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permutations
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Zabrocki

ABSTRACT We study the representation theory of the uniform block permutation algebra in
the context of the representation theory of factorizable inverse monoids. The uniform block
permutation algebra is a subalgebra of the partition algebra and is also known as the party
algebra. We compute its characters and provide a Frobenius characteristic map to symmetric
functions. This reveals connections of the characters of the uniform block permutation algebra
and plethysms of Schur functions.

1. INTRODUCTION

The partition algebra arose in the early 1990s in the work of Martin [16, 17, 18,
15] and Jones [9] in the context of the Potts model in statistical mechanics. It is a
generalization of the Temperley—Lieb algebra and can be formulated in terms of an
important question in invariant theory: If a group G acts on an n-dimensional vector
space V', how does V®F decompose into irreducible representations of G? This question
can be studied using the centralizer algebra Endg(V/®*). The partition algebra is
isomorphic to this centralizer algebra when the group G is the symmetric group
&, [9, 17], that is, Endg, (V®*) ~ Py(n).

Inspired by this work, Tanabe [28] considered the case when (7 is a unitary reflection
group G(r,p,n), where G(r, 1,n) is a group of n. x n. monomial matrices whose nonzero
entries are r-th roots of unity and G(r,p,n) is a subgroup of index p in G(r,1,n).
Kosuda [10, 12] studied the party algebra U}, which corresponds to the subcase p = 1,
n 2 k and r > k. The party algebra is a subalgebra of the partition algebra Py (n).
Elements in the party algebra can be viewed as bijections between blocks of the same
size of two set partitions of {1,2,...,k} of the same type. To quote from Kosuda [10]:

Suppose that there exist two parties each of which consists of n mem-
bers. The parties hold meetings splitting into several small groups.
Every group consists of the members of each party of the same num-
ber. The set of such decompositions into small groups makes an alge-
bra called the party algebra under a certain product.™
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Since the block sizes of the two set partitions are required to match, this algebra is
also known as the uniform block permutation algebra [4], which is the terminology
we will use in this paper.

FIGURE 1. An example diagram representing an element of the uni-
form block permutation monoid Uy. The connected components of
the graph visually represent the blocks of the set partitions. Each
connected component contains the same number of elements in the
top row as in the bottom row.

In this paper, we study the representation theory of the uniform block permutation
algebra Uy. It is an interesting, nontrivial example of a factorizable inverse monoid.
We use the general theory of finite inverse monoids to develop the representation the-
ory of Uy,. This relies on theorems due to Clifford [2], Munn [20] and Ponizovskil [22]
and the explicit constructions given in [23, 13]. The exposition and notation we fol-
low here is found in [5, 27]. In particular, by characterizing the idempotents, the
maximal subgroups, the #-classes and the .#-classes of Uy, the Schiitzenberger rep-
resentations can be employed to construct the irreducible representations of Uy. The
representations that we obtain very nicely extend Young's construction of the irre-
ducible representations of symmetric groups: instead of a symmetric group action on
standard tableaux we obtain a monoid action on sequences of set-valued tableaux.
The action can be described on a basis indexed by combinatorial objects using famil-
iar and well-used relations on tableaux, rather than operations on paths in a Bratteli
diagram as appears in the construction by Kosuda [12].

We also compute the irreducible characters of the uniform block permutation alge-
bra U, and relate them to symmetric functions by defining a Frobenius characteristic
that maps a class function of Uy to an element of the k-fold tensor product of the
symmetric functions. More precisely, each irreducible representation of U4y, is indexed
by a k-tuple of partitions X = (A, A2 ... A\(®)) such that 3¢ i|A@| =k, and the
associated symmetric function of the character of the restriction of this representation
to & is

Syl [Sl]SAfzj [32] o 8y(k) I.S’k],
where s, is the Schur function indexed by a partition A and sy[sy] is the plethysm of
s, with the Schur function s;, indexed by a single row. In this sense, the representation
theory of U}, gives a novel representation theoretic approach to plethysm.

Furthermore, having the image of the characters under the Frobenius map reduces
the computation of the characters to a computation on symmetric functions. In a 2005
talk, Naruse presented (without proof) several results on the characters of the Tanabe
algebra, and hence as a special case the uniform block permutation algebra U [21].
This included character tables for ) for small values of k. Using the symmetric
function connection that we establish, these tables can be verified. We are not aware
of any other proofs of Naruse’s results in the literature.

In a subsequent paper, we will consider the restriction from the general linear group
GL,, to the symmetric group &,, which involves the same restriction coefficients as
the restriction of the partition algebra Py (n) to the symmetric group &. The uniform
block permutation algebra can be viewed as an intermediate step in this restriction,
see 7, Section 4.1]. The restriction from the partition algebra Py (n) to the uniform
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block permutation algebra U}, involves the Littlewood—Richardson rule, whereas the
restriction from Uy to &y involves the plethysm operation.

To conclude, let us compare our approach in this paper with existing constructions
in the literature. Irreducible matrix representations of Uy were previously constructed
by Kosuda [12] by defining a tower of algebras Ux C Ux+1. In Kosuda’s approach [12],
the rows of the matrices are indexed by paths in the Bratteli diagram of the tower of
monoid algebras and the action is defined over the field Q(v2,/3,...,Vk). In con-
trast, we use the theory of finite monoids to construct the irreducible representations
of Uy, in terms of tuples of set-valued tableaux and the action is expressed in the ba-
sis with coefficients that are integers. The bijection between the tuples of set-valued
tableaux that we use here and the path model used by Kosuda [12] is similar to the
bijection described in [3] relating the path model for diagram algebras and set-valued
tableaux. Set-valued tableaux also appear in the construction of the representations
of the partition algebra and sub-diagram algebras by Halverson and Jacobson [6].

This paper is organized as follows. In Section 2, we introduce uniform block per-
mutations and describe the monoid structure on them. In particular, we provide a
presentation of the monoid of uniform block permutations U and show that it is an
inverse monoid. In Section 3, we compute the maximal subgroups, _#- and .#-classes
of Uy. Using Schiitzenberger representations, this makes it possible to construct the
irreducible representations of U,. The characters of U are computed in Section 4.
Finally, in Section 5 the connection of the characters with symmetric functions is
established.

2. THE MONOID OF UNIFORM BLOCK PERMUTATIONS

After some preliminary notation in Sections 2.1 and 2.2 on partitions and set parti-
tions, we define uniform block permutations U}, in Section 2.3 and give its monoid
structure in Section 2.4. We show in Section 2.5 that every element of U} is a product
of an idempotent and a permutation. We recall a presentation of U} in Section 2.6
and we conclude in Section 2.7 with a proof that I} is an inverse monoid.

2.1. PARTITIONS. A partition of a positive integer k is a nonincreasing sequence A =
(A1, ..., Ag) of positive integers such that A+ -+, = k. We write |A| for Ay +- -+,
and call \; the parts of A. The length of the partition X is £(\) = £. We write A - k
to mean that A is a partition of k. We declare that the empty sequence () is the
unique partition of 0, and we denote this by @. We will often use exponential notation
for partitions in which b consecutive occurrences of the part i is denoted by i?: for
example, (4,4,4,2,1,1,1,1) can be denoted (1%2143).

We use Young diagrams to represent partitions. If A = (Aq, ..., A¢) is a partition of
k, then the Young diagram of A is the left-justified array of k cells (or boxes) with A;
cells in the i-th row. We use French notation, so that the largest row is at the bottom.
This may be upside down from what is sometimes used in representation theory.

For every nonnegative integer k, we define

k
1) L= { ()\(1), A2 A(k)) : A9 are partitions such that Zé|x(*)| = k} .

i=1

We denote elements in I, as X = (AD, ..., A(®)), We will see that the elements of
I;, index the irreducible representations of the uniform block permutation algebra
Uy.. In examples the elements of I, will be expressed by dropping the trailing empty
partitions in the list of partitions so that, for instance, the element (2, (2), 2, ) of I,
will be displayed without loss of information as (2, (2)).
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R. ORELLANA, F. SavLioLa, A. SCHILLING & M. ZABROCKI

2.2. SET PARTITIONS. A set partition w of a set X is a collection of nonempty subsets
{m1,...,m¢} of X such that m; Nm; = @ for all i # j and Ulem- =X. Weusen kX
to denote that 7 is a set partition of X. The subsets m; are called the blocks of .

If 7 = {m,...,m¢} is a set partition of [k] = {1,2,...,k}, then we order the blocks
in 7 using the graded last letter order: if A and B are two blocks, then A < B in the
graded last letter order if either |A| < |B| or if |A| = |B|, then max(A) < max(B).
For example, the blocks of m = {{4}, {1,6}, {3, 8},{2,5,7}} are listed in graded last
letter order.

To simplify notation, we often write the set partitions by separating the blocks by
vertical lines. For example, the set partition = = {{4}, {1, 6}, {3,8}, {2,5,7}} will also
be denoted by 7 = 4|16|38|257.

The type of a set partition 7, denoted type(), is the (integer) partition formed by
the sizes of the blocks of 7. For example,

type(4/16|38|257) = (3,2,2,1) = (1,22,3).
The number of set partitions of type A = (191,292 ... k%) is

k!
(2) 5pk(’\) = ﬂ.ll“'ﬁk!(ll)ﬂl(z!)az (kl)ﬂx

Set partitions are ordered by refinement: if w and + are two set partitions, then we
say that 7 is finer than + and that v is coarser than , if every block of 7 is a subset
of some block of 4. In that case, we write m < .

Given a set partition m = {my,..., 7} b [k] and permutation o € &, we define
a(m) = {o(m),...,0(m)}, where a(A) = {c(a) : a € A} for every subset A C [k].
Since |A| = |o(A)| for all A C [£], it follows that m and &(7) have the same type.

2.3. UNIFORM BLOCK PERMUTATIONS. We define the set of uniform block permu-
tations Uy and give three equivalent ways to view its elements: as set partitions of
[k] U [k]; as size-preserving bijections between the blocks of two set partitions; as
two-row diagrams. We will use these interpretations interchangeably throughout the

paper.

2.3.1. Set partitions of [k] U [k]. For nonzero k € N, define
k] ={1,...,k} and k] ={1,...,k}.

For each a € [k], we define @ = a so that a — @ as an involution on [k] U [k].

Let d = {dy,d,,...,d;} be a set partition of [k] U [k]. We say that d is uniform if
|d; N [k]| = |di N [k]| for all 1 < i < £. Let Uy be the set of uniform set partitions of
[k] U [K]:

Uy, = {d+ [k] U[k] : d uniform}.

Let top(d) be the set partition of [k] consisting of the blocks d; N [k] for 1 €2 < /£
and bot(d) the set partition of [k] containing the blocks d; N [k] for 1 € i < £, where
d; ={a:a € d;}. For example,

d = {{2,&}: {5, '?}5 {1! 3! I, Q}, {4, 6! 3, 6}, {75 85 9! 5585 g}}5
top(d) = {{2},{5},{1,3},{4,6},{7,8,9}},
bot(d) = {{4}, {7}, {1,2},{3,6},{5,8,9}}.

When writing set partitions, we list the blocks in graded last letter order.
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2.3.2. Size-preserving bijections between set partitions of [k]. Tt is useful to think of
d as the size-preserving bijection d: top(d) — bot(d) that maps d; N [k] to d; N [k].
Continuing the previous example, the bijection associated with d, expressed in two-
line notation, is

({2} {5} {1,3} {4,6} {7, 8,9})
{4} {7} {1,2} {3,6} {5,8,9} /-

For this reason, the elements of Uy, are called wuniform block permutations. With this
interpretation, it follows that the number of elements in Uy is

|le| = Z spk()\)2a1!---ak!.

A=(101, k%K )k
Starting with k£ = 0, the sequence of || begins
1,1,3,16,131, 1496, 22482, 426833, . ..

and is listed as sequence A023998 in the Online Encyclopedia of Integer Sequences

[8].

2.3.3. Diagrams. A graph on the vertex set [k] U [k] represents a set partition d F
[k] U[k] if (the vertices of) the connected components of the graph are the blocks of d.
We draw these graphs by arranging the vertices in two rows: 1,2, ...,k appear from
left to right in the top row; and 1,2,...,k from left to right in the bottom row. In

this way, the graph

represents the set partition {{1,3,1,2},{2,4},{4,6,3,6},{5,7},{7,8,9,5,8,9}}. We
call this the (two-row) diagram of the set partition. Notice that it is possible that
more than one graph represents a given set partition; therefore, a diagram represents
a class of labeled graphs that have the same connected components.

2.4. MoNOID STRUCTURE. We next define a monoid structure on the set of all set
partitions of [k] U [k]. It follows from this definition that the product of two uniform
block permutations is again a uniform block permutation, from which we obtain a
monoid structure on U;.

Let d,d’ € Uy, (or more generally, any pair of set partitions [k]U [k]), which we view
as diagrams. The product dd’ is defined as follows:

e stack d on top of d' so that the bottom vertices of d line up with the top
vertices of d’;

e compute the connected components of the resulting three-row diagram;

e eliminate the vertices of the middle row from the connected components.

ExaMPLE 2.1. We illustrate the product of the following two set partitions:

Algebraie Combinatorics, Vol. 5 #5 (2022) 1169
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The product dd’ is the set partition whose blocks correspond to the connected com-
ponents of the diagram obtained by stacking the diagrams of d and d’:

This multiplication of diagrams is associative and the product of two uniform
block permutations is a uniform block permutations, and hence makes Uy, into a finite
monoid whose identity element is

{{1,1},{2,2},....{k,k}} = II I

Since connected vertices in the top row of d remain connected in dd’, it follows that
the set partition top(dd’) is coarser than or equal to top(d). Similarly, the set partition
bot(dd') is coarser than or equal to bot(d'). Furthermore, any block of dd’ contains
at least one block of top(d) and at least one block of bot(d'). If n(d) is the number of
blocks in a diagram d, then for all d,d’ € Uy,

n(dd’) < min{n(d), n(d')}.

REMARK 2.2 (Diagram multiplication and composition of bijections). As explained in
Section 2.3.2, it is often useful to think of diagrams d as bijections d : top(d) — bot(d)
that preserve block-size, and so we highlight some important nuances of this approach.

If d : top(d) — bot(d) and d’' : top(d') — bot(d’) satisfy top(d') = bot(d), then
the composition of d and d’ is defined, and the resulting bijection is precisely the one
associated with the product dd’. In particular, in this case, dd’ maps a block B to the
block d'(d(B)).

The inverse of a bijection d : top(d) — bot(d) is obtained by reflecting the diagram
of d across a horizontal line, which we denote by d (cf. Section 2.7). Note that dd is
the identity mapping on top(d) and dd is the identity mapping on bot(d), which are
not necessarily equal to the identity element of Uy. However, they are idempotents of
U, (cf. Lemma 2.3).

2.5. PERMUTATION-IDEMPOTENT AND IDEMPOTENT-PERMUTATION DECOMPOSI-
TIONS. We prove that every uniform block permutation can be factored as a product
of a permutation and an idempotent, and also as a product of an idempotent
and a permutation. We begin by embedding the symmetric group &, in U}, then
we characterize the idempotents in U, and finally we prove the existence of the
factorizations.

2.5.1. Permutations. Let &) denote the symmetric group consisting of the permu-
tations of the set [k]. We identify each permutation o € &; with the uniform block

permutation {{1,0(1)},...,{k,o(k)}}, which we also denote by o. Note that the di-
agram representing o is the diagram with an edge connecting i and m. (Observe
that under this identification, the product of two permutations oy0; maps i € [k] to
o2(o1(2)) instead of o1 (o3(i)); ef. Remark 2.2.) For instance, if s; is the permutation

that swaps 7 and i + 1 and fixes all other elements of [k], then

si = {{L,1},... {i,i+1}h{i+1,3},... . {kEk}} = I I >< I I

Algebraie Combinatorics, Vol. 5 #5 (2022) 1170
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2.5.2. Idempotents. For every set partition 7 of [k] we define the following element of
U:

exr = {AUA: A€ n} €Uy,
where A = {i : i € A}. For example,

o [+]
€2|7]14/36/580 = :;j .
L] o

It is not hard to see that e, is an idempotent, and the next result proves that all
the idempotents in U}, are of this form.

LEMMA 2.3. The set E(Uy) = {ex : w - [k]} is a complete set of idempotents in U,.

Furthermore, if Iy is the lattice of set partitions of [k] viewed as a monoid with the
join operation V, then the map m — e is monoid isomorphism from Iy to E(Us).
Thus,

ExEy = Exvyy.
Proof. Suppose d € Uy is an idempotent. We will prove that d = eyop(qy, Where

Etop(d) = {(di N [k]) U (d; N [k]) : d; is a block of d} .

We need to prove d; = (d; N [k]) U (d; N [k]) or equivalently, d; N [k] = d; N [k].

Let us first show that it suffices to prove bot(d) = top(d). Let & : top(d) — bot(d) be
the bijection associated with d that maps d;N[k] to d; N[k]. Then § is a permutation of
top(d) and §o4d is the bijection associated with dd. Since dd = d, it follows that dod = §,
and thus § is the identity mapping. Hence, d; N [k] = é(d; N [k]) = d; N [k] = d; N [k].

We now prove bot(d) = top(d); more specifically, if d; N [k] € top(d), then d;N[k] €
bot(d). Consider the three-row diagram constructed by stacking d on top of a second
copy of d, which we denote by d’. We will refer to the three vertices occurring in a
column by v,, v/, and v}/, with v, in the top row, v/ in the middle row, and v/ in the
bottom row.

View d; as a connected component of d and let d; be the corresponding component
of d'. Write top(d;) = {v1,...,v} and top(d;) = {vi,...,v;}. To prove d; N [k] €
bot(d), it suffices to prove v{,...,v; belong to the same connected component of d’.

For each v/, pick u/, such that u! and v/ are in the same connected component of
d'. Then u, and v, are in the same connected component of d. Since vi,...,v; € d},
and d] is a connected component, it follows that uy, ..., wu are in the same connected
component of dd’. Since d is idempotent, the connected components of dd’ and d
coincide (up to relabelling). Thus, uy, ..., u, are in the same connected component of
d. Consequently, uf,...,u} are in the same connected component of d’, and thus so
are vf,...,vy. |

EXAMPLE 2.4. There are 5 idempotents of U3 corresponding to the 5 set partitions of
[3]. These are depicted below:

O S S S =

2.5.3. Permutation-idempotent and idempotent-permutation decompositions. We now
prove that every uniform block permutation can be factored as the product of a
permutation and an idempotent; for example,

e R B
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It turns out that the idempotents in the above decomposition are determined by d:
they are €iop(d) and epoy(q), respectively. However, the permutation is not unique.

PROPOSITION 2.5. For every d € Uy and every o € &y, satisfying o(BN[k]) = BN [k]
for all blocks B of d, we have

d = €top(d) T = T€ bot(d)-

Consequently,
U = E(Uy) 6k = 6 E(Ux).

REMARK 2.6. A monoid M is said to be factorizable if M = GE, where G is a subgroup
of M and E is a set of idempotents in M. Thus, Proposition 2.5 states that U, is
factorizable.

Proof of Proposition 2.5. Recall from Section 2.3.2 that every uniform block permu-
tation d € Uy, is associated with the size-preserving bijection defined by

top(d) — bot(d)
Bn[k| — BNk

where B ranges over all blocks of d. If ¢ is any permutation in &y satisfying o(B N
[k]) = B N [k] for all blocks B, then o1 o d maps each block B N [k] to itself, and
so it is the bijection associated with the idempotent eip(q). Thus, in Ui we have
do~ 1= Etop(d)- O

2.5.4. Properties of idempotents. The following lemma collects some useful properties
of the idempotents in U}, that we use throughout the paper. They can be proved
directly from the definition of the product of two diagrams.

LEMMA 2.7. Let 7 = [k], T € & and d € Uy.

(a) & =ex.

(b) top(tes) = 77 1(x) and bot(e,T) = (7).

(c) Tex7l=e, L(x); CONSequently, exT = Te,(y) and Tex = €, 1(n)T.
(d) Btop(d)d =d and debot(d) =d.

(e) bot(der) and top(erd) are coarser than or equal to .

2.6. PRESENTATION OF Uj,. We recall here a known presentation of Uj; see [4, 10, 11].
For 1 < i < k, set s; = {{1,1},...,{i,a +1},{i + 1,4},...,{k,k}}, which corre-
sponds to the permutation in &, that swaps i and i + 1, and b; = {{1,1},..., {i,i +
1,i,i+1},...,{k, k}}. As diagrams

Then s;,b; for 1 €1 < k — 1 generate U subject to the following relations:

1) s?2=1, 1<i<k-1 (2) b2 =b;, 1<i<k-1

(3) sisiz18: = Siy18i8i41, 1<i<k—2 (4) sibiy18 = siy1bisiyr, 1<i<k—2
(5) sis; = 858, |i—j|>1 (6) bys; = s;b;, |i—j|>1

(7) bisi = sibi = b, 1<i<hk—1 (8) bib; = bjb;, 1<i<k—L

Algebraic Combinatories, Vol. 5 #5 (2022) 1172
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2.7. Uy 1S AN INVERSE MONOID. We prove that Uy, is an inverse monoid, which will
allow us to make use of known results for this class of monoids (see [27, Chapter 3]).

A monoid M is called an inverse monoid if for every x € M, there exists a unique
element z* € M, called the generalized inverse of z, satisfying xz*x = x and z*zz* =
z*.
Given a set partition d of [k] N [k], let d denote the set partition whose diagram
is obtained by reflecting the diagram of d across a horizontal line. Note that if d is
uniform, then d is also uniform. If d is a permutation in Gy, then d is precisely the
inverse of the permutation. Furthermore, it can be verified directly using diagrams
that _

ddd = d, ddd = d, dd' = d'd, d=d.

Using the fact that the idempotents of Uy commute (Lemma 2.3), one can prove
that d is the unique element satisfying ddd = d and ddd = d: see the proof of [27,
Theorem 3.2].

PROPOSITION 2.8.

(1) Uy is an inverse monoid, where the generalized inverse of d € Uy, is d.

(2) E(Uy) is a commutative inverse monoid that is generated by (i +1,7)b:(i + 1, 7)
for 1 <i < j <k, where (i+1,7) is the transposition in Gy, that swaps i+ 1 and
7.

3. IRREDUCIBLE REPRESENTATIONS OF U},

We will develop the representation theory of Uy using results from the representation
theory of finite monoids as presented in the excellent book by Steinberg [27]. We begin
with a very brief overview to guide our development.

Let M be a finite monoid. Given an idempotent e € M, there is a unique largest
subgroup of M that contains e, which is called the maximal subgroup of M at the
idempotent e and denoted by G.. The irreducible (complex) representations of M
(i.e. the simple CM-modules) are determined by the irreducible representations of the
maximal subgroups G.. We describe the maximal subgroups of 14, in Section 3.1. Two
maximal subgroups G, and G of M are isomorphic if the idempotents e and f are
F -equivalent. This equivalence relation is defined in Section 3.2, where we determine
the _#-classes of Uy. In Section 3.3 we describe the irreducible representations of the
maximal subgroups of Uy.. The construction makes use of an auxiliary representation
called the Schiitzenberger representation that we describe in Section 3.4. In Section 3.5
we construct all the irreducible representations of Ufy. Finally, in Section 3.6 we give
a tableau model for the irreducible U, -representations.

3.1. MAXIMAL SUBGROUPS OF Uj. As explained above, the representation theory of
U,. can be expressed in terms of the representation theory of its maximal subgroups,
and the subsequent results will describe their structure. The next result identifies the
maximal subgroups of Uf;. Recall that every idempotent of . is of the form e, where
7 is a set partition of [k] (cf. Lemma 2.3).

LEMMA 3.1. Let e, € Uy, be the idempotent corresponding to a set partition w + [k].
The mazimal subgroup of Uy, at the idempotent e, is

Ge, ={d €Uy :dd=dd = e,} = {d € Uy : top(d) = bot(d) = m}.

Proof. Let G, be the maximal subgroup of U}, associated with e,. Since I, is an

inverse monoid, G, consists of all elements d of Uy such that dd = dd = er [27,
Corollary 3.6].
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Suppose top(d) = bot(d) = w. By Proposition 2.5, there exists o € &, satisfying
d = oe, = ezo and o(n) = 7. Thus,

dd = (exo ') (0es) —er and dd = (oe,)(exo ) = e, L(r) = Ex-
Conversely, suppose that dd = dd = e,. Write d = Tepot(d) With & € G. Then
er =dd = (Bbot(d)a_l] (0€bot(a)) = €bot(a)s
ex = dd = (0b01(a)) (bot(@)7 ) = €01 (bor(a));
which imply that 7 = bot(d); and m = o~ *(bot(d)) = top(d). O

Next, we prove that each maximal subgroup is a direct product of symmetric
groups. For any set B, let & denote the permutation group of the elements in B.

ProposITION 3.2. Let m = {my,...,m} F [K].
(1) Ge, =61y X Gz X -+ X 6y, where 1) is the set of blocks of  of size i.
(2) Let B; = {j : |m;| =1i}. If d € Ge,, then there exists T € Gp, X --- X &p, such
that
d={mUm:1<i<t}

Proof. If d € G._ then top(d) = bot(d) = m. Then d is a bijection from the blocks of
7 to the blocks of m such that blocks of the same size map to blocks of the same size.
This means that if we consider only the blocks of size i in d, there is a 7(¥) € &, that
describes the bijection for these blocks. Since this holds for any size i, the permutation
=70 x 7@ x ... x k) € G, x Sp, x --- x Gp, describes the bijection for all
the blocks of all sizes. Since m; > 7y, the corresponding set partition has blocks
i U Tr (i) O

COROLLARY 3.3. For 7 I [k] with type(m) = (11292 ... k%), we have
Ge, =2 G,, x Gy, x -+ X B,

It follows from Corollary 3.3 that G, and G, are isomorphic if type(m) = type(y).
Explicitly, 07 'G._o = G, for any permutation o € &}, satisfying o~ e 0 = e,.

COROLLARY 3.4. If m and v are two set partitions of (k| satisfying type(w) = type(v),
then G._ is isomorphic to G._. In particular, there ezists a 0 € Gy, such that o(m) =
and '

o G, o= G,

3.2. _#-crLAsSES. Let z and y be elements of a monoid M. We say that = and y are
K -equivalent if MzM = MyM. This is an equivalence relation; hence, it partitions
the monoid M into classes which are called the _#-classes of M. We dencte by J.
the _#-class containing z. In the next proposition we give a characterization for the
F-classes of Uy, and show that they are indexed by partitions of k.

PROPOSITION 3.5. Let k be a nonnegative integer.

(a) Every _Z-class of Uy contains an idempotent.
(b) Two elements d,d” € Uy, are in the same _# -class if and only if type(top(d)) =

type(top(d’)).
(c) The #-classes are in bijection with partitions X of k. In particular, if d € Uy
and type(top(d)) = A, then

Jy = Jg = {d’ : type(top(d’)) = A}.
(d) If w - [k] and type(mw) = X, then
Jy={oe,T:0,7 € G}
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Proof. (a) Every d € U, can be written using the permutation-idempotent represen-
tation as d = oe, for some o € &, where 7 = bot(d). Then UrdlUy = Uroe Uy =
U erU., where the last equality follows because o is invertible in Uy. Thus, J4 contains
€xr.

(b) Using the permutation-idempotent representation of d and d' we know that
d = oer and d' = o'e, for some 7, v - [k] and o, 0’ € G Furthermore, by Lemma 2.7,
type(top(d)) = type(w) and type(top(d')) = type(y). Therefore, it suffices to prove that
e- and e, are in the same _£-class if and only if type(r) = type(%).

If type(mw) = type(y), then there exists a 7 € &y, such that v = 7(«). Also, 7~ te,T =
€r(x)- Hence, Upe Uy = U e Uy, = Upe Uy, since Uy~ = Uy, = U, due to the
fact that 7 is invertible in Uy. This implies that any two idempotents e, and e, such
that type(n) = type(y) are in the same _#-class.

Observe that Uge U contains elements d such that top(d) and bot(d) are equal to
or coarser than 7(7) for some 7 € Gj. Assume that type(y) # type(w) with 4,7 F [k]
and type(y) = (1%12%2 .. k") and type(m) = (191292 ... k). Then for some i, a; # b;.
Without loss of generality assume that ay = by,...,a; 1 = b; 1 and a; < b; for some
i. This means that « has more blocks of size i than w. Therefore, it is not possible for
7 to be coarser than (r) for any 7 € &y. Hence, e, & UreUs.

(c) This is a direct consequence of (b).

(d) Multiplying e, on the left by a permutation results in a diagram whose top is
a permutation of 7w and hence has the same type as . Similarly, multiplying e, on
the right by a permutation results in a diagram with bottom that has the same type
as m. Hence {oe 7 : 0,7 € &} C J,. Conversely, suppose d € J,. We may write
d = eop(q)0 for some o € &. Since type(top(d)) = type(r), there exists a 7 € Sy
such that 7(w) = top(d). Hence d = e,(;j0 = 7~ 'e,70, proving that J, C {oe,7 :
a, 7 € G} O

ExaAMPLE 3.6. There are three _#-classes for Us:

0= {123}
=K 111 50 X113 2
o {] LA R ST EL K B SR E T

When constructing irreducible representations of U, we need only one maximal
subgroup for each _#-class. It is useful to make this choice standard. Recall that the
_¥-classes are indexed by partitions of k. Hence, if A = (1%12%% ... k), we define the
representative set partition associated to A as

3) m={{1},{2},....{a1}, {1 + 1,a1 + 2},...,{a1 + 2a2 — L,a1 + 2a2},...}.

This is the set partition that uses 1,...,a; for blocks of size one, a; +1,...,a; + 2a,
for blocks of size two, et cetera. For example if k = 11 and A = (142231), then

m = {{1},{2}. {3}, {4}, {5,6},{7,8},{9,10,11}}.

In this case, we write Gy = Ge” and call it the representative mazimal subgroup
associated to A. Note that {G) : A I k} is a set of maximal subgroups of U}, with each
subgroup associated with a distinct _#-class of Uj.

3.3. IRREDUCIBLE REPRESENTATIONS OF THE MAXIMAL SUBCROUPS. We now de-
scribe the irreducible representations of the maximal subgroups G._. From Proposi-
tion 3.2, we know that G., = G,a) X & ) X -+ X &, (n, where 7(%) is the set of
blocks of 7 of size i. Hence, each irreducible representation of G, is isomorphic to a
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tensor product of the form Vi @ Vo ® -+ - ® V3, where V; is an irreducible representation
of Gﬂ.(a) forall1<i<k.

Recall that the irreducible representations of the symmetric group &_(;) are indexed
by partitions of |7(¥| and admit the following combinatorial description. As a vector
space, the irreducible representation indexed by the partition A is spanned by the
set of standard tableaux with entries the blocks in w(®, The action of 6. is given
by permuting the entries of the tableaux; however, the result may not be a standard
tableaux, in which case one uses the Garnir relations to express the result as a linear
combination of standard tableaux. For details, see [24, Chapter 2].

For a sequence of partitions X = (A, A, .. A®)) with A® + |7()], let

; 1 k
Vfi'\car = éifjl) @@ Véi(l) ?
where Vé‘(t_) is the irreducible representation of &) indexed by A(). By the above
discussion’; this is an irreducible representation of G._ and all the irreducible repre-
sentations of G are of this form. In particular, the irreducible representations of G
are indexed by k-tuples of partitions X = (A(), A® . A(®) such that A® F |x@
and Y% i|7@| = k. This implies that X € I, with I, as defined in Equation (1).

The combinatorial descriptions of each of the irreducible representations in the
tensor product above combine to give a combinatorial description of the irreducible
representations of G._. In order to state it, we need the following definitions.

DEFINITION 3.7. Let w + [k]. A m-tableau T of shape X = (AW, A2 . AK)) js g
k-tuple of tableauz (T, T@ ... T®), where T®) is a standard tableau of shape
M9 = |X@)| filled with the blocks in 7 of size .

As a vector space, the irreducible G, _-representation V’Se is spanned by the set of

m-tableaux of shape X. By Proposition 3.2, every 7 € G, can be expressed uniquely
as 7= 772 ) with £ € S.;y. Then the action of 7 on a w-tableau is given
by

rT = (e T 6. T®),

where 78 . T ig obtained by permuting the entries of the tableau 7). The result
may not be a m-tableau since it may not be standard, in which case we use the
Garnir straightening relations on each component to express the result as a linear
combination of standard m-tableaux (for details see [24, Section 2.6] or [1]).

EXAMPLE 3.8. Let 7 = {{1}, {2},{3,4}, {5,6}}, so that type(w) = (1222). In this case,

- {[ITRT TS KRR XX

There are four irreducible representations of G, which are all one dimensional:
,i/,c(:(:r,l).(lsl)j with basis { , ) } ’
s (o7 )
Vé(:n,@)l with basis { , ) } s
V) ith basis {( )} '
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3.4. Z-CLASSES AND SCHUTZENBERGER REPRESENTATIONS. For each idempotent
e € Uy, we define a (Ux, G.)-bimodule CL, that is known in the semigroup theory lit-
erature as the left Schiitzenberger representation associated with e. The Schiitzenberger
representations will be used in Section 3.5 to construct irreducible Ug-representations
from irreducible G.-representations. As a vector space, CL, is spanned by the ele-
ments of the #-class of e, so we begin by studying the #-classes of U;.

Let z and y be elements of a monoid M. We say that  and y are % -equivalent if
Mazx = My. This is an equivalence relation; hence, it partitions M into classes which
are called the .#-classes of M. The #-class of an element x is denoted by L.

PROPOSITION 3.9. Let k be a nonnegative integer.

(a) Two elements di,d2 € Uy are in the same £-class if and only if bot(d,) =
bOt(dz).

(b) Every Z-class in Uy, contains a unique idempotent.

(c) The L-classes of Uy are in bijection with the set partitions m of [k]. More pre-
cisely,

L,=L., ={delU:bot(d)=x}.
(d) For every Ak, the _# -class Jx is a disjoint union of £ -classes. More precisely,

Jy = L-;j L.

mitype(m)=2A

Proof. (a) By Proposition 2.5, every element d € Uy, can be written as d = geper(a)
for some permutation o € G;. Thus, Upd = Uroepor(a) = Urepor(a)- The last equality
follows since ¢ is invertible in Uy. Therefore, if m € Ugenor(d), then bot(m) is coarser
than or equal to bot(d). Hence, dy,d; are in the same .#-class if and only if bot(d;) =
bot(dz).

(b) From part (a) we have that an .#-class L contains elements that have the same
set partition 7 as the bottom row. Since there is a unique idempotent, namely e,
that has bottom row 7, the result follows.

(c) Since every .#-class contains a unique idempotent, the .#-classes are in bijection
with the set partitions of [k].

(d) By Proposition 3.5(d), Jy = {oex7 : 0,7 € G and type(r) = A}, while L, =
{oer : ¢ € Bi}. Thus, the result follows. O

EXAMPLE 3.10. There are five #-classes for I43:

mns = R T T 256 XD X X<

R ENE
wo-{| 12 77
=
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For any m - [k], let CL, be the vector space with basis the elements of the #-class
L. It has a left Uy -action defined by

{me, if mé € Lo,
moL=
0, else,

(4)

for all m € Uy and £ € L,, which is then extended C-linearly to all of CL,. The
nonzero products m ® £ can be characterized as follows.

LEMMA 3.11. Let m € Uy, and £ € L. Then m ® £ # 0 if and only if bot(m) is finer
than top(£).

The right G._-action on CL, is extended C-linearly from the action of G._ on
L. given by right multiplication. Although it is true for any finite monoid that the
maximal subgroup of an idempotent e acts by right multiplication on the #-class of e
[27, Proposition 1.10], below we provide a proof that is specific to U, and we identify
the orbits of this action.

PROPOSITION 3.12. Let  be a set partition of [k].
(a) G, acts by right multiplication on L. and this right action is free. In other
words,
e iffc L, and g € G, , then g € L,; and
e if € L. and £g = Lh for some g,h € G._, then g = h.
(b) d1,d2 € Ly are in the same Ge,_ -orbit if and only if top(d;) = top(da).
(c) For every set partition v & [k] such that type(vy) = type(w),

L) = {d € Uy, : top(d) = v and bot(d) =}

is an orbit for the right G._-action on L., and all the orbits are of this form.
Thus, the Ge_-orbits in L are in bijection with the set partitions v of type(w).

Proof. (a) Let £ € L, and g,h € G,,, and think of them as bijections as in Sec-
tion 2.3.2. Since bot(f) = 7 = top(yg), we have that £g is the composition of £ and g
(see Remark 2.2). Hence, bot(£g) = bot(g) = w and so €g € L. Similarly, £h is the
composition of £ and h. Thus, if £g = £h, then g = h since £ is a bijection.

(b) If d2 = dig for some g € G._, then top(d;) = top(d1g) = top(dz) since multi-
plying on the right by an element in G._ has no effect on the top row of the diagram
of dl.

Conversely, if d1,ds € L, and top(d;) = top(dz), then both d; and d; are bijections
from top(d;) to . Since did, is a size-preserving bijection from m to itself, it is equal
to an element g € G, . By composing dydy = g on the right with dy, we conclude
that ds = d1g.

(c) This follows directly from (b). O

EXAMPLE 3.13. Let m = 12|34. The .#-class L contains 6 elements all with the same
bottom row. The group G., contains two elements, the identity and the permutation
of the two blocks. Hence we obtain that L, decomposes into three G_-orbits:

- (S )
an- (3 5
(2
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We will now choose orbit representatives of the right G._-action of L.. Let L7
be an orbit, where v - [k] and type(v) = type(n). Think of the elements of L} as
bijections £: v — 7. Assume m = {m < - < w.}and y = {91 < -+ < 7,} are
ordered using the graded last letter order. Let £Y: v — 7 be the bijection that sends
v: to m; for all 7. If ¥ = 7, then this is the identity bijection and we have {1 =e..

EXAMPLE 3.14. The orbit representative for Liglgi is Eiglg: = | |

The next result describes the relationship between the actions of U, and G,_ on
CL..

PROPOSITION 3.15. Let m € Uy, and d € L}. If m © d # 0, then there exists a
unique g € G,_ such that md = ﬂ;rg, where v = o~ 1(7) for any o € &), such that
M = O€pot(m)-

Proof. Let m € Uy and write m = oepot(m) for some o € Gy. Let d € L) be such that
m @ d # 0. Then md € L., and so bot(m) is finer than top(d) = . Since bot(m) is
finer than +, we have epot(m)€y = €4 by Lemma 2.3. By Lemma 2.7 we have e,d = d,
which means that md = oepor(m)d = od. Since top(od) = o~ (), we have od € LY,
where v = 07 1(7). By Proposition 3.12, the right Ge_-action on L is free and L;’
is an orbit for this action. This means that there is a unique g € G._ such that
md = £)'g. O

EXAMPLE 3.16. Let m = 12|34 and « = 13|24. The following diagram equation is an
example of Proposition 3.15, where the left hand side product is md and the right
hand side is £ g with 7' = 23|14 and g = 1234|3412 € G(a,5).

SR ]

3.5. IRREDUCIBLE REPRESENTATIONS OF [{;. In this section, we explain how each
irreducible representation of Uy, is obtained by inflating an irreducible representation
of one of its maximal subgroups. In Section 3.6, we will describe a tableau model for
these representations.

We begin by identifying a natural indexing set of the isomorphism classes of irre-
ducible representations of Uy.

PROPOSITION 3.17. The isomorphism classes of the irreducible representations of Uy,
are indezed by I as defined in (1).

Proof. For any finite monoid M, let Irrc(M) be the set of isomorphism classes of
irreducible representations of M over C. By [27, Corollary 5.6], there is a bijection
between Irrg (M) and | J, Irre(Ge ), where the idempotents e are chosen one from each
Z-class of M.

Recall from Section 3.2 that {e., : A - k} is a set of representative idempotents for
the _#-classes of Uy, and that the associated maximal subgroup G is isomorphic to
Gy X Bg, X+ x G, if A= (1*12%2 .. k") (Corollary 3.3). Hence, the isomorphism
classes of irreducible representations of (3 are indexed by sequences of partitions
D, A®) such that A@) + ¢; and 35 ia; = k (cf. Section 3.3). O

For A = (A, 2@ A0 with [A\?| = a;, we define type(}) = (191292 . ko).
Let X € I, and write A = type()). Let V2, be the irreducible representation of G
indexed by X. By [27, Theorem 5.5],

Wi, = Ind (V) /rad (Inds (V)

Algebraie Combinatorics, Vol. 5 #5 (2022) 1179



R. ORELLANA, F. SavLioLa, A. SCHILLING & M. ZABROCKI

is an irreducible representation of Uy. Since i) is a finite inverse monoid, the
monoid algebra ClUY}, is semisimple [27, Corollary 9.4], from which it follows that

rad(Ind% (V2 )) = 0. Thus,
Wy, = Ind4 (V3,) = CLy ®ca, V2,

where CL, is the left Schiitzenberger representation associated with the idempotent
er, (cf. Section 3.4). Since CLj is a (U, G»)-bimodule, the tensor product CL) ®ca,
V3, is a left Uy-module, where for all d € Uy, £ € Ly and v € VZ :
(5) d-fev)=(dol) .
Notice that the tensor product is over CG, which is the case throughout this section.

We now describe a basis of Wy} . In Section 3.3, we found that a basis of V2, is
given by the m-tableaux of shape X. To obtain a basis of Wzi: it suffices to tensor this

basis with the orbit representatives of the right G-action on Ly, as we prove next.

PROPOSITION 3.18. Let X € I, A = type(X) and 7 = m. Let {€) : v - [k], type(y) =
A} be the orbit representatives of the right Gy-action on Ly as defined in Section 3.4,
and let B;(G)) be a basis for the irreducible G-representation Vé.‘A indezed by X.

Then a basis for the irreducible Uy, -representation Wzi is
sUe) = {€] QT : v+ [k],type(y) = A and T € B;(Gx)} .

Proof. Since B;:(G)) is a basis of Vé}, it follows that Wzi is spanned by £ ® T with
¢ € Ly and T € B;(G»). By Proposition 3.15, if d © £ # 0, then there is a unique
g € Gy and ~v |- [k] satisfying type(v) = A and d ® £ = £} g. Thus,
d-({®T)=0goT="{ @gT,

which proves that W?i is spanned by elements of the form £ @ T.

Furthermore, since {£} : v F [k],type(y) = A} is a basis of CL, as a right G»-
module and By(G,) is a C-basis for the irreducible G-representation V2 , then
B;(Uy) is linearly independent as a vector space over C. d

As a consequence of identifying that the basis is indexed by a pair consisting of a
set, partition ~ I [k] such that type(y) = type[A) and a m-tableau of shape X, we have
the following formula for the dimension of the irreducible representation of L.
COROLLARY 3.19. Let X = (A®,A@ ... A(®)) € I, and A = type()), then

10X ENNES ®
dim Wy, = sp (W)Y A A

where spy(\) is equal to the number of set partitions of type A (see Equation (2)) and
f is equal to the number of standard tableauz of shape .

ExXAMPLE 3.20. There are five irreducible U3-representations. We give their bases be-
low:
((3) _ o, 1|2|3
W — span {120 o ((T]2]3) ),

(1) _ 1)2)3 : 12/3 2
Wu3 = span {£1|23 ® ( 11 D ,3”2‘3 ® ( 113 |) }:

11,1 1123
WL((S ) — span £1I2I3 ® ,
1
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WO a0 (T ) 2o (D) 2o (D)),
Wb(,f’g’(l)) = span {E%gg ® (;a,;a, )} :

EXAMPLE 3.21. In this example, we illustrate the action of an element in Uy on a
basis element. To demonstrate with an example that is sufficiently large, take k = 17
and represent the labels 10 through 17 by the letters a through h.

Let X = ((2,1),(2,2),(1,1)) € I 7 so that A = tﬁ(;\') = (12 2% 3?). Choose our
basis element to be £ ® T € Wz§l7: where

£ =21|72|¢3|1345|5b67|6d89|9¢cab|4accde|8fhfgh

and

3 67 | ab
1 2" 45 | 89

Now any element d € U7 such that the number of blocks in d€] is smaller than
the number of blocks in £ will act as 0.

As an example then, let us consider the action of an element d such that the number
of blocks in d¢Y is equal to the number of blocks of £). That is, bot(d) must be finer
than ~. Let

d=28|82|9g|ad|b7|c6|ea|f3|hl|145b|679¢|3d4de|5gfh.
Then the action of d on £] @ T is E;{' ® g - T, where
v =8|9|b|14|67|ac|fh|3de|25g
and
g=11|23|32|4567|67ab|8980|abd5|cdecde|fghfghe Ge,,

since df) = E;fg. We must then apply some straightening relations on g- T to express
it as a linear combination of the basis elements.

3.6. TABLEAU MODEL FOR THE IRREDUCIBLE Uf;-REPRESENTATIONS. We prove that

the basis of W:‘i in Proposition 3.18 is in bijection with certain sequences of set-valued
tableaux and we describe the action of U}, directly in terms of these sequences.

DEFINITION 3.22. A uniform tableau of shape X = (AW, A8 € I is a sequence
of tableauz S = (S, ..., S®)) such that:

(1) 8@ is a tableau of shape NV filled with subsets of [k] of size i;

(2) 8O is standard, i.e. increasing along rows and columns in the last letter order;
and

(3) the subsets appearing in S form a set partition of [k].

We define T;; to be the set of uniform tableauz of shape X

EXAMPLE 3.23. Here are the elements in 7((1) (1,1)):

25 @8 @8 @B @5
@8 @5 @B) =8 @5)
@B @D @D D ED
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We now define an action of Uy, on the vector space CTy consisting of formal linear
combinations of the uniform tableaux in T3 with complex coefficients and then show

that it is isomorphic to the irreducible representation Wzi_.
Recall that U, is generated by s; and b;, where 1 € 1 € k — 1, as described in
Section 2.6. For S € Ty, let

(6)

bS — S, if7and i+ 1 are in the same cell in S,
" 10, otherwise,

and let s;S be obtained from S by interchanging i and 7 + 1. It is possible that s,S is
not standard, in which case we apply the Garnir straightening relations (we illustrate
this in Example 3.26 and refer the reader to [24, Section 2.6] or [1] for details) to
obtain a linear combination of elements in 7T5. It is straightforward to verify that the
relations in Section 2.6 hold so that CT; is a representation of Uy.

For the next result, we remind the reader that the blocks of set partitions are
ordered using the graded last letter order and that the elements £] ® T, where

type(y) = A and T € B;(G), form a basis of Wi}k (Proposition 3.18).

THEOREM 3.24. Let X € I, and write = type(X) and = = mx. For £ ® T € By(Us),
let p(£Y ®'T) be the sequence of tableauz obtained from T by replacing the block m; €
with t_l_‘te block v; € ~v. Then p extends linearly to an isomorphism of representations
p: Wﬁk — CT;.

Proof. Let S = p(£) ® T). If we view £7 as a bijection from ~ to m, then S is obtained
by applying the inverse bijection to the entries in T. In particular, p is invertible.

Notice that § € T;: first of all, S has the same shape X as T, its entries are the
blocks of «; each S is filled with blocks of the same size i since £ preserves the
sizes of the blocks; finally, since the blocks are ordered using graded last letter order,
each S is standard since we have replaced the entries of T with blocks in the same
order as those of .

Now we show that the action of U commutes with p. It suffices to show this for
the generators s; and b;. By definition,

bty ®T, if bl € Ly,

b;- (£ ®T) = (b £} T =
(GeT)=(bof)e {0, otherwise.

Note that b;¢] € L if and only if b;£) = £, or equivalently, if and only if 7 and i 41
are in the same block of «. Thus,

£Y®T, ifiandi+ 1 arein the same block of =,
0, otherwise.

br(f}@T)Z{

Comparing with Equation (6), it follows that p(b; - (£ @ T)) = b; - p(¢] @ T).

Next, we consider the action of s;. Tracing through the definitions, we have

5 (LIRT)=(5:0L)RT =5 T,

where the last equality follows from the observation that s;£) € L, because
bot(s:£1) = .

To describe s;£) explicitly, write ¥ = {¥,,...,%} and m = {my,...,m,} with the
blocks order using graded last letter order, and recall that £ is the bijection that
maps 7y to mp. If exchanging i and ¢ + 1 in v does not change the order of the blocks

(ie. si(71) < -+ < si(7e) in graded last letter order), then 567 = £5" so that
si- (0 ®T) = £ @ T. Its image under p is obtained from T by replacing each
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block 7; appearing in T with s;(-y;), which is precisely the definition of the action of
si- Thus, p(s; - (£ ® T)) = s; - p(£] @ T).

Otherwise, there exist blocks v; and ;11 with max(vy;) = i, max(y;+1) =i+ 1,
1vil = |vj+1| and
(7) sily) = {Se'(’h), 5i(72) - Sa'(’?j 1) 3i(7j+1):3i(7j): 3i(7j+2): ceey 3:‘(%)}:

where the blocks are listed in graded last letter order. Then s;£} = E:}‘h) g, where
g= Tyer My TWipp 0 Mg
ML ocrr i1 T o+ Ty
is the permutation in G, that exchanges 7; and 7, 1. Therefore, the image of s, (£] ®

T) = £ @ g - T under p is obtained from T by exchanging m; and 741 and then
each my, is replaced with the block in position h of s;(v) (as listed in Equation (7)).
Thus, p(s:- (£} ®T)) is again obtained from p(£] @ T) by interchanging ¢ and i+1. O

EXAMPLE 3.25. Under the bijection p described in Theorem 3.24 the basis elements
of W,f,gl)’(l)) correspond to the tableaux in 75 as follows:

ahe (0 R]) » (D =),
e (L) - (20m),
g e (1 [23)) ~ (2] 12])-

EXAMPLE 3.26. Let X = ((2,1),(2,2),(1,1)) € 17 so that A = typs(X) = (13 2432).
As in Example 3.21, we represent 10 through 17 by the letters a through h. Consider

g 5b | 9e
2 7" 13 | 6d

which is the image under p of the basis element in Example 3.21. Consider the action of
d=28|82|9g|ad|bT|cb|ea|f3|h1|145b|670¢|3dde|5gfh

on the uniform tableau S. Since bot(d) is finer than the set partition of the entries of
S, the result is non-zero and is equal to

9 14|67
8 b" fh|ac

This is not a basis element because the middle tableau is not standard with respect to
the graded last letter order. We then apply some straightening relations to express it
as a linear combination of the basis elements. The interested reader may then compute
that the action of d on S is equal to the following linear combination:

4. THE CHARACTERS OF U},

The last two sections of this paper are devoted to a careful analysis of the characters
of Uy,. This development will allow us to give an expression of the character values in
terms of symmetric functions in Section 5 and make explicit the connection between
plethysm and the restriction of Uj.-modules to the symmetric group &y C U
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In this section, we describe the characters for the irreducible Uy -representations
that were presented in the previous section. In general, the characters of finite monoids
were studied by McAlister [19]. Here we use the notation described in [27, Chapter
7).

4.1. GENERALIZED CONJUGACY CLASSES. Let M be a finite monoid. For every m €
M, the subsemigroup of M generated by m contains a unique idempotent that we
denote m* (see [27, Corollary 1.2]). One can think of w as representing the smallest
positive integer such that m¥ is an idempotent. Two elements m and n in M are
conjugate if there exist x, 2’ € M such that zo'zx = z, 2'zz' = &', 2’z = m¥, za’ = n¥
and am“*tlz’ = n¥+1, This is an equivalence relation whose equivalence classes are
called the generalized conjugacy classes of M. Notice that m and m“*! are conjugate
for all m € M [27, Chapter 7].

By [27, Proposition 7.4], there is a bijection between the generalized conjugacy
classes of M and the union of the sets of conjugacy classes of the maximal subgroups
Geyy...,Ge,, where €1,...,e, are idempotents chosen one from each _#-class of M
that contains an idempotent. The bijection is obtained by intersecting a generalized
conjugacy class of M with the conjugacy classes of G, : exactly one of these intersec-
tions is nonempty. In particular, to select a set of representatives of the generalized
conjugacy classes of M, it suffices to take one element from each of the conjugacy
classes of the maximal subgroups Ge,,...,G.,.

We now apply the above to Uj. Since Uy is an inverse monoid, every = € Uy has
a (unique) generalized inverse T satisfying zzz = z and Zzz = T (cf. Section 2.7).
Therefore, two elements ¢ and d are conjugate in Uy, if and only if there exists = € Uy
such that Tz = ¢¥, 27 = d¥ and 21T = d¥ 1.

We next define a notion of “cycle type” for the elements of L, which will allow
us to determine whether two elements are conjugate in Uy. First, let d be an ele-
ment of a maximal subgroup G, . Then d is a permutation of the blocks of 7 that
maps blocks of size i to blocks of size i for every 1 < i < k. Letting d¥) denote
the restriction of d to the blocks of size i of m, we define the cycle type of d to be
cycletype(d) = (pu™M), u? ... u®)), where u(9 is the cycle type of the permutation
d®. For an arbitrary element z € Uy, we define its cycle type to be the cycle type of
z**1 € G,.. In other words, cycletype(z) = cycletype(z“T1).

PROPOSITION 4.1. Two elements ¢,d € Uy are conjugate if and only if
cycletype(c) = cycletype(d).

Proof. Suppose cycletype(c) = cycletype(d) = (¥, u®, ..., u®). Hence by defini-
tion cycletype(c¥*!) = cycletype(d“*!). Then ¢* = e, and d¥ = e, for some set
partitions 7 and 4. Moreover, by the definition of cycle type, # and v must have type
(191202 ko), where a; = |u(| for all 1 € i € k. By Corollary 3.4, there exists a
permutation o € &y such that G, o = Ge_; note that & = ¢ ! for permutations.
Thus, 5¢“*tlo and d“+! both belong to G¢_ and they both have the same cycle type.
Hence, they are conjugate in G, which implies they are conjugate in Uy: explicitly,
there exists y € G, such that g(aev*lo)y = d“+1, and so the element z = oy satisfies
T =Py =e, =d*, Iz = 0€,0 = e; = ¥ and zc¥ 17 =¥+

Conversely, suppose ¢ and d are conjugate in U;,. Then there exists x € U}, such
that rz = ¢¥, 2 = d¥, and xc“t1x = d“*!. Let 7 = bot(z) and v = top(x) so that
¥ = e; and d¥ = e,. Then type(m) = type(ry) because z is a bijection from = to y that
preserves block sizes. By Corollary 3.4, there exists a permutation o € Gy, such that
Ge, 0 = G, . Thus, ¢“T1g and d“*! both belong to G.. and they are conjugate in
Uy. Tt follows that they are conjugate in G, and so they have the same cycle type
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since G, is a group of permutations. Hence, cycletype(c“+!) = cycletype(gc*lo) =
cycletype(d«+1). O

The above gives a straightforward algorithm for computing the cycle type of any
d € Uy. To find the cycle type of d, we compute d“+! and then find the cycle type of
d**+1 € G4.. For [i € I}, define

Ci = {z € Uy, : cycletype(z) = [} .

ExAMPLE 4.2. The generalized conjugacy classes in U3 are listed below:

e {]]]

w21 1 )
conn-(35 I 74 ¥ L N1 1)

EXAMPLE 4.3. Consider the element = € Uy with diagram

]

We can then check that 4 is the smallest integer such that z* is idempotent and z¢ =
er, where m = {{6}, {1,2},{7,8},{3,4,5,9,10}}. The element z* has the following

diagram:
Di _/c\/"

We deduce that type(cycletype = type(r) = (5,2,2,1). Since z° = ze, = e, is

{{676}7 {1721 77 8}7 {7781 17 2}7 {27 3741 97 ]'D'.‘ 5! §7 a'.‘ g’ m}} H
we conclude that cycletype(z) = cycletype(z®) = ((1), (2), 2, 2, (1)) because z acts on
er by permuting the two sets of size 2 (in a cycle) and fixing the sets of size 1 and 5.

4.2. REPRESENTATIVE CONJUGACY CLASS ELEMENT. In this section, we describe for
each i € I;; a representative conjugacy class element, denoted dy, contained in the
generalized conjugacy class Cj; consisting of all elements of cycle type [i. As shown in
the previous section, we can choose d; to be an element of a representative maximal
subgroup of Uj,.

For any set A = {x4,... ,:E|A|} and g = (p1,...,pme) F |A], we define the represen-
tative element of cycle type p in G 4 to be

A
d# = (2122 Ty N T oy 41Ty 42 Ty bpn) (P A — g+ 1T A b2+ ’-TlAl):

where dﬁ is expressed in cycle notation. If A is clear from the context, we write
d, = dﬁ‘.
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Let i= (p,...,p¥) € I and p = t?(?p_e}(ﬁ) Recall that G, = &, ) X+ X6 ),
where 7(9 is the set of blocks of size i in 7. Since d” (‘, € G, forall 1 <i <k, we
define

dp=dlo) dia -+~ dis) € G

PROPOSITION 4.4. Let i € I. Then cycletype(dy) = i

EXAMPLE 4.5. Let k = 34 and i = ((2,1),2,(3,1,1), (2,2)). Then dj; is represented
by the following diagram:

(T g e

4.3. CHARACTERS OF U. We give a formula for the characters of the irreducible
representations of ). in terms of the characters of the irreducible representations of
the representative maximal subgroups G,.

For X € I, let Wuxk denote the irreducible representation of U defined in Sec-
tion 3.5. Its character is the function X{}k : U — C defined by

X2y, (d) = trace (p5(d))

where B is any basis of W}} and pp(d) denotes the matrix representing the action of
d with respect to B. Since trace is unchanged under change of basis, this definition
does not depend on the chosen basis.

As in the case of group characters, monoid characters are constant on generalized
conjugacy classes [27, Proposition 7.9]. Therefore, we need only determine the value of

X{}k on the representative conjugacy class elements dj defined in Section 4.2. We begin
by expressing this in terms of the characters X'c\:,\ of the irreducible representations
V43, Recall the refinement order on set partitions defined in Section 2.2.

PROPOSITION 4.6. Let X € I, and A\ = ty—pé()_\'). If dz € Uy is an element of the
generalized conjugacy class Cz C Uy, indexed by ji € Iy, then

) = 3 X3, (o),

deC(dg;N)
where
o C(dz; X)) = {d: d = dg, top(d) = bot(d), type(top(d)) = A}, and
e o4 is the unique element in G satisfying dﬂf—rof(d) = E:ff(d)ord
Proof. We compute the trace of d; acting on the basis {£J, @ T : type(y) =X, T €
By (G\)} of Proposition 3.18. Recall that the action of dz on £}, ® T is given by
B {d;e; ®T, if bot(dz),) = mx,

d-+- (€Y T) = (d= o T=
i@ (m® )=(dz© "'*)® 0 otherwise.

}

Writing p = Eﬁ?&(ﬁ) and noting that d; is a permutation of the blocks of 7, (since
dz € G,), it follows that bot(dz¢}, ) = my if and only if m, = bot(dy) is finer than ~.
Thus, if 7, is not finer than +, then there is no contribution to the trace.

Suppose that m, is finer than . Then we can merge blocks of d; to obtain a
diagram d such that bot(d) = +. Notice that the diagram d satisfies dz£}, = df] .

s . . . . e
By Proposition 3.15, there is a unique o4 € G, satisfying df}, = £z op(d)

dz- (61, ®T) = &P ) ® 04T, which contributes to the computation of the trace only
when top(d) = ~. In this case, dz maps £] @ T to £} ®oyT and so the trace is equal

4. Therefore,
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to the trace of the mapping T — o4 T, which is precisely Xé (04) because B;(G A) is

a basis of V2 .
A

EXAMPLE 4.7. Let X = (2, (1,1)) and ji = ((2,2)). Then A = >< ><
and
ol S )

For each d € C(dz; A), there is a unique o4 € G, satisfying df;r (@ _ gtop(d)

WEillusgb‘E-Kﬁ KKL:K
e e

= 34
(X 3) (1% 12 (3¢2)

Therefore,

4.4, REFORMULATION OF THE CHARACTERS OF Uj. As observed in Example 4.7,
there can be elements in C'(dy; A) that have the same cycle type in G. For 7 with
type( 7) = A, let

o4, which

C(dz; V) = {d € C(dz; \) : cycletype(d) = 7/}

and define bg = |C(d;; 7)|. Then rewriting the formula in Proposition 4.6, we have

(®) Xu* Z bu XG,\ (dz).
el
fype(7)=A
Qur next goal is to find an explicit formula for the multiplicities bg.

ExXAMPLE 4.8. Consider i = ((4,2 ) € I, so that

NS e

We compute C(dj;#) for three different choices of 7. These examples will then be
used later to demonstrate how the algebraic formulas capture the enumeration of
these sets.

First consider 7 = (2, (2,1), 2, (1)) € I1o. Starting with the above diagram for d,
we see that there are two ways of creating a block of size 4, either by adding edges
to the first cycle or the last cycle. Therefore, C'(dg;#) consists of the following two
elements

s X X R

Next consider 7 = (g, (2), (2)) € I10. To make a cycle of length 2 with three vertices,
the cycle of length two in the middle of the diagram can either connect to the first or
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the last cycle and it can connect in two ways. Therefore, there are 4 elements in the
set C(dg; 7)

(X XX XX XX
XK X XXX X}

Finally, consider 7 = (2, (2,2 1)) There is precisely one way to add edges to d; to
obtain an element of cycle type # and so C(d; 7) is the following singleton set

X R 2

Let Ay,..., A, be the blocks of a set partition of [k] so that |A;| = |A;| for all
1< i,j € r. Suppose that d consists of the blocks {A;, A; 1} for 1 <i<r—1and
{A,,A1}.If |A;) = qand A; = {(i —1)g+1,(i — 1)g+2,...,iq} for all 4, then we
refer to this particular cycle as the canonical r-cycle. Notice that d is an r-cycle in
the sense that if we ignore bars and present the permutation as a two line array, then

d has the form
Ay Ag -+ A,
Ag Az -+ Ay )7

In general, a permutation of the blocks Aq, As,..., A, is called an r-cycle if there
exists a o € G, such that A; — A‘,(i) and o is an r-cycle in G,.

LEMMA 4.9. Let d € Uy be the canonical r-cycle permuting blocks Aq,..., A, with
|4;] = f for all i. If we take unions of blocks of d to get a new diagram d' satisfying
top(d') = bot(d’), then d’ is an s-cycle where s divides r and the blocks of top(d’) are
all of size %

Proof. Suppose d' is a uniform block permutation obtained by taking the union of
blocks of d and top(d’) = bot(d') = {Bu,...,Bs}, where s < r. Without loss of
generality, suppose that B; is the block containing A; and B; is the union of r;
blocks. Then By = A;UA4;, U---U Ag,l with 1 < i3 < --+ < 4. If two indices
1,i2,...,1, are adjacent, then by the assumption that d is the canonical cycle and
top(d') = bot(d’), B; would be the union of all 4;. In this case d’ is a cycle of length
s = 1. Otherwise, since d is the canonical r-cycle, we have that AsUA;, 1U- - ’UAi..L+1
is the image block of By in bot(d’) which is the union of r blocks, we call this block
Bs. By a similar argument, there are blocks Bs, By, ..., B;, 1 all of size r; containing
Az, Ay, ..., A;, 1, respectively. Notice that B;, ; contains A, since d maps 4;, ; to
A;, and A, to Ay, so that in d’ A;, and A; are in the same block, i.e. By, and this block
connects to the block that contains A;, 1 and A,. Similar arguments show that 4,4
is contained in B;, s, etc. So, s =iz — 1 is the total number of blocks in top(d’). In
addition, the blocks By, By, ..., Bi, 1 contain blocks Ay, Az,..., A;,_q),, and they

are all of the same size. This means that r = (i, — 1)ry, hence |B;| = r|4;| = ﬂ%l =
& By the description above we see that d’ = B1 By ... B, is an s-cycle. d
s B; B;...B,

There are two takeaways from the proof of Lemma 4.9. The first is that taking a
union of blocks of the canonical r-cycle results in an s-cycle. The second take away is
that if we label the blocks of d' as in the proof of Lemma 4.9, then B; = U; A; where
7 is congruent to i mod s. In addition, the proof implies that the union of blocks of

Algebraie Combinatorics, Vol. 5 #5 (2022) 1188



Plethysm and UBP

the canonical r-cycle results in an s-cycle, where s divides r and there is only one
possible way to get an s-cycle.

EXAMPLE 4.10. In this example we use squares for the vertices to indicate that the
vertices represent sets A, As,..., Ag all of the same size and containing consecutive

integers. Let
q— Ay Ay Az Ay As Ag\
T\ Ap A3 Ay As Ag Ay ) T ’
Then there are three possible ways to take unions of the blocks of d to get diagrams

d’ with top(d") = bot(d'). We can take the union of all the blocks to get one single
block on top and on the bottom, i.e., B = U%_, A;, which yields

()P

Alternatively, we can get a two cycle by taking the following unions B; = A;UA3;UA;
and By = Ay U Ay U Ag, which gives

r_ { B1Bz\ _
v~ (5:5) - Koo

Finally, we can get a three cycle by taking the following unions By = 4; U A4 and
Bg = Ag U A5 and Bg = A3 U A{; to obtain

d;: Bl BQ BS —
By B3 By '

LEMMA 4.11. Let r,t be positive integers. Let d € Uy, consist of t r-cycles so that the
r blocks in each cycle are labeled B§‘), e, @ for 1 £i £t and the r-cycles have the

form:

B%i) Béﬁ') ... BW

Bét) B:gt) Bif,) )
as obtained in the proof of Lemma 4.9. There are r*~1 ways to take unions of the
blocks of d to get a diagram d’ that is an r-cycle and top(d') = bot(d’). Moreover, the

blocks of d’ consist of disjoint unions of the blocks of d, where there is exactly one
block from each r-cycle in d and hence all blocks of d' have the same size.

Proof. The proof is by induction on ¢. The lemma is trivially true when ¢ = 1. Suppose
that d consists of two r-cycles, the first permutes blocks Bﬁl), e, B,f.l) and the other
permutes blocks B?), e B!?). Notice that there are exactly r ways to form an r-cycle
if the union consists of one block in the first cycle with one block in the second cycle.
Since Bgl) u B;Q), for any 1 < j§ < r, can be a block in the union, by the structure of d

and the requirement that top(d’) = bot(d') we obtain that Bél) U Bﬁ)l is a block and

in general Bt.m UBﬁ)i ; are the blocks permuted by d’, where j+i—1 is taken mod r.

This is an r-cycle because there are r blocks and we have that d’ maps Bfl) U Bﬁi_l
to the block B&)l U Bﬁ)z- and, if i = r, then it maps to B{l) U Bf).

To see that these are the only ways to obtain an r cycle, we argue by contradiction.
If the unions contain more blocks from each r-cycle, d’ has fewer than r blocks; and
if the union contains more blocks from only one cycle, then the cycles are not all of
the same size. In either case we cannot get an r-cycle of blocks all of the same size.

Now if we have t > 2 r-cycles, we know by induction that there are r* ? ways in
which the first ¢ — 1 form an r-cycle. Now for each way of forming this union there
are r ways to take the union with the last r-cycle. O
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In our next Proposition we want to count the number of elements in C(d; ) for
any i, € Ij,. Here, the parts of both 7 and 7 represent the sizes of cycles. We think
of each component in Z = (u,...,u™) in exponential notation with m;(u(®)) the
number of cycles of length 4 in dz permuting blocks of size a. For any partition g of
k, let m(u) = (ma(w), ma(p),. .., me(n)), where m;(u) is the multiplicity of 7 in p.
For ji € Iy, define m() == (m(p™),m(u@),...,m(u®)), where we think of m(u®)
as a sequence of length k& by adding trailing zeros if necessary. Given two vectors

v = (v1,...,u) and € = (u1,...,ur) we define (Q = 2)(22) (z’:) Given any
vector partition 7= (1(1),... (%)) we define

m(@)) _ (me®)) mE®))  (mu)

m(7))  \m(r®) ) \m(r) m((*)) /7
In a similar way, the multinomial coefficient generalizes to any vectors. If i, i, .. ., Uy

are vectors such that @) + 4z + - - - + 4y = ¥, then

( ’ ) (ﬁ)(ﬁ_ﬁl) (6_{1.1_62) (ﬂf)
Uy, Uy, ..., Uy iy iy i3 g

For any vector partition [ € Iy, let £(ji) = Z:::l £(11£9) be the sum of the length of
the partitions in 7 and m(i)! := [T, mq (1) my(u@)!- - my (u)! be the product
of the factorial of the multiplicities of the parts of . Furthermore, for a partition g,
we define m(u)! = mq (u)!tma(p)! - - mg(p)!.

PROPOSITION 4.12. For i, 7 € I,

(9)
v = —1 m(ﬁ) V(j) £(F(i,5))—1
v m(ﬁ)!,_(;,) (m(m,n),m(ﬂz,m,...,m(;(k,k))) [I @oyeen,

1<j<k
1<i<e(p9))

where the sum is over all sequences T(e,®) of T(i,7)’s such that for each I/x-(j) # 0,
7(i,5) € I; and ji =y, ;v 7, 5).

Proof. Recall that bg is the number of ways to take the union of the cycles in djz so
that the result d' satisfies top(d’) = bot(d’) and cycletype(d’) = 7.

By Lemma 4.9 and Lemma 4.11 we know that every r cycle in djz can contribute
to exactly one cycle of length s, where s divides r. Fix 1 < j < k and 1 < i < £(v?)),
and let C; ; be a cycle of length vi(j Vin d, an element in C(dg; 7). The cycle C; ; is
obtained as the union of cycles in dz. We record which cycles we use to form C; ; in
a vector partition 7(Z, j) that satisfies the following conditions:

(1) For every part 7(i, j){*) of 7(i,) there exists a nonzero ,ugf‘) such that ,ugf‘) =

v P71, 7)Y, where 1 < a < k, 1 <t < £(7(3,7)@) and 1 < ¢ < £(p(@).
(2) The total number of cycles from dj used to construct C; ; is £(7(i, j)).
(3) The blocks that make up C;; have 37 _ |7(i,5)(¥)| - a = j elements and so
'1"'(2,_7) € Ij‘ .
Condition (1) simply says that if a cycle ,ugf) is used in the union that gives C; j, then
we get a part in 7(4, 7). Condition (2) is a consequence of condition (1). Condition (3)
follows because C; ; is a cycle that permutes blocks of size j, 7(z, j)ﬁ“) represents the
number of blocks in a cycle of length ,u,gf‘) that were unioned to get a cycle of length
()
v
To count all possible ways to union the cycles of d;; to form a diagram d' € C(d; V)
we order the cycle lengths: v < Vz-(??) ifj <j,orifj =34 andi < i. Ifitis

i
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possible to union the blocks of d; to get d’, then there exists a sequence of 7(i, j)
such that i = b, ; u1 'r(z 7) and each 7(i,7) € I;. For each such 7(e,e) there are
(m(F(l,l)) m(1"'(2(1))), ,m(‘F(k,k))) ways to choose the cycles from djz to form the vector
partitions 7, 7). Once the cycles are chosen from d;, we use Lemma 4.9 to get cycles
of length /) and then by Lemma 4.11 there are (v7))47(:3)-1 ways to union the
cycles indexed by 7(i,7) since by condition (2) there are a total of £(7(i,j)) such
cycles. If the cycles were ordered as described above, there are

m(A) (INE(F(i,5)) 1
w2 (m(F(l,1)),m(F(2,1)),...,m(;(k,k))) II @’

(e,0) 1<5<k
1<ige()
ways to obtain elements d' € C(dg; 7).
However, we want to count the number of ways of obtaining elements of cycle type
v, where the elements of the same length are indistinguishable. In the case when

ufj ) = fo ) the order in which the cycles in dg are chosen to form the cycles of this
length is interchangeable. Therefore, we need to divide by the ways to permute the
cycles of a fixed length. That is we divide Equation (10) by m(Z)! to enumerate bi’;. O

EXAMPLE 4.13. In Example 4.8 we gave three examples of constructing the elements
of C(dz; V) with @ = ((4,2),(2)). Here, we show how Proposition 4.12 enumerates
these sets.
First, we choose ¥ = (2,(2,1),2,(1)) € I;; and we compute that there are two
possible 7(e, o) = (7(1,2),7(2,2), 7(1,4)) satisfying
((4,2),2) =2-7(1,2) i 1-7(2,2) [H 1-7(1,4);

namely,

7(s,0) = (((2),2), (2),2). (2,(2)) and 7(o,8) = ((e,(1)), ((2),2).(4).2))-

Note that m(#)! = 1 and in both cases the summands in Equation (10) are equal to
1. Hence b7 = 2.

Now consider 7 = (2,(2),(2)) € Io. There are again two possible 7(e, e) =
(7(1,2),7(1, 3)) such that

((4,2),(2)) =2-7(1,2) |H 2-7(1,3)

and this time they are

7(s,0) = ((2),2),((1),(1))) and 7(e,0) = ((2,(1), ((2,1),2)).

We have again that m(Z)! = 1, however this time we see that the summands for
Equation (10) are both equal to 2, hence bz =4.

Finally, 7 = (2,(2,2,1)) € Ijq, there are two 7(e,e) = (7(1,2),7(2,2),7(3,2))
satisfying

((4,2),2) =2-7(1,2) ) 2-7(2,2) [H 1-73,2);
namely,
(e, 0) = (((2),9), (2, (1)), ((2),g)) and 7(e,#) = ((g, 1), ((2),2), ((2),9)).
The summands of Equation (10) are both 1 for these 7(e, #), but we now have m(Z)! =

2, hence Equation (9) says that bi’; =1
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For any partition g = (191292 ... %) we define

@

z, = 1"aq12%a5! .. 1% a, ).

Notice that we can rewrite this as follows:
2y = m(p')! H Hi
1<i<E(p)

which is the product of the parts of p times the factorials of the multiplicities. Then
for ji € I we set

ZI,_'; = Zp(l)zp‘(z) e Z‘_‘{k).
COROLLARY 4.14. For ji,v € I},
1 2

27 ere) IL;2z764)

(11) bY =

where the sum is over all 7(e,e) such that for cach 1 < j < k and 1 < i < £(V\7)),
7(i,5) € Ij and ji =, ;v 7, j).

Proof. In Proposition 4.12 we showed

7 1 m(i) ) () E(F(i,0)) -1

b7 — _ . B . V) 7(1,7)) .

T ) 2 (R AL e
1<i<e(r'9))

We multiply the numerator and denominator of the right-hand side by yfj ) for all

(i, 7) satisfying 1 < 7 < k and 1 < i < €(¥")). In the denominator, we get zy and in
the numerator all the powers of the yz.(’ ) increase by 1; therefore, we have

7 _ 1 m(j2) ) () \E(F (0.5
bt = — ( . . . (") (T(6.4))
oz F%;) m(7(1,1)), m(7(2,1)),...,m(7(k, k)) 1£k i
1<ige(wli)
Note that
, (a)
(Vé(]))f(ﬂz',j)) _ Ky =5
1<ash 7(i,5)¢"

1<e<(r(3,5))

where for each t, pgf‘) is the cycle length corresponding to (i, j)ga) used in the con-

struction of the cycle of length v,-(j ), i.e., cycles that satisfy ,ugfl) = vg-(j )'r(i, j)ﬁ“’ for
some t and t'. Once we substitute this expression for ugj ), in the numerator we set the
product of all the parts of i and in the denominator we get products of the parts of
all 7(i,7) for all 7 and j. Now expanding the multinomial coefficient and regrouping

gives Equation (11). O

5. CHARACTERS AND SYMMETRIC FUNCTIONS

This section presents a formula for the irreducible characters of Uy in terms of sym-
metric functions.
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5.1. CLASS FUNCTIONS AND A SCALAR PRODUCT. A class function of U is a map
« : U, — C that is constant on the generalized conjugacy classes of Uy. In light of
Proposition 4.1, a : Uy — C is a class function of Uy, if z,y € Uy,

cycletype(z) = cycletype(y) implies a(z) = a(y) .

Denote the set of class functions on Uy by Cl(U). The class functions form a C-algebra
under pointwise product (also called the Kronecker product).

Let i € I and define Jj : Uy — C to be the indicator function of the generalized
conjugacy class indexed by . That is, for x € Uy,

1, if cycletype(z) = [,
12 I =
(12) #(@) {0, otherwise.

These functions form a basis of the C-vector space of class functions of 4.

The restriction of a class function « of U}, to its representative maximal subgroups
G results in a class function of G,. Moreover, by [27, Proposition 7.5 and Proposition
7.6], the function

(13) Res: Cl(Uy) — [ CU(GA)
ARk
defined by
Res(a) = cr|1—l e
is an isomorphism of C-algebras.
As with the class functions of a finite group, there is a scalar product defined

on the class functions of finite monoids. The scalar product of two class functions
a, € Cl(Uy) is

(14) (@ By =3 ﬁ 3 a(@)B(@).

rEG
The indicator functions defined in Equation 12 form an orthogonal basis with respect
to this scalar product. That is,

1 ey —
Ze ! if A= Hy
(339D 1) = {SA

The irreducible characters of Uy also form a basis of Cl(U) [27, Proposition 7.9 and
7.10]; note however that they are not orthogonal with respect to this scalar product.

else.

5.2. SYMMETRIC FUNCTIONS ON MULTIPLE ALPHABETS. Let X = X7, Xs,... be an
infinite number of alphabets. We define the polynomial ring

Symx = Clpi[X;] 4,7 2 1],
where the degree of p;[X;] is ij. If p = (1%12%2...7%") is a partition, then we define
PulX;] = pa[X;]" p2[ X% - - pr [ XS]0
for fi € I, we define
PalX] = puo [Xilpuo [Xo] -+ - puo [Xi],

which is an element in Symy of degree k.

For any f[X] € SymX, we say that f[X] is of homogeneous degree k if f[X] is
in the linear span of {pz[X]}zey, for some non-negative integer k. When f[X] is of
homogeneous degree k, we denote the degree by deg(f[X]) = k. The subspace of
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Sym¥ of elements of homogeneous degree k is denoted by Symk ; and it has the set
of elements {pz[X]}zer, as a linear basis. Therefore, we have that

Sym;( =@ S}’m;(,k

kZ0
is a graded ring such that if f[X] € Symx ; and g[X] € Symk ,, then f[X]g[X] €
SY"‘;(,H[-
We define a scalar product on Symk as follows:
z;, A=
15 (XL paX]) =< ¥ '
(15) (px[X], pi[X]) {D’ dlse.

Note that {p5[X],pz[X]) = [T, (Pae [Xi], b0 [Xi]), where on the right hand side
the scalar products are in the usual ring of symmetric functions for which the power
sum functions form an orthogonal basis. In particular, for any element f[X] € Symx,

(16) (f[X], pa[X]) is equal to the coefficient of @ in f[X].
i

Define also an analogue of the Schur basis. For i € Iy, set
SE[X] = 8#(1)[}{1]3#(2) [Xg] s Sp_(k) [Xk] N
where s, [X:] is the Schur function over the alphabet X;. It follows that
1, ifX=f,
0, otherwise.

a7 (s5(X],8:(X]) = {

Since we know for A, I a, that the coefficient (sx[X],pu[X]) = xg, (1), it follows
that

(1) (2) (k)
(18) (85X, palX]) = x&,, (W)xs,, (?)---xa,, (™),

ke
where a; = |A®| for 1 <i < k.
Note that the value on the right hand side of Equation (18) is equal to the irre-
ducible character indexed by X evaluated at an element of cycle type i of the maximal
subgroup G,, X G,, X+ x 6,4, = G, where A = tﬁé()-\') = tﬁé(ﬂ) = (191292, k%),

5.3. A FROBENIUS CHARACTERISTIC MAP FOR THE MAXIMAL SUBGROUPS G,. By
Corollary 3.3, for each partition A = (191292 .. k%), the maximal subgroup G, is
isomorphic to
Gy=6, X6, x --x6,, .
The usual Frobenius map for &, sends the irreducible character of &,. indexed by the
partition p - r to the Schur function indexed by that partition. We denote this map
by
¢G.~(X§;,) = Su -

Since the maximal subgroups are isomorphic to direct products of symmetric
groups, the Frobenius map can be extended to G, by mapping the class functions
of G to the k-fold tensor product of the symmetric functions. Under this map, the
image of the irreducible character of G, indexed by X € I, with tﬁé(:\') =)=
(191202, kax) ig

5 A y@® RC)
96, (x&,) = b6, (XL x& -+ X5L ) = sr0 Xz [Xa] -+ 300 [Xi] = s5(X] -

Equation (18) states that for X, i € I with m(;\') = ty_pé(ﬁ) = A,

Xeos (di) = (s31X], palX])
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which by Equation (16) is equal to the coefficient E*;L—x] in s;[X]. Furthermore, by

Equation (17), the images of the irreducible characters are all (even if they are not
characters of the same maximal subgroup) orthonormal in Sym;}_,k.

5.4. A FROBENIUS CHARACTERISTIC MAP FOR U;. We now extend the characteristic
map from the class functions on the maximal subgroups to the ring of class functions
on Z,lk.

The Frobenius characteristic map ¢u, : Cl(Uyx) — Symy ; is defined on the basis
of indicator functions by

pz[X
(19) b, (Iz) = palX]
z
and extended linearly to all of Cl(l;). Then for any Uy-class function ¢y, : U — C,
PilX]
(20) ¢IUA: ('ﬁbb!'k) = Z 'ﬁf)uk (dﬁ) .I;_ )
iy H

where dj; is a representative element from the generalized conjugacy class Cp.

Recall from Equation (13) that we have an isomorphism Cl(U) =~ [],., CI(G,)
that is given by mapping a class function of U}, to the restrictions to maximal sub-
groups. A similar result also holds for the Frobenius characteristic map. Since d;
belongs to exactly one maximal subgroup, Equation (19) implies that

(21) b, (f) =Y da.(f

AFE

GA)

for any f e Cl(Us).

Since the images of the irreducible characters of GG are the symmetric functions
s;[X] and this basis is orthonormal in Symy ;, Equation (21) implies the following
important property of the Frobenius images that we have defined here.

PROPOSITION 5.1. Let X € Iy, A\ = 1:7{)?:(5(), and let x be a character of Uy. The
maultiplicity of xé’\ in the restriction of x from Uy, to G is equal to

(Pu(x), s5[X1) -
Proof. By Equation (21),
(61, (0,851X0) = (204, (), 66, (&) )

=3 {4, (xle.). 06, (&)

il

= <¢GA(X|GA)’¢G*\(Xé" )>

because the Frobenius images of the irreducible characters of G, are orthogonal to the
Frobenius images of the irreducible characters of G, if 7 # \. Since ¢¢, (x3, ) = sz[X],

(1, 00,8511} = (86, (xlc, ). 86, (&) ) = (B, (Xl ), s51X1)

which is the coefficient of s3[X] in ¢a, (x|e,); or in other words, it is the multiplicity
of the irreducible G-representation indexed by A € Iy in x|g, - O

Moreover, the Frobenius characteristic function ¢, has the property that
<j,t7: j,{)C](u,‘:) = <¢Uﬁ¢ (jﬁ): ¢U&(3X)>

where, to be clear, on the left hand side of the equation the inner product is on the
class functions from Equation (14) and on the right hand side the inner product is on

Algebraie Combinatorics, Vol. 5 #5 (2022) 1195



R. ORELLANA, F. SavLioLa, A. SCHILLING & M. ZABROCKI

the symmetric functions from Equation (15). Hence ¢y, is an isometry with respect
to the inner products on the class functions of I and the inner product on Sym§c, k-

Let 13, denote the trivial character for I4,. (this is the irreducible character indexed
by (,...,9,(1)) € I. with r—1 copies of ). This is a class function with the property
that 14, (a) =1 for all a € U,.. Then let

(22) E.:=E.[X,X5,...,X,] = ¢y, (1y,)
_ 5 palX]
(23) 2 27
(24) = > Sa, [X1]8a, [X2] - - 50, [Xr]

(121292 ..par )fp

The symmetric function F, is the generating function for the character values for
the trivial representation of U,. It will serve as a building block in a formula for the
other the irreducible characters of U,.

The notation we have been using for symmetric functions can be extended to
allow substituting an expression in place of a set of variables. This is called plethystic
notation and more details can be found in [14], but for our purposes the following
should suffice. For an element A € Sym, let pi[A] be the element obtained by first
expressing A in the power sum basis and then replacing each p,[X;] appearing in the
expression with py,.[X;]. Since every symmetric function f € Sym is a polynomial in
the power sum elements p1, p2, ps, . . ., we define f[A] to be the element obtained from
f by replacing each p; with p;[A4]. This notation is consistent with the expressions we
have used thus far once we identify X; and p [X;].

REMARK 5.2. This notational extension is useful for providing a generating function
for Equation (24). For any r > 0 and expressions A and B, we have
T
solAl=1, s [A+B]=> siAls, i[B],  s[t'Xi]=1t"s[Xi].
i=0
The middle expression above is sometimes known in the literature as the alphabet
addition formula. Applying these to expand the expression below in ¢, we have

se[l+ Xy + 22Xy + -+ 5 X, = 1+ Ext + Bot® + -+ + Ext® + - 4 se[Xi]t* .

The coefficient of " for r > k in the expression on the right hand side above are
symmetric functions that are not necessarily equal to E, since they will depend on

both r and k.
We will use the shorthand notation
sx[E] = sxw [Er]sxe [Ea] - -+ sy [Ei]
and
P;[E] = pyo) [E1lpaca) [Ea] - - Pace [Ex] -

Then as a corollary to Equation (11), we have that the coefficients bg are given by
the following symmetric function expression.

COROLLARY 5.3. For ji, v € I,

L (po[E], palX]) .

(25) b= o

z
m

Proof. This is found by expanding py[E| in the power sum basis and taking the
coefficient of pz[X] to show that it agrees with Equation (11) using Equation (15).
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Using Equation (23),

1k Lk £ Prisy X
Tl,
(26) . [[p.o[E] = - 1120 > P — 2
Yoa=1 i1 i=1 (i)l 7(4,4)

p,,imF(g-?J-)[X]

() -0 =

z— .
j=1 i=1 F(i4)el; T(4,7)

where in the terms of the sum, we note that IJ{J ) e Z~( and the expression V(" )'r(i, j)is

to be interpreted as (v ) (i, ), U(J)"(z J)(Q) o z.(j) 7(i, 7)*)) where for a positive
integer @ and a partltmn A7 we have a) = (a1, alg, ..., akyy)) F ar.
The coefficient of PEXl js equal to the sum of the coefficients such that for each
I-l
1<a<k,

k f(y(.‘i})

(28) U L-!-J V(T)T (,7) (“) = "(“)

j=1 i=1
More specifically the coefficient of E’i? in Equation (27) is equal to
1 Z
(29) - 7 (3) 3
1'(- .) HJ ]_l_.[ At F(i,j)

where the sum is over all sequences of partitions 7(i,7) € I; for 1 < j < k, 1 < i
£(v'9)) such that Equation (28) holds.

O M

As a consequence, we have the following symmetric function expression for the
character table of the uniform block permutation algebra Clfx.

THEOREM b5.4. Let Xak be the irreducible character of Uy, indexed by X e I.. For
[ € I, let dz € Uy be any element such that cycletype(dy) = fi. Then

(30) Xeyp (@) = (s3[E], palX]) -
As a consequence,
(31) du, (xiy,) = s5[E] .

Proof. Since characters are class functions, they are constant on generalized conjugacy
classes and so it suffices to prove the result for the conjugacy class representatives d;
defined in Section 4.2. By Equation (15), {pz[X]}> is an orthogonal basis, hence for
any symmetric function alphabet Y =Y3,Y5,Y5,.. .,

(Y] = Y (511, pol¥]) B2
We can expand

(32) (5081 palX) = 3 (551, potE]) (P2 pix))

This last expression is equal to xi‘,’c (dz) by Equations (25), (18) and (8). Equation (31)
follows from (20) and the fact that for any f

f= Z (f, pz([X])

ps(X]
Zy
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Theorem 5.4 allows us to compute the character table for U, using symmetric
function computations. In order to write down the character table, we define a total
order on the elements in I. To do this we first define the reverse lexicographic order
on partitions: we say A <,1 p if we have A; > p; at the first index ¢ where A and p differ.
This is a total order. For example, (5) <n (4,1) €1 (3,2) <1 (3,1,1) €1 (2,2,1) €<
(2,1,1,1) <4 (1,1,1,1,1). Now for X, ji € I, we say X < ji if type(N) <p typ&(fd) or if
type(X) = ﬁ(ﬁ) and there exists an 1 < i < k such that A0 = p() forall 1 < j <
and A < u).,

EXAMPLE 5.5. The matrices are presented below with the rows and columns ordered

from smallest to largest from the top row of the matrix to the bottom. The elements of

I}, are presented compactly by dropping a layer of enclosing parentheses and commas.
The character table of U5 is

The character table of 43 is

(o,2,1)1]1] 1 11

(1,1) |oj1] 0 13

(3) Jojo] 1 11

(21) o0l-1 02

(111) o0 1-11

The character table of U, is

(,2,2,1)(121] 11| 11/ 1 1 1 11
(1,2,1) [0j1] 00 02/ 0 1 0 24
(2,2) ojof 11y 114 1 0 3 13
(2,11) o/of-11; 11/-1 0-1 13
(2,1) 00| 00/ 11 0 0 2 26
(11,1) 00| 00/—-11] 0 0—-2 06 .
(4) 0/0f 00O OOf 1 1 1 11
(31) 0j0f 00 00]-1 0-1 13
(22) 00| 00 00] 0—-1 2 02
(211) 0/0f oo0of 0O 1 0-1-13
(1111)  jojo| 00| 00/-1 1 1-11

5.5. FACTORIZATIONS OF THE CHARACTER TABLE OF U. In [26, Section 7], Stein-
berg describes two factorizations of the character table for finite inverse semigroups
in terms of the character tables of its maximal subgroups. We describe both of these
factorizations here in Proposition 5.7 and Proposition 5.9 below.

The first factorization uses an upper uni-triangular matrix Bj with non-negative
integer entries. The general description for the entries in By, is discussed in [26, Propo-
sition 7.1] in which Steinberg remarks that computing this matrix is in general a
“daunting task.” In [25, Corollary 3.7], Solomon computes this factorization for the
character table of the rook monoid. For the uniform block permutation monoid Uy,
our formula for the entries of By in terms of symmetric functions will follow from the
results in Section 4.4.

The second factorization uses a different upper uni-triangular with non-negative
integer entries U. Its entries are the multiplicities of the irreducible representations
of the maximal subgroups when we restrict an irreducible representation of Uy, to its
maximal subgroups. Our interest in this matrix arises because of a relation with the
operation of plethysm described in Corollary 5.11.
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Throughout this section we assume that Iy, is totally ordered as in Section 5.4. This
order satisfies the condition that if {e, | A F k} are the idempotent representatives
for the #-classes of Uy, then Urer Ur C Urer, Uy implies u <y v. In particular, the
largest element is p = (1*) since e, (, 18 the identity element of Uy, and v = (k) is the
smallest element since [ has one block and [ is the only element in Urer o, Us.

Let X be the character table of U, which we view as a matrix, and whose entries
are denoted by X3 Pt The following result summarizes the properties of X}, proved in
the previous section. They will be used to factor X as the product of two matrices.

PROPOSITION 5.6. Let Xj = (X
matriz. Then

X.ﬁ)i,ﬁeu be the character table of U viewed as a

X5z = x4, (di) = (s5[E], pa[X])

and X is upper block diagonal with respect to the total order on I defined in Sec-
tion 5.4.

Define Ay = (As rx)X ier, to be the block diagonal matrix whose diagonal blocks
are the character tables of the maximal subgroups of Uy; explicitly, A;ﬁ = 0if

type( ) # type( i), and otherwise AXE = xéA(dﬁ), where A\ = ty_pé(:\.) By Equa-
tion (18),

As = Xé,\ (dz) = (sx[X],palX]) -

Define a second square matrix Bx = (Bj ﬁ) 3 jer,» With the entries from Corol-

lary 5.3,
7 va
Buo =t = ( B2 paix]).

g

PROPOSITION 5.7. The matriz Ay is block diagonal, By, is upper uni-triangular with
non-negative integer entries, and

Xy =Ar B .

Proof. The statement that X = Ay - By is a restatement of Equations (8) and (32).

Ifty—pg(ﬁ) = tﬁé( i), then b" is the number of ways of merging parts of d; to obtain
an element of cycle type . There is of course one way to do this if 7 = [i and zero
ways if type(ji) <. type(¥). 0O

ExampPLE 5.8.If £ = 2, the character table for the maximal subgroups in block
diagonal form and the matrix B are

If k = 3, the character table for the maximal subgroups in block diagonal form and
the matrix B are

(2,2,1)[1l0] 0 00 (2,2,1)|1]1]11 1
(1,1) [o[1[ 0 00 (1,1) [o[1jo13
= (3) oo 1 11 B; = (3) 0[o[100 -
(21)  |ojo|-1 02 (21) |ojojo10
(111) |ojo| 1-11 (111) |ofojo 01
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If k = 4, the character table for the maximal subgroups in block diagonal form is

(#,2,2,1)|1]0| 00| 00/ 0 0 0 0O
(1,@,1) 0|1 00l 0O O O 0 0O
(z,2) Jojo| 11] 00 0 0 0 00
(9,11) 00j—11 00 O O 0 0O
(2.1) _fojo[ 00[ 11 0 0 0 00
As=(11,1)  Jolo| oo|-11] 0 0 0 o0
(1) olof ool oo T 1 1 11
(3]_) oo 00l 00O|—-1 0-1 13
(22) o0 00l 0O 0-1 2 02
(211) oo 00l 00O 1 0-1-13
(1111) Q0] 00 00]-1 1 1-11
and the matrix B, of values bf‘; is
(e,0,2,1)[1]1)11[11)11111
(1,e,1) |0j1j00|D2[01024
(2,2) __[0jo[tojp0[T0200
(@,11) 000111100113
(2,1) 0[0j00(1 000210
Bi= (11,1) [0/0/00/0 100016 .
(1) olojoojoo[to000
(3].) 0000000DLO0O0
(22) 00000000100
(2]_1) 00000OOOOLO
(1]_11) o00000OOOO0D1

The second factorization arises from the isomorphism in Equation (13), which is
induced by restricting class functions of Uy to the maximal subgroups G. By [27,
Theorem 6.5], the matrix corresponding to the restriction isomorphism, which we
denote by Uy, is upper triangular with 1s on the diagonal. Since Cl{}, is semisimple,
the entries of the matrix Uy are the multiplicities of the irreducible representations
of the maximal subgroups when we restrict an irreducible representation of U4y to the
maximal subgroups. Thus, Uy, is sometimes known as the decomposition matriz.

PROPOSITION 5.9. Define the matriz Uy = (UX,E)S,EEI;C by
U)-\",E = <SS[E], S;[X]) .
Then Uy is upper uni-triangular with non-negative integer entries, and
X =Uk- A ,

where Xy is the character table of Ui (see Proposition 16), and Ay is the block di-
agonal matriz whose blocks are the character tables of the mazimal subgroups (see
Proposition 5.7).

Proof. For X\, € I and v = tWe)(ﬂ),
Us» = (fu (x3,)» 6. (x2.) ) = (s[E], s5(X]) .

By Proposition 5.1, the entries of this matrix are multiplicities of irreducible repre-
sentations in a restriction and hence they are non-negative integers; more precisely,
Us, ; is the multiplicity of the irreducible G ,-representation Vc‘i_ in the restriction of

the irreducible Uy-representation Wti to the maximal subgroup G,.
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The factorization X = Uy - Ay, is a consequence of the fact that {s;[X]}pes, is an

orthonormal basis of Symy ;, so that
(s5[ELpalX]) = > (s5[E],s5[X]) (s5[X], pa[X]) -
vely

Now if we examine the expansion of s;[E], then if %e}(ff') <n m(i), there exists
an 7 such that the multiplicity of r in %e}(ff') isa > 0 and in w_pé(X) it is smaller
than a. This implies that the degree in X, in the symmetric function ¢¢,, (x’éﬂ) is a
but that all terms in sy [E] = ¢y, (Xl);k) have degree in X, smaller than a and hence
US, 7 = 0.

Note that s;[E] is equal to s;[X] plus terms that are of not of the same degree in
the same variables as s;[X]. Therefore, Us s =1 and Uy , = 0 if X # 7. We conclude
that Uy is upper uni-triangular. O
ExAMPLE 5.10. For k = 2, 3,4, the matrices corresponding to the multiplicities of

an irreducible representation in the restriction from the uniform block permutation
algebra to the maximal subgroups are given by

U; =

(2,2,1)[1|1]100

(1,1) Joj1I10

Us=13) |ojojloo,

(21)  |ojolo 10

(111) |ofojo o1

and

(#,2,2,1)[11|10{1010000
(1,,1) [0[1/00{11{11000
(2,2) 0|0j10(10{10100
(#,11) [0jOj01|10(0L 000
(2,1) 00001011100
Uy = (11,1) ojojoo0101010 .
(4) ojojo 00010000
(31) ojojooj00j0LIO0O0
(22) o|jojo 00000100
(211)  |ofo[oojoojooo010
(1111) 0/0j00j0000001

To dispel the impression that the entries U ; are always 0 or 1, we note that

U@, (1),(1)),(3),(1)) = (81[E2]s1[E3], s3[X1]s1[Xz2]) = 2.

To indicate the importance of the decomposition matrix of Uj, we note in the
following result that some of the entries of the matrix U, correspond to the Schur
expansion of certain symmetric function expressions involving plethysm. One objective
of this research is to give a description of the decomposition matrix in order to provide
an interpretation of these coefficients.

COROLLARY 5.11. For ut k and Xe I, the multiplicity of the irreducible &;.-module
ng in the restriction of the irreducible Uy -module WL)",E to & is equal to

(33) (sym [s1]sym[s2] -+ sym [sk]s sp) -
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Proof. Since G 11y = &g, Proposition 5.1 states that the multiplicity of ng in

Rﬁsré,‘;a W?i is
(34) (94 Ot ), 96, (05,) ) = (s3[E], sulXa]) -

Now s;[E] has symmetric functions involving the alphabets X, X3,..., X} while
su[X1] does not. Thus, the value in Equation (34) is not changed if we set each of
those alphabets equal to 0 in s;[E]. From Equation (24), we know

E.|x,=x3=-=x,=0 = 8r[X1],
and therefore the right hand side of Equation (34) is equal to
(san[s1[Xa]lsyen [s2[Xa]] -+ - sy [se[Xa]l, su[X1]),

which is the same as Equation (33) upon dropping the reference to the variables

Xi. O
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