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—— Abstract

The TENSOR ISOMORPHISM problem (TI) has recently emerged as having connections to multiple
areas of research within complexity and beyond, but the current best upper bound is essentially
the brute force algorithm. Being an algebraic problem, TI (or rather, proving that two tensors
are non-isomorphic) lends itself very naturally to algebraic and semi-algebraic proof systems, such
as the Polynomial Calculus (PC) and Sum of Squares (SoS). For its combinatorial cousin GRAPH
IsoMORPHISM, essentially optimal lower bounds are known for approaches based on PC and SoS
(Berkholz & Grohe, SODA ’17). Our main results are an Q(n) lower bound on PC degree or SoS
degree for TENSOR ISOMORPHISM, and a nontrivial upper bound for testing isomorphism of tensors
of bounded rank.

We also show that PC cannot perform basic linear algebra in sub-linear degree, such as comparing
the rank of two matrices (which is essentially the same as 2-TT), or deriving BA = I from AB =1.
As linear algebra is a key tool for understanding tensors, we introduce a strictly stronger proof
system, PC+Inv, which allows as derivation rules all substitution instances of the implication
AB =1 — BA = 1. We conjecture that even PC+Inv cannot solve TI in polynomial time either,
but leave open getting lower bounds on PC+Inv for any system of equations, let alone those for TI.
We also highlight many other open questions about proof complexity approaches to TI.

2012 ACM Subject Classification Theory of computation — Computational complexity and crypto-
graphy — (Proof complexity | Problems, reductions and completeness)

Keywords and phrases Algebraic proof complexity, Tensor Isomorphism, Graph Isomorphism,
Polynomial Calculus, Sum-of-Squares, reductions, lower bounds, proof complexity of linear algebra

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.4

Funding Joshua A. Grochow: Supported by NSF CAREER award CCF-2047756.
Toniann Pitassi: Supported by NSF grant CCF-1900460, and by the IAS School of Mathematics.
Adrian She: Supported by NSERC Canada Graduate Scholarship.

Acknowledgements NG and JAG would like to thank Michael Forbes for early conversation about
the PC degree of matrix rank, which occurred at Dagstuhl Seminar 18051: Proof Complexity in
early 2018. We would also like to thank the organizers A. Atserias, J. Nordstrom, P. Pudldk, and
R. Santhanam for their invitation and support.

1 Introduction

Tensors have rapidly emerged as a fundamental data structure and key mathematical object
of the 21st century. They play key roles in many different areas of science, engineering, and
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mathematics, from quantum mechanics and general relativity to neural networks [39] and
mechanical engineering. They arise in theoretical computer science in many ways, including
from (post-quantum) cryptography [41, 30], derandomization, MATRIX MULTIPLICATION,
GRAPH ISOMORPHISM [26], and several different parts of Geometric Complexity Theory.

The fundamental notion of equivalence between tensors is that of isomorphism: two
tensors are isomorphic if one can be transformed into the other by an invertible linear
change of basis in each of the corresponding vector spaces. For example, two 2-tensors
(=matrices) M, M’ are equivalent under this notion if there are invertible matrices X,V
such that X MY = M’; similarly, two 3-tensors, represented by 3-way arrays T}, 7, Z—’jk are
isomorphic if there are three invertible matrices X, Y, Z such that

> XiiYij Ziw Tijre = Ty (1)

ijk

for all ¢/, j', k'. The problem of (3-)TENSOR IsoMORPHISM (TI) is: given two such 3-way
arrays, to decide if they are isomorphic.

Over finite fields, two different versions of TT sandwich the complexity of its more famous
cousin, GRAPH ISOMORPHISM. Namely, as presented above, GI reduces to T1I. In the other
direction, over a finite field =, one can take an n X n x n tensor and list it out “verbosely”,
as a set of p®" many n X n matrices over ; the isomorphism problem for such verbosely
given tensors is equivalent to GROUP ISOMORPHISM for a certain class of p-groups, widely
believed to be the hardest cases of GROUP ISOMORPHISM in general. As such, this verbose
version of TT reduces to GI. Furthermore, with Babai’s quasi-polynomial-time algorithm
[4], the running times are quite close: N9(°8N) for VERBOSETT and NOWs*N) for GI (the
exponent of the exponent was worked out by Helfgott [28]). Thus TT stands as a key obstacle
to putting GI into P.

In this paper, we initiate the study of (algebraic) proof complexity approaches to proving
that two tensors are non-isomorphic. Lower bounds on the Polynomial Calculus proof system
imply lower bounds on Groébner basis techniques, and the latter are some of the leading
methods for solving Tl-complete problems in cryptanalysis, e.g., [49, 18]. In the context of GI,
proof complexity plays an important role, through its connection with the Weisfeiler-Leman
(WL) algorithm. Although this algorithm does not, on its own, solve GI in polynomial time
[15], it is a key subroutine in many of the best algorithms for GI, both in theory [4] and in
practice (see [36, 37]). And the picture that has emerged is that some proof systems for GI
are known to be equivalent in power to WL [3], and some lower bounds on proof systems are
closely related to lower bounds for WL [45, 40]. Versions of WL for groups, and in particular
finite p-groups—and hence, by the connection above, tensors over finite fields—have only
recently begun to be explored [12, 9, 10, 17].

1.1 Main results

We focus on the Polynomial Calculus (PC, or Grébner) proof system [16], though our results
will also hold for semi-algebraic proof systems such as Sum-of-Squares [32] as well. PC is
used to show that a system of polynomial equations over a field is unsatisfiable over the
algebraic closure , by deriving from the system of equations, in a line-by-line fashion, the
contradiction 1 = 0. The degree of a PC proof is the maximum degree of any line appearing
in the proof, and it is a fundamental result that PC proofs of constant degree can be found
in polynomial time [16]. Much as WL informally “captures all combinatorial approaches”
to GI, PC informally “captures all approaches based on Grébner bases” to showing that a
system of polynomial equations is unsatisfiable.
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The systems of equations we study are, for two non-isomorphic tensors T, T”, the equations
(1) along with new matrices X', Y’ Z’, and equations saying that these are the inverses
of X,Y,Z, resp., viz.. XX’ = X'X = Id, and similarly for the others. The reason for
introducing these new matrices, despite their not appearing in (1), is that these invertibility
equations are only degree 2. In contrast, if we instead used the determinant to indicate that
X was invertible, then our starting equations would have degree n + 1, rather than constant
degree < 3. Since the main complexity measure we study on PC is degree, having starting
equations of degree n would make it difficult to make meaningful lower bound statements.

Our first main result is (two proofs of) a lower bound on such techniques.

» Theorem 1.1. Over any field, there are instances of n X n X n TENSOR ISOMORPHISM
that require PC degree Q(n) to refute. Over R, they also require Sum-of-Squares degree Q(n)
to refute.

The preceding goes by reduction from known lower bounds on PC for GRAPH ISOMORPH-
ISM [7, 8], but has the disadvantage (from the tensor point of view) that the resulting tensors
are quite sparse: in one direction, one of the slices is supported on an (n) x n matrix and
all the others slices have support size 1. In a second proof (Section 6), we get a polynomially
worse lower bound Q(+/n), but with a reduction from RaNDOM 3XOR that is more direct.
Indeed, we show that 3XOR itself can be viewed as a particular instance of a tensor problem
without gadgets; gadgets are only then needed to reduce from that tensor problem to TENSOR
IsoMORPHISM itself. In contrast, the lower bounds on PC for GI (ibid.) already use the
Cai-Fiirer-Immerman gadgets [15] to reduce from XOR-SAT, and then even further gadgets
are needed to reduce from GI to TT.

Our technical contributions in the above theorem are thus three-fold:

1. We show that the known reductions from GI to TTI can be carried out in low-degree PC;

We realize 3XOR very naturally as a tensor problem; and

3. We give new reductions from 3XOR, through a series of tensor-related problems, to T1I,
that work as many-one reductions of the decision problems that can be carried out in
low-degree PC.

N

Complementing our lower bound, we also show that tensors of low rank are comparat-
ively easy to test for (non)-isomorphism. Here, one of our upper bounds is in the weaker
Nullstellensatz proof system (giving a stronger upper bound than only a PC upper bound).
In the Nullstellensatz proof system, a proof that a system of equations f; =--- = f,,, =0 is
unsatisfiable consists of polynomials g; such that > g; f; = 1, and the Nullstellensatz degree is
the maximum degree of any g; f;. The PC degree is always at most the Nullstellensatz degree,
and the gap between the two can be nearly maximal for Boolean equations: O(1) versus
Q(n/logn) [13]. (For Boolean equations, there is always an O(n) upper bound, though this
does not apply to TI, see Remark 1.3 below).

» Theorem 1.2. Owver any field, the Nullstellensatz degree of refuting isomorphism of two
n X n X n tensors of tensor rank < r is at most 20(r?), If working over a finite field , and
including the equations x4 — x, the PC degree is at most O(qr?).

In particular, isomorphism of constant-rank tensors can be decided in polynomial time.

» Remark 1.3. In many settings in proof complexity, Boolean axioms such as x? = z; or
2? = 1 are included among the system of equations, and all such unsatisfiable systems of
equations can be refuted in degree O(n) (n =+# variables). If this were the case here, the
above would only be interesting for very small values of r. In contrast, the equations for
TT do not include any such Boolean axioms, and as such the naive degree upper bound is
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exponential in the number of variables. For n x n X n tensors, this gives an upper bound of
20(n?) [48], and thus, Theorem 1.2 gives nontrivial upper bounds all the way up to r < n.
(We note that n x n x n tensors can have rank up to ©(n?) [34].) The proof of Theorem 1.2
shows that for rank-r tensors, T1 can essentially be reduced to a system of equations in only
O(r?) variables.

» Remark 1.4. For fixed r, testing if an n xn xn tensor has rank < r can be done in polynomial
time, as follows. This will show that the algorithm of Theorem 1.2 genuinely solves the
decision problem, and not just a promise problem. Given an n x n X n tensor T, consider its
three n x n? flattenings. Use Gaussian elimination to put each such flattening, separately,
into reduced row echelon form. If any of these flattenings has rank > r, reject. Otherwise,
we get from this a list of 3r vectors uy,...,ur,v1,...,0.,w1,...,w,, such that T lives in the
r X r x r-dimensional space Span{uy,...,u,} ® Span{vy,...,v,} ® Span{wy,...,w,}. Now
in this space we can write down the Brent equations [11] for T' to have rank < r, which
will be 73 cubic equations in 3r? variables (Brent’s equations [11, (5.06)] were specifically
for the matrix multiplication tensor, but analogous equations are easily constructed for
arbitrary tensors using the same idea). Since r is constant, these equations may be solved in
polynomial time (here we assume that we are either working over a finite field, a finite-degree
extension of the rationals—see, for example, Grigoriev [22]—or in the BSS model over an
arbitrary field).

Lastly, one may wonder why we focus on 3-TENSOR ISOMORPHISM, and not some of its
many related variants. Indeed, just as there are other equivalence notions for matrices—such
as conjugacy X M X! and congruence X M XT—there are many different kinds of multilin-
ear objects that can be represented by multi-way arrays, including tensors, homogeneous
polynomials (commutative or noncommutative), alternating matrix spaces, multilinear maps,
and so on, each with their own corresponding notion of isomorphism. While these problems
are indeed distinct, they are all equivalent under polynomial-time isomorphisms [19, 26];
such problems are called Tl-complete. Even isomorphism of k-way tensors (for any fixed
k > 3) is equivalent to isomorphism of 3-tensors [26]. This partially justifies our focus on
3-TENSOR ISOMORPHISM. In the course of proving our reductions for the results stated
above, we use many of the gadgets from [19, 26], and show that such uses also often yield
proof complexity reductions as well. Because of the variety of gadgets used in our reductions,
we believe that many, if not all, of the gadgets from those results would also yield proof
complexity reductions, so the proof complexity of all the known Tl-complete problems should
be polynomially related.

1.2 Comparison with linear algebra, a new proof system, and a
conjecture

As linear algebra is part of the core toolkit for understanding tensors, it is natural to wonder
how linear algebra can help in algebraic proof complexity approaches to TI. We believe that
even if it had the “full power” of linear algebra at its disposal “for free,” PC could still not
solve TT efficiently. We begin to make this precise in this section.

Some basic derivations in linear algebra are to relate the ranks of two matrices and to
derive BA = I from AB = I (the Inversion Principle, one of the so-called “hard matrix
identities” [47], only recently shown to have short NC*-Frege proofs [29]). Soltys [46] and
Soltys & Cook [47] discuss the relationship between these and other standard implications in
linear algebra. We show that PC is not strong enough to prove these in low-degree:
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» Theorem 1.5. The unsatisfiable system of equations XY =1d,, where X isn xXr andY
is r x n with 1 <r < n, requires degree > r/2 + 1 to refute in PC, over any field.

We refer to this system of equations as the Rank Principle, as refuting them amounts to
showing that rkId,, > r.

» Theorem 1.6. Any PC derivation of BA = I from AB = I, where A, B are n X n matrices
with {0,1} entries, requires degree > n/2 + 1, over any field.

We also observe that the Rank Principle can be derived in low degree from the Inversion
Principle.

Although it remains open whether the Inversion Principle is “complete” for linear-algebraic
reasoning (see [46, 47]), we introduce the proof system PC+Inv in an attempt to capture
some linear-algebraic reasoning that seems potentially useful for TI. PC+Inv has all the
same derivation rules as PC, but in addition, for any square matrices A, B (whose entries
may themselves be polynomials—that is, we allow substitution instances), we have the rule

AB=1
BA=1T

where the antecedent represents the set of n? equations corresponding to AB = I, and

similarly the consequent denotes the set of n? equations BA = I (see 2.3 for more details).

Degree is still measured in the usual way, but this rule lets us “cut out” the high-degree
proof that would usually be required to derive BA = I from AB = I. We now formalize our
intuition that linear algebra should not suffice to solve TT efficiently in the following:

» Conjecture 1.7. TENSOR ISOMORPHISM for n X n X n tensors requires degree (n) in
PC+Inv, over any field.

Despite the conjecture, we do not yet know how to prove lower bounds on PC+Inv for any
unsatisfiable system of equations, let alone those coming from TI. Mod p counting principles
(for p different from the characteristic of the field) strike us as potentially interesting instances
to examine for PC+Inv lower bounds, before tackling a harder problem like TI. In the final
section, we highlight many other open questions around the proof complexity of TI.

1.3 Organization

In Section 2 we cover preliminaries. In Section 3 we prove the lower bounds on linear algebraic
principles just discussed. In Section 4 we prove the upper bound for isomorphism of bounded
rank tensors (Theorem 1.2). In Section 5 we prove Theorem 1.1 by reduction from GI. In
Section 6 we prove the polynomially related lower bound by direct reduction from RANDOM
3XOR.

2 Preliminaries

2.1 Proof systems

All our rings are commutative and unital. Polynomial calculus (PC) is a proof system to
prove that a given system of (multivariate) polynomial equations P over a field F of the form
p = 0, has no solution over the algebraic closure (i.e. the system is unsolvable). We usually
shorten the polynomial equation p = 0 to just p. The derivation rules of the system are the
following one:

A (multiplication), P 4

Tp ap + bq

(linear combination)

4:5

CCC 2023



4:6

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

On the algebraic proof complexity of Tensor Isomorphism

where x is any formal variable, a,b € F and p, ¢ are polynomials over F.

When refuting Boolean systems of equations it is common to include the Boolean axioms
2 — x;. Because we do not always include these (esp. for TI) we are explicit about our use
of these, but do not assume they are built into the proof system—that is, if we are assuming
them as axioms, we say so.

T

A PC derivation (or proof) of a polynomial ¢ from a set of polynomials P is a sequence
of polynomial equations p1,...,p, ending with the polynomial ¢ (so p,, is ¢) and where
each p;, i € [m], is either an axiom p for p € P, or is obtained from previous equations in
the refutation by multiplication or linear combination. We denote this by writing P F gq.
Observe that if p is derivable in PC and ¢ is a polynomial then, by repeated applications of
multiplication and linear combination rules, we can derive pq. We often use this generalization
of the multiplication in our proofs without mention.

A PC refutation is just a PC proof of the polynomial 1. The degree of a PC derivation
is the maximal degree of a polynomial used in the proof. The size of a polynomial p is the
number of terms in p. The size a PC derivation pq,...,p,, is the sum of the sizes of the
polynomials py, ..., Pm.-

For our upper bound in Theorem 1.2, we also consider another algebraic proof system,
known as Nullstellensatz (NS), to certify unsolvability of sets of polynomial equations.
Nullstellensatz is defined in a static form as follows: a refutation of a list P = (p1,...,pm)
of polynomial equations over variables i ..., x, is given by the list of polynomials Q =

(q1,- - qm) such that
Z pigi =1

1€[m]

The degree of a NS refutation is the maximal degree of a polynomial in P U Q. The size
of NS proof is the sum of the number of monomials appearing in the polynomials q1, ..., ¢m-

Sum-of-Squares (SOS) is a static proof system for certifying the unsolvability of systems
of polynomial equations and polynomial inequalities, where polynomials are usually over the
ring Rlzy ..., 2]

A polynomial p is a sum-of-squares polynomial if it is in the form p = >, r? and
the r;’s are polynomials as well. Given a system made by a set of polynomial equations
P={p1=0,...pm» =0} and aset Q@ = {q; > 0,...qx > 0} of polynomial inequalities, a
sum-of-squares proof of the polynomial inequality p > 0 from P U Q is given by the formal

identity
P =50+ ZSiQHr Z tip;
i€[k] jelm]
where sg, s1,...,S, are sum-of-squares polynomials, while tq,...,t,, are arbitrary polyno-

mials. When the system P U Q is unsatisfiable, a refutation of P U Q is a proof of the
inequality —1 > 0, that is for p the constant polynomial —1. The degree of the proof is the

max{deg(p), deg(so), deg(s;) + deg(g;), deg(t;) + deg(p;)|i € [k],j € [m]}.

» Definition 2.1 (PC reduction between systems of polynomials, cf. [14, Sec. 3]). Let

P(z1,...,z,) and Q(y1,...,Yym) be two sets of polynomials over a field F. P is (dy,ds)-

reducible to @ if:

1. For each i € [m] there is a polynomial r;(x) of degree at most dy (which we think of as
defining y; in terms of the x variables);

2. There exists a degree do PC derivation of Q(r1(x),...,rm(x)) from polynomials P(x).
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» Lemma 2.2 ([14, Lem. 1]). If P(x) is (d1,d2)-reducible to Q(y) and there is a degree d
PC refutation of Q(y), then there is a degree max(ds, did) refutation of P(x).

In their paper, they typically only applied this to systems of equations which were known
to be unsatisfiable (such as PHP and Tseitin tautologies), whereas in our paper we have
several situations we want to combine the above notion together with the usual notion of
many-one reduction. We encapsulate this in the following definition. We say a decision
problem I is a polynomial solvability problem over a field if all valid instances of the problem
are systems of polynomial equations over , and the problem is to decide whether such a
system of equations has solutions over the algebraic closure . Thus, the difference between

multiple polynomial solvability problems is just which systems of equations are valid inputs.

» Definition 2.3 (PC many-one reduction). Let Iy, Iy be two polynomial solvability problems
over a field . We say that I1; (dy,ds)-many-one reduces to Iy if there is a polynomial-time
many-one reduction p from Iy to Iy, such that for all unsatisfiable instances F of 11y, F
(d1,dg)-reduces to p(F). When this occurs with di,ds = O(1), we write

I, <PC 1,.

—m

2.2 Linear algebra and tensors

Given three vector spaces U, V, W over a field , a 3-tensor is an element of the vector space
U®V ®W, whose dimension is (dim U)(dim V)(dim W). If e; is the i-th standard basis
vector, then a basis for U @ V ® W is given by the vectors {e; ® e; ® e;}. One may also
interpret the symbol ® more concretely as the Kronecker product, in which e; ® e; ® e,
represents a 3-way array whose only nonzero entry is in the (4, j, k) position. The vector
space of such 3-way arrays (with coordinate-wise addition) is isomorphic to U @ V @ W.

The rank of a tensor T' € U ® V ® W is the minimum » such that T = 22:1 u; @ v; @ w;
for some vectors u;, v;, w;.

Two n X m x p 3-tensors T, 7' € U ® V @ W are isomorphic if there exist matrices
X € GL(U),Y € GL(V),Z € GL(W) such that (X,Y,Z)-T = T’, where the latter is
shorthand for (1). If we treat T, 7" as given non-isomorphic tensors, then we may treat (1)
as a system of equations in the n% + m?2 + p? variables X, Y, Zyr. To enforce that these
variable matrices are invertible, we furthermore introduce three additional sets of variables
X',Y’, Z' meant to be the inverse matrices, and include also the equations

XX'=X'X=1I, YY' =YY =1, Z7'=27'Z =1,

where I, denotes the n x n identity matrix, which is Idy in any basis. (We could have
instead introduced new variables such as § and the equation det(X)d = 1, however, the
latter equation is degree n, whereas the above equations all have degree O(1), which is more
desirable from the point of view of algebraic proof complexity.)

2.3 Polynomial encodings and the inversion principle

Some principles of linear algebra can be formulated as tautologies in propositional logic and
therefore also as a set of polynomial equations. In this paper we preliminarily consider two
such principles.

Rank Principle. As a first example we consider a set of unsatisfiable polynomials encoding
the principle that the product of a n x r matrix X by a r X n matrix Y cannot be the identity
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matrix whenever r < n. We consider variables @; i, y; » for 7,7 € [n] and k € [r], where 7 < n
to encode X and Y. Then the polynomial encoding is:

I(r,n) := Z TikYjk — 0ij i,j € [n]
ke(r]

where §; ; = 1 if i = j and 0 otherwise. This set of polynomials is clearly unsatisfiable as
long as r < n.

Inversion Principle. The second principle encodes the invertibility of a square n X n matrix
A, expressing the tautology that AB =1 — BA = I where A, B are n X n matrices and [ is
the identity matrix. Stephen A. Cook suggested this principle as a tautology that may be
hard to prove in several proof systems.

Let a; ;,b; ; be formal variables encoding respectively the (4, j)-th entries of A and B.
We represent the fact that AB = I as the set of degree 2 polynomials

Z airbrj —0i;  i,J € [n],
ke[n]

where §; ; =1 if ¢ = j and 0 otherwise. We denote this set of polynomials by AB = I. In
Section 3, we study the degree complexity of AB =1+ BA = I, that is of PC derivations of
the polynomials BA = I from the polynomials AB = I.

In view of the results we obtain in Section 3, in Section 1.2 we considered a polynomial

rule schema of the form
AB=1

BA=1
which we call the Inversion Rule (INV) meant to be added to PC' as an extra rule. We make
this slightly more precise here.

A polynomial instantiation 7 of the polynomials AB = I is a substitution of polynomials
Di.j,qi,; to variables a;; and b; j. In PC+INV a polynomial p is derivable from a set of
polynomials P if
1. pis an axiom, or p € P;

2. p is obtained by multiplication or linear combination from previous polynomials in the
proof;

3. pis a polynomial among a polynomial instantiation 7 of BA = I, given that among the
polynomials previously derived in the proof there are all the polynomials forming the

instantiation 7 of AB = I.

Pigeonhole Principle. An important role in proving the results in Section 3 is played by
the well-known Pigeonhole principle stating that any function f from [n] to [r] with r < n
has a collision, that is there are i # i’ € [n] and a j € [r] such that f(i) = f(i') = j. PHP"
is the set of polynomials:

Z pik — 1, for i € [n], DikDjk, for i # j € [n],k € [r]

pfj — pij, for i € [n], j € [r]

Razborov [43] additionally included the “functional equations” (encoding that each pigeon
cannot be matched to more than one hole):

pikDig, fori € [n],k#k € [r].
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3 Linear algebra warm-up: PC for matrices

Two matrices M, M’ € U ® V are isomorphic as tensors if they are equivalent as matrices,
meaning under left- and right-multiplication by invertible matrices X € GL(U),Y € GL(V),
that is,

XMY = M'.

Since we want X,Y to be invertible, we also introduce variable matrices X', Y’ as before,
together with the equations

XX'=X'X=1dy YY' =Y'V=Idy.

Then by left multiplying our initial matrix equation by Y’, we may replace it with the new
matrix equation

XM =MY".

The latter has the advantage of being linear in X and Y’, but the quadratic equations
XX =1dy,YY’ = Idy still make even this case not totally obvious.

3.1 A trick for PC degree

If our focus is on PC degree, we note that the degree of the equations is unchanged if we
first left- or right-multiply M, M’ by invertible scalar matrices. For example, if we replace
M by M = AMB with A,B € GL(U), then we may replace X by X := XA~ Y by
Y := B7'Y. Then we have M = M, so M = M’ iff M = M’. Furthermore, since the
transformation X + XA~ Y + B~!Y is linear and invertible, any PC proof that M % M’
can be transformed by the inverse linear transformation into a PC proof that M 2% M’ of
the same degree.

Now, for matrices under this equivalence relation, we have a normal form, namely every
matrix M is equivalent to a diagonal matrix with rk(M) 1s on the diagonal and all the
remaining entries 0, that is, Zfi(lM ) e; ®e; = I, 0, where the latter 0 denotes a 0 matrix of
appropriate size (n —r) X (m —r). So by using the preceding trick, we may put both M and
M’ in this form. The two are isomorphic iff rk(M) = rk(M’), so for PC degree we have now
reduced to the case of showing that I,. ® 0 and I~ & 0 are not isomorphic when r # r’.

Note that, aside from the equations saying X and Y are invertible, this is almost identical
to the Rank Principle (see Section 2.3). In the rest of this section we will prove PC lower
bounds on both the Rank Principle and the Inversion Principle.

3.2 Inversion Principle implies the Rank Principle

» Lemma 3.1. If the r x r Inversion Principle has a degree d PC' derivation, then there is
a degree max{d,3} PC refutation of the Rank Principle stating that a rank r matriz is not
equivalent (isomorphic) to a rank n matriz, for any n > r.

If the Inversion Principle has a degree d NS derivation, then the Rank Principle has a
degree d + 2 NS refutation.

Proof. Suppose the r x r Inversion Principle has a degree-d derivation. Consider the Rank

Principle XY = I,, where X isn x r and Y is r X n, with n > r. Write

X
X = {Xﬂ and Y = [Y; Yi],

4:9

CCC 2023



4:10

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396
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where X, Yy are r x r. Then, examining the upper-left » x r corner of the original equations,
we find XoYy = I.. As these are square matrices, by assumption in degree d we may then
derive that Yy Xg = I,. as well.

Yo O

Now, multiply both sides of XY = I,, on the left by the matrix { 0 I

} . The result
is then the set of degree-3 equations

X, } Yo Yi] = [}g’ Inoj :

Considering the upper-right r x (n — r) block of these equations, we find the equations
YoXoY:1 = 0.

But now, from the equation Yy Xy = I, we may right-multiply by Y7 to get Yo XoY7 = Y7.
Combining with the equation at the end of the last paragraph, we then conclude Y; = 0.

Finally, consider the lower-right (n — r) x (n — r) part of the original equation XY = I,,,
namely, X1Y7 = I,,_,. We had already derived Y; = 0, which we can then left-multiply by
X; to get X1Y; = 0. Considering any diagonal entry of these two equations, we then derive
the contradiction 1 = 0.

To see the NS certificate, we unwrap the above proof. First write Yo Xo — I,- as a linear
combination of the equations XYy — I, with polynomial coefficients, in total degree d.
Among our starting equations in the Rank Principle, we have XoY; and X;Y; — I,,_,.. Then
the following linear combination has degree 2 more than Yy Xy — I,., and derives 1 in any of
its diagonal entries:

- X1 Yo XoY1 + X1 (YoXo — 1)V + (XuY1 — I, ).

» Observation 3.2. The n x n Inversion Principle has a proof of degree 2n + 2.

Proof. The idea is to use Laplace expansion. We spell out the details.

We start with XY = I,,, where X and Y are n x n matrices of variables. Left-multiply by
Y toget YXY =Y, and then right multiply by Adj(Y") (whose entries are the (n—1) x (n—1)
cofactors of Y, hence have degree n — 1) to get YXY Adj(Y) = Y Adj(Y). Now, by Laplace
expansion, we have Y Adj(Y) = det(Y)I,, so we get Y X det(Y) = det(Y)I,.

Next, starting from XY = I,, and expanding out the determinant term-by-term, we
derive det(XY) = 1. (Note that here, we are not simply applying the determinant to the
matrix XY — I, as that would give us the value of the characteristic polynomial evaluated at
1. Instead, we repeatedly use that from a —b =0 and ¢ —d = 0 we can derive ac — bd = 0 as
(a — b)e+b(c — d). Similarly, we can derive (a+c¢) —(b+d) = 0 as (a—b)+(c—d).) Now, since
det(XY') = det(X) det(Y) identically as polynomials, we have derived det(X)det(Y) =1 in
degree n.

Now, from Y X det(Y) — det(Y')I,, in the first paragraph, we multiply by det(X) to get
(YX — I,)(det(X) det(Y)). From det(X)det(Y) — 1 in the second paragraph, we multiply
by —(YX — I,,) and add to the preceding to get Y X — I,,, all in degree at most 2n + 2. <«

3.3 Lower bound on the Rank Principle (and Inversion Principle) via
reduction from PHP

Here we show that the Rank Principle (see Section 2.3) requires large PC degree, via a
reduction to the Pigeonhole Principle. For the Pigeonhole principle, a tight PC degree lower
bound is known:
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» Theorem 3.3 (Razborov [43]). Any PC refutation of the Functional PHP requires degree
r/2+1 over any field.

We use this to show:

» Theorem 3.4. Letn € N, n>2 and 1 <r <n. I(r,n) (with or without the Boolean
azioms) requires degree r/2+ 1 in PC over any field.

Proof. We prove that PHP! is (1,2)-reducible to I(r,n). First we consider the following
degree 1 polynomials defining  and y variables of I(r,n) in terms of the p variables of PH P.
variables

Tik = Yik = Dik fori € [n],k € [n—1].

Second we show a degree 2 PC proof of I(r,n) from the polynomials defining the PHP.
From PHP axioms p; xpg,; for i,j € [n],i # j, and summing over all k € [r], we get

Z PikPk.,j>
ke(r]

which are exactly the axioms of I(r,n) for i # j,4,j € [n], after the substitution of variables.
For a i € [n], take the boolean axioms written in the form p; p;r — pi,x and sum them

> pikpik— Y Pik
kelr] ]

kelr

over k € [r]:

Summing this last polynomial with the PH P axiom Zke[r} Dik — 1 we get the polynomial

Z PikPik — 1,

ke(r]

which is the axiom of I(r,n) for ¢ = j after the substitution of the variables. The proof has
degree 2. The result follows immediately from Lemma 2.2 and Theorem 3.3.
<

» Corollary 3.5. Any PC proof of AB=1F BA =1, where A, B are square n x n {0,1}
matrices requires degree n/2 + 1.

Proof. Follows immediately from Theorem 3.4 and Lemma 3.1. |

4 Upper bound for non-isomorphism of bounded-rank tensors

» Theorem 4.1. Over any algebraically closed field, there is a function f(r) < 20(T2),
depending only on 7, such that, given two non-isomorphic tensors M, M' of tensor rank < r,
the Nullstellensatz degree of refuting isomorphism is at most f(r).

If working over a finite field GF(q) and including the equations 9 —x = 0 for all variables
x, then the PC degree is at most 12qr2.

Proof. The proof is based mainly on the so-called inheritance property of tensor rank.
Let M = Y7 u; @v; ® w; and let M = Y7 u} ® v) @ w) be our two tensors of

format ny x na X ng. Let d; = dim Span{uy,ua, ..., u,,uj, ub,...,ul}, do similarly for the
v’s and ds for the w’s. Choose a basis eq,ea, ..., e,, for ™ such that Span{ey,...,eq, } =
Span{ui,...,ur,uf,...,u.}. Let f1,..., fn, be asimilar basis for "2 (with the first da vectors
a basis for Span{vy,...,v,,v],...,v.}), and similarly gi,...,gn,. Changing everything in
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sight into the e, ® fo ® go basis, we find that M, M’ are both supported in the upper-left
dy X dg X d3 sub-tensors, with all zeros outside of this. Call the corresponding di X do X d3
tensors M, WM. Because all the entries outside this box are zero, it is not difficult to show
that M = M’ iff M =~ M (the so-called “Inheritance Theorem,”, see, e.g., [31, §3.7.1]); note
that isomorphism of M with M is via the much smaller group GLg4, x GLg, x GLg4,, rather
than GL,, x GL,, x GL,, (the latter of which is used to determine isomorphism of M with
M').

In this basis, isomorphism of M, M s solely determined by the upper-left d; x dy
sub-matrix of X, X', the upper-left ds x dy submatrix of Y,Y”, and the upper-left d3 x ds
sub-matrix of Z, Z’. So we now only need to deal with equations in d? + d3 + d2 variables.
Since each d; < 2r, this is at most 1272 variables.

Since we have < 12r2 variables, d;dsds cubic equations, and 6n? quadratic equations
(XX'=1=X'X =YY’ = ...), over an algebraically closed field Sombra’s Effective
Nullstellensatz [48] implies that the Nullstellensatz degree of refuting our equations is then
at most 4 - 300,

Over a finite field with the extra equations ¢ = x, we may reduce degrees so that the
degree of each variable is never more than ¢, the size of the field. In this case, the PC degree
is at most ¢ times the number of variables, i. e., at most 12¢r2. |

5 Lower bound on PC degree for Tensor Isomorphism from Graph
Isomorphism

» Definition 5.1. Given two graphs G, H with adjacency matrices A, B (resp.), the equations
for GRAPH ISOMORPHISM (the same as those used by Berkholz & Grohe [7, 8]) are as follows.
Let Z be an n x n matriz of variables z;; (where the intended interpretation is that z;; = 1 iff
an isomorphism maps vertex i € V(G) to vertex j € V(H)). We say that a partial map, which
sends (i,4") — (4,5") is a local isomorphism if (1) i =1 iff j = j' (it’s a well-defined map)
and (2) (i,i') € E(G) < (j,4') € E(H). (One may also do COLORED GRAPH ISOMORPHISM
and require that the colors match, c(i) = c(j), c(i’) = c(j').) Then the equations are:
zgj —2z;; Vi,j  All variables {0, 1}-valued
1=z VY each j € V(H) is mapped to from exactly one vertex
1= 25 Vi each i € V(G) maps to exactly one vertex
2ij %t Whenever (i,i") — (4,7") is not a local isomorphism.

In this section, we prove a lower bound on PC (and SoS) for T1I, by reducing from GI
and using the known lower bounds on GI [7, 8]. Specifically, we show

» Theorem 5.2. Over any field, there are instances of TENSOR ISOMORPHISM of size
O(n) x O(n) x O(n) that require PC degree Q(n) to refute. The same holds over the reals
for SoS degree.

Proof. Berkholz and Grohe [7, 8] show the same statement for n-vertex graphs of bounded
vertex degrees, with the same PC/SoS degree bound. In Proposition 5.4 we show that
GI reduces to MONOMIAL CODE EQUIVALENCE by a (2,4)-many-one reduction that turns
n-vertex, m-edge graphs into m x (3m + n) matrices. in Proposition 5.5 we show that
MoNOMIAL CODE EQUIVALENCE reduces to T1 by a (2,4)-many-one reduction that turns
k x N matrices into (k+ 2N) x N x (1 4+ 2N) tensors. By Lemma 2.2, this completes the
proof. |
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To reduce from GI to TI we use the following intermediate problem. A matrix is monomial
if it has exactly one nonzero entry in each row and column; equivalently, a monomial matrix
is the product of a permutation matrix and an invertible diagonal matrix.

» Definition 5.3. MonoMmIAL CODE EQUIVALENCE is the problem: given two k X n matrices
C,C", do there exist matrices X,Y such that XCYT = C' where X is invertible and Y is
invertible and monomial? Given two such matrices C,C’, the equations for MIONOMIAL
CoDE EQUIVALENCE are as follows. There are 2(k? + n?) variables arranged into matrices
X, X' (of size k x k) and Y)Y’ (of size n x n). The equations are

xcyT =¢' XX =X'X=1d YY' =YY =1d
and

YiiYij (ViVj # 5') Yigyir; (Vi # 7', Vj)
Yiiuip (ViYG £ 5 iy (Vi # L Y5)

(Note: there are no equations forcing the variables to take on values in {0,1}.)

» Proposition 5.4. The reduction of Petrank € Roth [42] from GRAPH ISOMORPHISM to
LINEAR CODE EQUIVALENCE over o in fact gives a (2,4)-many-one reduction from GRAPH
IsomMORPHISM to MONOMIAL CODE EQUIVALENCE (sic!) over any field.

Proof. The reduction of Petrank & Roth is as follows: given a simple undirected graph G
with n vertices and m edges, let D(G) be its m x n incidence matrix: D, , =1 iff v € e and
is 0 otherwise, and let M (G) be the m x (3m + n) matrix

M(G)=[In | In | Im | D(G) ].

Many-one reduction. It was previously shown (over 2 in [42] and over arbitrary
fields in [23, Lem. I1.4]) that this gives a many-one reduction to PERMUTATIONAL CODE
EQUIVALENCE. Here we observe that the same reduction also gives a reduction to MONOMIAL
CoDE EQUIVALENCE. Thus, all that remains to show is that if M(G) and M(H) are
monomially equivalent, then G must be isomorphic to H.

In fact, what was shown in [42] (over arbitrary fields in [23]) is that, up to permutation
and scaling of the rows, M(G) is the unique generator matrix of its code satisfying the
following properties: (1) M(G) is m x (3m + n), (2) each row has Hamming weight < 5,
(3) any linear combination that includes two or more rows with nonzero coefficients has
Hamming weight > 6.

Now, suppose (X,Y) is a monomial equivalence of the codes M(G), M(H). Then the
rowspans of M(G)YT and M(H) are the same. Since Y is monomial, if we consider just the
supports of the rows of M(G)Y T, up to re-ordering the rows, by the preceding paragraph,
those supports must be the same as the supports of the rows of M(H). Thus X must also be
monomial. Say X = DP and Y = EQ where D, E are diagonal and P, @ are permutation
matrices. Then PM(G)QT has the same support as X M (G)YT = M(H), and since P and
@ are permutation matrices and M(G) and M (H) have all entries in {0,1}, we must have
PM(G)QT = M(H). Thus M(G) and M (H) are in fact equivalent by a permutation matrix
(in place of the monomial matrix Y). Thus, by the fact that (G, H) — (M(G), M(H)) was a
reduction to PERMUTATIONAL CODE EQUIVALENCE, we conclude that G = H.

Low-degree PC reduction. Let X, X' Y, Y’ be the variable matrices in the equations
for MoNOMIAL CODE EQUIVALENCE of M (G), M(H), and let Z be the variable matrix in
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the equations for GRAPH ISOMORPHISM of G, H. Let n = |V(G)|,m = |E(G)|[; so, X, X' are
of size m, Y, Y are of size 3m + n, and Z is of size n.

Let Z®@ denote the (g) X (g) matrix whose ({i,7'},{J,j'}) entry is zjzij + 25025
The idea is that if Z is a map on the vertices, then Z(?) is the corresponding map on the
edges; the two terms come from the fact that the edge {i,i'} can be mapped to the edge
{4, 7'} either by (i,i") — (4,4') or by (i,¢') — (4/,7). Note that, since Z is a permutation
matrix, at most one of these terms is nonzero, and thus Z? is also a {0, 1}-matrix (in fact,
a permutation matrix) Let ZSEz) denote the |E| x |E| submatrix of Z() all of whose row
mdlces are {z z(} ) and all of whose column indices are {7, j'} € E(H). Note also that
( 2) , S0 we use these notations interchangeably for convenience.
NOW COIlbldeI“ the following substitution:

2 2 2 2
X (ZIT Yo (20D @ (2P 0 (2" F @ (27
Xwzg YVezRlezdezd ez

After making these substitutions in the equations for MONOMIAL CODE EQUIVALENCE of
M(G), M(H), we get the equations
(ZNT72 = 20z —14,,  (ZTD(@)Z=DH) 27T =2"7Z=1d, (2)
along with equations saying that Z and Z](;)
We now show how to derive these equations in low-degree PC from the GI equations.
The monomial equations for Z are part of the GI equations, so there is nothing to do for
those.
The monomial equations for Zg) are of the form (z;;zi ;0 + zijr2ir) (Zrezkrer + Zie Zire)
where either (1) {i,7'} = {k, &'} and {j, '} # {¢,¢'} or (2) vice versa. We expand out to get

are monomial.

ZijZi/j/Zk[Zk/er + zijzi’j'zkf/zk’f + zij’Zi’jZk[Zk/e/ + zijlzi/jzkf’zk’f

We show how to get this equation in case (1); case (2) follows similarly, mutatis mutandis.
In case (1), without loss of generality suppose that ¢ = k, i/ = &/, and j ¢ {¢,¢'}. The first
two terms are divisible by the GI equations z;;z;¢ (since ¢ = k and j # £), the third term
is divisible by z;/jzy ¢ (since ' = k" and j # ¢'), and the last term is divisible by z;zi¢
similarly.

Next, the equations ZZT =1d,, are, expanded out,

> zijzg— W)Y zigak (Vi # k).
j j

The first is gotten by linear combination from 1 — 3", z;; and the Boolean axioms 23 — Zij
The second is a linear combination of the monomial axioms z;;2x; (part of the local non-
isomorphism axioms). Similarly for Z7Z = Id, ubing 1—>", zi; instead.

Next, we expand out the equations Z (2)(ZT) =1d,,, to get!

S (Eigaig + zijezi) Bk ewg + 2wieeg) — 6y ey (Vi 1} (R, K} € B(G))
(. YEB(H)

We use the notation Z{j,]”}eE(H) to denote a sum in the index of summation takes on the value

e € E(H) for each edge of H exactly once. Because our edges are undirected, we only use such sums
when the summand expression is itself invariant under swapping the roles of j,j’. If so desired, one

could equivalently say Zj<j, G eR(H)”
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Thus, for {i,i'} # {k,k'}, we need to derive

§ (zijzirjr 2njan g + Zigr2ij2rj2n g + Zig2ig 2§ 2kg t Zijr i 2K 2k ) -
{5,j’}€E(H)

Without loss of generality, suppose that ¢ ¢ {k, k’}. Then the first two terms of each summand
are divisible by the GI equation z;;2;, the third term is divisible by z;;z1/;, and the last
term is divisible by z;jrzg;-. On the other hand, when {i,i'} = {k, '}, we need to derive

2 .2 2 2
-1+ E (zijzi,j/ + 22’1']'/21'/]'21‘]‘2’2'/]‘/ + Zij’zi’j) .
{4,5'YeE(H)

The middle terms of each summand are divisible by the GI equations z;; z;;. For the first
and third terms, we can use the Boolean axioms to remove the squares, and thus we are left
to derive

-1+ Z (ZijZi/j/ + zij/zi/j) (3)
{4.5'YEE(H)

We derive this from the GI equations as follows. Consider (3, zi; — 1)(3_; zirjr — 1) +

(X2j 25 — 1) + (32, zirj» — 1) and break up the resulting sum according to whether j = j’,

{j,7’} € E(H) or {j,j'} ¢ E(H). Then we get

> zijzig + > Zigzirj + > zijzingr — 1
j

3,3"{4,3' Y E(H) 3#3'{3,3'}EE(H)

Every summand in the first sum is a monomial axiom since i # i’. Every summand in the
third sum is a local non-isomorphism axiom, since {i,i'} € E(G) but {j,5'} ¢ E(H). Note
that every edge {j, 7'} of E(H) is represented twice in the middle sum: once as (j, ;') and
once as (j,7). Thus, the above simplifies to

Y Gzt zigreg) — 1,
(5.4 YEE(H)

which is what we sought to derive. The derivation of (ZSEz))TZg) = Id is similar.

Finally, we show how to derive the equation (Zg))TD(G)Z = D(H) from the equations
ZA(G) = A(H)Z, where A(G) denotes the adjacency matrix of G, with A(G);» = 1 iff
{i,7'} € E(G). Writing out the equations in indices, we need to derive, for all ¢ € V(H) and
all {j, '} € E(H),

2
2 (ZSE)) o DG iy ezee = D(H) 50,0
{i,i’ }EE(Q),kEV (G) {i,i3 45,5}

Using the fact that D(G)(;,i3,x = i + 0ir1. and the definition of Z®2)_ this is the same as
Z (zijzirj + zijrzirg) (Oig +0irk)zke = 850 +0:0(V € V(H),Y{j,j'} € E(H))
[i,i'}EE(Q),keV(Q)
Thus we need to derive:

1 ted{jj'}
0 otherwise.

S (mijany + zigzig) (zie+ 2ve) = {

{1,i’ }€E(G)
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Expanding out the summand, we find the four terms
ZijZitg Zie + ZijZitg Zite + ZijrZinjZie + Zijr Zirj i

When ¢ ¢ {j,j'}, each of these terms is divisible by one of the monomial (local non-
isomorphism) axioms, respectively: ZijZiy ZitgrZites ZigrZie, and iz,

Finally, when ¢ € {j, j'}, without loss of generality suppose that ¢ = j. Then the only
terms that are not divisible by the monomial axioms as above are zszi/ i+ zij 22 ;- Using
the Boolean axioms we can easily convert each such summand to z;;2;y;: + 27 2¢5. The
derivation of the sum of these over all {i,i'} € E(G) is analogous, mutatis mutandis, to the
derivation of (3) above. This completes the proof. <

» Proposition 5.5. The many-one reduction from MONOMIAL CODE EQUIVALENCE to
TENSOR ISOMORPHISM from Grochow & Qiao [25] is in fact a (2, 4)-many-one reduction.

Proof. We recall the reduction, then prove that it is a low-degree PC reduction. Let M be
a k x n matrix. We build a 3-tensor of size (k + 2n) x n x (1 4 2n) as follows. The first

frontal slice is { ] . The remaining 2n slices all have just a single nonzero entry, which

2nxn
serve to place a 2 x 2 identity matrix “behind and perpendicular” to M, one 2 X 2 matrix

in each column. Let us index these slices by [n] x 2. Then the (i,b) slice has a 1 in entry
(2(3 — 1) + b,14), for all i € [n],b € [2]. Let us call this tensor r(M). Then the reduction maps
M, M’ to r(M),r(M’).

Let X, X", Y,Y’, Z, Z’' be the variable matrices for the TT equations for r(M),r(M’), and
let A, B, A’, B’ be the variable matrices for MONOMIAL CODE EQUIVALENCE of M, M’ (that
is, AMBT = M’, A is invertible, B is monomial and invertible). Consider the substitution:

X—A®(B®I) Y — B Z—=1® (B oB)®I,

X' — A @ (B Il) Y'— B’ Z'—1® (BoB)® I.

As before, B o B denotes the Hadamard or entry-wise product. Let us see what the TI
equations become under this substitution. We get

AMBT = M’ AA = AA=1d

BB =B'B=1d (B'oB')(BoB)=(BoB)(B' oB')=1d

Indeed, notice that the effect of the B ® I in X and the B in Y is that the row and column
locations of the 2 x 2 matrix gadgets get permuted in the same way, and the gadget get
multiplied by the square of the nonzero entries of B. These are then multiplied by the B’ o B’
in Z.

Now, we derive these equations from the equations for MONOMIAL CODE EQUIVALENCE.
The first three are already present in the equations for MONOMIAL CODE EQUIVALENCE.
The last one we expand out, to see that we need to derive:

Z b} ()? = dur(Vi, k)
J
Now, for i # k, we may take the equation ) j bijb;k and square it, to derive

Z bijb;k + bij/b;'/k + Z bfjb?/k
J#5’ J
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Each term in the first sum is divisible by one of the monomial axioms b;;b;; since j # j’,
and the second sum is what we wanted to derive.
Finally, for i = k, we square the equation }_; b;;b}; — 1 and add to it 2 (ZJ bijbl; — 1).
We then proceed to cancel terms with the monomial axioms as above, and end up with
> b7;(b};)? — 1, as desired. <
6 Lower bound on PC degree for Tensor Isomorphism from Random
3XOR

We get a lower bound on PC refutations for TENSOR ISOMORPHISM through the following
series of low-degree PC many-one reductions (Definition 2.3):

RANDOM 3-XOR <P¢{+1}-MoNOMIAL EQUIVALENCE OF (4)
{£1}-MULTILINEAR NONCOMMUTATIVE CUBIC FORMS (5)

<POMoNoMIAL EQUIVALENCE OF {41} NONCOMMUTATIVE (6)

Cusic Forwms (7)

§5LCEQUIVALENCE OF {£1} NoNCOMMUTATIVE CUBIC FORMS (8)

<PCTENSOR ISOMORPHISM (9)

We then appeal to the following PC lower bound on RANDOM 3-XOR:

» Theorem 6.1 (Ben-Sasson & Impagliazzo [5, Thm. 3.3 & Lem. 4.7]). Let be any field of
characteristic # 2. A random 3-XOR instance with clause density A = m/n requires PC
degree Q(n/A?) to refute, with probability 1 — o(1).

This allows us to prove:

» Theorem 6.2. Over any field of characteristic # 2, there is a random distribution of
instances of n X n X n TENSOR ISOMORPHISM—which assigns nonzero probability to at
least 22(VM108 1 different instances—whose associated equations require PC degree Q(/n) to
refute, with probability 1 — o(1).

Note that such instances have N = 6n? variables, so this is really only an Q(v/N) lower
bound relative to the number of variables.

In the following subsections we recall the definitions of the above problems and their
associated systems of polynomial equations, and we give the reductions in the order listed
above.

The first two reductions are gadget constructions of linear size; the proof of correctness
for the first uses the fact that random hypergraphs have no automorphisms, while the second
is fairly straightforward. Reduction (8) uses a gadget from Grochow & Qiao [26], albeit for a
new application, and shows that the reduction using this gadget also yields a low-degree PC
reduction. Reduction (9) is based on two lemmas, which show that the many-one reduction
for this problem in fact also gives a low-degree PC reduction.

» Remark 6.3. Both of the latter two reductions have a quadratic size increase, so while we
get a nearly-linear lower bound on PC degree for refutations of MONOMIAL EQUIVALENCE
OF NONCOMMUTATIVE CUBIC FORMS, we only get a Q(y/n) degree lower bound EQUIVAL-
ENCE OF NONCOMMUTATIVE CUBIC FORMS and a Q({/n) degree lower bound on TENSOR
IsomorpHISM. If the gadget sizes of these latter two reductions could be improved to linear,
we would get a similarly near-linear lower bound (linear in the side length, still /N relative
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to the number of variables) on PC refutations for TENSOR ISOMORPHISM as well. As many
of the reductions in [19, 26] are of a similar flavor to the ones we consider here, we believe
that they can all be proven in low-degree PC, so we expect the main obstacle to such an
improvement is the size of the constructions themselves.

6.1 From Random 3-XOR to {+1}-multilinear noncommutative cubic
forms

» Definition 6.4. A random 3-XOR instance with n variables and m clauses is obtained by
sampling m clauses independently and uniformly from the set of all 2(2) parity constraints
on 3 variables. Each parity constraint is encoded by an equation of the form z;x;x, = +1,
and the Boolean constraints are encoded by x? = 1.

By a {£1}-monomial matrix, we mean a monomial matrix in which all nonzero entries
are one of £1. {#+1}-MONOMIAL EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS
is the problem of deciding, given two noncommutative cubic forms f, f’ in n variables
Z1,...,T, with all nonzero coefficients +£1, whether there is a permutation = € S, and signs
e; € {£1} such that f(e12r(1), ..., €2Tr(2)s -+, EnTr(n)) = f'(¥). Equivalently, if we represent
a noncommutative cubic form f by the 3-way array T, such that f(7) = Zi,j,ke[n] T3k YiYi Y,
the problem here asks whether there is a {4-1}-monomial matrix A such that (A4, A, A)-T =T",
that is, whether Ti’,j,k, = Zijk aiirajyape Tijr for all i/, j' k' € [n].

» Definition 6.5. We define the systems of equations associated to several variations of

EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS.

1. Given two n x n x n 3-way arrays T,T’, the system of equations for EQUIVALENCE OF
NONCOMMUTATIVE CUBIC FORMS is the following system of equations in 2n? variables.
Let A, A’ be n x n matrices of independent variables a;j, a;j, respectively.

(A,AJA)-T=T (A is an equivalence)

AA =AA=1d (A is invertible with A=t = A’)

2. The system of equations for MONOMIAL EQUIVALENCE OF NONCOMMUTATIVE CUBIC
FoRMS includes the preceding equations, as well as:

a;ija;;; =0 YiVj# 3  (at most one nonzero per row)
a;jaiq; =0 VjVi#i  (at most one nonzero per column)

3. The system of equations for {+1}-MONOMIAL EQUIVALENCE OF NONCOMMUTATIVE
CuBIC FORMS includes all the preceding equations, as well as

a;j(a;j +1)(ai; —1) =0 Vi,j€[n] (all entries in {0,£1})

4. A noncommutative cubic form Zijk Tijrxiz ) ts multilinear if all nonzero terms Ty
have i, j, k distinct (that is, |{3,j,k}| = 3). The system of equations for {£1}-MONOMIAL
EQUIVALENCE OF ADJECTIVE NONCOMMUTATIVE CUBIC FORMS is the same as the
above, with the restriction that T and T’ both satisfy ADJECTIVE (e.g., multilinear,
nonzero entries in {£1}, etc.).

» Theorem 6.6. There is a linear-size (1,3)-reduction from RANDOM 3-XOR instances on
n variables with m clauses, where 10*n < m < (g)/lOlQ, to {£1}-MONOMIAL EQUIVALENCE
OF {£+1} MULTILINEAR NONCOMMUTATIVE CUBIC FORMS, over any ring R of characteristic

£92.
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The reduction is always a (1,3)-reduction, but we only show the resulting system of
equations for {+1}-MONOMIAL EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS is
unsatisfiable with probability 1 — o(1) when the 3-XOR instance is chosen randomly with
the parameters specified in the theorem. (It is possible that it is always unsatisfiable when
the input 3-XOR instance is, but our proof does not answer this question.)

Proof idea. We build multilinear noncommutative cubic forms from the 3-XOR. instance
such that they are equivalent by a {£1} diagonal matrix iff the 3-XOR instance is satisfiable:
an equation z;x;xr, = £1 corresponds to setting T, = 1,Ti’jk = =+1 in this construction.
The noncommutative cubic forms are multilinear because the construction of the random
3XOR instance ensures that each XOR clause contains 3 distinct variables. In fact, the
equations for {41}-diagonal equivalence of the correspondence noncommutative cubic forms
will turn out to be identically the same as the equations for the 3-XOR, instance.

Next, for random instances chosen with the stated parameters, the 3-way arrays T,T" are
the adjacency hyper-matrices of a 3-uniform hypergraph that has no nontrivial automorphisms
by [40, Lemma 6.9]; this is why we needed to restrict the parameter range for m as we did.
Because the hypergraphs have no nontrivial automorphisms, any monomial equivalence of
the corresponding cubic forms must in fact be diagonal, thus letting us further reduce to
{£1}-monomial equivalence. <

Proof. We are given a system of 3-XOR equations, which we’ll denote z;,x;,z5, = s, for
¢=1,...,m, where iy < j; < k¢ € [n] are indices of variables and s, € {£1} for all £. Tt also
includes the equations z? = 1 for all i = 1,...,n.

Step 1: Reduce from random 3-XOR to {+1}-diagonal equivalence of non-
commutative cubic forms. From the above system of equations, we now construct two
nxnxn 3-way arrays T, T’. For the original equations z;,z;,x,, = s¢ ({ =1,...,m), and for
any ay € {£1} of our choice (we may set all a, = 1 if we wish, but this additional flexibility
may be useful in other settings) we set

Tig,jg,kg = Qy and T'/

ig,jeke = SLAL-

All other entries of T and T" are set to zero.

We start with a warmup lemma, to see that this part of the construction already has a
desirable property. By a “{£1} diagonal isomorphism” of two non-commutative cubic forms,
we mean a diagonal matrix X whose diagonal entries are all one of +1 such that X gives an
equivalence between T',T".

» Lemma 6.7. Notation as in the paragraph above. There is a bijection between the solutions
to the 3-XOR instance and the {£1} diagonal isomorphisms of the noncommutative cubic
forms defined by T, T'.

Proof. Suppose x is a solution to the 3-XOR instance. Let X = diag(z1,...,x,) be the
diagonal matrix with x on the diagonal. We claim that X is an equivalence between
the noncommutative cubic forms represented by T,7T”, or the same, that (X, X, X) is an
isomorphism of the tensors T,T’. Note that for any diagonal matrices X,Y, Z, we have
(XY, Z)-T)ijx = ziyjzTijk. In particular, the action of diagonal matrices does not change
which entries of T are zero or nonzero, it merely scales the nonzero entries. Since T, T’ have
the same support by construction, it is necessary and sufficient to handle the nonzero entries.
By the construction above, there are precisely m such nonzero entries, one for each cubic
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equation in the 3-XOR instance. For each £ = 1,...,m, we have

((X, X, X) : T)izj/zkz = xiel‘jzxkenzﬂkz

= 5¢Tiyjoke
!
iejeke:
In the other direction, if X = diag(x) is a diagonal matrix whose diagonal entries are in
{%1} giving an isomorphism of the noncommutative cubic forms, then we have

TigLj, Ly = nfjlklﬂgj@kg =S¢
for £=1,...,m. (Here we have pulled Tj, j, x, across the equals sign because every term in
the above equation is +1.) This concludes the proof of the lemma. <

We thus consider the equations corresponding to {#1}-diagonal equivalence of T,T":
there are n variables z; (i = 1,...,n). Let X denote the diagonal matrix with x on the
diagonal. Then the equations are

X?=1d (X, X,X)-T=T. (10)

By Lemma 6.7, we have that the original 3XOR instance is satisfiable iff (10) is satisfiable.
We claim furthermore that there is (1,3)-reduction from the 3XOR equations to this system
of equations. In fact, as the proof of the preceding lemma shows, they are actually the same
set of equations! So there is nothing more to show.

Step 2: Reduce from {+1}-diagonal equivalence to {£1}-monomial equivalence.
We claim that there is a (1, 3)-reduction from (10) to the the equations for {£1}-monomial
equivalence, see (6.5). The variable substitution is given by

0 ]
aij=a<4»—>{ #J

(¥ . .
Ty 1=7.

Under this substitution:
The equivalence condition (A, A, A) - T = T’ becomes exactly the original equivalence
condition (X, X, X)-T=T".
The invertibility equations AA’ = A’A = Id become XX = 1Id
The row and column equations both become 0 = 0, since at least one of the two a;;
variables occurring will not be on the diagonal, hence will become 0 after substitution.
The equation a;;(a;; + 1)(a;; — 1) = 0 becomes z(z? — 1) for the appropriate variable
x € x. This is derivable from the original equation 2% — 1 by multiplication by .

Lastly, we show that the system of equations in Definition 6.5(3) for {£1}-monomial
equivalence is satisfiable iff the original 3-XOR instance was. Since we showed above that
that {£1}-diagonal equivalence equations are satisfiable iff the original 3-XOR instance was,
we show the equisolvability of (10) and the equations of Definition 6.5(3).

Since diagonal matrices are monomial, any solution to (10) is a solution to the equations
of Definition 6.5(3).

Conversely, suppose the equations of Definition 6.5(3) are solvable. Then there is a
{#1}-monomial matrix X given an equivalence between T and T"; we may write X = DP
where D is diagonal and P is a permutation matrix. Now, as the original 3-XOR instance
was chosen uniformly at random, the support of T' (the positions of its nonzero entries) is
precisely a uniformly random 3-uniform hypergraph G. As T,T’ have the same support
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by construction, we find that P must be an automorphism of G. But by [40, Lemma 6.9],
uniformly random such hypergraphs have no nontrivial automorphisms with probability
1—0(1). Thus P = I and X must in fact be diagonal, hence a solution to (10). <

» Remark 6.8. We may avoid the heavy hammer of [40, Lemma 6.9] by “rigidifying” (in
the sense of removing automorphisms) the system of 3-XOR equations before constructing
the 3-way arrays as follows. The construction corresponds to a standard graph-theoretic
gadget for removing automorphisms. Add new variables z and y;; for ¢ = 1,...,n and

j=1,...,n+1, as well as the equations z;y;;z = 1 for all 7, j, as well as yfj =1land 2?=1.

The downside of this construction is that it quadratically increases the number of variables,

which would result in a further quadratic loss in our lower bounds on TENSOR ISOMORPHISM.

6.2 From {£1}-monomial equivalence to (unrestricted) monomial
equivalence

» Theorem 6.9. There is a linear-size (2, 6)-many-one reduction from

{#£1}-MoNOMIAL EQUIVALENCE OF {£1} MULTILINEAR NONCOMMUTATIVE CUBIC FORMS
to
MoNOMIAL EQUIVALENCE OF {£1} NONCOMMUTATIVE CUBIC FORMS,

over any ring R of characteristic # 2 such that {£1} are the only square roots of 1.

Furthermore, the reduction r has the property that, given any two {1} multilinear
noncommutative cubic forms f, f', any monomial equivalence between r(f) and r(f') must
have all its nonzero entries sixth roots of unity, and this can be derived by a degree-6 PC
proof.

» Remark 6.10. We note the difference between a reduction to </1-MONOMIAL EQUIVALENCE
and a reduction to MONOMIAL EQUIVALENCE with the property stated in the theorem.
In the former case, the problem being reduced to only accepts ¥/1-monomial matrices as
solutions (and then the goal of the reduction is to introduce gadgets to get this down to
{£1}). In the latter case, the problem being reduced to allows arbitrary monomial matrices
as solutions, but the gadgets enforce that, on the reduced instances, any such monomial
matrix must in fact have its nonzero entries being sixth roots of unity.

Proof. Let T be an n X n X n 3-way array representing a multilinear noncommutative cubic
form with all nonzero entries in £1. We extend T to r(T') of size 2n x 2n x 2n, by setting

r(T)ijk = Tijk i,j,k € [n]
r(T)iin+i =1 i€ [n]
(T ntintinti =1 i € [n]

and all other entries of r(7T') set to zero.

Many-one reduction. We first show that the map (7,7") — (r(T),r(7")) is a many-one
reduction. Suppose T, T" are {£1}-monomially equivalent by a matrix X, where X = DP
with D = diag(zy, ..., x,) a diagonal matrix with x; € {1} for all 4, and P is a permutation

matrix. Let 7 denote the permutation corresponding to P; that is, P; ;) = 1 for all i € [n].

X
0 P
with 7(T"). Since X @ P is block-diagonal, the upper-left X certainly sends the upper-left

Then we claim the 2n x 2n matrix X @ P = [ } is a monomial equivalence of r(7T)
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n x n x n sub-array of (T (which is just T') to that of #(T") (which is just T"). So the only
thing to check is what happens to the positions at indices greater than n.
Let X' = X & P. We have

(XXX -1 (T))isinti = T(D)ntiy iy mtn () (Xi r(i)* Xtinni)
2
T(T)n(i),n(i),n+n(i)(Xi,w(i)) Pi,ﬂ-(i)
=1=r(T")iin+ti-

Similarly, we have:

(X", X", X") - r(T))ntintinti = T(T)n+7r(i),n+7r(i),n+7r(i)Pi%-n—(i) =1=r(T")ntintin+ti

Because X' is monomial, it is easy to see that the zeros of r(T') are sent to zeros of r(1").
Thus X’ is a monomial equivalence of r(T) with r(7”).

Conversely, suppose 7(T') and (T") are equivalent by a monomial matrix Y = DP, with
D diagonal and P a permutation matrix corresponding to permutation w € Sy,. We will
show that this implies that 7' and T” are equivalent by a {£1} monomial matrix. Since T
is multilinear, we have T; ; ; = r(T);; = 0. Since r(T)n+jn+jnt+; = 1 for all j € [n], the
permutation 7 cannot send any element > n to any element < n. Thus P is block-diagonal,

P 0,
say P = |:On Py
Py).

Next, we claim P, = P,. By considering the positions at indices (¢,4,n + i), we have:

((P,P,P)-r(T))iinti = 7(T)ry (i),m (6)mntma (i)

]. Let mp (resp., m2) be the permutation of [n] corresponding to P; (resp.,

But the latter is equal to the corresponding position in (7"), which is 1 iff 71 (2) = m2 (7).
Since this holds for all 7, we have m; = w9, and thus P, = Ps.

Finally, we do not claim that the diagonal entries y; themselves must be in £1. Rather,
we will show that they are all sixth roots of unity. Then cubing them will yield a new n X n
matrix D’ all of whose diagonal entries are &1 such that D’P; is a &=1-monomial equivalence
of T with T".

From the positions (n + i,n + i,n + i), we have

1

(T ) ntoms (), nber (3) st s ()
((Y, Y, Y) : T(T))n+i7n+i,n+i

3
yn+i'

But then, considering the positions (i,4,n + i), we similarly get that y2y,,; = 1. Cubing the
latter equation, we get ySy3 1; = 1. But as we already have y3 4; = 1, this gives us yS =1hy
a degree-6 PC proof, as claimed in the “furthermore.”

Now we use the fact that T, 7" have all entries in {0, £1}. Thus, each nonzero entry of
r(T) in the front-upper-left block (corresponding to T') gives us an equation of the form
YiyiyeLije = Tflrl(i),m(j),m(k)‘ Since the nonzero entries of T,T" are +1, this is thus an
equation of the form y;y;yr = £1. If we cube both sides of this equation, we get yfy?yg = +1.
But since we established above that y$ = 1 for all i, we have that y3 € {1} for all 4. Thus,
defining x; := ¢} for i = 1,...,n, we have z; € {£1} and letting D’ = diag(x1,...,z,), we
have D’P; is a {£1}-monomial equivalence from T to T".

Low-degree PC reduction. We claim that the system of equations for {1} monomial

equivalence of T and T” is (2,6)-reducible to the system of equations for monomial equivalence
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of r(T) and r(T"). Let X, X’ be the n X n variable matrices for the equations for for {+1}-
monomial equivalence of the original tensors T and T, and let Y,Y” be the 2n x 2n matrices
for the equations for monomial equivalence of 7(T'), r(T"). The PC reduction is defined by
the following substitution:

Yij > Tij i,j € [n]
Yn+in+j — ‘171‘2]' 7".7 € [n]
Yin+is Yn+tij — 0 7’7] € [’I’L],

and similarly for the 3’ variables being substituted by the 2’ variables. That is, we have
X
Y [ On }

X0
! n
0, XoX YH[ ]

0, X' oX'

where X 0 X denotes the entrywise (aka Hadamard) product with itself, that is (X0 X);; = x7;.
The reason to use X o X here is that if X is {+1}-valued and monomial, then X o X is the
permutation matrix with the same support as X; that is, this substitution is essentially the
same as the one used in the proof above for the many-one reduction.

Now, taking advantage of the block structure in the substitution above and the block
structure in r(T),7(T"), let us see what our equations become after substitution, and how to
derive them from the equations for T, T’. This will complete the proof.

1. The set of equations (Y, Y,Y)-r(T) = r(T") becomes the set of equations (X, X, X)-T =T’

(by examining the front-upper-left corner), as well as the equations

1 i/=j=kK—-nori=57=k>n
E Yiir Vi Y T(L)ijr = herwis
i ke(2n] 0 otherwise.

We deal with the three cases (i’ = 7' = k' —n, i/ = 5/ = k/ > n, or neither of these)

separately.

a. Suppose i’ = j' = k' — n. In this case, y;;s is only nonzero for i € [n], and similarly for
Yy;j7, while yrps is only nonzero for k > n. Thus the substituted equation becomes

2
E YiirYjir Yntdonti T(T)i jntl = E Tip Tjir g g7 (T)i gy = 1
1,5,k €[n] i,5,k€[n]

Now, the only positions in r(T') of the form (,j,n + k) with ¢,5,k € [n] that are
nonzero are those of the form (i,i,n 4 ¢), so the preceding equation simplifies further
to

Z xii/xii/.r?i/ = 1
i€[n]
ie.,
> ag =1 (11)
1€[n]

We will now show how to derive (11) from the equations for {£1}-monomial equivalence
of for T, T’ (Definition 6.5). From the {0,+1} equation in Definition 6.5(3), if we
multiply by x;;/, we get

gy (a3 — 1), (12)
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i.e., the usual Boolean equation but for 2%, rather than x;; itself. Next, from @y ;s
with ¢ # ", we may square this to get

2,22, (13)

and we similarly get («%,,)2(x%,;,)? when i # i".
Lastly, from the equation X X’ = Id and multiplying by Z x“/x ; + 1, we obtain

E x“/x”—f—l E Tij T — E x”,acm—f— E x“/mz,zxﬂ/x/ 1—5 x”,mm 1,

i€[n] i,jE€[n]i#j
(14)

where we observed that from the axioms that x“fxﬂf = 0 for i # j we may derive in
degree 4 that the middle term ), JjEln)isti T Tjir Ty = 0.
Now, equations (12)—(14) are a degree-2 substitution instance of the equations in
Lemma 6.11 with ¢ = 2,d = 1. Thus, by Lemma 6.11, we can derive (11) from these
in degree 6.

b. Suppose i’ = j' = k’ > n. In this case, the substitution makes all of y;i/, ¥;,7, yxr equal
to zero unless i, j, k > n. Thus we may write the equation, after substitution, as

Z Ynti,i' Yntj,iUntk,iT (T )ntiontjntk

i,3,k€[n]
2 2 2
E xi,i’—nxj,i'—nxk,i’—nr(T)n+i,n+j7n+k
i,j,k€[n]
=r(T")y i = 1.

However, because the only entries r(T)n4in+jn+k that are nonzero are those in which
1 = j = k, this simplifies further to:

6 -
E Ty g_p =1

i€[n]

This is a degree-2 substitution instance of Lemma 6.11 with ¢ = 3,d = 1, so it can be
derived in degree 6 from the equations derived in part (a).
c. Suppose neither of the previous two cases hold. The derivation will depend on which

of ¢/, j', k' lie in [n] versus {n +1,...,2n}.

i. When all are in [n], we are in the front-upper-left corner of the tensor, and we
exactly get the equations (X, X, X)-T =T".

ii. When all three of ¢, j', k" are > n, the only nonzero entries of r(T') are of the form
(T ) n+i,n+i,n+i, SO the equation becomes

§ 2 _
xz z’fn Zj —-n zk’fn =0.

i€[n]

Since we have assumed |{3’, j', k'}| > 1, there are at least two distinct indices among
them, and thus each term in this sum is a multiple of one of our x;;x;; axioms with
i#7

iii. Next, suppose instead that ', j/ € [n], £’ > n. In this case, the only nonzero entries
of Y after substitution are those with ¢, 5 € [n],k > n. Thus the equation becomes

§ : 2
frii'l'jj/xk,k/_nr(T)i,j,n—l-k =0
i,5,k€[n]
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However, the only nonzero entries of 7(T") in which the first two coordinates are < n
and the third is n + k are those of the form ¢ = j = k, so the preceding becomes

§ : 2
Tyt Lij' Liger —py, = 0.

i€[n]

Since we do not have i’ = j' = k' — n (as that was covered in a previous case), at
least two of the column indices differ, and thus each term of this sum is divisible by
one of the axioms of the form z;;x;; with j # j'.

iv. In all other cases, the corresponding entries of r(T') are all zero, so the equation
reduces to 0 = 0.

2. The equations YY’ = Y'Y = Id become XX’ = X'X =1d and (X o X)(X' 0 X') =
(X0 X")(X o X) =1Id. The first of these is one of our original equations, so it remains
to derive the second. We show how to derive (X o X)(X’ o X’) = Id; the other is similar.
For clarity, let us write it out using indices:

d_oah(i)? — dw=0  Viken] (15)
i

Starting from the equation »_; x;;2), — d; = 0, we multiply by >, zi;27;, to get

Do ah @)+ ) wiEg — b Yy vyl
j i# j
Note that every term in the middle summation here is divisible by some x;;x;;; with
j # j’, which is one of our equations, so we may cancel off those terms using those
equations in degree 4. If i # k, then we are done. If i = k, then we add in our equation
> T, — 1 to get (15).

3. The equations y;,y;;» = 0 for j # 7 become 0 after substitution unless i, j, j* are either all
in [n]orallin {n+1,...,2n}. In the former case, the substituted equation is x;;z;;» = 0,
which is already one of the original equations. In the latter case, the equation becomes
x?jxfj, = 0; but this is easily derivable from x;;z;;; by multiplying it by itself (degree 4).
The equations saying there is at most one entry per column of Y are derived from those
for X similarly.

This covers all the equations for monomial equivalence of r(T'),r(T"), and thus we are

done. |

» Lemma 6.11. For any integers d > 1,¢ > 1, from the equations
a;(z — 1)(Vi) vix; (Vi # j) Zﬂﬂiyi -1
i=1

there is a degree-max{d + 2,cd} PC derivation (over any ring R) of

fod—l

1€[n]

Although in the proof above we only used the d = 1 and ¢ = 2,3, we will later have
occasion to use this lemma with larger values of d and ¢, which is why we phrase it in this
level of generality.

Proof. First we show it for ¢ = 1, then derive the general case from that.
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Let S = Zie[n] xd, D= Zie[n] z;9;. Our first goal is to derive S—1. Foreachi=1,...,n,
we can derive z;y;(S — 1) in degree d + 2 as follows:

zyi(S— 1) =iy +yi Y wiat — ziys
J#i

= yi(a{t —2;) +ys szl’? =iz} — Dy + ys ZIinI?_la
J#i J#i

where we have underlined the use of the axioms.

Summing up the preceding for all i, we derive DS — D in degree d + 2. Finally, we
multiply the starting equation D — 1 by S to get SD — S, also in degree d + 2. Then we have

(DS=D)—(SD-S)+(D-1)=85-1=)Y af -1,

as desired.
For ¢ > 1, we then sum the preceding with Zie[n] (xﬁ.c‘”d‘l + xl(.c_z)d_l + o+
e (@0 —2y) = Zie[n] x¢d — ¢, which has degree cd. <

6.3 From monomial equivalence to general equivalence of
noncommutative cubic forms

» Theorem 6.12. There is a quadratic-size many-one reduction from

MONOMIAL EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS
to

EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS,

over any field.

If furthermore the input cubic forms f, f' have the property that any monomial equivalence
between them must have its nonzero scalars being d-th roots of unity, and the latter can be
derived by PC in degree d + 1, then the reduction above is a (d,2d)-many-one reduction.

Proof. Let f be a noncommutative cubic form in variables w1, ..., u,. Then r(f) will be a
new noncommutative cubic form, in n 4 2n(n + 1) variables w1, ..., Upn, V11,012, - - -, Un.nt1,
W11, W12, - - -, Wr,nt1, Which is r(f) = f+ Zie[n]’je[nﬂ] UV w;;. In terms of the underlying

three-way arrays, if we have f = Zi’j,ke[n] T;jkuitjug, then we use r(T) to denote the array
underlying r(f), which can be described as follows. The 3-way array r(7T') will have size
N x N x N where N =n + 2n(n+ 1). Let T; denote the i-th frontal slice of Tj, that is, T;
is the matrix such that (T;),x = T;x. For ¢ = 1,...,n, the i-th frontal slice of »(T") will be
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defined as:

On+1 0n+1

0n+1

where the I, 11 occurs in the i-th (n+ 1) x (n+ 1) block of its region. That is, the lower-right
2n(n + 1) x 2n(n + 1) sub-matrix is the Kronecker product E; ,4+; ® I, 41, where E; ,,1; is
the 2n x 2n matrix with a 1 in position (i,n + ¢) and zeros everywhere else. For the slices
t=n+1,...,N we will have r(T); = 0.

Our main claim is that the map (T,T") — (r(T),r(T")’) is the reduction claimed in the
theorem.

Many-one reduction. Suppose X - f = f/ with X monomial. Write X = PD with D
diagonal and P a permutation matrix corresponding to the permutation = € S,,. Then we
claim that

Y=X&(PD")®I1)® (P®I41)

is an equivalence between r(f) and r(f’), where here we assume our variables are ordered as
above. For we have

S Tp(Vu)(Yu)) Yur) + > (Yu)(Yoig)(Ywi))
ijke(n] i€[n],j€[n+1]

= Y Tpp(Xu)(Xu)(Xwg) + D (Xug)(PD ™ vy) (Puwiy)
ijkeln] i€l jen+1]
=X-f+ Y Ditun(Di vn(s) ) wn(iy g
i€[n],jE€[n+1]
=Y Ui e() Wi
i€[n],jE€[n+1]

=r(f).

Yr(f)

The final inequality here follows from the fact that 7 is a permutation, so the final sum
includes all terms of the form w;v;;w;;, just listed in a different order than originally.

Conversely, suppose Y - r(f) = r(f’) for an arbitrary invertible N x N matrix Y. To find
an equivalence between f and f’, here we find it more useful to take the viewpoint of the
3-way arrays r(T) and r(T") corresponding to r(f) and r(f’), respectively.
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The way Y acts on the 3-way array r(T) is to first take linear combinations of the frontal
slices, say by replacing the i-th slice with Zje[N] Y;;r(T); (corresponding to the action of ¥’
on the third variable in each monomial), and then to take each slice S and replace it by Y SY*
(the left multiplication corresponds to the action on the first variable in each monomial, and
the right multiplication corresponds to the action on the second variable in each monomial).
As this latter transformation preserves the rank of each slice, we will use the ranks of linear
combinations of the slices to reason about properties of Y.

Claim 1: Y is a block-diagonal sum of an n x n matrix X and a 2n(n+ 1) x 2n(n + 1)
matrix.

Proof of claim 1. First we show that Y is block-triangular. To see this, note that since
the last 2n(n + 1) slices are zero, the action of Y by taking linear combinations of slices
cannot send any of the first n slices to the last 2n(n + 1) slices. That is, Y has the form

X Z
Y = [O W} where X is n x n and W is 2n(n+ 1) x 2n(n 4+ 1). It remains to show that Z

must be zero.
Since Y is block-diagonal and invertible, we have that X and W are each invertible.
Let R be the tensor gotten from r(7T') by having Y act by taking linear combinations of
the slices. That is, the ¢-th frontal slices of R is R; = Zje[N] Y;;jr(T);. Since each slice r(T);
has its support in the upper-left n x n sub-matrix and the middle-right n(n + 1) x n(n + 1)
sub-matrix, so does each slice R;. Write

rRMY 0 0
Ri=1] o0 0
0 Opnty) 0

R22)

)

where REl’l) isn x n and RE2’2) isn(n+1) xn(n+1).
Now consider the action of Y that sends R; to YR;Y! = r(T");. We now break up Y’
further into blocks commensurate with how we wrote R; above; write

X A B
Y=|0 C D Z=[A B] W:[g ?]
0 E F

where A, B are n x n(n+ 1), and C, D, E, F are each n(n + 1) X n(n + 1). Then we have:

X A B][RMY 0 0 |[xt o o
YRY'=|0 C D|| 0 0 R®P| (4t Ct E
|0 E F 0 Opgmyry O Bt D' F!
(XR" 0 ARPP] [xt 0 0]
=| 0o 0 CrRPY| |4 C' E
0 0o ER™|[B'" D' F']
(XR"VX!+ ARPY B! AR D! ARV F
7 7 (2 7
= CRZ(-Q’?)Bt * *
ER?? B! * *

where we have put *’s in positions we won’t need in the argument.

Next, since each of the first n slices of r(T") must be of this form, and those slices
have zeros in each block except the (1,1) and (2,3) blocks, by considering the blocks
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(1,2),(1,3),(2,1),(3,1) we must have
ARPPD =0 ARPPF'=0 CRPPB'=0 ER®VB'=0.

For reasons that will become clear below, we combine these into the two equations

AR D' F'] =0 m R*? B! = 0.
K2 E K3
Note that the n(n+ 1) x 2n(n + 1) matrices [D* F'| and [C* E'| must both be full rank,
C
E F
The sum of the (2,3) blocks (of size n(n + 1) x n(n + 1)) of the first n slices of (T
is precisely the identity matrix I,,(,,4+1). Thus, the linear span of these blocks contains an

since otherwise W = [ } would not be invertible.

invertible matrix in it. Since Y is invertible, that linear span is the same as the linear span of
the blocks {Rl(z’?) :4 € [n]}. Thus the latter contains a full-rank matrix, say > .., aiR§2’2).
But since we have AR§2’2) [D!  F'] = 0 for all i, we may left multiply by A and right-
multiply by [D! F!] to get A (Z?:l aiRz@’Q) [Dt FY =%", aiAREQ’z) (Dt F'] =o0.

But now we have that 3" a; R*? is invertible, and (D! F'] has full rank n(n + 1), so their
product also has full rank n(n + 1). But then we have that A times a full rank matrix is
equal to 0, hence A must be zero. The same argument, mutatis mutandis, using the equation

[g} REQ’Q)Bt = 0, gives us that B = 0. Hence Y is block-diagonal as claimed. <
Next, we use properties of the ranks of the slices coming from the I,,;1 gadgets to show

that X must in fact be monomial.
X

Claim 2: Y = 0 V([)/ where X is monomial.

Proof. In both r(T) and r(7"), any linear combination consisting of k of the first n slices
(with nonzero coefficients) has rank in the range [k(n+ 1), k(n + 1) + n], for any k =0,...,n.
The lower bound can be seen by noting that any such linear combination is block-diagonal
with k copies of I,,11 on the block diagonal of the (2,3) block. The upper bound comes
from the fact that these are the only nonzero blocks in the lower-right 2n(n + 1) x 2n(n + 1)
sub-matrix, and the only other nonzero entries are in the n x n upper-left sub-matrix, which
has rank at most n because of its size.

Using notation from the proof of the preceding claim, since Y R;Y*' = r(T");, and the
latter has rank in the range [n + 1,2n + 1], R; must also have rank in the same range. But
this is only possible if R; is a linear combination of precisely one of the first n slices of r(T).
Thus, X is monomial. <

From claim 2, we thus have that there is a permutation = € S,, and nonzero scalars
di,...,dy such that R; = dir(T) ;) for alli = 1,...,n, where X = DP with D the diagonal
matrix with diagonal entries d; and P the permutation matrix corresponding to 7. Finally, in
the proof of claim 1, we saw that the upper-left block of Y R;Y? was XR,(;M)X75 + AR§2’2)Bt,
and then learned that A = B = 0. Putting these together, and recalling that the upper-left
block of #(T'); is T;, we thus get

(DP)d;Tr;(DP)' =T]

for all 4. In other words, X is a monomial equivalence from T to T (hence, from f to f’).
This completes the proof that the construction gives a many-one reduction.
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Low-degree PC reduction. To prove the “furthermore”; suppose that the pair of cubic
forms f, f’ has the property that any monomial equivalence between them must have its
nonzero entries being d-th roots of unity, for some d > 1, and that this can be derived—more

specifically, the equations y®™

i — Yij and similarly for ygj—in degree d + 1.
Let Y,Y” be the variable matrices for (general) equivalence of r(f),r(f’); let X, X’ be

the variable matrices for monomial equivalence of f, f’. Consider the substitution

X 0
Yis |0 XUW-DgI,
K 0 X @I,
rx’ 0
Y |0 (XNU-DeT, , (16)
L 0 0 (X")°? @ Inta

where X°(@~1) denotes the (d—1)-fold Hadamard product XoXo---0X, namely, (X°(@=1)),; =
fj_l. We will show that the equations for equivalence of r(f),r(f’), after this substitution,
can be derived from the equations for monomial equivalence of f, f' in low-degree PC.

(Note that the substitutions above correspond precisely to the forward direction of the
many-one reduction, in which X @ (D™'P ® I,,41) ® (P ® I,41) served as an equivalence.
For, once we have z{;"' — z;;, we have X°(¢=1) = D~1p = D=1P and X°¢ = D'P = P.)

Recall that these equations are Y-r(f) = v(f') and YY’ = Y'Y = Id. The latter equations
are easier to handle so we begin with those. They become X°¢(X’)°¢ = (X’)°°X°¢ = 1d
for ¢ € {1,d — 1,d}. For ¢ = 1, these are some of our starting equations. For ¢ > 1, this is
similar to the argument in Theorem 6.9 (see the argument around Equation (15)), iterated,
resulting in a proof of degree 2¢ for any ¢—in this case, 2d.

Now to the equation(s) Y - r(f) = r(f’). After substitution, these become

S Tn(Xu) (Xup)(Xup) + > (Xug) (X0 D) (X w;)

T

i,5,kE€[n] i€[n],j€[n+1]
:ZTi’jkuiujuk + Zuwijwij. (17)
ijk ij

Focusing on the first summations on both sides of the equation, we see these are precisely
the equations X - f = f’. After subtracting these off, we now deal with the remaining terms.
We have

D uwwgwyg = > (Xu) (X ) (XMw)
ij

i€[n],j€[n+1]

d—1 d
§ E Lk, iUk E ’x“ Ue,j E T ;Wh,j
] Le(n]

i€[n],j€[n+1] \k€[n he[n]

d—1,.d
§ UkVe,jWe,j E :xk,ixe,i Lo

ke[n],j€n+1] i€[n]
d—1,.d
+ E URVe, W E :fkyixe,z' Thi
k,t,he[n],j€[n+1] i€[n]
(£h

This becomes the system of equations

(Sk’g = Zze[n} xk7ix‘z’;lmzi (Vk’,g S [n])
0 = Yicpm Thitt; i, (Vk, £, h € [n],€ # h).
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(Note that technically we should quantify over all j € [n 4 1], but j plays no role in these
equations—it just serves to repeat the same equation n + 1 times. This corresponds to the
fact that the lower-right part of our matrices have the form * ® I;,41.)

When k # £, every term in the first equation is a degree-2d multiple of the monomial
axiom zj ;x,,;. Similarly, every term in the second set of equations is a degree-2d multiple of
the monomial axiom xg ;xp ;. Thus all that remains is the first equation when k = ¢, namely,
1= Zie[n] xk)ixgglxﬁ,i. This is derived in Lemma 6.11, with ¢ = 2 in degree 2d (since d > 1,
we have max{2d, d+2} = 2d). This completes the proof that we have a (d, 2d)-reduction. <«

» Remark 6.13. There is a slightly simpler and smaller many-one reduction, namely f —
[+ Yiemjemn+) u;v};. However, in using that reduction, the witness for the forward
direction becomes X @ (D~Y/2P ® I,,,1). This square root introduces a square into the
equations that made it difficult to show that it was also a PC reduction. The reduction
above fixes this issue.

6.4 From cubic forms to tensors

Our reductions here are those from Futorny—Grochow—Sergeichuk [19, Cor. 3.4 and Thm. 2.1].
The many-one property follows from the results there. We prove that each of these reductions
is in fact also a low-degree PC reduction between the corresponding polynomial solvability
problems. They reduce first to a problem we call BLOCK TENSOR ISOMORPHISM, and then
from there to TENSOR ISOMORPHISM, so we begin by introducing the former problem and
its associated equations.

» Definition 6.14 (see Futorny—Grochow—Sergeichuk [19]). A block n x m x p 3-way array
is a 3-way array together with a partition of its index sets {1,...,n} ={1,...,n1}U{ny +
1,n1+2,...,n+ngfd---l {Zf\i_ll n;+1,...,n}, and similarly for the other two directions.
Two block 3-way arrays are said to be conformally partitioned if they have the same size
and the same partitions of their index sets. Two conformally partitioned 3-way arrays T, T’
with block sizes as above are block-isomorphic (called “block-equivalent” in [19]) if there exist
invertible matrices Sii,...,S1,n,S521,...,%uwm,531,...,53p, where S1 1 is of size n; X ny,
S5 is of size my x my, and So i s of size px X Pk, such that the block-diagonal matrices
give an isomorphism of tensors:

(S11®S12D - DS1N, S0 DD Sop, S31 @@ S3p) - T =T

Given two block 3-way arrays T, T’ as above, the equations for BLOCK TENSOR ISO-
MORPHISM are as folllows. There are 2(3 ¢y M + X jeparyMa + Dgep) PK) variables
arranged into 2(N + M + P) square matrices Xy, X} (of size ny x ng), Y, Y} (of size
my X my), and Zx,Zy (of size px X px ). Then the equations are:

(X1®--- XN Y1D- DY\, 21D DZp)-T=T

X/ X;=X;X;=1d Y;Y;=Y;Y;=1d ZxZy = ZwZk =1d,
forall I € [N], Je[M], K € [P].
» Lemma 6.15. The many-one reduction from

EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS
to
BLOCK TENSOR ISOMORPHISM
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in [19, Cor. 3.4] is in fact a linear-size (1,3)-many-one reduction.

Proof. Given a noncommutative cubic form f in n variables, f = Zi)j,ke[n] T5jpuiuju, we
recall the block tensor r(7T') from [19, Cor. 3.4]. Tt is partitioned into 2 x 3 x 3 many blocks,
with the rows being partitioned into n, 1, the columns into n,n, 1, and the depths also into
n,n, 1; thus its total size is (n + 1) x (2n+ 1) x (2n+ 1). Let E;;; denote the tensor of this
size whose only nonzero entry is a 1 in position (4, j, k). Then we define

r(T) =T+ Z (Bin+iznt1 + Bignt1nti + Enttinti + Batintii) + Bat12n4+1,2041
i€[n]

If you wanted to think of this as part of the tensor corresponding to a cubic form, that cubic
form would have n + 1 new variables vy, ..., v,, z, and the form would be:

r(f):=f+ Z (w2 + uizv; + zuv; + zvu;) + 23,
1€[n]

(This doesn’t quite line up with the above description of a tensor, as the tensor corresponding
to r(f) would necessarily have all 3 side lengths the same, 2n + 1. However, there are n of
the 2n + 1 rows in that tensor that are entirely zero, namely, the rows corresponding to those
monomials that begin with a v;.)

The equations for block isomorphism of r(T) and r(7") have the following variable
matrices X, X" are n xn, z,2’ are 1 x 1, Y1,Y], Yo, Y] are n xn, y,y" are 1 x 1, Z1, Z}, Zs, Z},
are n X n, and z, 2" are 1 x 1. Let U, U’ be the n x n variable matrices for the equations for
equivalence of the noncommutative cubic forms f, f’. We consider the following substitution:

X7Y17Z171/2/7Zé’_>U XI7§/Y7217Y27ZQ’_>UI xaxl7yay/uz7zl'_>1'
Under this substitution, the equations for block isomorphism of r(7T'), r(T") become

U,UU)-T+ > (UU, 1) Einyiznit + (U, 1L,U)  Eigniimyi
1€[n]
+ (LU U") Ent1inti + (LU U) - Eng1nti
+(1,1,1) - Ent1,2n41,2n41)

!
=T" + Z (Ein+iont1 + Eiontinti T Bnt1inti + Ent1ntii)
1€[n]

+ En+1,2n+1,2n+1

Now, because each summand inside the big sum corresponds to an identity matrix in a block
(e.g. Zie[n] E; p+i2n+1 is an identity matrix in rows {1,...,n}, columns {n+1,...,2n}, and
depth 2n + 1), the above equations give us many instances of UU’ = 1d and U’U = 1d, which
is one of our starting equations. We also get the equation 1 = 1, and lastly, (U,U,U)-T =T",
which is another one of our starting equations. Thus the equations we get here are in fact
precisely the same as the equations we started with. As these are cubic equations and the
substitutions were linear, it is a (1,3)-PC reduction. <

» Lemma 6.16. When the number of blocks is O(1), the many-one reduction from

BLOCK TENSOR ISOMORPHISM
to
TENSOR ISOMORPHISM
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in [19, Thm. 2.1] is in fact a quadratic-size (1,3)-many-one reduction.

Note that the output of the reduction of Lemma 6.15 has 2 x 3 x 3 many blocks, so the
restriction to O(1) many blocks in Lemma 6.16 presents no obstacle to our goal.

Proof. The key is to show how to effectively remove the partition in one of the three directions;
then that reduction can be applied three times in the three separate directions. Let T, T"
be block tensors of size n x m x p, with N x M x P many blocks. The construction of [19,
Lem. 2.2] shows how to construct from this a block tensor of quadratic size with N x M x 1
many blocks. We recall the construction here and show that it is a (1,3)-PC reduction.

Let p1,...,pp denote the sizes of the parts of the partition in the third direction. Let
r = min{n,m} + 1—this will govern the rank of the identity matrix gadgets we add.
Let s = Yo 25 1 and t = Y5 _ 25 1rpg. Then the output tensor will have size
(n+s) x (m+1t) xp. (Note that, since P = O(1), we have that s is linearly bounded in n,m
and t is quadratic as a function of n,m,p.) Let T1,...,T, be the frontal slices of T. The i-th
slice of r(T") will be as follows. Suppose ¢ is in the K-th block, and write i = ig + Zszl Dk
C; D;
the first part of the partition of T into rows and columns, and D; represents all the other

with 1 <14y < pr41. Write the slices T; as T; = { ] , where A; is ny X m;—representing

parts. Then we construct:

where the Iyx-1, is in the ig-th position within the K-th block-row and block-column as
indicated by the dashed lines. Here the dashed lines do not represent additional parts of
the partition, they are just for visual clarity. The solid lines indicate the first part of the
new partition into rows and columns. The rows of C; and D; are partitioned into blocks the
same as they were originally in T;, and the columns of B; and D; are partitioned into parts
in the same way as they were originally in T;. That is, the entire big gadget in the upper-left
gets prepended to the first parts of the row and column partitions. This is the many-one
reduction.

Let Xy,..., XN, Y1,...,Yy, and Z be variable matrices (with associated primes matrices
X1, etc.), with sizes as follows:

X1 has size (s +n1) X (s +nq)

Xy for I > 2 has size ny X ny

Y1 has size (t +my) x (t +my)

Y; for J > 2 has size my X my

Z has size p X p.

We start from the equations for BLOCK ISOMORPHISM (but now where there is only one
block in the third direction), namely

X X=X X;=1d Y;Y;=Y;Y;=1d 77'=27'Z =1d
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and
(X1®- XN, Y1®--DYN,Z)-7(T) =r(T).

We make the following substitution (with the same substitutions, mutatis mutandis, for the
primed variables):

Xi— 1,8 Xl, where Xl is a matrix of variables of size n; X nj.

For I > 2, X maps to itself.

Yi= 1L 371, where Y] is a matrix of variables of size my x my.

For J > 2, Y; maps to itself.

Z maps to a block matrix Z; @ --- ® Zp, where for each K € [P], we have Z is a

Pr X pr matrix of variables.

Under these substitutions, the equations for BLOCK ISOMORPHISM of 7(T'),7(T") become
precisely the original equations for BLOCK ISOMORPHISM of T,T", together with equations
of the form I,E;I; = E;, where F; is the s X t gadget matrix in the upper-left in the i-th
slice. Thus we get a (1, 3)-reduction.

Finally, this is then repeated in the other two directions to reduce the number of blocks
in all three directions to one, thus giving an instance of TENSOR [SOMORPHISM. <

6.5 Putting it all together

Finally, we combine all the above to prove Theorem 6.2.

Proof of Theorem 6.2. Let m = cn with ¢ > 10*. By Theorem 6.1, random 3XOR instances
with clause density ¢ require PC degree 2(n/c?) = Q(n) (in our case) to refute. The number
of instances that the random distribution assigns nonzero probability is (2%1)) ~ (Z;) >
n3cn/(cn)cn _ Cch logn—cn > CQ(n logn)_

By Theorem 6.6, there is a (1,3)-many-one reduction from those instances to {£1}-
MONOMIAL EQUIVALENCE OF {£1} MULTILINEAR NONCOMMUTATIVE CUBIC FORMS,
where the number of variables in the cubic form is the same as the number of variables in
the 3XOR instance. By Theorem 6.9 there is then a (2,6)-many-one reduction to MONOMIAL
EQUIVALENCE OF {£1} NONCOMMUTATIVE CUBIC FORMS, where the number of variables
in the output cubic form is linear in the original number of variables, and such that the
output forms have the property that any monomial equivalence between them has all its
nonzero entries being 6-th roots of unity. This thus satisfies the hypothesis of Theorem 6.12
with d = 6, so there is a (6,12)-many-one reduction to EQUIVALENCE OF NONCOMMUTATIVE
Cusic ForMms, where the output has a quadratic number of variables compared to the input.
Finally, combining Lemmata 6.15 and 6.16, we get a (1,3) reduction from EQUIVALENCE
OF NONCOMMUTATIVE CUBIC FORMS to TENSOR ISOMORPHISM, which further increases
the size quadratically. In total, the size increases multiply, yielding a quartic size increase.
The substitution degrees multiply and the derivation degrees we take the max, yielding a
(12,12)-many-one reduction from Random 3XOR to TENSOR ISOMORPHISM on tensors of size
O(n*) x O(n*) x O(n*). By Lemma 2.2, any PC refutation of these TENSOR ISOMORPHISM
instances requires degree Q(n). <

We note that our lower bound for tensor isomorphism also applies to the stronger Sum-
of-Squares proof system. This is due to the fact that there is lower bound for random 3XOR
in Sum-of-Squares, as shown by Grigoriev [21] and independently by Schoenbeck [44], which
makes the dependence on the clause density explicit.
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» Theorem 6.17 ([44, Theorem 12]). A random 3-XOR instance with clause density A =
m/n = dn¢, for all sufficiently large constants d, requires SoS degree Q(n'=¢) to refute, with
probability 1 — o(1).

In particular, this is a linear (n) lower bound in the case of constant clause density
(e = 0), which matches the PC lower bound of Theorem 6.1.

As we observe all of our reductions go through in Sum-of-Squares, since Sum-of-Squares
simulates PC over the reals due to Berkholz [6]. Furthermore, this simulation preserves
degrees of proofs up to a constant factor.

» Theorem 6.18 ([6, Theorem 1.1]). If a system of polynomial equations F over the reals
has a PC refutation of degree d and size s, it also has a sum-of-squares refutation of degree
2d and size poly(s).

Hence, by combining Theorems 6.17, 6.18 and the PC reduction used to prove 6.2, we
obtain the following lower bound for tensor isomorphism in Sum-of-Squares.

» Theorem 6.19. Owver the real numbers, there is a distribution on n X n X n TENSOR
IsoMORPHISM whose associated equations require SoS degree Q(/n) to refute with probability

1-o0(1).

7 Open Questions

Beyond Conjecture 1.7, we highlight several more questions we find interesting about the
algebraic proof complexity of TENSOR ISOMORPHISM.

7.1 Degree

» Open Question 7.1. What is the correct value for the PC degree of rank-r TENSOR
ISoMORPHISM?

Note that by using the reductions from Section 6, we can produce (random) r X r X r
tensors that require PC degree Q(r'/%) to refute. However, the number of variables is 672,
this lower bound is only Q(N'/®) where N is the number of variables. Since their rank
could be as large as R = O(r?) (and indeed, very likely is), the upper bound we get from
Theorem 4.1 is only 20 (without the x7 — z axioms) or O(r*) (with the 29 — z axioms,
with ¢ = O(1)). Even in the latter case, this leaves a polynomial gap between the lower and
upper bounds (without those the gap is exponential).

We note that the upper bound in Theorem 4.1 without the 29 — x equations already
applies to the weaker Nullstellensatz proof system. Is there a polynomial upper bound on
PC degree—as a function of rank—without the 29 — x axioms?

7.2 Size

In the presence of the Boolean axioms, there is a size-degree tradeoff for PC (or even PCR—a
system with the same degree bounds as PC, but is stronger when measuring size by number
of monomials or number of symbols) [16, 2]. This implies that in the presence of the Boolean
axioms, a good degree lower bound implies a good size lower bound. But TI does not have
the Boolean axioms.

» Open Question 7.2. Get lower and upper bounds on the size of PC proofs for TENSOR
(NON-)ISOMORPHISM. Are there subexponential size upper bounds, despite the polynomial
degree lower bounds?
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7.3 Other matrix problems

While many different tensor-related problems are all equivalent to T1, in the case of matrices,
we have three genuinely different problems: matrix equivalence (2-TT), matrix conjugacy,
and matrix congruence. Conjugacy is determined by the Rational Normal Form or Jordan
Normal Form, while congruence depends on the field (e.g., over algebraically closed fields it
only depends on rank, over R it depends on the signature, and over finite fields it depends
on whether the determinant is a square or not).

» Open Question 7.3. What is the PC complexity (size, degree, etc.) of matrix conjugacy?
Of matrix congruence?

More precisely, for conjugacy we have in mind the system of equations:
XM=MX XX =X'X=1,
and for congruence the system of equations:

XMXT =M XX' =X'X=1.

7.4 Bounded border rank

Not only can testing a tensor for bounded rank can be done in polynomial time (Remark 1.4),
testing a tensor for bounded border-rank can also be done in polynomial time (see, e.g.,
[24]), by evaluating a polynomial number of easy-to-evaluate equations. While several partial
results are available, the gap for what is known about the ratio between rank and border
rank is quite large: there are 3-tensors known whose rank approaches 3 times their border
rank [50], but the currently known upper bound is Lehmkuhl and Lickteig [33], who show
that for tensors of border rank b, the ratio of rank to border rank is at most ¢®(®). See the
Zuiddam’s introduction [50] for more details.

» Open Question 7.4. What is the PC degree of testing isomorphism of tensors of bounded
border-rank? Can such tests be done (by any method) in polynomial time?

7.5 Relating different reductions from Graph Isomorphism

While we chose a particular reduction from GI to T1I for the lower bound in Section 5, we
are aware of several others, including;:

GI to PERMUTATIONAL CODE EQUIVALENCE [42, 35, 38], then to MATRIX LIE ALGEBRA

CoNJuGACY [23], then to TT [19];

GI to SEMISIMPLE MATRIX LIE ALGEBRA CONJUGACY [23], and then to TI [19];

GI to ALTERNATING MATRIX SPACE ISOMETRY [26, 27|, then to TT [19];

GI to ALGEBRA ISOMORPHISM [20, 1], then to TT [19].
We believe all of these can be realized as low-degree PC reduction as well. In the first arXiv
version of [26], they asked which of these might be equivalent in some sense (though there
the final target was ALTERNATING MATRIX SPACE ISOMETRY, another Tl-complete problem,
rather than TT itself). Here we make this question slightly more precise, in terms of PC
reductions:

» Open Question 7.5. Which, if any, of the reductions above from GRAPH ISOMORPHISM
to TENSOR ISOMORPHISM are equivalent under low-degree PC?
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