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Data-driven discovery of reduced plasma physics models from fully kinetic simulations
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At the core of some of the most important problems in plasma physics—from controlled nuclear fusion
to the acceleration of cosmic rays—is the challenge to describe nonlinear, multiscale plasma dynamics. The
development of reduced plasma models that balance between accuracy and complexity is critical to advancing
theoretical comprehension and enabling holistic computational descriptions of these problems. Here we report
the data-driven discovery of accurate reduced plasma models, in the form of partial differential equations,
directly from first-principles particle-in-cell simulations. We achieve this by using an integral formulation of
sparsity-based model-discovery techniques and show that this is crucial to robustly identify the governing
equations in the presence of discrete particle noise. We demonstrate the potential of this approach by recovering
the fundamental hierarchy of plasma physics models—from the Vlasov equation to magnetohydrodynamics.
Our findings show that this data-driven methodology offers a promising route to accelerate the development of
reduced theoretical models of complex nonlinear plasma phenomena and to design computationally efficient

algorithms for multiscale plasma simulations.
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I. INTRODUCTION

Plasmas—hot, ionized gases of electrons and ions that
make up most of the observable universe—exhibit rich many-
body dynamics that span a vast range of scales. It is widely
recognized that kinetic processes occurring at microscopic
scales can strongly influence and control plasma phenom-
ena at large (system size) scales. Notable examples include
the role of microphysical instabilities on the deterioration of
plasma confinement in nuclear fusion devices [1,2] and the
role of microphysical turbulence in controlling the accelera-
tion and propagation of energetic cosmic rays in astrophysical
environments [3,4]. The holistic understanding of these prob-
lems remains a long-standing scientific challenge; addressing
it requires a better theoretical description of the interplay
between the different processes and the ability to model the re-
sulting nonlinear plasma dynamics across the different scales.
Fully kinetic simulations [5,6] can provide first-principles
descriptions of the plasma dynamics, but at tremendous com-
putational cost and complexity that prohibits modeling the full
range of scales for most systems of interest. On the other
hand, fluid simulations are commonly used to capture the
large-scale plasma behavior but miss the important micro-
physical processes. The development of reduced models that
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capture the essence of the interplay between the microscopic
kinetic processes and large-scale fluid behavior is therefore
key to enabling multiscale plasma modeling for a variety of
applications.

Despite significant efforts and important progress in the
last decades, the multitude of concurrent physical processes
and their inherently nonlinear character has limited the the-
oretical development of reduced plasma models. Indeed, the
majority of existing models are based on asymptotic lim-
its [7,8] or on linear approximations [9] of the reduced
physics, both of which limit their range of validity and
often break down (locally or intermittently) in many prob-
lems of interest. Fully -kinetic simulations play an important
role in the study of nonlinear kinetic plasma phenomena,
but it remains unclear how to distill the insights captured
from the data of such simulations into practical theoretical
models.

Data-driven techniques from the field of machine learning
are offering powerful ways of building models of nonlinear
dynamical systems from data that can greatly comple-
ment more traditional theoretical approaches. Specifically,
symbolic- [10-13] and sparse regression (SR) [14-17] tech-
niques have been identified as promising routes for inferring
interpretable and generalizable nonlinear differential equa-
tions (both ordinary and partial differential equations, ODEs
and PDEs) directly from time-series data. These techniques
seek parsimonious models that balance between accuracy and
complexity, providing insight into the underlying physics and
enabling a direct connection with analytic theory. SR, in par-
ticular, has been shown to efficiently handle high-dimensional
and multivariate data of dynamical systems [15,16], making it
potentially well suited for plasma dynamics [18,19]. However,
the application of these techniques in plasma physics remains
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largely unexplored. In particular, an important issue that is
still unclear is whether SR can be used to infer accurate
reduced descriptions of nonlinear kinetic plasma processes—
essential for improving the aforementioned multiscale plasma
models—from first-principles fully kinetic simulations. As
shown in previous works [15,16], even modest (~1%) levels
of (artificially added) noise can corrupt the identification of
the underlying dynamical equations, which can be problem-
atic when using inherently noisy data from particle-based
kinetic simulations.

Here we show that SR is a viable approach for the
data-driven development of interpretable reduced plasma
models from first principles, fully kinetic particle-in-cell
(PIC) simulations. We illustrate the potential of SR through
the recovery of the fundamental hierarchy of plasma physics
models—from the kinetic Vlasov equation to single-fluid
magnetohydrodynamics (MHD)—based solely on spatial and
temporal data of nonlinear plasma dynamics from PIC sim-
ulations. To robustly handle the significant noise levels in
particle-based data, we reformulate the sparsity-based model
discovery methodology [15-17] to identify the underlying
PDEs in their integral form; we show that this is crucial, par-
ticularly to capture low-frequency plasma phenomena that is
embedded in high-frequency discrete particle noise for which
the differential formulation is found to fail. We further show
that the hierarchy of Pareto-optimal models naturally obtained
by this approach provides insight into the dominant phys-
ical processes underlying the plasma dynamics, which can
guide the development of tailored reduced models for a given
application.

II. RESULTS

We examine how SR can be used to discover reduced PDE
models of plasma dynamics from the data of first-principles
PIC simulations. The PIC method provides a self-consistent
and fully kinetic (particle-based) description of a plasma (see
Appendix A), and hence it is a good starting point from which
reduced models of collisionless or weakly collisional plasmas
can be constructed.

A. The Vlasov equation

We begin by considering the problem of recovering one
of the most fundamental equations in plasma physics—the
kinetic Vlasov equation [Fig. 1(c)]—which describes the evo-
lution of the distribution function f(x, v, ) of a collisionless
plasma in phase space (where X, v, and ¢ are, respectively,
space, velocity, and time coordinates). We analyze the plasma
distribution function (constructed from the simulated parti-
cles) and associated electromagnetic fields of a system of
counterpropagating electron streams undergoing the electro-
static two-stream instability [20] [Fig. 1(al); see Appendix B
for a detailed description of simulation parameters]. This data
is representative of prototypical nonlinear plasma dynamics in
phase space. Based on this data, we aim to infer the PDE that
governs the evolution of the distribution function 9, f (where
d,, denotes partial differentiation with respect to coordinate «).
As in Refs. [15—17], this inference is posed as a SR problem,
where we seek to find the sparsest PDE (with least number of

terms) that best describes the data (in a least-squares sense)
from a large space of candidate PDEs.

We proceed by constructing the space of possible PDEs,
which is represented by a large library (®) of candidate PDE
terms. The choice of candidate terms is guided by fundamen-
tal physical symmetries and domain knowledge of the system
under study. In the present example, for instance, possible
terms may include the distribution function itself and its gra-
dients up to some prespecified order d (f, ovf, 0y f,..., 8;’ ,
85’ f), the electric field and its gradients (E, o,E,..., afE ), and
the phase space coordinates (x and v). We may also construct
candidate nonlinear terms by taking polynomial combinations
of the previous terms up to order p. Such nonlinear terms give
rise, for instance, to advective (e.g., vdyf) and electromag-
netic pressure gradient (e.g., E9,E o 9,E?) terms; note that
nonpolynomial nonlinearities (e.g., trigonometric, exponen-
tial, and logarithmic functions) can also be included if prior
knowledge or intuition suggests that these may be important
candidate terms [15]. We denote the total number of candidate
terms by 7. In this particular case, we consider both derivatives
and polynomial nonlinearities up to second order (d = 2 and
p = 2), yielding a total of n = 66 candidate PDE terms; we
note that we have also tested using larger libraries containing
higher-order polynomial nonlinearities (up to d = 4, yielding
atotal of n = 1001 terms) and obtained similar results to those
described below.

In Fig. 1(a), we outline the algorithmic procedure proposed
in Ref. [16], known as PDE-FIND (the PDE generalization
of SINDy [15]), where each of the n candidate terms in the
library and 0, f are evaluated on a subset of m pointwise
locations in the data [p; = (#;, v;, x;), with index i denoting
the ith point], that randomly sample the dynamics in phase
space and in time; note that neighboring points are utilized to
estimate derivative terms at each point p;. We utilize second-
order centered-finite-differences to evaluate derivative terms
and we do not filter or smooth the data. We sample the data at
m = 1.25 x 10° random points (~1% of the total generated
data). We then infer the underlying PDE by solving the SR
problem in Fig. 1(a3), where we seek the sparsest vector
of coefficients & that minimizes ||F; — @SH%. Specifically,
we compute sparse solutions for & using a variation of the
sequential thresholded least-squares algorithm proposed in
Ref. [15] (see Appendix C), and use tenfold cross validation to
determine the optimal level of sparsity that balances between
model accuracy and complexity.

This procedure leads to the successful identification of the
correct terms in the Vlasov equation, which correspond to
the advection of the distribution function in space (vd, f) and
in momentum (E9, f) [Fig. 1(a4)]. The inferred coefficients
of these terms, however, present larger errors (~20 — 30%).
Their theoretical values are —1 and 1 (in the normalized
simulation units of the data), but are inferred to be —0.8025
and 0.6726, respectively.

We find that the main reason for the large errors in
the inferred PDE coefficients is due to poor estimation of
derivative terms on noisy data; straightforward finite dif-
ferencing is ill-conditioned, as the noise is amplified upon
differentiation [21]. Indeed, for this reason, even modest lev-
els of noise (~1%) have been shown to corrupt the PDE
identification procedure, making it a key challenge for this
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FIG. 1. Inferring the Vlasov equation from PIC simulation data using SR. The data consists of temporal snapshots of the plasma distribution
function in phase space (f, represented by the red color density plots), and the self-consistent plasma electric field (£, represented by the
black solid curves), undergoing the two-stream instability; the discrete particle noise in the distribution function data is estimated to be
\/ VAR(f — f)/VAR(f) =~ 4%, where VAR denotes variance and f is the Gaussian-filtered distribution function with o = 1. The inference
procedure consists of (1) sampling the data at random locations, (2) evaluating the library of candidate PDE terms at sampled locations,
and (3) solving a SR problem to select the most parsimonious combination of PDE terms that best describes the data (in a least-squares
sense). The inferred PDEs are shown in Eq. (4) and can be compared to the true Vlasov equation in (c); note that the simulated data used
in this example corresponds to counterstreaming electron populations which have e/m, = 1 in the normalized units of the PIC simulation.
Two different strategies for collecting measurements from data are presented in the top and bottom rows: (a) point-wise measurements of
each candidate term Q (as used in Ref. [16]) and (b) volume-integrated measurements of each candidate term (Q)q, = fQi d2 Q. The latter
effectively corresponds to the identification of the underlying PDE in its integral form [rather than its differential form (a)].

methodology [15,16]. The PIC simulation data considered
here inevitably contains noise due to discrete particle effects,
i.e., fluctuations associated with the finite number of sim-
ulated particles [o< 1/,/Nppe, Where Nppe is the number of
particles per (spatial) cell; in the example of Fig. 1 we used
Nppe = 10* which is typical for these simulations]. Note that
while the number of simulated particles may be sufficient
to properly capture the physics of interest (e.g., the growth
and nonlinear evolution of the two-stream instability), it may
be insufficient to reduce the noise to tolerable levels for

successful sparse identification of the underlying PDE. It is
therefore crucial to develop effective techniques that permit
the robust inference of PDEs from noisy particle-based data
without increasing the Ny, used in these simulations, which
is computationally very costly.

Some of the techniques considered by previous works
consisted of denoising the data (e.g., via Gaussian smooth-
ing) prior to the identification process or using regularized
numerical differentiation techniques (e.g., polynomial differ-
entiation) [15-17]. We find these methods to have limited
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TABLE I. Impact of noise-mitigation strategies on error of in-
ferred coefficients of the Vlasov equation. The average coefficient
errors for the Vlasov equation (inferred from the same data shown
in Fig. 1, which has an estimated noise level of ~4%) are presented
for the following strategies: centered finite differences (CFD) on data
with varying levels of Gaussian filtering (no filter, 0 = 1 and o0 = 2;
note that Gaussian filtering is applied in both phase space coordinates
and in time); polynomial interpolation (PI) where derivatives are
computed by differentiating a polynomial of degree 3 that is locally
fitted to the data over a range of m > 4 points (we present results for
m =5 and m = 7); and using the integral formulation strategy, with
Q; = 5A1 x 5Av x 5Ax.

Average coefficient error

CFD (no Gaussian filter) 25%
CFD + Gaussian filter (o = 1) 6%
CFD + Gaussian filter (o = 2) 16%
PI, third degree, m =5 37%
PI third degree, m = 7 60%
Integral formulation 2%

success when handling data from PIC simulations, as sum-
marized in Table I. The main difficulty lies in controlling
the bias-variance trade-off of these methods, which if inad-
equate can corrupt the identification process entirely. This
is illustrated by the results of Gaussian smoothing on the
identification of the Vlasov equation in Table I. Indeed, while
moderate smoothing (o = 1, which corresponds to using a
Gaussian kernel with standard deviation equal to the resolu-
tion of the data) was found to reduce the error of the inferred
Vlasov coefficients from 25% error to 6%, the error rapidly
rose again to 16% with a slightly increased smoothing level.
Differentiating a locally fitted low-degree polynomial to the
data, as used in Ref. [16], is also found to be ineffective on
PIC simulation data.

B. Sparse identification of PDEs in their integral form.

To more effectively overcome the challenges posed by
data noise on model discovery, we reformulate the prob-
lem as that of identifying the underlying PDE in its integral
form. The motivation being that numerical integration com-
pensates the noise amplification induced by differentiation.
The use of an integral formulation (or weak formulation)
for the inference of governing ODEs from time series data
has been previously proposed in Refs. [22,23]. During the
development of this work, other groups independently rec-
ognized the potential for extending this integral formulation
to identification of PDEs [24,25]. The integral formulation
strategy that we independently explored is illustrated in
Fig. 1(b). Each candidate term in the PDE (including the
time derivative term) is now evaluated using centered-finite-
differencing and then numerically integrated over compact
volumes on the data 2; = {(x, v,t) : |x —x;| < wy/2 A |v —
vil < wy/2 At — ;| < wy/2}, where w,, is the length of the
edges of €2; along the o coordinate. Thus, each measurement
on the data corresponds to the integration of each candidate
term over randomly distributed volumes €2;. In Fig. 1(b), we
adopt this strategy and randomly sample 10° cubic volumes

of 5Ax x 5Av x 5At in phase space and time, correspond-
ing to the same total of m = 1.25 x 10° points used for the
pointwise strategy in Fig. 1(a); here we choose the volume
size to be much larger than a single cell while remaining
smaller than the characteristic scale of variation in the data.
The same library of candidate PDE terms used earlier is
evaluated and integrated over these volumes and the SR prob-
lem in Fig. 1(b3) is solved. Interestingly, this strategy leads
to the correct identification of the Vlasov PDE to within
~2% error on the inferred coefficients, significantly outper-
forming the original differential formulation strategy (with
pointwise evaluation of the terms on the data), even when
data smoothing or regularized differentiation techniques are
used (Table I). The inferred coefficient errors can be further
reduced by increasing the size of the integration volumes.
Overall, we find that the integral formulation always leads
to much reduced errors when compared with the standard
differential formulation, even when using a very large number
of particles to produce cleaner data. A detailed comparison
between the noise sensitivity properties of the integral and
standard differential formulations as a function of the number
of simulated particles and size of integration volumes is pro-
vided in Appendix D. We note that the integral formulation
approach presented here corresponds to a special case of the
more general weak formulation proposed in Refs. [24,25].
These works integrate over the product between each candi-
date PDE term and an arbitrary test function with compact
support, while we have used a simple box function (constant
and nonzero within a compact domain and zero outside of it).
The use of more general test functions that smoothly vanish
at the boundaries of the domain can further reduce the contri-
butions of numerical differentiation errors at the boundaries of
the integration volumes. Nevertheless, our results demonstrate
the effectiveness of the integral formulation strategy on mit-
igating numerical differentiation errors without introducing
deleterious bias in the data. This is a crucial advantage for
a robust sparse PDE identification based on noisy data, such
as that from particle-based simulations.

C. Signatures of successful PDE identification

It is important to emphasize that successful PDE identifi-
cation using SR relies on the appropriate construction of the
library of candidate terms ®. In the previous example, domain
knowledge was used to guide the selection of the candidate ba-
sis terms in which the representation of the dynamics becomes
parsimonious. In addition, the library of candidate terms was
complete, meaning that it contained all the terms necessary to
fully describe the dynamics in the data. When applying this
approach to less well understood problems, however, it may
not always be clear what the correct choice of basis terms
is or if the library is complete. It is therefore important to
understand the empirical signatures that indicate successful or
unsuccessful sparse identification of the underlying PDE.

These signatures can be observed in the behavior of the
model accuracy-complexity curve that is traced by the SR
procedure. Using the identification of the Vlasov equation as
an example, Fig. 2 illustrates the accuracy-complexity curves
that represent successful identification (top row), obtained by
using a complete library ®, and the cases of unsuccessful
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FIG. 2. Signatures of successful (unsuccessful) PDE identifica-
tion. Pareto analysis of model accuracy [measured by the Fraction of
Variance Unexplained (FVU)] versus complexity (measured by the
number of nonzero terms) obtained using the differential formulation
strategy (integral formulation strategy) on the left (right) column,
and for the case of a complete (incomplete) library of terms on
the top (bottom) row. The FVU is given by the ratio between the
model’s mean squared error and the variance of the dependent vari-
able (0 f/dt). Orange (blue) markers represent model evaluations on
the training (test) data; error bars represent the minimum and maxi-
mum test errors encountered during cross validation. Circle (triangle)
markers represent zero (nonzero) model-form variance (i.e., variance
in the obtained sparsity pattern) obtained during cross validation.
The vertical dash lines in the top row mark the optimal trade-off
between accuracy and complexity, and correspond to identification
of the correct two terms of the Vlasov equation.

identification of the Vlasov equation (bottom row) due to
the explicit removal of an important dynamical term (spatial
advection vd, f) from ®, representing an incomplete library
scenario; the original differential and new integral formula-
tions are shown on the left and right columns, respectively,
for comparison. Note that successful PDE identification is
characterized by a pronounced inflection in the curve, where
the model error suddenly rises due to the thresholding of
an important dynamical term, marking the optimal trade-off
between model accuracy and complexity. It is interesting to
further note that the integral formulation reveals a far more
pronounced inflection in the curve, and a much steeper rise in
error at the optimal accuracy-complexity trade-off [Fig. 2(b)]
compared to the original differential formulation [Fig. 2(a)].
This is due to the improved evaluation of the PDE terms in
the presence of noise, and further highlights the advantage of
the integral formulation from the point of view of facilitating
and improving the overall robustness of the PDE identification
procedure; see Fig. 7 and further discussion in Appendix D
about the impact of varying the size of the integration volumes
on the resulting accuracy-complexity curves. In the absence of
an important dynamical term, the model accuracy-complexity
curve no longer displays a clear inflection region [Figs. 2(c)
and 2(d)]. Instead, the model error is found to steadily increase

as we progressively decrease the complexity (increase the
sparsity) of the model. In addition, high variance in the model
form (i.e., the sparsity pattern) and in the identified model
coefficients is also observed during cross validation. All these
indicators point to poor or unreliable PDE identification and
suggest that the library of candidate terms must be reexam-
ined, reformulated, or simply expanded (e.g., higher degree of
nonlinearity and/or order of differentiation).

D. The multifluid and single-fluid plasma equations

To explore the potential of this approach to infer progres-
sively more reduced plasma descriptions, we aim to recover
the well-known plasma fluid equations directly from PIC
simulation data. These equations describe the evolution of
the velocity moments of the plasma distribution function (the
first three moments correspond to the mass, momentum, and
energy densities of the fluid). They can be written for individ-
ual plasma species as coupled fluids (the so-called multifluid
equations) or they can be made to describe the average fluid
behavior of all plasma species (the so-called single-fluid equa-
tions, or MHD). The fluid equations can be derived from the
kinetic Vlasov equations and form an infinite hierarchy of
exact coupled conservation equations for each fluid moment.
In practice, this infinite hierarchy is truncated after the first
few moments by imposing an approximate closure relation—
i.e., arelation that expresses the evolution of the highest-order
moment considered in terms of lower-order moments. It is the
level at which this hierarchy of coupled moment equations is
truncated and the assumptions that underpin the closure rela-
tion that control the physical approximations of plasma fluid
descriptions. Indeed, commonly used closures allow the de-
scription of the plasma dynamics near local thermodynamic
equilibrium and at large spatial and temporal scales, but miss
kinetic plasma processes occurring at microscopic scales.

It remains a long-standing challenge to understand how to
extend the fluid equations to encapsulate microscopic plasma
effects in a computationally efficient manner, which would
ultimately enable multiscale modeling of problems ranging
from fusion to astrophysical plasmas. The SR methodology
explored here offers an approach to discovering such exten-
sions to the fluid equations by inferring them directly from the
data of first-principles PIC simulations. In the following, we
show how SR can be used to infer conservation equations for
both multi- and single-fluid moments, and guide the develop-
ment of improved kinetic-fluid closure models.

The inference of both multifluid and single-fluid plasma
equations (specifically for the first three moments) from PIC
simulation data is shown in Fig. 3. The multifluid equa-
tions are inferred from data of the development and nonlinear
evolution of the electromagnetic Weibel instability [26,27]
(Fig. 3, top). This is a fundamental plasma instability asso-
ciated with the anisotropy of the plasma velocity distribution
function, and plays an important role in magnetic field am-
plification in both astrophysical [28] and laboratory [29,30]
environments. As for the single-fluid (MHD) equations, we
use data of the formation and propagation of a collision-
less magnetized shock [31] (Fig. 3 bottom); details about
the simulations parameters, data sampling, and design of the
library of candidate terms used for the SR can be found
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FIG. 3. Inferring the multifluid and single-fluid (MHD) equations from PIC simulation data. Data of the development of the Weibel
instability and of the propagation of a collisionless magnetized shock are used to infer the multifluid and single-fluid equations, respectively;

the noise levels are estimated to be «/VAR(n, — 7,)/VAR(1,) >~ 18% for the Weibel data and /VAR(p,, —

Om)/ VAR(0,,) =~ 5% for the shock

data, where n, and p,, are the electron number density and average mass density of the of the plasma, respectively. The differential formulation
strategy (using straightforward centered finite differences to evaluate derivative terms) is shown to be incapable of correctly identifying the
underlying equations (with the exception of the multifluid continuity equation, albeit with significant errors in the coefficients). The integral
formulation strategy, on the other hand, is shown to robustly recover the correct PDEs and with high (percent level) accuracy.

in Appendices B, E, and F. These examples push the SR
PDE identification methodology to far more challenging
regimes, involving electromagnetic phenomena and a larger
set of dynamical variables. In addition, the magnetized shock
propagation data is predominantly characterized by slow,
low-frequency plasma dynamics, implying that derivatives
(gradients) of the data are small, and hence are highly sus-
ceptible to being corrupted by the intrinsic PIC noise. Indeed,
for these reasons, we observe that the differential formula-
tion is unsuccessful in identifying the correct form of the
fluid equations, as summarized in Fig. 3; poor results are
still obtained when using denoising and regularized numerical
differentiation techniques. The integral formulation, however,
overcomes these challenges and robustly recovers the correct
form of the fluid equations and with high accuracy (~1%
error in inferred coefficients). This highlights the potential of
the integral formulation to effectively capture slow and large-
scale dynamics in the presence of high-frequency phenomena,
which is essential to build coarse-grained models from data.
As previously noted, the fluid equations shown in Fig. 3
are exact conservation laws for the first three moments of the
distribution function, but they do not represent a closed system
of equations—the energy equation depends on the heat flux
(q), a higher order moment of the distribution function. We
have verified (not shown here) that we can proceed to infer
the PDE governing the evolution of the heat flux given data of

higher order moments, and we could in principle continue to
infer this hierarchical system of equations to arbitrary order.
In practice, however, one aims to find an approximate closure
relation to truncate this infinite hierarchy to the lowest mo-
ment order possible (low model complexity) while still being
sufficiently accurate to describe the dynamics of interest.

E. Closure of the fluid equations

To illustrate how SR can be used to infer fluid closure mod-
els from fully kinetic simulations, we focus on the previous
example of the formation and propagation of a collisionless
magnetized shock.

Collisionless magnetized shocks are ubiquitous in space
and astrophysical environments and represent a prototypical
example of a large-scale macroscopic plasma phenomenon
where microphysical kinetic processes play an important role
in their dynamics. In recent years, kinetic simulations of
shocks have been playing a critical role in elucidating the
range of microphysical processes that control dissipation of
the directed flow kinetic energy into randomized thermal
energy, magnetic field amplification, and acceleration of non-
thermal particle populations [32-35]. Unfortunately, kinetic
simulations are limited to spatial and temporal scales that
are vastly smaller than the large-scale dynamics of shocks in
space and astrophysical systems. For this reason, simulations
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FIG. 4. Hierarchy of Pareto-optimal models obtained for the MHD energy density equation from the magnetized shock data. Pareto analysis
of the FVU of each model [MSE(model)/VAR(Dp/Dt)] versus the number of nonzero terms. The markers and error bars have the same
meaning as in Fig. 2. Tenfold cross validation indicates that the optimal accuracy-complexity trade-off is obtained for a model of five terms
(marked by the vertical dashed line), which corresponds to the recovery of the full form of the MHD energy density equation. A hierarchy of
reduced models is obtained at lower model complexities, with the arrows indicating the physical meaning of the successive approximations

identified by the SR procedure.

based on reduced plasma descriptions are key to modeling the
dynamics of shocks in large-scale systems. In this context,
MHD is often used as the framework of choice [36-38].
In scenarios where particle acceleration is important, MHD
can be complemented by the use of test particles [39,40] or
by recently developed MHD-PIC frameworks [41,42], where
the feedback of energetic particles (described by PIC) on
the background fluid (described by MHD) is captured on large
scales. However, in all these cases, the description of the
background fluid relies on oversimplified closures that cannot
capture the impact of the dominant microscopic effects on
the shock evolution. Here, we show that SR offers a pow-
erful approach to leverage the detailed dynamical data from
first-principles kinetic simulations to inform the dominant mi-
croscopic processes and guide the development of improved
kinetic-fluid closures that encapsulate their effects in MHD.

This is exemplified in Fig. 4, which shows the model
accuracy-complexity curve obtained during the inference of
the MHD energy density equation (using the integral for-
mulation) from the magnetized shock data. The pronounced
inflection of this curve at a model complexity of five terms
marks the optimal trade-off between complexity and accuracy,
and corresponds to the complete conservative form of the
MHD energy density equation (with mean coefficient error of
~4%). At lower model complexities, a hierarchy of reduced
models is obtained that reflects successive approximations to
the MHD energy density equation that is directly informed by
the data. Each of these approximations has a clear physical
meaning as indicated in Fig. 4. In this particular example,
we find that the most dynamically important terms are (in as-
cending order) Joule heating, gyroviscous effects (associated
with off-diagonal elements of the pressure tensor), pressure
anisotropy, heat flux, and (isotropic) compressional heating.
The SR approach thus provides important insight into the
dominant physical processes and allows us to quantify the
error associated with neglecting each model term, which are
critical to guide the development of tailored reduced models
for any given application.

It is interesting to observe that among the hierarchy of
inferred Pareto-optimal models, the widely used adiabatic
closure approximation is automatically identified as the sim-
plest (yet least accurate) model for the MHD energy density
equation for the plasma dynamics in this data. The adiabatic
closure corresponds to the 1—term model in Fig. 4, which
contains only the compressional heating term (pd, (v,)). This
approximate model truncates and closes the hierarchy of fluid
equations by neglecting the gradient of the heat flux (9.q,)
term, but misses >~ 20% of the variance in the total time
derivative of the plasma energy density. Note that the coeffi-
cient of 1.49 corresponds to the inferred adiabatic index. If the
heat flux were truly negligible, however, the adiabatic index
would be expected to take on the value of 2 since the shock
heating in this system occurs only in two velocity degrees
of freedom (heating along the direction of the background
magnetic field does not occur in this geometry). The reduced
value of the inferred adiabatic index is thus a consequence of
the heat flux not being entirely negligible in this scenario, and
results from the SR procedure attempting to compensate its
absence so as to best describe the data.

In addition to analyzing the overall accuracy of a given
model [as shown in the accuracy-complexity curves], it is
instructive to examine the spatiotemporal distribution of the
model error on the data to gain a deeper understanding of
its ability to describe the physics (dynamics) in the data
and also to diagnose missing physics in the model (model
bias). Such analysis reveals, for example, that the pressure
anisotropy and Joule heating terms are important primarily in
the shock transition region and can be neglected outside this
region. A detailed discussion is provided in Appendix G (and
Fig. 8). The spatiotemporal model error distribution can thus
be valuable in guiding the choice of appropriate approxima-
tions when developing reduced models.

Having identified the dominant physical processes in the
energy density equation and the importance of heat flux in
the dynamics of the magnetized shock, the stage is set for
the development of more accurate closure models; the same
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SR approach can be used to uncover accurate approximations
of the heat flux and higher-order fluid moments as nonlin-
ear functions of the lower-order moments, which will be the
focus of future work. In this context, it is worth discussing
some of the key aspects for the development of improved
closure models that should be considered in future studies.
First, and as previously discussed, a central challenge lies in
choosing an appropriate basis of nonlinear candidate terms
for the library ©® that can efficiently approximate the un-
derlying closure. In general, the nonlinear functional form
of the underlying closure relation may be nonpolynomial in
nature, making the choice of a polynomial basis of candidate
terms for ® inappropriate or incomplete. Domain knowledge
may often suggest specific nonpolynomial functional forms
that can be incorporated in the library. For instance, rational
function nonlinearities [43] (as found in the well-known CGL
closure [44]) or nonlocal (integral) terms (as in linear Landau-
fluid closures [9]) can increase the descriptive capacity of the
library to better approximate the dynamics of interest. Second,
the explicit incorporation of physical constraints that reflect
fundamental physical symmetries in the SR procedure can be
important to ensure physical consistency and generalizability
of the inferred closures. This has recently been demonstrated
in the context of low-dimensional reduced order models for
hydrodynamics [45] and MHD [19]. Finally, care must be
given to the choice of training data. In addition to preparing
an ensemble of simulations that are representative of the dy-
namics and physical regime of interest, it is also important
to ensure that the inferred reduced models are not biased by
the limited domain sizes or scale separation of the kinetic
simulations. It is thus important to verify that by progressively
increasing the simulation domain size, there is asymptotic
convergence of the inferred closure model.

III. DISCUSSION

We have shown that SR is a viable approach for ex-
tracting interpretable and generalizable reduced models of
complex plasma dynamics from the data of first-principles
kinetic simulations. This data-driven methodology can accel-
erate theoretical insight into out-of-equilibrium and highly
nonlinear plasma dynamics (e.g., the nonlinear evolution of
instabilities [46-49]), which so far have challenged tradi-
tional analytical approaches. The interpretable form of these
data-driven PDEs will facilitate the connection between the
identified terms and basic physical processes, and will nat-
urally stimulate theoretical efforts to reverse engineer these
models starting from lower-level frameworks.

We further envision that this SR methodology can be used
to develop computationally efficient reduced models for mul-
tiscale plasma simulations, which remains a grand challenge
in computational plasma physics. Indeed, the hierarchy of
progressively simpler Pareto-optimal models produced by this
methodology provides a powerful tool to determine the opti-
mal trade-off between model accuracy and complexity for a
specific application. Important examples include the devel-
opment of improved fluid closures that encapsulate desired
kinetic effects and subgrid models of coarse-grained phenom-
ena, such as anomalous resistivity and transport. These are
essential ingredients for the development of more accurate

multiscale algorithms for applications that range from whole
fusion device modeling to global simulations of space and
astrophysical systems.

It is noteworthy that the integral formulation strategy,
which was shown to be crucial for the robust inference of
PDEs from noisy PIC simulation data, can be applied more
broadly to the data of other particle-based simulation tech-
niques. These include molecular dynamics, direct simulation
Monte Carlo, and other N-body simulations, commonly used
in areas that range from atomic physics to cosmology. In-
deed, even within the context of plasma physics, we note that
while this work focused on extracting reduced descriptions of
collisionless or weakly collisional plasma dynamics from the
data of kinetic PIC simulations, other particle-based simula-
tion methods such as molecular dynamics [50] and extended
PIC-Monte Carlo [51,52] can be more appropriate to obtain
reduced models of collisional and strongly coupled plasmas
using the same data-driven methodology. Moreover, while we
have focused here on simulated data, it is an exciting prospect
to explore the application of this methodology to experimen-
tal laboratory and spacecraft data. The remarkable progress
in plasma diagnostics is enabling spatially and temporally
resolved measurements with unprecedented quality [53-56],
creating opportunities to leverage this methodology in the near
future.

In summary, we have presented a data-driven framework
capable of distilling interpretable plasma physics models
from the increasingly abundant and complex data of plasma
dynamics. Our results open an avenue to accelerate theoret-
ical developments of nonlinear plasma phenomena, and to
leverage these insights to design computationally efficient
algorithms for multiscale plasma simulations.
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APPENDIX A: PARTICLE-IN-CELL (PIC) METHOD

The PIC method is a particle-based simulation tech-
nique that aims to capture the kinetic microphysics of
plasmas. Formally, the PIC method [5,6] solves the Klimon-
tovich equation [57] (for finite size particles) coupled to
Maxwell’s equations. The numerical procedure consists of
solving Maxwell’s equations on a spatial grid using the current
and charge densities that are obtained by weighting discrete
plasma particles onto the grid; the particles are then advanced
via the Lorentz force associated with their self-consistent col-
lective electric and magnetic fields. Thus, to the extent that
quantum mechanical effects can be neglected, the PIC method
provides a first-principles description of plasma dynamics.

033192-8



DATA-DRIVEN DISCOVERY OF REDUCED PLASMA ...

PHYSICAL REVIEW RESEARCH 4, 033192 (2022)

APPENDIX B: DATA GENERATION

All PIC simulation data used in this paper were obtained
using OSIRIS 4.0 [58,59], which is a massively parallel, rel-
ativistic, electromagnetic, explicit PIC code. Details of the
physical and numerical parameters used to produce the data
presented in the main text are given below.

1. Two-stream instability

We simulated two symmetrically counterstreaming flows
of electrons in a background of immobile ions in 1D1V (one
spatial dimension and 1 velocity degree of freedom). We con-
sidered warm electron flows with fluid velocity vo = £0.2¢ X,
thermal velocity of vy, = 0.05¢, and density n, = ny/2. The
immobile ions had number density n; = ng, providing charge
and current neutral initial conditions. The two-stream instabil-
ity was triggered by thermal fluctuations of the plasma.

The size of the simulated domain was L = 10c¢/w,. (where
¢/wp, is the electron skin depth), spatially and temporally
resolved with Ax = 0.039¢/w), and At = 0.038w;61, respec-

tively. Total simulated time was T = SOa);el, allowing the
two-stream instability to fully enter the nonlinear regime.
Periodic boundary conditions were used. We used quadratic
particle shapes and performed multiple simulations where we
varied the number of particles per cell in the range 10! — 10°
to investigate the impact of particle noise on the PDE iden-
tification procedure. The simulation data used for inference
of the Vlasov equation in the main text corresponds to the
case of 10* particles per cell. The inference of the Vlasov
equation for varying number of particles per cell is presented
in Appendix D.

From these simulations, we collected snapshots of the
phase space data of the plasma distribution function (f) and
the spatial distribution of the plasma electric field (E). Each
snapshot of the phase space data captured a domain corre-
sponding to [0c/wpe, 10c/wp.] x [-0.5¢, +0.5¢], resolved
by a 256 x 256 grid; the cell size in velocity space was chosen
to resolve both the thermal velocity and the finest structures
that develop in the distribution function in the nonlinear phase
of the instability. Each snapshot of the electric field distribu-
tion over the entire domain was recorded on a 1D grid with
256 cells. Both the phase space and electric field data were
recorded at every other simulation time step, i.e., the temporal
resolution of the data was 2At. This corresponded to a total of
2~ 650 snapshots for each diagnostic.

2. Weibel instability

We simulated two counterstreaming flows of electrons in
a background of immobile ions in 2D3V. We considered a
warm electron flow with fluid velocity vo_u, = 0.8¢Z (flowing
in the z direction, perpendicular to the simulation domain),
thermal velocity of vy, = 0.15¢, and density n,_y, = n9/3,
and a counterpropagating electron flow with fluid velocity
Vo—down = —0.4c Z, thermal velocity of vy, = 0.15¢, and den-
Sity Me—down = 2n0/3. The background immobile ions had
number density n; = ng, providing charge neutral and current
neutral initial conditions. The Weibel instability was triggered
by thermal fluctuations of the plasma.

The size of the simulated domain was 10 x 10 (c/a)pe)z],
spatially resolved with 128 x 128 cells. The simulation time
step was Ar = 0.038 w;e', and the evolution of the system
was simulated up to T = SOw;EI, enough time for the Weibel
instability to enter the nonlinear regime. Periodic boundary
conditions were used. We used cubic particle shapes and 36
particles per cell per species.

From this simulation, we collected the spatiotemporal evo-
lution of the first few moments of the distribution function
of each individual electron flow: the number density (ny),
momentum density (n,(v);), momentum flux density tensor
(ns(vv),), and energy flux density (n,(v>v),) of each species.
We also collected the self-consistent electric (E) and magnetic
fields (B). The temporal and spatial resolution of the data used
for the inference of the multifluid equations was the same as
that of the simulation, Ar and Ax.

3. Magnetized collisionless shock

We simulated the formation and propagation of a magne-
tized collisionless shock in 1D2V. Specifically, we considered
a perpendicular shock, where the magnetic field is perpendicu-
lar to the shock normal, and considered electron-positron pair
plasma. The shock was formed by colliding fresh (upstream)
magnetized plasma with a reflective wall at the left boundary
of the simulation domain. The upstream plasma had a fluid
velocity of vop = —0.2¢ X, thermal velocity of vy, = 0.025¢,
number density ng, and carried with it a perpendicular mag-
netic field with By = 0.04m,cwp./e§.

The size of the simulated domain was 40 ¢/w,, resolved
with 512 cells, and the simulation time step was At =
0.076 a);el. The evolution of the system was simulated up to

T =350 a);el, enough time to capture the cyclic reformation
process of the shock front multiple times, and to capture
its propagation across a significant fraction of the simulated
domain. Fresh upstream magnetized plasma was continuously
injected from the right boundary (with open boundary con-
ditions for the fields), while a reflective boundary condition
for particles (and conducting for fields) was used for the left
boundary of the domain. We used quadratic particle shapes
and 103 particles per cell per species.

We collected the spatiotemporal evolution of the first few
moments of the distribution function, from the number density
up to the energy flux density, of each plasma species (electrons
and positrons), as well as the self-consistent electric (E) and
magnetic (B) fields. To infer the single-fluid (MHD) equa-
tions, we computed the single-fluid (MHD) variables by av-
eraging the moments over the individual species. We thus ob-
tained the single-fluid mass density (p,, = m.(n, + n,)), mo-
mentum density (0,,(V) = m(n.(v), + n,(v),)), momentum
flux density tensor (0,,(VV) = m.(n.{vv), 4+ n,(vv),)), and
energy flux density (0, (v?v) = me(n,(v?v), + n,(v?V),));
we also computed the charge (o. = e(n, — n.)) and current
J = e(np(v), — n.(v).)) densities. The temporal resolution
of the collected data was 2At, while full resolution was used
in space (Ax).

Note that due to the details of the underlying numeri-
cal scheme implemented in OSIRIS, many of the simulation
quantities have a relative offset by a half a time step or
spatial step. We therefore use linear interpolation to center
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FIG. 5. Visualization of the noise (fluctuation) levels in the two-stream instability data for varying numbers of particles per cell. (a)—(e)
correspond to the cases of 10" — 10° particles per cell, respectively. The top row displays snapshots of the electron distribution function in
phase space around the time of the onset of the nonlinear phase of the instability; note that since the instability grows from thermal noise
and the noise decreases with the increasing number of particles per cell, these snapshots are taken at slightly different times, but correspond
to similar stages in the development of the instability. The bottom row shows a line-out of the distribution function at constant v/c = 0.1
(indicated by the dashed lines in the top row), highlighting how pronounced the noise levels are in the data.

all variables in time and space prior to the identification magnitude lower than the number of physical particles in the

procedure. real physical systems they aim to describe, the Npp is chosen
so the numerical fluctuations remain small enough as to not
APPENDIX C: SPARSE REGRESSION ALGORITHM affect the physics (dynamics) of interest in the simulation.

) . o ) These fluctuations are illustrated in Fig. 5, which displays data
In this paper, we utilize a variation of the sequential o the plasma distribution function from two-stream instability
thresholded least-squares algorithm proposed in the SINDy simulations with varying Nype = 10 — 10%; the line-outs of
framework [15] to compute sparse solutions of §. The origi-  he distribution function at constant velocity shown in the
nal algorithm consisted of solving a least—.squares regression  hottom row highlight how pronounced these fluctuations are,
fgr & and then setting to zero a}l coefficients smaller.t}.lan particularly at low Nypc. Note that, in PIC simulations, Npp
given threshold A; this procedure is repeated on the remaining refers to the number of particles per spatial cell and not phase
nonzero coefficients until convergence is reached. The value space cell; in this case, below, the average number of particles
of the threshold X is progressively increased to obtain increas- per phase space cell (which directly controls the level of
ingly sparse solutions of &. Our approach consists of starting  fiyctuations of the distribution function) is ~Nype/256, where
with an initial least-squares regression on & and to eliminate 256 is the number of cells used to resolve the phase space
the term with the smallest coefficient norm at each step; this velocity axis (see Appendix B for data generation details).

procedure is repeated until the desired !evel of spgrsity i.s From the point of view of inferring PDE models from PIC
reached. We found that the advantage of this approach is that it simulation data, these fluctuations are a source of noise in

allows us to systematically sweep across all levels of sparsity
in &, whereas the former method can miss some of the possible
solutions (by simultaneously thresholding more than one co-
efficient at each iteration). As a result, this sparse regression
procedure traces cleaner accuracy versus complexity curves,
which facilitate the identification of the correct model during
cross validation.

the data and pose a challenge to the PDE inference proce-
dure. Indeed, for typical Npp. used in PIC simulations, the
data is too noisy for accurate and robust inference of PDEs
using the pointwise sampling methods proposed in the origi-
nal works on sparsity-based model identification (SINDy and
PDE-Find). This is illustrated in Fig. 1 (top row) of the main
text, and the results obtained by this procedure for varying
Nppe are summarized in Fig. 6. The blue points in Fig. 6(b) cor-

APPENDIX D: IMPACT OF NUMBER OF PARTICLES respond to the pointwise evaluation strategy, and for Np,. =
PER CELL AND SIZE OF INTEGRATION VOLUMES 10" — 10* the mean error in the inferred coefficients of the
ON ERROR OF INFERRED PDE Vlasov equation are significant, exceeding 20%. Even at the

The number of particles per cell (N,p.) used in PIC simu-  significantly higher computational cost of using Nppe = 10°,
lations controls the amplitude of discrete particle fluctuations  the noise levels remain too high for accurate inference of the
in the simulated plasma. While the number of numerical par- Vlasov equation coefficients, which are found with 10% mean

ticles used in typical simulations can, in general, be orders of ~ €rTOr.
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FIG. 6. Impact of intrinsic data noise and size of integration
volumes (£2,,) on the accuracy of the inferred PDE. (a) Deviation
error from the true Vlasov equation €y, (defined as eyiygoy(m) =
me [0,f —vo.f — q/mEJ,f]) measured on two-stream data with
varying numbers of particles per cell (Vp,); the variance of this
deviation error is normalized by the variance of fﬂm o, f. (b) Aver-
age relative error ((§ /&me — 1)) of the inferred coefficients of the
Vlasov equation using the sparse regression procedure for varying
Nppe- In both plots, the different color points represent varying sizes
of the integration volumes €2,, used to sample each PDE term on
the data. Each volume €2, is a cube of nAr x nAv x nAx, with n
taking values between 1 (single point volume) and 16. Note that in
varying the size of integration volumes (i.e., the number of points per
volume, pts/€2,,), we vary the number of integration volumes (ng)
accordingly, so the total number of points sampled from the data is
fixed, with N = pts/2,, x ng = 512k pts.

As discussed in the main text, we have circumvented the
challenges posed by data noise by reformulating the problem
of PDE discovery in its integral form. This is achieved by
sampling the data in compact volumes (£2,,, instead of indi-
vidual points) and evaluating the integral of each candidate
PDE term over each of these volumes. Indeed, Fig. 6(a) shows
that the deviation error of the true Vlasov equation evaluated
on the data, eviasov) relative to the physical signal (typical
values of the time derivative of the distribution function, 9, f),
decreases dramatically as we increase the size of the sampling
volumes. This translates into a rapid reduction of the mean
error in the inferred Vlasov coefficients with increasing size
of the integration volumes, as seen in Fig. 6(b). For cubic
volumes greater than 4Ar x 4Av x 4Ax, however, the mean
coefficient error saturates at ~1%. Further improvements are
no longer observed because we have hit the level of the irre-
ducible error in the data, which is associated with numerical
discreteness and interpolation errors in the data-generation
procedure. More careful preparation of the data from the PIC
simulations, so as to minimize interpolation errors associated

with centering all quantities of interest in time and space,
would lead to further improvements, but we leave this for
future work.

It is also important to note the advantages of the integral
formulation in improving the robustness of correct model
identification in the presence of noisy data. This can be seen
in Fig. 7, which shows the impact of varying the size of
the integration volumes on the accuracy-complexity curves
produced by the SR procedure on the two-stream data with the
highest fluctuation levels (with N,y = 10). The large errors
associated with the differential formulation lead to only a
shallow increase in the model accuracy when an important
dynamical term is removed [Fig. 7(a)]. In addition, spurious
extra terms that do not contribute to a significant reduction
of the model error are systematically identified during tenfold
cross validation (shown by the circle markers for models be-
tween three to seven terms). In contrast, the change in model
accuracy when an important dynamical term is removed be-
comes progressively more pronounced as we increase the size
of the integration volumes [Figs. 7(b)-7(e)]. This leads to a
very clear signature of the correct underlying model. Note
that the integral formulation also excludes the spurious extra
terms that were previously being systematically identified in
the differential formulation; cross validation using the inte-
gral formulation shows high model-form variance for models
with terms greater than two terms (indicated by the triangle
markers), meaning that different combinations of extra terms
are identified in each cross validation, and indicating that such
extra terms are indeed spurious. For the largest volumes used
in this example [16Ar x 16Av x 16Ax, Fig. 7(e)], a clear
divergence between the test and training errors is observed
for models with more than two terms, highlighting the loss of
generalization for more complex models and further empha-
sizing the optimal accuracy-complexity trade-off at a model
with two terms; this divergence is obscured in the differential
formulation case due its high sensitivity to data noise.

These results indicate that (i) the performance of the inte-
gral formulation is weakly sensitive to the amount of discrete
particle fluctuations in the data (controlled by Np), (ii) using
the integral formulation on simulation data produced with
few particles per cell yields more accurate inference of the
PDE model coefficients than the use of the standard differ-
ential formulation on much cleaner data using many orders
of magnitude more particles, and (iii) the integral formula-
tion significantly improves the robustness of the identification
of the correct underlying PDE model from the accuracy-
complexity curves.

APPENDIX E: DATA SAMPLING USED FOR THE
INFERENCE OF THE UNDERLYING EQUATIONS

As noted in the main text, only a small fraction of the
total data produced by each PIC simulation was used for the
identification of the underlying equations via the SR proce-
dure. The subset of the data in each example was obtained
through uniform random sampling in (phase) space and in
time. A uniform and unbiased sampling strategy is impor-
tant, in general, if no prior knowledge of the most relevant
regions of the dynamics is available or assumed. Using this
simple strategy, we show that we can recover the accurate
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FIG. 7. Impact of the size of the integration volumes on the accuracy-complexity curves. Pareto analysis of model accuracy
[MSE(model)/VAR(df/0t)] versus the number of nonzero model terms for the inference of the Vlasov equation from two-stream data

produced with Ny =

10 (corresponding to the highest level of discrete particle fluctuations explored here). Each panel corresponds to the

accuracy-complexity curve obtained using different integration volume sizes €2,, = nAt x nAv x nAx, with n taking values: (a) 1 (single
point volume, corresponding to the differential formulation), (b) 2, (c) 4, (d) 8, and (e) 16. As in Fig. 6, the total number of points used is kept
fixed (N = 512k pts). The markers and error bars have the same meaning as in Fig. 2.

form of the underlying equations. However, we note that
this is not a very efficient strategy. Indeed, there are regions
in the data where little or no dynamics is occurring—for
instance, during the near-equilibrium phase of the plasma
before the onset of the two-stream and Weibel instabilities
or in the quiet upstream plasma regions of the magnetized
shock. The temporal and spatial derivatives of plasma quan-
tities in these quiet regions are all close to zero and do not
yield very useful information for the identification of the
underlying PDEs. In scenarios where we are targeting specific
physical processes and know in advance where they are domi-
nant, we can focus our sampling on these regions, allowing
us to eliminate unnecessary data and making the applica-
tion of these data-driven model discovery techniques more
efficient.

APPENDIX F: DESIGN OF THE LIBRARY ©
FOR THE INFERENCE OF THE MULTI-FLUID
AND MHD EQUATIONS

. The recovery of the multifluid equations in the main
text was obtained through the nonlinear dynamics of the
electron fluid undergoing the Weibel instability. The primary
variables used to design the library ® were naturally the mo-

ments of the electron distribution function (7., n,(V)., n.{vv),,
n.(v>v),) and the self-consistent electric (n.E) and magnetic
(n.B) force densities. We also considered the spatial gradi-
ents of all these variables up to second order (computed via
centered finite differencing). The nonlinear candidate PDE
terms were constructed by taking polynomial combinations
of the primary variables and their gradients up to second
order.

For the recovery of the MHD equations, the library ® was
similarly constructed using the usual single-fluid variables
(Oms Pm(V)s Pm(VY), Pm(v?V), p, J) based on the magne-
tized shock data; we also included the auxiliary variables
J=J—pV,E=E+vxB, P=p,(vw) — p,(v){v) and
p=(Q_;Pi)/3 in © for inference of the MHD energy
equation.

APPENDIX G: ANALYSIS OF THE SPATIOTEMPORAL
ERROR DISTRIBUTION OF INFERRED PDE MODELS

The sparse regression procedure aims to find the most
parsimonious model that minimizes the mean squared
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FIG. 8. Spatiotemporal error distribution of the hierarchy of Pareto-optimal models for the MHD energy density equation. (a) Total time
derivative of the scalar pressure field (Dp/Dt = 0, p + (v,)0,p) evaluated on the magnetized shock data. (b)—(f) reveal the spatiotemporal error
distribution of the inferred Pareto-optimal models presented in Fig. 4 of the main text. The error distribution of a model with M terms is
denoted by €y = Dp/Dt — Oy, where &, contains the M-term model coefficients inferred by the sparse regression procedure.

error (MSE) on the sampled data points (or volumes €2, in
case of the integral formulation). However, once a model
has been identified, assessing its quality [its ability to de-
scribe the physics (dynamics) in the data] cannot readily
be determined from its MSE alone. Indeed, it is important
to discern between two sources of errors: (i) an irreducible
error, associated with contributions from data noise (and in-
trinsic numerical discretization and interpolation errors in
simulation data), and (ii) a model bias error, associated
with potential missing terms (missing physics) in the li-
brary ©. Unless a detailed understanding of the irreducible
error in the data is available, a useful diagnostic to dis-
cern between these two sources of errors is the analysis of
the spatial and temporal error distribution of the model on
the data.

This is illustrated in Fig. 8 for the hierarchy of Pareto-
optimal models inferred for the single-fluid energy density
(pressure) equation from the magnetized shock data (and
which is presented in Fig. 4 of the main text). The total time
derivative of the pressure field (Dp/Dt) is shown in Fig. 8(a),
revealing a quiet upstream ahead of the shock, a rapid increase
in the pressure field at the shock front, and wave structures
in the downstream plasma behind the shock. The discrepancy
errors €y for models of increasing complexity (increasing
number of terms, M) are presented in Figs. 8(b)-8(f). While
the overall MSE (or FVU, fraction of variance unexplained)
of each model expectedly decreases with increasing model
complexity, the spatiotemporal distribution of the model error
offers valuable insights into the physics captured by each
model and the impact of its approximations. Figure 8(b), for

instance, shows the error distribution of the simplest one-term
model (corresponding to the adiabatic closure model), which
neglects heat flux, pressure anisotropy, and Joule heating,
capturing only compressional heating. The coherent structures
seen in the error distribution, which closely correlate with the
structures seen in Dp/Dt, indicate that this simplified model
provides an overall crude approximation to the dynamics in
the data. The more refined two-term model that includes finite
heat flux physics leads to a much improved description of
the plasma dynamics downstream of the shock, leaving only
the shock transition itself poorly described [Fig. 8(c)]. This
indicates that there remains missing physics in the model to
correctly describe the shock transition region. Indeed, it is
well-known that this region is characterized by high-pressure
anisotropy and Joule heating, and the inclusion of these effects
in the more complex models shows progressively improved
approximations of the plasma dynamics at the shock transition
[Figs. 8(d)-8(f)].

Therefore, the spatiotemporal distribution of the model
error on the data not only elucidates where and when dif-
ferent dynamical terms are important but can also serve as
an indicator of missing physics (informing on incompleteness
of the library of candidate terms ® used in the regression).
This can be extremely useful when applying this methodology
to infer models of complex and poorly understood plasma
phenomena. By pinpointing where and when the model er-
rors are most significant, the spatiotemporal error distribution
provides important clues as to what the missing physics is
and serves as a guide on how to expand and refine the
library ©®.
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