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Dissipation makes quantum information science pos-
sible. Among other things, it provides the means to 
measure quantum systems — driving all the paradox-
ical phenomena that come with entangling quantum 
degrees of freedom with macroscopic states. When 
uncontrolled, however, dissipation ruins the delicate 
quantum coherence at the heart of quantum informa-
tion science: it reduces the fidelity of quantum gates, 
adds noise to measurement signals and ultimately poses 
a challenge to achieving the level of control necessary 
to harness quantum systems to gain any advantage or 
insight. Advances in quantum technology must con-
tend with this dual edge to engineer dissipation. In this 
Review, we highlight recent experimental and theoreti-
cal advances implementing dissipation, either subtly or 
bluntly, to advance quantum technologies.

Dissipation engineering principles underlie all quan-
tum information processing; any judicious choice of 
hardware with classical controls must account for nat-
urally accompanying dissipation1. Dissipative system– 
environment interactions support gate operations 
and state readout, whereas, in turn, fluctuations of 
the environment impose quantum coherence limits. 
Engineered dissipation2 incorporates methods that 
control system–environment interactions, and the envi-
ronment itself, to adapt dissipative processes for tasks 
including quantum- state preparation3,4, stabilization of  
quantum states3,5–12, entanglement and teleportation  
of quantum states13–15, the creation of decoherence- 
free16 and excitation- number- conserving17–19 sub-
spaces, and the implementation of quantum error 
detection and correction20–25. During the present age of 

noisy intermediate- scale quantum (NISQ) computing26, 
practical quantum information processing requires 
hardware- specific dissipation engineering methods to 
demonstrate low- error- rate devices for scalable quantum 
computation, simulation and sensing27.

Zeno effects and Zeno dynamics
The act of measuring a quantum system can strongly 
influence its dynamics. In particular, measuring a 
quantity can prevent it from changing. This effect has 
been dubbed the ‘quantum Zeno effect’, an allusion to 
Zeno of Elea’s incorrect argument that an arrow, if con-
tinuously observed, should remain frozen in flight28–30.  
In the quantum Zeno effect, the quantum state is fro-
zen by the act of repeated measurement. One can also 
liken it to the adage that ‘a watched pot never boils’. 
More formally, the process of repeated measurements 
introduces measurement back- action, a dissipative effect 
in the system dynamics. In the case of Zeno effects31,32, 
back- action dynamics are caused by the measurement 
process itself, irrespective of particular measurement 
results33. Zeno effects are not limited to systems that are 
explicitly being measured: dissipation can be interpreted 
in terms of ‘measurements from the environment’, and 
the Zeno effect is an important part of using dissipation 
to control quantum states.

The interplay between measurement and quantum 
dynamics is well illustrated by a two- level system under-
going Rabi oscillations with frequency Ω between states 
∣↑⟩ and ∣↓⟩, eigenstates of the ̂σz Pauli operator. (This was 
the setting of the first quantum Zeno experiment with 
trapped ions30.) If the system is measured repeatedly 
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in this basis after each duration τ, the system is then 
randomly projected into one of the ̂σz eigenstates. The 
probability p of flipping from one eigenstate to another 
between two successive measurements is p τ= sin (Ω )2 . 
Thus the system becomes frozen in one of the ∣↑⟩ or ∣↓⟩ 
states when the measurement rate is large compared with 
the Rabi rate (Ωτ ≪ 1). In a system with more coupled 
levels, the implications can be rich, and many dissipative 
control schemes that leverage measurement back- action 
can be interpreted through Zeno effects.

The Zeno effect is relevant for engineered dissipation 
when the coupling to the environment (that is, the meas-
urement rate) is strong. This situation can suggest the 
paradoxical conclusion that increasing the environmen-
tal coupling can actually lead to less loss (of particles, 
for example), in the strong coupling limit. Consider the 
case where, instead of measuring our two- level system, 
we introduce an incoherent decay from ∣↓⟩ to ∣↑⟩, cor-
responding to spontaneous emission of photons with  
rate Γ, and described by a jump operator ̂ ∣↑⟩⟨↓∣L = Γ  
(see BOX 1). We envision starting the system in the ground  
state, ∣↑⟩. When the dissipation rate is small compared 
with the Rabi frequency, Γ ≪ Ω, the system rapidly 
oscillates, and is in the unstable excited state ∣↓⟩ approx-
imately half the time. The rate of photon emission is then 
Γ/2, which grows with Γ, as one would intuitively expect. 
Conversely, if Γ ≫ Ω, the Zeno effect freezes the system 
in the ground state, ∣↑⟩, and the photon emission rate 
scales as Ω2/Γ: the dissipation rate actually falls with Γ. 
In the limit of strong dissipation (Γ → ∞), no photons 
are emitted, and one can replace the dissipation with the 
constraint that the system can never be in ∣↓⟩, essentially 
freezing the dynamics in the ∣↑⟩ state. Thus, very strong 
dissipation can be used for coherent control, including 
the processing of quantum information.

One way to gain an intuitive understanding of this 
effect is to interpret it as a complex detuning of the tran-
sition from ∣↓⟩ to ∣↑⟩. As introduced in BOX 1, the dynam-
ics conditioned by the absence of an dissipative event 
are described by a non- Hermitian effective Hamiltonian 

∑H H L L= − i α α αeff
̂ ̂ ̂ ̂† , where L̂α are the jump operators. 

Here, the term L Li = iΓ̂ ̂ ↓ ↓†  gives the excited state a 
complex energy. The shift of the energy from the real 
axis yields an effective detuning. If the detuning is large, 
then any coupling between ∣↓⟩ and ∣↑⟩ is far off- resonant, 
and the system stays in the ∣↑⟩ state.

As a simple concrete example, consider a three- level 
system, with states ∣ ⟩A , B∣ ⟩, C∣ ⟩, and a Hamiltonian that 
drives transitions A ↔ B ↔ C (FIG. 1a). If a very strong dis-
sipation is added to ∣ ⟩C , the system will simply undergo 
Rabi oscillations between A∣ ⟩ and ∣ ⟩B , never transitioning 

to C∣ ⟩ (because the dissipation ‘detunes’ that level). For 
this driven- dissipative system, an effective ground state is 
formed by the subspace spanned by the states ∣ ⟩A  and B∣ ⟩,  
while excitations out of this ground state are suppressed 
by the strong dissipation on C∣ ⟩. The state- selective dissi-
pation introduces a constraint — a feature that is valuable  
for quantum information processing and sensing.

In this case, the space spanned by A∣ ⟩ and B∣ ⟩ is an 
example of a dark subspace or decoherence- free sub-
space34. Such a space exists whenever there are states 
in the null- space of the dissipative part of the effective 
Hamiltonian, ̂ ̂ ̂†Q L L= ∑α α α. When the dissipation is strong 
( ̂ ≫ ̂Q H ), to leading order, dynamics are restricted 
to that subspace. Applying the standard prescription 
for degenerate perturbation theory, the system evolves 
under Ĥ  projected into this dark subspace. If Ĥ  and ̂Q 
do not commute, the resulting Zeno dynamics can be 
rich16,35–44. The remarkable feature here is that strong dis-
sipation can lead to non- trivial coherent evolution. The 
states in the dark subspace are long- lived, with lifetimes  
that scale inversely with the dissipation strength.

The Zeno effect provides a framework that con-
nects measurement, environmental couplings, and 
the back- action dynamics from these dissipative pro-
cesses. Moreover, the Zeno effect offers practical tools 
for quantum information processing: in atomic systems 
it is used to extend the lifetime of molecular states45, 
tune interactions46 and even enhance the precision 
of spectroscopy47. Dissipation from strong measure-
ment can create decoherence- free subspaces, which 
can provide an essential component of quantum error 
correction48,49. The Zeno effect can even be used for 
quantum gates, as demonstrated by a recent experiment 
involving superconducting circuits50. In this study, two 
qubits with no direct interaction were entangled by using 
a projective measurement to confine the qubits to a par-
ticular non- local subspace, which allowed a single qubit 
rotation to impart a conditional phase.

Dissipative engineering toolbox
Although the Zeno effect is largely passive, there are a 
number of more active approaches to dissipation engi-
neering. The classic example, illustrated in FIG. 1b, is 
optical pumping. Consider a three- level atom with two 
long- lived states ∣↑⟩, ∣↓⟩ and one short- lived state x∣ ⟩. The 
latter can decay into ∣↑⟩ by emitting a photon. To pump 
the system into ∣↑⟩, one turns on a drive between ∣↓⟩ and 
x∣ ⟩. The system will cycle between those states, even-
tually decaying into ∣↑⟩. If the temperature of the elec-
tromagnetic field environment is small compared with 
the level spacing between ∣↑⟩ and x∣ ⟩, then the decay is 
unidirectional; there are no thermal photons to drive the 

x∣↑⟩ → ∣ ⟩ transition, and hence ∣↑⟩ is a dark state.
This simple example highlights a key observation: 

dissipation can act as a one- way valve, which inevitably 
leads the system into a dark state or manifold. In this 
way, entropy is transferred from the system of interest 
to the bath. This approach has been applied to pro-
duce quantum states in all the forerunning platforms 
for quantum information processing4,6,9–12,51–64.

A wide range of states can be produced by such 
pumping protocols, including ones that are highly 

Key points

•	Dissipation is essential for quantum information processing: resetting to the ground 
state, measurement and cooling all require dissipation.

•	Carefully engineered dissipation can protect quantum information, control dynamics 
and enforce constraints.

•	Dissipation finds applications in quantum error correction, quantum sensing and 
quantum simulation.

•	Much of dissipation engineering focuses on designing ‘dark’ or dissipation- free 
manifolds of states that are stabilized by the dissipative process.
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entangled9,65–76. For example, experiments on super-
conducting qubits and trapped ions51,57 engineered 
dissipative processes to prepare a two- qubit Bell state, 

∝ ↑↓ ↓↑ϕ −− . This is a maximally entangled state. The  
requisite engineering was fairly involved, taking advan-
tage of detailed features of the hardware, but on a con-
ceptual level it was very similar to optical pumping: 
whenever the system is not in the desired target state,  
it is subject to entangling dissipative processes.

Optical cooling provides a closely related exam-
ple of dissipation engineering. One can cool motional 
or low- energy internal degrees of freedom by cou-
pling mechanical oscillators77–81, atoms/ions82–86 or 
superconducting circuits5,52 to the electromagnetic 
field. One needs to arrange a setting where the rate of 
energy- increasing processes are smaller than those  
of energy- decreasing processes.

Such selectivity typically comes from sculpting the 
density of states, or from adding extra drives that couple 
to short- lived states. A classic example is Raman side-
band cooling of the motion of a trapped ion87. An optical 
transition drives the ion from its electronic ground state 
to a short- lived electronic excited state. This transition 
is generically accompanied by a simultaneous change in 
the motional wavefunction. If the drive is red- detuned, 
then transitions that reduce the motional energy are 
favoured. This can be interpreted as a form of coherent 
feedback88,89.

In all these examples, aspects of the quantum state 
are correlated with the environment, which connects 
closely with modern descriptions of the process of 
quantum measurement where measurement is treated 
in a multi- step process. The interaction between the 
quantum system and its environment leads to changes 
in the environment that depend on the system’s states, 
as sketched in FIG. 2. In this context, the environment 
forms ‘pointer states’90. We use the concept of environ-
ment very generally in this case; for example, in the par-
adigmatic example of a Stern–Gerlach measurement, 
the interaction couples the electron spin states with 
its momentum — the momentum degree of freedom 
plays the role of the environment. After the interaction, 
a measurement of the pointer state gives information 
about the system state, collapsing the entanglement. At 
this point, the measurement results become classical 
information, and the effect of the interaction on the sys-
tem is referred to as back- action. This approach extends 
the treatment of measurement beyond textbook con-
cepts of projective measurements. Here the environment 
can have a much larger Hilbert space than the system 
(as is the case of the infinite- dimensional Hilbert space  
of the electron’s momentum). As such, the wide range of  
measurement outcomes from the environment yield dif-
ferent partial measurements on the system. These are 
weak measurements91. The degree of measurement can 
vary: if the environmental states are partially overlapping 
(as in the central panel of FIG. 2), one only gains partial 
information about the quantum state92,93. The right- hand 
panel of FIG. 2 illustrates the case of a strong, or projec-
tive, measurement, where the environmental states are 
orthogonal94; any possible measurement outcome of the 
environment corresponds to one or the other of the sys-
tems states. The Lindblad formalism explained in BOX 1 
ignores the state of the environment, so the master equa-
tion evolution is the result averaging over the ensem-
ble of individual trajectories. However, as described in 
BOX 2, there are other techniques (quantum trajectories) 
that allow one to model the measurement outcomes 
and calculate the system dynamics contingent on those 
outcomes91,95–99. These are referred to as the ‘unravelling’ 
of the Lindblad master equation.

Box 1 | Lindblad formalism

A typical approach to modelling a dissipative quantum system (described by 
Hamiltonian Ĥ) is to consider it as a subsystem of a larger environment (panel a).  
The system bath interaction involves can involve several types of interactions. In the 
case of decay, flipping the spin (σ−) creates excitations in the bath b†, or vice versa (σ+b).  
In the case of dephasing, the energies of the bath modes depend on the state of the system. 
The reduced dynamics of the system is given by equations of motion for the system’s 
density matrix ̂ρ, which plays the role of the classical phase- space distribution function. 
Given an ensemble of quantum states j∣ ⟩, which appear with probability pj, the density 
matrix is p j jj j

̂ρ = ∑ . Under several assumptions (the Born–Markov approximation), 
where the environment can be treated as memoryless and decoupled from the system, 
the equations of motion for the density matrix have the Lindblad form287,

∑ρ ρ ρ ρ ρ∂ = + Γ − − .
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The operators Lα̂ , referred to as jump operators, describe the dissipation, where α 
indicates the different dissipation channels such as dephasing or decay for each eigenstate 
of H. As is clear from our formulation, the coefficients Γα have to be non- negative. This 
ensures that the system dynamics is a completely positive trace- preserving map287.  
In this context, dissipation engineering amounts to controlling the jump operators. 
There can be a rich interplay between the Hamiltonian term and the dissipation, 
particularly when the jump operators and Hamiltonian do not commute, or the 
Hamiltonian is time- dependent — a driven- dissipative setting.

One classifies forms of dissipation by reference to the natural basis: for a qubit this is 
typically the eigenstates of the ̂σz operator, which commutes with the Hamiltonian of 
the bare undriven system. In this case, the density matrix is a 2 × 2 Hermitian matrix, and 
is fully characterized by the expectation values of the Pauli matrices (σx,σy,σz), allowing  
it to be visualized as a point on the Bloch sphere.

Decay involves transitions between basis states. For example, spontaneous emission 
corresponds to ̂ ∝ ↑⟩⟨↓| |L . As depicted in panel b, states evolve to a single pole of the 
Bloch sphere. The arrows within the Bloch sphere depict the flow of states to the ↑|  
state. The red line shows an example decay trajectory initialized as a partially excited 
superposition on the surface of the Bloch sphere. In contrast, dephasing does not lead 
to transitions between basis states, but instead destroys phase- coherence. For example, 
a projective measurement in the energy basis corresponds to two jump operators 
L̂ ∝ ∣↑⟩⟨↑∣↑ , and ̂ ∝ ↓ ↓↓L . For a qubit, dephasing occurs when Lα̂  commutes with ẑσ . 
As depicted	in	panel	c, dephasing brings the state to the ̂z axis of the Bloch sphere 
without changing σz⟨ ̂ ⟩. The arrows show that superposition states evolve to the 〈σz〉 
axis of	the	Bloch	sphere:	incoherent	populations	in	the	〈σz〉 basis. The red line shows 
an example	dephasing	trajectory	initialized	on	the	surface	of	the	Bloch	sphere.

The term L L̂ ̂ ̂ρα α
†
 corresponds to applying the operator αL̂  to every state in the ensemble: 

it encodes the change to the density matrix when a jump occurs. The last two terms  
in equation (1) represent the influence of the environment on the system in the absence 
of a jump. They can be combined with the coherent evolution, writing

H H L L
1
i
( ) (2)t eff eff̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂∑ρ ρ ρ ρ∂ = − + .

α
α α

† †

The non- Hermitian effective Hamiltonian,

H H L Li , (3)eff ∑= −
α

α α
†̂ ̂ ̂ ̂

represents the evolution of the system conditioned on no jumps occurring23,288,289.  
The dynamics of this non- Hermitian Hamiltonian describes the reduced dynamics  
of the system under dissipation, and thereby encodes the Zeno effect.
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Quantum measurement embodies the interplay 
between classical and quantum information. The inte-
gration of this classical information into a feedback cir-
cuit can alter dynamics100, stabilizing target states of the 
system101, or optimizing information that is extracted 
about the system10,102,103. The next section explores how the 
interplay between measurement and feedback is critical  
to the implementation of quantum error correction.

Applications
We now discuss different applications of dissipation engi-
neering including quantum error correction, quantum  
sensing and quantum simulation.

Quantum error correction
The most important application of the quantum meas-
urement and feedback is protecting quantum infor-
mation. Typical approaches to such quantum error 
correction use stabilizer, or syndrome, measurements — 
measurements that do not disturb the logical states yet 
provide information that can be used to detect and cor-
rect errors. Quantum information is stored in a redun-
dant manner, and measurements detect errors at a stage 
where they can still be corrected. Errors are corrected 
by gate operations, rotating the system back into the 
logical computational subspace, or the syndrome meas-
urements are recorded and an appropriate correction is 
applied at the end of the computation. The measurement 
correction cycle is an example of engineered dissipation, 
precisely because the measurements (which are intrin-
sically dissipative) need to be engineered not to disturb 
the logical states. The measurement–feedback system 
can be implemented at a hardware level, making the 
system self- correcting104–113, or other hardware choices 
can be made to reduce noise sensitivity114,115. Some of 
these approaches are described as autonomous error 
correction and involve engineered dissipation.

An illustrative example of quantum error correction 
is the bit- flip code116, which embeds the logical states 0L∣ ⟩  
and ∣ ⟩1L  redundantly in three qubits, 0 = 000L∣ ⟩ ∣ ⟩ and 
∣ ⟩ ∣ ⟩1 = 111L . A single bit- flip error can then be detected 
by majority vote without revealing the individual qubit 
states. This is achieved with pair- wise parity measure-
ments12,117. These parity measurements are the prototypi-
cal examples of stabilizers — they reveal the occurrence 
of individual errors, yet, because they commute with 
all observables of the logical qubits, do not disturb the 

encoded information. In the language of Zeno dynam-
ics, the logical computational subspace is a dark sub-
space in the measurement process. Extensions of this 
simple approach, using a larger quantity of qubits and 
more complicated stabilizer measurements, in principle 
allow for arbitrary qubit errors to be corrected. Different 
approaches provide varying degrees of error tolerance, at 
the cost of physical resources. For example, detection of 
either bit- flip or phase- flip errors with repetition codes 
has demonstrated the suppression of logical error rates 
and favourable scaling on 21 qubits with 50 rounds of 
quantum error detection24. The surface code has been 
proposed as a practical approach to large- scale quantum 
computation118, tolerating single- qubit error rates com-
parable to current experimental limits20,119 and scalable 
with current qubit architectures120. With present error 
rates, however, the surface code would still require thou-
sands of physical qubits per logical qubit, making the 
realization of a fault- tolerant error- corrected quantum 
processor a still- distant experimental goal.

Rather than encode quantum information redun-
dantly in multiple qubits, an alternative approach is to 
use the infinite- dimensional Hilbert space of a harmonic 
oscillator (for example, a single mode of a microwave 
cavity) to realize logical qubits121. The simplest of these 
bosonic codes are binomial codes, which encode qubits 
in a finite number of Fock states, ∣ ⟩n{ }, each of which has 
a fixed number of quanta122,123. The coefficients of the 
Fock states are related to binomial coefficients, with a 
simple example having  ∝0 0 + 4L ,  ∣ ⟩ ∣ ⟩1 = 2L  as log-
ical qubits. This encoding is chosen so that every logical 
state has the same parity, such that the loss of a photon, 
which is the dominant error process for oscillator states, 
can be detected by measuring parity. Then a unitary 
operation can correct the error without scrambling the 
quantum information.

Similarly, bosonic cat codes22,104,110,124–127 are robust 
against single- photon loss by encoding logical qubits 
in Schrödinger cat states — superpositions of two or 
more coherent states. Using this architecture, with 
real- time measurement and feedback, a logical qubit 
lifetime longer than the relaxation time of its constit-
uent parts was demonstrated128. As a coherent state of 
an oscillator can be maintained in steady state via a 
combination of dissipation and resonant driving, the 
cat states can be stabilized by appropriate two- photon 
driving and dissipation8,129. In this way, dissipation can 
be harnessed to actually reduce error rates, beyond just 
detecting errors for correction. Extending the approach 
taken in such cat codes, the Gottesman–Kitaev–Preskill 
(GKP) error- correcting code130 encodes logical qubits in 
a periodic grid in the phase space of a harmonic oscil-
lator. The GKP encoding is non- local for all three Pauli 
operators, meaning that small perturbations, entering 
as small phase- space displacements of the oscillator, can 
be corrected. In circuit quantum electrodynamics, the 
GKP code has been implemented by creating oscillator 
displacements conditional on a qubit state in such a way 
that measurement of the qubit projects the oscillator 
onto the desired grid state131. The GKP state has also 
been produced using the motional degrees of freedom 
of trapped ions112,132.

|B〉

|x〉

|↓〉

|B〉

|C〉
|A〉 |A〉

a b

|↑〉

Fig. 1 | Zeno effects and optical pumping in three-level systems. a | The effect of 
strong dissipation on state ∣ ⟩C  (given by rate γ) creates a decoherence- free subspace 
spanning the states ∣ ⟩A  and ∣ ⟩B  which are coupled at rate Ω. b | An example of optical 
pumping to a lower energy state ∣↑⟩ to achieve ground- state cooling. The combination  
of drive (Ω) and dissipation (γ) irreversibly brings the state ∣↓⟩ to ∣↑⟩, by coupling to a lossy 
state x∣ ⟩. Here the environment is a cold reservoir that acts as an ‘entropy dump’.
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These examples can all be viewed as digital 
approaches to error correction, where the evolution 
is broken into discrete blocks interrupted by stabilizer 
measurements and feedback. Complementary to this 
approach is the use of continuous measurement to detect 
errors133, as highlighted in an experiment where errors, 
which take the form of quantum jumps out of a desired 
space, are detected and corrected through continuous 
measurement and feedback134. In this experiment, a cir-
cuit supporting three quantum levels has one pair of lev-
els that are ‘bright’ and one state that is ‘dark’. Quantum 
jumps can take the system out of the bright manifold of 
states, but continuous monitoring can detect the jumps, 
enabling a feedback correction to reverse the quantum 
jump before it is complete. This feedback correction 
works because the quantum jumps, despite occurring 
stochastically, correspond to a measurement- driven evo-
lution that is coherent. This is because the measurement 
signals associated with these jumps — darkness — are 
uniform rather than stochastic. Thus, a feedback con-
troller, detecting only a few instances of dark signal, can 
apply a rotation to return the three- level system to the 
bright manifold; the error is corrected even before it has 
a chance to completely occur.

Error correction fights fire with fire: it uses one form of  
dissipation (measurement) to control unwanted forms 
of dissipation. When judiciously chosen, the additional 
dissipation does not disturb the encoded information, 
but the information gleaned allows a classical controller 
to compensate for the uncontrolled dissipation.

Quantum sensing
Quantum mechanics can offer advantages over classical 
measurement approaches for sensing. First, quantum 
systems are small, which gives access to smaller length 
scales and boosts sensitivity: the individual energy levels 
can be sensitive to very weak perturbations. Second, the 
coherent evolution of a quantum system means that it 
accumulates phase in proportion to a perturbation of 
interest, leading to higher precision. Finally, quantum 
entangled states offer opportunities for reduced noise 
and enhanced sensitivity135.

Typically, one characterizes the performance of a 
quantum sensor in terms of the quantum Fisher infor-
mation that can be obtained about a parameter — loosely 
speaking — quantifying how the distance between two 
quantum states depends on the sensing parameter of 
interest (FIG. 3a). In this sense, dissipation, which tends 
to create mixed states and therefore reduce the distance 
between states, hinders the performance of quantum 
sensors. Indeed, many protocols for sensing use specific 
(dynamical decoupling) pulses to reduce dissipative 
effects, while enhancing the desired accumulated phase. 
Alternatively, error correction approaches can be used to 
maintain coherent evolution, as is also required in quan-
tum processors. There are, however, some cases where 
dissipation is an essential aspect of quantum sensing.

A key approach, often used in quantum sensing 
using nitrogen- vacancy colour centres in diamond136,137, 
is to engineer a situation where the signal is encoded 
in the dissipation rate. As shown in FIG. 3b, these col-
our centres have spin sublevels (labelled with quantum 
numbers ms) with splittings denoted by Δ and 2gμBB∥: 
Δ is the zero- field splitting, and B∥ is the component 
of the magnetic field along the quantization axis. The 
transitions from ms = 0 to the other sublevels are in  
the microwave frequency range; magnetic field noise 
resonant with these transitions induces quantum jumps 
between them. The dissipation rate can therefore be used 
as a sensitive probe of such magnetic field noise. Recent 
work used this principle to measure the Johnson noise  
at nanometre resolution in normal metal films138.

Another application where the spin dissipation can 
be used as a sensitive probe is in the study of many- body 
spin dynamics. An experiment examined how the polar-
ization of a nitrogen- vacancy centre can diffuse through 
interactions with neighbouring spins139. The resulting 
power- law decay of polarization gave information that 
was not accessible through classical probes.

The most common mode of operation for a quan-
tum sensor involves initializing the device, allowing it to 
evolve and then measuring it. An alternative approach 
is to probe the quantum system continuously, leading 
to a trade- off between the continuous accumulation of 
information and quantum coherent evolution. When the  
balance of these two effects is carefully engineered, 
the resulting driven- dissipative evolution can yield  
a powerful sensor as detailed below.

A clear example of this balance is demonstrated by 
dispersive detection of number parity of single elec-
tron charges that have crossed the Josephson junction 
— a sensor that is well suited to detect the very quasi-
particle dynamics that induce relaxation in quantum 
processors140. The dispersive readout of charge- parity 
relies on the dissipative process of single- shot meas-
urement to detect the system’s occupation of energy 
eigenstates with even or odd charge- parity.

The measurement can be quantum non-demolition141,142:  
the system Hamiltonian commutes with the measure-
ment jump operators that cause back- action dynam-
ics. Consequently, dispersive readout ensures that the 
dissipation does not deleteriously alter the mapping 
between charge- parity and the readout signal through-
out the measurement process. As such, the continuous 

Û

Fig. 2 | Pointer states in quantum measurement. Quantum measurement involves the 
creation of correlations between a quantum system (ψsys) and an auxiliary ‘environment’ 
(ψenv), indicated here as cloud shapes. The strength of the measurement is dictated by the 
overlap of the these environment ‘pointer’ states. The central panel corresponds to a 
weak measurement, where the environmental outcomes are weakly correlated with the 
quantum state. In addition to illustrating a strong measurement, the right- hand panel 
depicts feedback, where the evolution of the system (quantified by the operator Û) is 
contingent on a certain measurement result.
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monitoring of charge- parity allows the monitoring 
of other quasiparticle- induced loss that can limit the 
coherence of superconducting qubits.

As another example, driven- dissipative evolution can 
be used for low- frequency magnetic field detection143.  
In this case, again using nitrogen- vacancy centres,  
the optical illumination that initiates and reads out the 
magnetic state of the colour centre is always on, creat-
ing continuous dissipation to the  ∣ ⟩m = 0s  sublevel. The 
combination of this dissipation and an additional micro-
wave drive that couples the magnetic sublevels yields a 
fluorescence intensity that is proportional to the signal 
of interest. The advantage here is that the sensitivity can 
be pushed to very low frequencies, circumventing limits 
posed by the intrinsic coherence of the colour centre.

The approach using continuous measurement during 
sensing can also be applied at the level of single quantum 
trajectories for a single quantum system99,144,145. In this 
case, a continuous measurement signal can be used to 
track a quantum system while also gaining information 
about the parameters of the system’s Hamiltonian. This 
situation highlights the difference between quantum 
measurement (pertaining to quantum observables) and 
quantum sensing (pertaining to estimating parameters 
of a system’s Hamiltonian).

Quantum simulation
Quantum simulation146–153 refers the use of one quan-
tum system to emulate the physics of another154–157: 
neutral atoms trapped in optical lattices as electrons in 

the crystal lattices of solid- state materials, superconduct-
ing circuits act as optical cavities, and atomic Rydberg 
excitations act as spins158–160. These platforms introduce 
new ways of studying physics and phenomena that occur 
on otherwise inaccessible length scales or timescales.

The same tools that are used for emulation can also 
be used to create new artificial systems that have no 
realization in nature. For example, experiments with 
superconducting circuits have simulated the behaviour 
of electrons in a hyperbolic geometry161. Of particular 
current interest is the exploration of strongly coupled 
models, which are not easy to study with conventional 
computational tools162–164.

Quantum simulation has numerous near- term 
applications in physics, engineering, chemistry165–167 
and biology168, for which quantum devices can be 
tailor- made to emulate a problem of interest. Engineered 
dissipation offers convenient methods to control many 
degrees of freedom and can be an important tool for 
quantum simulations169.

The scope of quantum simulation goes beyond 
faithful replication: the analogue system may be engi-
neered to have all properties of the original system or 
just a subset of those properties. For example, dissi-
pative approaches to replicating the ground state of a 
Hamiltonian may fail to capture the excitation spectrum 
or more general dynamical aspects170–172. Such narrow-
ing of the scope of a simulator can help to disentangle 
complicated phenomena or improve the robustness 
of its operation. Furthermore, these simulators can 

Box 2 | Quantum trajectories

The Lindblad master equation in BOX 1 models the evolution of the system’s density matrix when the state of the environment 
is ignored — instead, the state of the environment is traced over. One may, however, wish to describe dynamics that 
depend on the state of the environment. As a concrete example, consider an atom that is in a superposition of its ground 
and excited states. If one detects a photon emerging from the atom between time t and t + δt, then the density matrix 
evolves as

K K

K KTr
, (4)t t

t

t

click click click

click click

̂
̂ ̂

̂ ̂ ̂





ρ
ρ

ρ
=δ+

†

†

where ̂ ∣↓⟩⟨↑∣K tclick γ δ=  is the Kraus operator, which corresponds to the emission of a photon290, where γ is the radiative 
decay rate. Conversely, if no photon is detected, the state evolves via the analogue of equation (4), but with the operator 
K t1no click γ δ= + −-̂ ∣↑⟩⟨↑∣ ∣↓⟩⟨↓∣. In general, there are many possible outcomes, indexed by m, with Kraus operators Km

̂ .  
The probability of outcome m is ̂ ̂ρ=

†
P m K K( ) Tr[ ]m m , and ∑ =

†̂ ̂K K 1m m m . If one averages over all possibilities, one recovers  
a Lindblad equation with jump operators ̂ ̂ δ=L K t/m m . By following individual trajectories, one can model both the 
evolution of a quantum device and the entire history of the interactions with the environment, or model the quantum 
dynamics conditioned on certain measurement results. Such considerations are essential for filtering, post- selection and 
real- time quantum feedback.

Interaction
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become objects of study in themselves, independent of 
the original motivation.

Although quantum simulation can involve ‘digital’ 
approaches where the simulation is performed using 
gates on a quantum computer, engineered dissipation 
is most relevant for analogue (or hybrid) approaches, 
where the degrees of freedom of the system of interest 
can map directly onto those of the physical hardware173. 
For analogue quantum simulation, dissipation engi-
neering has several uses. First, dissipation can be 
used to constrain Hilbert spaces. Such constraints are 
particularly important if the analogue system has dif-
ferent degrees of freedom from the system of interest. 
Second, dissipation can be used to steer quantum sim-
ulators into states of interest174. The simplest example of 
this is cooling, but there also exist protocols in which 
the dissipation is engineered to pump the system into 
a particular excited state175. These same tools are also 
useful for annealing- based computational strategies176. 
Third, engineered dissipation is necessary for studying 
explicitly dissipative phenomena, such as transport in 
many- body systems. In the next subsections, we over-
view the state of the art in each of these three areas. 
Importantly, the quantum simulation of many- body sys-
tems with dissipative phenomena is largely unexplored 
in both theory and experiment, and holds promise for 
exploring new physics of condensed matter systems163,164.

Constraining degrees of freedom. In practice, Zeno effects,  
where measuring a quantity prevents it from changing, 
are often complemented by some sort of coherent feed-
back that can be used to impose constraints to realize an 
effective Hamiltonian for quantum simulation. To illus-
trate the usefulness of dissipation for implementing con-
straints, consider ongoing attempts to produce cold atom 
analogues of the fractional quantum Hall177 state known 
as the ‘Pfaffian’ state178. This is a topologically ordered 
state, first discussed in the context of the fractional 

quantum Hall effect of two- dimensional (2D) electrons 
in large magnetic fields, confined to two- dimensions177. 
It supports Majorana fermion excitations, and is 
the exact ground state of a model Hamiltonian with 
extremely strong short- range three- body interactions. 
Thus a key step in producing this state is to engineer 
a strong three- body repulsion (FIG. 4a). Producing such 
many- particle interactions is challenging. Nonetheless, 
it is straightforward to create a strong three- body loss 
term179,180, for example by tuning near a scattering reso-
nance. As emphasized in the first section, if this three- 
body loss is strong enough, the Zeno effect will restrict 
the system to the desired manifold, where three particles 
never come near each other (see FIG. 4a). In the presence 
of an appropriately tuned gauge field, the ground state 
with this constraint is the desired Pfaffian. Beyond this 
example of state preparation, the behaviour of systems 
with strong three- body losses can be quite rich181–185.

More generally, one can add a constraint by inducing 
large loss: large two- body loss induces a strong effective 
two- body interaction186–189; large three- body loss induces 
a strong effective three- body interaction. Variants of 
this idea have been explored in contexts ranging from 
implementing magnetic models190 to simulating gauge 
theories191–193. The more sophisticated versions of this 
strategy involve engineering the dissipation so that it 
actively pumps the system into the constrained space: 
this can be either through an autonomous feedback 
scheme or through an active approach involving meas-
urements and correction. The states that satisfy the 
constraint become part of a dark- state manifold.

An important application is the use of dissipation to 
constrain the particle number. This allows one to emu-
late the behaviour of systems with particle- number con-
servation, such as atoms or electrons, with entities whose 
numbers are not conserved, such as photons or phonons. 
For example, the behaviour of atoms in an optical lattice 
can be emulated by the photonic excitations of supercon-
ducting circuits150,194. In this context, one wants to find 
a dissipation mechanism that ‘measures’ the number of 
photons such that the excitation number is stabilized: 
injecting more if the number is below the target, or 
removing excitations if the number is too large. In the 
language of statistical mechanics, one can think of this as 
creating an environment with a finite chemical potential 
for photonic excitations.

Several dissipative schemes have been proposed to 
produce an effective chemical potential for photonic 
excitations. The most direct approach has been imple-
mented in experiments where the excitations of dye 
molecules are used as photon bath195. There are also strat-
egies involving parametrically oscillating the coupling 
between a photonic system and its bath196. One of the 
most important insights is that it often suffices to apply 
the stabilization locally at only a single discrete location 
— as long as the excitations are sufficiently mobile, fixing 
the density locally will fix the average atom number.

This insight is illustrated by an experiment that 
reports the autonomous stabilization of a ‘Mott insulator’ 
in a superconducting circuit (see FIG. 4b) consisting of 
eight anharmonic quantum oscillators (transmons) cou-
pled to each- other and microwave readout resonators18. 

|ms = +1〉

|ms = –1〉

a b

Δ

|ms = 0〉

H1 H2

Fig. 3 | Quantum sensing. a | In quantum sensing, one determines the parameters that 
distinguish two different Hamiltonians H1 and H2 through distance between the final 
states after some time evolution. The figure illustrates this process for a single quantum 
spin, whose state is quantified by the expectation value of the Pauli matrices ⟨ ⟩ ⟨ ⟩ ⟨ ⟩, ,x y zσ σ σ . 
The sensitivity to the parameters is quantified by the quantum Fisher information285,286.  
b | Nitrogen- vacancy colour centres in diamond have optically initializable and readable 
magnetic sublevels (ms) that are particularly suited to sensing. Magnetic field noise 
induces dissipative transitions between sublevels, making the colour centre a sensitive 
spectrometer. The zero- field splitting Δ is intrinsic to the material, whereas the splitting 
between the ms = ±1 states is controlled by the magnetic field. Transitions between  
the states can be driven by a coherent drive (Ω) or magnetic field noise (blue squiggly 
arrows). Here, μB is the Bohr magneton, g is the gyromagnetic ratio and B∥ is the 
external field.
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The number of quanta on each device is analogous to the 
number of particles on a site — and the goal is to have 
exactly one particle on each site (which is the defining 
feature of an ideal Mott insulator). The site at one end, 
denoted Q1, is coupled to a ‘cold reservoir’ realized by a 
lossy resonator denoted as R. The end- site Q1 is driven 
such that it is forced into a configuration with exactly 
one excitation. Given the ability of the excitations to 
hop between sites, the configuration with one particle 
per site is a dark state. If there is a particle ‘hole’, or lack 
of an on- site excitation, then excitations will propagate 
until the hole travels to Q1, where it will be removed. 
The advantage of introducing local dissipation at a single 
site is that it is both easier to implement and leaves an 
unperturbed ‘bulk’. However, the disadvantage is that the 
time it takes to remove a hole grows with the system size; 
excitations out of the engineered ground state may not 
be strongly suppressed.

This example of single- site dissipation highlights the 
importance of spatial structure. In many cases, the most 
easily implemented dissipation elements are local, which 
introduces some constraints on the type of states one can 
create. There are many examples in the literature of ideas 
for producing matrix product states or pair entangled 
states60,197–199, including condensates, η- condensates, pair 
condensates and dimerized phases175,200–202. Because of 
their topical nature, particular efforts have been made 
to come up with approaches to produce states that 
either exhibit topological order or have topologically 
non- trivial band- structure47,201,203–208. Despite the dissi-
pation being local, these systems exhibit globally con-
served quantities. There are analogies between these 
non- local degrees of freedom and the protected logical 
qubits of quantum error- correcting codes209. Generically, 
the strategies of using dissipation to induce constraints 
have parallels in quantum error correction: the typical 
measurements–correction cycle can be interpreted as 
a dissipative process that constrains the computer to a 
chosen code- space.

In principle, any thermodynamic quantity can be 
constrained by using similar techniques to those of the 
Mott insulator experiment. Dissipation can introduce an 
effective chemical potential, and analogous approaches 
would correspond to the appropriate conjugate variable:  
for example, constraining the total spin of a system 
would introduce an effective magnetic field.

Simulating dissipative systems. In addition to being a 
tool for implementing constraints and projecting into 
desired states, engineered dissipation can be used to 
emulate and study exotic dynamics of open quantum 
dynamical systems. One important class of such studies 
is the imitation of thermal baths or reservoirs. Thermal 
ensembles have obvious physical importance, and they 
are used in numerical algorithms such as optimization210 
and machine learning211. A straightforward way to simu-
late a thermal system is to directly implement a large 
reservoir with many degrees of freedom212–214. This is 
resource- intensive, which has motivated approaches in 
which a small number of driven lossy degrees of freedom 
leads to a thermal ensemble215–221. The governing principle 
in engineering these artificial thermal baths is the same as 
used for numerical calculations: a steady- state Boltzmann 
distribution will be found if the detailed balance condi-
tion is satisfied, that is, the rate for transitioning from 
state i to state j, Pi→j, is related to the reverse rate by the 
energies of the two states: P P/ = ei j j i

β E E( − )i j→ → , where 
1/β = kBT. We emphasize that this condition must be engi-
neered, and a generic dissipative system will not satisfy 
detailed balance. Examples that use this principle include 
coupling superconducting qubits to lossy driven micro-
wave resonators215 or driven lossy qubits216. Traditional 
optical cooling techniques can be considered as special 
cases222–226. Note that the resulting steady- state properties 
from these approaches will be universal, but the way the 
system approaches equilibrium will depend on the details 
of the reservoir and couplings. There are, however, strate-
gies for emulating generic Lindblad equations, which can 
fully model the equilibration process227–231. The thermal 
baths engineered with these techniques can have a range 
of tunable parameters: one can engineer how they couple  
to the system, the spectral density of states and the extent to  
which information can be stored in the reservoir232,233.

The most novel studies involve emulating non- 
 thermal open quantum systems — largely with the goal 
of observing new phenomena. This includes a range of 
exotic non- equilibrium phases234–236 and non- equilibrium 
analogues of equilibrium phase transitions183,200,237–245. 
These open quantum systems are as rich as classical 
dynamical systems, including limit cycles, period doub-
ling246–248 and all of the complexity that is found in 
actively driven249 and even in living systems250. They 
also show purely quantum phenomena, such as collapses 
and revivals232. This richness of behaviour can be used 
in reservoir quantum computing251,252, where dissipation 
is valuable for its contribution to the fading- memory  
property253.

The above examples illustrate the value of quantum 
simulation, where one makes use of the controllability 
of one quantum technology to peer into systems that 
are more difficult to probe. In this endeavour, dissipa-
tion provides a range of techniques to adapt one type of 
quantum system to the physics contained in a desired 
Hamiltonian.

Outlook
Over the past decades, progress in quantum technolo-
gies has been marked by increasing control, particularly 
regarding the strength and nature of the coupling to the 

Γ
Bose–Hubbard chain

Dissipative
stabilizer

Coherent
driving

a b

U
JcJ

Q1 R

Fig. 4 | Dissipation in quantum simulation. a | An ensemble of molecules has an effective 
three- body repulsion (light blue arrows) as a consequence of strong three- body loss (dark 
squiggly arrows). b | The dissipative stabilization of a Mott insulator state, with one particle 
per site, where Q1 indicates the initial qubit site of the chain and R the reservoir site, J is the 
nearest- neighbour tunnelling rate, U is the on- site interaction, and Jc is the tunnelling  
rate to the dissipative stabilizer site. The particle number is a conserved quantity in the 
effective ground state owing to energy- selective dissipation and the incompressibility  
of the Mott insulator state. Panel b is adapted from REF.18, Springer Nature Ltd.
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environment. This has led to fundamental advances  
in quantum science. This Review has focused on cases in  
which deliberate coupling to the environment yields 
substantial advantages. Such an approach may appear 
counter- intuitive at first, as one might expect cou-
pling to an environment to increase a system’s entropy. 
Indeed, much of the progress in quantum information 
processing has been due to reducing coupling to uncon-
trolled degrees of freedom in the environment254–256. 
Nonetheless, judicious engineering of an environment 
can reduce a system’s entropy. There are several diver-
gent strategies: in some cases, the environment is effec-
tively very cold, as with the example of optical cooling, 
and hence acts as an entropy dump. In other cases, such 
as when a system is being continually measured, the 
environment formally takes the form of an infinite tem-
perature bath. The information gained from the meas-
urements, however, can be used to reduce the entropy. 
The prime example of this approach is quantum error 
correction.

Dissipation also provides new mechanisms for coher-
ent control. An overarching strategy is provided by the 
quantum Zeno effect, where strong dissipation imposes 
constraints on the system dynamics. This can be inter-
preted in terms of detuning the system’s eigenenergies 
on the complex plane, leading to Zeno effects and Zeno 
dynamics within a protected subspace. Even more con-
trol can be achieved with autonomous feedback, where 
the addition of coherent driving can funnel states into a 
protected subspace.

Although this Review has largely focused on practi-
cal issues, newfound capabilities to engineer many- body 
quantum system systems has motivated further explora-
tion of these fundamental concepts. The first of these is 
quantum thermodynamics, which is an emerging field of 
physics in which concepts in quantum information are 
united with thermodynamic principles such as entropy, 
heat and work257,258. Quantum thermodynamics provides 

a framework to further understand and engineer 
dissipation.

Similarly, there is considerable progress in quantum 
dynamical systems259. These differ from their classical 
counterparts not only owing to the structure of the 
underlying microscopic equations, but also owing to 
the importance of quantum entanglement260–262. Deep 
insights are being developed into the connections 
between classical and quantum chaos263, how infor-
mation propagates in a quantum system264, and the 
interplay between coherent and incoherent processes 
in the propagation of entanglement265,266. There are 
new dynamical phase transitions with universal critical 
behaviour239,267–269. Finally, at the intersection of quantum 
dynamical systems and quantum thermodynamics are 
questions about equilibration, when quantum systems 
can be described thermodynamically270–273, and quantify-
ing the information complexity of such systems274,275. The 
developments that are enabling quantum computation 
have not only presented these questions, but also offer 
new tools to explore them experimentally.

Techniques for modelling the dynamics of open 
quantum systems are continually evolving. Frontiers 
include techniques using tensor networks198,276,277 or 
neural networks278–282. A difficult challenge is going 
beyond the Markov and Born approximations that 
were at the heart of much of our discussion283,284. The 
bath is not necessarily weakly coupled to the system; it 
can act as a memory, which is entangled with the sys-
tem in non- trivial ways. If mastered, this complexity 
can become a resource for quantum computation and 
beyond.

It is clear that engineered dissipation is a key part of  
the technology of quantum information science. The 
importance of these concepts will only grow over  
the coming years.
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