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Engineered dissipation for quantum
information science
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Abstract | Quantum information processing relies on the precise control of non-classical states

in the presence of many uncontrolled environmental degrees of freedom. The interactions
between the relevant degrees of freedom and the environment are often viewed as detrimental,
as they dissipate energy and decohere quantum states. Nonetheless, when controlled, dissipation
is an essential tool for manipulating quantum information: dissipation engineering enables quan-
tum measurement, quantum-state preparation and quantum-state stabilization. The advances in
quantum technologies, marked by improvements of characteristic coherence times and extensi-
ble architectures for quantum control, have coincided with the development of such dissipation
engineering tools that interface quantum and classical degrees of freedom. This Review presents
dissipation as a fundamental aspect of the measurement and control of quantum devices, and
highlights the role of dissipation engineering in quantum error correction and quantum simulation.
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Dissipation makes quantum information science pos-
sible. Among other things, it provides the means to
measure quantum systems — driving all the paradox-
ical phenomena that come with entangling quantum
degrees of freedom with macroscopic states. When
uncontrolled, however, dissipation ruins the delicate
quantum coherence at the heart of quantum informa-
tion science: it reduces the fidelity of quantum gates,
adds noise to measurement signals and ultimately poses
a challenge to achieving the level of control necessary
to harness quantum systems to gain any advantage or
insight. Advances in quantum technology must con-
tend with this dual edge to engineer dissipation. In this
Review, we highlight recent experimental and theoreti-
cal advances implementing dissipation, either subtly or
bluntly, to advance quantum technologies.

Dissipation engineering principles underlie all quan-
tum information processing; any judicious choice of
hardware with classical controls must account for nat-
urally accompanying dissipation’. Dissipative system—
environment interactions support gate operations
and state readout, whereas, in turn, fluctuations of
the environment impose quantum coherence limits.
Engineered dissipation® incorporates methods that
control system-environment interactions, and the envi-
ronment itself, to adapt dissipative processes for tasks
including quantum-state preparation®, stabilization of
quantum states™", entanglement and teleportation
of quantum states'*™'%, the creation of decoherence-
free'® and excitation-number-conserving'”""’ sub-
spaces, and the implementation of quantum error
detection and correction®-**. During the present age of

noisy intermediate-scale quantum (NISQ) computing®,
practical quantum information processing requires
hardware-specific dissipation engineering methods to
demonstrate low-error-rate devices for scalable quantum
computation, simulation and sensing®’.

Zeno effects and Zeno dynamics

The act of measuring a quantum system can strongly
influence its dynamics. In particular, measuring a
quantity can prevent it from changing. This effect has
been dubbed the ‘quantum Zeno effect; an allusion to
Zeno of Elea’s incorrect argument that an arrow, if con-
tinuously observed, should remain frozen in flight**-*°.
In the quantum Zeno effect, the quantum state is fro-
zen by the act of repeated measurement. One can also
liken it to the adage that ‘a watched pot never boils’.
More formally, the process of repeated measurements
introduces measurement back-action, a dissipative effect
in the system dynamics. In the case of Zeno effects’*,
back-action dynamics are caused by the measurement
process itself, irrespective of particular measurement
results”. Zeno effects are not limited to systems that are
explicitly being measured: dissipation can be interpreted
in terms of ‘measurements from the environment, and
the Zeno effect is an important part of using dissipation
to control quantum states.

The interplay between measurement and quantum
dynamics is well illustrated by a two-level system under-
going Rabi oscillations with frequency Q between states
[1)and||), eigenstates of the g, Pauli operator. (This was
the setting of the first quantum Zeno experiment with
trapped ions™.) If the system is measured repeatedly
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Key points

* Dissipation is essential for quantum information processing: resetting to the ground
state, measurement and cooling all require dissipation.

e Carefully engineered dissipation can protect quantum information, control dynamics

and enforce constraints.

* Dissipation finds applications in quantum error correction, quantum sensing and

quantum simulation.

* Much of dissipation engineering focuses on designing ‘dark’ or dissipation-free
manifolds of states that are stabilized by the dissipative process.

in this basis after each duration 7, the system is then
randomly projected into one of the g, eigenstates. The
probability p of flipping from one eigenstate to another
between two successive measurements is p = sin(Q1).
Thus the system becomes frozen in one of the 1) or||)
states when the measurement rate is large compared with
the Rabi rate (Q7<1). In a system with more coupled
levels, the implications can be rich, and many dissipative
control schemes that leverage measurement back-action
can be interpreted through Zeno effects.

The Zeno effect is relevant for engineered dissipation
when the coupling to the environment (that is, the meas-
urement rate) is strong. This situation can suggest the
paradoxical conclusion that increasing the environmen-
tal coupling can actually lead to less loss (of particles,
for example), in the strong coupling limit. Consider the
case where, instead of measuring our two-level system,
we introduce an incoherent decay from||) to|1), cor-
responding to spontaneous emission of photons with
rate I, and described by a jump operator L = /T [1)(||
(see BOX 1). We envision starting the system in the ground
state, |1). When the dissipation rate is small compared
with the Rabi frequency, I' <« Q, the system rapidly
oscillates, and is in the unstable excited state|] ) approx-
imately half the time. The rate of photon emission is then
I'/2, which grows with I', as one would intuitively expect.
Conversely, if I'> (, the Zeno effect freezes the system
in the ground state, |1), and the photon emission rate
scales as Q%I the dissipation rate actually falls with I".
In the limit of strong dissipation (I'= o), no photons
are emitted, and one can replace the dissipation with the
constraint that the system can never be in||), essentially
freezing the dynamics in the|?) state. Thus, very strong
dissipation can be used for coherent control, including
the processing of quantum information.

One way to gain an intuitive understanding of this
effect is to interpret it as a complex detuning of the tran-
sition from|| ) to|1). As introduced in BOX 1, the dynam-
ics conditioned by the absence of an dissipative event
are described by a non-Hermitian effective Hamiltonian
Hy=H- iy, Iz,,;]:%, where L, are the jump operators.
Here, the term iL L=il||)({]| gives the excited state a
complex energy. The shift of the energy from the real
axis yields an effective detuning. If the detuning is large,
then any coupling between|| ) and |1) is far off-resonant,
and the system stays in the|1) state.

As a simple concrete example, consider a three-level
system, with states |A), |B), |C), and a Hamiltonian that
drives transitions A < B« C (FIC. 1a). If a very strong dis-
sipation is added to |C), the system will simply undergo
Rabi oscillations between|A) and | B), never transitioning
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to|C) (because the dissipation ‘detunes’ that level). For
this driven-dissipative system, an effective ground state is
formed by the subspace spanned by the states|A) and | B),
while excitations out of this ground state are suppressed
by the strong dissipation on |C). The state-selective dissi-
pation introduces a constraint — a feature that is valuable
for quantum information processing and sensing.

In this case, the space spanned by |A) and |B) is an
example of a dark subspace or decoherence-free sub-
space®. Such a space exists whenever there are states
in the null-space of the dissipative part of the effective
Hamiltonian, Q = 3, L, L. When the dissipation is strong
(1Ql1>11A]), to leading order, dynamics are restricted
to that subspace. Applying the standard prescription
for degenerate perturbation theory, the system evolves
under H projected into this dark subspace. If H and Q
do not commute, the resulting Zeno dynamics can be
rich'**-*. The remarkable feature here is that strong dis-
sipation can lead to non-trivial coherent evolution. The
states in the dark subspace are long-lived, with lifetimes
that scale inversely with the dissipation strength.

The Zeno effect provides a framework that con-
nects measurement, environmental couplings, and
the back-action dynamics from these dissipative pro-
cesses. Moreover, the Zeno effect offers practical tools
for quantum information processing: in atomic systems
it is used to extend the lifetime of molecular states®,
tune interactions® and even enhance the precision
of spectroscopy. Dissipation from strong measure-
ment can create decoherence-free subspaces, which
can provide an essential component of quantum error
correction*®*. The Zeno effect can even be used for
quantum gates, as demonstrated by a recent experiment
involving superconducting circuits™. In this study, two
qubits with no direct interaction were entangled by using
a projective measurement to confine the qubits to a par-
ticular non-local subspace, which allowed a single qubit
rotation to impart a conditional phase.

Dissipative engineering toolbox

Although the Zeno effect is largely passive, there are a
number of more active approaches to dissipation engi-
neering. The classic example, illustrated in FIC. 1b, is
optical pumping. Consider a three-level atom with two
long-lived states|1),|| ) and one short-lived state|x). The
latter can decay into |1) by emitting a photon. To pump
the system into|1), one turns on a drive between|] ) and
|x). The system will cycle between those states, even-
tually decaying into |1). If the temperature of the elec-
tromagnetic field environment is small compared with
the level spacing between |1) and |x), then the decay is
unidirectional; there are no thermal photons to drive the
|1) — |x) transition, and hence|1) is a dark state.

This simple example highlights a key observation:
dissipation can act as a one-way valve, which inevitably
leads the system into a dark state or manifold. In this
way, entropy is transferred from the system of interest
to the bath. This approach has been applied to pro-
duce quantum states in all the forerunning platforms
for quantum information processing®®’~'>*'-%,

A wide range of states can be produced by such
pumping protocols, including ones that are highly
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Box 1| Lindblad formalism

A typical approach to modelling a dissipative quantum system (described by
Hamiltonian I:l) is to consider it as a subsystem of a larger environment (panel a).

The system bath interaction involves can involve several types of interactions. In the
case of decay, flipping the spin (o ) creates excitations in the bath b, or vice versa (o, b).
In the case of dephasing, the energies of the bath modes depend on the state of the system.
The reduced dynamics of the system is given by equations of motion for the system’s
density matrix p, which plays the role of the classical phase-space distribution function.
Given an ensemble of quantum states| j), which appear with probability p;, the density
matrixis p = 3; P, |j){jl- Under several assumptions (the Born-Markov approximation),
where the enwronment can be treated as memoryless and decoupled from the system,
the equations of motion for the density matrix have the Lindblad form?’,

tp—f[H p]+zr L.l (1)

The operators l:a, referred to as jump operators, describe the dissipation, where «
indicates the different dissipation channels such as dephasing or decay for each eigenstate
of H. As is clear from our formulation, the coefficients I, have to be non-negative. This
ensures that the system dynamics is a completely positive trace-preserving map’’.

In this context, dissipation engineering amounts to controlling the jump operators.
There can be arich interplay between the Hamiltonian term and the dissipation,
particularly when the jump operators and Hamiltonian do not commute, or the
Hamiltonian is time-dependent — a driven-dissipative setting.

One classifies forms of dissipation by reference to the natural basis: for a qubit this is
typically the eigenstates of the g, operator, which commutes with the Hamiltonian of
the bare undriven system. In this case, the density matrix is a 2 x 2 Hermitian matrix, and
is fully characterized by the expectation values of the Pauli matrices (g,,0,,0,), allowing
it to be visualized as a point on the Bloch sphere.

Decay involves transitions between basis states. For example, spontaneous emission
corresponds to [ [1){L|- As depicted in panel b, states evolve to a single pole of the
Bloch sphere. The arrows within the Bloch sphere depict the flow of states to the|T>
state. The red line shows an example decay trajectory initialized as a partially excited
superposition on the surface of the Bloch sphere. In contrast, dephasing does not lead
to transitions between basis states, but instead destroys phase-coherence. For example,
a projective measurement in the energy basis corresponds to two jump operators
LT «|1){1,and Ll  |}){||. For a qubit, dephasing occurs when L commutes with g,.

As depicted in panel ¢, dephasing brings the state to the Z axis of the Bloch sphere
without changing (4,). The arrows show that superposition states evolve to the (g,)
axis of the Bloch sphere: incoherent populations in the (o,) basis. The red line shows
an example dephasing trajectory initialized on the surface of the Bloch sphere.

The term [aﬁﬂa corresponds to applying the operator f_a to every state in the ensemble:
it encodes the change to the density matrix when a jump occurs. The last two terms
in equation (1) represent the influence of the environment on the system in the absence
of a jump. They can be combined with the coherent evolution, writing

~ Lo~ o T A ont
0,p = T(Heffp —PHe) + X LopL, . (2)

The non-Hermitian effective Hamiltonian,

ATA

Fur=H- 'Z L,L (3)
represents the evolution of the system conditioned on no jumps occurring?*?%%2%9,

The dynamics of this non-Hermitian Hamiltonian describes the reduced dynamics

of the system under dissipation, and thereby encodes the Zeno effect.

entangled”®~"°. For example, experiments on super-
conducting qubits and trapped ions®"*” engineered
dissipative processes to prepare a two-qubit Bell state,
[¢ ) |11) —|I1). This is a maximally entangled state. The
requisite engineering was fairly involved, taking advan-
tage of detailed features of the hardware, but on a con-
ceptual level it was very similar to optical pumping:
whenever the system is not in the desired target state,
it is subject to entangling dissipative processes.

Optical cooling provides a closely related exam-
ple of dissipation engineering. One can cool motional
or low-energy internal degrees of freedom by cou-
pling mechanical oscillators”-*, atoms/ions***¢ or
superconducting circuits>” to the electromagnetic
field. One needs to arrange a setting where the rate of
energy-increasing processes are smaller than those
of energy-decreasing processes.

Such selectivity typically comes from sculpting the
density of states, or from adding extra drives that couple
to short-lived states. A classic example is Raman side-
band cooling of the motion of a trapped ion*’. An optical
transition drives the ion from its electronic ground state
to a short-lived electronic excited state. This transition
is generically accompanied by a simultaneous change in
the motional wavefunction. If the drive is red-detuned,
then transitions that reduce the motional energy are
favoured. This can be interpreted as a form of coherent
feedback®*.

In all these examples, aspects of the quantum state
are correlated with the environment, which connects
closely with modern descriptions of the process of
quantum measurement where measurement is treated
in a multi-step process. The interaction between the
quantum system and its environment leads to changes
in the environment that depend on the system’s states,
as sketched in FIC. 2. In this context, the environment
forms ‘pointer states™”. We use the concept of environ-
ment very generally in this case; for example, in the par-
adigmatic example of a Stern-Gerlach measurement,
the interaction couples the electron spin states with
its momentum — the momentum degree of freedom
plays the role of the environment. After the interaction,
a measurement of the pointer state gives information
about the system state, collapsing the entanglement. At
this point, the measurement results become classical
information, and the effect of the interaction on the sys-
tem is referred to as back-action. This approach extends
the treatment of measurement beyond textbook con-
cepts of projective measurements. Here the environment
can have a much larger Hilbert space than the system
(as is the case of the infinite-dimensional Hilbert space
of the electron’s momentum). As such, the wide range of
measurement outcomes from the environment yield dif-
ferent partial measurements on the system. These are
weak measurements’’. The degree of measurement can
vary: if the environmental states are partially overlapping
(as in the central panel of FIC. 2), one only gains partial
information about the quantum state’*. The right-hand
panel of FIC. 2 illustrates the case of a strong, or projec-
tive, measurement, where the environmental states are
orthogonal®; any possible measurement outcome of the
environment corresponds to one or the other of the sys-
tems states. The Lindblad formalism explained in BOX |
ignores the state of the environment, so the master equa-
tion evolution is the result averaging over the ensem-
ble of individual trajectories. However, as described in
BOX 2, there are other techniques (quantum trajectories)
that allow one to model the measurement outcomes
and calculate the system dynamics contingent on those
outcomes’*>~’. These are referred to as the ‘unravelling’
of the Lindblad master equation.
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Fig. 1| Zeno effects and optical pumping in three-level systems. a | The effect of
strong dissipation on state |C) (given by rate y) creates a decoherence-free subspace
spanning the states|A) and|B) which are coupled at rate Q. b | An example of optical
pumping to a lower energy state|1) to achieve ground-state cooling. The combination
of drive () and dissipation (y) irreversibly brings the state|| ) to|1), by coupling to a lossy
state|x). Here the environment is a cold reservoir that acts as an ‘entropy dump’.

Quantum measurement embodies the interplay
between classical and quantum information. The inte-
gration of this classical information into a feedback cir-
cuit can alter dynamics'®, stabilizing target states of the
system'”’, or optimizing information that is extracted
about the system'*'*>'*. The next section explores how the
interplay between measurement and feedback is critical
to the implementation of quantum error correction.

Applications

We now discuss different applications of dissipation engi-
neering including quantum error correction, quantum
sensing and quantum simulation.

Quantum error correction

The most important application of the quantum meas-
urement and feedback is protecting quantum infor-
mation. Typical approaches to such quantum error
correction use stabilizer, or syndrome, measurements —
measurements that do not disturb the logical states yet
provide information that can be used to detect and cor-
rect errors. Quantum information is stored in a redun-
dant manner, and measurements detect errors at a stage
where they can still be corrected. Errors are corrected
by gate operations, rotating the system back into the
logical computational subspace, or the syndrome meas-
urements are recorded and an appropriate correction is
applied at the end of the computation. The measurement
correction cycle is an example of engineered dissipation,
precisely because the measurements (which are intrin-
sically dissipative) need to be engineered not to disturb
the logical states. The measurement-feedback system
can be implemented at a hardware level, making the
system self-correcting'**'", or other hardware choices
can be made to reduce noise sensitivity''>'"*. Some of
these approaches are described as autonomous error
correction and involve engineered dissipation.

An illustrative example of quantum error correction
is the bit-flip code''?, which embeds the logical states |0, )
and |1, ) redundantly in three qubits, |0, ) =|000) and
[1.) =|111). A single bit-flip error can then be detected
by majority vote without revealing the individual qubit
states. This is achieved with pair-wise parity measure-
ments'>'"”. These parity measurements are the prototypi-
cal examples of stabilizers — they reveal the occurrence
of individual errors, yet, because they commute with
all observables of the logical qubits, do not disturb the
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encoded information. In the language of Zeno dynam-
ics, the logical computational subspace is a dark sub-
space in the measurement process. Extensions of this
simple approach, using a larger quantity of qubits and
more complicated stabilizer measurements, in principle
allow for arbitrary qubit errors to be corrected. Different
approaches provide varying degrees of error tolerance, at
the cost of physical resources. For example, detection of
either bit-flip or phase-flip errors with repetition codes
has demonstrated the suppression of logical error rates
and favourable scaling on 21 qubits with 50 rounds of
quantum error detection®. The surface code has been
proposed as a practical approach to large-scale quantum
computation''%, tolerating single-qubit error rates com-
parable to current experimental limits**'" and scalable
with current qubit architectures'”’. With present error
rates, however, the surface code would still require thou-
sands of physical qubits per logical qubit, making the
realization of a fault-tolerant error-corrected quantum
processor a still-distant experimental goal.

Rather than encode quantum information redun-
dantly in multiple qubits, an alternative approach is to
use the infinite-dimensional Hilbert space of a harmonic
oscillator (for example, a single mode of a microwave
cavity) to realize logical qubits'*'. The simplest of these
bosonic codes are binomial codes, which encode qubits
in a finite number of Fock states, {|#)}, each of which has
a fixed number of quanta'?>'’. The coefficients of the
Fock states are related to binomial coefficients, with a
simple example having |0, } & |0) + [4), |1; ) = |2) as log-
ical qubits. This encoding is chosen so that every logical
state has the same parity, such that the loss of a photon,
which is the dominant error process for oscillator states,
can be detected by measuring parity. Then a unitary
operation can correct the error without scrambling the
quantum information.

Similarly, bosonic cat codes?>'"*!'*12*"127 are robust
against single-photon loss by encoding logical qubits
in Schrodinger cat states — superpositions of two or
more coherent states. Using this architecture, with
real-time measurement and feedback, a logical qubit
lifetime longer than the relaxation time of its constit-
uent parts was demonstrated'”. As a coherent state of
an oscillator can be maintained in steady state via a
combination of dissipation and resonant driving, the
cat states can be stabilized by appropriate two-photon
driving and dissipation®'”. In this way, dissipation can
be harnessed to actually reduce error rates, beyond just
detecting errors for correction. Extending the approach
taken in such cat codes, the Gottesman-Kitaev—Preskill
(GKP) error-correcting code'* encodes logical qubits in
a periodic grid in the phase space of a harmonic oscil-
lator. The GKP encoding is non-local for all three Pauli
operators, meaning that small perturbations, entering
as small phase-space displacements of the oscillator, can
be corrected. In circuit quantum electrodynamics, the
GKP code has been implemented by creating oscillator
displacements conditional on a qubit state in such a way
that measurement of the qubit projects the oscillator
onto the desired grid state’’’. The GKP state has also
been produced using the motional degrees of freedom
of trapped ions''>'*,
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These examples can all be viewed as digital
approaches to error correction, where the evolution
is broken into discrete blocks interrupted by stabilizer
measurements and feedback. Complementary to this
approach is the use of continuous measurement to detect
errors'”, as highlighted in an experiment where errors,
which take the form of quantum jumps out of a desired
space, are detected and corrected through continuous
measurement and feedback'*. In this experiment, a cir-
cuit supporting three quantum levels has one pair oflev-
els that are ‘bright’ and one state that is ‘dark’ Quantum
jumps can take the system out of the bright manifold of
states, but continuous monitoring can detect the jumps,
enabling a feedback correction to reverse the quantum
jump before it is complete. This feedback correction
works because the quantum jumps, despite occurring
stochastically, correspond to a measurement-driven evo-
lution that is coherent. This is because the measurement
signals associated with these jumps — darkness — are
uniform rather than stochastic. Thus, a feedback con-
troller, detecting only a few instances of dark signal, can
apply a rotation to return the three-level system to the
bright manifold; the error is corrected even before it has
a chance to completely occur.

Error correction fights fire with fire: it uses one form of
dissipation (measurement) to control unwanted forms
of dissipation. When judiciously chosen, the additional
dissipation does not disturb the encoded information,
but the information gleaned allows a classical controller
to compensate for the uncontrolled dissipation.

Quantum sensing

Quantum mechanics can offer advantages over classical
measurement approaches for sensing. First, quantum
systems are small, which gives access to smaller length
scales and boosts sensitivity: the individual energy levels
can be sensitive to very weak perturbations. Second, the
coherent evolution of a quantum system means that it
accumulates phase in proportion to a perturbation of
interest, leading to higher precision. Finally, quantum
entangled states offer opportunities for reduced noise
and enhanced sensitivity'*.
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Fig. 2 | Pointer states in quantum measurement. Quantum measurement involves the
creation of correlations between a quantum system (y, ) and an auxiliary ‘environment’
(), indicated here as cloud shapes. The strength of the measurement is dictated by the
overlap of the these environment ‘pointer’ states. The central panel corresponds to a
weak measurement, where the environmental outcomes are weakly correlated with the
quantum state. In addition to illustrating a strong measurement, the right-hand panel
depicts feedback, where the evolution of the system (quantified by the operator U) is
contingent on a certain measurement result.

Typically, one characterizes the performance of a
quantum sensor in terms of the quantum Fisher infor-
mation that can be obtained about a parameter — loosely
speaking — quantifying how the distance between two
quantum states depends on the sensing parameter of
interest (FIC. 3a). In this sense, dissipation, which tends
to create mixed states and therefore reduce the distance
between states, hinders the performance of quantum
sensors. Indeed, many protocols for sensing use specific
(dynamical decoupling) pulses to reduce dissipative
effects, while enhancing the desired accumulated phase.
Alternatively, error correction approaches can be used to
maintain coherent evolution, as is also required in quan-
tum processors. There are, however, some cases where
dissipation is an essential aspect of quantum sensing.

A key approach, often used in quantum sensing
using nitrogen-vacancy colour centres in diamond"**'?’,
is to engineer a situation where the signal is encoded
in the dissipation rate. As shown in FIG. 3b, these col-
our centres have spin sublevels (labelled with quantum
numbers m,) with splittings denoted by A and 2gu,B,:
A is the zero-field splitting, and B, is the component
of the magnetic field along the quantization axis. The
transitions from m_=0 to the other sublevels are in
the microwave frequency range; magnetic field noise
resonant with these transitions induces quantum jumps
between them. The dissipation rate can therefore be used
as a sensitive probe of such magnetic field noise. Recent
work used this principle to measure the Johnson noise
at nanometre resolution in normal metal films'*.

Another application where the spin dissipation can
be used as a sensitive probe is in the study of many-body
spin dynamics. An experiment examined how the polar-
ization of a nitrogen-vacancy centre can diffuse through
interactions with neighbouring spins'*. The resulting
power-law decay of polarization gave information that
was not accessible through classical probes.

The most common mode of operation for a quan-
tum sensor involves initializing the device, allowing it to
evolve and then measuring it. An alternative approach
is to probe the quantum system continuously, leading
to a trade-off between the continuous accumulation of
information and quantum coherent evolution. When the
balance of these two effects is carefully engineered,
the resulting driven-dissipative evolution can yield
a powerful sensor as detailed below.

A clear example of this balance is demonstrated by
dispersive detection of number parity of single elec-
tron charges that have crossed the Josephson junction
— a sensor that is well suited to detect the very quasi-
particle dynamics that induce relaxation in quantum
processors'*’. The dispersive readout of charge-parity
relies on the dissipative process of single-shot meas-
urement to detect the system’s occupation of energy
eigenstates with even or odd charge-parity.

The measurement can be quantum non-demolition
the system Hamiltonian commutes with the measure-
ment jump operators that cause back-action dynam-
ics. Consequently, dispersive readout ensures that the
dissipation does not deleteriously alter the mapping
between charge-parity and the readout signal through-
out the measurement process. As such, the continuous

141,142,
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Box 2 | Quantum trajectories
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monitoring of charge-parity allows the monitoring
of other quasiparticle-induced loss that can limit the
coherence of superconducting qubits.

As another example, driven-dissipative evolution can
be used for low-frequency magnetic field detection'*.
In this case, again using nitrogen-vacancy centres,
the optical illumination that initiates and reads out the
magnetic state of the colour centre is always on, creat-
ing continuous dissipation to the |, = 0) sublevel. The
combination of this dissipation and an additional micro-
wave drive that couples the magnetic sublevels yields a
fluorescence intensity that is proportional to the signal
of interest. The advantage here is that the sensitivity can
be pushed to very low frequencies, circumventing limits
posed by the intrinsic coherence of the colour centre.

The approach using continuous measurement during
sensing can also be applied at the level of single quantum
trajectories for a single quantum system®'**'*, In this
case, a continuous measurement signal can be used to
track a quantum system while also gaining information
about the parameters of the system’s Hamiltonian. This
situation highlights the difference between quantum
measurement (pertaining to quantum observables) and
quantum sensing (pertaining to estimating parameters
of a system’s Hamiltonian).

Quantum simulation

Quantum simulation'*-** refers the use of one quan-
tum system to emulate the physics of another'™*-'":
neutral atoms trapped in optical lattices as electrons in

whereK i = \/ﬁu)(ﬂ is the Kraus operator, which corresponds to the emission of a photon
decay rate. Conversely, if no photon is detected, the state evolves via the analogue of equation (4), but with the operator
Kno click= 111+ /1 -y 8t|L){l] Ingeneral, there are many posmble outcomes, indexed by m, with Kraus operatorsK
The probability of outcome mis P(m) = Tr[KmpK l.and ¥, K K = 1.If one averages over all possibilities, one recovers

a Lindblad equation with jump operators l_m = Krn /-/8t. By followmg individual trajectories, one can model both the
evolution of a quantum device and the entire history of the interactions with the environment, or model the quantum
dynamics conditioned on certain measurement results. Such considerations are essential for filtering, post-selection and

The Lindblad master equation in BOX | models the evolution of the system’s density matrix when the state of the environment
is ignored — instead, the state of the environment is traced over. One may, however, wish to describe dynamics that
depend on the state of the environment. As a concrete example, consider an atom that is in a superposition of its ground
and excited states. If one detects a photon emerging from the atom between time t and t+ dt, then the density matrix

4)

%, where y is the radiative

(0,)

7

the crystal lattices of solid-state materials, superconduct-
ing circuits act as optical cavities, and atomic Rydberg
excitations act as spins'**'’. These platforms introduce
new ways of studying physics and phenomena that occur
on otherwise inaccessible length scales or timescales.

The same tools that are used for emulation can also
be used to create new artificial systems that have no
realization in nature. For example, experiments with
superconducting circuits have simulated the behaviour
of electrons in a hyperbolic geometry'®'. Of particular
current interest is the exploration of strongly coupled
models, which are not easy to study with conventional
computational tools'®*'%.

Quantum simulation has numerous near-term
applications in physics, engineering, chemistry'*>-'%
and biology'®, for which quantum devices can be
tailor-made to emulate a problem of interest. Engineered
dissipation offers convenient methods to control many
degrees of freedom and can be an important tool for
quantum simulations'®.

The scope of quantum simulation goes beyond
faithful replication: the analogue system may be engi-
neered to have all properties of the original system or
just a subset of those properties. For example, dissi-
pative approaches to replicating the ground state of a
Hamiltonian may fail to capture the excitation spectrum
or more general dynamical aspects'”’"'7%. Such narrow-
ing of the scope of a simulator can help to disentangle
complicated phenomena or improve the robustness
of its operation. Furthermore, these simulators can
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become objects of study in themselves, independent of
the original motivation.

Although quantum simulation can involve ‘digital’
approaches where the simulation is performed using
gates on a quantum computer, engineered dissipation
is most relevant for analogue (or hybrid) approaches,
where the degrees of freedom of the system of interest
can map directly onto those of the physical hardware'”.
For analogue quantum simulation, dissipation engi-
neering has several uses. First, dissipation can be
used to constrain Hilbert spaces. Such constraints are
particularly important if the analogue system has dif-
ferent degrees of freedom from the system of interest.
Second, dissipation can be used to steer quantum sim-
ulators into states of interest'’*. The simplest example of
this is cooling, but there also exist protocols in which
the dissipation is engineered to pump the system into
a particular excited state'””. These same tools are also
useful for annealing-based computational strategies'”®.
Third, engineered dissipation is necessary for studying
explicitly dissipative phenomena, such as transport in
many-body systems. In the next subsections, we over-
view the state of the art in each of these three areas.
Importantly, the quantum simulation of many-body sys-
tems with dissipative phenomena is largely unexplored
in both theory and experiment, and holds promise for
exploring new physics of condensed matter systems'*>'*.,

Constraining degrees of freedom. In practice, Zeno effects,
where measuring a quantity prevents it from changing,
are often complemented by some sort of coherent feed-
back that can be used to impose constraints to realize an
effective Hamiltonian for quantum simulation. To illus-
trate the usefulness of dissipation for implementing con-
straints, consider ongoing attempts to produce cold atom
analogues of the fractional quantum Hall'”’ state known
as the ‘Pfaffian’ state'”®. This is a topologically ordered
state, first discussed in the context of the fractional

a (@) b

—H, —H,
Fig. 3 | Quantum sensing. a | In quantum sensing, one determines the parameters that
distinguish two different Hamiltonians H, and H, through distance between the final
states after some time evolution. The figure illustrates this process for a single quantum
spin, whose state is quantified by the expectation value of the Pauli matrices (o, ), (g, ). {0,)-
The sensitivity to the parameters is quantified by the quantum Fisher information?®>%°.

b | Nitrogen-vacancy colour centres in diamond have optically initializable and readable
magnetic sublevels (m,) that are particularly suited to sensing. Magnetic field noise
induces dissipative transitions between sublevels, making the colour centre a sensitive
spectrometer. The zero-field splitting A is intrinsic to the material, whereas the splitting
between the m ==1 states is controlled by the magnetic field. Transitions between

the states can be driven by a coherent drive () or magnetic field noise (blue squiggly
arrows). Here, y; is the Bohr magneton, g is the gyromagnetic ratio and B is the
external field.

quantum Hall effect of two-dimensional (2D) electrons
in large magnetic fields, confined to two-dimensions'”’.
It supports Majorana fermion excitations, and is
the exact ground state of a model Hamiltonian with
extremely strong short-range three-body interactions.
Thus a key step in producing this state is to engineer
a strong three-body repulsion (FIC. 4a). Producing such
many-particle interactions is challenging. Nonetheless,
it is straightforward to create a strong three-body loss
term'”*'%, for example by tuning near a scattering reso-
nance. As emphasized in the first section, if this three-
body loss is strong enough, the Zeno effect will restrict
the system to the desired manifold, where three particles
never come near each other (see FIC. 42). In the presence
of an appropriately tuned gauge field, the ground state
with this constraint is the desired Pfaffian. Beyond this
example of state preparation, the behaviour of systems
with strong three-body losses can be quite rich''-'%.

More generally, one can add a constraint by inducing
large loss: large two-body loss induces a strong effective
two-body interaction'**"'*’; large three-body loss induces
a strong effective three-body interaction. Variants of
this idea have been explored in contexts ranging from
implementing magnetic models'’ to simulating gauge
theories''~'*>. The more sophisticated versions of this
strategy involve engineering the dissipation so that it
actively pumps the system into the constrained space:
this can be either through an autonomous feedback
scheme or through an active approach involving meas-
urements and correction. The states that satisfy the
constraint become part of a dark-state manifold.

An important application is the use of dissipation to
constrain the particle number. This allows one to emu-
late the behaviour of systems with particle-number con-
servation, such as atoms or electrons, with entities whose
numbers are not conserved, such as photons or phonons.
For example, the behaviour of atoms in an optical lattice
can be emulated by the photonic excitations of supercon-
ducting circuits'***. In this context, one wants to find
a dissipation mechanism that ‘measures’ the number of
photons such that the excitation number is stabilized:
injecting more if the number is below the target, or
removing excitations if the number is too large. In the
language of statistical mechanics, one can think of this as
creating an environment with a finite chemical potential
for photonic excitations.

Several dissipative schemes have been proposed to
produce an effective chemical potential for photonic
excitations. The most direct approach has been imple-
mented in experiments where the excitations of dye
molecules are used as photon bath'>. There are also strat-
egies involving parametrically oscillating the coupling
between a photonic system and its bath'*. One of the
most important insights is that it often suffices to apply
the stabilization locally at only a single discrete location
— aslong as the excitations are sufficiently mobile, fixing
the density locally will fix the average atom number.

This insight is illustrated by an experiment that
reports the autonomous stabilization of a ‘Mott insulator’
in a superconducting circuit (see FIG. 4b) consisting of
eight anharmonic quantum oscillators (transmons) cou-
pled to each-other and microwave readout resonators'®.
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Fig. 4| Dissipation in quantum simulation. a| An ensemble of molecules has an effective
three-body repulsion (light blue arrows) as a consequence of strong three-body loss (dark
squiggly arrows). b | The dissipative stabilization of a Mott insulator state, with one particle
per site, where Q, indicates the initial qubit site of the chain and R the reservoir site, ] is the
nearest-neighbour tunnelling rate, U is the on-site interaction, and J_is the tunnelling
rate to the dissipative stabilizer site. The particle number is a conserved quantity in the
effective ground state owing to energy-selective dissipation and the incompressibility

of the Mott insulator state. Panel b is adapted from REF."%, Springer Nature Ltd.

The number of quanta on each device is analogous to the
number of particles on a site — and the goal is to have
exactly one particle on each site (which is the defining
feature of an ideal Mott insulator). The site at one end,
denoted Q,, is coupled to a ‘cold reservoir’ realized by a
lossy resonator denoted as R. The end-site Q, is driven
such that it is forced into a configuration with exactly
one excitation. Given the ability of the excitations to
hop between sites, the configuration with one particle
per site is a dark state. If there is a particle ‘hole, or lack
of an on-site excitation, then excitations will propagate
until the hole travels to Q,, where it will be removed.
The advantage of introducing local dissipation at a single
site is that it is both easier to implement and leaves an
unperturbed ‘bulk’ However, the disadvantage is that the
time it takes to remove a hole grows with the system size;
excitations out of the engineered ground state may not
be strongly suppressed.

This example of single-site dissipation highlights the
importance of spatial structure. In many cases, the most
easily implemented dissipation elements are local, which
introduces some constraints on the type of states one can
create. There are many examples in the literature of ideas
for producing matrix product states or pair entangled
states®'””"'*, including condensates, #-condensates, pair
condensates and dimerized phases'’>*"*">. Because of
their topical nature, particular efforts have been made
to come up with approaches to produce states that
either exhibit topological order or have topologically
non-trivial band-structure**"**-2%, Despite the dissi-
pation being local, these systems exhibit globally con-
served quantities. There are analogies between these
non-local degrees of freedom and the protected logical
qubits of quantum error-correcting codes””. Generically,
the strategies of using dissipation to induce constraints
have parallels in quantum error correction: the typical
measurements—correction cycle can be interpreted as
a dissipative process that constrains the computer to a
chosen code-space.

In principle, any thermodynamic quantity can be
constrained by using similar techniques to those of the
Mott insulator experiment. Dissipation can introduce an
effective chemical potential, and analogous approaches
would correspond to the appropriate conjugate variable:
for example, constraining the total spin of a system
would introduce an effective magnetic field.

REVIEWS

Simulating dissipative systems. In addition to being a
tool for implementing constraints and projecting into
desired states, engineered dissipation can be used to
emulate and study exotic dynamics of open quantum
dynamical systems. One important class of such studies
is the imitation of thermal baths or reservoirs. Thermal
ensembles have obvious physical importance, and they
are used in numerical algorithms such as optimization®'’
and machine learning”"'. A straightforward way to simu-
late a thermal system is to directly implement a large
reservoir with many degrees of freedom*?*'. This is
resource-intensive, which has motivated approaches in
which a small number of driven lossy degrees of freedom
leads to a thermal ensemble”’***'. The governing principle
in engineering these artificial thermal baths is the same as
used for numerical calculations: a steady-state Boltzmann
distribution will be found if the detailed balance condi-
tion is satisfied, that is, the rate for transitioning from
state i to state j, P,_ is related to the reverse rate by the
energies of the two states: B,_;/P,_,= ePEE) where
1/B=k,T. We emphasize that this condition must be engi-
neered, and a generic dissipative system will not satisfy
detailed balance. Examples that use this principle include
coupling superconducting qubits to lossy driven micro-
wave resonators”” or driven lossy qubits*'®. Traditional
optical cooling techniques can be considered as special
cases” %, Note that the resulting steady-state properties
from these approaches will be universal, but the way the
system approaches equilibrium will depend on the details
of the reservoir and couplings. There are, however, strate-
gies for emulating generic Lindblad equations, which can
fully model the equilibration process””~*'. The thermal
baths engineered with these techniques can have a range
of tunable parameters: one can engineer how they couple
to the system, the spectral density of states and the extent to
which information can be stored in the reservoir*>**.

The most novel studies involve emulating non-
thermal open quantum systems — largely with the goal
of observing new phenomena. This includes a range of
exotic non-equilibrium phases”*** and non-equilibrium
analogues of equilibrium phase transitions!#20%+7-24,
These open quantum systems are as rich as classical
dynamical systems, including limit cycles, period doub-
ling****** and all of the complexity that is found in
actively driven®” and even in living systems*’. They
also show purely quantum phenomena, such as collapses
and revivals*. This richness of behaviour can be used
in reservoir quantum computing®"**?, where dissipation
is valuable for its contribution to the fading-memory
property””.

The above examples illustrate the value of quantum
simulation, where one makes use of the controllability
of one quantum technology to peer into systems that
are more difficult to probe. In this endeavour, dissipa-
tion provides a range of techniques to adapt one type of
quantum system to the physics contained in a desired
Hamiltonian.

Outlook

Over the past decades, progress in quantum technolo-
gies has been marked by increasing control, particularly
regarding the strength and nature of the coupling to the
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environment. This has led to fundamental advances
in quantum science. This Review has focused on cases in
which deliberate coupling to the environment yields
substantial advantages. Such an approach may appear
counter-intuitive at first, as one might expect cou-
pling to an environment to increase a system’s entropy.
Indeed, much of the progress in quantum information
processing has been due to reducing coupling to uncon-
trolled degrees of freedom in the environment®**°,
Nonetheless, judicious engineering of an environment
can reduce a system’s entropy. There are several diver-
gent strategies: in some cases, the environment is effec-
tively very cold, as with the example of optical cooling,
and hence acts as an entropy dump. In other cases, such
as when a system is being continually measured, the
environment formally takes the form of an infinite tem-
perature bath. The information gained from the meas-
urements, however, can be used to reduce the entropy.
The prime example of this approach is quantum error
correction.

Dissipation also provides new mechanisms for coher-
ent control. An overarching strategy is provided by the
quantum Zeno effect, where strong dissipation imposes
constraints on the system dynamics. This can be inter-
preted in terms of detuning the system’s eigenenergies
on the complex plane, leading to Zeno effects and Zeno
dynamics within a protected subspace. Even more con-
trol can be achieved with autonomous feedback, where
the addition of coherent driving can funnel states into a
protected subspace.

Although this Review has largely focused on practi-
cal issues, newfound capabilities to engineer many-body
quantum system systems has motivated further explora-
tion of these fundamental concepts. The first of these is
quantum thermodynamics, which is an emerging field of
physics in which concepts in quantum information are
united with thermodynamic principles such as entropy,
heat and work*”***, Quantum thermodynamics provides

a framework to further understand and engineer
dissipation.

Similarly, there is considerable progress in quantum
dynamical systems*”. These differ from their classical
counterparts not only owing to the structure of the
underlying microscopic equations, but also owing to
the importance of quantum entanglement*’**>. Deep
insights are being developed into the connections
between classical and quantum chaos**’, how infor-
mation propagates in a quantum system**, and the
interplay between coherent and incoherent processes
in the propagation of entanglement’®**. There are
new dynamical phase transitions with universal critical
behaviour****-*°, Finally, at the intersection of quantum
dynamical systems and quantum thermodynamics are
questions about equilibration, when quantum systems
can be described thermodynamically”*~”, and quantify-
ing the information complexity of such systems”**”>. The
developments that are enabling quantum computation
have not only presented these questions, but also offer
new tools to explore them experimentally.

Techniques for modelling the dynamics of open
quantum systems are continually evolving. Frontiers
include techniques using tensor networks'’*”*” or
neural networks®**>. A difficult challenge is going
beyond the Markov and Born approximations that
were at the heart of much of our discussion?*****. The
bath is not necessarily weakly coupled to the system; it
can act as a memory, which is entangled with the sys-
tem in non-trivial ways. If mastered, this complexity
can become a resource for quantum computation and
beyond.

It is clear that engineered dissipation is a key part of
the technology of quantum information science. The
importance of these concepts will only grow over
the coming years.
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