Developments in the Built Environment 14 (2023) 100132

Contents lists available at ScienceDirect

lopments
the buil
environmen

t
I

Developments in the Built Environment

journal homepage: www.sciencedirect.com/journal/developments-in-the-built-environment

ELSEVIER

Pixel-level classification for bridge deck rebar detection and localization
using multi-stage deep encoder-decoder network

Habib Ahmed, Chuong Phuoc Le, Hung Manh La

Advanced Robotics and Automation Lab, Department of Computer Science and Engineering, University of Nevada Reno, USA

ARTICLE INFO ABSTRACT

Keywords:

Structural health monitoring (SHM)
Non-destructive evaluation

Ground penetrating radar (GPR)
Rebar detection and localization
Deep convolutional neural networks
Deep encoder-decoder networks
Pixel-Level classification

Structural Health Monitoring (SHM) and Nondestructive Evaluation (NDE) of civil infrastructure have been
active areas of research for the past few decades. The traditional inspection methods for civil infrastructure,
mostly relying on the visual inspection are time-consuming, labor-intensive, error-prone, and often provide
subjective results. In the wake of rising costs for infrastructural maintenance, the time factor, safety issues, and
the error-prone nature of human inspection methods, there is an increased need for the development of auto-
mated methods for bridge inspection and maintenance. The purpose of this research is to provide a novel Deep
Learning-based approach for rebar detection and localization within bridge decks. The proposed system is
trained using Ground Penetrating Radar (GPR) data from 8 real bridges in the United States. The results have
been discussed in terms of qualitative and quantitative aspects with considerable potential and various issues that
need to be explored in future works. Due to the similarity in the type of parabolic signatures present in other
GPR-related applications, this technique can be generalizable to other applications. The proposed approach for
rebar detection and localization has considerable implications for the civil experts in general and GPR com-

munity in particular.

1. Introduction

With each passing year, the importance of utilizing timely and cost-
effective methods for non-destructive evaluation (NDE) and inspection
of infrastructure is emphasized in the wake of catastrophic incidents
related to the destruction of civil infrastructures (Ahmed et al., 2019a,
2019b, 2020a, 2020b, 2021, 2022; Kaur et al., 2016; Ahmed and La,
2021; La et al., 2013a, 2013b, 2014a, 2014b, 2015, 2017, 2019). Out of
the different infrastructure-related incidents, throughout the past years,
the destruction of bridges has been discussed in some of the recent
studies (Penn, 2018; Kirk and Mallett, 2022; Wright, 2012; Briaud et al.,
2019). Negligence and lack of timely evaluation have led to recent
bridge-related disasters in different parts of the world, which have
resulted in considerable loss of lives, and destruction of civil infra-
structure and property. Fig. 1 shows the destruction of the arch bridge in
Taiwan in 2019, which led to the fall of the bridge deck within the body
of water onto fishing boats passing from underneath the bridge (News,
2019). Although this incident was following in the wake of a typhoon,
the actual cause of bridge destruction could not be fully unearthed
(News, 2019). Many recent bridge-related accidents are highlighting
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and stressing the importance of cost-effective, time-efficient, routine,
and automated methods for bridge inspection and monitoring.

Existing studies related to rebar detection and localization using
Ground Penetrating Radar (GPR) data have several limitations, as out-
lined in a recent study (Ahmed et al., 2020a). The existing studies have
utilized a block-based approach for learning and classification between
rebar and non-rebar regions within the larger B-scan images. The
block-based approach examines portions of images for the presence or
absence of rebar hyperbolic signatures. At the same time, variations in
the intensity of hyperbolic signatures, presence of noise artefacts, and
reflective signals cause challenges towards effective rebar detection and
localization within existing block-based approaches (Ahmed et al.,
2020a). Therefore, the existing block-based methods cannot be used to
provide reliable performance in real-time, practical robotic applications
for NDE of bridges. It is, for this reason, the development of a rebar
detection and localization approach using pixel-level classification has
been proposed in this research. Consequently, leveraging the Deep
Encoder-Decoder framework will allow effective pixel-level rebar and
non-rebar classification. This study will examine the superior perfor-
mance of state-of-the-art pixel-level Deep Encoder-Decoder Networks.
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Part of the bridge
submerged in

Fig. 1. Bridge destruction causing the arch bridge’s deck to fall and submerge
in the body of water in Taiwan (News, 2019).

This paper has been divided into five sections. This particular section
discussed the motivation towards furthering the existing state-of-the-art
for bridge deck evaluation and maintenance. Section 2 has been dedi-
cated to the discussion related to existing research conducted in the field
of civil infrastructure evaluation in relation to rebar detection and
localization. Section 3 highlights the proposed methodology for the
development of a novel Multi-stage Deep Encoder-Decoder-based sys-
tem for rebar detection and localization. Section 4 will provide results
and evaluate the performance of the proposed system for rebar detection
and localization using qualitative and quantitative metrics. In section 5,
which is the final section, an overall conclusion and recommendations
for future research will be provided.

2. Related works

In this section, the primary focus will be on exploring the different
learning-based approaches for rebar detection and localization with
particular emphasis towards Deep Learning-based approaches (See
Ahmed et al., 2020b) for an exhaustive evaluation of literature starting
with relevant earliest research in the 1960s up till the present time). A
number of different machine learning-based methods have been lever-
aged for rebar detection and localization in the past (e.g. Support Vector
Machine (SVM) (Kaur et al., 2016), Naive Bayes classifier (Gibb and La,
2016), Radon Transform (Wang et al., 2020), Hough Transform (Cap-
ineri et al., 1998; Windsor et al., 2005, 2014). It is only in the recent few
years that focus has shifted towards leveraging Deep Learning-based
methods for rebar detection and localization (Dinh et al., 2019;
Ahmed et al., 2019a, 2019b; Besaw and Stimac, 2015). Study by Dinh
et al. (2019) proposed the usage of 24-layer deep CNN model for rebar
classification. The different steps for rebar detection and localization
include time-zero correction, migration, filtering and thresholding,
estimation of weighted centroid, and image classification using CNN
network (Dinh et al., 2019). The use of Residual Neural Networks
(ResNet-50) has also been proposed in recent studies related to rebar
detection and localization (Ahmed et al., 2019a, 2019b) The preliminary
examination of results using GPR data from real-world bridges has
shown that ResNet models with varying network depths (e.g. ResNet-18,
ResNet-34, ResNet-50, ResNet-101, ResNet-152) provide increased ac-
curacy and generalizability, which can allow rebar detection systems to
accurately classify data from new bridges (Ahmed et al., 2019a, 2019b,
Ahmed et al., 2020a). A number of challenges have also been discussed
in sufficient detail, which prevent accurate and reliable detection and
localization of rebar signatures (Ahmed et al., 2020a). Another study
implemented the multi-objective genetic algorithm for classification of
rebar images (Harkat et al., 2016). The use of improved Mask
R-CNN-based method with distance-guided Intersection-over-Union
(DGIoU) was proposed in (Hou et al., 2021).

The research related to rebars and their detection has spread from
being solely rebar detection and localization within bridges to other civil
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structures containing steel rebars. For example, research by Li et al.
(2021) leveraged the You Only Look Once-version 3 (YOLO-v3) detector
algorithm for counting rebar on construction sites. The performance of
the rebar counting algorithm was verified and compared with some of
the state-of-the-art Deep Learning models (e.g. Faster R-CNN, Mask
R-CNN, and different variants of YOLO) (Li et al., 2021). A
semi-automatic genetic algorithm-based method for rebar detection and
localization was developed with data obtained from different tunnel
structures. Another recent study explored the efficacy of utilizing point
cloud data for assessing rebar diameter on construction sites during the
manufacturing and construction stages of infrastructure development
(Kim et al., 2021). As, discussed in (Ahmed et al., 2020a), the issue of
signal interference has been further explored by (Xiang et al., 2021)
using cascaded frequency filters to recognize rebar signatures on a
collection of synthetic and on-site data from building structures (e.g.
shear wall, columns, slabs).

Another study by Liu et al. (2020) made use of a Single Shot
Multi-box Detector (SSD) with a 13-layered VGG-16 backbone for the
detection and localization of rebar signatures in concrete slabs and
walls. Several different learning-based algorithms (e.g. Naive Bayes,
Nearest Neighbors, Classification trees, Support Vector Machine (SVM))
were used and their performance was compared for accurately detecting
the diameter of different-sized rebars (Kim and Lee, 2018). The research
work for rebar detection and localization has been extended using a
mixture of synthetic and real data from highways in (Lei et al., 2019). In
this study, Faster R-CNN was deployed for rebar detection with Double
Clustering Seeking Estimate Algorithm (DCSE), and Column-based
Traverse Filter Points (CTFP) were used for rebar localization (Lei
et al., 2019). In the proceeding discussion, the emphasis will be focused
on different Deep Encoder-Decoder Networks developed and utilized in
the prior studies, and the novel proposed model for rebar detection and
localization developed in this research.

3. Methodology

In this section, some of the different aspects of the proposed system
methodology will be discussed. In the first sub-section, some of the
existing studies utilizing Deep Encoder-Decoder-based networks will be
discussed to highlight the background of the proposed method
leveraging multi-stage Deep Encoder-Decoder network. In the second
sub-section, the focus will be towards data collection for creating the
dataset leveraged in this study for pixel-level rebar segmentation using
the proposed Deep Encoder-Decoder framework. In the third sub-
section, a brief discussion regarding image pre-processing functions
and data annotation process will be provided. In the fourth and final sub-
section, the details of the proposed Deep Encoder-Decoder Network will
be outlined.

3.1. Background on Deep Encoder-Decoder Networks

The usage of Deep Encoder-Decoder Networks has gained increased
importance within diverse fields in the past few years. Out of the
different Deep Encoder-Decoder frameworks proposed in the recent
studies, some of the most popular models include, but are not limited to,
SegNet, PSPNet, DeepCrack, UNet, and DeepLab (Badrinarayanan et al.,
2017; Liu et al., 2019, 2020; Ronneberger et al., 2015). The different
frameworks for Deep Encoder-Decoder Networks range from
fully-supervised, semi-supervised to completely unsupervised. Some of
the works have introduced the usage of Deep Encoder-Decoder networks
in the field of image processing, background subtraction, and semantic
segmentation to image compression, image-to-image transfer, video
deblurring, and image captioning (Chen et al., 2019; Chen et al., 2020;
Zhou et al., 2019a; Zhou et al., 2018; SpoorthiG. and Gorthi, 2019;
Nakazawa and Kulkarni, 2019; Ma et al., 2020; Yuan et al., 1061).
Table 1 provides information regarding the architectural details for the
different Deep Encoder-Decoder Networks proposed for the diverse
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Table 1

Different Deep Encoder-Decoder models used in recent studies, along with their various properties.
Study Application Encoder Decoder Data Performance
SegNet Image Segmentation VGG16 VGG16 SUN RGBD mIOU = 60.1%
ROI ROI Compression FMTN IMTN MSRA-B F1 = 83.00%
DHEDN Image Caption CNN/LSTM SF-LSTM MS-COCO L1 =71.3%
FCESNet Background Subtraction Conv LSTM DeConv LSTM CDnet F1 = 90.4%
W-SegNet Image Segmentation Conv/Decomp. DeConv. VOC2012 IoU = 39.1%
Br-GAN Image-Image Transfer Conv + RB RB + DeConv CityScape IoU = 22.3%
CDEDnet Medical Segmentation DeepLabV3 DeepLabV3 CHAOS Acc.-99.46%
Dense-Xnet Medical Segmentation FC-DenseNet FC-DenseNet PET F1 =72.63%
CPCE Image Denoising Conv. DeConv. MGH PSNR = 30.14
C-DeepIlED Medical Segmentation Conv/LSTM DeConv/LSTM CBV imgs. Acc. = 99.10%
CE-net Medical Segmentation DAC RMP DRIVE Acc. = 94.5%
RIED-net Image Segmentation Residual Inception Residual Inception Mayo SSIM = 0.962
Res-Dyad Remote Sensing Conv. Residual DeConv. Residual LandUse Prec. = 99.4%
MSFg-Net Object Detection FGNet FGNet CDnet-2014 F1 = 84.3%
DAB-Net Image Segmentation DAB PAD CityScape mloU = 66.4%
MyRF-Net Background Subtraction Conv. DeConv. CDnet-2014 F1 =0.9514

applications. 3.2. Dataset

The application of the Deep Encoder-Decoder network has broad-
ened to a wide range of different research areas. For pixel-level crack
detection, a number of the studies have developed different Deep
Encoder-Decoder frameworks, namely DeepCrack (Liu et al., 2020) and
optimized Encoder-Decoder framework utilizing switch module, UNet
and DeepCrack in (Liu et al., 2019, 2020). Another research area that
has received attention in the application of Deep Encoder-Decoder
networks is segmentation within images related to remote sensing and
aerial imagery (Salem et al., 2019; Chen et al., 2020; Pan et al., 2019). In
the outdoor urban environment, several applications have been devel-
oped using variants of the Deep Encoder-Decoder Networks. Scene text
detection and verification for Chinese textual understanding has been
discussed in one of the studies (Gao et al., 2020). Another method for
road scene understanding using a Deep Encoder-Decoder network with
VGGNet as backbone was developed in (Zhou et al., 2019b). The
development of MSFgNet has been proposed for the effective moving
object detection in video-based data from outdoor environments (Cook
et al., 2015). For semantic segmentation of video data from urban en-
vironments, the development of Depth-wise Asymmetric Bottleneck
(DAB-Net) was discussed in one of the recent works (Neumann, 2017). A
video-based foreground extraction method for traffic and surveillance
applications was developed using a novel MVRF-CNN Deep
Encoder-Decoder network (Lee et al., 2017).

Within the field of medical imaging, different variants of the Deep
Encoder-Decoder Networks have been proposed, namely CDED-net with
Deeplab V3+ as the backbone for boundary segmentation in medical
imaging (He et al., 2016), Sclera-Net for Sclera segmentation with Re-
sidual Encoder-Decoder networks (Naqvi and Loh, 2019), Multiple
Sclerosis segmentation from MRI images using U-Net-based
Encoder-Decoder network (Salem et al., 2019), low-dose CT image
segmentation using Residual Encoder-Decoder-based CNN (RED-CNN)
(Chen and Cohn, 2010), segmentation and classification of Coronary
Microvascular Disease using Deep fully-convolutional Encoder-Decoder
framework (Pan et al., 2019), Lymphoma segmentation from full-body
PET/CT scan images using DenseX-Net (Chen and Cohn, 2010), Deep
Residual Inception-based Encoder-Decoder Network for medical imag-
ing analysis using different imaging databases (Kim et al., 2021), and
Melanoma detection using Deep Encoder-Decoder framework (Adegun
and Viriri, 2019). Some of the other fields in which existing and novel
Deep Encoder-Decoder networks have been proposed include 2D phase
unwrapping in power signals (Lee et al., 2017), defect detection in
semiconductor manufacturing (Flint et al., 1061), desert seismic noise
suppression (Gucunski et al., 2015a) and smoke density estimation
(Yuan et al., 1061), to name a few applications.

There is a dearth of publicly available GPR data that can be used in
order to develop or validate systems for bridge inspection in particular
and other applications in general. Consequently, the data from this study
has been collected by one of the authors of this research (La et al., 2015,
2017). The GPR data has been acquired from several different actual
bridges in the United States using Robot-Assisted Bridge Inspection
Tools (RABIT), which is shown in Fig. 2. A significant part of the GPR
data used in this research is one small segment of the overall GPR data
collected from the inspection and evaluation performed on 40 different
bridges in the United States between the period 2013 and 2014 (Ahmed
et al., 2020a, 2020b; La et al., 2017). It can be seen from Table 2 that the
bridge data has been taken from different types of bridges (e.g., sus-
pension, beam, truss, girder). A portion of the GPR data has also been
used in previous studies (Ahmed et al., 2019a, 2019b, 2020a). The
physical dimensions vary considerably, ranging from the largest bridge
in the dataset (i.e., Broadway Bridge, AR) spanning to around 2786 ft.
The smallest in terms of length that has been used in this study belongs
to the Dove Creek Bridge, BC, which spans for around 50 ft. Table 2
outlines the crucial properties of the different bridges in terms of the
bridge name, geographical location, and physical properties of the
different bridges. Table 2 also highlights the number of images acquired
from the different bridges.

Despite the usage of data in prior studies, there are marked

Surface §
Camera
Ground

Penetrating &
Radar (GPR)

coustic Array
(IE, USW)

Fig. 2. Robotics Assisted Bridge Inspection Tool (RABIT) (La et al., 2015, 2017;
Gucunski et al., 2015b) is the robotic platform that was used for data collection
in this study.
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Table 2

Data from different real bridges that have been used in this studies. Data has
been collected from the varying states of the United States using the RABIT
platform (La et al., 2015, 2017; Gucunski et al., 2015b), and using GPR carts
provided by the GSSI company.

Bridge Location Bridge Type Bridge Dimensions Number of
(ft.) Images
1. Galena Creek, NV Twin Span Arch 1,726.5 x 62.0 135
2. East Helena, MT Concrete Tee- 66.9 x 40.0 185
Beam
3. Kendall Pond, NH  Girder 78.1 x 44.0 70
4. Piscataqua, ME Through-Arch 4,503 x 98 40
5. Broadway, AR Arch 2,786 x 40 160
6. Fordway, NH Beam 131 x 23 195
7. Dove Creek Rd., BC Beam 50 x 45 150
MO
8. Baxterville Lost-through 117 x 15.4 110
Bridge, CO Truss
Total 1,055

differences in how the data has been leveraged in this study compared
with prior studies (Kaur et al., 2016; Ahmed et al., 2019a, 2019b,
2020a). With respect to annotation, in contrast to prior studies (using
block-based annotation), this study utilized pixel-level annotation for
training and validation of the proposed model. With respect to the image
sizes, in contrast to prior studies (image sizes of 50 x 50 pixels, 100 x
100 pixels and 250 x 250 pixels), the image size used for training and
validation of the proposed model in this study is 768 x 768 pixels. The
detailed specifications of the computer system used for the training and
validation of the proposed rebar detection and localization system are
given as follows: Ubuntu 18.04 LTS, 32 GB memory, 350 GB hard disk,
Intel ® Core i7-8700 CPU with 3.2 GHz clock speed and NVIDIA®
GeForce® GTX 1080 TI Graphical Processing Unit (GPU). For the pur-
pose of training and validation of the proposed system for rebar detec-
tion and localization, Tensorflow, PyTorch and Keras libraries have been
used within Python programming language framework. With regards to
the network parameters for training of the proposed models, the number
of epochs is set to 100, value of batch size is specified to 8 and learning
rate is set to 0.001. The data is divided between training and validation
sets based on “leave-one-out” approach, such that out of the total data
from eight bridges, training of the proposed framework is conducted on
seven bridges and validation is performed on data from one bridge (this
same process is repeated for all bridges, i.e. training/validation cycle is
performed eight times and average results for all metrics are high-
lighted). This process is used to perform validation on all of the bridges
to assess the performance of the proposed system for rebar detection and
localization. The use of this approach allows the researchers to assess the
ability of the proposed system to provide reliable performance on un-
seen data.

3.3. Image pre-processing functions

A number of different pre-processing functions have been used in this
study, which will be discussed in this sub-section. The original data is
converted into image format (e.g. JPEG, PNG), which can be used for the
training and validation of Deep Learning-based frameworks. The
different pre-processing functions that have been used require manual
operations by the researcher. Some of these functions include cropping,
resizing, and modification of image brightness, contrast, and color bal-
ance to ensure that the rebar signatures can be effectively highlighted
within the diverse bridge data in a uniform manner irrespective of the
bridge data being analyzed.

The type of data annotation used in this study is pixel-based anno-
tation (individual pixels are classified as either belonging to rebar
signature or background). The prior studies leveraged block-based
annotation (regions of the image are taken and separately classified as
either rebar if rebar signatures are present or background if no rebar
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signatures are present) of the rebar dataset. One of the benefits of using
pixel-level annotation is that the output is able to classify each pixel of
the input image as either belonging to one class or another. For the case
of block-based annotations, there are always ambiguous regions con-
taining sections of rebar and background simultaneously, which cannot
be accurately classified as belonging to one class or the other, leading to
reduced performance of learning-based systems. However, since,
annotation is a manual process; the overall time and effort required for
performing pixel-level annotation is more when compared to block-
based annotation.

The data annotation process is carried out separately for the two
stages of the proposed model, which can allow both the stages to fulfill
their respective roles towards detecting the rebar layer and rebar sig-
natures respectively. For annotating GPR images for the training and
validation of the rebar layer in stage 1 of the proposed model, the an-
notators manually label the rebar layer pixels as 1 and other pixels as
0 so that stage 1 is able to separate rebar layer from other parts of the
image. For annotating GPR images for the training and validation of the
rebar signature in stage 2 of the proposed model, the annotators
manually label the rebar layer pixels as 1 and other pixels as 0, so that
the stage 2 is able to separate rebar signature pixels from other parts of
the image.

3.4. Proposed multi-stage deep encoder-decoder framework for rebar
detection and localization

The proposed model of the Deep Encoder-Decoder Network has been
inspired by studies related to Deep Encoder-Decoder Networks devel-
oped in the recent past (some of which have been covered in the prior
section). Fig. 3 outlines the model for the two-stage Deep Encoder-
Decoder Network proposed in this study. In the next discussion, the
terms ‘block’ and ‘modules’ will be used interchangeably to refer to the
essential building elements given in Fig. 3. The proposed network has
two main parts, namely the Rebar Layer Identification Framework
(RLIF) is Stage 1 and the Rebar Signature Localization Framework
(RSLF) is Stage 2. The input data is pre-processed using a number of
different functions to ensure that the raw images are cropped, resized
and adjusted to ensure optimal performance of the proposed system.
These two stages have been explicitly defined, as they highlight the
novelty of the proposed approach in comparison with recent studies
(Kaur et al., 2016; Gibb and La, 2016; Ahmed et al., 2019a, 2019b,
2020Db). The details regarding each part of the proposed network will be
discussed in sufficient detail in the proceeding sub-section. The output
from both the stage 1 and 2 are concatenated together using a pixel-wise
AND operation, which ensures that the different reflective signals and
noise artefacts can be reduced to get the final output result.

In order to effectively highlight the motivation and rationale for this
approach, it is essential to shed light on the different challenges and
limitations highlighted towards development of effective rebar detec-
tion and localization systems as outlined in (Ahmed et al., 2020a). Out of
the different issues discussed in (Ahmed et al., 2020a), one of the major
issue relates to the presence of parabolic reflective anomalies in parts of
the GPR image that are visually similar to the actual rebar signatures.
These reflective signals are visible in the lower parts of the Fig. 4 (a). The
frequency of occurrence of these reflection decreases the overall per-
formance of the rebar detection and localization system. In order to
mitigate these reflective signals from increasing the false positive rate
for the proposed rebar detection and localization system, a two-stage
approach has been proposed, which separates rebar layer and rebar
signature using two separate stages of the proposed framework. It is
important to understand that these reflective signals are present below
the actual rebar signatures. This is an important insight that can allow us
to leverage the rebar layer (this is the layer in which the actual rebar
signatures are present) for developing an effective rebar detection and
localization system. This approach has not been utilized in earlier
studies, which makes the findings relevant and useful in terms of the
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Stage 1
Rebar Layer Identification Rebar
Input Data Decoder Output
Block® | )y
Rebar Layer
Raw B-Scan Annotation for
Images GPR Data

Image
Pre-Processing
Functions

Framework

Input Data

Rebar Signature
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GPR Data
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Fig. 3. Overview of the Proposed Model of the Novel Multi-Stage Deep Encoder-Decoder Network for Rebar Detection and Localization. The input image of the B-
scan after undergoing pre-processing operations is put through the First and Second Stages of the Deep Encoder Decoder Network.

W‘UW““""‘""‘Jm"tu'wl

Fig. 4. Rationale for developing a two-stage approach with rebar layer and rebar signature separation and concatenation in the final stages of the proposed model
with (a) the presence of rebar reflective signals in the GPR B-scan images (Ahmed et al., 2020a) and (b) a look at the different inputs and outputs of the different
stages in terms of how the presence of rebar reflective signals can be minimized in the final output by leveraging a two-stage approach.

utilization of rebar layer as an important feature for rebar detection and
localization. Fig. 4 (b) highlights the different inputs and outputs of the
different stages of the proposed framework in terms of how the presence
of rebar reflective signals can be minimized in the final output by
leveraging a two-stage-based approach. In the first stage, the rebar layer
is separated; this part contains all of the rebar signatures. The second
stage separates all rebar parabola signatures from the pre-processing
images; but the potential presence of rebar reflective signals can lead
to false positive rates at this stage of the framework. In order to minimize
the false positive rates and eliminate the reflective signals from stage 2
output, the outputs of stage 1 and 2 are concatenated together using

pixel-wise AND operation. Using this operation, the final output is able
to retain the parabola signals present within the rebar layer while
eliminating the reflective signals that exist below the rebar layer. In this
manner, based on findings from (Ahmed et al., 2020a), this approach is
able to improve on one of the various issues affecting the performance of
prior rebar detection and localization methods.

3.4.1. Rebar Layer Identification Framework

As the name suggests, the Rebar Layer Identification Framework
(RLIF) primarily deals with the visual differentiation between pixels
belonging to image regions containing the rebar signatures and
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background pixels. These regions or collections of pixels can also be
termed the ‘rebar layer.” The Encoder Block A and Decoder Block B
constitute the RLIF. Similarly, the Encoder Block C and Decoder D
constitute the RSLF, which will be discussed in the following sub-
section. Although images can contain reflection signals similar to
parabolic rebar signatures, most B-scan images contain a single rebar
layer to specify the underground depth at which the rebar is visually
present within the B-scan images. For this reason, the RLIF focuses on
highlighting a single layer, where most of the rebar parabolic signatures
are present. This will be possible by providing a pixel-level annotation of
the pre-processed GPR image data into either rebar layer or background
pixels, making it a binary classification problem. The architecture of the
proposed RLIF will be similar to SegNet, which is shown in Fig. 5, such
that the Encoder-Decoder model used in RLIF will consist of a single
Encoder and Decoder modules. Several different architectures (e.g.,
UNet (Ronneberger et al.,, 2015) and PSPNet (He et al., 2015), and
MobileNet (Howard et al., 2017) encoder used as part of the overall
SegNet architecture) will be tested and evaluated for the construction of
RLIF.

3.4.2. Rebar Signature Localization Framework

The Encoder Block C and the Decoder Block D, which are given in
Fig. 3, constitute the Rebar Signature Localization framework (RSLF).
The architecture of the proposed RSLF is also similar to SegNet, which is
shown in Fig. 5, such that the Encoder-Decoder model used in RSLF will
consist of a single Encoder and Decoder modules. However, the type of
Encoder-Decoder architectures used in RSLF and RLIF are different in
terms of their internal network-level characteristics. At the same time,
the type of pixel-level annotation performed for the two framework is
also different. As, the first stage of the proposed framework (i.e. RLIF)
seeks to highlight the rebar layer and the second stage (i.e. RSLF) at-
tempts to identify the individual rebar parabolic signatures, preferably
present within the rebar layer. It can be seen in Fig. 5 that the initial
stages of the SegNet architecture constitute the Encoder block and the
final stages belong to the Decoder block. Two main types of blocks have
been used in this study, including the Deep Encoder block with different
network layers connected and pooling layers. The Deep Decoder block is
similar in construction to the Deep Encoder block. The only difference is
that instead of the pooling layers, the up-sampling layers are used to
ensure that the output from the encoder can be resized to the actual
image size provided at the input of the proposed model.
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4. Results and discussion

This section will discuss the salient features of the proposed network
and its performance, along with their various implications for future
research. The proposed method has two main parts, namely the Rebar
Layer Identification framework (RLIF) and Rebar Signature Localization
Framework (RSLF). For the first stage of the proposed network (i.e.,
RLIF), three major Deep Encoder-Decoder Networks have been used,
namely the UNet (Ronneberger et al., 2015), PSPNet (He et al., 2015)
with two variants (e.g. PSP-50 and PSP-101), and SegNet with Mobile-
Net encoder module (Howard et al., 2017). For the case of the second
stage of the proposed network (i.e., RSLF), three main Encoder-Decoder
networks (e.g., UNet (Ronneberger et al., 2015), PSPNet (He et al.,
2015), and SegNet (Badrinarayanan et al., 2017)) have been used, along
with variations in the Encoder modules to find the most suitable
Architecture-Encoder pair in terms of different qualitative and quanti-
tative performance metrics. Some of the different Encoder modules
leveraged within the context of the different Architectures include
VGG-16, VGG-19, ResNet-50, and ResNet-Xception.

It is important to understand that the quantitative and qualitative
analyses of the proposed approach for rebar detection and localization
will be fundamentally different in nature. It is due to the diverse nature
of the analysis of the results that the researchers can be able to better
appreciate and gain a deeper examination of the workings of the pro-
posed approach. Within the quantitative analyses of results, the focus is
towards utilizing the different statistical performance metrics (e.g.
mloU, Precision, Recall, Dice Loss) to assess the overall feasibility of the
proposed approach for rebar detection and localization. Therefore, the
quantitative analyses deal with comparing and analyzing the statistical
results obtained for different metrics in response to the utilization of
different base architectures and encoder modules. In the qualitative
analyses of results, the focus is on the visual quality of the output images
provided by the different base architectures and encoder modules used
in this study. In order to accomplish that, the researchers manually
compare the difference between the ground truth and output images,
such that the closer the output images are to the ground truth, the better
the overall qualitative assessment of the proposed method.

4.1. Quantitative analysis

In this section, the primary emphasis will be on examining the sta-
tistical evaluation of the different aspects of the proposed method for

Deep Convolutional Encoder Decoder Network
(SegNet)

Encoder Module

Input
Image

Pooling Layer

Upsampling Layer

Softmax Layer

Conv+ Batch Norm + ReLU

Y
Decoder Module

Fig. 5. Architectural Framework for SegNet (Badrinarayanan et al., 2017) with one Encoder and one Decoder module, which has gained considerable attention in the
recent past. The RLIF will make use of different widely-deployed Deep Encoder Decoder Networks, which are similar in construction to the SegNet (Badrinarayanan

et al., 2017).
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rebar detection and localization. Tables 3 and 4 highlight the overall
quantitative performance of the different Architectures and Encoder
modules for the two stages of the proposed system for rebar detection
and localization. Several different performance evaluation metrics have
been used for assessing the performance of the Deep Encoder-Decoder
networks in the different applications in the recent past (He et al.,
2015; Howard et al., 2017; Ronneberger et al., 2015; He et al., 2015;
Badrinarayanan et al., 2017). The different metrics used in this study
include Dice Loss, mean-Intersection-over-Union (mlIoU), Precision, and
Recall. The lower values for Dice Loss are more suitable as they corre-
spond to the level of loss incurred for the different combinations of
network frameworks used in the proposed system for rebar detection
and localization. For all the other performance metrics (e.g. MIoU,
Precision, and Recall), the higher values correspond to improved per-
formance of the proposed rebar detection and localization system.

For the case of stage 1 of the proposed framework, four different
types of base networks have been used, namely UNet, PSPNet-50,
PSPNet-101, and SegNet framework. Out of the different Deep
Encoder-Decoder networks utilized in the first stage, the most promising
results have been outlined by the SegNet with MobileNet Encoder. Many
of the original Deep Encoder-Decoder architectures (e.g. UNet, PSPNet-
50 and PSPNet-101) used in stage 1 utilize default encoder modules in
order to limit the level of complexity and variables being used in this
study. The MobileNet framework utilized as an encoder within the
SegNet framework provides a lightweight Deep Encoder-Decoder
network from the different models utilized in stage 1 of the proposed
rebar detection and localization system. For the different encoder
modules and base architectures used in the second stage of the proposed
network, the highest performance has been highlighted by combining
the SegNet framework with the ResNet-Xception encoder module. When
comparing the performance of PSPNet with 50 and 101 layers in the first
stage of the proposed system, increasing the complexity and number of
layers has an overall negative effect on the performance of the rebar
detection and localization system. Compared to these two frameworks,
the complexity and number of layers for UNet and MobileNet are
limited. However, as it can be seen in Tables 3 and 4, these two networks
(e.g., MobileNet and UNet) can provide a higher level of performance
with the different combinations of Architecture-Encoder pairs leveraged
at the second layer of the proposed framework for rebar detection and
localization system.

A different combination of base architecture and encoder modules
was used for stage 2 of the proposed rebar detection and localization
system. It is important to understand that PSPNet with different number
of layers does not support the usage of different encoder modules. The
different base architectures used in the second stage of the proposed

Table 3
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system include SegNet, UNet, and PSPNet. The different encoder mod-
ules utilized include VGG-16, VGG-19, ResNet-50, and ResNet-Xception.
In terms of the number of layers, the different encoder modules can be
ranked from the lowest to the highest number of layers as follows: VGG-
16, VGG-19, ResNet-Xception, and ResNet-50. In terms of improved
performance, the most crucial combination of Architecture-Encoder
pairs at the second stage of the proposed framework is SegNet-ResNet-
Xception (where SegNet is the base architectural framework and
ResNet-Xception is the encoder module). Of the different encoder
modules used, the most effective one can be classified as ResNet-
Xception, which has shown improved performance when leveraged
within different base architectural frameworks. ResNet-Xception
encoder module with the SegNet framework at the second stage and
SegNet framework with MobileNet encoder module at the first stage
have the highest values for the different metrics (e.g., Dice Loss, mIoU,
Precision, and Recall) are 12.20%, 93.57%, 97.43%, and 96.62%. All
other values for the different frameworks at the first and second stage
have comparatively lower values of mIoU, Precision, and Recall, as well
as higher values for Dice Loss, as can be seen in Tables 3 and 4

The performance of the proposed system cannot be directly
compared with the majority of the existing studies in the field of rebar
detection and localization conducted with an emphasis on bridge in-
spection in particular. The primary reason for this fact is that earlier
studies utilize block-based techniques, which make use of different
metrics, such as accuracy and loss (Ahmed et al., 2019a, 2019b, 2020a,
2020b). These metrics cannot be used for the current study since it le-
verages pixel-based methods for classification, such as individual pixels
are classified as either belonging to rebar or non-rebar classes. The
performance evaluated using these metrics (e.g., mloU, Dice Loss, Pre-
cision, and Recall) can be considered a more reliable and accurate
reflection of the actual performance of the proposed rebar detection and
localization system.

4.2. Qualitative analysis

In this sub-section, the primary emphasis will be on examining the
non-statistical evaluation of the different aspects of the proposed
method for rebar detection and localization. The section will be further
sub-divided into two parts due to the multi-layer nature of the proposed
framework for the rebar detection and localization. The first sub-section
will outline the different insights and qualitative characteristics of the
different output results from the first stage of the proposed framework.
The second sub-section will discuss the different qualitative features of
the different output results from the second stage of the proposed
framework for rebar detection and localization.

Results are shown for the dataset from eight different bridges. The results are shown for a different set of base architectures and encoder pairs for the second stage of the
proposed framework. The most promising results for the different results at stage 1 and 2 of the proposed framework has been given in bold fonts.

Stage 1 Base Model Stage 1 Encoder Stage 2 Base Model Stage 2 Encoder Dice Loss (%) mloU (%) Precision (%) Recall (%)
UNet Default SegNet VGG16 25.15 85.73 88.43 82.26
7 7 7 VGG19 22.19 87.24 88.55 86.72
ResNet-50 16.68 90.65 90.53 90.06
” ” ” Xception 15.45 92.48 93.06 92.50
UNet VGG16 20.14 89.50 85.29 86.63
” VGG19 19.24 90.57 88.33 88,21
’ ’ ” ResNet-50 18.91 91.74 89.66 88.37
Xception 19.25 89.50 89.90 88.40
PSPNet N/A 32.17 86.63 85.75 84.28
PSPNet-50 SegNet VGG16 23.53 84.58 81.77 80.08
” ” VGG19 20.06 86.64 84.17 82.21
ResNet-50 19.21 89.83 84.45 86.33
Xception 18.75 90.48 91.06 90.50
UNet VGG16 23.16 83.25 81.76 81.24
” VGG19 21.77 85.36 83.62 80.14
ResNet-50 19.15 87.51 82.50 80.19
Xception 19.20 87.70 82.20 80.55
PSPNet N/A 32,27 82.25 80.37 79.92
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Table 4
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Results are shown for the dataset from eight different bridges. The results are shown for a different set of base architectures and encoder pairs for the second stage of the
proposed framework. The most promising results for the different results at stage 1 and 2 of the proposed framework has been given in bold fonts.

Stage 1 Base Model Stage 1 Encoder Stage 2 Base Model Stage 2 Encoder Dice Loss (%) mloU (%) Precision (%) Recall (%)
PSPNet-101 7 SegNet VGG16 29.38 81.55 76.23 77.56
” ” ” VGG19 26.15 85.40 82.61 82.57
” ” ” ResNet-50 20.26 88.72 82.63 83.45
? ? ” Xception 18.41 90.55 91.26 90.59
” ” UNet VGG16 21.88 85.65 83.32 85.22
” ” ” VGG19 24.42 88.58 80.26 80.17
” ” ” ResNet-50 20.69 90.75 84.13 83.38
” ” ” Xception 21.24 86.81 82.63 81.50
’ ’ PSPNet N/A 30.16 82.69 82.15 78.86
SegNet MobileNet SegNet VGG16 21.46 91.12 92.50 93.36
” ” ” VGG19 22.18 91.50 90.07 91.23
” ” ” ResNet-50 17.37 92.21 95.24 94.45
” ” ” Xception 12.20 93.57 97.43 96.62
” ” UNet VGG16 20.15 90.11 89.83 86.58
7 7 7 VGG19 14.31 92.42 90.50 92.21
? ” ” ResNet-50 14.11 92.09 90.55 92.60
” ” ” Xception 15.57 91.33 89.40 88.91
” ” PSPNet N/A 27.25 87.55 82.94 80.88

4.2.1. Qualitative analysis: Rebar Layer Identification Framework

In this sub-section, the discussion will deal with the visual results
obtained for the first stage of the proposed framework for rebar detec-
tion and localization, namely the Rebar Layer Identification Framework
(RLIF). In Fig. 6, a number of different results have been highlighted
from stage 1 of the proposed framework for rebar detection and locali-
zation. The top two images are actual GPR images and ground truth
annotated images respectively. The annotation classified between the
foreground (i.e. rebar layer) and background (i.e. anything in the image
that is not part of the rebar layer). This part highlights a different
perspective as compared to quantitative analyses, as there are different
visual elements of the results that cannot adequately be discussed in
statistical terms.

Bridge 4

image

Ground
Truth

SegNet
with
MobileNet

PSPNet-50

PSPNet-101

i

UNet-Mini

Bridge 6

Out of the different Encoder-Decoder architectures leveraged for the
development of the RLIF, some of the Architectures include SegNet,
UNet, smaller-version of UNet (i.e., UNet-mini), and PSPNet. The reason
UNet-mini results are not highlighted in Table 2 is because they do not
provide adequate performance in terms of the different statistical mea-
sures (e.g. mIoU, Dice Loss, Precision and Recall). The qualitative results
for UNet-mini are shown in Fig. 6 in order to gain a better understanding
of the reason for reduced performance. For the case of SegNet archi-
tecture in stage 1, MobileNet-v2 was used as the encoder module in
order to attempt to reduce the overall size of the two stage framework.
The individual encoder-decoder architectures (e.g. SegNet, PSPNet,
UNet) are deep networks with considerable complexities and compu-
tational overheads.

Bridge 8

Fig. 6. Results shown for the dataset from three different bridges. The results are shown for different set of base architectures and encoder pairs used in the first stage

of the proposed framework.
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In order to reduce these overheads, the goal was to introduce a
smaller version of Encoder-Decoder network at the first stage for rebar
layer identification with the second stage for the rebar signature local-
ization. Another benefit of using a smaller framework for the first stage
was that the original version of MobileNet-v2 could not process the
image data with dimensions 768 x 768 x 3. In order to work with SegNet
architecture with MobileNet-v2 encoder module at the first stage of the
framework, the data has to be resized to 256 x 256 x 3, which improves
the computational cost of using multiple stages of Deep Encoder-
Decoder networks. At the same time, it also increases the performance
of the first stage framework leveraging MobileNet-v2 to compare with
other Deeper frameworks, (e.g., SegNet, PSPNet and UNet). After pass-
ing through the first stage, the results obtained are re-sized back to their
original size, so that the results from different Architectures in the first
stages can be effectively compared, as shown in Fig. 6. It can be seen in
Fig. 6 that SegNet framework with MobileNet-v2 Encoder module is able
to provide the most promising results at the stage 1 of the proposed
framework. For data from all three bridges, it can be seen that the results
are closer to the ground truth in comparison with other frameworks
developed for stage 1. Furthermore, the results from SegNet-MobileNet
shows the effects of resizing on the output in the form of block-based
effects visible at the lower and upper edges of the layer results that
were magnified after resizing the images from 256 x 256 x 3 to 768 x
768 x 3 (i.e. the noise and other artefacts that were smaller in the
original result images were magnified many times after the images were
resized).

For the case of PSPNet-50 and PSPNet-101, the results are more
smooth in terms of visual texture. However, there are some issues in
terms of patches missing from the different data results shown in Fig. 6.
For example, the results from PSPNet-101 bridge 8 data shows some
missing portion in the middle of the rebar layer region. Similarly, for
PSPNet-101, some minor regions of the rebar layer are missing for the
results given for bridge 4 and 6. For the case of PSPNet-50, the results
from bridge 4, there are some slight defects at the bottom of the rebar
layer region. Similarly, the results from bridge 6 show some minor issues
from the top and bottom of the identified rebar layer region. For the
results obtained from PSPNet-50, there are some minor missing regions
from the middle of the rebar layer region, along with minor issues at the
top and bottom of the identified rebar region. The results from PSPNet-
101 are more smooth in comparison with PSPNet-50. This shows that
the increase in number of layers of the Deep Networks might have some
positive impact towards effectively highlighting the rebar layer. At the
same time, there is a need to better understand how the first layer net-
works can better distinguish between features for the foreground (i.e.
features belonging to the rebar layer) and background (i.e. features
belonging to all other regions of the B-scan images) regions.

For the case of UNet, visually, the output results are much less
smooth in comparison to results from the two PSPNet frameworks
highlighted. For UNet, the results show some false positive regions,
when the output results are compared with the ground truth. The effect
of noise and other artefacts are also more pronounced for the case of
UNet frameworks. For the case of UNet-mini, which is a smaller, more
compact version of the original framework, it can be seen that the output
results are much more sensitive towards inaccurately classifying noise
and other reflective artefacts as part of the rebar layer region. This
phenomenon is much more visible for the case of UNet-mini with data
from bridge 8. However, since rebar profiles belong to the upper portion
of the rebar layer, which is covered for the majority of the output images
from UNet and UNet-mini, the regions of the rebar layer containing the
rebar profile signatures are still covered within the output regions.

The overall qualitative analyses of the results from the first stage of
the proposed framework for rebar detection and localization has been
provided in this sub-section. The main issue highlighted is concerning
the false positive regions and the addition of noise and other reflective
artefacts below the rebar layer that can be incorrectly classified as actual
rebar signatures in the further stages of the framework. This particular
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issue is not present in results from many frameworks (e.g. SegNet with
MobileNet framework, PSPNet-50, PSPNet-101 and UNet). However,
one of the examined frameworks (e.g. UNet-mini) has this particular
issue much more pronounced in some of the results. This particular issue
will be left for future research to further examine these issues and try to
work towards ensuring that the first stage of the framework for rebar
detection and localization is able to provide better performance in terms
of accurately highlighting the rebar layer region. Since, this particular
type of exploration and approach has not been previously used in any of
the relevant literature, it is difficult to ascertain the different factors that
can affect the accurate detection of rebar layer region. Furthermore,
there will also be a need to examine the different network-level char-
acteristics (e.g. number of network layers, type of network layers
(pooling, convolution and concatenation layers) and their combination,
and network layer dimensions for each layer in the network) that can
prevent the inaccurate classification of rebar layer region.

4.2.2. Qualitative analysis: Rebar Signature Localization Framework

In this sub-section, the discussion will deal with the visual results
obtained for the second stage of the proposed framework for rebar
detection and localization, namely the Rebar Signature Localization
Framework (RSLF). Fig. 7 highlights the overall qualitative performance
of the different Architectures and Encoder modules for the two stages of
the proposed system for rebar detection and localization. The results
highlight the qualitative aspects of rebar detection and localization. The
information provided on the left-hand side of the images is based on the
corresponding architecture’s base architecture and encoder modules for
the second stage of the rebar detection and localization system.

In Fig. 7, several promising results for the Architecture-Encoder pair
have been highlighted, along with some examples of average and low
performance results for the other networks leveraged in the second stage
of the proposed framework for rebar detection and localization. The
primary framework used for the second stage of the proposed framework
include UNet (Ronneberger et al., 2015), PSPNet (He et al., 2015), and
SegNet (Badrinarayanan et al., 2017). With these base networks, the
different encoders were used to examine the effect of different encoders
on the overall performance of the rebar detection and localization sys-
tem. When comparing results for SegNet and UNet, it can be seen that
the overall thickness of the rebar signatures is smaller for SegNet results.
The results from the UNet framework are closer to the actual ground
truth results. ResNet-50, ResNet-Xception, and Inception encoders are
not shown here since the increasing number of layers in the encoder
does not significantly improve the quality of rebar signatures segmented
from the original B-scan images. For the case of Architecture-Encoder
pairs with SegNet, the most promising results are revealed for the Seg-
Net framework with ResNet-50 and ResNet-Xception encoder modules.
For the case of the UNet framework, both VGG-16 and VGG-19 encoder
results are similar in terms of qualitative aspects. However, it is inter-
esting to note that both results are unable to accurately segment some of
the rebar signatures for data from bridge 6. However, rebar signatures’
overall thickness and quality are closer to the ground truth.

For the case of PSPNet (He et al., 2015), only the results for
PSPNet-101 layers have been shown as a reference of relatively inac-
curate results with the segmentation of rebar signatures appearing not as
parabolic signatures. Instead, the rebars appear as regional blobs with
pixel regions for individual rebars intersecting neighboring rebars.
Although, this network (i.e. PSPNet-101) can be used for the localization
of the rebars. However, the primary issue relates to the instances when
the localization results for two neighboring rebars appears as a single
region. This particular issue becomes problematic when the distance
between two neighboring rebar signatures is reduced, as it can be seen
for the output results from bridge 8 for PSPNet-101. Due to the inherent
limitation of the PSPNet architecture, it cannot provide flexibility in
utilizing multiple different encoder pairs, as is the case with other Deep
Encoder-Decoder pairs, e.g., SegNet and UNet. The results for PSPNet
with 50 layers architecture were not included, as the results were not
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Fig. 7. Results shown for the dataset from three different bridges. The results are shown for different set of base architectures and encoder pairs for the second stage
of the proposed framework. The first stage framework in this context is based on SegNet-MobileNet (Howard et al., 2017).

very accurate, and it was not accessible to qualitatively separate indi-
vidual rebar parabolic signatures. Another set of sub-optimal results is
given for the case of SegNet architecture with the Inception-v3 encoder
module—both these results are given in Fig. 7 suffer from the same issue,
such that the final results are unable to separate the results for individual
rebar profiles from the neighboring rebar signatures. In conclusion, it
can be seen in Fig. 7 that the most promising results in terms of quali-
tative aspects include MobileNet-v2 for the first stage of the framework.
SegNet with ResNet-50 encoder module or UNet with VGG-16 encoder
module gives the best result for the second stage of the proposed
framework for rebar detection and localization.

There are a few primary issues that have been highlighted from the
qualitative analyses of the results from the second stage of the proposed
framework for rebar detection and localization. The first issue is related
to the reduced thickness of the output rebar signatures for some output
results (e.g. SegNet-ResNet-Xception, SegNet-VGG19 and SegNet-
VGG16 Architecture-Encoder pairs). This can be beneficial in cases
where the distance between the neighboring rebar signatures is very
less. However, it can be a cause for concern, especially in the presence of
noise in the images, i.e. if the intensity of noise increases in the image, it
can potentially affect the ability of the proposed framework to accu-
rately localize individual rebar signatures. This particular issue needs to
be further investigated in future studies in the relevant research area.
The second issue is the merger of neighboring rebar signatures for some

output result highlighted (e.g. PSPNet-101). This potential issue can
seriously affect the output for bridge data with minimal distance be-
tween neighboring rebar signatures. This issue needs to be further
explored in future works to fully examine the optimal network charac-
teristics that can cater to the diverse types of data with different physical
bridge characteristics (e.g. depth of rebar layer, number of rebars used in
construction of the bridge, distance between neighboring rebars, type of
material used within bridge deck). The third issue highlighted in this
section is the disappearance of individual rebar signatures or failure to
accurately classify individual rebar signature by some of the
Architecture-Encoder pairs (e.g.UNet-VGG16 and UNet-VGG19) used in
the second stage of the proposed framework for rebar detection and
localization. Future research should try to explore ways to prevent this
issue from affecting the performance of the rebar detection and locali-
zation frameworks.

4.3. Comparison between pixel-based and block-based approaches for
rebar detection and localization

The pixel-based approach for rebar detection and localization is
beneficial, not only for the GPR community, but also for civil experts and
non-experts alike. The results discussed in prior sub-sections have
demonstrated that the pixel-based approach is more precise and accu-
rate with respect to separating rebar pixels from background pixels
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within input GPR images. A comprehensive overview of the different
limitations of the block-based approaches for rebar detection and
localization has been discussed in (Ahmed et al., 2020a). In order to
effectively highlight the results of the block-based and pixel-based
approach, Fig. 8 compares the output results provided by the two ap-
proaches. The output results for the block-based approach are based on
the method developed in (Ahmed et al., 2020a). For the block-based
approach, the output is given in the form of a rectangular
region-of-interest (ROI), which contains segments of rebar signature, as
detected by the developed system. There are some presence of false
positive localization results in the lower region due to presence of
parabola shaped reflection artefacts in the lower region of the input
image. However, further manual inspection by civil experts is still
required to visually locate the rebar profile within the rectangular ROIs
highlighted by the system. For the case of output generated by the
pixel-based approach, the output provided is in the form of pixels
highlighted that belong to rebar signature in the input image. By
providing a fine-grained output by the system, the pixel-based approach
makes it easier for the civil experts to assess whether the results align
with the ground truth or not. However, human inspectors will still need
to verify the results from both systems at the end. Based on the visual
analysis of results outlined by the two approaches, it can be seen that the
utilization of pixel-based approaches is beneficial for the GPR commu-
nity, as utilization of these approaches will allow the GPR experts to gain
more accurate, fine-grained and precise output results in comparison to
block-based approaches.

4.4. Comparison between robot-based and human-based approaches for
bridge inspection

Although, this is not the primary focus of the discussion in this study,
it is important to highlight the different ways in which human-based
inspection methods differ from automated, robot-based approaches.
Previous studies have shed considerable light on the benefits of the
automated, robot-based approaches for bridge inspection (Ahmed et al.,
2019a, 2019b, 2020a, 2020b, 2021, 2022; Ahmed and La, 2021; La
et al., 2013a, 2014a, 2014b, 2014b, 2015, 2017, 2019; La et al., 2014b;
Gucunski et al., 2013). In order to effectively compare between the
human-based and robot-based approaches for bridge inspection, Table 5
has been provided where different metrics are selected and the pros and
cons of each approach has been outlined. Inspection time refers to the
time taken for undertaking the inspection activities and data collection
from an actual bridge. Detection time refers to the time required for
analyzing the collected data. Maneuverability refers to the ability to
access different regions of the bridge. Availability refers to the ability to
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Table 5

Comparison between the human-based and robot-based inspection approaches
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with respect to the different metrics.

Metrics

Robot-Based Approaches

Human-Based Approaches

Inspection Time
Detection Time
Inspection
Accuracy
Detection
Accuracy
Initial Costs

Recurring Costs

Low
Low
High

Varies based on Analysis
tools used

Research and Development
costs (High)

Minimal

High
High
Moderate/High

Varies based on Inspector skills

Training and Skill Acquisition
costs (High)

Hourly Charges for Civil
Experts (High)

Maneuverability Able to reach small spaces Requires additional gears,
and high places (High) equipment and experience

(Low)

Risk Minimal Risk High Risk of Injury or Death

Replaceable Easy to Replace Difficulty in Replacing Skills
and Knowledge

Ability to High Time and Cost Factors ~ High Time and Cost Factors

Upgrade
Availability Low Moderate
Adaptability Low High

inspect the bridges irrespective of changes in weather (e.g. rain, snow,
wind) and time of the day (e.g. morning, evening, night). Adaptability
refers to the ability to handle and cope with uncertain situations (e.g.
road accidents) that can take place during inspection activities. Despite
many advantages in several of the metrics for robot-based approaches, it
is important to understand that most of the existing robot-based plat-
forms for bridge inspection are in their initial phases of development and
very few examples of practical implementations in the field exist at
present (e.g. RABIT platform). The widespread deployment of practical
fully-autonomous robots for different routine bridge inspection tasks is a
research challenge that is currently being investigated. Therefore, the
purpose of comparison drawn in Table 5 is not to favor one approach
over another. Since, at present, the emphasis of the existing research in
this field is towards developing automated tools and technologies that
do not replace human experts, but assist and complement them in pro-
moting efficiency and improved overall performance in the different
inspection-related tasks.

5. Conclusion and future works

This paper provides a detailed evaluation of the rebar detection and
localization system. Although, some efforts have been dedicated to the
development of rebar detection and localization system in the past. Prior

Fig. 8. Comparison between the output results for
pixel-based approach used in this study with block-
based approach used in (Ahmed et al., 2020a). In
the output of the block-based approach, a green
bounding box is used to highlight region containing
rebar signatures. There is some prevalence of false
positive detection (incorrect classification of rebar
reflection artefacts as rebar signatures) as well as
false negative (unable to correctly classify rebar sig-
natures). There are also instances in which two rebar
signatures are collectively classified as a single rebar
signature. In the output for the pixel-based approach,
individual pixels in the original image belonging to
rebar signature class are highlighted with red color to
distinguish them from the other pixels. It can be seen
that the results are more fine-grained and accurate
than block-based approach. (For interpretation of the
references to color in this figure legend, the reader is
referred to the Web version of this article.)
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studies in the rebar detection and localization system have utilized
block-based approaches. The proposed system is different in many
different ways. In this study, pixel-based classification has been intro-
duced with a multi-stage framework incorporating different Deep
Encoder-Decoder networks. Different types of Deep Encoder-Decoder
networks with different levels of network complexities and the num-
ber of layers have been used for the two stages of the proposed rebar
detection and localization system. The most optimal results have been
demonstrated using the SegNet-MobileNet Architecture-Encoder pair at
the first stage and the SegNet framework with the ResNet-Xception-
based encoder module at the second stage. The first stage (namely
Rebar Layer Identification Framework) of the proposed system extracted
the layer in which most of the rebar signatures are presented. The second
stage of the proposed system (namely Rebar Signature Localization
framework) is used to extract and localize individual rebar signatures.
This paper has provided promising results, which are highlighted in the
qualitative and quantitative sub-sections of the results section.

A number of issues have been highlighted in the discussion regarding
the different results obtained in the prior sections. In summary, these
issues relate to the first and second stages of the proposed framework for
rebar detection and localization. For the first stage of the proposed
framework, future works should try to reduce the false positive rate of
the rebar layer identification, so that the impact of noise can be pre-
vented from affecting the overall efficacy of the proposed system for
rebar detection and localization. For the second stage of the proposed
framework, future research should try to develop a framework that is
generalizable and robust to the diverse types of data characteristics that
can potentially affect the performance of rebar detection and localiza-
tion system. Since, this type of exploration for rebar detection and
localization has not been conducted before. Future research will need to
further examine and establish the feasibility of using multi-stage
framework and inclusion of rebar layer to provide a better perfor-
mance of rebar detection and localization systems.
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