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Abstract— This paper presents a novel design of a multi-
directional bicycle robot, which is developed for the inspection
of steel structures, in particular, steel-reinforced bridges. The
locomotion concept is based on arranging two magnetic wheels
in a bicycle-like configuration with two independent steering
actuators. This configuration allows the robot to possess multi-
directional mobility. An additional free joint helps the robot
adapt naturally to non-flat and complex steel structures. The
robot’s design provides the advantage of being mechanically
simple and providing high-level mobility across diverse steel
structures. In addition, a visual sensor is equipped that allows
the data collection for steel defect detection with offline training
and validation. The paper also provides a novel pipeline for
Steel Defect Detection, which utilizes multiple datasets (one
for training and one for validation) from real bridges. The
quantitative results have been reported for three Deep Encoder-
Decoder Networks (i.e., LinkNet, UNet, DeepLab) with their
corresponding Encoder modules (i.e., ResNet-18, ResNet-34,
RegNet-X2, EfficientNet-B0, and EfficientNet-B2). Due to space
concerns, the qualitative results have been outlined in Appendix,
with a link in Fig. 11 caption to access the result provided.

I. INTRODUCTION

Steel structures are indispensable parts of modern civi-
lization. Typical civil infrastructures include bridges, wind
turbines, electric towers, and oil rigs, to name a few. Those
steel structures require regular maintenance to ensure the
safety and protection of the human population using these
structures. Professional human inspectors still conduct most
structural inspection tasks with non-destructive evaluation
(NDE) sensors. This procedure is usually time-consuming,
costly, and unsafe for the inspectors, especially when inspect-
ing inaccessible regions of steel structures. For this reason,
this research focuses on developing a novel robotic solution
for steel bridge inspection with a novel video processing
pipeline for Steel Defect Detection. Autonomous steel bridge
inspection with varying sensory modalities has been dis-
cussed in the recent past [1]–[15]. Several innovative designs
have been discussed, ranging from conventional wheeled
robots [16]–[20], to robots that leverage tank-like tracks to
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widen the contact area of the robot on steel surfaces [2],
[21]–[23]. These approaches work well on structures with
large, flat, predictable surfaces such as ships or water tanks.
However, these approaches may not work as efficiently on
complex steel structures, e.g., bridges and oil rigs. Some
unique developments of climbing robots in this field have
also been demonstrated by [1], [24], [25].

Many designs have attempted to imitate the mobility of
climbing animals, e.g., arachnids, quadrupedal animals, and
inchworms. A spider-like robot with electromagnets has
been developed by [26]. Another research highlighted the
use of legged robots for structural inspection [27]. Other
bio-inspired robots include an inchworm-like robot [28]
and a hybrid robot [3]. However, most of these platforms’
mechanical complexity is challenging to control in real-
world applications. There are two robotic platforms, which
resemble the bicycle-like design [29], [30]. Unfortunately,
these platforms cannot traverse through complex structures
and limited spaces. Significant differences exist between the
proposed multi-directional bicycle robot and the platforms
discussed in [29], [30], which will be discussed at the end
of this section.

While the literature on steel corrosion detection is limited,
some relevant studies have presented their approach. A study
by [31] uses roughness analysis and color comparison on
image patches to separate corrosion patches for steel images.
This study makes a trade-off between the recall and precision
levels where one is high while the other is low. Another
study [32] made use of texture analysis with variables such
as contrast, correlation, and energy. The study by [33] is
used for crack and corrosion detection, which made use of a
supervised classification method with a code-word dictionary
consisting of stacked RGB histograms for image patches
symmetric gray-level co-occurrence matrix for each patch.

Our corrosion detection system takes a different approach
using deep learning. Instead of creating automatic corrosion
classifiers, we use Neural Network to self-extract features
by combining many Deep Encoder-Decoder Networks with
their corresponding Encoder modules to find the optimal steel
defect detection system.

This research provides several novel contributions to state-
of-the-art steel bridge inspection and defect detection. This
will enable the proposed research to impact the relevant
research community substantially. The novel elements of the
proposed study are discussed as follows:

(a). Robotic Platform: The proposed Multi-Directional
Bicycle Robot provides an improved climbing capability
and multi-directional locomotion; these capabilities were
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Fig. 1. (a) Mode 1 (bicycle-like): The robot can handle cylindrical structures with limited contacting areas. (b) Mode 1: The robot changes the direction
by first stopping the back wheel. Then, the front steering servo turns 90 degrees, and finally, the front wheel moves to help the robot change direction.
(c) Mode 1: With a free joint, the robot can travel on two intersecting surfaces. (d) Mode 1: The robot can traverse on edges that are thicker than the
space between its two wheels (4cm). (e) Mode 1: The robot is flexible enough to travel on the internal surface of a tube. (f) Mode 2: Two steering servos
turn the wheels at the same angle. The robot moves spirally around a circular tube. In this mode, the robot can also perform well on tube shapes such
as rectangles or hexagons. (g) Mode 2: The robot can rotate around its body center or move sideways (left, right) at steering angles that are close to 90
degrees.

Fig. 2. The 3D mechanical design of our proposed robot.

lacking in [2]–[5], [29], [30]. These capabilities will allow
the proposed robotic platform to traverse challenging steel
structures. The use of permanent magnetic wheels and the
adhesive forces generated has allowed the proposed robotic
platform to be equipped with diverse sensory modalities. In
conclusion, this robotic platform combines design simplicity
with diversity and versatility in traversing complex, challeng-
ing steel structures.

(b). Steel Defect Detection System: In this research, a
novel video processing pipeline for Steel Defect Detection
System has been proposed. This video processing pipeline
utilizes some of the state-of-the-art Deep Encoder-Decoder
Networks with varying Encoder modules, which no other
defect detection studies have used. A diverse range of per-
formance metrics has been utilized to examine and compare
the performance of the different Architecture-Encoder pairs.
Offline training has been utilized, along with validation of
video frame processing, which has considerable implications
for the real-time processing of the Steel Defect Detection
System. The datasets collected and utilized in this research
came from many different sources. For Steel Defect Detec-
tion System, 4,500 high-resolution image data (dataset 1)
was collected by research colleagues from multiple bridges
located in Vietnam. The 1,500 image-based data (dataset
2) for validation were collected by authors using a Multi-
Directional Bicycle Robot on a Highway-80 bridge in Love-
lock, Nevada, USA.

II. NOVEL MULTI-DIRECTIONAL BICYCLE ROBOT:
MECHANICAL DESIGN AND ANALYSIS

Going into the brief details of the proposed mechanical
design of the bicycle robot, the following requirements
should be addressed and fulfilled by the proposed mechanical
design of the bicycle robot:

1) The robot can climb surfaces with a wide range of outer
diameters (≥150mm), which are normally encountered
on circular tubes or cylindrical surfaces;

2) The robot can pass convex or concave obstacles at
structural transition joints on truss structures;

3) The robot can travel on steel structures with complex
arrangements of obstacles such as bolts, nuts, and gaps;

4) The locomotion system can maneuver through narrow
areas (≥100mm wide) and can move sideways with
considerable flexibility.

The high mobility of the two steering actuators allows the
robot to operate in two different modes. Mode 1 shown in
Fig. 1 (a-e) that supports only one steering unit and the robot
works like a bicycle, which facilitates the robot to travel on
structures with limited contacting areas Fig. 1 (a), and ability
to change direction simultaneously Fig. 1 (b). The free joint
in the middle allows the robot to traverse two intersecting
surfaces Fig. 1 (c). The robot can also pass edges thicker than
the space between its two wheels Fig. 1 (d), and traverse the
internal surface of hollow cylindrical tube-like structures Fig.
1 (e). Mode 2 as shown in Fig. 1 (f-g) allows both steering
units to remain active with independent and parallel control,
facilitating the robot to move spirally (around a cylinder),
sideways (left or right) or rotate around its center. Fig. 2
shows the overall mechanical design of the bicycle robot.
The robot’s weight is 1 kg (without sensors), while it can
carry 600g of load (sensors, onboard computer, etc.). Plastic
is the primary material to ensure the frame is lightweight.
The robot is powered by a 3000mAh LiPo battery that allows
1 hour of operation. The robot’s physical dimensions are
150mm × 80mm × 70mm. The ring magnets are placed
at the cores of the wheels, which are covered by silicone
tires. The wheels are driven by two high-torque gear DC
motors (100kg·cm torque each), and the steering actuators
are controlled by two servo motors (32kg·cm torque each).
The front and back of the frame are linked by a bearing
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Fig. 3. Multi-directional Bicycle Robot is controlled remotely from a Ground Control Station (GCS) using a joystick via a radio channel. The robot
carries a depth camera D435i and a pose tracking camera T265. An Alpha Latte computer onboard saves raw data from the sensors and continuously
transfers the data back to GCS using Intel NUC i7 via a WiFi router. The GCS performs localization and object detection and visualizes the received data
online on its two screens.

Fig. 4. The situations where the adhesive force is minimal, resulting in
a high chance of falling: a) the robot traverses on a thin cylinder (15cm
diameter). The contacting area reduces to only a single point for each wheel;
b) The adhesive force of the front wheel is significantly reduced when the
robot hits an edge.

acting as a free joint. The design concept of our robot is
inspired by a bicycle, which involves using two revolute
joints equipping the robot with two independent steering
actuators, increasing its mobility considerably. An additional
free joint in the middle of the robot’s body allows its two
wheels to make full contact with surfaces of different shapes
and sizes. The moving wheels are designed with permanent
ring-shaped magnets to generate large adhesive forces.

A. Magnetic Wheel Force Analysis

We analyze the robot’s adhesive force to climb reliably in
normal working conditions. We also perform the analysis in
an extreme situation where the adhesive force between the
magnetic wheels and the contacting structures is minimal:
the robot climbs a cylindrical tube (Fig. 4a) and encounters
a corner (Fig. 4b). Here, X1 and X2 are two contacting points
of the back wheel and the front wheel, respectively. Given
that P is the robot’s weight, h is the distance from the robot’s
center of mass to X1. If F2 is an adhesive force of the front
wheel at X2, then F2 is at its minimum when the front wheel
hits the corner. To keep the robot from falling, the following
condition needs to be satisfied:

F2 ×X1X2 > P × h ⇒ F2 >
Ph

X1X2
. (1)

Fig. 5. When the robot passes an internal corner between two surfaces,
the robot’s load increases significantly.

According to ISO 3691 [34] for safe weight lifting, a
safety factor of 5 was selected. Therefore, the real adhesive
force F2 needs to be at least 5 times greater than the result
from the above theoretical calculation (1).

B. Moving Motors Power Analysis

This analysis calculates the necessary motor torque when
the robot stands the highest load. It is when the robot passes
an internal corner between two surfaces (Fig. 5) that the front
wheel bears an additional force F2.2, which is the adhesive
force of the front wheel at the surface 2. Similarly, F2.1 is
the adhesive force of the front wheel at surface 1. Ff2 is
the friction of the front wheel on surface 2, r is the wheel’s
radius, and k is the static friction coefficient (between silicon
and steel in our design). The minimum force of the front
wheel that allows the robot to be able to pass the corner
must satisfy:

Mmoving

r
> F2.1 + Ff2 +

P

2
. (2)

Therefore, the moving motor torque needs to satisfy:

Mmoving > r × (F2.1 + kF2.2 +
P

2
). (3)

According to IEC 60034 [35], the actual torque selected to
be at least double that of the theoretical calculation in (3).
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Fig. 6. An experiment is conducted to investigate the load on a steering
servo motor. A dynamo-meter is mounted on one wheel’s edge (point L) to
measure the load. The distance from L to the rotating point X2 is r (the
wheel’s radius). a) Side view. b) Top view.

C. Steering Servos Power Analysis

An analysis is conducted to investigate the load torque
on the revolute joints. There are two forces, as illustrated
in Fig. 6: the static friction and the attractive force at the
two magnetic wheels, with one affecting another. Let F12 be
the adhesive force of wheel 1 affecting wheel 2, Ff be the
friction at X2. The measured load-force at point L (Fig. 6a)
has to satisfy the following condition:

F12 + Ff <
Msteering

r
. (4)

Thus, the steering servo torque needs to satisfy:

⇒ Msteering > r × (F12 +
F2 + P

k
). (5)

Based on IEC 60034 [35], the actual servo’s torque is chosen
to be at least two-fold compared to that of the theoretical
calculation in (5). A complete analysis of other conditions
can be seen in a similar robot design reported in [36].

III. PROPOSED MODEL FOR STEEL BRIDGE DEFECT
DETECTION SYSTEM

A. Sensor Systems for Steel Bridge Defect Detection

The whole system is depicted in Fig. 3. On the robot side,
we utilize an Intel RealSense D435i camera, which provides
color and depth images. However, only the RGB color image
data was used in this study to develop the Steel Defect
Detection System. A LattePanda Alpha 864 is selected as
an onboard computer, which connects the ground control
station (GCS) computer (Intel NUC i7) via a WiFi router
to the robot to enable manual steering operation of the robot
using the GCS. The two computers form a Robot Operating
System [37] network, in which the GCS acts as the master.

B. Dataset for Steel Bridge Defect Detection

There are two datasets collected and used within this
study to train and validate the performance of the Steel
Bridge Defect Detection System. One of the datasets has
been collected by the research colleagues of the authors from
several different bridges located in Vietnam. The data was
collected when the overall lighting conditions were optimal.
Due to the high-quality and high-resolution of the original
data, each large image was cropped and separately saved
with image dimensions of 512 × 512 × 3; these dimensions

Fig. 7. Details regarding the Video Processing Pipeline for Steel Defect
Detection System starting from Input Video Frames, which are put through
several image pre-processing steps. The system is based on offline training
and validation processes; some pre- and post-processing steps involve
manual intervention from the human researcher. Only a portion of the high-
resolution input frame is selected to be validated in later stages of the video
processing pipeline. The different pre-processing steps ensure the quality
of the input video frames is enhanced. The output image frame from the
Deep Encoder-Decoder Network is put through different post-processing
operations. Finally, the system’s output is highlighted using red-colored
pixel-level defects on the steel surface, along with green-colored bounding
boxes.

are supported by the Deep Learning models that are being
leveraged within the overall Video processing pipeline, which
will be discussed in the next subsection. Consequently, 4,500
high-quality images were obtained using a high-definition
hand-held digital camera with different steel bridge defects.
The authors collected the second dataset during the bi-annual
testing and evaluation of the bridges by the Nevada Depart-
ment of Transportation (NDOT) at Highway-80, Lovelock,
Nevada, USA. The images were obtained by operating the
Bicycle Robot on the different steel parts of the bridge. The
original images were cropped, resized, and saved with a
resolution of 512 × 512 × 3. This dataset, with a total of
1,500 images, has been used to validate the performance of
the Steel Defect Detection System.

C. Video Processing Pipeline for Steel Defect Detection
System

In this section, a detailed evaluation of the video pro-
cessing pipeline for the Steel Defect Detection System will
be discussed. The complete block diagram of the video
processing pipeline has been given in Fig. 7. As shown
in Fig. 7, the video processing pipeline has five steps.
Starting from the input video frames, which are individually
pre-processed using many steps, e.g., the Region-of-Interest
(ROI) selection. The original size of the high-resolution
image frame is very large, due to which a selected region
is separated. This ensures that the background regions are
separated, and most steel regions close to the robot can
be cropped, resized, and saved separately. The image ROI
is resized to 512 × 512 × 3; the input size permitted
for validating the input video frames using Deep Encoder-
Decoder Networks.

These networks are pre-trained on the Vietnam bridge
dataset. A variety of state-of-the-art Deep Encoder-Decoder
Networks architectures have been used in this study, namely
the U-Net [38], LinkNet [39] and DeepLabV3 [40]. Several
different Encoder modules are leveraged for each of these
architectures to examine and compare the performance of the
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TABLE I

System System 1 System 2
Specifications

Processor Intel® NUC10i7FNH1 Intel® Core i7–8700
Core i7 with 1.10 GHz CPU with 3.2 GHz

clock speed clock Speed
RAM 16GB SDRAM 32GB SDRAM
ROM 256GB SSD N/A

Hard Disk 1 TB HDD 350 GB HDD
Operating System Ubuntu 20.04 Ubuntu 18.04

GPU Intel® Integrated NVIDIA® GeForce®
UHD Graphics GTX 1080 TI GPU

different Architecture-Encoder pairs. Some of the Encoders
used in this study include the ResNet-18 [41], ResNet-34
[41], EfficientNet-b0 [42], EfficientNet-b2 [42], and RegNet-
X2 [43].

One of the prime focuses was selecting Encoder modules
that are not very large in terms of the number of layers and
parameters. The output image from this stage in the video
processing pipeline contains pixel-level masks highlighting
steel defect locations. This output is modified to ensure
that the predicted defect locations are highlighted using red
pixels and a green color bounding box surrounding each pixel
region.

D. Performance Evaluation for Video Processing Pipeline
for Steel Defect Detection

For examining the performance of Deep Encoder-Decoder
Networks, several different metrics have been used in the
prior studies [38] [39] [40]. The data was annotated us-
ing pixel-level annotation, which is examined differently
than bounding-box-based approaches for data annotation. In
this research, some of the most important metrics will be
used, which include F1-score, mean Intersection-over-Union
(mIOU), Precision, and Recall. These metrics will enable
the researchers to assess the accuracy of validation results
compared to ground truth towards steel defect detection. At
the same time, there is also a need to know the potential
of the different Architecture-Encoder pairs towards Pipeline
for Steel Defect Detection. The validation time will also
be discussed in the proceeding section to examine this
particular aspect. The performance evaluation of the different
Architecture-Encoder pairs will also be examined, along with
their real-time capabilities, to highlight the most suitable pair
out of all the Encoder modules and Deep Encoder-Decoder
architecture.

E. Systems Configuration

Two different types of systems were used to examine
the performance of the Video Processing Pipeline for Steel
Defect Detection. The training was conducted offline on
System 2, equipped with an onboard GPU with details in
Table I. The different Deep Learning models trained for
varying Architecture-Encoder pairs were saved. The vali-
dation process was performed on two separate systems to
examine whether the validation process could be performed
in real-time for the two different PCs with varying system
configurations. Table I highlights the different aspects of

TABLE II

.

LinkNet [39] Architecture
Encoder Dice

Loss
mIOU Precision Recall

ResNet-18 [41] Max. 16.80 97.33 99.74 97.68
Min. 1.41 73.65 99.56 73.69
Avg. 6.11 89.89 99.65 90.07

ResNet-34 [41] Max. 32.96 94.55 99.93 94.91
Min. 4.23 53.44 99.56 53.14
Avg. 12.20 82.25 99.75 82.31

RegNet-X-2 [43] Max. 19.91 98.52 99.77 99.80
Min. 0.08 69.32 99.56 69.47
Avg. 6.81 89.11 99.67 90.37

Efficient-b0 [42] Max. 31.20 94.17 99.78 94.45
Min. 3.28 57.56 99.53 57.39
Avg. 11.51 82.89 99.66 82.99

Efficient-b2 [42] Max. 16.83 99.36 99.73 99.78
Min. 0.32 73.30 99.58 73.44
Avg. 4.93 91.95 99.64 92.24

the two types of PCs used to examine the performance
of pre-trained models in terms of providing real-time steel
defect detection. It can be seen from Table I that system
1 has Intel® Integrated UHD Graphics Card, which is not
supported by Nvidia ® CUDA® libraries leading to slower
validation time. In comparison, the onboard GPU within
system 2 had full support from the Nvidia ® CUDA®
libraries, which allowed a faster training and validation
processing time, which will be elaborated on in the next
section.

IV. RESULTS AND DISCUSSION

A. Robot locomotion

Fig. 8. a) A test of moving around thin rectangular tube: robot has to
combine mode 1 and 2 for smooth travel. b) A test of moving sideways in
mode 2: robot travels spirally outside a cylindrical structure. c) A turning
test in mode 1: robot’s head is turned 180 degrees on a narrow surface. The
movement is depicted from left to right.

An indoor structure comprised of typical parts of gen-
eral steel structures (cylinder, L, I, U-shaped beams) with
structural transition joints is built to validate the robot’s
locomotion. Our robot can traverse smoothly to any location
in the testing structure. In mode 1, the robot can handle well
most testing situations. However, mode 2 is necessary when
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operating in narrow spaces. For instance, as Fig. 8) shows,
the robot must combine modes 1 and 2 to travel smoothly
on a rectangular tube. Fig. 8b illustrates mode 2 while the
robot is working on a cylindrical shape. Fig. 8c illustrates
how the robot changes orientation in mode 1 on an I-shaped
beam.

We deployed the robot in a field test during an annual
Highway inspection in Nevada, USA. The bridge is located
on Highway-80 in Lovelock city. Fig. 9 shows robot per-
formance in an actual application, and the robot was able to
traverse stably on the structure and collect visual data of this
bridge.

Fig. 9. Robot deployment on a bridge on Highway-80 located in Lovelock
City, NV, USA. a) Robot traverses upside down on the main I-shape beam;
b) Robot passes an edge of I-shape beam; c) Robot moves upside down on
a T-shape member; d) Robot travels stably on bridge water draining tube.

B. Corroded Detection

This section will outline the overall performance of
the different Architecture-Encoder pairs. The different
Architecture-Encoder pairs were trained on the Vietnam
dataset. After offline training of the different Architecture-
Encoder pairs, the validation was performed on six separate
video frame data (1,500 images) obtained using Bicycle
Robot taken from the actual bridge on Highway-80 located
in Lovelock, NV, USA. There are variations in the level
of defect and lightning conditions on the different parts
of the bridge, reflecting the performance of the different
Architecture-Encoder pairs. In order to capture this variation
in performance, three separate rows for each Architecture-
Encoder pair outlining the minimum, maximum and average
values is given in Tables II, III and IV. Tables II, III and IV
outline statistical evaluation for the different Architecture-
Encoder pairs in terms of the different metrics, such as Dice
Loss, mIoU, Precision, and Recall. Higher values reflect
better performance for metrics such as mIoU, Precision, and
Recall, while lower values reflect better performance for Dice
Loss. The bold values in Tables II, III and IV specify the
highest value, or lowest in case of Dice Loss, for a particular
Architecture. The bold values with an underline specify
the best performance value compared to all the different
Architecture-Encoder pairs.

TABLE III

.

UNet [38] Architecture
Encoder Dice

Loss
mIOU Precision Recall

ResNet-18 [41] Max. 31.80 91.86 99.92 91.59
Min. 4.37 54.87 99.54 54.86
Avg. 12.59 80.88 99.73 81.02

ResNet-34 [41] Max. 28.11 96.40 99.83 96.57
Min. 1.96 59.40 99.56 59.43
Avg. 11.11 83.47 99.72 82.13

RegNet-X-2 [43] Max. 18.81 97.13 99.78 99.35
Min. 1.59 71.56 99.55 71.71
Avg. 7.26 88.01 99.65 87.06

Efficient-b0 [42] Max. 32.17 97.33 99.80 97.53
Min. 1.41 55.85 99.53 55.92
Avg. 11.44 83.26 99.61 83.46

Efficient-b2 [42] Max. 47.25 96.06 99.75 96.36
Min. 2.18 43.56 99.56 43.60
Avg. 14.39 69.84 99.65 81.87

TABLE IV

.

DeepLab [40] Architecture
Encoder Dice

Loss
mIOU Precision Recall

ResNet-18 [41] Max. 26.46 95.50 99.80 95.58
Min. 2.52 62.24 99.55 62.02
Avg. 9.05 86.26 99.68 86.26

ResNet-34 [41] Max. 26.46 93.76 99.82 93.82
Min. 3.36 61.19 99.55 61.06
Avg. 10.45 84.30 99.68 64.14

RegNet-X-2 [43] Max. 15.36 97.58 99.78 97.85
Min. 1.30 75.79 99.56 75.94
Avg. 6.71 89.41 99.69 90.02

Efficient-b0 [42] Max. 22.89 96.21 99.59 96.56
Min. 1.99 65.52 99.55 65.57
Avg. 9.40 85.13 99.55 85.39

Efficient-b2 [42] Max. 40.91 90.06 99.85 90.24
Min. 5.76 48.12 99.46 48.16
Avg. 17.12 75.38 77.17 55.55

It can be seen in Table II that for LinkNet [39] Deep
Encoder-Decoder architecture, the most optimal performance
has been shown by the RegNet-X2 [43] Encoder module for
four out of five total performance metrics. For performance
regarding UNet [38] Architecture, EfficientNet-B0 [42] out-
performs other Encoder modules with the best performance
for two out of four metrics.

For Table IV with details regarding DeepLab Architecture
[40], RegNet-X2 [43] encoder performs the most optimal for
three out of four performance metrics.

Fig. 10 highlights a side-by-side comparison between the
validation time between System 1 and System 2. The values
for each Architecture-Encoder Pair have been highlighted on
top of each bar plot in Fig. 10. For system 1, the lowest
values for validation are outlined by LinkNet architecture
[39]. For system 2, the lowest values for validation time
have been reported by UNet [38] architecture and associated
Encoder modules. One of the architectures, namely LinkNet
[39] has demonstrated the lowest validation time results for
system 1. However, system 2 has the highest values out of
all the other Architectures, which is an interesting contrast in
the validation time results. Figure 11 contains image output
from three Architecture-Encoder pairs that demonstrated the
most optimal results in terms of qualitative aspects in terms
of similarity with the ground truth and minimal presence of
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Fig. 10. A side-by-side comparison between the validation time for System 1 and System 2, which is mentioned in Table I. There are wide variations
between the validation times for each image frame, as the maximum value for System 1 is 2,007 ms, and the maximum value for System 2 is 65.95 ms,
which highlights the benefits of GPU for real-time steel defect detection. When comparing the different Architectures for System 1, the variations are more
pronounced across architectures. For the case of System 2, the variations are much less pronounced, with the highest values ranging between 20 ms and
70 ms.

Input Image Ground Truth Final Output

(1)

(2)

(3)

Fig. 11. The first column is the original images. The second column is the
ground truths annotated with red color. The third column is the final outputs
of the three Architecture-Encoder pairs that demonstrated the most optimal
results. (1) is for LinkNet ResNet-18, (2) is for Unet ResNet-18, and (3) is
for DeepLab ResNet-18. Link for more validation: http://ara.cse.
unr.edu/wp-content/uploads/2014/12/Appendix.pdf

false-positive and true negatives. It also contains the link for
more validations information.

When comparing the results in the other studies [31],
[33] in terms of depth of evaluation and the metrics used
within this study, the performance of the proposed system
far surpasses other studies highlighted with demonstrable
high-performance using quantitative and qualitative analysis.
[31] has an average recall of 85% while [33] has an average
precision and recall of 83% and 96%. Our system’s precision

is well over 99% and recall of over 95%. In addition,
other studies use a small set of uniformly illuminated and
without misleading objects, whereas we use thousands of
diverse images from 2 different bridges. Comparison to [32]
is not applicable due to the difference in metric. Video
demonstration of the robot test and deployment can be seen
at: https://youtu.be/kAQnpFI2huI

V. CONCLUSION AND FUTURE WORK

This paper presents the development of a novel multi-
directional bicycle robot capable of climbing different steel
structures to perform structural inspection and defect detec-
tion. The robot’s novel configuration allows multi-directional
mobility. The robot’s design provides the advantage of being
mechanically simple and provides a high level of mobility
across diverse steel structures. The practical operation of the
multi-directional robot has been validated on an actual bridge
(Highway-80, Lovelock, NV, USA), which shows that the
robot can firmly adhere to steel structures and operates well
in tight spaces.

The onboard visual sensor is used to collect data from
outdoor environments. This study used two novel datasets
containing data from two separate sets of bridges. The
quantitative results demonstrate a considerable promise of
the proposed system for real-time processing with reliable
performance for different Architecture-Encoder pairs. The
link to Appendix also reveals compelling results regarding
qualitative aspects of the proposed Steel Defect Detection
System. In future works, an effort will be made to test and
validate each Architecture-Encoder pair in real-time to assess
the data processing issues and the effect of environmental
conditions on the overall performance.
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