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The Burge correspondence yields a bijection between simple
labelled graphs and semistandard Young tableaux of threshold
shape. We characterize the simple graphs of hook shape by
peak and valley conditions on Burge arrays. This is the first step
towards an analogue of Schensted’s result for the RSK insertion
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1. Introduction

The celebrated Robinson-Schensted (RS) correspondence [1,2] gives a bijection between words w
in the alphabet {1, 2, ..., n} of length k and a pair of tableaux of the same shape A, a partition of k
with at most n parts, where the first tableau is a semistandard Young tableau in the same alphabet
and the second tableau is a standard tableau. Schensted [2] proved that A; (the biggest part of the
partition 1) is the length of the longest increasing subword of w. Knuth’s generalization of the RS
correspondence [3], known as the RSK correspondence, provides a bijective proof of the Cauchy

identity in symmetric function theory

S s 0s0) = [ ——
A

ij>1

1-— xiyj ’

where the sum is over all partitions A and s;(x) is the Schur function in the variables xq, x5, ...

indexed by the partition A.
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Fig. 1. A threshold graph.

In [4], W. Burge gives four variants of the RSK correspondence. In this paper, we focus on the
correspondence in [4, Section 4], which gives a bijection between simple labelled graphs (graphs
without loops or multiple edges) and semistandard Young tableaux of threshold shape. A partition
L = (A, g, ..., Ay) is called threshold if A} = A; 4+ 1 for all 1 < i < d(A), where A{ is the length
of ith column of the Young diagram of A and d(A) is the maximal d such that (d, d) € A. We call
this bijection the Burge correspondence. The Burge correspondence gives a bijective proof of the
Littlewood identity [5, Exer. 1.5.9(a) and 1.8.6(c)]

1+Zs,\(x1,x2,...):l_[(1+xl-xj), (1.1)
A i<j

where the sum runs over all threshold partitions. For more details about the representation theoretic
significance of the Burge correspondence, see [6].

In this paper, we characterize the graphs whose shapes under the Burge correspondence are
hook shapes in terms of peak and valley conditions. This is the first step towards an analogue for
the Burge correspondence of Schensted’s result for the RS correspondence, namely that increasing
sequences under the RS correspondence give tableaux of single row shape.

Threshold partitions also play an important role in graph theory. Given a simple graph G =
([n], E) with vertex set [n] = {1, 2, ..., n} and edge set E, the degree d; of a vertex i is the number
of neighbours of i. The degree sequence of G is the tuple dg = (dy, d>, ..., d,). One of the central
questions in graph theory is the characterization of all sequences that appear as degree sequences
of a simple graph (see for example [7-11]). The Erdés-Gallai theorem [7] gives a characterization
of graphic partitions, that is, partitions that are degree sequences of a simple graph.

Define X¢ = x‘f]x‘zj2 - -+, the monomial associated with a simple graph G with degree sequence
dg = (dy, d, .. .). It is known that the generating function ) . X¢ = ]_[,-<j (1 + x,-xj) is a symmetric
function in X1, X3, . . ., where the sum runs over all simple graphs G. Note that the right hand side is
the right hand side in Littlewood’s identity (1.1). Hence, from (1.1) and the Burge correspondence,
it follows that a sequence d = (d; > dy > --- > d,)) is a degree sequence of a simple graph G if and
only if d < A for some threshold partition A, where < is the dominance order for partitions. In [12],
Gasharov proved that this condition is equivalent to the Erdds—Gallai theorem. Hence threshold
partitions are the maximal graphic partitions._

The degree partition of G is the partition d; obtained by rearranging d; in weakly decreasing
manner. A graph G is called threshold if the associated degree partition is threshold. For alternative
definitions and characterizations of threshold graphs, see [10, Chapter 3]. Threshold graphs can be
interpreted in an extremal sense. First, the threshold partitions (the degree partitions of threshold
graphs) are maximal among graphic partitions. Second, the threshold partitions of n are the extreme
points of the degree partition polytope, the convex hull of all degree partitions of simple graphs on
n, see [13] and references therein.

Example 1.1. The simple graph in Fig. 1 is threshold as its degree partition (3, 2, 2, 1) is threshold.
2
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The condition A = A;+ 1 for threshold partitions is in fact Merris’ and Roby’s reformulation [11]
of conditions stated by Ruch and Gutman [8]. Klivans and Reiner [14] give some generalizations of
these concepts to hypergraphs and related them to plethysm.

In this paper, we characterize when the shape A; of a simple graph G is a hook shape. This is
done by analysing the Burge correspondence and imposing peak and valley conditions on the Burge
array corresponding to G. In addition, we impose a crystal structure on simple graphs of hook shape.
Crystal graphs are combinatorial skeletons of Lie algebra representations (see for example [15,16]).
The extremal vectors in this crystal are precisely the simple graphs whose degree sequence is
threshold.

The paper is organized as follows. In Section 2, we review the Burge correspondence and prove
some results regarding standardization. In Section 3, we provide the characterization of simple
graphs of hook shape. Finally in Section 4, we give the crystal structure on simple graphs of hook
shape.

2. The Burge correspondence

In this section, we define the Burge correspondence [4]. We review some preliminaries in
Section 2.1. We remind the reader of Schensted’s result on longest increasing subwords of words
in Section 2.2 before introducing the Burge correspondence in Section 2.3. In Section 2.4, we show
that the Burge correspondence intertwines with standardization.

2.1. Preliminaries

A partition A of a nonnegative integer n, denoted by A F n, is a weakly decreasing sequence
A = (A1, A2, ..., Ag) of positive integers A; such that Z; Ai = n. The length of A is £. The Young
diagram Y()) of A is a left-justified array of boxes with A; boxes in row i from the top. (This is also
known as the English convention for Young diagrams of partitions). A partition A is a hook if Y(A)
does not contain any 2 x 2 squares.

Definition 2.1. Let A be a partition. A semistandard Young tableau of shape A in the alphabet
[n] :={1,2,...,n}is a filling of the Young diagram of A with letters in [n] such that the numbers
weakly increase along rows and strictly increase along columns. We denote by Tab,(A) the set of
all semistandard Young tableaux of shape A in the alphabet [n].

Let T be a semistandard Young tableau. The shape of T is denoted sh(T). The weight of a
semistandard Young tableau T, denoted wt(T), is the integer vector (w1, ..., 1,), where y; is the
number of times the number i occurs. The subset of Tab,(1) consisting of all semistandard Young
tableaux of weight u is denoted by Tab(A, ).

Given an integer vector i = (i1, ..., /), let x* denote the monomial x;'x,? -
variables x1, X2, ..., X,.

Mn

-.xp" in the n

Definition 2.2. For each integer partition A, the Schur polynomial in n variables corresponding to A
is defined as

S (X1, .o, X)) = Z X,

TeTaby(X)

2.2. Schensted algorithm and longest increasing subwords

The Burge correspondence (as well as the celebrated Robinson-Schensted-Knuth (RSK) corre-
spondence) uses the Schensted row insertion algorithm. Given a semistandard Young tableau T in
the alphabet [n], a letter i € [n] can be inserted into T in the following way: if i is larger than or
equal to all the entries of the first row of T, a new box containing i is added at the end of first row
and the process stops. Otherwise, i replaces the smallest leftmost number j of the first row such
that j > i. Thenj is inserted in the second row of T in the same way and so on. The procedure stops

3
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when a new box is added to T at the end of a row. The result is denoted T <« i. The shape of T <« i
contains one new box compared to the shape of T.

Given a tableau T and a letter x that lies at the end of some row of T, the Schensted reverse
bumping algorithm generates a pair of a tableau T’ and a letter y in the following way: Let t be the
row index of x and x; be the rightmost entry of row t — 1 such that x; < x. Replace x; by x in T and
output x;. Repeat the process for x; and continue until an element of the first row say y is obtained
as output. The resulting tableau is T’. We shall denote the pair (T’,y) by T — x.

Given a word w = wyw> ... wy in the alphabet {1, 2, ..., n}, the Schensted insertion tableau is
defined as P(w) := @ < wq < wy < --- < wy. The shape of the semistandard Young tableau
P(w), denoted A(w) = (A1, A2, ...), is called the shape of the word w. Schensted [2] proved that X,
is the length of the longest increasing subword of w. In particular, the shape A(w) is a single row
if w is weakly increasing. Greene [17] extended the result of Schensted by interpreting the rest of
the shape of A. For a poset theoretic viewpoint of the map w — A(w) and various applications
including in the context of flag varieties, see Britz and Fomin [18] and references therein. In the
same spirit, we ask very similar questions about the Burge correspondence introduced in the next
subsection.

2.3. The Burge correspondence
We begin by recalling the definition of a Burge array from [4, Section 4].

Definition 2.3. Given a simple graph G = ([n], E) with |E| = r, define a two line array known as
the Burge array

_ | az ... G
AG—[m by ... br]
satisfying:

(1) Each pair (a, by) is an edge of G and a; > by foreach 1 < k < r.
(2) The top line is weakly increasing, that is, ay < a4 forall 1 <k <.
(3) If ax = ay4q for some 1 < k < r, then by > by 1.

Notice that G is completely determined by the associated Burge array .4g assuming that [n] is
known. Note that singletons in the simple graph do not appear in the Burge array Ag.

Given a threshold partition A, by definition, the Young diagram Y(A) of A is divided into two
symmetric pieces. The bottom piece consists of all boxes that lie strictly below the diagonal and
the top piece consists of the rest. Each position in the top (bottom) piece of the Young diagram of
Y(X) corresponds to a unique position, called the opposite position, in the bottom (top) piece of Y(1).
The opposite position op(s, t) of (s, t) is defined to be (t + 1, s) if s < t and (t, s — 1) otherwise.

Having defined all the necessary tools, we now state the main algorithm of the Burge correspon-
dence. Starting with the empty tableau T, we shall insert all the edges of G, as ordered in Ag, into
To. Let Ty be the tableau obtained by inserting the edge (ay, by) into T,_; in the following way:

(1) First insert by into T,_; using the Schensted insertion algorithm. This adds a new cell to the
shape, say in position (s, ).

(2) Place the entry ai in the cell op(sg, ty). Observe that each addition of an edge transforms a
tableau of threshold shape to another tableau of threshold shape.

Finally, the tableau T; := T; is the threshold tableau associated with the graph G under the Burge
correspondence.

Burge [4] proved that this tableau is semistandard. Given such a tableau T, we recover the Burge
array in the following way: Let a, be the largest entry of T with largest column index. Remove a,
from T. Let z, be the value at the opposite position of the cell containing a,. Let b, = y, where
T — z; = (T;_1, yr). Repeat the process for T;_; and continue until the empty tableau is obtained
in the output.
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insert 1 insert 2 112 insert 1 111 insert 2 1 2
[%) «— «— «— R —
record 2 record 3 2 record 3 212 record 4 2
3 3
4

Fig. 2. Burge insertion associated to Example 2.4.

2 3 3 4
1 2 1 2

T¢ of threshold shape (3, 2, 2, 1) is obtained by inserting the edges of G as ordered in A¢ as depicted
in Fig. 2.

Example 2.4. The Burge array A¢ for the graph in Fig. 1 is |: } The associated tableau

In the same spirit as the shape of a word under the RSK correspondence, we can define the shape
of a graph under the Burge correspondence.

Definition 2.5. The shape of a simple graph G is the partition A := sh(T¢), where T is the tableau
associated with G by the Burge correspondence.

It can be observed that the shape of a threshold graph G is its degree partition de. Namely, let G
be a threshold graph with degree sequence dg. If T is the semistandard Young tableau of threshold
shape A and weight dg, then d; is less than or equal to A in dominance order. Since d; is a threshold
sequence by assumption, we know that the only partition that dominates a threshold sequence is
the corresponding partition. Hence A = dg.

We call a simple graph G a hook-graph if the associated tableau T; has hook shape. Given the
nature of the Burge algorithm, determining when a T; has hook shape is analogous to asking when
a tableau under the RSK algorithm has single row shape.

Problem 2.6. What is the shape of a simple graph?

In the next section, we characterize all hook-graphs.
2.4. Standardization

Both Tab,,(1) and words over [m] with length n have the notion of standardization. Standard-
ization intertwines with RSK in the sense that they form a commuting diagram. We show that an
analogous result holds true for the Burge correspondence.

First, we review the standardization map for semistandard Young tableaux. Let A - n and let
C = {c1 < --+ < ¢y} be a subset of N. The standardization of T € Tab(), u) with respect to the
alphabet C, denoted by standc(T), is the map replacing all the 1's in T from left to right with the
numbers c¢; through c,,, replacing all the 2’s from left to right with the numbers ¢, through
Cuuy 411y €LC.

The standardization map on words over the alphabet [m] can be defined similarly. Let w be a
word using the alphabet [m] with length n and let i denote its content. In other words, let u =
(1, 2, ..., um) be an integer vector, where u; denotes the number of i’s in w. The standardization
of @ with respect to C, which we also denote by standc(w), is defined by replacing the 1's in w
from left to right with the numbers ¢; through c,,, replacing the 2’s in w from left to right with
the numbers c,, 41 through c,,4,,, etc. The following result formalizes the relationship between
standardization and RSK, see for example [19, Lemma 7.11.6].

Proposition 2.7. Let w be a word in the alphabet [m] with length n. Then standc(P(w)) =
P(standc(w)).
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Analogously, we define the standardization of a Burge array .A¢. Given a Burge array Ag with
r columns and a subset C = {c; < --- < ¢y} of N, define the standardization of .4; with respect
to C, denoted by standc(.A¢), to be the map that replaces the 1’s in Ag from left to right with the
numbers ¢; through cq,, replaces the 2’s from left to right with the numbers cg4, 1 through ¢y, 14,,
etc. where dg = (d1, ds, ..., dy) is the degree sequence of G.

For T a semistandard Young tableau, the reading word of T denoted by R(T) is obtained by reading
the entries within a row from left to right starting with the bottommost row.

Proposition 2.8. Let A; be a Burge array and Bg = standc(Ag). Let Tg (resp. Sg) be the tableau
associated to Ag (resp. Bg) under the Burge correspondence. Then Sg = standc(Tg).

Proof. We proceed by induction on the number of columns of A; = [gl gi Zr]. Note
1 .. r

that the base case of r = 0 is trivial. Let A;_1 (resp. B,_1) denote the Burge array formed by the
first r — 1 columns of Ag (resp. Bg). We have B,_; = Standc-(c,-,,cZ,}(Ar—ﬂ where [cyr, cir]T is the
last column of Bg. From our inductive hypothesis, S,_; = Standc-{c,-,,CZ,}(Tr—ﬂ- As the reading word
R(Sr—1) is the standardization of R(T,_;), we have (R(S;_1), ¢;,) is the standardization of (R(T;_1), b;).
By Proposition 2.7, S;_1 < ¢, = standc_c,,}(T < b;). Thus the a, and c,; must be placed in the
same position of their respective tableau. From the inverse of the Burge correspondence, a; is the
largest value in T and lies in a column to the right of any equivalent letters. Therefore, a, in Tg
gets sent to ¢y by standc and does not affect the mapping of the other letters in the tableau. Hence,
S = stand¢(Tg). O

3. Characterization of the shape of graphs

While answering Problem 2.6 in full generality seems far-achieving, we determine necessary and
sufficient conditions of a hook graph in this section.

3.1. Trees
We begin by establishing a necessary condition for a connected graph to be of hook shape.

Proposition 3.1. Let G be a simple graph and let k be the number of connected components of G
that contain at least one edge. If G contains k edges eq, ..., e; such that G — {ey, ..., ey} has the same
number of connected components as G, then G is not a hook-graph.

Proof. Let Cy, ..., C; denote the k connected components of G that contain at least one edge. Denote
by n; the number of vertices in C; and let n = Zf: n;. If each C; was minimally connected, it would
contain n; — 1 edges. Thus, G contains at least ) ,_,(n; — 1) = n — k edges. The condition that “G
contains k edges eq, . . ., e, such that G—{eq, . . ., e} has the same number of connected components
as G” implies that G has at least n — k + k = n edges. Observe that the length of d; is precisely n.
However, the length of the partition (e, 1°) is at least n+ 1, where e > n is the number of edges of G.
This implies that the partition (e, 1¢) is not weakly greater than dg in dominance order. Thus, there
are no semistandard Young tableaux of shape (e, 1¢) with weight dg, and T; is not hook-shaped. O

Recall that an undirected graph is called a tree if it is connected and does not contain any cycle.
Setting k = 1 into Proposition 3.1, we obtain the following necessary condition for connected
(excluding singletons) hook-graphs.

Corollary 3.2. The only connected hook-graphs are trees.

Remark 3.3. A tree need not be a hook-graph always. For example, the tree whose Burge array is

[244

1 3 2] has the shape (2, 2, 2).
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3.2. Peak and valley condition

We now introduce peak and valley conditions which characterize when a graph has hook shape.

Definition 3.4 (Peak). A simple graph G with A as in Definition 2.3 is said to have a peak if there
exist 1 <i <j < k < r such that

(1) b; < by,
(2) j is the minimum index with by < b;,
3) g < bj.

Definition 3.5 (Valley). A simple graph G with A¢ as in Definition 2.3 is said to have a valley if
there exist 1 < i < j < k < r such that the following conditions hold:

(1) b; < by < a,
(2) bj < b,’.

Example 3.6.

(1) The graph with Burge array [% ‘31 g] of Remark 3.3 has a peak withi = 1,j =2,k = 3,

but no valley.

(2) The graph G with A = [4 > 6

1 3 5
Note that b; < by < bs, butj = 3 is not the minimal j satisfying this condition. Also, .A¢ does
not have a valley.

(3) The graph considered in Example 2.4 has both a peak and a valley.

;:| does not have a peak as by < by < b, but a; > b,.

We refer to a Burge array as being PV-free if the Burge array does not contain a peak or a valley.

Theorem 3.7. Let G be a simple graph on [n]. The graph G is a hook-graph if and only if its
corresponding Burge array is PV-free.

Proof. We prove the equivalent statement that the shape of G is non-hook if and only if G has either
a peak or a valley.

Proof of forward direction =:
Let T be the tableau of non-hook shape associated with the Burge array A; =

[gl gi o g’]. Let T, denote the tableau corresponding to the sub-array consisting of the first
1 .. T

£ columns of A¢. Choose k minimal such that the shape of T is non-hook, that is, let k be the column
that creates the cells (2, 2) and (3, 2) when applying the Burge algorithm. We claim that there exist

j1,j» with 1 <j; < jo < k such that |:g1:1 gfz g’;] is either a peak or a valley.
] f)

Let x be the first row entry of T,_; that is bumped by by in kth step of the Burge algorithm. Let y
be the entry in position (2, 1) (first entry of 2nd row) of Ty_1, see Fig. 3. Note that x > by and y < x.
There are two different cases depending on whether x is an inserted letter or a recorded letter.

Case 1: Let x be the inserted letter b; for some 1 <j <k — 1.

Subcase A: If y is a recorded letter, then the only possibility is y = ay. This implies that position
(1, 1) of Ty_4 is by and the arm of T;_; consists of bybs...b,_1. So we have that j is the smallest

7
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insert by_1 . ‘ insert by .
«— «—

record ag_1 record ay

aj

] ]

Fig. 3. Tableau after (k — 1) insertions (left) and tableau after k insertions (right).

index between 1 and k satisfying b; < by < b;. In addition, a; =y < x = b;. Hence [gl gf g;‘} is
)j k

a peak.

Subcase B: Assume y is an inserted letter, say b; for some i. Let b,, be the value which bumped b;
from the first row. So b, < b; < x = b;. Also we must have b, < by as otherwise by < by, < x
and in this case by would bump an entry strictly smaller than x = b;. Now two cases arise: m < j
and m > j. When m > j, we have q; < a,. We use the relations by, < by < x = b < g; < ay,
g; gz g’; is a valley. When m < j, we claim that [gz Zj g:: is a
peak. First observe that a, < b;. Since m < j, x = b; is inserted after by,. If a,, > b; then b; would
bump an entry weakly larger than y and the shape of T;_; becomes non-hook. This contradicts the
minimality of k. Hence a, < b;. Also note that j is the smallest index between m and k satisfying
bm < br < b; as otherwise this would contradict the choice of y or x. Hence the claim is true.

and b,, < b; to show that

Case 2: Let x be a recorded letter say g; for 1 < j < k — 1. This implies y = b; for some i as y can no
longer be the recording letter a;.

Subcase A: i < j. Let b, be the value which bumps b; from the first row. Then we must have m > j.
If m < j, then b; would be placed at position (2, 1) of Ty. Since x = q; is placed in the first row,
b; must bump a letter from the first row. That letter would bump b; from position (2, 1) of T;. This
contradicts that y = b;. Now we have the relations b, < by < x = g; < ap and b, < b;. Hence
[a,— [

bi bn by

Subcase B: i > j. Since x = q; is placed in the first row, b; must bump a letter from the first row. This
letter must be an inserted letter since a; is already placed in the first column and hence a bumped
recorded letter would create a non-hook shape. This would contradict the minimality of k. Let b,
with t < j be the value bumped by b;. So b; > b;. Let b,, denote the value that bumps y = b;. Here
m > i but b, < b;. Observe that b; < b, as b; and b, are in the first column. We also have b,;, < by
otherwise by would bump something smaller than x = a;. Moreover, by < g; < a; < a;,. Therefore
a G ag
bt bm bk

] is a valley.

bn < by < an and by > b,,, which shows that |: } is a valley.
Proof of backward direction «<:

Now we shall prove that the shape of T is non-hook if G has either a valley or a peak. We start
by proving the result for the case of a valley.
aj  ag
bj b

the first k — 1 columns of A and that T,_; has hook shape. We consider two cases.

. a; . .
Suppose Ag contains a valley bl- ] We may assume that there is no peak or valley in
1

Case 1: Assume that b; is present in the first row of Tj_;. Since b; > b;, b; bumps an element, say
x, from the first row of Tj_;. So b; < x < b;. Since b; bumps a letter in the first row and since by
assumption T; has hook shape, it follows that g; must be in the first row of T;. Note that a; must
also be in the first row of T,_1. This is because if an element say b, (insertion letter) bumps a; from

8
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the first row before the insertion of by, then T, has non-hook shape since a; > a;, which is greater
or equal to the letter in cell (2, 1).

Since we have b; < by < aj, by bumps an element (which lies in the first row of Ty_1), say y.
Then b; < y < g;. We claim that x < y. If y < x, note that y was not in T_; when b; was inserted,
since otherwise b; would have bumped y. So b; <y < x < b; < a; < q;. This shows that y must
be an inserted letter, say b, with j < £ < k, and we have a valley formed by columns i, j, £. This
is a contradiction to our assumption. Therefore we must have x < y. In this case the shape of T;
becomes non-hook, because the entry in cell (2, 1) of Ty_; is less than or equal to x and so y must
be placed in the (2, 2) position of Ty.

Case 2: Assume that b; is not present in the first row of Tj_;. Let x be the element in Tj_; in the
position where b; was originally inserted. Since x < b; and x is inserted after step i, x must be an
. s . . a a a
inserted letter, say b, withi < £ < j. We claim that b, > b;. If not, we have b, < b; and |:bl b[ b]i|
i be Dj
is a valley since b; < b; < a; < a,. This is a contradiction. Hence b, > b;. This implies that b; must
bump an element from the first row of Tj_;. If z is that element, then b; < z < by. Also, since b;
bumps an element, a; must be in the first row in T;. By the same arguments as in Case 1, g; must be
in the first row in Tj_;. Since by the valley condition by < a;, b, bumps an element in Tj_;. Call this
element w. We claim that z < w. If w < z, note that w was not in Tj_; since then b; < by < w <z
and hence b; would have bumped w instead of z in T;_;. If w is an inserted letter b, withj < m < k,
then [g’ g] gm forms a valley as b, = w < z < by < a¢ < g;. This is a contradiction. If w is a
i j m
recorded letter, then w > a; > a, > b, > z, contradicting the assumption that w < z. This proves
z < w. Hence w must be placed in position (2, 2) of Ty. This implies that the shape of Ty is non-hook.
Considering the above cases, we conclude that T; has non-hook shape when A¢ has a valley.
. a; a .
Suppose A¢ contains a peak |:b1 Z’ gk:|. As before, we may assume that there is no valley or
i bj Di

peak in first k — 1 columns of A¢ and that T,_; has hook shape.
Claim. b; cannot be bumped from the first row before the kth step.

Proof. Assume that b; is bumped from the first row before the kth column is inserted. This would
create a non-hook shape as b; > a; > ay. This contradicts the fact that T,_; has hook shape. Hence
we have proved the claim.

Since bj is in the first row of Ty_; and by < bj, by must bump an element, say z. So by < z < b;.

Case 1: Suppose b; is not present in the first row of T;_;. Let y be the entry in position (2, 1) of Tj_1.
Then y < b;. Also we have b; < b, < z. Since y < z, z would be placed at position (2, 2) of Ty, hence
the shape of T, becomes non-hook.

Case 2: Assume b; is present in the first row of Tj_;.

Subcase A: b; is placed at the end of the first row of T;_;. If z = a,, then z > a; and T has non-hook
shape since the element in position (2, 1) in Ty_; is smaller or equal to a;.

Now consider the case when z = b, for some £. If £ < j, consider the array |:g' gi gf g';:|

i j
Note that indeed i < ¢. Namely, z = b, implies b; < b, since b; < by and b, < z. This implies that
i < ¢; otherwise, b; would bump a value from the first row of T;_;. We have b; < by < z = b,.
By definition of the peak [gl gf g;‘] we have a; < by = z. Note that by the definition of a peak
i /j k

j = L. Again, y < z implies that shape of Ty is non-hook.

Now let us consider the case when ¢ > j. If by = bj, then b; would be bumped by by instead

of by, which is a contradiction. If b, < b;, then [g' g’ gi] becomes a peak. Observe that j is
i Y

9
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ai a; ag . . .
bi b bk} and the inequality by < by. This

contradicts our assumption that there should not be any other peak in the first k columns of Ag.

minimal due to the minimality condition of the peak [

Subcase B: b; bumps an element from the first row of T;_; when inserted. Then q; is placed in the
first row of T;. Let u be the value bumped by b; when inserted to T;_; and let z be the value bumped
by by. So, b; < u and b, < z. Notice that the entry in position (2, 1) of Ty_; is less than or equal to
u. So, if u < z, the shape of T, becomes non-hook.

On the contrary, suppose u > z. Then z is not in the first row of T;_; since otherwise b; would
bump z instead of u as b; < by < z < u. This contradicts the definition of u. Hence z is inserted
after the ith step. As b; bumps u from the first row of T;_;, u is weakly less than a;. As z is inserted
after the ith step, it must be an inserted letter i.e. z = b, for some i < £ < k. Now either z < qg; or
zZ > a;.

Assume that z < a;. We prove that there does not exists an inserted letter b, such thati <t < k
and b; < by < a;. Assume that there exists such an inserted letter b;, where t is the smallest possible
index. Observe that when b, is inserted it bumps an element strictly right of b; and weakly left of
g; in the arm of T;_;. Denote this element by w. From the minimality of ¢, we have w is present in
the first row of T;_; and is strictly to the right of u. Thus, w is weakly larger than u, and when w is
bumped, it will be weakly larger than the value in the (2, 1) cell of T;_;. This would contradict Tj_{
being hook shaped. Therefore no such inserted letter b; exists. Observe that z satisfies the condition
of by namely z = b, where i < ¢ < k and b; < b, < a;. By our claim this is impossible.

Next consider the case z > q;. Note that a; > u as both of them are placed in first column.
Together with u > z > a; we get a; > a;, which is not possible. Therefore the case u > z does not
arise.

Considering all the cases, we proved that the shape of T is non-hook when A¢ has a peak. This
completes the proof. O

Remark 3.8. Theorem 3.7 is the analogue to the statement for RSK that the shape of a word w
under RSK is a single row if and only if w is weakly increasing.

Remark 3.9. In analogy with Schensted’s result for the RSK insertion that the length of the longest
increasing subsequence of a word w gives the length of the longest row in the Young tableaux under
RSK, one might suspect that the longest PV-free subsequence of a Burge array gives the size of the
largest hook in sh(Tg). However, this is not true as the following counterexample shows. Take the
graph G with Burge array

4 8 8 9 9
AG:[13252]

The tableau under the Burge correspondence is

2|2
9

T =

O | W[ —m

5
8
9

so that sh(T¢) = (3, 3, 2, 2). However, the subsequence

4 8 9 9

1 3 5 2
is PV-free and has hook shape (4, 1, 1, 1, 1), which is larger than the biggest hook (3,1, 1, 1) in
Sh(TG).

A star graph is a graph where one vertex i is connected to all other vertices by an edge and no
other edges exist in the graph.

10
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Corollary 3.10. All star graphs are hook-graphs.

Proof. Assuming that the vertices of the star graph are labelled 1, 2, ..., n and the vertex connected
to all other vertices is vertex i, the Burge array is
i i .. 1 i+1 i+2 ... n
i-1 i—-2 ... 1 i i R
which is PV-free. O
4. Crystal structure on hook-graphs

We review the crystal structure on semistandard Young tableaux in Section 4.1 and then define
the new crystal structure on hook-graphs in Section 4.2.

4.1. Review of crystal structure on semistandard Young tableaux

Crystal bases provide a combinatorial skeleton for Uy(g)-representations, where Uy(g) is the
quantum group associated to the Lie algebra g. A Kashiwara crystal is a nonempty set B together
with maps

e;, fi:B— BU {{} foriel,
wt:B — A,

where A is the weight lattice associated to the Lie algebra g and I is the index set of the Dynkin
diagram for g. These maps have to satisfy certain conditions (see [15, Definition 2.13]).

For simply-laced Lie algebras g, a Stembridge crystal is a Kashiwara crystal for which the raising
and lowering operators e; and f; satisfy certain local rules (see [15, Section 4.2]). Stembridge crystals
are crystals corresponding to Uy(g)-representations.

In this paper, we only consider crystals of type Apn_;. For type A,_; crystals we have I =
{1,2,...,m—1}. A particular model for type Ap,_ crystals is given in terms of semistandard Young
tableaux, that is, the set B is the set of all semistandard Young tableaux on the alphabet [m]. For
further details, see [15, Section 3]. Here we review the crystal structure on semistandard Young
tableaux.

Definition 4.1. Let T be a semistandard Young tableau. The reading word of T denoted by R(T)
is obtained by reading the entries within a row from left to right starting with the bottommost
row. The ith reading word of T denoted by R;(T) is the induced subword of R(T) containing only the
entries i and i + 1.

Definition 4.2. Let w be a word with length n over the alphabet [m]. A Knuth move on w is one of
the following transformations:

(1) wy...bca...w, — wy...bac...w, ifa<b<c
(2)w1 .bac...w, — w1...bca...w, ifa <b <c,
(3) wy...ach...w, — w1...cab...w, ifa<b<c,
(4) a)1...cab...wn—>a)1...acb...a),, ifa<h<c.

Two words w and v are said to be Knuth equivalent if they differ by a sequence of Knuth moves.

It is well-known that @ and v are Knuth equivalent if and only if P(w) = P(v), that is, their
insertion tableaux under Schensted insertion are equal. In addition, it is also known that the crystal
operators f; and e; on words preserve Knuth equivalence. Thus, in order to define the crystal
operators on semistandard Young tableaux it suffices to look at their reading words.

Definition 4.3. Let T be a semistandard Young tableau in Tab,(1). Assign a ‘)’ to every i in R;y(T)

and a ‘(" to every i + 1 in R;(T). Successively pair every ‘(" that is directly left of a ‘)’ which we call

an i-pair and remove the i-paired terms. Continue this process until no more terms can be i-paired.
The lowering operator f; for 1 <i < m acts on T as follows:

11
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(1) If there are no unpaired ‘)’ terms left, then f; annihilates T.
(2) Otherwise locate the i in T corresponding to the rightmost unpaired ‘)’ of Ry(T) and replace
it withani+ 1.

The raising operator e; for 1 < i < m acts on T as follows:

(1) If there are no unpaired ‘(" terms left, then e; annihilates T.
(2) Otherwise locate the i+ 1in T corresponding to the leftmost unpaired ‘(’ of R;(T) and replace
it with an i.

The weight wt(T) = (ay, az, ..., ) is an m-tuple such that g; is the number of letters i in T.

The crystal lowering and raising operators f; and e; for 1 < i < m together with the weight
function wt define a crystal structure on Tab,,(1). The vertices of the crystal are the elements in
Tab,(A) for a fixed partition A. There is an edge labelled i from T € Tabp,(1) to T' € Tab,,(A) if
fi(T) = T'. Note that f; and e; are partial inverses, that is, if f;(T) = T’ then ¢;(T’) = T and vice versa.

4.2. Crystal structure on hook-graphs

In this section, we assume that G is a hook-graph or equivalently by Theorem 3.7 that Ag is a
PV-free Burge array.

Definition 4.4. The ith reading word of Ag, denoted by Ri(Ag), is obtained by the following
algorithm:

(1) Let a, denote the leftmost i+ 1 in the top row of Ag. If k = 1 or by < by, then let a be the
first letter of Ri(Ag).

(2) Read all other i's and (i + 1)’s in Ag from left to right while appending the corresponding
value to Rj(Ag).

;‘]. Then R; = 21, R, = 3233, and R = 4333. For A¢ = [3 4},

Example 4.5. Let A; = [; ? 21

we have Rg = 34.

Remark 4.6. Note that except for the column in A¢ containing a, as in (1) of Definition 4.4, each
column of A¢ contains either i or i 4+ 1, but not both. Hence the algorithm to construct the reading

i+1

word in Definition 4.4 is well-defined. Indeed, if A; contains the column |: i } then it must be

the leftmost column containing i + 1 in the top row since by the definition of a Burge array the
bottom row is decreasing for equal top row elements. Hence gy is this leftmost i 4+ 1 and either
k=1ora,<iand by,_; <i= by, so that a; is chosen as the first letter of R;(A¢).

Definition 4.7. Assign a )’ to every i in Ri(Ag) and a ‘(" to every i + 1 in Ri(Ag). Successively pair
every ‘(" that is directly left of a ‘), called an i-pair, and remove the paired terms. Continue this
process until no more terms can be paired.

The operator f; acts on Ag as follows:

(1) If there are no unpaired ‘) terms left, then f; annihilates A denoted by fi(Ag) = 0.
(2) Otherwise locate the i in A corresponding to the rightmost unpaired ‘)’ and denote it by x.

(a) If there is no i 4+ 1 in the same column as x, thenfi changes x in A¢ to an i+ 1.

(b) If there is an i+ 1 in the same column as x, then x is on the bottom row of A¢. Let k be
the index such that b, = x. Let £ be the smallest index such that by < by < - -+ < br_1.
Let £ < m < k be the largest index such that b, < a,. In the top row of A¢ replace
ax—1 with an i + 1 and replace a; with a5, for £ < s < k — 2. In the bottom row of A¢
replace b, with a, and replace by with b,,. (Remark: Observe that in this case k # 1 as

12
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ce. Qp Qpy1 --. Qm-1 Gm Gyl ... Qg1 T+1 ...
. bg bg+1 bm—l bm bm+1 bk—l (3

Lfi
ce. Aoyl Qi .. Am Am+1 Am+2 ... 1+1 ++1 ...
. bg bg+1 e bm_1 Qy bm+1 e bkz—l bm

Fig. 4. Action of f; in Case (2b).

otherwise the i+ 1 and i in this column would form an i-pair in R;. Thus, this operation
is well-defined.) This procedure is illustrated in Fig. 4.

The operator &; acts on Ag as follows:

(1) If there are no unpaired ‘(" terms left, then &; annihilates .A; denoted by e;(Ag) = 0.
(2) Otherwise locate the i + 1 in Ag corresponding to the leftmost unpaired ‘(" and denote it by
X.

(a) If x is in the top row of A and there is an i+ 1 directly to the left of it, then let k be the
index such that a; = x. Let £ be the smallest index such that by < by+1 < -+ < by_1.
Let £ < m < k be the smallest index such that b, < by,. In the top row of A¢ replace
a, with b, and replace a; with a;_; for £ + 1 < s < k — 1. In the bottom row of Ag
replace b, with by and replace b, with an i.

(b) Otherwise, é; changes x in Ag to an i.

Example 4.8. Examples of crystals on Burge arrays are given in Fig. 5. To illustrate the crystal
2 3 4

operators f; of Definition 4.7, consider f, on A¢ = 1 2 3

}. In this case Ry(Ag) = 3223, x is the

3 3 4

2 in column two of Ag, k=2,£ =1, and m = 1. We obtainfz(AG) = [2 1 3

]. For f3 on Ag we

have)(:3' ’(:3‘5 = l,m= 1,andf3(Ac)= [; ;l fllil

The fact that a non-annihilated fi(Ac) (resp. é;(Acg)) is a PV-free Burge array or even a valid Burge
array will be shown as a consequence of Proposition 4.11.

Lemma 4.9. Ri(Ac) has at most one i-pair.

Proof. Assume that INQ,'(AG) has at least two i-pairs. This implies that A contains at least two (i+1)’s.
Let j be the index of the column containing the leftmost i + 1 and k be the index of the column
containing the second leftmost i + 1. We break into cases based on the position of the (i + 1)’s in
columns j and k.

Case 1: Assume that a; = i + 1 and ax = i + 1. This implies that a; is the second leftmost i + 1 in

1~€,»(Ac). Since Ag is assumed to have at least two i-pairs, there must exist £ > k such that b, = i.
a Gy ag| _ i+1 i+1 af. . . _
The subarray [bj by bg] [ b, by .~ | is then a valley as by <i=by <i+ 1= a; and

i
bx < b;. This contradicts A¢ being a PV-free Burge array.

Case 2: Assume that a; = i+ 1 and by = i+ 1. This once again implies that by is the second leftmost
i+ 1in R;(Ag). As Ag contains at least two i-pairs, there must exist ¢ > k such that b, = i. Let
j < s < £ be the leftmost index such that b; < i = b, < b,. Note that such an s exists as k satisfies
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2 3 2 3 4
11 111
3 1 |1
2 4 2 3 2 3 4
11 12 11 2
// \\ //
/ \ /
/2 \ 1 3\ 2 / 2 1
// \ /
¥y \w ¥
4 2 4 3 3 2 3 4 2 3 4
11 12 2 1 11 3 12 2
1 2 3 3 1 2
4 2 4 3 3 4 4 2 3 4
12 13 2 1 121 123
1 2 3 |1 3 2
3 4 3 4 4 4 3 4 4 3 3 4
2 2 13 2 1 2 2 1 21 3
\ \
\\\ // \\
\ /
V2 /1 3 )2 \ 2 3
\ / A\

44 444

32 321
(A) Crystal of Burge arrays of shape (B) Crystal of Burge arrays of shape
(2,1,1) with letters in {1,2,3,4}. (3,1,1,1) with letters in {1,2,3,4}.

Fig. 5. Examples of crystals on Burge arrays.

the desired conditions. The subarray [af: s aé] = [l +1 a6 a

b b, b b; b, i]isapeakasbjgi:bg<bs
and aj =i+ 1 < b,. This contradicts A¢ being a PV-free Burge array.

gase 3: Assume that b; = i+ 1 and by = i+ 1. This implies that b; is the leftmost i + 1 in
Ri(Ag). To have at least two i-pairs, Az must contain columns £ and m such that j < £ < m and

b, = b, = i. The subarray [gj gi gn”j — |:i_‘:_j1 ai[ Gl{n:| isavalleyashy =i<i=by <a

and b, =i < i+ 1= b;. This contradicts A¢ being a PV-free Burge array. O

Lemma 4.10. Let T; be the threshold tableau associated to Ag under the Burge correspondence. Then
Ri(Ag) is Knuth equivalent to Ri(Tg).

14
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Proof. Since T is a hook tableau, Ri(T¢) has at most one i-pair. Thus by Lemma 4.9 it suffices to
prove that R;(A¢) has an i-pair if and only if Ri(T¢) has an i-pair, since the content of T; and A are
the same.

Assume that Ri(A¢) has an i-pair. Let k be the index of the column containing the i + 1 that is in
the i-pair. First assume that a, = i+ 1. If k = 1, then ay is recorded in the leg of T¢ and R;(T¢) has an
i-pair. If by_1 < by then by, when inserted, does not bump an element. Otherwise it would bump an
element greater than the element bumped by b,_; which would create a non-hook shape. Thus, ay
is recorded in the leg of T; and R;(T;) has an i-pair. If by_1 > by, then in order for Ri(.A¢) to have an
.. . . Qr—1 Qg Qg a1 i+1 a
i-pair, there must exist £ > k such that b, = i. The subarray |:bk—l by b[] = |:bk—1 by i}
isavalley as by <i=b;, <i+ 1= a and b,_1 > by which is a contradiction. Next assume that
by = i+ 1. In order for R;(Ag) to have an i-pair, there must exist £ > k such that b, = i. This implies
that some i+ 1 must be bumped into the leg by an insertion letter whose index is at most £. Thus,
Tc has an i+ 1 in its leg and Ri(T¢) has an i-pair. Thus, Ri(T;) has an i-pair whenever R;(Ag) has an
i-pair.

Assume that R;(T¢) has an i-pair. This implies that T¢ has an i+ 1 in its leg. If the i + 1 in the leg
corresponds to a recording letter a; for some j, then b; does not bump an element when inserted.
Otherwise a; = i+ 1 would get placed in the first row of T and cannot be bumped into the leg as
a; < a;. This implies that either j = 1 or bj_; < b;. In either case, Ri(Ac) contains an i-pair. Assume
the i+ 1 in the leg corresponds to an insertion letter b;. Since b; must be bumped into the leg and
be i-paired with some i, there exists j < k such that b, = i. This implies that Ri(AG) contains an
i-pair. Thus, Ri(A¢) has an i-pair whenever Ri(T¢) has an i-pair. O

Proposition 4.11. Let A¢ be a PV-free Burge array and let T¢ be its associated threshold tableau.

(1) If fi( Ag) # 0O, then fi(A¢) = Aé, where A:c is the associated Burge array of fi(Tg).
(2) If é(Ag) # 0, then €;(Ag) = Ag, where Ag is the associated Burge array of e;(Tg).

Proof. As fl and é; are clearly partial inverses, it suffices to just prove part (1). From Lemma 4.10,
we have that fj(T¢) is not annihilated. Let s be the column index of the rightmost i in .A¢ and denote
this rightmost i by i. We claim that i corresponds to the rightmost i in Ri(T¢). If b = i, then i is
inserted into the arm to the right of all preexisting i’s when column s is inserted and will remain
the rightmost i by the properties of Schensted row insertions. If a; = i and a;,_; = i, then when
column s is inserted bs will bump an element from the arm. As T¢ is hook-shaped, a; = i will be
recorded into the arm to the right of all preexisting i's and will remain the rightmost i. If a; = i
and a;_; # i, then a; is the only i in Ag and is trivially the rightmost i in R;i(T¢) which proves our
claim. As fi(T¢) is not annihilated and T is hook-shaped, i is the rightmost unpaired i of T and is
changed to an i+ 1 by f;.

Let r be the column index of the last column of .4;. We denote by S; the tableau obtained by
reverse inserting columns t + 1 through r of fi(T¢) and T; the tableau obtained by inserting columns
1 through t of Ag. We first assume that r > s and prove that columns s + 1 through r are the same
in both arrays so that we may take r to be the same as s later in the proof. More specifically using
induction, we will prove that for s 4 1 < t < r column t of A;. is the same as column ¢ in Ag and
Se—1 = fi(Te—1).

Let £ and a be the largest entries in the leg and arm of T, = T, respectively. Note that ¢ and a
are also the largest entries in the leg and arm of S, = fi(T;), respectively, as r > s. We break into
subcases depending on whether £ > aor £ < a

When ¢ > q, the column [¢, a]” is obtained by reverse inserting both T, and S, implying the rth
column of Ag is the same as the rth column of Ag. We claim that £ > i + 1. This is clearly true if
i is in the leg of T; as we assume r > s. If i is in the arm of T, thena > i+ 1 as a is to the right
of i and i is the rightmost i in T,. Hence the claim is true, and i remains the rightmost unpaired i in

T,_1. Thus, f; acts on T,_; by changing i to an i + 1 which is precisely S, _;.

When ¢ < q, a is removed from T, and a number which we denote by b, is reverse inserted.

This implies that the rth column of A is [a, b;]7. Similarly, reverse inserting a column from S;, a is
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removed from S, and a number which we denote by ¢, is reverse inserted. Note that b, and ¢, are
equal and are in the same cell of their corresponding tableau except if an i and i + 1 lie in the arm
of Sy and the (2, 1) cell of S, is an i+ 1. If an i and i + 1 lie in the arm of S,, then the value of the
(2, 1) entry in T, cannot be i as this would contradict i being the rightmost unpaired i of T,. Thus,
ifaniand i + 1 lie in the arm of S, and the (2, 1) cell of S, is an i + 1, then the (2, 1) cell of T, is
an i + 1. However, this would imply b, = i as it would need to bump an i + 1 so that a is in the
arm of T, an i 4+ 1 is in the (2, 1) cell, and the i in the arm is not bumped. This contradicts r > s.
Therefore the rth column of A and A; match. As b, # i, i is still the rightmost unpaired i of T,_;
and fi(T,—1) = Sy—1. Assume that column t of A is the same as column t in Ag and S;_q = fi(T;—1)
for some s+ 1 < t < r. Repeating the argument in the base case, we see that this holds for the case
t — 1 as well.

From the definition offi, we have that the columns s+ 1 through r off,-(Ac) are the same as the
columns s+ 1 through r of Ag. By the previous paragraph, these columns are also equal to columns
s+ 1 through r of .A;. We now assume that r = s and prove that the columns 1 through s of fi(Ac)
and A;. are equal by breaking into cases based off the position of i in T;.

Case 1:i is in the leg of T;.

Since i is the rightmost unpaired i of Ts, this implies that T; does not contain any other i except
for i. Also in order for i to be in column s of Ag, we must have a; = i. Thus, the column obtained
from T, by reverse inserting is of the form [i, a]” where a is the largest value in the arm of T;. In S;,
i is replaced with an i + 1. Thus, the column obtained from S; by reverse inserting is of the form
[i+ 1, a]’. We see that T,_; and S;_; are equal implying columns 1 through s — 1 of A¢ and Ag are
equal. Note that as i is the only i in A and a5 = i, we have f; acts by changing i to an i + 1 in Ag.
This is precisely the form of A implying fi(A¢) = A

Case 2: i is in the arm of T.

Let £ and a be the largest elements in the leg and arm of T, respectively. We break into subcases.

Assume i > £. In order for i to be in the sth column of A¢, i must be a; otherwise the column
reverse inserted from T; would be [a, i]". This implies i must bump an entry in the arm of T,_;
into its leg which would contradict i > ¢. In particular, this implies that a = i > ¢. Furthermore,
the column obtained from T, when reverse inserting is of the form [i, bs]”, ‘where b; is the largest
element in the arm of T; strictly less than the entry in the cell (2, 1). Since i is the largest value in
T;, the i + 1 in S; created by applying f; to T; is also the largest value. Thus, the column obtained
from S; when reverse inserting is of the form [i+ 1, ¢;]7, where ¢ is the largest element in the arm
of S strictly less than the entry in the cell (2, 1). Since fi(T;) = S,, we have by = ¢; and T;_y = Ss_1.
Thus, columns 1 through s — 1 of A are identical to the corresponding columns of A¢. As i is the
rightmost i in Ag and is in the top row, it is also the rightmost unpaired i in Ag. Thus, ﬁ acts by
changing i to an i 4 1 in Ag. Thus, fi(Ag) = A¢.

Assume now that £ > a and ¢ # i + 1. In order for i to be in the sth column of Ac, i must be
equal to a. When reversing the Burge correspondence of Ts, the column obtained is then of the form
[¢,1]T. From our assumption, we also have £ > i 4+ 1 which implies that the column obtained from
Ss when reversing the Burge correspondence is [¢, i + 1]T. Observe that T;_y = Ss_1 which forces
columns 1 through s—1 of A¢ and A, to be equal. We prove that i is the rightmost unpaired i in Ag.
For there to be a hope that this claim is not true, then there must exist either a column [i + 1, bj]T
with b; # i or [a;, i+ 11" in Ac. Note that there can only be one column with an i + 1 in the top
row; otherwise it would form a valley with columns [i + 1, bj]T and [¢, i]”. If there exists a column
of the form [i + 1, b;]”, then in order for i to be unpaired in T; there must be an i in a column j + 1
through s— 1 or a column of the form [i, bj/]T. Note that if there is an i in columns j+ 1 through s —1
this would imply i is the rightmost unpaired i of Ac. If there is no i in columns j+ 1 through s — 1,
we must then have that column j — 1 is of the form [i, bj,l]T. If bi_1 > bj, then [b_l : h;_l ﬂ

j— j
is a valley implying b;_1 < b;. Thus, if there exists a column of the form [i + 1, b;]" with no i’s in
columns j through s — 1, then i must be the rightmost unpaired i. If there exists a column of the
form [q;, i + 1]7 with no i’s in columns j through s — 1, this would imply i when inserted would
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bump an element from the arm of T; contradicting that £ is in the leg of T;. Thus, if there exists a
column of the form [a;, i + 1]7, then there exists an i in columns j through s — 1. Therefore, i is the
rightmost unpaired i of A and f, acts by changing i to an i 4+ 1 in the sth column. This is precisely
Ag.
Assume that £ > a and £ = i41. In order for i to be in column s of A¢, a must be precisely i. When
reversing the Burge correspondence of Ty, the column obtained is then of the form [¢ =i+ 1,i]".
Since £ = i+ 1 came from the leg of T, there must exist an i somewhere in columns 1 through
s —1; otherwise i would not be the rightmost unpaired i in T. Thus, i is also the rightmost unpaired
i of Ag. Let x be the value in the (2, 1) position of T; and let y be the rightmost element in the arm
of T that is strictly less than x. Note that x < i + 1 = ¢; otherwise T; would have shape (1, 1) and
Ri(Ts) = i+ 1i. This implies y # i. We also have y is not an element in the top row of A¢. Otherwise
if a,, = y for some m, then x > y > a; which contradicts x being in the (2, 1) cell. Thus, y = b,, for
some l<m<s—1.

Assume now that x is a recording letter. As x lies in the (2, 1) cell of T;, we must have x = a;.
This implies by < b, < --- < by =ianda; < a; < --- < a; = £. Recall that in S5, by = i is
replaced with an i + 1. Hence, when reverse inserting a column from S;, the i + 1 that replaced i is
removed, y = by, is replaced by x = a;, and the rest of the entries in the leg are shifted up. Thus
column s of Ay is of the form [i 4 1, b.1". We see that S;_; is then associated to the Burge array

|:a2 as ... Gn QGuy1 OGpyz ... G=L=i+1

by by ... bny @ b ... by 1 :| which mimics the action of f; on Ag as

b1 < --- < bs_1 and by, is the rightmost entry such that b,, < a;.
Assume now that x lies in the bottom row of .A¢. This implies that there exists b, that bumped

x in T,_; to the (2, 1) cell. Note that b,_; > b,; otherwise (;Z g"’l g” would form a valley in
n— n
Ag. Since x is the value in the (2, 1) cell, b, < bpy1 < -+ < by = iin Ag. We also have bpi1 > ay.

g" g’”’l would form a valley. Thus, b, is the largest element in the bottom row
n n+

Otherwise | %

X
from column n to s — 1 such that b, < a, which implies m = n. Moreover, a, < --- < as = £ are all
in the legs of both of T; and S;. As S; differs from T; by changing i to an i+ 1, we have that reversing
the Burge correspondence removes the i 4+ 1 from the arm of S, b, is replaced by x, and the rest of
the leg entries are shifted up. Thus column s of A is [i+1, b,1". As b, bumped x out, we see that x
is in the cell that it was originally inserted into. We see that reverse the Burge correspondence for
41 Gpyy .. OG1 G=C=i+1

Ss_1 up to S;_1, we get the columns |: 4 bys ... b by,

} and S, is equal to
T,—1 as x is in its original cell. These changes to A¢ are seen to be the same asf,— as n is the leftmost
column index such that b, < --- < bs_1 and n is the rightmost column index between n and s — 1
such that b, < aj.

Assume that i < £ < a and the (2, 1) cell of T; is not an i + 1. Let x be the value in the (2, 1)
position of T; and let y be the rightmost element in the arm of T; that is strictly less than x. Note
that for i to be in the sth column of Ag, y must equal i. As x is not equal to i 4+ 1, we have also
i+ 1 < x. When reversing the Burge correspondence of T, and S, the columns obtained are [a, i]”
and [a, i + 1]" respectively where the i + 1 reverse bumped from S; was the i + 1 created by f;. We
have T;_; and S,_; are equal implying columns 1 through s — 1 of Ag and A; are the same. Note
that there cannot be an i + 1 in columns 1 through s — 1. Otherwise there would either be an i+ 1
in the leg of T;_; which would contradict x > i+ 1 or i + 1 is in the arm of T;_; in which case i
would bump an i + 1 instead of x. Thus, i is the rightmost unpaired i of A¢ and f; changes i to an
i+ 1

Assume that i < £ < a and the (2, 1) cell of Ty is an i + 1. Let x = i + 1 be the value in the (2, 1)
cell of T; and y be the rightmost element in the arm of T; that is strictly less than x. For i to be in
the sth column of A¢, y must equal i. As column s in Ag is of the form [a, i]7, i bumps i + 1 from
the arm of T,_;. Since x is bumped into the cell (2, 1), we have x = b,, for some n. Observe that no
i can be strictly between columns n through s in Ag; otherwise T;_; would contain an i + 1 in its
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leg. From this observation and the fact that i is the rightmost unpaired i in Tg, there must exist an
i somewhere in columns 1 through n — 1 in Ag.

Let m be the column of the index of the second rightmost i in Ac which by the reasoning above
satisfies m < n. We claim that i must be the insertion letter in column m, i.e. b, = i. If a,, = i,
then b, must have bumped an element in T;;,_; when inserted; otherwise an i would be present in
the leg of T;_4. Let b, be the element bumped by b,,. This implies b, is in the leg of T,;,_1; however,

b, < a, < am =i < i+ 1 which would be a contradiction. Thus our claim that b,, = i holds. We
also have a,;, # i+ 1 as Ri(Ag) can have at most one i-pair by Lemma 4.9. From these two facts,
. . . a a, a
b, cannot have bumped an element b, when inserted into Tp,_;. Otherwise b” bm J would
u m
be a valley. As y = i is turned into an i + 1 in S;, the rightmost element in the arm of S; that is
strictly less than x = i + 1 is b,. Thus, the column reverse inserted from S; is [a, b, = i]7 while

the column reverse inserted from T; is [a, i]”. This implies the sth columns of A¢ and Ag are the
same, but S,_; differs from T,;_;. Note that columns m 4 1 through s — 1 of both A; and A are
the same as the reverse insertions of T; and S, in these steps do not involve b,, or the i + 1 created
by f; respectively. As by, did not bump an element when inserted into T,;,_;, we have a,, is in the
leg of both T,, and S, and is the largest entry. We see [anm, b]” is reverse inserted from Ty, and
[am, i+ 117 is reverse inserted from S,, and S;_; = T_;. Thus, the only difference between A and
Ag is that by, is changed to an i+ 1 in Ag. Note that by, is the rightmost unpaired i in Ag since it is
the second rightmost i and i is i-paired with the b,. Thus, f; acts by changing by, in Ag to an i + 1
which is precisely A.. O

Corollary 4.12. Let Gy, be the set of all PV-free Burge arrays with entries at most m. Then Cy, together
with the operators f; and e; forms a Stembridge crystal of type Am_1.

Proof. The Burge correspondence is a crystal isomorphism between C, and I_l Tab,,(1) by

A hook-shaped,
threshold

Proposition 4.11, where Tab,,(1) is the set of all semistandard Young tableaux of shape A and entries
at most m together with the usual crystal operators as in Definition 4.3. Since Tabp,(A) forms a
Stembridge crystal, so does C,,. O

Corollary 4.13. Let A be a PV-free Burge array corresponding to a graph G on n vertices. Then Ag is
highest weight if and only if G is star-shaped (up to singletons) such that the central vertex is labelled
1 and the other vertices have labels {2, ..., n}.

For a crystal C, an element b € C is called extremal if either fi(b) = O or e;(b) = 0 for each i
in the index set and its weight is in the Weyl orbit of the highest weight element in the crystal
component (see [20]). Let the weight of the highest weight vector u € C (which satisfies e;(u) = 0
for all i) be wt(u) = A. The weight of the extremal vectors are permutations of A. The tableaux under
the Burge correspondence are threshold shapes. Hence, by the definition of threshold graphs, the
extremal vectors of the crystal correspond to threshold graphs under the Burge correspondence.
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