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We study the quantum evolution of a non-Hermitian qubit realized as a submanifold of a dissipative
superconducting transmon circuit. Real-time tuning of the system parameters to encircle an exceptional
point results in nonreciprocal quantum state transfer. We further observe chiral geometric phases
accumulated under state transport, verifying the quantum coherent nature of the evolution in the complex
energy landscape and distinguishing between coherent and incoherent effects associated with exceptional
point encircling. Our work demonstrates an entirely new method for control over quantum state vectors,
highlighting new facets of quantum bath engineering enabled through dynamical non-Hermitian control.
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Small quantum systems that interact with an environ-
ment can be described by a Lindblad density matrix
equation that encodes their approach to steady state.
When the quantum trajectories of these decoherence-
induced dynamics are restricted to those with no quantum
jumps, the resulting evolution is described by an effective
non-Hermitian Hamiltonian. Such non-Hermitian quantum
systems have complex energies, nonorthogonal eigenstates,
and undergo a coherent, nonunitary evolution. The pres-
ence of special kinds of degeneracies known as exceptional
points (EPs) plays an important role in the unique char-
acteristics of these non-Hermitian systems [1,2]. Such EPs
occur when both the eigenvalues and eigenstates of the
system coalesce. A plethora of phenomena associated with
EPs have been revealed in classical platforms such as
mechanical and optical systems [3–9]. In the vicinity of the
EP, the shape of the Riemann manifold that describes the
complex energies of a non-Hermitian system can lead to
fundamentally new phenomena that are not present in their
Hermitian counterparts with strictly real energies. For a
second-order EP degeneracy, quasistatic tuning of the
Hamiltonian parameters is expected to map one eigenstate,
jψ−i, to the other eiχþ jψþi, modulo a global phase χþ.
Furthermore, the geometric part of the global phase is
expected to be chiral [10–15]. Such mode-switch behavior
has been demonstrated in classical systems [16–19], yet
the extension of such topological control to quantum
systems—with no classical counterpart—has remained
an outstanding goal in the field [20].
Here, we utilize the quantum energy levels of a super-

conducting circuit described by an effective non-Hermitian
Hamiltonian to study quantum state control in the vicinity
of the system’s EPs. While our previous work [21]
characterized the static properties of this non-Hermitian

system, we now employ dynamical control of the
Hamiltonian parameters and observe chiral quantum state
transfer when encircling EPs. We further use an auxiliary
level of our quantum circuit to verify the coherent nature of
this evolution and examine the geometric phases accumu-
lated from quantum state transport. These reveal that a π
phase difference associated with the chirality of the trans-
port persists under non-Hermitian dynamical quantum
evolution. Finally, we exploit state transfer in the limit
of fast, closed-loop parameter variation, which goes beyond
the slow driving limit demonstrated in previous works
[16–19] and reveals a broad range of parameters for
proximity to EPs for successful state transfer.
Our experiment comprises a superconducting transmon

circuit [22,23] embedded inside a three-dimensional copper
cavity [Fig. 1(a)] [24]. The circuit has anharmonic energy
states and the first four energy levels are labeled by jgi; jei,
jfi, and jhi. The cavity mediates interaction with an
environment that is set by the density of states in a
microwave transmission line. We shape this density of
states to enhance the dissipation of the jei state while
suppressing dissipation of the jfi state. While the evolution
of the four-level quantum system can be described by a
Lindblad equation, the evolution within the excited (and
lossy) manifold of states fjei; jfig can be described by an
effective non-Hermitian Hamiltonian [21,28].
By introducing a microwave drive with detuning

Δ ¼ ωef − ωd, where ωef is the transition frequency
between the jei and jfi states, and ωd is the microwave
drive frequency, we produce the effective Hamiltonian in
the frame rotating with the drive:

Heff=ℏ ¼ Jðjeihfjþ jfihejÞ þ ðΔ − iγ=2Þjeihej ð1Þ
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where J is the coupling rate between jei and jfi, and γ is
the decay rate of the jei state. Quantum dynamics of the
qubit are given by the (complex) eigenvalues λ% and
(nonorthogonal) eigenstates jψ%i of the Hamiltonian
(expressed in the energy basis);

λ% ¼ Δ=2 − iγ=4%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ ðΔ=2 − iγ=4Þ2

q
; ð2Þ

jψ%i ∝
"
λ%
J

#
: ð3Þ

The real part of eigenenergies in the parameter space ðJ;ΔÞ
is provided in Fig. 1(b), and the eigenstates for select values
of J and Δ are sketched in Fig. 1(c). The static EP
degeneracies occur at JEP ¼ %γ=4.
Quantum state tomography [29] allows us to study the

state of the qubit as the parameters of the Hamiltonian are
tuned in real time. We study a parameter loop specified by
initial and final parameters Δ ¼ 0 and Jmax ¼ 30 rad=μs
and the parameter variation; ΔðtÞ ¼ Δ↺;↻ sinð2πt=TÞ and
JðtÞ ¼ ðJmax − JminÞcos2ðπt=TÞ þ Jmin [Fig. 1(d)]. The
sign of Δ↺;↻ determines whether the sweep is counter-
clockwise or clockwise, and the sign of J is determined by
the phase of the drive. Tomography along the path is
achieved by dividing the time evolution into sequentially
longer steps ts ∈ ½0; T', pausing the evolution at ts and

performing measurements to determine Pauli expectation
values x≡ hσxi, y≡ hσyi and z≡ hσzi in the energy basis
of the fjei; jfig qubit.
We slowly vary the system parameters in a loop given by

T ¼ 1.5 μs and Jmin ¼ 0.3 rad=μs. By choosing Δ↺ ¼
10π rad=μs [Fig. 1(e)], the system evolves from ρ−, where
trðρ−σxÞ ≃ −1, roughly following the instantaneous eigen-
states of Heff . After a complete loop that encircles the EP,
the system does not return to the initial state, instead the
final state is close to ρþ which is nearly orthogonal to the
initial state. This observation can be qualitatively under-
stood by walking through the Riemann structure associated
with the static EP; the qubit follows the Riemann surface
crossing onto the upper sheet at the branch cut connecting
the two EPs [Fig. 1(b)]. In addition, finite time evolution
induces transitions between the two eigenstates of the
system, leading to a small oscillation in the Pauli expect-
ation values, with frequency given by the real part of the
energy difference of the eigenstates. These oscillations are
in reasonable agreement with the solution to the Lindblad
equation [24].
In contrast, if we choose Δ↻ ¼ −10π rad=μs, corre-

sponding to encircling the static EP in a clockwise
direction, the system does not evolve along the instanta-
neous eigenstates. As shown in Fig. 1(f), the state signifi-
cantly deviates from the eigenstate in the vicinity of the EP.

(d)

(a)

(c)

(e)

(f)

(b)

FIG. 1. Dynamically encircling an EP. (a) The energy states of the transmon circuit with the non-Hermitian qubit submanifold
fjei; jfig highlighted. The Hamiltonian parameters J and Δ are tuned with a microwave drive. (b) In the static limit, the eigenenergies
are described by Riemann manifolds. (c) The eigenstates and eigenvalues of Heff are indicated for different values of J and Δ. The
colored planes indicate the opening angle between the two eigenstates for clarity. (d) The parameter sweeps are designated by direction
ðΔ↻;Δ↺Þ and Jmin. (e),(f) Quantum state tomography (solid lines, expressed as the Pauli expectation values x, y, z) reveals the state
evolution along the parameter path for the Δ↺ (Δ↻) direction. The long-dashed lines indicate the instantaneous eigenstates of Heff and
the fine-dashed lines are the solution to the Lindblad equation [24].
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This can be attributed to non-Hermitian gain or loss effects
observed in previous works [16–19] as well as other
sources of dissipation [30,31]. Along this parameter path,
the imaginary component of the eigenenergy corresponds
to larger loss, resulting in a reduced postselection proba-
bility as can be seen in the increased noise in the data. In the
postselected manifold the loss of one eigenstate can be
viewed as a relative gain of the other eigenstate. Any small
fraction of population that is seeded by nonadiabaticity or
dissipation into the eigenstate with relative gain is therefore
amplified. This gain/loss effect does not occur for the Δ↺
sweep because the system follows the instantaneous eigen-
state with relative gain which is stable against nonadiaba-
ticity and dissipation.
In order to investigate the quantum nature of state

transport, as opposed to the transfer of population between
eigenstates [16–19], we make use of the jhi level as a
quantum phase reference, as shown in Fig. 2(a). Resonant
rotations are used to initialize the three-state system in
the state ρ ∝ ðjhiþ jψ−iÞðhhjþ hψ−jÞ. The qubit then
undergoes dynamical evolution under the time-dependent

Hamiltonian specified by Jmin, Δ↺;↻ ¼ %10π rad=μs, and
for T ¼ 800 ns. After this evolution, the three-state system
is in general in a mixed state, ρ ∝ c−ðjhiþ eiχ− jψ−iÞðhhjþ
e−iχ−hψ−jÞ þ cþðjhiþ eiχþ jψþiÞðhhjþ e−iχþhψþjÞ involv-
ing both qubit eigenstates, where χ% are phases accumu-
lated on the states. We note that coherent terms such as
jψ−ihψþj remain negligible during the evolution. A second
rotation is used to rotate either the jψþi or jψ−i into the
state jfi which then interferes with the jhi reference. We
determine the contrast c and total phase χ from the resulting
interference [Fig. 2(b)].
In Figs. 2(c) and 2(d), we display the measured contrast

for the jψþi and jψ−i final states. In the vicinity of Jmin ¼ 0,
we observe higher contrast for the jψþi final state for both
the Δ↺ and Δ↻ parameter sweeps, indicating that the state
transport (jψ∓i → eiχ% jψ%i) is quantum coherent. In com-
parison, we display in Figs. 2(d) and 2(e) the populations of
the two states for the two directions. Near Jmin ¼ 0, our
observation of larger populations in the jψþi (jψ−i) states
for Δ↺ (Δ↻) sweeps [Fig. 2(e), red solid line and Fig. 2(f),
blue dashed line] is consistent with “chiral” features

(a) (b)

(h)

(g)(c)

(d)

(e)

(f)

FIG. 2. Coherent state transport and geometric phase measurement. (a) Experiment schematic; a series of resonant rotations prepare a
superpostion between the state jψ−i and state jhi. The jhi state is used as a quantum phase reference to determine the accumulated phase
on the quantum states that evolve in the non-Hermitian Hamiltonian. After evolution for T ¼ 800 ns, the rotation R%π=2

ef determines

which qubit state (jψþi or jψ−i) is interfered with the jhi reference. (b) By sweeping the phase of the final Rπ=2
fh rotation we determine

the contrast c and phase χ. The interference contrast (c),(d) and state populations (e),(f) of final states jψ%i for Δ↻ and Δ↺ sweep
directions. (g),(h) Extracted total phases; the dashed green lines indicate a phase difference of π. The associated gray and black curves
indicate the result from the Lindblad equation simulation.
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associated with nonreciprocal population or energy transfer
observed in previous work [16–19]. Here relative gain or
loss of the two paths favors one or the other final states. This
chiral effect, however, is comparatively incoherent, showing
reduced contrast despite larger population. Whereas the
gain/loss effects arising from the imaginary energy compo-
nents can favor population transfer between states, this
process is not necessarily coherent. The interference con-
trast therefore distinguishes between coherent state trans-
port and incoherent population transfer between states.
We now examine the total quantum phases accumulated

for the two encircling directions, as displayed in Figs. 2(g)
and 2(h). In general, the total quantum phase will be the
sum of a dynamical phase arising from Hamiltonian
evolution and a geometric phase. This is apparent in
Fig. 2(h) where we observe significant dependence of
the phase on the sweep parameter Jmin. However, for state
transport that follows the Riemann surfaces, we expect the
dynamical phase to cancel as the state spends equal time in
either energy eigenstate. This results in the relative insen-
sitivity of the total phase to the sweep parameter as shown
in Fig. 2(g). Here we observe a π phase difference between
the Δ↺ and Δ↻ sweeps as is anticipated from the static
structure of EPs [10–15]. Qualitatively, this π phase differ-
ence arises because one path passes through the excited
state of the qubit, while the other does not.
While the quantum state transfer under quasistatic

tuning of the system parameters is best understood as a
walk through the complex-energy landscape of a static
Hamiltonian Heff with EPs [Fig. 1(b)], our results in
Fig. 2(d) clearly indicate that in the dynamical case the
state transfer can happen in a broad range of the parameter
Jmin that includes the situations of encircling zero, one, and
two EPs. We attribute this observation to the nonadiabatic
coupling near the EPs, which occurs when the parameter
sweeps are not infinitely slow [32].
To further investigate the nature of state transfer beyond

the slow driving limit, as is relevant in any real-time
operation on quantum states, we now study the population
transfer in the limit of fast parameter variation. As before,
we prepare the system in the state ρ− ≃ jψ−ihψ−j and
perform closed loop parameter variation for different loop
periods T and Jmin. After one complete encircling (at time
t ¼ T) we use quantum state tomography to determine
Pðψ−Þ, the population in jψ−i as displayed in Fig. 3. We
consider both Δ↻ [Fig. 3(a)] and Δ↺ [Fig. 3(b)] directions.
We observe a rich dependence on the parameters of
the loop, which is qualitatively reproduced by the corre-
sponding Lindblad simulations [24] as shown in Figs. 3(c)
and 3(d). Figure 3(e) displays a line cut of Pðψ−Þ showing
the dependence of Pðψ−Þ on the loop duration. These
observations indicate that successful quantum state transfer
can occur in the fast driving limit.
Our investigation of state transport in the vicinity of

exceptional point degeneracies reveals new methods of

quantum coherent state control of dissipative systems
enabled through non-Hermitian Hamiltonian dynamics.
The robustness with which we observe the predicted chiral
geometric phases, opens new avenues to investigations of
eigenvalue braiding in larger dimension non-Hermitian
systems [33,34], allowing the study of exotic topological
classes of these (knotted) systems. Future extensions to
non-Hermiticities through nonreciprocity [35] would en-
able scaling to quantum many-body systems where the
study of topological edge states and invariants [36,37] is
expected to yield deviations from the paradigmatic bulk-
boundary correspondence [38,39]. Finally, the interplay of
quantum measurement dynamics [40–42] with the non-
Hermitian dynamics explored here is expected to produce
new fruitful avenues for quantum control.
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research was supported by NSF Grant No. PHY-1752844
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FIG. 3. Population transfer beyond slow-driving limit. (a),(b)
The eigenstate population Pðψ−Þ after one period evolution for
the two sweep directions Δ↻ and Δ↻ is displayed versus Jmin and
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dashed lines in (a) and (b).
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