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Abstract. We provide a general framework for computing mixing times of finite Markov chains
whose semigroup's minimal ideal is left zero. Our analysis is based on combining results by Brown
and Diaconis with our previous work on stationary distributions of finite Markov chains. Stationary
distributions can be computed from the Karnofsky--Rhodes and McCammond expansion of the right
Cayley graph of the finite semigroup underlying the Markov chain. Using loop graphs, which are
planar graphs consisting of a straight line with attached loops, there are rational expressions for the
stationary distribution in the probabilities. From these we obtain bounds on the mixing time. In
addition, we provide a new Markov chain on linear extension of a poset with n vertices, inspired by
but different from the promotion Markov chain of Ayyer, Klee, and the last author. The mixing time
of this Markov chain is O(n logn).
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1. Introduction. A Markov chain is a model that describes transitions between
states in a state space according to certain probabilistic rules. The defining character-
istic of a Markov chain is that the transition from one state to another only depends
on the current state and the elapsed time, not on how the system arrived there. In
other words, a Markov chain is ``memoryless."" Markov chains have an abundance of
applications from data analysis and population dynamics to traffic models.

For a Markov chain, the stationary distribution \Psi is the long-term limiting dis-
tribution. Mathematically speaking, it is the eigenvector of the transition matrix T
of the Markov chain with eigenvalue one. That is,

T\Psi = \Psi .

An important question is how quickly the Markov chain converges to the stationary
distribution. In Markov chain theory, distance is usually the total variation distance
or half the L1-norm in classical analysis. If \Omega is the state space, the total variation
distance between two probability distributions \nu and \mu is defined as

\| \nu  - \mu \| = max
A\subseteq \Omega 

| \nu (A) - \mu (A)| .
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3032 JOHN RHODES AND ANNE SCHILLING

For a given small \epsilon > 0, the mixing time t\sansm \sansi \sansx is the smallest t such that

\| T t\nu  - \Psi \| \leqslant \epsilon ,

independent of the initial distribution \nu .
In seminal work of Bidigare, Hanlon and Rockmore [8], which was continued by

Diaconis, Brown, Athanasiadis, Bj\"orner, Chung, and Graham, among others [15, 9,
14, 10, 11, 3, 18, 44], the special family of semigroups, now known as left regular bands,
first studied by Sch\"utzenberger [45] in the forties, was applied to random walks or
Markov chains on hyperplane arrangements. In his 1998 International Congress of
Mathematicians lecture [20], Diaconis discussed these developments. In section 4.1,
entitledWhat is the ultimate generalization?, he asks how far the semigroup techniques
can be taken.

Every finite state Markov chain \scrM has a random letter representation, that is,
a representation of a semigroup S acting on the left on the state space \Omega . See,
for example, [31, Proposition 1.5] and [6, Theorem 2.3]. In this setting, there is a

transition s
a

 - \rightarrow s\prime with probability 0 \leqslant xa \leqslant 1, where s, s\prime \in \Omega , a \in S and s\prime = a.s
is the action of a on the state s. It is enough to consider the semigroup S generated
by the elements a with xa > 0, called the generating set A. For example, the Markov
chain with state space \Omega = \{ 1, 2\} and transition diagram

(1.1) 1 2

2, 3

1

1, 3

2

can be associated to the semigroup with right Cayley graph depicted in Figure 1. The
conceptual reason why a Markov chain described using the left action of a semigroup
can be analyzed using the right Cayley graph is that if time goes left (due to the
left action), then coupling from the past corresponds to right multiplication. The
transition matrix in this Markov chain is

T =

\biggl( 

x1 x1 + x3

x2 + x3 x2

\biggr) 

.

1

1 2

\bullet 

\bullet 

1 2

3

2 1

1 2

3 3

1, 2, 3 1, 2, 3

Fig. 1. The right Cayley graph \sansR \sansC \sansa \sansy (S,A) of the semigroup that gives the Markov chain

in (1.1) with generators A = \{ 1, 2, 3\} .
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MIXING TIME 3033

In pursuit Diaconis's ultimate generalization [20], the arguments in Brown and Di-
aconis [15] were generalized to Markov chains for R-trivial semigroups [6]. In [39, 38],
the current authors developed a general theory for computing the stationary distri-
bution for any finite Markov chain. The theory uses semigroup methods such as the
Karnofsky--Rhodes and McCammond expansions of a semigroup. These expansions
give rise to loop graphs which immediately yield Kleene expressions for all paths from
the root of the graph to elements in the minimal ideal of the semigroup. The Kleene
expressions in turn give rational expressions for the stationary distribution.

In this paper we apply the findings of [39, 38] to study upper bounds on the
mixing time of the Markov chain. In particular, Theorems 2.4 and 2.5 provide upper
bounds for the mixing time directly from the rational expression of the stationary
distribution in the case when the minimal ideal of the semigroup is left zero. This
general theory is applied to specific examples (Tsetlin library, edge flipping on a line
Markov chain, and a new Markov chain on linear extensions) in section 3.

The paper is organized as follows. In section 2, we develop the main theory. In
section 2.6, we present our main theorems regarding the upper bounds on the mixing
time (see Theorems 2.4 and 2.5). We discuss the relation to the Shannon entropy in
section 2.7. In section 2.8, we refine bounds on the mixing time using certain statistics
that were developed in [6, 5]. In section 2.9, we consider semigroups syntactic at zero.
In particular, we prove in Theorem 2.14 that the upper bounds on the mixing time
do not change by replacing the semigroup by its syntactic image. In section 2.10,
we relate observations on mixing time to d-testable languages. Finally, in section 3
we consider specific examples such as the Tsetlin library [17], edge flipping on a
line [15, 18], and a new Markov chain on linear extensions of a poset with n vertices,
which is inspired by but different from the promotion Markov chain [4]. This new
Markov chain has a mixing time of O(n log n) as compared to the mixing time of the
model of Bubley and Dyer [16] with mixing time O(n3 log n).

2. Mixing time. Let T be the transition matrix of a finite Markov chain. As-
suming that the Markov chain is ergodic (meaning that it is irreducible and aperiodic),
by the Perron--Frobenius theorem there exists a unique stationary distribution \Psi , and
T t\nu converges to \Psi as t \rightarrow \infty for any initial state \nu . A Markov chain is irreducible
if the graph of the Markov chain is strongly connected. It is aperiodic if the gcd of
the cycle lengths in the graph of the Markov chain is one. In fact, the stationary
distribution is the right eigenvector of eigenvalue one of T :

T\Psi = \Psi .

The mixing time measures how quickly the Markov chain converges to the stationary
distribution. For a given small \epsilon > 0, t\sansm \sansi \sansx is the smallest t such that

\| T t\nu  - \Psi \| \leqslant \epsilon .

We begin this section by reviewing methods to compute upper bounds on mixing
times in section 2.1 (see in particular Theorem 2.1), relations between ideals and
semaphore codes and how this relates to mixing time in section 2.2, and the Markov
and Chernoff inequalities to bound mixing time in sections 2.3 and 2.4. The semigroup
methods of [39, 38] to compute rational expressions of the stationary distribution of
a Markov chain in terms of the probabilities xa for the generators a \in A of the
semigroup are reviewed in section 2.5. Our main new results for the upper bounds of
the mixing times in terms of truncations of the rational expressions of the stationary
distribution (Theorem 2.4) and using a Cauchy--Euler operator (Theorem 2.5) are
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3034 JOHN RHODES AND ANNE SCHILLING

stated in section 2.6. In section 2.7 we discuss the relation between Shannon entropy
and mixing time. Sections 2.8--2.10 are devoted to new results in special settings,
for example, for monoids which are syntactic at zero (Theorem 2.14) and d-testable
languages (Remark 2.21).

2.1. Upper bound. Brown and Diaconis ([15], [14, Theorem 0]) showed, for
Markov chains associated to left regular bands, that the total variational distance
from stationarity after t steps is bounded above by the probability \sansP \sansr (\tau > t), where
\tau is the first time that the walk hits a certain ideal. The arguments in Brown and
Diaconis [15] can be generalized to arbitrary finite Markov chains (not just those
related to left regular bands). To state the details, we need some more notation.

Let \scrM (S,A) be a finite state Markov chain with state space \Omega and transition
matrix T associated to the semigroup S with generators A with probabilities 0 <
xa \leqslant 1 for a \in A.

A two-sided ideal I (or ideal for short) is a subset I \subseteq S such that uIv \subseteq I for
all u, v \in S1, where S1 is the semigroup S with identity 1 added (even if S already
contains an identity). If I, J are ideals of S, then IJ \subseteq I \cap J so that I \cap J \not = \emptyset . Hence
every finite semigroup has a unique nonempty minimal ideal denoted K(S).

Assume that the minimal ideal K(S) is left zero, that is, xy = x for all x, y \in 
K(S). This assumption implies that the Markov chain on the minimal ideal (given
by the left action) is ergodic. Let \tau be the random variable which is the time that
the random walk is absorbed into the minimal ideal K(S).

Theorem 2.1. ([6]) Let S be a finite semigroup whose minimal ideal K(S) is
a left zero semigroup, and let T be the transition matrix of the associated Markov
chain. Then

\| T t\nu  - \Psi \| \leqslant \sansP \sansr (\tau > t).

Proof. By [6, Corollary 3.5(3)], we have

\| T t\nu  - \Psi \| \leqslant P  \star t(S \setminus K(S)),

where P  \star n denotes the nth convolution power of P . By [6, equation (4.6)], the right-
hand side equals \sansP \sansr (\tau > t).

2.2. Ideals and semaphore codes. Let A be a finite alphabet, A+ the set of
all nonempty words in the alphabet A, and A \star the set of all words in the alphabet A.

As shown in [41], ideals in A+ are in bijection with semaphore codes [7]. A prefix
code is a subset of A+ such that all elements are incomparable in prefix order (meaning
that no element is the prefix of any other element of the code). A semaphore code \scrS 
is a prefix code such that A\scrS \subseteq \scrS A \star . There is a natural left action on a semaphore
code. If u \in \scrS \subseteq A+ and a \in A, then au has a prefix in \scrS (and hence a unique prefix
of au). The left action a.u is the prefix of au that is in \scrS . Assigning probability
0 \leqslant xa \leqslant 1 to a \in A, the left action on a semaphore code \scrS defines a Markov chain
with a countable state space \scrS .

The bijection between ideals I \subseteq A+ and semaphore codes \scrS over A is given as
follows (see [41, Proposition 4.3]). If u = a1a2 . . . aj \in I \subseteq A+, find the (necessarily
unique) index 1 \leqslant i \leqslant j such that a1 . . . ai - 1 \not \in I but a1 . . . ai \in I. Then a1 . . . ai is
a code word, and the set of all such words forms the semaphore code \scrS . Conversely,
given a semaphore code \scrS , the corresponding ideal is \scrS A \star .

In this setting, \tau can be interpreted as the random variable given by the length
of the semaphore code words. Let \scrS be a semaphore code and I the ideal under the
bijection described above. A semaphore code word s = s1s2 . . . s\ell has the property
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MIXING TIME 3035

that s \in I but s1s2 . . . s\ell  - 1 \not \in I. Hence \tau can be interpreted as the random variable
given by the length \ell .

Next we discuss two ways to approximate \sansP \sansr (\tau > t) using Markov's and Chernoff's
inequalities.

2.3. Markov's inequality. By Markov's inequality (see, for example, [31, 19]),
we have

(2.1) \sansP \sansr (\tau > t) \leqslant 
E[\tau ]

t+ 1
,

where E[\tau ] is the expected value for \tau , the first time the walk hits the ideal. We have

(2.2) E[\tau ] =

\infty 
\sum 

a=1

\sansP \sansr (\tau \geqslant a).

2.4. Chernoff's inequality. Chernoff's inequality uses the moment generating
function combined with Markov's inequality (2.1) to give an upper bound on \sansP \sansr (\tau \geqslant t).
More precisely,

\sansP \sansr (\tau \geqslant t) = \sansP \sansr (es\tau \geqslant est) for s > 0.

Hence by Markov's inequality (2.1)

\sansP \sansr (\tau \geqslant t) \leqslant 
E[es\tau ]

est
,

and since this is true for all s > 0

\sansP \sansr (\tau \geqslant t) \leqslant min
s>0

\biggl\{ 

E[es\tau ]

est

\biggr\} 

.

2.5. Rational expressions for stationary distributions. Let \scrM (S,A) be
the Markov chain associated to the finite semigroup S with generators in A. Assume
that its minimal ideal K(S) is left zero so that K(S) can be taken as the state space
\Omega of the Markov chain. Denote by \scrS (S,A) the semaphore code associated to K(S)
(see section 2.2). For a word s \in A+, we denote by [s]S the image of the word in the
alphabet A in S. The following theorem is stated in [39, Corollaries 2.23 and 2.28].

Theorem 2.2. ([39]) If K(S) is left zero, the stationary distribution of the
Markov chain \scrM (S,A) labeled by w \in K(S) is given by

(2.3) \Psi w(x1, . . . , xn) =
\sum 

s\in \scrS (S,A)

[s]S=w

\prod 

a\in s

xa.

In [39, 38], we developed a strategy using loop graphs to compute the expressions
in Theorem 2.2 as rational functions in the probabilities xa for a \in A. This is done
in several steps:

1. We used the McCammond and Karnofsky--Rhodes expansion \sansM \sansc \circ \sansK \sansR (S,A)
of the right Cayley graph \sansR \sansC \sansa \sansy (S,A) of the semigroup S with generators A.
In this paper we do not require the details of these definitions, except that the
right Cayley graph as well as its expansions are rooted graphs with root 1.
The Karnofsky--Rhodes expansion is another right Cayley graph, whereas the
McCammond expansion is only an automaton. For the precise definition of
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3036 JOHN RHODES AND ANNE SCHILLING

the Karnofsky--Rhodes expansion, we refer the reader to [34, Definition 4.15],
[33, section 3.4], [38, section 2.4], and [42, section 2]. For the definition of
the McCammond expansion, we refer the reader to [34, section 2.7] and [38,
section 2.5]. The Markov chain \scrM (S,A) is a lumping [31] of the Markov
chains associated to the expansions.

2. The stationary distributions of the Markov chains associated to the expan-
sions can be expressed using loop graphs G; see [38]. A loop graph is a straight
line path from 1 to an endpoint s with directed loops of any finite length at-
tached recursively to any vertex (besides 1 and s). In this way [38, Theorem
1.4]

(2.4) \Psi w(x1, . . . , xn) =
\sum 

G

\Psi G(x1, . . . , xn),

where the sum is over certain loop graphs G with endpoint s such that [s]S =
w. Here [38, Definition 1.3]

(2.5) \Psi G(x1, . . . , xn) =
\sum 

p

\prod 

a\in p

xa,

where the sum is over all paths p in G starting at 1 and ending in s.
3. There is a Kleene expression for the set of all paths from 1 to s in G. The

Kleene expression immediately yields a rational expression for the stationary
distribution \Psi G(x1, . . . , xn) and hence \Psi w(x1, . . . , xn) by (2.4).

Remark 2.3. An important property of the above construction is that in the series
expansion of the rational expression for \Psi w(x1, . . . , xn) (resp., \Psi G(x1, . . . , xn)) the
total degree of each term corresponds to the length of the underlying semaphore code
word in (2.3) (resp., the underlying path in G in (2.5)).

2.6. Mixing time via truncation of Kleene expressions. As stated in The-
orem 2.1, \sansP \sansr (\tau \geqslant t) provides an upper bound on the mixing time in the setting that
K(S) is left zero. As discussed in section 2.2, \tau can be interpreted as the random
variable given by the length of the semaphore code words or paths in the loop graph.
To compute \sansP \sansr (\tau \geqslant t), one needs to compute the sum of probabilities of all paths of
length weakly greater than t. By Remark 2.3, the length of the paths is given by the
total degree in the probability variables x1, . . . , xn for the generators a1, . . . , an of the
semigroup S. Hence we obtain \sansP \sansr (\tau \geqslant t) by truncating the rational function for the
stationary distribution to total degree weakly bigger than t.

Let \Psi \geqslant t
w (x1, . . . , xn) be the truncation of the formal power series associated to

the rational function \Psi w(x1, . . . , xn) to terms of degree weakly bigger than t, and let
\Psi <t

w (x1, . . . , xn) be the truncation of the formal power series associated to the rational
function \Psi w(x1, . . . , xn) to terms of degree strictly smaller than t. Note that

\Psi w(x1, . . . , xn) = \Psi <t
w (x1, . . . , xn) + \Psi \geqslant t

w (x1, . . . , xn).

Theorem 2.4. Suppose the Markov chain satisfies the conditions of Theorem 2.1.
If \Psi w(x1, . . . , xn) is represented by a rational function such that each term of degree \ell 
in its formal power sum expansion corresponds to a semaphore code word s of length
\ell with [s]S = w, we have

\sansP \sansr w(\tau \geqslant t) =
\Psi \geqslant t

w (x1, . . . , xn)

\Psi w(x1, . . . , xn)
= 1 - 

\Psi <t
w (x1, . . . , xn)

\Psi w(x1, . . . , xn)
.
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For each w \in K(S), we can also give an explicit formula for the expected number
of steps Ew[\tau ] it takes to reach the endpoint of w using the Cauchy--Euler operator.

Theorem 2.5. Suppose the Markov chain satisfies the conditions of Theorem 2.1.
If \Psi w(x1, . . . , xn) is represented by a rational function such that each term of degree \ell 
in its formal power sum expansion corresponds to a semaphore code word s of length
\ell with [s]S = w, we have

Ew[\tau ] =

\Biggl( 

n
\sum 

i=1

xi

\partial 

\partial xi

\Biggr) 

ln\Psi w(x1, . . . , xn).

Remark 2.6. Note that the formal expression for \Psi w(x1, . . . , xn) cannot be ma-
nipulated using that x1 + \cdot \cdot \cdot + xn = 1 when using Theorems 2.4 and 2.5.

Proof of Theorem 2.5. Let the formal power sum expression for the rational func-
tion \Psi w(x1, . . . , xn) be as follows:

\Psi w(x1, . . . , xn) =
\sum 

m1,...,mn\geqslant 0

cm1,...,mn
xm1
1 \cdot \cdot \cdot xmn

n .

Then formally

\Biggl( 

n
\sum 

i=1

xi

\partial 

\partial xi

\Biggr) 

ln\Psi w(x1, . . . , xn) =

\Bigl( 

\sum n
i=1 xi

\partial 
\partial xi

\Bigr) 

\Psi w(x1, . . . , xn)

\Psi w(x1, . . . , xn)

=

\sum 

m1,...,mn\geqslant 0 cm1,...,mn
(m1 + \cdot \cdot \cdot +mn)x

m1
1 \cdot \cdot \cdot xmn

n
\sum 

m1,...,mn\geqslant 0 cm1,...,mn
xm1
1 \cdot \cdot \cdot xmn

n
.

Note that a term xm1
1 \cdot \cdot \cdot xmn

n of degree m1+\cdot \cdot \cdot +mn corresponds to a semaphore code
word of lengthm1+\cdot \cdot \cdot +mn. Thus cm1,...,mn

(m1+\cdot \cdot \cdot +mn)x
m1
1 \cdot \cdot \cdot xmn

n /\Psi w(x1, . . . , xn)
is the length of the path times the probability of having taken a path with mi steps
along the ith generator. The sum over all such terms is precisely Ew[\tau ].

Remark 2.7. Let \sansP \sansr G(\tau \geqslant t) be the probability that the length of the paths in the
loop graph G from 1 to the endpoint s is weakly bigger than t. Then by analogous
argument as above, we also have

(2.6) \sansP \sansr G(\tau \geqslant t) =
\Psi \geqslant t

G (x1, . . . , xn)

\Psi G(x1, . . . , xn)
= 1 - 

\Psi <t
G (x1, . . . , xn)

\Psi G(x1, . . . , xn)

and

(2.7) EG[\tau ] =

\Biggl( 

n
\sum 

i=1

xi

\partial 

\partial xi

\Biggr) 

ln\Psi G(x1, . . . , xn).

Example 2.8 (single loop). Suppose the path in the loop graph G from 1 to the
ideal is a straight line with a single loop

1 r s
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where the loop is taken with probability p and the step to the ideal r \rightarrow s with
probability 1 - p. Then the probability that one starts at 1 and hits the element s in
the ideal in precisely t steps is

\sansP \sansr G(\tau = t) = (1 - p)pt - 2 for t \geqslant 2.

Hence
(2.8)

\sansP \sansr G(\tau \geqslant t) =

\infty 
\sum 

j=t

\sansP \sansr G(\tau = j) = (1 - p)pt - 2
\infty 
\sum 

j=0

pj = (1 - p)pt - 2 1

1 - p
= pt - 2 for t \geqslant 2.

The expectation value is

(2.9) EG[\tau ] =

\infty 
\sum 

t=1

\sansP \sansr G(\tau \geqslant t) = 1 +

\infty 
\sum 

t=2

pt - 2 = 1 +
1

1 - p
.

Indeed by Markov's inequality

tpt - 2 \leqslant 1 +
1

1 - p
for all t \geqslant 2.

Now let us use (2.6) to compute \sansP \sansr G(\tau \geqslant t). Suppose that the step 1 \rightarrow r is
labeled by the generator 1, the loop from r to r is labeled 2, and the step r \rightarrow s is
labeled 3. Then the Kleene expression for the paths from 1 to s is

12 \star 3.

Let the probability for generator i be xi for i \in \{ 1, 2, 3\} . Then by [39]

\Psi G(x1, x2, x3) =
x1x3

1 - x2
= x1x3

\infty 
\sum 

j=0

xj
2.

By (2.6), we obtain \sansP \sansr G(\tau \geqslant t) = 1 for t = 0, 1 and

\sansP \sansr G(\tau \geqslant t) =
x1x3

\sum \infty 
j=t - 2 x

j
2

x1x3

\sum \infty 
j=0 x

j
2

= xt - 2
2 for t \geqslant 2.

This agrees with (2.8), where x2 = p.
Next let us use (2.7) to compute EG[\tau ]:

EG[\tau ] =

\biggl( 

x1
\partial 

\partial x1
+ x2

\partial 

\partial x2
+ x3

\partial 

\partial x3

\biggr) 

ln\Psi G(x1, x2, x3) = 2 +
x2

1 - x2
= 1 +

1

1 - x2
,

which agrees with (2.9) when x2 = p.

2.7. Shannon entropy and exponential bounds. It turns out that the mix-
ing time has close ties to information theory and in particular Shannon's entropy.
See [43] and [24, Chapter 3] as references on information theory.

Let X be a random variable with probability distribution p(x). The amount of
information of an elementary event x is log 1

p(x) . Therefore, the average amount of

information about X is given by the expected value, known as Shannon's entropy :

(2.10) H(X) = E

\biggl[ 

log
1

p

\biggr] 

=
\sum 

x\in X

p(x) log
1

p(x)
.
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Shannon's entropy features in the asymptotic equipartition property or entropy er-
godic theorem, which can be stated as follows [46] (see also [43]). Let x = (x1, . . . , xt)
be a long sequence of independent and identically distributed outcomes with proba-
bility distribution p(x). By the independence, p(x) is given by the product

p(x) = p(x1)p(x2) \cdot \cdot \cdot p(xt) =
\prod 

x\in X

p(x)t(x),

where t(x) is the number of xi equal to x. Since t is large, by the law of large numbers

t(x)

t
\approx p(x),

which implies

(2.11) p(x) \approx 
\Bigl( 

\prod 

x\in X

p(x)p(x)
\Bigr) t

= e - tH(X).

In other words, for very large (but fixed) t, the value of the probability of a given
``typical"" sequence x = (x1, x2, . . . , xt) is likely to be close to the constant e - tH(X).

The precise formulation of the asymptotic equipartition property is the Shannon--
McMillan--Breiman theorem [46, 35, 12] (see also [24, Chapter 4]). Applied to P  \star t(S \setminus 
K(S)) in Theorem 2.1, this gives an exponential bound on \| T t\nu  - \Psi \| . In probability,
this is also known as the convergence theorem (see [31, Theorem 4.9]).

Theorem 2.9 (convergence theorem). Suppose T is the transition matrix of an
ergodic Markov chain with stationary distribution \Psi . Then there exist constants \alpha \in 
(0, 1) and C > 0 such that

\| T t\nu  - \Psi \| \leqslant C\alpha t.

A concept related to entropy is the entropy rate. It is defined as the rate of
information innovation:

H \prime = lim
t\rightarrow \infty 

H(Xt | Xt - 1, . . . , X1).

When Xi is stationary, the entropy rate is equal to the average entropy per symbol:

H = lim
t\rightarrow \infty 

H(X1, . . . , Xt)

t
;

that is, H \prime = H.
Since an ergodic Markov chain has a unique stationary distribution \Psi , the entropy

rate is independent of the initial distribution. If the Markov chain is defined on the
finite (or countable) state space \Omega , then

H \prime =  - 
\sum 

s,s\prime \in \Omega 

Ts,s\prime \Psi s\prime log(Ts,s\prime ).

A simple consequence of this definition is that indeed a stochastic process with inde-
pendent and identically distributed random variables has an entropy rate that is the
same as the entropy of any individual member of the process.
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2.8. Mixing time via decreasing statistics. In [6, 5], a technique was de-
veloped for an upper bound on the mixing time using a decreasing statistic on the
semigroup underlying the Markov chain.

Lemma 2.10. ([6, Lemma 3.6]) Let \scrM be an irreducible Markov chain associated
to the semigroup S and probability distribution 0 \leqslant p(s) \leqslant 1 for s \in S. We assume
that \{ s \in S | p(s) > 0\} generates S. Let \Psi be the stationary distribution and
f : S \rightarrow \BbbN be a function, called a statistic, such that

1. f(ss\prime ) \leqslant f(s) for all s, s\prime \in S;
2. if f(s) > 0, then there exists s\prime \in S with p(s\prime ) > 0 such that f(ss\prime ) < f(s);
3. f(s) = 0 if and only if s \in K(S).

Then if p = min\{ p(s) | s \in S, p(s) > 0\} and L = f(1), we have that

\| T t\nu  - \Psi \| TV \leqslant 

L - 1
\sum 

i=0

\biggl( 

t

i

\biggr) 

pi(1 - p)t - i \leqslant exp

\biggl( 

 - 
(tp - (L - 1))2

2tp

\biggr) 

for any probability distribution \nu on S, where the last inequality holds as long as
t \geqslant (L - 1)/p.

The bound

L - 1
\sum 

i=0

\biggl( 

t

i

\biggr) 

pi(1 - p)t - i \leqslant exp

\biggl( 

 - 
(tp - (L - 1))2

2tp

\biggr) 

works well for p close to 1
2 . A better bound for 0 < L - 1

t
< p is given by [2]:

L - 1
\sum 

i=0

\biggl( 

t

i

\biggr) 

pi(1 - p)t - i \leqslant exp

\biggl( 

 - t D
\Bigl( L - 1

t

\bigm\| 

\bigm\| 

\bigm\| p
\Bigr) 

\biggr) 

,

where

D(a \| p) = a log
a

p
+ (1 - a) log

1 - a

1 - p
.

This can be rewritten as

L - 1
\sum 

i=0

\biggl( 

t

i

\biggr) 

pi(1 - p)t - i \leqslant 

\Bigl( p

a

\Bigr) ta
\biggl( 

1 - p

1 - a

\biggr) t(1 - a)

,

where a = L - 1
t

.

2.9. Syntactic at 0. Syntactic monoids were introduced in mathematics and
computer science as the smallest monoid that recognizes a given formal language; see,
for example, [48]. Here we develop this idea in the context of the mixing time.

Recall that for a semigroup S, denote by S1 the semigroup S with a new added
identity 1 (even if a one already exists).

Definition 2.11. Let S be a semigroup with zero 0. Define the congruence on
s1, s2 \in S by

(2.12) s1 \equiv s2 if and only if
\Bigl( 

for any x, y \in S1 xs1y = 0 \Leftarrow \Rightarrow xs2y = 0
\Bigr) 

.

Then S is called syntactic at zero if the congruence (2.12) has singleton classes, that
is,

S/ \equiv \sim = S.
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We call S/ \equiv the syntactic image of S, which is syntactic at zero. In other words, the
syntactic semigroup associated to S is the smallest image under the homomorphism
f : S \rightarrow S/ \equiv such that f - 1(0) = 0.

Example 2.12. Consider the semigroup S = \{ 0, 1, 2, . . . , n\} , where multiplication
is taking the minimum. The \equiv -classes are given by \{ 1, 2, . . . , n\} and \{ 0\} . Hence, the
syntactic semigroup S/ \equiv associated to S is isomorphic to \{ 0, 1\} with multiplication
being minimum.

Example 2.13. The Rees matrix semigroup (S; I, I \prime ;P ) is indexed by a semigroup
S, two nonempty sets I and I \prime , and a matrix P indexed by I and I \prime with entries
pi\prime ,i \in S (see, for example, [39, section 3.4]). It is the set I\times S\times I \prime with multiplication

(i, s, i\prime )(j, t, j\prime ) = (i, spi\prime ,jt, j
\prime ).

The Rees matrix semigroup with zero (S; I, I \prime ;P )\square is the set I \times S \times I \prime \cup \{ \square \} , where
the entries in P are in S \cup \{ \square \} , with multiplication

(i, s, i\prime )(j, t, j\prime ) =

\Biggl\{ 

(i, spi\prime ,jt, j
\prime ) if pi\prime ,j \not = \square ,

\square otherwise.

Then the syntactic image of (S; I, I \prime ;P )\square is isomorphic to (\{ 1\} ; \~I, \~I \prime ; \~P ), where \~P is
a matrix of 0 and 1 without equal rows or columns.

It turns out that we can replace a semigroup with zero with its syntactic image
without changing the upper bound on the mixing time of the underlying Markov
chain, but the stationary distribution can change.

Theorem 2.14. Let (S,A) be a finite semigroup S with zero and generators A,
whose minimal ideal K(S) is a left zero semigroup. Then the Markov chains associated
to (S,A) and (S/ \equiv , f(A)) have the same upper bound \sansP \sansr (\tau > t) on the mixing time.

Remark 2.15.
1. If the probability associated to the generator a \in A is xa, then the probability

associated to the generator b \in f(A) is
\sum 

a\in f - 1(b) xa.
2. Note that the stationary distributions of the Markov chains associated to

(S,A) and (S/ \equiv , f(A)) may differ.

Proof of Theorem 2.14. Let \scrS be the semaphore code corresponding to the ideal
K(S). Then for a codeword s \in \scrS , f(s) is a codeword in the semaphore code corre-
sponding to K(S/ \equiv ). If the probabilities match up as in Remark 2.15, the random
variable \tau matches, and hence the upper bound on the mixing time determined from
\sansP \sansr (\tau > t) matches.

Theorem 2.14 is powerful in the sense that the upper bound on the mixing time for
Markov chains with potentially complicated stationary distributions can be deduced
from those for small semigroups which are syntactic at zero.

Example 2.16. Let us continue with Example 2.12. The semigroup (S,A) with
S = \{ 0, 1\} , A = \{ a, b\} , and a = 0, b = 1 is syntactic. The minimal ideal K(S) is
A \star aA \star , and the semaphore code is \scrS = b \star a = \{ bja | j \geqslant 0\} . The left action on \scrS is
given by

a \cdot bja = a (reset to a),

b \cdot bja = bj+1a (free)
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with stationary distribution

\Psi bja = xj
bxa for j \geqslant 0.

Note that

E[\tau ] =
\infty 
\sum 

j=0

(j + 1)xj
bxa = xa

\partial 

\partial xb

\left( 

 

\infty 
\sum 

j=0

xj+1
b

\right) 

 = xa

\partial 

\partial xb

xb

1 - xb

=
xa

(1 - xb)2
=

1

xa

.

In contrast, let us compute

\sansP \sansr (\tau > t) =
\infty 
\sum 

j=t

xj
bxa =

xax
t
b

1 - xb

= xt
b.

Indeed \sansP \sansr (\tau > t) \leqslant E[\tau ]
t+1 as in Example 2.8.

Example 2.17. We can amend Example 2.16 by making the semigroup finite and
aperiodic by imposing bw = bw+1. Using the methods in [39] (or comparing the inflow
with the outflow), the stationary distribution can be derived to be

\Psi bja = xj
bxa for 0 \leqslant j < w,

\Psi bwa =
xax

w
b

1 - xb

.

The associated syntactic semigroup is (\{ 0, 1\} , A), which means by Theorem 2.14 that
the upper bound on the mixing time is unchanged, even though the stationary distri-
bution is different.

Example 2.18. Let (S,A) be an arbitrary finite semigroup with generators A =
\{ a1, . . . , ak\} (with or without zero). Let S\square be the semigroup with a zero \square adjoined.
Then

\Bigl( 

S\square / \equiv 
\Bigr) 

= (\{ \square , 1\} , A \cup \{ \square \} ).

In this setting the stationary distribution can be complicated; however, the upper
bound on the mixing time is trivial by Theorem 2.14

\sansP \sansr (\tau > t) = (1 - x\square )
t.

Example 2.19. Consider the Rees matrix semigroup S = B(2) of [39, Example
3.3] with generators A = \{ a, b\} , where a = (1, 2) and b = (2, 1). The minimal ideal
K(S) is A \star \{ aa, bb\} A \star with semaphore code

\scrS = \{ (ab) \star aa, (ba) \star bb, b(ab) \star aa, a(ba) \star bb\} .

The left action on \scrS is given by

a \cdot (ab)jaa = aa (reset),

a \cdot (ba)jbb = a(ba)jbb (free),

a \cdot b(ab)jaa = (ab)j+1aa (free),

a \cdot a(ba)jbb = aa (reset),

and similarly with a and b interchanged. Note that
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\sansP \sansr (\tau > 2k) =
\infty 
\sum 

j=k

(x2
a + x2

b + xa + xb)(xaxb)
j =

(xaxb)
k(x2

a + x2
b + 1)

1 - xaxb

= 2(xaxb)
k,

\sansP \sansr (\tau > 2k + 1) =
\infty 
\sum 

j=k

(x2
a + x2

b + x2
axb + x2

bxa)(xaxb)
j =

(xaxb)
k(x2

a + x2
b + xaxb)

1 - xaxb

= (xaxb)
k,

which by Theorem 2.1 gives an upper bound on the mixing time.

Example 2.20. Consider the Rees matrix semigroup (see Example 2.13) with I =
I \prime = \{ 1, 2\} , S = \{ 0, 1\} ,

P =

\biggl( 

1 1
0 1

\biggr) 

,

and generators A = \{ a, b\} with a = (1, 1, 2) and b = (2, 1, 1). The minimal ideal is
A \star aaA \star with semaphore code \scrS = b \star (abb \star ) \star aa. The left action on \scrS is given by

a \cdot bj

\Biggl( 

\ell 
\prod 

k=1

abbek

\Biggr) 

aa =

\Biggl\{ 

abj
\Bigl( 

\prod \ell 
k=1 abb

ek

\Bigr) 

aa if j > 0 (free),

aa if j = 0 (reset),

b \cdot bj

\Biggl( 

\ell 
\prod 

k=1

abbek

\Biggr) 

aa = bj+1

\Biggl( 

\ell 
\prod 

k=1

abbek

\Biggr) 

aa (free).

In this case, the bound on the mixing time is given by

\sansP \sansr (\tau > k) = x2
a

\sum 

j\geqslant k - 1

\lfloor j
2 \rfloor 
\sum 

i=0

\biggl( 

j  - i

i

\biggr) 

xi
ax

j - i
b .

2.10. Ideals and \bfitd -testable languages. As we have seen, ideals are important
in the study of Markov chains in the context of semigroups. In addition, ideals are
closely related to semaphore codes.

Let (Sj , A) be two semigroups with zero for j = 1, 2 with the same generating
set A and Ij the ideal of strings in A+ that is zero in (Sj , A) for j = 1, 2. Let \scrS j for
j = 1, 2 be the semaphore code associated to the ideal Ij . Recall that through the
left action of A+ on \scrS j we have two Markov chains.

Remark 2.21 (ideal principle). If I1 \subseteq I2, the upper bound on the mixing time
of the Markov chain associated to \scrS 2 is smaller or equal to the upper bound on the
mixing time of the Markov chain associated to \scrS 1.

Remark 2.21 is true since by [6, Corollary 3.5(3)] the mixing time is bounded
above by P  \star t(S \setminus K(S)) (see Theorem 2.1). If I1 \subseteq I2, we hence have

P  \star t(S2 \setminus I2) \leqslant P  \star t(S1 \setminus I1),

since Ij consists of all words in A+ which are zero in Sj .
By Remark 2.21 we want to study Markov chains with the smallest ideals as

they have the worst mixing time. To this end, we will study the complete lattice of
ideals of A \star . All ideals (including \emptyset ) of A \star form a complete lattice under union and
intersection.

Lemma 2.22. Every nonempty ideal I has a descending chain

I \supset A \star t1A
 \star \supset A \star t2A

 \star \supset \cdot \cdot \cdot \supset A \star tkA
 \star \supset \cdot \cdot \cdot .
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Proof. Since I \not = \emptyset , there exists an element t1 \in I. The unique smallest length
element in A \star t1A

 \star is of length | t1| . Choose t2 \in A \star t1A
 \star with | t2| > | t1| . Then

A \star t1A
 \star \supset A \star t2A

 \star , and repeat.

Some ideals I have an infinite ascending chain

I \subset I1 \subset I2 \subset \cdot \cdot \cdot 

and some do not. Let A = \{ a, b\} . Then A \star \setminus \{ a\} , for example, does not have an
infinite ascending chain. On the other hand (compare also with Example 2.20)

A \star aaA \star \subset A \star aaA \star \cup A \star abaA \star \subset \cdot \cdot \cdot \subset 
k
\bigcup 

j=0

A \star abjaA \star \subset \cdot \cdot \cdot 

does.
Every ideal I \subseteq A+ has a unique set of minimal generators, namely, all t =

a1a2 \cdot \cdot \cdot a\ell  - 1a\ell \in I such that a1 \cdot \cdot \cdot a\ell  - 1 \not \in I and a2 \cdot \cdot \cdot a\ell \not \in I. Hence by Lemma 2.22,
the smallest ideals are of the form A \star tA \star , where | t| is big. Since by Remark 2.21
smaller ideals have worse upper bounds on the mixing times, we would like to analyze
ideals of the form A \star tA \star , where | t| is large. This is related to d-testable languages,
which are finite ideals generated by

\bigcup n
i=1 A

 \star tiA
 \star ; see [49].

Let t \in A+. The minimal automaton \sansT \sanse \sanss \sanst (t) accepting the language A \star tA \star for t =
a1a2 . . . a\ell is given as follows. There are \ell +1 states: 1, a1, a1a2, . . . , a1 . . . a\ell  - 1, a1 . . . a\ell \equiv 

0. We have q
a

 - \rightarrow qa if both q and qa are prefixes of t and otherwise q
a

 - \rightarrow 1.
Using [38, Definition 3.5], \sansT \sanse \sanss \sanst (t) can be transformed into a loop graph with loops

labeled by words w \in A+ such that | w| \leqslant \ell , w = w1 \cdot \cdot \cdot wk is not a prefix of t but
w1 \cdot \cdot \cdot wk - 1 is a prefix of t. Let us denote the set of all such words Wt. Hence the
Kleene expression for the paths in \sansT \sanse \sanss \sanst (t) is (\cup w\in Wt

\{ w\} ) \star t, and hence the stationary
distribution is

\Psi t =
xa1

\cdot \cdot \cdot xa\ell 

1 - 
\sum 

w\in Wt

\prod 

a\in w xa

.

By Theorem 2.5 we obtain

Et[\tau ] = \ell +

\sum 

w\in Wt
| w| 
\prod 

a\in w xa

1 - 
\sum 

w\in Wt

\prod 

a\in w xa

,

which gives an upper bound on the mixing time using the Markov inequality (2.1).
Theorem 2.4 can also be used to obtain an upper bound on the mixing time using the
series expansion of \Psi t.

Remark 2.23. The loop graphs in [38] are not allowed to have loops at vertex 1.
Here we do allow loops at 1. To remedy the situation, one could rename 1 by 1 and
have an edge with probability 1 from 1 to 1.

Example 2.24. Let A = \{ a, b\} and t = aba. Then \sansT \sanse \sanss \sanst (t) can be depicted by

1 a ab aba = 0
a b a
a

b

b a, b

The corresponding loop graph is

D
o
w

n
lo

ad
ed

 0
5
/1

6
/2

3
 t

o
 1

2
8
.1

2
0
.2

3
8
.9

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MIXING TIME 3045

1 a ab aba

\bullet 

\bullet \bullet 

a b a
b

aa

a

b

b

Hence the stationary distribution is

\Psi aba =
x2
axb

1 - xb  - x2
a  - xax2

b

.

By Theorem 2.5, this hence gives

Et[\tau ] = 3 +
xb + 2x2

a + 3xax
2
b

1 - xb  - x2
a  - xax2

b

.

Example 2.25. Now let us take A = \{ a, b\} and t = a\ell . In this case Wt = \{ akb | 
0 \leqslant k < \ell \} and hence

\Psi t =
x\ell 
a

1 - 
\sum \ell  - 1

k=0 x
k
axb

with an upper bound for the mixing time given by

Et[\tau ] = \ell +

\sum \ell  - 1
k=0(k + 1)xk

axb

1 - 
\sum \ell  - 1

k=0 x
k
axb

using (2.1).

3. Examples. In this section, we analyze the mixing time of several examples
using the methods developed in section 2. In section 3.1 we derive upper bounds for
the mixing time of the famous Tsetlin library [17] and in section 3.2 for edge flipping
on a line [18]. In section 3.3, we provide a new Markov chain on linear extension of a
poset with n vertices, inspired by but different from the promotion Markov chain of
Ayyer, Klee, and the last author. The mixing time of this Markov chain is O(n log n)
(Theorem 3.11).

3.1. The Tsetlin library. The Tsetlin library [17] is a Markov chain whose
states are all permutations Sn of n books (on a shelf). Given \pi \in Sn, construct
\pi \prime \in Sn from \pi by removing book a from the shelf and inserting it to the front. In
this case write \pi 

a
 - \rightarrow \pi \prime . Let 0 < xa \leqslant 1 be probabilities for each 1 \leqslant a \leqslant n such

that
\sum n

a=1 xa = 1. In the Tsetlin library Markov chain, we transition \pi 
a

 - \rightarrow \pi \prime with
probability xa. The stationary distribution for the Tsetlin library was derived by
Hendricks [26, 27] and Fill [22]:

(3.1) \Psi \pi =
n
\prod 

i=1

x\pi i

1 - 
\sum i - 1

j=1 x\pi j

for all \pi \in Sn.

The stationary distribution was derived using right Cayley graphs and their Karnofsky--
Rhodes and McCammond expansions in [39, section 3.1].

Consider the semigroup P (n), which consists of the set of all nonempty subsets of
\{ 1, 2, . . . , n\} . Multiplication in P (n) is union of sets. We pick as generators A = [n] :=
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1

\{ 1\} \{ 2\} \{ 3\} 

\{ 1, 2\} \{ 1, 3\} \{ 2, 3\} 

\{ 1, 2, 3\} 

1 2 3

2
3

1
2

3

1

3
2 1

1 2 3

1, 2 1, 3 2, 3

1, 2, 3

Fig. 2. The right Cayley graph \sansR \sansC \sansa \sansy (S,A) with S = P (3) and A = \{ 1, 2, 3\} . Transition edges

are drawn in blue.

1

1 2 3

12 13 21 23 31 32

123 132 213 231 312 321

1 2 3

2 3 1 3 1 3

3 2 3 1 2 1

1 2 3

1, 2 1, 3 1, 2 2, 3 1, 3 2, 3

1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3

Fig. 3. \sansM \sansc \circ \sansK \sansR (P (3), [3]) = \sansK \sansR (P (3), [3]), which is the Karnofsky--Rhodes expansion of the

right Cayley graph of Figure 2.

\{ 1, 2, . . . , n\} . Then the right Cayley graph \sansR \sansC \sansa \sansy (P (n), [n]) is the Boolean poset with 1
as root. The right Cayley graph for P (3) is depicted in Figure 2. Except for the loops
at a given vertex, all edges are transitional. Hence \sansM \sansc \circ \sansK \sansR (P (n), [n]) = \sansK \sansR (P (n), [n])
is a tree with leaves given by the permutations Sn of [n]. The case n = 3 is depicted
in Figure 3.

To obtain an upper bound on the mixing time, we compute E[\tau ] from the Kar-
nofsky--Rhodes expansion of the right Cayley graph. The ideal consists of the leaves
of the tree \sansK \sansR (P (n), [n]), which are labeled by permutations in Sn. Recall that E[\tau ]
can be computed via (2.2). Any path from 1 to the ideal is of length at least n. Hence
\sansP \sansr (\tau \geqslant t) = 1 for 1 \leqslant t \leqslant n.

Now for concreteness consider the loop graph G associated to the path from 1

to 12 . . . n in \sansM \sansc \circ \sansK \sansR (P (n), [n]). The contributions of the loops can be treated in a
similar fashion to Example 2.8. The Kleene expression for all paths from 1 to 12 . . . n
is given by

11 \star 2\{ 1, 2\}  \star 3\{ 1, 2, 3\}  \star . . . \{ 1, 2, . . . , n - 1\}  \star n.
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Hence we obtain (compare with (3.1))

\Psi G(x1, . . . , xn) =
x1 \cdot \cdot \cdot xn

(1 - x1)(1 - x1  - x2) \cdot \cdot \cdot (1 - x1  - \cdot \cdot \cdot  - xn - 1)

and by Theorem 2.5

(3.2) EG[\tau ] = n+
x1

1 - x1
+

x1 + x2

1 - x1  - x2
+ \cdot \cdot \cdot +

x1 + \cdot \cdot \cdot + xn - 1

1 - x1  - \cdot \cdot \cdot  - xn - 1
,

which can also be checked directly. If xi =
1
n
for all 1 \leqslant i \leqslant n, we hence have

(3.3) EG[\tau ] = n+
1

n - 1
+

2

n - 2
+ \cdot \cdot \cdot +

n - 1

1
= n

\Biggl( 

n
\sum 

i=1

1

i

\Biggr) 

.

The last equality can be proved by induction on n. It is well known that the se-
quence tn =

\sum n
i=1

1
i
 - ln(n) approaches the Euler--Mascheroni constant \gamma as n \rightarrow \infty .

Therefore
E[\tau ] = EG[\tau ] \leqslant n ln(n) + n\gamma 

and by (2.1)

\| T t\nu  - \pi \| \leqslant 
n ln(n) + n\gamma 

t+ 1
.

Nestoridi [36] has proven upper/lower bounds for the mixing time of the separa-
tion distance. Pike [37] has discussed the eigenfunctions of the transition matrix. Note
that, given the rational expression of the stationary distribution (3.1), our methods
work for general weights xi. Truncating the degree of the expansion of the stationary
distribution (3.1) gives a precise expression for an upper bound of the mixing time by
Theorem 2.4.

3.2. Edge flipping on a line. In [39, section 3.2], we treated the Markov chain
obtained by edge flipping on a line using the semigroup methods of [39]. Take a
line with n + 1 vertices. Each vertex can be either 0 or 1. So the state space is
\Omega = \{ 0, 1\} n+1 of size 2n+1. Pick edge i for 1 \leqslant i \leqslant n (between vertices i and
i + 1) with probability xi. Then with probability 1

2 make the adjacent vertices both
0 (resp., both 1). Let us call this Markov chain \scrM . This Markov chain is a Boolean
arrangement [8] for which the stationary distribution was derived in [15] and which
was also analyzed in [18].

In [39, section 3.2], we analyzed the stationary distribution in a similar fashion
to the Tsetlin library by considering the semigroup P\pm (n), which is the set of signed
subsets of [n]. That is, take a subset of [n] and in addition associate to each letter
a sign + or  - . Right multiplication of such a subset X by a generator x \in [\pm n] :=
\{ \pm 1, . . . ,\pm n\} is addition of x to X if neither x nor  - x is in X, and otherwise return
X. The minimal ideal in the Karnofsky--Rhodes expansion of this monoid is the set of
signed permutations S\pm 

n . In the Markov chain on the minimal ideal, we transition from

\pi 
a

 - \rightarrow \pi \prime with probability ya for a \in [\pm n], where \pi \prime is obtained from \pi by prepending
a to \pi and removing the letter a or  - a from \pi . The stationary distribution associated
to \pi \in S\pm 

n was computed to be

(3.4) \Psi \sansK \sansR (P\pm (n),[\pm n])
\pi =

n
\prod 

i=1

y\pi i

1 - 
\sum i - 1

j=1(y\pi j
+ y - \pi j

)
.

The stationary distribution for a word s \in \Omega for the Markov chain \scrM is a lumping

(or sum) of the \Psi 
\sansK \sansR (P\pm (n),[\pm n])
\pi in (3.4). By the same analysis as in section 3.1 the

mixing time for \scrM is of order O(n ln(n)).
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3.3. Promotion Markov chain. Let P be a partially ordered set , also known
as a poset , on n elements with partial order \preccurlyeq . A partial order must be reflexive
(a \preccurlyeq a for all a \in P ), antisymmetric (a \preccurlyeq b and b \preccurlyeq a implies a = b for a, b \in P ),
and transitive (a \preccurlyeq b and b \preccurlyeq c implies a \preccurlyeq c for a, b, c \in P ). We assume that the
elements of P are labeled by integers in [n] := \{ 1, 2, . . . , n\} such that if i, j \in P with
i \preccurlyeq j, then i \leqslant j as integers. Let \scrL := \scrL (P ) be the set of linear extensions of P
defined as

\scrL (P ) = \{ \pi \in Sn | i \prec j in P =\Rightarrow \pi  - 1
i < \pi  - 1

j as integers\} .

In computer science, linear extensions are also known as topological sortings [29,
30]. Computing the number of linear extensions is an important problem for real
world applications [28]. For example, it relates to sorting algorithms. Suppose one
wants to schedule a sequence of tasks based on their dependencies. Specifying that
a certain task has to come before another task gives rise to a partial order. A linear
extension gives a total order in which to perform the jobs. In social sciences, linear
extensions are used in voting procedures [23, 1], where voters rank the candidates
according specified traits (view on foreign policies, view on domestic policies, etc.).
A recursive formula for the number of linear extensions for a given poset P was
given in [21]. Brightwell and Winkler [13] showed that counting the number of linear
extensions is \#P -complete. Bubley and Dyer [16] provided an algorithm to (almost)
uniformly sample the set of linear extensions of a finite poset of size n with mixing
time O(n3 log n). In [4], the promotion Markov chain was introduced, which is a
random walk on the linear extensions of a finite poset P . Here we discuss a variant
of the promotion Markov chain which has mixing time of order O(n log n).

3.3.1. The model. We now explain the promotion Markov chain introduced
in [4]. For a given poset P with n vertices, the state space of the promotion Markov

chain is the set of linear extensions \scrL (P ). For \pi , \pi \prime \in \scrL (P ), we transition \pi 
\partial j
 - \rightarrow \pi \prime 

with probability x\pi j
if \pi \prime = \partial j\pi , where \partial j is the promotion operator. The promotion

operator is defined in terms of more elementary operators \tau i (1 \leqslant i < n) which
appeared in [25, 32, 47] and was used explicitly to count linear extensions in [21]. Let
\pi = \pi 1 . . . \pi n \in \scrL (P ) be a linear extension of P in one-line notation. Then

(3.5) \tau i\pi =

\Biggl\{ 

\pi 1 . . . \pi i - 1\pi i+1\pi i . . . \pi n if \pi i and \pi i+1 are not comparable in P ,

\pi 1 . . . \pi n otherwise.

In other words, \tau i acts nontrivially on a linear extension if interchanging entries \pi i

and \pi i+1 yields another linear extension. Then the promotion operator on \scrL (P ) is
defined as

(3.6) \partial j = \tau 1\tau 2 \cdot \cdot \cdot \tau j - 1.

Note that we use a different convention here to [4], where \partial j = \tau j\tau j+1 \cdot \cdot \cdot \tau n - 1. Our
convention here is compatible with the conventions for the Tsetlin library as in sec-
tion 3.1, where we moved letters to the front of the word rather than the end of the
word.

Example 3.1. Let P be the poset on four vertices defined by its covering relations
\{ (1, 4), (2, 4), (2, 3)\} . Then its Hasse diagram is the following:
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\tttwo \ttone \ttfour \ttthree 

\tttwo \ttone \ttthree \ttfour 

\ttone \tttwo \ttthree \ttfour 

\tttwo \ttthree \ttone \ttfour 

\ttone \tttwo \ttfour \ttthree 

3

32

1

1

2

2

4

4 1

4 2

3

3

3 2

4 1

1

4

Fig. 4. The promotion Markov chain digraph for the poset in Example 3.1.

r r

1 2

r r

4 3

@
@
@

This poset has five linear extensions:

(3.7) \scrL (P ) = \{ 1234, 1243, 2134, 2143, 2314\} .

The promotion Markov chain for P is depicted in Figure 4, where the vertices are the
linear extensions and an arrow labeled by i from \pi to \pi \prime indicates that \pi \prime = \partial i\pi .

We may represent the promotion operator \partial i by a | \scrL (P )| \times | \scrL (P )| -dimensional
matrix, where row k and column j contain 1 if the jth linear extension in (3.7) is
mapped to the kth linear extension in (3.7) under \partial i; the rest of the entries are zero.
For example, \partial 1 is represented by the matrix

\left( 

 

 

 

 

 

1 0 1 0 1
0 1 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

\right) 
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The right Cayley graph of the monoid generated by the matrices for the promotion
operators \partial 1, \partial 2, \partial 3, \partial 4 is depicted in Figure 5. The vertices in the right Cayley graph
are labeled by reduced words in the generators. For example, [1, 4, 1] stands for the
element \partial 1\partial 4\partial 1.

We prove some useful properties of the right Cayley graph of the semigroup S
generated by \partial i for 1 \leqslant i \leqslant n.

Proposition 3.2. Any element in K(S) can be written as \partial w1 \cdot \cdot \cdot \partial wn - 1 , where
w1, . . . , wn - 1 \in \{ 1, 2, . . . , n\} are distinct. In particular, the length of any reduced word
for the elements in K(S) is less than n.

Proof. Each element in K(S) corresponds to a linear extension in \scrL (P ). For a
given \pi \in \scrL (P ), we now construct a word w1 . . . wn - 1 with distinct letters such that
\pi = \partial w1 \cdot \cdot \cdot \partial wn - 1\pi 

\prime for all \pi \prime \in \scrL (P ). In particular, this means that \partial w1 \cdot \cdot \cdot \partial wn - 1 \in 
K(S).

Write \pi = \pi 1 . . . \pi n in one-line notation and set \pi (1) = \pi . Construct \pi (m+1)

from \pi (m) for 1 \leqslant m < n as follows. Set i
(m)
1 = 1, and then recursively find the

smallest i
(m)
j+1 > i

(m)
j such that \pi 

(m)

i
(m)
j

\prec \pi 
(m)

i
(m)
j+1

if possible. If there is no such i
(m)
j+1, set

k(m) = j. Define wm = \pi 
(m)

i
(m)

k(m)

. Next construct \pi (m+1) from \pi (m) by removing \pi 
(m)
1

and replacing \pi 
(m)

i
(m)
j

by \pi 
(m)

i
(m)
j - 1

for 2 \leqslant j \leqslant k(m).

Next we show that \pi = \partial w1
\cdot \cdot \cdot \partial wn - 1

\pi \prime for any \pi \prime \in \scrL (P ), so that \partial w1
\cdot \cdot \cdot \partial wn - 1

\in 
K(S) corresponding to the linear extension \pi . We will do so by induction on n. For
n = 2, either P is the antichain with vertex 1 incomparable to vertex 2 or 2 is bigger
than 1. In the first case, there are two linear extension \pi = 12 or 21. The algorithm
determines w = \pi 1 and indeed \partial \pi 1

(12) = \partial \pi 1
(21) = \pi 1\pi 2 = \pi . In the second case,

there is only one linear extension \pi = 12, and the algorithm determines w = 2. Indeed
\partial 2(12) = 12.

Now assume by induction that the algorithm works for posets with strictly less
than n vertices, in particular, for \pi (2) from the algorithm \pi (2) = \partial w2 \cdot \cdot \cdot \partial wn - 1\pi 

\prime for
any linear extension \pi \prime of the poset P \prime obtained from P by deleting the vertex w1.
Also, by induction w2, . . . , wn - 1 are distinct and different from w1. Note that w1

is a maximal element in P . Hence for any linear extension \pi \prime of P , we have that
\partial w2

\cdot \cdot \cdot \partial wn - 1
\pi \prime is a linear extension of P such that removing the letter w1 results in

\pi (2). Let \sigma \in \scrL (P ) be such a linear extension, that is, \sigma \setminus w1 = \pi (2). Consider the
saturated chain \pi 1 = a1 \prec a2 \prec \cdot \cdot \cdot \prec ak = w1 in P from \pi 1 to w1. Such a chain exists
by the definition of w1. In \pi (2) and hence also in \sigma the letter ak - 1 is the rightmost
letter that is covered in P by w1. This is since by the algorithm to construct \pi (2), the
letter ak - 1 replaced the letter ak = w1 in \pi . In \sigma , the letter w1 must sit to the right
of the letter ak - 1 since ak - 1 \prec w1. Hence, when acting with \partial w1

on \sigma , the letter w1

interchanges with all letters to its left until it reaches the letter ak - 1. By the action
of \tau i as in (3.5), the letter w1 will stay in the position where ak - 1 was in \sigma , and then
the letter ak - 1 starts moving left. The letter ak - 2 is the rightmost letter in \sigma that
is covered by ak - 1 in P , again by the definition of the algorithm. The letter ak - 1

replaces the letter ak - 2, and ak - 2 starts moving left, and so on. Finally, the letter
a1 = \pi 1 moves into first position. Hence \partial w1\sigma = \pi . This proves the claim.

Example 3.3. Take the poset from Example 3.1 and the linear extension \pi = 1243.
Set \pi (1) = \pi . The first sequence of increasing entries in \pi (1) is given by the underlined
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Fig. 5. Right Cayley graph for the promotion Markov chain of Example 3.1.
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entries
1243.

Hence w1 = 4 and \pi (2) = 213. The next sequence of increasing entries is given by

213.

Hence w2 = 3 and \pi (3) = 12. Next we find the increasing sequence 12 so that w3 = 1.
Indeed, comparing with Figure 5, we see that

\partial 4\partial 3\partial 1 = \partial 1\partial 4\partial 1

is in K(S).
Note that the above algorithm does not always give a shortest path to the ideal

in the right Cayley graph. For example, if \pi = 2143, the algorithm gives

2143 \rightarrow 123 \rightarrow 23 \rightarrow 2

so that w1w2w3 = 413. From Figure 5, we see that \partial 4\partial 1\partial 3 = \partial 4\partial 1 is in K(S).

The (unnormalized) stationary distribution of the promotion Markov chain was
computed in [4, Theorem 4.5]. Recall that our conventions are different from [4].

Theorem 3.4 ([4, Theorem 4.5]). The (unnormalized) stationary distribution
for the promotion Markov chain \Psi \pi for \pi \in \scrL (P ) for a finite poset P with n = | P | is
given by

(3.8) \Psi \pi =
n
\prod 

i=1

1

1 - (x\pi 1
+ \cdot \cdot \cdot + x\pi i - 1

)
.

Despite the fact that by Proposition 3.2 the right Cayley graph is shallow in the
sense that each vertex is at most n  - 1 steps away from the minimal ideal and the
existence of an explicit formula for the stationary distribution, this is not enough to
give a tight bound on the mixing time. The reason is that the expression for \Psi \pi does
not have the property required in Theorems 2.4 and 2.5 that each term of degree \ell in
its formal power sum expansion corresponds to a semaphore code word s of length \ell .
Furthermore, the R-classes (or strongly connected components) in the right Cayley
graph can become very big, especially when P has a maximal element. This makes
it hard to analyze the mixing time for the promotion Markov chain in general. Here
we propose a new Markov chain on linear extensions of a poset which gives rise to an
R-trivial semigroup (where all strongly connected components have size one).

3.3.2. A variant of the promotion Markov chain. As before let P be a poset
with n elements and \scrL (P ) the set of linear extensions of P . Denote by \scrW (P ) the set
of subwords of linear extensions in \scrL (P ) and set A = [n]. We define a semigroup on
\scrW (P ) as follows. Let w \in \scrW (P ) and a \in A. Then define

(3.9) wa =

\Biggl\{ 

w if a \in w,

\sanss \sanst \sansr \sansa \sansi \sansg \sansh \sanst (wa) if a \not \in w.

Here \sanss \sanst \sansr \sansa \sansi \sansg \sansh \sanst (wa) is defined as follows. If wa is a subword of a linear extension of P ,
then \sanss \sanst \sansr \sansa \sansi \sansg \sansh \sanst (wa) = wa. If not, write w = w1 . . . wk, and find the largest 1 \leqslant j1 \leqslant k
such that a \prec wj1 in P . Interchange wj1 and a. Repeat by finding the largest
1 \leqslant j2 < j1 such that a \prec wj2 . Interchange wj2 and a. Repeat until no further
element bigger than a exists to the left. The result is \sanss \sanst \sansr \sansa \sansi \sansg \sansh \sanst (wa).
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Example 3.5. Take the poset P of Example 3.1, w = 234 \in \scrW (P ), and a = 1. We
have 1 \prec 4, so j1 = 3. Both 2 and 3 are incomparable to 1, so we find \sanss \sanst \sansr \sansa \sansi \sansg \sansh \sanst (wa) =
2314 \in \scrL (P ).

Lemma 3.6. Let a \in A and w \in \scrW (P ) such that a \not \in w. Then \sanss \sanst \sansr \sansa \sansi \sansg \sansh \sanst (wa) \in 
\scrW (P ).

Proof. Since j1 is largest such that a \prec wj1 , either wj \prec a or wj and a are
incomparable for j1 < j \leqslant k. If wj \prec a by transitivity we find that wj \prec wj1

which contradicts the fact that w \in \scrW (P ). Hence a is incomparable with wj for all
j1 < j \leqslant k. Suppose wj1 \prec wj for some j1 < j \leqslant k. Then again by transitivity, we
have a \prec wj . This contradicts the maximality of j1. Hence wj1 is incomparable to wj

for all j1 < j \leqslant k. Therefore awj1+1 \cdot \cdot \cdot wkwj1 \in \scrW (P ). Repeating similar arguments
for the next segments (interchanging a with wj2 , etc.), we find \sanss \sanst \sansr \sansa \sansi \sansg \sansh \sanst (wa) \in \scrW (P ).

Proposition 3.7. The set \scrW (P ) together with the product defined in (3.9) forms
a semigroup.

Proof. Note that by the proof of Lemma 3.6, the letters in between any letters
that are interchanged by the product are incomparable to the interchanged letters.
By transitivity, if there are three letters that are interchanged, say wi . . . wj . . . wk

with wk \prec wj \prec wi, it does not matter in which order this is done; the end result
is wk . . . wj . . . wi. This proves that the product is associative and hence \scrW (P ) is a
semigroup with the product in (3.9).

Let us now define (\scrW (P ), A) to be the semigroup with product (3.9) and gener-
ators A = [n].

Theorem 3.8. The semigroup (\scrW (P ), A) is \scrR -trivial.

Proof. In the product, the length of the word can either stay the same or in-
crease. When the length stays the same, the word does not change. This proves that
(\scrW (P ), A) is \scrR -trivial.

Example 3.9. The right Cayley graph of (\scrW (P ), A) for the poset of Example 3.1
is given in Figure 6.

Note that the minimal ideal of (\scrW (P ), A) is the set of linear extensions \scrL (P )
of the poset P . Let \scrM (\scrW (P ), A) be the Markov chain on \scrL (P ) induced by the
semigroup (\scrW (P ), A). More precisely, we transition from \pi \in \scrL (P ) to a\pi \in \scrL (P )
with probability xa.

Proposition 3.10. \scrM (\scrW (P ), A) is ergodic.

Proof. Note that \pi \pi \prime = \pi for all \pi , \pi \prime \in \scrL (P ). Hence the graph of the Markov
chain is strongly connected, and hence it is irreducible. Furthermore, if \pi = \pi 1 . . . \pi n \in 
\scrL (P ), then \pi 1\pi = \pi , which means the Markov chain is aperiodic.

The stationary distribution for \scrM (\scrW (P ), A) is given by

\Psi \pi =
\sum 

\sigma \in Sn

[\sigma ]\scrW (P )=\pi 

\Biggl( 

n
\prod 

i=1

x\sigma i

1 - 
\sum i - 1

j=1 x\sigma j

\Biggr) 

for all \pi \in \scrL (P ).

Theorem 3.11. The expected value E[\tau ] for \scrM (\scrW (P ), A) is bounded above by
n ln(n) + n\gamma .
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Fig. 6. The right Cayley graph of (\scrW (P ), A) for the poset of Example 3.1.
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(\ttone , \tttwo , \ttfour , \ttthree )

(\tttwo , \ttone , \ttfour , \ttthree )

(\tttwo , \ttthree , \ttone , \ttfour )

(\tttwo , \ttone , \ttthree , \ttfour )

(\ttone , \tttwo , \ttthree , \ttfour )

4 1

2

3

1

4 2

3

3 2

4

1

4

3

2

1

4

32

1

Fig. 7. The Markov chain \scrM (\scrW (P ), [4]) for the poset of Example 3.1.

Proof. For a word w \in \scrW (P ), its length | w| = k is bounded by 0 \leqslant k \leqslant n. For a
word of length | w| = k, there are n - k transition arrows in \sansR \sansC \sansa \sansy (\scrW (P ), A) originating
at w, given by all the letters that do not appear in w. Hence by the same arguments
as for the Tsetlin library, E[\tau ] \leqslant n ln(n) + n\gamma .

Remark 3.12. Note that the Markov chain \scrM (\scrW (P ), A) is not identical to the
promotion Markov chain. For example, left multiplication by 4 on 2143 in (\scrW (P ), \{ 1, 2,
3, 4\} ) for the poset in Example 3.1 yields 2143, whereas we see from Figure 4 that
in the promotion Markov chain 2143 goes to 1243 under \partial 4. The full Markov chain
transition diagram is given in Figure 7.

Theorem 3.11 shows that the mixing time for \scrM (\scrW (P ), [n]) is of order O(n log n).
Of course, this does not take the computational complexity of computing the prod-
uct (3.9) into account. For a word of length k, this involves up to k swaps.

Acknowledgments. We are grateful to Arvind Ayyer, Darij Grinberg, John
Hunter, Stuart Margolis, Igor Pak, Dan Romik, Eric Severson, Benjamin Steinberg,
and Andrew Waldron for discussions.
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