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A B S T R A C T   

Structural Health Monitoring (SHM) and Nondestructive Evaluation (NDE) of civil infrastructure have been 
active areas of research for the past few decades. The traditional inspection methods for civil infrastructure, 
mostly relying on the visual inspection are time-consuming, labor-intensive, error-prone, and often provide 
subjective results. In the wake of rising costs for infrastructural maintenance, the time factor, safety issues, and 
the error-prone nature of human inspection methods, there is an increased need for the development of auto
mated methods for bridge inspection and maintenance. The purpose of this research is to provide a novel Deep 
Learning-based approach for rebar detection and localization within bridge decks. The proposed system is 
trained using Ground Penetrating Radar (GPR) data from 8 real bridges in the United States. The results have 
been discussed in terms of qualitative and quantitative aspects with considerable potential and various issues that 
need to be explored in future works. Due to the similarity in the type of parabolic signatures present in other 
GPR-related applications, this technique can be generalizable to other applications. The proposed approach for 
rebar detection and localization has considerable implications for the civil experts in general and GPR com
munity in particular.   

1. Introduction 

With each passing year, the importance of utilizing timely and cost- 
effective methods for non-destructive evaluation (NDE) and inspection 
of infrastructure is emphasized in the wake of catastrophic incidents 
related to the destruction of civil infrastructures (Ahmed et al., 2019a, 
2019b, 2020a, 2020b, 2021, 2022; Kaur et al., 2016; Ahmed and La, 
2021; La et al., 2013a, 2013b, 2014a, 2014b, 2015, 2017, 2019). Out of 
the different infrastructure-related incidents, throughout the past years, 
the destruction of bridges has been discussed in some of the recent 
studies (Penn, 2018; Kirk and Mallett, 2022; Wright, 2012; Briaud et al., 
2019). Negligence and lack of timely evaluation have led to recent 
bridge-related disasters in different parts of the world, which have 
resulted in considerable loss of lives, and destruction of civil infra
structure and property. Fig. 1 shows the destruction of the arch bridge in 
Taiwan in 2019, which led to the fall of the bridge deck within the body 
of water onto fishing boats passing from underneath the bridge (News, 
2019). Although this incident was following in the wake of a typhoon, 
the actual cause of bridge destruction could not be fully unearthed 
(News, 2019). Many recent bridge-related accidents are highlighting 

and stressing the importance of cost-effective, time-efficient, routine, 
and automated methods for bridge inspection and monitoring. 

Existing studies related to rebar detection and localization using 
Ground Penetrating Radar (GPR) data have several limitations, as out
lined in a recent study (Ahmed et al., 2020a). The existing studies have 
utilized a block-based approach for learning and classification between 
rebar and non-rebar regions within the larger B-scan images. The 
block-based approach examines portions of images for the presence or 
absence of rebar hyperbolic signatures. At the same time, variations in 
the intensity of hyperbolic signatures, presence of noise artefacts, and 
reflective signals cause challenges towards effective rebar detection and 
localization within existing block-based approaches (Ahmed et al., 
2020a). Therefore, the existing block-based methods cannot be used to 
provide reliable performance in real-time, practical robotic applications 
for NDE of bridges. It is, for this reason, the development of a rebar 
detection and localization approach using pixel-level classification has 
been proposed in this research. Consequently, leveraging the Deep 
Encoder-Decoder framework will allow effective pixel-level rebar and 
non-rebar classification. This study will examine the superior perfor
mance of state-of-the-art pixel-level Deep Encoder-Decoder Networks. 
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This paper has been divided into five sections. This particular section 
discussed the motivation towards furthering the existing state-of-the-art 
for bridge deck evaluation and maintenance. Section 2 has been dedi
cated to the discussion related to existing research conducted in the field 
of civil infrastructure evaluation in relation to rebar detection and 
localization. Section 3 highlights the proposed methodology for the 
development of a novel Multi-stage Deep Encoder-Decoder-based sys
tem for rebar detection and localization. Section 4 will provide results 
and evaluate the performance of the proposed system for rebar detection 
and localization using qualitative and quantitative metrics. In section 5, 
which is the final section, an overall conclusion and recommendations 
for future research will be provided. 

2. Related works 

In this section, the primary focus will be on exploring the different 
learning-based approaches for rebar detection and localization with 
particular emphasis towards Deep Learning-based approaches (See 
Ahmed et al., 2020b) for an exhaustive evaluation of literature starting 
with relevant earliest research in the 1960s up till the present time). A 
number of different machine learning-based methods have been lever
aged for rebar detection and localization in the past (e.g. Support Vector 
Machine (SVM) (Kaur et al., 2016), Naïve Bayes classifier (Gibb and La, 
2016), Radon Transform (Wang et al., 2020), Hough Transform (Cap
ineri et al., 1998; Windsor et al., 2005, 2014). It is only in the recent few 
years that focus has shifted towards leveraging Deep Learning-based 
methods for rebar detection and localization (Dinh et al., 2019; 
Ahmed et al., 2019a, 2019b; Besaw and Stimac, 2015). Study by Dinh 
et al. (2019) proposed the usage of 24-layer deep CNN model for rebar 
classification. The different steps for rebar detection and localization 
include time-zero correction, migration, filtering and thresholding, 
estimation of weighted centroid, and image classification using CNN 
network (Dinh et al., 2019). The use of Residual Neural Networks 
(ResNet-50) has also been proposed in recent studies related to rebar 
detection and localization (Ahmed et al., 2019a, 2019b) The preliminary 
examination of results using GPR data from real-world bridges has 
shown that ResNet models with varying network depths (e.g. ResNet-18, 
ResNet-34, ResNet-50, ResNet-101, ResNet-152) provide increased ac
curacy and generalizability, which can allow rebar detection systems to 
accurately classify data from new bridges (Ahmed et al., 2019a, 2019b, 
Ahmed et al., 2020a). A number of challenges have also been discussed 
in sufficient detail, which prevent accurate and reliable detection and 
localization of rebar signatures (Ahmed et al., 2020a). Another study 
implemented the multi-objective genetic algorithm for classification of 
rebar images (Harkat et al., 2016). The use of improved Mask 
R-CNN-based method with distance-guided Intersection-over-Union 
(DGIoU) was proposed in (Hou et al., 2021). 

The research related to rebars and their detection has spread from 
being solely rebar detection and localization within bridges to other civil 

structures containing steel rebars. For example, research by Li et al. 
(2021) leveraged the You Only Look Once-version 3 (YOLO-v3) detector 
algorithm for counting rebar on construction sites. The performance of 
the rebar counting algorithm was verified and compared with some of 
the state-of-the-art Deep Learning models (e.g. Faster R-CNN, Mask 
R-CNN, and different variants of YOLO) (Li et al., 2021). A 
semi-automatic genetic algorithm-based method for rebar detection and 
localization was developed with data obtained from different tunnel 
structures. Another recent study explored the efficacy of utilizing point 
cloud data for assessing rebar diameter on construction sites during the 
manufacturing and construction stages of infrastructure development 
(Kim et al., 2021). As, discussed in (Ahmed et al., 2020a), the issue of 
signal interference has been further explored by (Xiang et al., 2021) 
using cascaded frequency filters to recognize rebar signatures on a 
collection of synthetic and on-site data from building structures (e.g. 
shear wall, columns, slabs). 

Another study by Liu et al. (2020) made use of a Single Shot 
Multi-box Detector (SSD) with a 13-layered VGG-16 backbone for the 
detection and localization of rebar signatures in concrete slabs and 
walls. Several different learning-based algorithms (e.g. Naïve Bayes, 
Nearest Neighbors, Classification trees, Support Vector Machine (SVM)) 
were used and their performance was compared for accurately detecting 
the diameter of different-sized rebars (Kim and Lee, 2018). The research 
work for rebar detection and localization has been extended using a 
mixture of synthetic and real data from highways in (Lei et al., 2019). In 
this study, Faster R-CNN was deployed for rebar detection with Double 
Clustering Seeking Estimate Algorithm (DCSE), and Column-based 
Traverse Filter Points (CTFP) were used for rebar localization (Lei 
et al., 2019). In the proceeding discussion, the emphasis will be focused 
on different Deep Encoder-Decoder Networks developed and utilized in 
the prior studies, and the novel proposed model for rebar detection and 
localization developed in this research. 

3. Methodology 

In this section, some of the different aspects of the proposed system 
methodology will be discussed. In the first sub-section, some of the 
existing studies utilizing Deep Encoder-Decoder-based networks will be 
discussed to highlight the background of the proposed method 
leveraging multi-stage Deep Encoder-Decoder network. In the second 
sub-section, the focus will be towards data collection for creating the 
dataset leveraged in this study for pixel-level rebar segmentation using 
the proposed Deep Encoder-Decoder framework. In the third sub- 
section, a brief discussion regarding image pre-processing functions 
and data annotation process will be provided. In the fourth and final sub- 
section, the details of the proposed Deep Encoder-Decoder Network will 
be outlined. 

3.1. Background on Deep Encoder-Decoder Networks 

The usage of Deep Encoder-Decoder Networks has gained increased 
importance within diverse fields in the past few years. Out of the 
different Deep Encoder-Decoder frameworks proposed in the recent 
studies, some of the most popular models include, but are not limited to, 
SegNet, PSPNet, DeepCrack, UNet, and DeepLab (Badrinarayanan et al., 
2017; Liu et al., 2019, 2020; Ronneberger et al., 2015). The different 
frameworks for Deep Encoder-Decoder Networks range from 
fully-supervised, semi-supervised to completely unsupervised. Some of 
the works have introduced the usage of Deep Encoder-Decoder networks 
in the field of image processing, background subtraction, and semantic 
segmentation to image compression, image-to-image transfer, video 
deblurring, and image captioning (Chen et al., 2019; Chen et al., 2020; 
Zhou et al., 2019a; Zhou et al., 2018; SpoorthiG. and Gorthi, 2019; 
Nakazawa and Kulkarni, 2019; Ma et al., 2020; Yuan et al., 1061). 
Table 1 provides information regarding the architectural details for the 
different Deep Encoder-Decoder Networks proposed for the diverse 

Fig. 1. Bridge destruction causing the arch bridge’s deck to fall and submerge 
in the body of water in Taiwan (News, 2019). 
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applications. 
The application of the Deep Encoder-Decoder network has broad

ened to a wide range of different research areas. For pixel-level crack 
detection, a number of the studies have developed different Deep 
Encoder-Decoder frameworks, namely DeepCrack (Liu et al., 2020) and 
optimized Encoder-Decoder framework utilizing switch module, UNet 
and DeepCrack in (Liu et al., 2019, 2020). Another research area that 
has received attention in the application of Deep Encoder-Decoder 
networks is segmentation within images related to remote sensing and 
aerial imagery (Salem et al., 2019; Chen et al., 2020; Pan et al., 2019). In 
the outdoor urban environment, several applications have been devel
oped using variants of the Deep Encoder-Decoder Networks. Scene text 
detection and verification for Chinese textual understanding has been 
discussed in one of the studies (Gao et al., 2020). Another method for 
road scene understanding using a Deep Encoder-Decoder network with 
VGGNet as backbone was developed in (Zhou et al., 2019b). The 
development of MSFgNet has been proposed for the effective moving 
object detection in video-based data from outdoor environments (Cook 
et al., 2015). For semantic segmentation of video data from urban en
vironments, the development of Depth-wise Asymmetric Bottleneck 
(DAB-Net) was discussed in one of the recent works (Neumann, 2017). A 
video-based foreground extraction method for traffic and surveillance 
applications was developed using a novel MvRF-CNN Deep 
Encoder-Decoder network (Lee et al., 2017). 

Within the field of medical imaging, different variants of the Deep 
Encoder-Decoder Networks have been proposed, namely CDED-net with 
Deeplab V3+ as the backbone for boundary segmentation in medical 
imaging (He et al., 2016), Sclera-Net for Sclera segmentation with Re
sidual Encoder-Decoder networks (Naqvi and Loh, 2019), Multiple 
Sclerosis segmentation from MRI images using U-Net-based 
Encoder-Decoder network (Salem et al., 2019), low-dose CT image 
segmentation using Residual Encoder-Decoder-based CNN (RED-CNN) 
(Chen and Cohn, 2010), segmentation and classification of Coronary 
Microvascular Disease using Deep fully-convolutional Encoder-Decoder 
framework (Pan et al., 2019), Lymphoma segmentation from full-body 
PET/CT scan images using DenseX-Net (Chen and Cohn, 2010), Deep 
Residual Inception-based Encoder-Decoder Network for medical imag
ing analysis using different imaging databases (Kim et al., 2021), and 
Melanoma detection using Deep Encoder-Decoder framework (Adegun 
and Viriri, 2019). Some of the other fields in which existing and novel 
Deep Encoder-Decoder networks have been proposed include 2D phase 
unwrapping in power signals (Lee et al., 2017), defect detection in 
semiconductor manufacturing (Flint et al., 1061), desert seismic noise 
suppression (Gucunski et al., 2015a) and smoke density estimation 
(Yuan et al., 1061), to name a few applications. 

3.2. Dataset 

There is a dearth of publicly available GPR data that can be used in 
order to develop or validate systems for bridge inspection in particular 
and other applications in general. Consequently, the data from this study 
has been collected by one of the authors of this research (La et al., 2015, 
2017). The GPR data has been acquired from several different actual 
bridges in the United States using Robot-Assisted Bridge Inspection 
Tools (RABIT), which is shown in Fig. 2. A significant part of the GPR 
data used in this research is one small segment of the overall GPR data 
collected from the inspection and evaluation performed on 40 different 
bridges in the United States between the period 2013 and 2014 (Ahmed 
et al., 2020a, 2020b; La et al., 2017). It can be seen from Table 2 that the 
bridge data has been taken from different types of bridges (e.g., sus
pension, beam, truss, girder). A portion of the GPR data has also been 
used in previous studies (Ahmed et al., 2019a, 2019b, 2020a). The 
physical dimensions vary considerably, ranging from the largest bridge 
in the dataset (i.e., Broadway Bridge, AR) spanning to around 2786 ft. 
The smallest in terms of length that has been used in this study belongs 
to the Dove Creek Bridge, BC, which spans for around 50 ft. Table 2 
outlines the crucial properties of the different bridges in terms of the 
bridge name, geographical location, and physical properties of the 
different bridges. Table 2 also highlights the number of images acquired 
from the different bridges. 

Despite the usage of data in prior studies, there are marked 

Table 1 
Different Deep Encoder-Decoder models used in recent studies, along with their various properties.  

Study Application Encoder Decoder Data Performance 

SegNet Image Segmentation VGG16 VGG16 SUN RGBD mIOU = 60.1% 
ROI ROI Compression FMTN IMTN MSRA-B F1 = 83.00% 
DHEDN Image Caption CNN/LSTM SF-LSTM MS-COCO L1 = 71.3% 
FCESNet Background Subtraction Conv LSTM DeConv LSTM CDnet F1 = 90.4% 
W-SegNet Image Segmentation Conv/Decomp. DeConv. VOC2012 IoU = 39.1% 
Br-GAN Image-Image Transfer Conv + RB RB + DeConv CityScape IoU = 22.3% 
CDEDnet Medical Segmentation DeepLabV3 DeepLabV3 CHAOS Acc.-99.46% 
Dense-Xnet Medical Segmentation FC-DenseNet FC-DenseNet PET F1 = 72.63% 
CPCE Image Denoising Conv. DeConv. MGH PSNR = 30.14 
C-DeepIED Medical Segmentation Conv/LSTM DeConv/LSTM CBV imgs. Acc. = 99.10% 
CE-net Medical Segmentation DAC RMP DRIVE Acc. = 94.5% 
RIED-net Image Segmentation Residual Inception Residual Inception Mayo SSIM = 0.962 
Res-Dyad Remote Sensing Conv. Residual DeConv. Residual LandUse Prec. = 99.4% 
MSFg-Net Object Detection FGNet FGNet CDnet-2014 F1 = 84.3% 
DAB-Net Image Segmentation DAB PAD CityScape mIoU = 66.4% 
MyRF-Net Background Subtraction Conv. DeConv. CDnet-2014 F1 = 0.9514  

Fig. 2. Robotics Assisted Bridge Inspection Tool (RABIT) (La et al., 2015, 2017; 
Gucunski et al., 2015b) is the robotic platform that was used for data collection 
in this study. 
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differences in how the data has been leveraged in this study compared 
with prior studies (Kaur et al., 2016; Ahmed et al., 2019a, 2019b, 
2020a). With respect to annotation, in contrast to prior studies (using 
block-based annotation), this study utilized pixel-level annotation for 
training and validation of the proposed model. With respect to the image 
sizes, in contrast to prior studies (image sizes of 50 × 50 pixels, 100 ×
100 pixels and 250 × 250 pixels), the image size used for training and 
validation of the proposed model in this study is 768 × 768 pixels. The 
detailed specifications of the computer system used for the training and 
validation of the proposed rebar detection and localization system are 
given as follows: Ubuntu 18.04 LTS, 32 GB memory, 350 GB hard disk, 
Intel ® Core i7–8700 CPU with 3.2 GHz clock speed and NVIDIA® 
GeForce® GTX 1080 TI Graphical Processing Unit (GPU). For the pur
pose of training and validation of the proposed system for rebar detec
tion and localization, Tensorflow, PyTorch and Keras libraries have been 
used within Python programming language framework. With regards to 
the network parameters for training of the proposed models, the number 
of epochs is set to 100, value of batch size is specified to 8 and learning 
rate is set to 0.001. The data is divided between training and validation 
sets based on “leave-one-out” approach, such that out of the total data 
from eight bridges, training of the proposed framework is conducted on 
seven bridges and validation is performed on data from one bridge (this 
same process is repeated for all bridges, i.e. training/validation cycle is 
performed eight times and average results for all metrics are high
lighted). This process is used to perform validation on all of the bridges 
to assess the performance of the proposed system for rebar detection and 
localization. The use of this approach allows the researchers to assess the 
ability of the proposed system to provide reliable performance on un
seen data. 

3.3. Image pre-processing functions 

A number of different pre-processing functions have been used in this 
study, which will be discussed in this sub-section. The original data is 
converted into image format (e.g. JPEG, PNG), which can be used for the 
training and validation of Deep Learning-based frameworks. The 
different pre-processing functions that have been used require manual 
operations by the researcher. Some of these functions include cropping, 
resizing, and modification of image brightness, contrast, and color bal
ance to ensure that the rebar signatures can be effectively highlighted 
within the diverse bridge data in a uniform manner irrespective of the 
bridge data being analyzed. 

The type of data annotation used in this study is pixel-based anno
tation (individual pixels are classified as either belonging to rebar 
signature or background). The prior studies leveraged block-based 
annotation (regions of the image are taken and separately classified as 
either rebar if rebar signatures are present or background if no rebar 

signatures are present) of the rebar dataset. One of the benefits of using 
pixel-level annotation is that the output is able to classify each pixel of 
the input image as either belonging to one class or another. For the case 
of block-based annotations, there are always ambiguous regions con
taining sections of rebar and background simultaneously, which cannot 
be accurately classified as belonging to one class or the other, leading to 
reduced performance of learning-based systems. However, since, 
annotation is a manual process; the overall time and effort required for 
performing pixel-level annotation is more when compared to block- 
based annotation. 

The data annotation process is carried out separately for the two 
stages of the proposed model, which can allow both the stages to fulfill 
their respective roles towards detecting the rebar layer and rebar sig
natures respectively. For annotating GPR images for the training and 
validation of the rebar layer in stage 1 of the proposed model, the an
notators manually label the rebar layer pixels as 1 and other pixels as 
0 so that stage 1 is able to separate rebar layer from other parts of the 
image. For annotating GPR images for the training and validation of the 
rebar signature in stage 2 of the proposed model, the annotators 
manually label the rebar layer pixels as 1 and other pixels as 0, so that 
the stage 2 is able to separate rebar signature pixels from other parts of 
the image. 

3.4. Proposed multi-stage deep encoder-decoder framework for rebar 
detection and localization 

The proposed model of the Deep Encoder-Decoder Network has been 
inspired by studies related to Deep Encoder-Decoder Networks devel
oped in the recent past (some of which have been covered in the prior 
section). Fig. 3 outlines the model for the two-stage Deep Encoder- 
Decoder Network proposed in this study. In the next discussion, the 
terms ‘block’ and ‘modules’ will be used interchangeably to refer to the 
essential building elements given in Fig. 3. The proposed network has 
two main parts, namely the Rebar Layer Identification Framework 
(RLIF) is Stage 1 and the Rebar Signature Localization Framework 
(RSLF) is Stage 2. The input data is pre-processed using a number of 
different functions to ensure that the raw images are cropped, resized 
and adjusted to ensure optimal performance of the proposed system. 
These two stages have been explicitly defined, as they highlight the 
novelty of the proposed approach in comparison with recent studies 
(Kaur et al., 2016; Gibb and La, 2016; Ahmed et al., 2019a, 2019b, 
2020b). The details regarding each part of the proposed network will be 
discussed in sufficient detail in the proceeding sub-section. The output 
from both the stage 1 and 2 are concatenated together using a pixel-wise 
AND operation, which ensures that the different reflective signals and 
noise artefacts can be reduced to get the final output result. 

In order to effectively highlight the motivation and rationale for this 
approach, it is essential to shed light on the different challenges and 
limitations highlighted towards development of effective rebar detec
tion and localization systems as outlined in (Ahmed et al., 2020a). Out of 
the different issues discussed in (Ahmed et al., 2020a), one of the major 
issue relates to the presence of parabolic reflective anomalies in parts of 
the GPR image that are visually similar to the actual rebar signatures. 
These reflective signals are visible in the lower parts of the Fig. 4 (a). The 
frequency of occurrence of these reflection decreases the overall per
formance of the rebar detection and localization system. In order to 
mitigate these reflective signals from increasing the false positive rate 
for the proposed rebar detection and localization system, a two-stage 
approach has been proposed, which separates rebar layer and rebar 
signature using two separate stages of the proposed framework. It is 
important to understand that these reflective signals are present below 
the actual rebar signatures. This is an important insight that can allow us 
to leverage the rebar layer (this is the layer in which the actual rebar 
signatures are present) for developing an effective rebar detection and 
localization system. This approach has not been utilized in earlier 
studies, which makes the findings relevant and useful in terms of the 

Table 2 
Data from different real bridges that have been used in this studies. Data has 
been collected from the varying states of the United States using the RABIT 
platform (La et al., 2015, 2017; Gucunski et al., 2015b), and using GPR carts 
provided by the GSSI company.  

Bridge Location Bridge Type Bridge Dimensions 
(ft.) 

Number of 
Images 

1. Galena Creek, NV Twin Span Arch 1,726.5 × 62.0 135 
2. East Helena, MT Concrete Tee- 

Beam 
66.9 × 40.0 185 

3. Kendall Pond, NH Girder 78.1 × 44.0 70 
4. Piscataqua, ME Through-Arch 4,503 × 98 40 
5. Broadway, AR Arch 2,786 × 40 160 
6. Fordway, NH Beam 131 × 23 195 
7. Dove Creek Rd., 

MO 
BC Beam 50 × 45 150 

8. Baxterville 
Bridge, CO 

Lost-through 
Truss 

117 × 15.4 110   

Total 1,055  
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utilization of rebar layer as an important feature for rebar detection and 
localization. Fig. 4 (b) highlights the different inputs and outputs of the 
different stages of the proposed framework in terms of how the presence 
of rebar reflective signals can be minimized in the final output by 
leveraging a two-stage-based approach. In the first stage, the rebar layer 
is separated; this part contains all of the rebar signatures. The second 
stage separates all rebar parabola signatures from the pre-processing 
images; but the potential presence of rebar reflective signals can lead 
to false positive rates at this stage of the framework. In order to minimize 
the false positive rates and eliminate the reflective signals from stage 2 
output, the outputs of stage 1 and 2 are concatenated together using 

pixel-wise AND operation. Using this operation, the final output is able 
to retain the parabola signals present within the rebar layer while 
eliminating the reflective signals that exist below the rebar layer. In this 
manner, based on findings from (Ahmed et al., 2020a), this approach is 
able to improve on one of the various issues affecting the performance of 
prior rebar detection and localization methods. 

3.4.1. Rebar Layer Identification Framework 
As the name suggests, the Rebar Layer Identification Framework 

(RLIF) primarily deals with the visual differentiation between pixels 
belonging to image regions containing the rebar signatures and 

Fig. 3. Overview of the Proposed Model of the Novel Multi-Stage Deep Encoder-Decoder Network for Rebar Detection and Localization. The input image of the B- 
scan after undergoing pre-processing operations is put through the First and Second Stages of the Deep Encoder Decoder Network. 

Fig. 4. Rationale for developing a two-stage approach with rebar layer and rebar signature separation and concatenation in the final stages of the proposed model 
with (a) the presence of rebar reflective signals in the GPR B-scan images (Ahmed et al., 2020a) and (b) a look at the different inputs and outputs of the different 
stages in terms of how the presence of rebar reflective signals can be minimized in the final output by leveraging a two-stage approach. 
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background pixels. These regions or collections of pixels can also be 
termed the ‘rebar layer.’ The Encoder Block A and Decoder Block B 
constitute the RLIF. Similarly, the Encoder Block C and Decoder D 
constitute the RSLF, which will be discussed in the following sub- 
section. Although images can contain reflection signals similar to 
parabolic rebar signatures, most B-scan images contain a single rebar 
layer to specify the underground depth at which the rebar is visually 
present within the B-scan images. For this reason, the RLIF focuses on 
highlighting a single layer, where most of the rebar parabolic signatures 
are present. This will be possible by providing a pixel-level annotation of 
the pre-processed GPR image data into either rebar layer or background 
pixels, making it a binary classification problem. The architecture of the 
proposed RLIF will be similar to SegNet, which is shown in Fig. 5, such 
that the Encoder-Decoder model used in RLIF will consist of a single 
Encoder and Decoder modules. Several different architectures (e.g., 
UNet (Ronneberger et al., 2015) and PSPNet (He et al., 2015), and 
MobileNet (Howard et al., 2017) encoder used as part of the overall 
SegNet architecture) will be tested and evaluated for the construction of 
RLIF. 

3.4.2. Rebar Signature Localization Framework 
The Encoder Block C and the Decoder Block D, which are given in 

Fig. 3, constitute the Rebar Signature Localization framework (RSLF). 
The architecture of the proposed RSLF is also similar to SegNet, which is 
shown in Fig. 5, such that the Encoder-Decoder model used in RSLF will 
consist of a single Encoder and Decoder modules. However, the type of 
Encoder-Decoder architectures used in RSLF and RLIF are different in 
terms of their internal network-level characteristics. At the same time, 
the type of pixel-level annotation performed for the two framework is 
also different. As, the first stage of the proposed framework (i.e. RLIF) 
seeks to highlight the rebar layer and the second stage (i.e. RSLF) at
tempts to identify the individual rebar parabolic signatures, preferably 
present within the rebar layer. It can be seen in Fig. 5 that the initial 
stages of the SegNet architecture constitute the Encoder block and the 
final stages belong to the Decoder block. Two main types of blocks have 
been used in this study, including the Deep Encoder block with different 
network layers connected and pooling layers. The Deep Decoder block is 
similar in construction to the Deep Encoder block. The only difference is 
that instead of the pooling layers, the up-sampling layers are used to 
ensure that the output from the encoder can be resized to the actual 
image size provided at the input of the proposed model. 

4. Results and discussion 

This section will discuss the salient features of the proposed network 
and its performance, along with their various implications for future 
research. The proposed method has two main parts, namely the Rebar 
Layer Identification framework (RLIF) and Rebar Signature Localization 
Framework (RSLF). For the first stage of the proposed network (i.e., 
RLIF), three major Deep Encoder-Decoder Networks have been used, 
namely the UNet (Ronneberger et al., 2015), PSPNet (He et al., 2015) 
with two variants (e.g. PSP-50 and PSP-101), and SegNet with Mobile
Net encoder module (Howard et al., 2017). For the case of the second 
stage of the proposed network (i.e., RSLF), three main Encoder-Decoder 
networks (e.g., UNet (Ronneberger et al., 2015), PSPNet (He et al., 
2015), and SegNet (Badrinarayanan et al., 2017)) have been used, along 
with variations in the Encoder modules to find the most suitable 
Architecture-Encoder pair in terms of different qualitative and quanti
tative performance metrics. Some of the different Encoder modules 
leveraged within the context of the different Architectures include 
VGG-16, VGG-19, ResNet-50, and ResNet-Xception. 

It is important to understand that the quantitative and qualitative 
analyses of the proposed approach for rebar detection and localization 
will be fundamentally different in nature. It is due to the diverse nature 
of the analysis of the results that the researchers can be able to better 
appreciate and gain a deeper examination of the workings of the pro
posed approach. Within the quantitative analyses of results, the focus is 
towards utilizing the different statistical performance metrics (e.g. 
mIoU, Precision, Recall, Dice Loss) to assess the overall feasibility of the 
proposed approach for rebar detection and localization. Therefore, the 
quantitative analyses deal with comparing and analyzing the statistical 
results obtained for different metrics in response to the utilization of 
different base architectures and encoder modules. In the qualitative 
analyses of results, the focus is on the visual quality of the output images 
provided by the different base architectures and encoder modules used 
in this study. In order to accomplish that, the researchers manually 
compare the difference between the ground truth and output images, 
such that the closer the output images are to the ground truth, the better 
the overall qualitative assessment of the proposed method. 

4.1. Quantitative analysis 

In this section, the primary emphasis will be on examining the sta
tistical evaluation of the different aspects of the proposed method for 

Fig. 5. Architectural Framework for SegNet (Badrinarayanan et al., 2017) with one Encoder and one Decoder module, which has gained considerable attention in the 
recent past. The RLIF will make use of different widely-deployed Deep Encoder Decoder Networks, which are similar in construction to the SegNet (Badrinarayanan 
et al., 2017). 
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rebar detection and localization. Tables 3 and 4 highlight the overall 
quantitative performance of the different Architectures and Encoder 
modules for the two stages of the proposed system for rebar detection 
and localization. Several different performance evaluation metrics have 
been used for assessing the performance of the Deep Encoder-Decoder 
networks in the different applications in the recent past (He et al., 
2015; Howard et al., 2017; Ronneberger et al., 2015; He et al., 2015; 
Badrinarayanan et al., 2017). The different metrics used in this study 
include Dice Loss, mean-Intersection-over-Union (mIoU), Precision, and 
Recall. The lower values for Dice Loss are more suitable as they corre
spond to the level of loss incurred for the different combinations of 
network frameworks used in the proposed system for rebar detection 
and localization. For all the other performance metrics (e.g. MIoU, 
Precision, and Recall), the higher values correspond to improved per
formance of the proposed rebar detection and localization system. 

For the case of stage 1 of the proposed framework, four different 
types of base networks have been used, namely UNet, PSPNet-50, 
PSPNet-101, and SegNet framework. Out of the different Deep 
Encoder-Decoder networks utilized in the first stage, the most promising 
results have been outlined by the SegNet with MobileNet Encoder. Many 
of the original Deep Encoder-Decoder architectures (e.g. UNet, PSPNet- 
50 and PSPNet-101) used in stage 1 utilize default encoder modules in 
order to limit the level of complexity and variables being used in this 
study. The MobileNet framework utilized as an encoder within the 
SegNet framework provides a lightweight Deep Encoder-Decoder 
network from the different models utilized in stage 1 of the proposed 
rebar detection and localization system. For the different encoder 
modules and base architectures used in the second stage of the proposed 
network, the highest performance has been highlighted by combining 
the SegNet framework with the ResNet-Xception encoder module. When 
comparing the performance of PSPNet with 50 and 101 layers in the first 
stage of the proposed system, increasing the complexity and number of 
layers has an overall negative effect on the performance of the rebar 
detection and localization system. Compared to these two frameworks, 
the complexity and number of layers for UNet and MobileNet are 
limited. However, as it can be seen in Tables 3 and 4, these two networks 
(e.g., MobileNet and UNet) can provide a higher level of performance 
with the different combinations of Architecture-Encoder pairs leveraged 
at the second layer of the proposed framework for rebar detection and 
localization system. 

A different combination of base architecture and encoder modules 
was used for stage 2 of the proposed rebar detection and localization 
system. It is important to understand that PSPNet with different number 
of layers does not support the usage of different encoder modules. The 
different base architectures used in the second stage of the proposed 

system include SegNet, UNet, and PSPNet. The different encoder mod
ules utilized include VGG-16, VGG-19, ResNet-50, and ResNet-Xception. 
In terms of the number of layers, the different encoder modules can be 
ranked from the lowest to the highest number of layers as follows: VGG- 
16, VGG-19, ResNet-Xception, and ResNet-50. In terms of improved 
performance, the most crucial combination of Architecture-Encoder 
pairs at the second stage of the proposed framework is SegNet-ResNet- 
Xception (where SegNet is the base architectural framework and 
ResNet-Xception is the encoder module). Of the different encoder 
modules used, the most effective one can be classified as ResNet- 
Xception, which has shown improved performance when leveraged 
within different base architectural frameworks. ResNet-Xception 
encoder module with the SegNet framework at the second stage and 
SegNet framework with MobileNet encoder module at the first stage 
have the highest values for the different metrics (e.g., Dice Loss, mIoU, 
Precision, and Recall) are 12.20%, 93.57%, 97.43%, and 96.62%. All 
other values for the different frameworks at the first and second stage 
have comparatively lower values of mIoU, Precision, and Recall, as well 
as higher values for Dice Loss, as can be seen in Tables 3 and 4 

The performance of the proposed system cannot be directly 
compared with the majority of the existing studies in the field of rebar 
detection and localization conducted with an emphasis on bridge in
spection in particular. The primary reason for this fact is that earlier 
studies utilize block-based techniques, which make use of different 
metrics, such as accuracy and loss (Ahmed et al., 2019a, 2019b, 2020a, 
2020b). These metrics cannot be used for the current study since it le
verages pixel-based methods for classification, such as individual pixels 
are classified as either belonging to rebar or non-rebar classes. The 
performance evaluated using these metrics (e.g., mIoU, Dice Loss, Pre
cision, and Recall) can be considered a more reliable and accurate 
reflection of the actual performance of the proposed rebar detection and 
localization system. 

4.2. Qualitative analysis 

In this sub-section, the primary emphasis will be on examining the 
non-statistical evaluation of the different aspects of the proposed 
method for rebar detection and localization. The section will be further 
sub-divided into two parts due to the multi-layer nature of the proposed 
framework for the rebar detection and localization. The first sub-section 
will outline the different insights and qualitative characteristics of the 
different output results from the first stage of the proposed framework. 
The second sub-section will discuss the different qualitative features of 
the different output results from the second stage of the proposed 
framework for rebar detection and localization. 

Table 3 
Results are shown for the dataset from eight different bridges. The results are shown for a different set of base architectures and encoder pairs for the second stage of the 
proposed framework. The most promising results for the different results at stage 1 and 2 of the proposed framework has been given in bold fonts.  

Stage 1 Base Model Stage 1 Encoder Stage 2 Base Model Stage 2 Encoder Dice Loss (%) mIoU (%) Precision (%) Recall (%) 

UNet Default SegNet VGG16 25.15 85.73 88.43 82.26 
” ” ” VGG19 22.19 87.24 88.55 86.72 
” ” ” ResNet-50 16.68 90.65 90.53 90.06 
” ” ” Xception 15.45 92.48 93.06 92.50 
” ” UNet VGG16 20.14 89.50 85.29 86.63 
” ” ” VGG19 19.24 90.57 88.33 88,21 
” ” ” ResNet-50 18.91 91.74 89.66 88.37 
” ” ” Xception 19.25 89.50 89.90 88.40 
” ” PSPNet N/A 32.17 86.63 85.75 84.28 
PSPNet-50 ” SegNet VGG16 23.53 84.58 81.77 80.08 
” ” ” VGG19 20.06 86.64 84.17 82.21 
” ” ” ResNet-50 19.21 89.83 84.45 86.33 
” ” ” Xception 18.75 90.48 91.06 90.50 
” ” UNet VGG16 23.16 83.25 81.76 81.24 
” ” ” VGG19 21.77 85.36 83.62 80.14 
” ” ” ResNet-50 19.15 87.51 82.50 80.19 
” ” ” Xception 19.20 87.70 82.20 80.55 
” ” PSPNet N/A 32,27 82.25 80.37 79.92  
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4.2.1. Qualitative analysis: Rebar Layer Identification Framework 
In this sub-section, the discussion will deal with the visual results 

obtained for the first stage of the proposed framework for rebar detec
tion and localization, namely the Rebar Layer Identification Framework 
(RLIF). In Fig. 6, a number of different results have been highlighted 
from stage 1 of the proposed framework for rebar detection and locali
zation. The top two images are actual GPR images and ground truth 
annotated images respectively. The annotation classified between the 
foreground (i.e. rebar layer) and background (i.e. anything in the image 
that is not part of the rebar layer). This part highlights a different 
perspective as compared to quantitative analyses, as there are different 
visual elements of the results that cannot adequately be discussed in 
statistical terms. 

Out of the different Encoder-Decoder architectures leveraged for the 
development of the RLIF, some of the Architectures include SegNet, 
UNet, smaller-version of UNet (i.e., UNet-mini), and PSPNet. The reason 
UNet-mini results are not highlighted in Table 2 is because they do not 
provide adequate performance in terms of the different statistical mea
sures (e.g. mIoU, Dice Loss, Precision and Recall). The qualitative results 
for UNet-mini are shown in Fig. 6 in order to gain a better understanding 
of the reason for reduced performance. For the case of SegNet archi
tecture in stage 1, MobileNet-v2 was used as the encoder module in 
order to attempt to reduce the overall size of the two stage framework. 
The individual encoder-decoder architectures (e.g. SegNet, PSPNet, 
UNet) are deep networks with considerable complexities and compu
tational overheads. 

Table 4 
Results are shown for the dataset from eight different bridges. The results are shown for a different set of base architectures and encoder pairs for the second stage of the 
proposed framework. The most promising results for the different results at stage 1 and 2 of the proposed framework has been given in bold fonts.  

Stage 1 Base Model Stage 1 Encoder Stage 2 Base Model Stage 2 Encoder Dice Loss (%) mIoU (%) Precision (%) Recall (%) 

PSPNet-101 ” SegNet VGG16 29.38 81.55 76.23 77.56 
” ” ” VGG19 26.15 85.40 82.61 82.57 
” ” ” ResNet-50 20.26 88.72 82.63 83.45 
” ” ” Xception 18.41 90.55 91.26 90.59 
” ” UNet VGG16 21.88 85.65 83.32 85.22 
” ” ” VGG19 24.42 88.58 80.26 80.17 
” ” ” ResNet-50 20.69 90.75 84.13 83.38 
” ” ” Xception 21.24 86.81 82.63 81.50 
” ” PSPNet N/A 30.16 82.69 82.15 78.86 
SegNet MobileNet SegNet VGG16 21.46 91.12 92.50 93.36 
” ” ” VGG19 22.18 91.50 90.07 91.23 
” ” ” ResNet-50 17.37 92.21 95.24 94.45 
” ” ” Xception 12.20 93.57 97.43 96.62 
” ” UNet VGG16 20.15 90.11 89.83 86.58 
” ” ” VGG19 14.31 92.42 90.50 92.21 
” ” ” ResNet-50 14.11 92.09 90.55 92.60 
” ” ” Xception 15.57 91.33 89.40 88.91 
” ” PSPNet N/A 27.25 87.55 82.94 80.88  

Fig. 6. Results shown for the dataset from three different bridges. The results are shown for different set of base architectures and encoder pairs used in the first stage 
of the proposed framework. 
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In order to reduce these overheads, the goal was to introduce a 
smaller version of Encoder-Decoder network at the first stage for rebar 
layer identification with the second stage for the rebar signature local
ization. Another benefit of using a smaller framework for the first stage 
was that the original version of MobileNet-v2 could not process the 
image data with dimensions 768 × 768 x 3. In order to work with SegNet 
architecture with MobileNet-v2 encoder module at the first stage of the 
framework, the data has to be resized to 256 × 256 x 3, which improves 
the computational cost of using multiple stages of Deep Encoder- 
Decoder networks. At the same time, it also increases the performance 
of the first stage framework leveraging MobileNet-v2 to compare with 
other Deeper frameworks, (e.g., SegNet, PSPNet and UNet). After pass
ing through the first stage, the results obtained are re-sized back to their 
original size, so that the results from different Architectures in the first 
stages can be effectively compared, as shown in Fig. 6. It can be seen in 
Fig. 6 that SegNet framework with MobileNet-v2 Encoder module is able 
to provide the most promising results at the stage 1 of the proposed 
framework. For data from all three bridges, it can be seen that the results 
are closer to the ground truth in comparison with other frameworks 
developed for stage 1. Furthermore, the results from SegNet-MobileNet 
shows the effects of resizing on the output in the form of block-based 
effects visible at the lower and upper edges of the layer results that 
were magnified after resizing the images from 256 x 256 x 3 to 768 ×
768 x 3 (i.e. the noise and other artefacts that were smaller in the 
original result images were magnified many times after the images were 
resized). 

For the case of PSPNet-50 and PSPNet-101, the results are more 
smooth in terms of visual texture. However, there are some issues in 
terms of patches missing from the different data results shown in Fig. 6. 
For example, the results from PSPNet-101 bridge 8 data shows some 
missing portion in the middle of the rebar layer region. Similarly, for 
PSPNet-101, some minor regions of the rebar layer are missing for the 
results given for bridge 4 and 6. For the case of PSPNet-50, the results 
from bridge 4, there are some slight defects at the bottom of the rebar 
layer region. Similarly, the results from bridge 6 show some minor issues 
from the top and bottom of the identified rebar layer region. For the 
results obtained from PSPNet-50, there are some minor missing regions 
from the middle of the rebar layer region, along with minor issues at the 
top and bottom of the identified rebar region. The results from PSPNet- 
101 are more smooth in comparison with PSPNet-50. This shows that 
the increase in number of layers of the Deep Networks might have some 
positive impact towards effectively highlighting the rebar layer. At the 
same time, there is a need to better understand how the first layer net
works can better distinguish between features for the foreground (i.e. 
features belonging to the rebar layer) and background (i.e. features 
belonging to all other regions of the B-scan images) regions. 

For the case of UNet, visually, the output results are much less 
smooth in comparison to results from the two PSPNet frameworks 
highlighted. For UNet, the results show some false positive regions, 
when the output results are compared with the ground truth. The effect 
of noise and other artefacts are also more pronounced for the case of 
UNet frameworks. For the case of UNet-mini, which is a smaller, more 
compact version of the original framework, it can be seen that the output 
results are much more sensitive towards inaccurately classifying noise 
and other reflective artefacts as part of the rebar layer region. This 
phenomenon is much more visible for the case of UNet-mini with data 
from bridge 8. However, since rebar profiles belong to the upper portion 
of the rebar layer, which is covered for the majority of the output images 
from UNet and UNet-mini, the regions of the rebar layer containing the 
rebar profile signatures are still covered within the output regions. 

The overall qualitative analyses of the results from the first stage of 
the proposed framework for rebar detection and localization has been 
provided in this sub-section. The main issue highlighted is concerning 
the false positive regions and the addition of noise and other reflective 
artefacts below the rebar layer that can be incorrectly classified as actual 
rebar signatures in the further stages of the framework. This particular 

issue is not present in results from many frameworks (e.g. SegNet with 
MobileNet framework, PSPNet-50, PSPNet-101 and UNet). However, 
one of the examined frameworks (e.g. UNet-mini) has this particular 
issue much more pronounced in some of the results. This particular issue 
will be left for future research to further examine these issues and try to 
work towards ensuring that the first stage of the framework for rebar 
detection and localization is able to provide better performance in terms 
of accurately highlighting the rebar layer region. Since, this particular 
type of exploration and approach has not been previously used in any of 
the relevant literature, it is difficult to ascertain the different factors that 
can affect the accurate detection of rebar layer region. Furthermore, 
there will also be a need to examine the different network-level char
acteristics (e.g. number of network layers, type of network layers 
(pooling, convolution and concatenation layers) and their combination, 
and network layer dimensions for each layer in the network) that can 
prevent the inaccurate classification of rebar layer region. 

4.2.2. Qualitative analysis: Rebar Signature Localization Framework 
In this sub-section, the discussion will deal with the visual results 

obtained for the second stage of the proposed framework for rebar 
detection and localization, namely the Rebar Signature Localization 
Framework (RSLF). Fig. 7 highlights the overall qualitative performance 
of the different Architectures and Encoder modules for the two stages of 
the proposed system for rebar detection and localization. The results 
highlight the qualitative aspects of rebar detection and localization. The 
information provided on the left-hand side of the images is based on the 
corresponding architecture’s base architecture and encoder modules for 
the second stage of the rebar detection and localization system. 

In Fig. 7, several promising results for the Architecture-Encoder pair 
have been highlighted, along with some examples of average and low 
performance results for the other networks leveraged in the second stage 
of the proposed framework for rebar detection and localization. The 
primary framework used for the second stage of the proposed framework 
include UNet (Ronneberger et al., 2015), PSPNet (He et al., 2015), and 
SegNet (Badrinarayanan et al., 2017). With these base networks, the 
different encoders were used to examine the effect of different encoders 
on the overall performance of the rebar detection and localization sys
tem. When comparing results for SegNet and UNet, it can be seen that 
the overall thickness of the rebar signatures is smaller for SegNet results. 
The results from the UNet framework are closer to the actual ground 
truth results. ResNet-50, ResNet-Xception, and Inception encoders are 
not shown here since the increasing number of layers in the encoder 
does not significantly improve the quality of rebar signatures segmented 
from the original B-scan images. For the case of Architecture-Encoder 
pairs with SegNet, the most promising results are revealed for the Seg
Net framework with ResNet-50 and ResNet-Xception encoder modules. 
For the case of the UNet framework, both VGG-16 and VGG-19 encoder 
results are similar in terms of qualitative aspects. However, it is inter
esting to note that both results are unable to accurately segment some of 
the rebar signatures for data from bridge 6. However, rebar signatures’ 
overall thickness and quality are closer to the ground truth. 

For the case of PSPNet (He et al., 2015), only the results for 
PSPNet-101 layers have been shown as a reference of relatively inac
curate results with the segmentation of rebar signatures appearing not as 
parabolic signatures. Instead, the rebars appear as regional blobs with 
pixel regions for individual rebars intersecting neighboring rebars. 
Although, this network (i.e. PSPNet-101) can be used for the localization 
of the rebars. However, the primary issue relates to the instances when 
the localization results for two neighboring rebars appears as a single 
region. This particular issue becomes problematic when the distance 
between two neighboring rebar signatures is reduced, as it can be seen 
for the output results from bridge 8 for PSPNet-101. Due to the inherent 
limitation of the PSPNet architecture, it cannot provide flexibility in 
utilizing multiple different encoder pairs, as is the case with other Deep 
Encoder-Decoder pairs, e.g., SegNet and UNet. The results for PSPNet 
with 50 layers architecture were not included, as the results were not 
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very accurate, and it was not accessible to qualitatively separate indi
vidual rebar parabolic signatures. Another set of sub-optimal results is 
given for the case of SegNet architecture with the Inception-v3 encoder 
module—both these results are given in Fig. 7 suffer from the same issue, 
such that the final results are unable to separate the results for individual 
rebar profiles from the neighboring rebar signatures. In conclusion, it 
can be seen in Fig. 7 that the most promising results in terms of quali
tative aspects include MobileNet-v2 for the first stage of the framework. 
SegNet with ResNet-50 encoder module or UNet with VGG-16 encoder 
module gives the best result for the second stage of the proposed 
framework for rebar detection and localization. 

There are a few primary issues that have been highlighted from the 
qualitative analyses of the results from the second stage of the proposed 
framework for rebar detection and localization. The first issue is related 
to the reduced thickness of the output rebar signatures for some output 
results (e.g. SegNet-ResNet-Xception, SegNet-VGG19 and SegNet- 
VGG16 Architecture-Encoder pairs). This can be beneficial in cases 
where the distance between the neighboring rebar signatures is very 
less. However, it can be a cause for concern, especially in the presence of 
noise in the images, i.e. if the intensity of noise increases in the image, it 
can potentially affect the ability of the proposed framework to accu
rately localize individual rebar signatures. This particular issue needs to 
be further investigated in future studies in the relevant research area. 
The second issue is the merger of neighboring rebar signatures for some 

output result highlighted (e.g. PSPNet-101). This potential issue can 
seriously affect the output for bridge data with minimal distance be
tween neighboring rebar signatures. This issue needs to be further 
explored in future works to fully examine the optimal network charac
teristics that can cater to the diverse types of data with different physical 
bridge characteristics (e.g. depth of rebar layer, number of rebars used in 
construction of the bridge, distance between neighboring rebars, type of 
material used within bridge deck). The third issue highlighted in this 
section is the disappearance of individual rebar signatures or failure to 
accurately classify individual rebar signature by some of the 
Architecture-Encoder pairs (e.g.UNet-VGG16 and UNet-VGG19) used in 
the second stage of the proposed framework for rebar detection and 
localization. Future research should try to explore ways to prevent this 
issue from affecting the performance of the rebar detection and locali
zation frameworks. 

4.3. Comparison between pixel-based and block-based approaches for 
rebar detection and localization 

The pixel-based approach for rebar detection and localization is 
beneficial, not only for the GPR community, but also for civil experts and 
non-experts alike. The results discussed in prior sub-sections have 
demonstrated that the pixel-based approach is more precise and accu
rate with respect to separating rebar pixels from background pixels 

Fig. 7. Results shown for the dataset from three different bridges. The results are shown for different set of base architectures and encoder pairs for the second stage 
of the proposed framework. The first stage framework in this context is based on SegNet-MobileNet (Howard et al., 2017). 
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within input GPR images. A comprehensive overview of the different 
limitations of the block-based approaches for rebar detection and 
localization has been discussed in (Ahmed et al., 2020a). In order to 
effectively highlight the results of the block-based and pixel-based 
approach, Fig. 8 compares the output results provided by the two ap
proaches. The output results for the block-based approach are based on 
the method developed in (Ahmed et al., 2020a). For the block-based 
approach, the output is given in the form of a rectangular 
region-of-interest (ROI), which contains segments of rebar signature, as 
detected by the developed system. There are some presence of false 
positive localization results in the lower region due to presence of 
parabola shaped reflection artefacts in the lower region of the input 
image. However, further manual inspection by civil experts is still 
required to visually locate the rebar profile within the rectangular ROIs 
highlighted by the system. For the case of output generated by the 
pixel-based approach, the output provided is in the form of pixels 
highlighted that belong to rebar signature in the input image. By 
providing a fine-grained output by the system, the pixel-based approach 
makes it easier for the civil experts to assess whether the results align 
with the ground truth or not. However, human inspectors will still need 
to verify the results from both systems at the end. Based on the visual 
analysis of results outlined by the two approaches, it can be seen that the 
utilization of pixel-based approaches is beneficial for the GPR commu
nity, as utilization of these approaches will allow the GPR experts to gain 
more accurate, fine-grained and precise output results in comparison to 
block-based approaches. 

4.4. Comparison between robot-based and human-based approaches for 
bridge inspection 

Although, this is not the primary focus of the discussion in this study, 
it is important to highlight the different ways in which human-based 
inspection methods differ from automated, robot-based approaches. 
Previous studies have shed considerable light on the benefits of the 
automated, robot-based approaches for bridge inspection (Ahmed et al., 
2019a, 2019b, 2020a, 2020b, 2021, 2022; Ahmed and La, 2021; La 
et al., 2013a, 2014a, 2014b, 2014b, 2015, 2017, 2019; La et al., 2014b; 
Gucunski et al., 2013). In order to effectively compare between the 
human-based and robot-based approaches for bridge inspection, Table 5 
has been provided where different metrics are selected and the pros and 
cons of each approach has been outlined. Inspection time refers to the 
time taken for undertaking the inspection activities and data collection 
from an actual bridge. Detection time refers to the time required for 
analyzing the collected data. Maneuverability refers to the ability to 
access different regions of the bridge. Availability refers to the ability to 

inspect the bridges irrespective of changes in weather (e.g. rain, snow, 
wind) and time of the day (e.g. morning, evening, night). Adaptability 
refers to the ability to handle and cope with uncertain situations (e.g. 
road accidents) that can take place during inspection activities. Despite 
many advantages in several of the metrics for robot-based approaches, it 
is important to understand that most of the existing robot-based plat
forms for bridge inspection are in their initial phases of development and 
very few examples of practical implementations in the field exist at 
present (e.g. RABIT platform). The widespread deployment of practical 
fully-autonomous robots for different routine bridge inspection tasks is a 
research challenge that is currently being investigated. Therefore, the 
purpose of comparison drawn in Table 5 is not to favor one approach 
over another. Since, at present, the emphasis of the existing research in 
this field is towards developing automated tools and technologies that 
do not replace human experts, but assist and complement them in pro
moting efficiency and improved overall performance in the different 
inspection-related tasks. 

5. Conclusion and future works 

This paper provides a detailed evaluation of the rebar detection and 
localization system. Although, some efforts have been dedicated to the 
development of rebar detection and localization system in the past. Prior 

Fig. 8. Comparison between the output results for 
pixel-based approach used in this study with block- 
based approach used in (Ahmed et al., 2020a). In 
the output of the block-based approach, a green 
bounding box is used to highlight region containing 
rebar signatures. There is some prevalence of false 
positive detection (incorrect classification of rebar 
reflection artefacts as rebar signatures) as well as 
false negative (unable to correctly classify rebar sig
natures). There are also instances in which two rebar 
signatures are collectively classified as a single rebar 
signature. In the output for the pixel-based approach, 
individual pixels in the original image belonging to 
rebar signature class are highlighted with red color to 
distinguish them from the other pixels. It can be seen 
that the results are more fine-grained and accurate 
than block-based approach. (For interpretation of the 
references to color in this figure legend, the reader is 
referred to the Web version of this article.)   

Table 5 
Comparison between the human-based and robot-based inspection approaches 
with respect to the different metrics.  

Metrics Robot-Based Approaches Human-Based Approaches 

Inspection Time Low High 
Detection Time Low High 
Inspection 

Accuracy 
High Moderate/High 

Detection 
Accuracy 

Varies based on Analysis 
tools used 

Varies based on Inspector skills 

Initial Costs Research and Development 
costs (High) 

Training and Skill Acquisition 
costs (High) 

Recurring Costs Minimal Hourly Charges for Civil 
Experts (High) 

Maneuverability Able to reach small spaces 
and high places (High) 

Requires additional gears, 
equipment and experience 
(Low) 

Risk Minimal Risk High Risk of Injury or Death 
Replaceable Easy to Replace Difficulty in Replacing Skills 

and Knowledge 
Ability to 

Upgrade 
High Time and Cost Factors High Time and Cost Factors 

Availability Low Moderate 
Adaptability Low High  
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studies in the rebar detection and localization system have utilized 
block-based approaches. The proposed system is different in many 
different ways. In this study, pixel-based classification has been intro
duced with a multi-stage framework incorporating different Deep 
Encoder-Decoder networks. Different types of Deep Encoder-Decoder 
networks with different levels of network complexities and the num
ber of layers have been used for the two stages of the proposed rebar 
detection and localization system. The most optimal results have been 
demonstrated using the SegNet-MobileNet Architecture-Encoder pair at 
the first stage and the SegNet framework with the ResNet-Xception- 
based encoder module at the second stage. The first stage (namely 
Rebar Layer Identification Framework) of the proposed system extracted 
the layer in which most of the rebar signatures are presented. The second 
stage of the proposed system (namely Rebar Signature Localization 
framework) is used to extract and localize individual rebar signatures. 
This paper has provided promising results, which are highlighted in the 
qualitative and quantitative sub-sections of the results section. 

A number of issues have been highlighted in the discussion regarding 
the different results obtained in the prior sections. In summary, these 
issues relate to the first and second stages of the proposed framework for 
rebar detection and localization. For the first stage of the proposed 
framework, future works should try to reduce the false positive rate of 
the rebar layer identification, so that the impact of noise can be pre
vented from affecting the overall efficacy of the proposed system for 
rebar detection and localization. For the second stage of the proposed 
framework, future research should try to develop a framework that is 
generalizable and robust to the diverse types of data characteristics that 
can potentially affect the performance of rebar detection and localiza
tion system. Since, this type of exploration for rebar detection and 
localization has not been conducted before. Future research will need to 
further examine and establish the feasibility of using multi-stage 
framework and inclusion of rebar layer to provide a better perfor
mance of rebar detection and localization systems. 
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