form
∑

ijk Tijkxixjxk is multilinear if all nonzero terms Tijk678

have i, j, k distinct (that is, |{i, j, k}| = 3). The system of equations for {±1}-Monomial679

Equivalence of Adjective Noncommutative Cubic Forms is the same as the680

above, with the restriction that T and T ′ both satisfy Adjective (e. g., multilinear,681

nonzero entries in {±1}, etc.).682

▶ Theorem 6.6. There is a linear-size (1,3)-reduction from Random 3-XOR instances on683

n variables with m clauses, where 104n ≤ m ≤
(

n
3
)
/1012, to {±1}-Monomial Equivalence684

of {±1} Multilinear Noncommutative Cubic Forms, over any ring R of characteristic685

̸= 2.686
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The reduction is always a (1,3)-reduction, but we only show the resulting system of687

equations for {±1}-Monomial Equivalence of Noncommutative Cubic Forms is688

unsatisfiable with probability 1 − o(1) when the 3-XOR instance is chosen randomly with689

the parameters specified in the theorem. (It is possible that it is always unsatisfiable when690

the input 3-XOR instance is, but our proof does not answer this question.)691

Proof idea. We build multilinear noncommutative cubic forms from the 3-XOR instance692

such that they are equivalent by a {±1} diagonal matrix iff the 3-XOR instance is satisfiable:693

an equation xixjxk = ±1 corresponds to setting Tijk = 1, T ′
ijk = ±1 in this construction.694

The noncommutative cubic forms are multilinear because the construction of the random695

3XOR instance ensures that each XOR clause contains 3 distinct variables. In fact, the696

equations for {±1}-diagonal equivalence of the correspondence noncommutative cubic forms697

will turn out to be identically the same as the equations for the 3-XOR instance.698

Next, for random instances chosen with the stated parameters, the 3-way arrays T, T ′ are699

the adjacency hyper-matrices of a 3-uniform hypergraph that has no nontrivial automorphisms700

by [40, Lemma 6.9]; this is why we needed to restrict the parameter range for m as we did.701

Because the hypergraphs have no nontrivial automorphisms, any monomial equivalence of702

the corresponding cubic forms must in fact be diagonal, thus letting us further reduce to703

{±1}-monomial equivalence. ◀704

Proof. We are given a system of 3-XOR equations, which we’ll denote xiℓ
xjℓ

xkℓ
= sℓ for705

ℓ = 1, . . . , m, where iℓ ≤ jℓ ≤ kℓ ∈ [n] are indices of variables and sℓ ∈ {±1} for all ℓ. It also706

includes the equations x2
i = 1 for all i = 1, . . . , n.707

Step 1: Reduce from random 3-XOR to {±1}-diagonal equivalence of non-708

commutative cubic forms. From the above system of equations, we now construct two709

n×n×n 3-way arrays T, T ′. For the original equations xiℓ
xjℓ

xkℓ
= sℓ (ℓ = 1, . . . , m), and for710

any aℓ ∈ {±1} of our choice (we may set all aℓ = 1 if we wish, but this additional flexibility711

may be useful in other settings) we set712

Tiℓ,jℓ,kℓ
= aℓ and T ′

iℓ,jℓ,kℓ
= sℓaℓ.713

All other entries of T and T ′ are set to zero.714

We start with a warmup lemma, to see that this part of the construction already has a715

desirable property. By a “{±1} diagonal isomorphism” of two non-commutative cubic forms,716

we mean a diagonal matrix X whose diagonal entries are all one of ±1 such that X gives an717

equivalence between T, T ′.718

▶ Lemma 6.7. Notation as in the paragraph above. There is a bijection between the solutions719

to the 3-XOR instance and the {±1} diagonal isomorphisms of the noncommutative cubic720

forms defined by T, T ′.721

Proof. Suppose x is a solution to the 3-XOR instance. Let X = diag(x1, . . . , xn) be the722

diagonal matrix with x on the diagonal. We claim that X is an equivalence between723

the noncommutative cubic forms represented by T, T ′, or the same, that (X, X, X) is an724

isomorphism of the tensors T, T ′. Note that for any diagonal matrices X, Y, Z, we have725

((X, Y, Z) · T )ijk = xiyjzkTijk. In particular, the action of diagonal matrices does not change726

which entries of T are zero or nonzero, it merely scales the nonzero entries. Since T, T ′ have727

the same support by construction, it is necessary and sufficient to handle the nonzero entries.728

By the construction above, there are precisely m such nonzero entries, one for each cubic729
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equation in the 3-XOR instance. For each ℓ = 1, . . . , m, we have730

((X, X, X) · T )iℓjℓkℓ
= xiℓ

xjℓ
xkℓ

Tiℓjℓkℓ
731

= sℓTiℓjℓkℓ
732

= T ′
iℓjℓkℓ

.733
734

In the other direction, if X = diag(x) is a diagonal matrix whose diagonal entries are in735

{±1} giving an isomorphism of the noncommutative cubic forms, then we have736

xiℓ
xjℓ

xkℓ
= Tiℓjℓkℓ

T ′
iℓjℓkℓ

= sℓ737

for ℓ = 1, . . . , m. (Here we have pulled Tiℓ,jℓ,kℓ
across the equals sign because every term in738

the above equation is ±1.) This concludes the proof of the lemma. ◀739

We thus consider the equations corresponding to {±1}-diagonal equivalence of T, T ′:740

there are n variables xi (i = 1, . . . , n). Let X denote the diagonal matrix with x on the741

diagonal. Then the equations are742

X2 = Id (X, X, X) · T = T ′. (10)743

By Lemma 6.7, we have that the original 3XOR instance is satisfiable iff (10) is satisfiable.744

We claim furthermore that there is (1,3)-reduction from the 3XOR equations to this system745

of equations. In fact, as the proof of the preceding lemma shows, they are actually the same746

set of equations! So there is nothing more to show.747

Step 2: Reduce from {±1}-diagonal equivalence to {±1}-monomial equivalence.748

We claim that there is a (1, 3)-reduction from (10) to the the equations for {±1}-monomial749

equivalence, see (6.5). The variable substitution is given by750

aij = a′
ij 7→

{
0 i ̸= j

xi i = j.
751

Under this substitution:752

The equivalence condition (A, A, A) · T = T ′ becomes exactly the original equivalence753

condition (X, X, X) · T = T ′.754

The invertibility equations AA′ = A′A = Id become XX = Id755

The row and column equations both become 0 = 0, since at least one of the two aij756

variables occurring will not be on the diagonal, hence will become 0 after substitution.757

The equation aij(aij + 1)(aij − 1) = 0 becomes x(x2 − 1) for the appropriate variable758

x ∈ x. This is derivable from the original equation x2 − 1 by multiplication by x.759

Lastly, we show that the system of equations in Definition 6.5(3) for {±1}-monomial760

equivalence is satisfiable iff the original 3-XOR instance was. Since we showed above that761

that {±1}-diagonal equivalence equations are satisfiable iff the original 3-XOR instance was,762

we show the equisolvability of (10) and the equations of Definition 6.5(3).763

Since diagonal matrices are monomial, any solution to (10) is a solution to the equations764

of Definition 6.5(3).765

Conversely, suppose the equations of Definition 6.5(3) are solvable. Then there is a766

{±1}-monomial matrix X given an equivalence between T and T ′; we may write X = DP767

where D is diagonal and P is a permutation matrix. Now, as the original 3-XOR instance768

was chosen uniformly at random, the support of T (the positions of its nonzero entries) is769

precisely a uniformly random 3-uniform hypergraph G. As T, T ′ have the same support770
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by construction, we find that P must be an automorphism of G. But by [40, Lemma 6.9],771

uniformly random such hypergraphs have no nontrivial automorphisms with probability772

1 − o(1). Thus P = I and X must in fact be diagonal, hence a solution to (10). ◀773

▶ Remark 6.8. We may avoid the heavy hammer of [40, Lemma 6.9] by “rigidifying” (in774

the sense of removing automorphisms) the system of 3-XOR equations before constructing775

the 3-way arrays as follows. The construction corresponds to a standard graph-theoretic776

gadget for removing automorphisms. Add new variables z and yij for i = 1, . . . , n and777

j = 1, . . . , n + i, as well as the equations xiyijz = 1 for all i, j, as well as y2
ij = 1 and z2 = 1.778

The downside of this construction is that it quadratically increases the number of variables,779

which would result in a further quadratic loss in our lower bounds on Tensor Isomorphism.780

6.2 From {±1}-monomial equivalence to (unrestricted) monomial781

equivalence782

▶ Theorem 6.9. There is a linear-size (2, 6)-many-one reduction from783

{±1}-Monomial Equivalence of {±1} Multilinear Noncommutative Cubic Forms784

to785

Monomial Equivalence of {±1} Noncommutative Cubic Forms,786

over any ring R of characteristic ̸= 2 such that {±1} are the only square roots of 1.787

Furthermore, the reduction r has the property that, given any two {±1} multilinear788

noncommutative cubic forms f, f ′, any monomial equivalence between r(f) and r(f ′) must789

have all its nonzero entries sixth roots of unity, and this can be derived by a degree-6 PC790

proof.791

▶ Remark 6.10. We note the difference between a reduction to 6
√

1-Monomial Equivalence792

and a reduction to Monomial Equivalence with the property stated in the theorem.793

In the former case, the problem being reduced to only accepts 6
√

1-monomial matrices as794

solutions (and then the goal of the reduction is to introduce gadgets to get this down to795

{±1}). In the latter case, the problem being reduced to allows arbitrary monomial matrices796

as solutions, but the gadgets enforce that, on the reduced instances, any such monomial797

matrix must in fact have its nonzero entries being sixth roots of unity.798

Proof. Let T be an n × n × n 3-way array representing a multilinear noncommutative cubic799

form with all nonzero entries in ±1. We extend T to r(T ) of size 2n × 2n × 2n, by setting800

r(T )ijk = Tijk i, j, k ∈ [n]801

r(T )i,i,n+i = 1 i ∈ [n]802

r(T )n+i,n+i,n+i = 1 i ∈ [n]803
804

and all other entries of r(T ) set to zero.805

Many-one reduction. We first show that the map (T, T ′) 7→ (r(T ), r(T ′)) is a many-one806

reduction. Suppose T, T ′ are {±1}-monomially equivalent by a matrix X, where X = DP807

with D = diag(x1, . . . , xn) a diagonal matrix with xi ∈ {±1} for all i, and P is a permutation808

matrix. Let π denote the permutation corresponding to P ; that is, Pi,π(i) = 1 for all i ∈ [n].809

Then we claim the 2n × 2n matrix X ⊕ P =
[
X 0
0 P

]
is a monomial equivalence of r(T )810

with r(T ′). Since X ⊕ P is block-diagonal, the upper-left X certainly sends the upper-left811
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n × n × n sub-array of r(T ) (which is just T ) to that of r(T ′) (which is just T ′). So the only812

thing to check is what happens to the positions at indices greater than n.813

Let X ′ = X ⊕ P . We have814

((X ′, X ′, X ′) · r(T ))i,i,n+i = r(T )π(i),π(i),n+π(i)(X ′
i,π(i))2X ′

n+i,n+π(i)815

= r(T )π(i),π(i),n+π(i)(Xi,π(i))2Pi,π(i)816

= 1 = r(T ′)i,i,n+i.817
818

Similarly, we have:819

((X ′, X ′, X ′) · r(T ))n+i,n+i,n+i = r(T )n+π(i),n+π(i),n+π(i)P
3
i,π(i) = 1 = r(T ′)n+i,n+i,n+i820

821

Because X ′ is monomial, it is easy to see that the zeros of r(T ) are sent to zeros of r(T ′).822

Thus X ′ is a monomial equivalence of r(T ) with r(T ′).823

Conversely, suppose r(T ) and r(T ′) are equivalent by a monomial matrix Y = DP , with824

D diagonal and P a permutation matrix corresponding to permutation π ∈ S2n. We will825

show that this implies that T and T ′ are equivalent by a {±1} monomial matrix. Since T826

is multilinear, we have Ti,i,i = r(T )i,i,i = 0. Since r(T )n+j,n+j,n+j = 1 for all j ∈ [n], the827

permutation π cannot send any element > n to any element ≤ n. Thus P is block-diagonal,828

say P =
[
P1 0n

0n P2

]
. Let π1 (resp., π2) be the permutation of [n] corresponding to P1 (resp.,829

P2).830

Next, we claim P1 = P2. By considering the positions at indices (i, i, n + i), we have:831

((P, P, P ) · r(T ))i,i,n+i = r(T )π1(i),π1(i),n+π2(i)832
833

But the latter is equal to the corresponding position in r(T ′), which is 1 iff π1(i) = π2(i).834

Since this holds for all i, we have π1 = π2, and thus P1 = P2.835

Finally, we do not claim that the diagonal entries yi themselves must be in ±1. Rather,836

we will show that they are all sixth roots of unity. Then cubing them will yield a new n × n837

matrix D′ all of whose diagonal entries are ±1 such that D′P1 is a ±1-monomial equivalence838

of T with T ′.839

From the positions (n + i, n + i, n + i), we have840

1 = r(T ′)n+π1(i),n+π1(i),n+π1(i)841

= ((Y, Y, Y ) · r(T ))n+i,n+i,n+i842

= y3
n+i.843

844

But then, considering the positions (i, i, n + i), we similarly get that y2
i yn+i = 1. Cubing the845

latter equation, we get y6
i y3

n+i = 1. But as we already have y3
n+i = 1, this gives us y6

i = 1 by846

a degree-6 PC proof, as claimed in the “furthermore.”847

Now we use the fact that T, T ′ have all entries in {0, ±1}. Thus, each nonzero entry of848

r(T ) in the front-upper-left block (corresponding to T ) gives us an equation of the form849

yiyjykTijk = T ′
π1(i),π1(j),π1(k). Since the nonzero entries of T, T ′ are ±1, this is thus an850

equation of the form yiyjyk = ±1. If we cube both sides of this equation, we get y3
i y3

j y3
k = ±1.851

But since we established above that y6
i = 1 for all i, we have that y3

i ∈ {±1} for all i. Thus,852

defining xi := y3
i for i = 1, . . . , n, we have xi ∈ {±1} and letting D′ = diag(x1, . . . , xn), we853

have D′P1 is a {±1}-monomial equivalence from T to T ′.854

Low-degree PC reduction. We claim that the system of equations for {±1} monomial855

equivalence of T and T ′ is (2,6)-reducible to the system of equations for monomial equivalence856
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of r(T ) and r(T ′). Let X, X ′ be the n × n variable matrices for the equations for for {±1}-857

monomial equivalence of the original tensors T and T ′, and let Y, Y ′ be the 2n × 2n matrices858

for the equations for monomial equivalence of r(T ), r(T ′). The PC reduction is defined by859

the following substitution:860

yij 7→ xij i, j ∈ [n]861

yn+i,n+j 7→ x2
ij i, j ∈ [n]862

yi,n+j , yn+i,j 7→ 0 i, j ∈ [n],863
864

and similarly for the y′ variables being substituted by the x′ variables. That is, we have865

Y 7→
[

X 0n

0n X ◦ X

]
Y ′ 7→

[
X ′ 0n

0n X ′ ◦ X ′

]
,866

where X◦X denotes the entrywise (aka Hadamard) product with itself, that is (X◦X)ij = x2
ij .867

The reason to use X ◦ X here is that if X is {±1}-valued and monomial, then X ◦ X is the868

permutation matrix with the same support as X; that is, this substitution is essentially the869

same as the one used in the proof above for the many-one reduction.870

Now, taking advantage of the block structure in the substitution above and the block871

structure in r(T ), r(T ′), let us see what our equations become after substitution, and how to872

derive them from the equations for T, T ′. This will complete the proof.873

1. The set of equations (Y, Y, Y )·r(T ) = r(T ′) becomes the set of equations (X, X, X)·T = T ′
874

(by examining the front-upper-left corner), as well as the equations875

∑
i,j,k∈[2n]

yii′yjj′yk,k′r(T )ijk =
{

1 i′ = j′ = k′ − n or i′ = j′ = k′ > n

0 otherwise.
876

We deal with the three cases (i′ = j′ = k′ − n, i′ = j′ = k′ > n, or neither of these)877

separately.878

a. Suppose i′ = j′ = k′ − n. In this case, yii′ is only nonzero for i ∈ [n], and similarly for879

yjj′ , while ykk′ is only nonzero for k > n. Thus the substituted equation becomes880 ∑
i,j,k∈[n]

yii′yji′yn+k,n+i′r(T )i,j,n+k =
∑

i,j,k∈[n]

xii′xji′x2
k,i′r(T )i,j,n+k = 1881

Now, the only positions in r(T ) of the form (i, j, n + k) with i, j, k ∈ [n] that are882

nonzero are those of the form (i, i, n + i), so the preceding equation simplifies further883

to884 ∑
i∈[n]

xii′xii′x2
ii′ = 1885

i.e.,886 ∑
i∈[n]

x4
ii′ = 1. (11)887

We will now show how to derive (11) from the equations for {±1}-monomial equivalence888

of for T, T ′ (Definition 6.5). From the {0, ±1} equation in Definition 6.5(3), if we889

multiply by xii′ , we get890

x2
ii′(x2

ii′ − 1), (12)891
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i.e., the usual Boolean equation but for x2
ii′ rather than xii′ itself. Next, from xii′xi′′i′892

with i ̸= i′′, we may square this to get893

x2
ii′x2

i′′i′ . (13)894

and we similarly get (x′
i′i)2(x′

i′i′′)2 when i ̸= i′′.895

Lastly, from the equation XX ′ = Id and multiplying by
∑

i∈[n] xii′x′
i′i + 1, we obtain896

(
∑
i∈[n]

xii′x′
i′i+1)(

∑
i∈[n]

xii′x′
i′i−1) =

∑
i∈[n]

x2
ii′x2

i′i+
∑

i,j∈[n]i̸=j

xii′x′
i′ixji′x′

i′j−1 =
∑
i∈[n]

x2
ii′x2

i′i−1,

(14)897

where we observed that from the axioms that xii′xji′ = 0 for i ≠ j we may derive in898

degree 4 that the middle term
∑

i,j∈[n]i̸=j xii′xji′x′
i′ix

′
i′j = 0.899

Now, equations (12)–(14) are a degree-2 substitution instance of the equations in900

Lemma 6.11 with c = 2, d = 1. Thus, by Lemma 6.11, we can derive (11) from these901

in degree 6.902

b. Suppose i′ = j′ = k′ > n. In this case, the substitution makes all of yii′ , yjj′ , ykk′ equal903

to zero unless i, j, k > n. Thus we may write the equation, after substitution, as904 ∑
i,j,k∈[n]

yn+i,i′yn+j,iyn+k,ir(T )n+i,n+j,n+k905

=
∑

i,j,k∈[n]

x2
i,i′−nx2

j,i′−nx2
k,i′−nr(T )n+i,n+j,n+k906

=r(T ′)i′,i′,i′ = 1.907
908

However, because the only entries r(T )n+i,n+j,n+k that are nonzero are those in which909

i = j = k, this simplifies further to:910 ∑
i∈[n]

x6
i,i′−n = 1.911

This is a degree-2 substitution instance of Lemma 6.11 with c = 3, d = 1, so it can be912

derived in degree 6 from the equations derived in part (a).913

c. Suppose neither of the previous two cases hold. The derivation will depend on which914

of i′, j′, k′ lie in [n] versus {n + 1, . . . , 2n}.915

i. When all are in [n], we are in the front-upper-left corner of the tensor, and we916

exactly get the equations (X, X, X) · T = T ′.917

ii. When all three of i′, j′, k′ are > n, the only nonzero entries of r(T ) are of the form918

r(T )n+i,n+i,n+i, so the equation becomes919 ∑
i∈[n]

x2
i,i′−nx2

i,j′−nx2
i,k′−n = 0.920

Since we have assumed |{i′, j′, k′}| > 1, there are at least two distinct indices among921

them, and thus each term in this sum is a multiple of one of our xijxij′ axioms with922

j ̸= j′.923

iii. Next, suppose instead that i′, j′ ∈ [n], k′ > n. In this case, the only nonzero entries924

of Y after substitution are those with i, j ∈ [n], k > n. Thus the equation becomes925 ∑
i,j,k∈[n]

xii′xjj′x2
k,k′−nr(T )i,j,n+k = 0926
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However, the only nonzero entries of r(T ) in which the first two coordinates are ≤ n927

and the third is n + k are those of the form i = j = k, so the preceding becomes928 ∑
i∈[n]

xii′xij′x2
ik′−n = 0.929

Since we do not have i′ = j′ = k′ − n (as that was covered in a previous case), at930

least two of the column indices differ, and thus each term of this sum is divisible by931

one of the axioms of the form xijxij′ with j ̸= j′.932

iv. In all other cases, the corresponding entries of r(T ) are all zero, so the equation933

reduces to 0 = 0.934

2. The equations Y Y ′ = Y ′Y = Id become XX ′ = X ′X = Id and (X ◦ X)(X ′ ◦ X ′) =935

(X ′ ◦ X ′)(X ◦ X) = Id. The first of these is one of our original equations, so it remains936

to derive the second. We show how to derive (X ◦ X)(X ′ ◦ X ′) = Id; the other is similar.937

For clarity, let us write it out using indices:938 ∑
j

x2
ij(x′

jk)2 − δik = 0 ∀i, k ∈ [n] (15)939

Starting from the equation
∑

j xijx′
jk − δik = 0, we multiply by

∑
j xijx′

jk, to get940 ∑
j

x2
ij(x′

jk)2 +
∑
j ̸=j′

xijx′
jkxij′xj′k − δik

∑
j

xijx′
jk.941

Note that every term in the middle summation here is divisible by some xijxij′ with942

j ̸= j′, which is one of our equations, so we may cancel off those terms using those943

equations in degree 4. If i ̸= k, then we are done. If i = k, then we add in our equation944 ∑
j xijx′

jk − 1 to get (15).945

3. The equations yijyij′ = 0 for j ≠ j′ become 0 after substitution unless i, j, j′ are either all946

in [n] or all in {n + 1, . . . , 2n}. In the former case, the substituted equation is xijxij′ = 0,947

which is already one of the original equations. In the latter case, the equation becomes948

x2
ijx2

ij′ = 0; but this is easily derivable from xijxij′ by multiplying it by itself (degree 4).949

The equations saying there is at most one entry per column of Y are derived from those950

for X similarly.951

This covers all the equations for monomial equivalence of r(T ), r(T ′), and thus we are952

done. ◀953

▶ Lemma 6.11. For any integers d ≥ 1, c ≥ 1, from the equations954

xi(xd
i − 1)(∀i) xixj(∀i ̸= j)

n∑
i=1

xiyi − 1955

there is a degree-max{d + 2, cd} PC derivation (over any ring R) of956 ∑
i∈[n]

xcd
i − 1957

Although in the proof above we only used the d = 1 and c = 2, 3, we will later have958

occasion to use this lemma with larger values of d and c, which is why we phrase it in this959

level of generality.960

Proof. First we show it for c = 1, then derive the general case from that.961
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Let S =
∑

i∈[n] xd
i , D =

∑
i∈[n] xiyi. Our first goal is to derive S−1. For each i = 1, . . . , n,962

we can derive xiyi(S − 1) in degree d + 2 as follows:963

xiyi(S − 1) = xd+1
i yi + yi

∑
j ̸=i

xix
d
j − xiyi964

= yi(xd+1
i − xi) + yi

∑
j ̸=i

xix
d
j = xi(xd

i − 1)yi + yi

∑
j ̸=i

xixjxd−1
j ,965

966

where we have underlined the use of the axioms.967

Summing up the preceding for all i, we derive DS − D in degree d + 2. Finally, we968

multiply the starting equation D − 1 by S to get SD − S, also in degree d + 2. Then we have969

(DS − D) − (SD − S) + (D − 1) = S − 1 =
∑

i

xd
i − 1,970

as desired.971

For c > 1, we then sum the preceding with
∑

i∈[n](x
(c−1)d−1
i + x

(c−2)d−1
i + · · · +972

xd−1
i )(xd+1

i − xi) =
∑

i∈[n] xcd
i − xd

i , which has degree cd. ◀973

6.3 From monomial equivalence to general equivalence of974

noncommutative cubic forms975

▶ Theorem 6.12. There is a quadratic-size many-one reduction from976

Monomial Equivalence of Noncommutative Cubic Forms977

to978

Equivalence of Noncommutative Cubic Forms,979

over any field.980

If furthermore the input cubic forms f, f ′ have the property that any monomial equivalence981

between them must have its nonzero scalars being d-th roots of unity, and the latter can be982

derived by PC in degree d + 1, then the reduction above is a (d, 2d)-many-one reduction.983

Proof. Let f be a noncommutative cubic form in variables u1, . . . , un. Then r(f) will be a984

new noncommutative cubic form, in n + 2n(n + 1) variables u1, . . . , un, v11, v12, . . . , vn,n+1,985

w11, w12, . . . , wn,n+1, which is r(f) = f +
∑

i∈[n],j∈[n+1] uivijwij . In terms of the underlying986

three-way arrays, if we have f =
∑

i,j,k∈[n] Tijkuiujuk, then we use r(T ) to denote the array987

underlying r(f), which can be described as follows. The 3-way array r(T ) will have size988

N × N × N where N = n + 2n(n + 1). Let Ti denote the i-th frontal slice of Ti, that is, Ti989

is the matrix such that (Ti)jk = Tijk. For i = 1, . . . , n, the i-th frontal slice of r(T ) will be990
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defined as:991 

Ti

0n+1 0n+1
0n+1 0n+1

. . . . . .
0n+1 In+1

. . . . . .
0n+1 0n+1

0n+1 0n+1
0n+1 0n+1

. . . . . .
0n+1 0n+1

. . . . . .
0n+1 0n+1



,992

where the In+1 occurs in the i-th (n + 1) × (n + 1) block of its region. That is, the lower-right993

2n(n + 1) × 2n(n + 1) sub-matrix is the Kronecker product Ei,n+i ⊗ In+1, where Ei,n+i is994

the 2n × 2n matrix with a 1 in position (i, n + i) and zeros everywhere else. For the slices995

i = n + 1, . . . , N we will have r(T )i = 0.996

Our main claim is that the map (T, T ′) 7→ (r(T ), r(T )′) is the reduction claimed in the997

theorem.998

Many-one reduction. Suppose X · f = f ′ with X monomial. Write X = PD with D999

diagonal and P a permutation matrix corresponding to the permutation π ∈ Sn. Then we1000

claim that1001

Y = X ⊕ ((PD−1) ⊗ In+1) ⊕ (P ⊗ In+1)1002

is an equivalence between r(f) and r(f ′), where here we assume our variables are ordered as1003

above. For we have1004

Y · r(f) =
∑

ijk∈[n]

Tijk(Y ui)(Y uj)(Y uk) +
∑

i∈[n],j∈[n+1]

(Y ui)(Y vij)(Y wij)1005

=
∑

ijk∈[n]

Tijk(Xui)(Xuj)(Xuk) +
∑

i∈[n],j∈[n+1]

(Xui)(PD−1vij)(Pwij)1006

= X · f +
∑

i∈[n],j∈[n+1]

Diiuπ(i)(D−1
ii vπ(i),j)wπ(i),j1007

= f ′ +
∑

i∈[n],j∈[n+1]

uπ(i)vπ(i),jwπ(i),j1008

= r(f ′).1009
1010

The final inequality here follows from the fact that π is a permutation, so the final sum1011

includes all terms of the form uivijwij , just listed in a different order than originally.1012

Conversely, suppose Y · r(f) = r(f ′) for an arbitrary invertible N × N matrix Y . To find1013

an equivalence between f and f ′, here we find it more useful to take the viewpoint of the1014

3-way arrays r(T ) and r(T ′) corresponding to r(f) and r(f ′), respectively.1015
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The way Y acts on the 3-way array r(T ) is to first take linear combinations of the frontal1016

slices, say by replacing the i-th slice with
∑

j∈[N ] Yijr(T )j (corresponding to the action of Y1017

on the third variable in each monomial), and then to take each slice S and replace it by Y SY t
1018

(the left multiplication corresponds to the action on the first variable in each monomial, and1019

the right multiplication corresponds to the action on the second variable in each monomial).1020

As this latter transformation preserves the rank of each slice, we will use the ranks of linear1021

combinations of the slices to reason about properties of Y .1022

Claim 1: Y is a block-diagonal sum of an n × n matrix X and a 2n(n + 1) × 2n(n + 1)1023

matrix.1024

Proof of claim 1. First we show that Y is block-triangular. To see this, note that since1025

the last 2n(n + 1) slices are zero, the action of Y by taking linear combinations of slices1026

cannot send any of the first n slices to the last 2n(n + 1) slices. That is, Y has the form1027

Y =
[
X Z

0 W

]
where X is n × n and W is 2n(n + 1) × 2n(n + 1). It remains to show that Z1028

must be zero.1029

Since Y is block-diagonal and invertible, we have that X and W are each invertible.1030

Let R be the tensor gotten from r(T ) by having Y act by taking linear combinations of1031

the slices. That is, the i-th frontal slices of R is Ri =
∑

j∈[N ] Yijr(T )j . Since each slice r(T )i1032

has its support in the upper-left n × n sub-matrix and the middle-right n(n + 1) × n(n + 1)1033

sub-matrix, so does each slice Ri. Write1034

Ri =

R
(1,1)
i 0 0
0 0 R

(2,2)
i

0 0n(n+1) 0

 ,1035

where R
(1,1)
i is n × n and R

(2,2)
i is n(n + 1) × n(n + 1).1036

Now consider the action of Y that sends Ri to Y RiY
t = r(T ′)i. We now break up Y1037

further into blocks commensurate with how we wrote Ri above; write1038

Y =

X A B

0 C D

0 E F

 Z =
[
A B

]
W =

[
C D

E F

]
,1039

where A, B are n × n(n + 1), and C, D, E, F are each n(n + 1) × n(n + 1). Then we have:1040

Y RiY
t =

X A B

0 C D

0 E F


R

(1,1)
i 0 0
0 0 R

(2,2)
i

0 0n(n+1) 0


Xt 0 0

At Ct Et

Bt Dt F t

1041

=

XR
(1,1)
i 0 AR

(2,2)
i

0 0 CR
(2,2)
i

0 0 ER
(2,2)
i


Xt 0 0

At Ct Et

Bt Dt F t

1042

=

XR
(1,1)
i Xt + AR

(2,2)
i Bt AR

(2,2)
i Dt AR

(2,2)
i F t

CR
(2,2)
i Bt ∗ ∗

ER
(2,2)
i Bt ∗ ∗

 ,1043

1044

where we have put ∗’s in positions we won’t need in the argument.1045

Next, since each of the first n slices of r(T ′) must be of this form, and those slices1046

have zeros in each block except the (1, 1) and (2, 3) blocks, by considering the blocks1047
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(1, 2), (1, 3), (2, 1), (3, 1) we must have1048

AR
(2,2)
i Dt = 0 AR

(2,2)
i F t = 0 CR

(2,2)
i Bt = 0 ER

(2,2)
i Bt = 0.1049

For reasons that will become clear below, we combine these into the two equations1050

AR
(2,2)
i

[
Dt F t

]
= 0

[
C

E

]
R

(2,2)
i Bt = 0.1051

Note that the n(n + 1) × 2n(n + 1) matrices
[
Dt F t

]
and

[
Ct Et

]
must both be full rank,1052

since otherwise W =
[
C D

E F

]
would not be invertible.1053

The sum of the (2,3) blocks (of size n(n + 1) × n(n + 1)) of the first n slices of r(T )1054

is precisely the identity matrix In(n+1). Thus, the linear span of these blocks contains an1055

invertible matrix in it. Since Y is invertible, that linear span is the same as the linear span of1056

the blocks {R
(2,2)
i : i ∈ [n]}. Thus the latter contains a full-rank matrix, say

∑n
i=1 αiR

(2,2)
i .1057

But since we have AR
(2,2)
i

[
Dt F t

]
= 0 for all i, we may left multiply by A and right-1058

multiply by
[
Dt F t

]
to get A

(∑n
i=1 αiR

(2,2
i

) [
Dt F t

]
=

∑n
i=1 αiAR

(2,2)
i

[
Dt F t

]
= 0.1059

But now we have that
∑

αiR
(2,2)
i is invertible, and

[
Dt F t

]
has full rank n(n + 1), so their1060

product also has full rank n(n + 1). But then we have that A times a full rank matrix is1061

equal to 0, hence A must be zero. The same argument, mutatis mutandis, using the equation1062 [
C

E

]
R

(2,2)
i Bt = 0, gives us that B = 0. Hence Y is block-diagonal as claimed. ◀1063

Next, we use properties of the ranks of the slices coming from the In+1 gadgets to show1064

that X must in fact be monomial.1065

Claim 2: Y =
[
X 0
0 W

]
where X is monomial.1066

Proof. In both r(T ) and r(T ′), any linear combination consisting of k of the first n slices1067

(with nonzero coefficients) has rank in the range [k(n + 1), k(n + 1) + n], for any k = 0, . . . , n.1068

The lower bound can be seen by noting that any such linear combination is block-diagonal1069

with k copies of In+1 on the block diagonal of the (2, 3) block. The upper bound comes1070

from the fact that these are the only nonzero blocks in the lower-right 2n(n + 1) × 2n(n + 1)1071

sub-matrix, and the only other nonzero entries are in the n × n upper-left sub-matrix, which1072

has rank at most n because of its size.1073

Using notation from the proof of the preceding claim, since Y RiY
t = r(T ′)i, and the1074

latter has rank in the range [n + 1, 2n + 1], Ri must also have rank in the same range. But1075

this is only possible if Ri is a linear combination of precisely one of the first n slices of r(T ).1076

Thus, X is monomial. ◀1077

From claim 2, we thus have that there is a permutation π ∈ Sn and nonzero scalars1078

d1, . . . , dn such that Ri = dir(T )π(i) for all i = 1, . . . , n, where X = DP with D the diagonal1079

matrix with diagonal entries di and P the permutation matrix corresponding to π. Finally, in1080

the proof of claim 1, we saw that the upper-left block of Y RiY
t was XR

(1,1)
i Xt + AR

(2,2)
i Bt,1081

and then learned that A = B = 0. Putting these together, and recalling that the upper-left1082

block of r(T )i is Ti, we thus get1083

(DP )diTπ(i)(DP )t = T ′
i1084

for all i. In other words, X is a monomial equivalence from T to T ′ (hence, from f to f ′).1085

This completes the proof that the construction gives a many-one reduction.1086
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Low-degree PC reduction. To prove the “furthermore”, suppose that the pair of cubic1087

forms f, f ′ has the property that any monomial equivalence between them must have its1088

nonzero entries being d-th roots of unity, for some d ≥ 1, and that this can be derived—more1089

specifically, the equations yd+1
ij − yij and similarly for y′

ij—in degree d + 1.1090

Let Y, Y ′ be the variable matrices for (general) equivalence of r(f), r(f ′); let X, X ′ be1091

the variable matrices for monomial equivalence of f, f ′. Consider the substitution1092

Y 7→

X 0
0 X◦(d−1) ⊗ In+1
0 0 X◦d ⊗ In+1

1093

Y ′ 7→

X ′ 0
0 (X ′)◦(d−1) ⊗ In−1
0 0 (X ′)◦d ⊗ In+1

 , (16)1094

1095

where X◦(d−1) denotes the (d−1)-fold Hadamard product X◦X◦· · ·◦X, namely, (X◦(d−1))ij =1096

xd−1
ij . We will show that the equations for equivalence of r(f), r(f ′), after this substitution,1097

can be derived from the equations for monomial equivalence of f, f ′ in low-degree PC.1098

(Note that the substitutions above correspond precisely to the forward direction of the1099

many-one reduction, in which X ⊕ (D−1P ⊗ In+1) ⊕ (P ⊗ In+1) served as an equivalence.1100

For, once we have xd+1
ij − xij , we have X◦(d−1) = Dd−1P = D−1P , and X◦d = DdP = P .)1101

Recall that these equations are Y ·r(f) = r(f ′) and Y Y ′ = Y ′Y = Id. The latter equations1102

are easier to handle so we begin with those. They become X◦c(X ′)◦c = (X ′)◦cX◦c = Id1103

for c ∈ {1, d − 1, d}. For c = 1, these are some of our starting equations. For c > 1, this is1104

similar to the argument in Theorem 6.9 (see the argument around Equation (15)), iterated,1105

resulting in a proof of degree 2c for any c—in this case, 2d.1106

Now to the equation(s) Y · r(f) = r(f ′). After substitution, these become1107 ∑
i,j,k∈[n]

Tijk(Xui)(Xuj)(Xuk) +
∑

i∈[n],j∈[n+1]

(Xui)(X◦(d−1)vij)(X◦dwij)1108

=
∑
ijk

T ′
ijkuiujuk +

∑
ij

uivijwij . (17)1109

1110

Focusing on the first summations on both sides of the equation, we see these are precisely1111

the equations X · f = f ′. After subtracting these off, we now deal with the remaining terms.1112

We have1113 ∑
ij

uivijwij =
∑

i∈[n],j∈[n+1]

(Xui)(X◦(d−1)vij)(X◦dwij)1114

=
∑

i∈[n],j∈[n+1]

 ∑
k∈[n]

xk,iuk

  ∑
ℓ∈[n]

xd−1
ℓ,i vℓ,j

  ∑
h∈[n]

xd
h,iwh,j

1115

=
∑

k,ℓ∈[n],j∈[n+1]

ukvℓ,jwℓ,j

 ∑
i∈[n]

xk,ix
d−1
ℓ,i xd

ℓ,i

1116

+
∑

k,ℓ,h∈[n],j∈[n+1]
ℓ̸=h

ukvℓ,jwℓ′,j

 ∑
i∈[n]

xk,ix
d−1
ℓ,i xd

h,i

1117

1118

This becomes the system of equations1119

δk,ℓ =
∑

i∈[n] xk,ix
d−1
ℓ,i xd

ℓ,i (∀k, ℓ ∈ [n])
0 =

∑
i∈[n] xk,ix

d−1
ℓ,i xd

h,i (∀k, ℓ, h ∈ [n], ℓ ̸= h).1120
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(Note that technically we should quantify over all j ∈ [n + 1], but j plays no role in these1121

equations—it just serves to repeat the same equation n + 1 times. This corresponds to the1122

fact that the lower-right part of our matrices have the form ∗ ⊗ In+1.)1123

When k ̸= ℓ, every term in the first equation is a degree-2d multiple of the monomial1124

axiom xk,ixℓ,i. Similarly, every term in the second set of equations is a degree-2d multiple of1125

the monomial axiom xℓ,ixh,i. Thus all that remains is the first equation when k = ℓ, namely,1126

1 =
∑

i∈[n] xk,ix
d−1
k,i xd

k,i. This is derived in Lemma 6.11, with c = 2 in degree 2d (since d > 1,1127

we have max{2d, d+2} = 2d). This completes the proof that we have a (d, 2d)-reduction. ◀1128

▶ Remark 6.13. There is a slightly simpler and smaller many-one reduction, namely f 7→1129

f +
∑

i∈[n],j∈[n+1] uiv
2
ij . However, in using that reduction, the witness for the forward1130

direction becomes X ⊕ (D−1/2P ⊗ In+1). This square root introduces a square into the1131

equations that made it difficult to show that it was also a PC reduction. The reduction1132

above fixes this issue.1133

6.4 From cubic forms to tensors1134

Our reductions here are those from Futorny–Grochow–Sergeichuk [19, Cor. 3.4 and Thm. 2.1].1135

The many-one property follows from the results there. We prove that each of these reductions1136

is in fact also a low-degree PC reduction between the corresponding polynomial solvability1137

problems. They reduce first to a problem we call Block Tensor Isomorphism, and then1138

from there to Tensor Isomorphism, so we begin by introducing the former problem and1139

its associated equations.1140

▶ Definition 6.14 (see Futorny–Grochow–Sergeichuk [19]). A block n × m × p 3-way array1141

is a 3-way array together with a partition of its index sets {1, . . . , n} = {1, . . . , n1} ⊔ {n1 +1142

1, n1 + 2, . . . , n1 +n2}⊔ · · ·⊔{
∑N−1

i=1 ni + 1, . . . , n}, and similarly for the other two directions.1143

Two block 3-way arrays are said to be conformally partitioned if they have the same size1144

and the same partitions of their index sets. Two conformally partitioned 3-way arrays T, T ′
1145

with block sizes as above are block-isomorphic (called “block-equivalent” in [19]) if there exist1146

invertible matrices S11, . . . , S1,N , S21, . . . , S2M , S31, . . . , S3P , where S1,I is of size nI × nI ,1147

S2,J is of size mJ × mJ , and S2,K is of size pK × pK , such that the block-diagonal matrices1148

give an isomorphism of tensors:1149

(S11 ⊕ S12 ⊕ · · · ⊕ S1N , S21 ⊕ · · · ⊕ S2M , S31 ⊕ · · · ⊕ S3P ) · T = T ′.1150

Given two block 3-way arrays T, T ′ as above, the equations for Block Tensor Iso-1151

morphism are as folllows. There are 2(
∑

I∈[N ] ni +
∑

J∈[M ] mJ +
∑

K∈[P ] pK) variables1152

arranged into 2(N + M + P ) square matrices XI , X ′
I (of size nI × nI), YJ , Y ′

J (of size1153

mJ × mJ), and ZK , Z ′
K (of size pK × pK). Then the equations are:1154

(X1 ⊕ · · · ⊕ XN , Y1 ⊕ · · · ⊕ YM , Z1 ⊕ · · · ⊕ ZP ) · T = T ′
1155

1156

XIX ′
I = X ′

IXI = Id YJY ′
J = Y ′

JYJ = Id ZKZ ′
K = Z ′

KZK = Id,1157

for all I ∈ [N ], J ∈ [M ], K ∈ [P ].1158

▶ Lemma 6.15. The many-one reduction from1159

Equivalence of Noncommutative Cubic Forms1160

to1161

Block Tensor Isomorphism1162
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in [19, Cor. 3.4] is in fact a linear-size (1,3)-many-one reduction.1163

Proof. Given a noncommutative cubic form f in n variables, f =
∑

i,j,k∈[n] Tijkuiujuk, we1164

recall the block tensor r(T ) from [19, Cor. 3.4]. It is partitioned into 2 × 3 × 3 many blocks,1165

with the rows being partitioned into n, 1, the columns into n, n, 1, and the depths also into1166

n, n, 1; thus its total size is (n + 1) × (2n + 1) × (2n + 1). Let Eijk denote the tensor of this1167

size whose only nonzero entry is a 1 in position (i, j, k). Then we define1168

r(T ) = T +
∑
i∈[n]

(Ei,n+i,2n+1 + Ei,2n+1,n+i + En+1,i,n+i + En+1,n+i,i) + En+1,2n+1,2n+11169

If you wanted to think of this as part of the tensor corresponding to a cubic form, that cubic1170

form would have n + 1 new variables v1, . . . , vn, z, and the form would be:1171

r(f) := f +
∑
i∈[n]

(uiviz + uizvi + zuivi + zviui) + z3.1172

(This doesn’t quite line up with the above description of a tensor, as the tensor corresponding1173

to r(f) would necessarily have all 3 side lengths the same, 2n + 1. However, there are n of1174

the 2n + 1 rows in that tensor that are entirely zero, namely, the rows corresponding to those1175

monomials that begin with a vi.)1176

The equations for block isomorphism of r(T ) and r(T ′) have the following variable1177

matrices X, X ′ are n×n, x, x′ are 1×1, Y1, Y ′
1 , Y2, Y ′

2 are n×n, y, y′ are 1×1, Z1, Z ′
1, Z2, Z ′

21178

are n × n, and z, z′ are 1 × 1. Let U, U ′ be the n × n variable matrices for the equations for1179

equivalence of the noncommutative cubic forms f, f ′. We consider the following substitution:1180

X, Y1, Z1, Y ′
2 , Z ′

2 7→ U X ′, Y ′
1 , Z ′

1, Y2, Z2 7→ U ′ x, x′, y, y′, z, z′ 7→ 1.1181

Under this substitution, the equations for block isomorphism of r(T ), r(T ′) become1182

(U, U, U) · T +
∑
i∈[n]

((U, U ′, 1) · Ei,n+i,2n+1 + (U, 1, U ′) · Ei,2n+1,n+i1183

+ (1, U, U ′) · En+1,i,n+i + (1, U ′, U) · En+1,n+i,i1184

+(1, 1, 1) · En+1,2n+1,2n+1)1185

=T ′ +
∑
i∈[n]

(Ei,n+i,2n+1 + Ei,2n+1,n+i + En+1,i,n+i + En+1,n+i,i)1186

+ En+1,2n+1,2n+11187
1188

Now, because each summand inside the big sum corresponds to an identity matrix in a block1189

(e.g.
∑

i∈[n] Ei,n+i,2n+1 is an identity matrix in rows {1, . . . , n}, columns {n+1, . . . , 2n}, and1190

depth 2n + 1), the above equations give us many instances of UU ′ = Id and U ′U = Id, which1191

is one of our starting equations. We also get the equation 1 = 1, and lastly, (U, U, U) · T = T ′,1192

which is another one of our starting equations. Thus the equations we get here are in fact1193

precisely the same as the equations we started with. As these are cubic equations and the1194

substitutions were linear, it is a (1,3)-PC reduction. ◀1195

▶ Lemma 6.16. When the number of blocks is O(1), the many-one reduction from1196

Block Tensor Isomorphism1197

to1198

Tensor Isomorphism1199
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in [19, Thm. 2.1] is in fact a quadratic-size (1,3)-many-one reduction.1200

Note that the output of the reduction of Lemma 6.15 has 2 × 3 × 3 many blocks, so the1201

restriction to O(1) many blocks in Lemma 6.16 presents no obstacle to our goal.1202

Proof. The key is to show how to effectively remove the partition in one of the three directions;1203

then that reduction can be applied three times in the three separate directions. Let T, T ′
1204

be block tensors of size n × m × p, with N × M × P many blocks. The construction of [19,1205

Lem. 2.2] shows how to construct from this a block tensor of quadratic size with N × M × 11206

many blocks. We recall the construction here and show that it is a (1,3)-PC reduction.1207

Let p1, . . . , pP denote the sizes of the parts of the partition in the third direction. Let1208

r = min{n, m} + 1—this will govern the rank of the identity matrix gadgets we add.1209

Let s =
∑P

K=1 2K−1r and t =
∑P

K=1 2K−1rpK . Then the output tensor will have size1210

(n + s) × (m + t) × p. (Note that, since P = O(1), we have that s is linearly bounded in n, m1211

and t is quadratic as a function of n, m, p.) Let T1, . . . , Tp be the frontal slices of T . The i-th1212

slice of r(T ) will be as follows. Suppose i is in the K-th block, and write i = i0 +
∑K

k=1 pk1213

with 1 ≤ i0 ≤ pK+1. Write the slices Ti as Ti =
[
Ai Bi

Ci Di

]
, where Ai is n1 ×m1—representing1214

the first part of the partition of T into rows and columns, and Di represents all the other1215

parts. Then we construct:1216

r(T )i :=



0 · · · 0
. . .

0 · · · I2K−1r · · · 0
. . .

0 · · · 0
Ai Bi

Ci Di


,1217

where the I2K−1r is in the i0-th position within the K-th block-row and block-column as1218

indicated by the dashed lines. Here the dashed lines do not represent additional parts of1219

the partition, they are just for visual clarity. The solid lines indicate the first part of the1220

new partition into rows and columns. The rows of Ci and Di are partitioned into blocks the1221

same as they were originally in Ti, and the columns of Bi and Di are partitioned into parts1222

in the same way as they were originally in Ti. That is, the entire big gadget in the upper-left1223

gets prepended to the first parts of the row and column partitions. This is the many-one1224

reduction.1225

Let X1, . . . , XN , Y1, . . . , YM , and Z be variable matrices (with associated primes matrices1226

X ′
1, etc.), with sizes as follows:1227

X1 has size (s + n1) × (s + n1)1228

XI for I ≥ 2 has size nI × nI1229

Y1 has size (t + m1) × (t + m1)1230

YJ for J ≥ 2 has size mJ × mJ1231

Z has size p × p.1232

We start from the equations for Block Isomorphism (but now where there is only one1233

block in the third direction), namely1234

XIX ′
I = X ′

IXI = Id YJY ′
J = Y ′

JYJ = Id ZZ ′ = Z ′Z = Id1235
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and1236

(X1 ⊕ · · · ⊕ XN , Y1 ⊕ · · · ⊕ YN , Z) · r(T ) = r(T ′).1237

We make the following substitution (with the same substitutions, mutatis mutandis, for the1238

primed variables):1239

X1 7→ Is ⊕ X̂1, where X̂1 is a matrix of variables of size n1 × n1.1240

For I ≥ 2, XI maps to itself.1241

Y1 7→ It ⊕ Ŷ1, where Ŷ1 is a matrix of variables of size m1 × m1.1242

For J ≥ 2, YJ maps to itself.1243

Z maps to a block matrix Z1 ⊕ · · · ⊕ ZP , where for each K ∈ [P ], we have ZK is a1244

pK × pK matrix of variables.1245

Under these substitutions, the equations for Block Isomorphism of r(T ), r(T ′) become1246

precisely the original equations for Block Isomorphism of T, T ′, together with equations1247

of the form IsEiIt = Ei, where Ei is the s × t gadget matrix in the upper-left in the i-th1248

slice. Thus we get a (1, 3)-reduction.1249

Finally, this is then repeated in the other two directions to reduce the number of blocks1250

in all three directions to one, thus giving an instance of Tensor Isomorphism. ◀1251

6.5 Putting it all together1252

Finally, we combine all the above to prove Theorem 6.2.1253

Proof of Theorem 6.2. Let m = cn with c ≥ 104. By Theorem 6.1, random 3XOR instances1254

with clause density c require PC degree Ω(n/c2) = Ω(n) (in our case) to refute. The number1255

of instances that the random distribution assigns nonzero probability is
(2(n

3)
m

)
∼

(
n3

cn

)
≥1256

n3cn/(cn)cn = c2cn log n−cn ≥ cΩ(n log n).1257

By Theorem 6.6, there is a (1,3)-many-one reduction from those instances to {±1}-1258

Monomial Equivalence of {±1} Multilinear Noncommutative Cubic Forms,1259

where the number of variables in the cubic form is the same as the number of variables in1260

the 3XOR instance. By Theorem 6.9 there is then a (2,6)-many-one reduction to Monomial1261

Equivalence of {±1} Noncommutative Cubic Forms, where the number of variables1262

in the output cubic form is linear in the original number of variables, and such that the1263

output forms have the property that any monomial equivalence between them has all its1264

nonzero entries being 6-th roots of unity. This thus satisfies the hypothesis of Theorem 6.121265

with d = 6, so there is a (6,12)-many-one reduction to Equivalence of Noncommutative1266

Cubic Forms, where the output has a quadratic number of variables compared to the input.1267

Finally, combining Lemmata 6.15 and 6.16, we get a (1,3) reduction from Equivalence1268

of Noncommutative Cubic Forms to Tensor Isomorphism, which further increases1269

the size quadratically. In total, the size increases multiply, yielding a quartic size increase.1270

The substitution degrees multiply and the derivation degrees we take the max, yielding a1271

(12,12)-many-one reduction from Random 3XOR to Tensor Isomorphism on tensors of size1272

O(n4) × O(n4) × O(n4). By Lemma 2.2, any PC refutation of these Tensor Isomorphism1273

instances requires degree Ω(n). ◀1274

We note that our lower bound for tensor isomorphism also applies to the stronger Sum-1275

of-Squares proof system. This is due to the fact that there is lower bound for random 3XOR1276

in Sum-of-Squares, as shown by Grigoriev [21] and independently by Schoenbeck [44], which1277

makes the dependence on the clause density explicit.1278
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▶ Theorem 6.17 ([44, Theorem 12]). A random 3-XOR instance with clause density ∆ =1279

m/n = dnϵ, for all sufficiently large constants d, requires SoS degree Ω(n1−ϵ) to refute, with1280

probability 1 − o(1).1281

In particular, this is a linear Ω(n) lower bound in the case of constant clause density1282

(ϵ = 0), which matches the PC lower bound of Theorem 6.1.1283

As we observe all of our reductions go through in Sum-of-Squares, since Sum-of-Squares1284

simulates PC over the reals due to Berkholz [6]. Furthermore, this simulation preserves1285

degrees of proofs up to a constant factor.1286

▶ Theorem 6.18 ([6, Theorem 1.1]). If a system of polynomial equations F over the reals1287

has a PC refutation of degree d and size s, it also has a sum-of-squares refutation of degree1288

2d and size poly(s).1289

Hence, by combining Theorems 6.17, 6.18 and the PC reduction used to prove 6.2, we1290

obtain the following lower bound for tensor isomorphism in Sum-of-Squares.1291

▶ Theorem 6.19. Over the real numbers, there is a distribution on n × n × n Tensor1292

Isomorphism whose associated equations require SoS degree Ω( 4
√

n) to refute with probability1293

1 - o(1).1294

7 Open Questions1295

Beyond Conjecture 1.7, we highlight several more questions we find interesting about the1296

algebraic proof complexity of Tensor Isomorphism.1297

7.1 Degree1298

▶ Open Question 7.1. What is the correct value for the PC degree of rank-r Tensor1299

Isomorphism?1300

Note that by using the reductions from Section 6, we can produce (random) r × r × r1301

tensors that require PC degree Ω(r1/4) to refute. However, the number of variables is 6r2,1302

this lower bound is only Ω(N1/8) where N is the number of variables. Since their rank1303

could be as large as R = Θ(r2) (and indeed, very likely is), the upper bound we get from1304

Theorem 4.1 is only 2O(r4) (without the xq − x axioms) or O(r4) (with the xq − x axioms,1305

with q = O(1)). Even in the latter case, this leaves a polynomial gap between the lower and1306

upper bounds (without those the gap is exponential).1307

We note that the upper bound in Theorem 4.1 without the xq − x equations already1308

applies to the weaker Nullstellensatz proof system. Is there a polynomial upper bound on1309

PC degree—as a function of rank—without the xq − x axioms?1310

7.2 Size1311

In the presence of the Boolean axioms, there is a size-degree tradeoff for PC (or even PCR—a1312

system with the same degree bounds as PC, but is stronger when measuring size by number1313

of monomials or number of symbols) [16, 2]. This implies that in the presence of the Boolean1314

axioms, a good degree lower bound implies a good size lower bound. But TI does not have1315

the Boolean axioms.1316

▶ Open Question 7.2. Get lower and upper bounds on the size of PC proofs for Tensor1317

(Non-)Isomorphism. Are there subexponential size upper bounds, despite the polynomial1318

degree lower bounds?1319
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7.3 Other matrix problems1320

While many different tensor-related problems are all equivalent to TI, in the case of matrices,1321

we have three genuinely different problems: matrix equivalence (2-TI), matrix conjugacy,1322

and matrix congruence. Conjugacy is determined by the Rational Normal Form or Jordan1323

Normal Form, while congruence depends on the field (e.g., over algebraically closed fields it1324

only depends on rank, over R it depends on the signature, and over finite fields it depends1325

on whether the determinant is a square or not).1326

▶ Open Question 7.3. What is the PC complexity (size, degree, etc.) of matrix conjugacy?1327

Of matrix congruence?1328

More precisely, for conjugacy we have in mind the system of equations:1329

XM = M ′X XX ′ = X ′X = I,1330

and for congruence the system of equations:1331

XMXT = M ′ XX ′ = X ′X = I.1332

7.4 Bounded border rank1333

Not only can testing a tensor for bounded rank can be done in polynomial time (Remark 1.4),1334

testing a tensor for bounded border-rank can also be done in polynomial time (see, e. g.,1335

[24]), by evaluating a polynomial number of easy-to-evaluate equations. While several partial1336

results are available, the gap for what is known about the ratio between rank and border1337

rank is quite large: there are 3-tensors known whose rank approaches 3 times their border1338

rank [50], but the currently known upper bound is Lehmkuhl and Lickteig [33], who show1339

that for tensors of border rank b, the ratio of rank to border rank is at most cΘ(nb). See the1340

Zuiddam’s introduction [50] for more details.1341

▶ Open Question 7.4. What is the PC degree of testing isomorphism of tensors of bounded1342

border-rank? Can such tests be done (by any method) in polynomial time?1343

7.5 Relating different reductions from Graph Isomorphism1344

While we chose a particular reduction from GI to TI for the lower bound in Section 5, we1345

are aware of several others, including:1346

GI to Permutational Code Equivalence [42, 35, 38], then to Matrix Lie Algebra1347

Conjugacy [23], then to TI [19];1348

GI to Semisimple Matrix Lie Algebra Conjugacy [23], and then to TI [19];1349

GI to Alternating Matrix Space Isometry [26, 27], then to TI [19];1350

GI to Algebra Isomorphism [20, 1], then to TI [19].1351

We believe all of these can be realized as low-degree PC reduction as well. In the first arXiv1352

version of [26], they asked which of these might be equivalent in some sense (though there1353

the final target was Alternating Matrix Space Isometry, another TI-complete problem,1354

rather than TI itself). Here we make this question slightly more precise, in terms of PC1355

reductions:1356

▶ Open Question 7.5. Which, if any, of the reductions above from Graph Isomorphism1357

to Tensor Isomorphism are equivalent under low-degree PC?1358
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