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ABSTRACT. Signal analysis on graphs relies heavily on the graph Fourier transform, which
is defined as the projection of a signal onto an eigenbasis of the associated shift operator.
Large graphs of similar structure may be represented by a graphon. Theoretically, graphons
are limit objects of converging sequences of graphs. Our work extends previous research
proposing a common scheme for signal analysis of graphs that are similar in structure to a
graphon. We extend a previous definition of graphon Fourier transform, and show that the
graph Fourier transforms of graphs in a converging graph sequence converge to the graphon
Fourier transform of the limiting graphon. We then apply this convergence result to signal
processing on Cayley graphons. We show that Fourier analysis of the underlying group en-
ables the construction of a suitable eigen-decomposition for the graphon, which can be used
as a common framework for signal processing on graphs converging to the graphon.
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The proliferation of networked data has motivated the extension of traditional methods of
signal processing to signals defined on graphs. An important operational tool of traditional
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signal processing is the Fourier transform, which allows for the analysis of signals via their
spectral decomposition. The extension of this approach to graphs has been used successfully
to analyze data on networks, such as sensor networks, or networks of interactions of chemicals
in a cell or of financial transactions.

A graph signal is any complex-valued function on the vertices of the graph, which may
represent pollution levels measured by a sensor network, or neural activity levels in regions
of the brain (see [19] and the references therein). Important properties of signals, such as
diffusion of a signal, noise reduction or the concept of smoothness, can be modeled by means
of a matrix representing the graph structure. Such a matrix is referred to as the graph shift
operator, and is typically taken to be the graph adjacency matrix or the graph Laplacian. A
graph Fourier transform can then be defined as the projection of the signal onto an eigenbasis
of the graph shift operator. See [19, 27| for an overview of recent developments in graph signal
processing.

Taking this approach, we can see that the processing of a graph signal rigidly depends on the
underlying network. Any change in the network requires a re-computation of the eigenbasis of
the graph shift operator, which is expensive. Further, in many cases networks evolve over time,
resulting in a sequence of graphs that are structurally similar. These issues heighten the need
for an instance-independent framework for handling processing of signals over large graphs.
In [14], graphons were introduced as limit objects of converging sequences of dense graphs
(i.e., graphs G, that have Q(|V(G,)|?) edges). Graphons retain the large-scale structure of
the families of graphs they represent, and are hence useful representatives of these families.
The use of graphons to guide graph signal processing was first proposed in [17], and a graphon
Fourier transform was proposed in [22].

A graphon is commonly defined as a symmetric, measurable function w : [0,1]> — [0,1].
More generally, however, one can define a graphon on any standard probability space (|3,
Corollary 3.3]).! For practical reasons, and especially to deal with Cayley graphons in Section
4, we define graphons and graphon signals on general standard probability spaces as follows.

Definition 1.1. Let (X, u) be a standard probability space, and L*(X) be the associated space
of square-integrable functions. A function w : X x X — [0,1] is called a graphon represented
on X if w is measurable and symmetric (i.e. w(z,y) = w(y,x) almost everywhere). A graphon
signal on w is a pair (w, f), where f : X — C belongs to L*(X).

Morency and Leus in [17] investigate asymptotic behavior of signal processing for sequences
of graph signals converging to a graphon signal. They use the limit theory of dense graph
sequences ([14]) to define the notion of converging graph signals. Their original definition is
for graphons on [0, 1], but naturally extends to the general form of graphons as follows: Let w
be a graphon on a standard probability space (X, u). A sequence of graph signals {(G,, fn)}
is said to converge to the graphon signal (w, f) if there exists a labeling for each G,, such that
|G —w|o — 0 and | f;X — f|la — 0, where f.X is the natural representation of the graph signal
fn as a simple function in L?(X); see Section 3 for the details of this definition, and Section
2.3 for the definition of cut norm | - ||o.

Ruiz, Chamon and Ribeiro in [22], and more extensively in 23], give a convergence result
for the graphon Fourier transform. The main result of [23] is that for a sequence of graph

1A standard probability space is obtained from a Borel probability space by enlarging its sigma-algebra to
include all subsets of its nullsets. A Borel probability space is a probability space that is isomorphic (up to
nullsets) to the disjoint union of a closed interval (with the Borel sigma-algebra and the Lebesgue measure)
and a countable set of atoms ([13, Section A.3.1]).
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signals {(Gp, fn)} that converge to a graphon signal (w, f), the graph Fourier transform of
(G, fn) converges to the graphon Fourier transform of (w, f) if the following conditions on w
and f are satisfied:

(i) the graphon signal f is c-bandlimited,
(ii) w is a non-derogatory graphon (i.e. the integral operator associated with w does not
have repeated nonzero eigenvalues.)

We generalize this result in Section 3. Namely, we drop both conditions which were imposed
on w and f, allowing for a convergence theorem applicable to all graphons (see Theorem 3.7
for a precise statement of our result). Even taking the density of non-derogatory graphons
in the space of all graphons into account ([23, Proposition 1]), our result genuinely extends
the above-mentioned theorem of Ruiz et al. Indeed, a linear operation (e.g. graph Fourier
transform in this context) may be continuous on a dense subset (e.g. the collection of non-
derogatory graphons), but fail to be continuous on the whole space (e.g. all graphons). We note
that many important examples of graphons, including many Cayley graphons on non-Abelian
groups, have multiple non-zero eigenvalues and thus do not meet the criteria for convergence
as obtained by Ruiz et al.

To achieve the continuity of the graph Fourier transform on the entire space of graphons,
we need to refine the definition of graph/graphon Fourier transform. The theory of signal
processing on graphs was originally inspired by Fourier analysis on Zy, or more generally,
harmonic analysis on Abelian groups. Any shortcomings of this approach may be attributed
to the fact that graphs lack the structural symmetries of Zy. Inspired by Fourier analysis
of non-Abelian groups, we replace the concept of “Fourier coefficients” by projections onto
eigenspaces of the shift operator. This point of view enables us to deal with eigenvalues with
multiplicity higher than 1. We then express continuity of the graph Fourier transform in terms
of convergence of such projections in suitable norms. We note that every nonzero eigenvalue
of a graphon w has finite multiplicity, and the associated projection onto its eigenspace is a
finite-rank operator. So our result in Theorem 3.7 is of the form of convergence of matrices
(of finite but increasing size) to finite-rank operators.

Our original motivation for establishing Theorem 3.7 was to develop signal processing on
Cayley graphons, taking the Fourier analysis of the underlying group into account. We devote
Section 4 to this task. Cayley graphons, first introduced in [15], are defined on a (finite or
compact) group G according to a connection function defined over G. Cayley graphons form
a natural extension of Cayley graphs. Generally, graphs sampled from a Cayley graphon are
not themselves Cayley graphs. Instead, they can be seen as “fuzzy versions” of Cayley graphs,
which preserve the symmetries of the group on a large scale, but are locally random. In
Section 4, we will show that the group structure of a Cayley graphon may be used to develop
a specific framework for signal processing on the graphon, which can then be used to provide
an instance-independent framework for graph signal processing.

The group symmetries make Cayley graphs/graphons appropriate models for many net-
works. A prime example of this phenomenon can be seen in ranked data analysis, which has
applications in various areas such as image processing (|34]), recommender systems ([32]),
bioinformatics (|12, 31]), and computer vision ([11]). Ranked data can be naturally modeled
as signals on Cayley graphs of the permutation group S,. The vertex set of such a graph
represents all preference rankings of n objects or candidates. The choice of the generating set
for the Cayley graph formalizes the idea of distance between rankings. An important example
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of such Cayley graphs is the permutahedron, where the generating set is the set of all adja-
cent transpositions. In [6], Chen et al. develop signal processing on the permutahedron, and
propose a novel frame construction for analyzing ranked data. Moreover, they show that the
frame atoms have an interpretable structure, in the sense that the analysis coefficients with
respect to this frame provide meaningful information for ranked data. Examples of interpre-
tations of the analysis coefficients include popularity of candidates, whether a candidate is
polarizing, or whether two candidates are likely to be ranked similarly. For more examples
of signal processing on Cayley graphs, see [21] for fast Fourier transforms on certain Cayley
graphs, and [9] for construction of tight windowed Fourier frames for Cayley graphs.

Cayley graphons can be viewed as the blueprints of graphs which are “nearly” Cayley. In
particular, a Cayley graph can be turned into a Cayley graphon that is piece-wise constant.
Samples from such a graphon will have sets of vertices with similar linking behaviour. In
Example 4.8 we study a graphon based on a small permutahedron. Vertices in the sampled
graphs are partitioned so that each part represents a different permutation. These graphs can
be interpreted as fuzzy versions of the permutahedron. When the group underlying a Cayley
graphon is the torus, we obtain a model that is based on a circular layout of the vertices.
In Example 3.10 we will see such a graphon. The stochastic graph model represented by the
graphon is the well-known Watts-Strogatz “small world” model to generate graphs with small
diameter and high local clustering.

Providing a framework for signal processing of Cayley graphons that is transferable to the
sampled graphs can be very useful in practical applications. As a critical step towards develop-
ing a framework for signal processing on Cayley graphons, we study the spectral decomposition
of Cayley graphons in Section 4. Using the representation theory of the underlying group, we
first show how to derive eigenvalues and eigenvectors of Cayley graphons. Namely, in Theo-
rem 4.3, we show that the eigenvalues/eigenvectors of a Cayley graphon can be derived from
the eigenvalues/eigenvectors of the irreducible representations of the underlying group G ap-
plied to the function on G that defines the graphon. Proposition 4.7 then provides us with
a basis for L?(G) which diagonalizes the Cayley graphon (or more precisely, its associated
integral operator). The proposed basis is obtained as a combination of coefficient functions
of irreducible representations of G. These are important functions associated with irreducible
representations of a locally compact group, and play a central role in the harmonic analysis of
non-Abelian groups. Proposition 4.7 can be applied to Cayley graphs; in that case, it offers
an improvement over many earlier results on calculating the eigenvalues and eigenvectors of
Cayley graphs, as such results often work under the extra assumption that the generating set
of the Cayley graph is closed under conjugation. The bases as defined in Proposition 4.7 can
be used as a framework for signal analysis of graphs whose structure conforms with the Cayley
graphon.

2. NOTATIONS AND BACKGROUND

2.1. Signal processing on graphs. Let G be a graph on the vertex set V = {v1,...,on}. A
graph signal on G is a function f : V — C, which can also be identified with a column vector
(f(v1), f(v2), -+, f(vn))" € CN, where T denotes the transpose of a vector. Given a graph
G on N nodes, a graph Fourier transform can be defined as the representation of signals on
an orthonormal basis for CV consisting of eigenvectors of the graph shift operator (i.e. the
adjacency matrix or the graph Laplacian). In the present work, we focus our attention on
signal processing using the adjacency matrix as the shift operator.
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For the rest of this article, let A denote the adjacency matrix of a given graph G on
N vertices, and fix an orthonormal basis of eigenvectors {qﬁl}i\; 1 associated with eigenvalues
A < Ay <...< Ay of A. The graph Fourier transform of a graph signal f : V — C is defined
as the expansion of f in terms of the orthonormal basis {¢;} ;. That is,

N
(1) F(6) = (frdiver = Y. Fwn)di(vn),

n=1

and in this setting the inverse graph Fourier transform is given by

N
@ Foa) = ) Fl@eitwn).

~ ~

The notation f()\;) is also used for f(¢;). To avoid possible confusions when A has repeated
eigenvalues, we mainly use the notation in (1). The above definition of the graph Fourier
transform generalizes the classical discrete Fourier transform. Please refer to [25, 26, 28| for a
detailed background on the graph Fourier transform, and [19] for a general overview of graph
signal processing.

2.2. Fourier analysis on compact (not necessarily Abelian) groups. In Section 4, we
develop a framework for signal processing on Cayley graphons, which relies on the Fourier
analysis of the underlying group. In this section, we give the necessary background on Fourier
analysis of compact groups, i.e., topological groups for which the underlying topology is com-
pact and Hausdorff.

Let G be a compact (not necessarily Abelian) group equipped with its Haar measure. Let
L?(G) denote the set of measurable complex-valued functions on G, identified up to sets of
measure 0, that are square-integrable. The Banach space L?(G) forms a Hilbert space when
equipped with the inner product {f,g) = §, fg. Let L'(G) denote the set of measurable
complex-valued functions on G, identified up to sets of measure 0, that are integrable. For
f,g € LY(G), we define their convolution product to be

(3) (f * 9)(x) = fG Fw)gly™ ) dy.

This convolution product turns L!(G) into a Banach algebra. The Hilbert space L?(G) and
the Banach algebra L'(G) play a central role in harmonic analysis of (locally) compact groups.

Given a Hilbert space H, a map 7 : G — U(H) is called a unitary representation of G if
7 is a group homomorphism into the group of unitary operators on H, denoted by U(H). If
H = C", we say 7 is an n-dimensional representation. Two representations 7 : G — U(H ) and
p: G — U(H,) are said to be unitarily equivalent if there exists a unitary map U : Hr — H,
such that

Un(g)U* =p(g), VgeG.

A representation 7 is called irreducible if it does not admit any non-trivial closed w-invariant
subspaces. The collection of (equivalence classes of) all irreducible representations of G is
denoted by G. In the speicial case where G is Abelian, every irreducible representation is
1-dimensional and the set G, together with point-wise multiplication, forms a group called the
dual group of G. For compact groups, every irreducible representation is finite dimensional.
However, a compact group G may have representations of different dimensions. Therefore, in
the case of a non-Abelian compact group, the collection G does not form a group.
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2.2.1. Fourier and inverse Fourier transforms for compact groups. Let f € L'(G). The Fourier

transform of f, denoted by F f, is defined as a matrix-valued function on G. At each 7 € @,
the Fourier transform F f(m) is a matrix of dimensions d, x d, with entries in C, defined as

(4) Ff(m) = n(f) = fG F)n(y) dy.

Here the integral is taken with respect to the Haar measure of G, and is interpreted entry-wise
(i.e. in the weak sense). The inverse Fourier transform is given by

() fl@) =) dTr(m(x)*n(f)),

meG

where the equality holds in L?(G). We should note that the Fourier and inverse Fourier
transforms given in (4) and (5) are defined slightly differently in [7]. The map f — . with
f(a:) = f(z~1), converts our definition of Fourier transform to the one in [7].

As demonstrated in the following proposition, the (matrix-valued) Fourier transform allows
us to encode the non-commutative nature of non-Abelian groups.

Proposition 2.1. (Properties of Fourier transform on compact groups) Let G be a compact
group. For the Fourier and inverse Fourier transforms defined above we have:

(i) (Parseval equation) For every f € L*(G), we have

1£15 =), deTe[x(f)*x(f)]-

meG

(ii) For f,g € LY(G) and 7 € G, w(fxg) =w(f)m(g). Here f = g denotes convolution as
defined in (3).

(iii) For fe LY(G) and 7 € G, w(f*) =7n(f)*, where f*(x) = f(z=1). Here, n(f)* denotes
the usual adjoint of the matriz w(f).

Let G be a compact (not necessarily Abelian) group, and 7 be an irreducible representation
of G on the Hilbert space C. Let {ek}z’;l be the standard basis for C%, and define the

coefficient function of m associated with e;, e; to be the complex-valued function on G defined
as

(6) mig(+) 1= (m(-)ei, e)cdn -

Proposition 2.2. (Schur’s orthogonality relations |7, Theorem 5.8]) For every n, let U, (C)
denote the set of all unitary matrices of size n. Let m : G — Uy(C) and p : G — Up(C) be
wmequivalent, irreducible unitary representations. Then

(1) (i, prs)re@) =0 forall1 <i,j < dz and 1 < 7,5 < d),

(if) {mij, mrsyr2(@) = g=0irljs,
where 0; j is the Kronecker delta function. Consequently, the collection {\/dﬂri,j}
forms an orthonormal (Hilbert) basis for L*(G).

7€6,ij=1, ,dx

See |7, 30] for full details of Fourier analysis of non-Abelian groups.
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2.3. Graph limit theory. Let W, denote the set of all graphons on [0,1]?, that is, the set
of all measurable functions w : [0,1]?> — [0, 1] that are symmetric, i.e. w(x,y) = w(y,x) for
almost every point (z,y) in [0,1]%. Let W denote the (real) linear span of Wy. Every graph
can be identified with a 0/1-valued graphon as follows.

Definition 2.3. Let G be a graph on n vertices labeled {1,2,...,n}. The 0/1-valued graphon
wg associated with G is defined as follows: split [0,1] into n equal-sized intervals {I;}?' . For
every i,j € {1,...,n}, wg attains 1 on I; x I precisely when vertices with labels i and j are
adjacent. Note that wg depends on the labeling of the vertices of G, that is, relabeling the
vertices of G results in a different graphon.

The topology described by convergent (dense) graph sequences can be formalized by en-
dowing W with the cut-norm, introduced in [8]. For w € W, the cut-norm is defined as:

J w(z,y) dedy
SxT

where the supremum is taken over all measurable subsets S,T of [0,1]. Note that in the
definition of the cut-norm, the sets S and T do not need to be of the same size. To develop
an unlabeled graph limit theory, the cut-distance between u,w € W is defined as follows.

(7) lwlo = supg reo1]

I

(8) do(u, w) = infseql|u? — w|g,

where @ is the space of all measure-preserving bijections on [0, 1], and w?(z,y) = w(o(z), o (y)).
This definition ensures that do(w,u) = 0 when the graphons w and u are associated with the
same graph G given two different vertex labelings. In general, two graphons u and w are said
to be dg-equivalent (or equivalent, for short), if 0p(u, w) = 0.

It is known that a graph sequence {G,} converges in the sense of Lovéisz-Szegedy whenever
the corresponding sequence of graphons {wg, } is d,-Cauchy (|4, Lemma 5.3]). The limit
object for such a convergent sequence can be represented as a graphon in Wy (not necessarily
corresponding to a graph). That the graph sequence {G,} is convergent to a limit object
w € W is equivalent to dn(wg,, ,w) — 0 as n tends to infinity. This, in turn, is equivalent to
the existence of suitable labelings for the vertices of each of the graphs G,, for which we have

© Jue, ~wlo = sw || (wa, ~w)| o
S, rc[0,1]'JSxT
See [5, Theorem 2.3] for the above convergence results.

A graphon w can be interpreted as a probability distribution on random graphs, sampled
via the w-random graph process G(n,w). The concept of w-random graphs was introduced in
[14], as a tool for generating examples of convergent graph sequences. For a graphon w, we
define the random process G(n,w) as follows. Given the vertex set with labels {1,2,...,n},
edges are formed according to w in two steps. First, each vertex i is assigned a value z; drawn
uniformly at random from [0, 1]. Next, for each pair of vertices with labels i < j independently,
an edge {7,j} is added with probability w(z;, ;). It is known that the sequence {G(n,w)},
almost surely forms a convergent graph sequence, for which the limit object is the graphon w
(see [14]).

Graphons can be represented on any standard probability space (X, p) rather than the usual
choice [0,1]. As given in Definition 1.1, a function w : X x X — [0,1] is called a graphon
represented on X if w is measurable and symmetric. The concepts of cut-norm, cut-distance
and w-random graphs, for a graphon w on X, are defined analogously to the corresponding
concepts for Wy. Representing graphs and graphons on a particular probability space X can
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offer insights on their geometric structure, which may be lost otherwise. Cayley graphons, as
defined in Definition 2.4, provide natural examples of this phenomenon.

There is an easy correspondence between the representation of a graphon on an atom-free
standard probability space and on [0,1]. Let (X, u) be an atom-free standard probability
space. It is well-known that X is isomorphic (mod 0) to the uniform probability space [0, 1].
Let ox be a fixed isomorphism (mod 0) between [0, 1] and X, that is, there are measure-zero
sets A1 € [0,1] and A2 € X and an invertible map ox : [0,1]\4; — X\A3 such that both
ox and its inverse are measurable and measure-preserving. Now if w : X x X — [0,1] is a
graphon on (X, i), then wy, defined as follows, is a representation of w on [0, 1]:

0 otherwise.

10) a0 1P = 0.1, wnlag) = { “OXEpexW) ey S A

Note that the value of a graphon on a null set does not affect its graph-limit-theoretic behavior,
as graphons which are almost everywhere equal belong to the same dg-equivalence class. So,
the random graphs G(n,wp) and G(n,w) are equivalent.

On the other hand, a (labeled) graph G on the vertex set V(G) = {1, ..., n} can be identified
with a 0/1-valued graphon wg x on X as well. Namely,

-1 -1
_ ) walox (2),0x (y)) for z,y e X\Ay,
(11) wa,x (@) = { 0 on the remaining null set,
where wg € W) is the graphon associated with GG as in Definition 2.3.
For a comprehensive account of dense graph limit theory, we refer the reader to [13].

2.4. Cayley graphons. In most cases, it is beneficial to represent a Cayley graphon associ-
ated with a (compact) group G on the probability space provided by G.

Definition 2.4. Let G be a second countable compact group. Then G equipped with its Haar
measure forms a standard probability space. Let v : G — [0,1] be a measurable function such
that y(x) = v(z~1). Then the graphon w : G x G — [0,1] defined as w(z,y) = y(xy~1) is
called the Cayley graphon defined by v on the group G, and the function v is called a Cayley
function.

When G is a second countable, infinite, compact group, the probability space provided
by G, together with its Haar measure, is standard and atom-free. Therefore, we can use the
approach leading to Equation (10) to represent a Cayley graphon on G as a graphon on [0, 1]2.
Now suppose G is a finite group of size N, and wg : G x G — [0,1] is a Cayley graphon on
G defined by the function v : G — [0,1]. The graphon wg . is clearly a step function, and
can be represented as a step graphon wg on [0, 1] as follows. Split [0,1] into N equal-sized
intervals {Is}seg, labeled by the elements of G. This partition defines the map og : [0,1] = G
as x — s if and only if z € I5. The function og is a measure-preserving (not invertible) map,
which allows the representation of wg ~ on [0,1], defined as below:

wo(2,y) = wey(0c(2), 06(y)),

that is, for every s,t € G, the graphon wy attains the value y(st~!) on I, x I;.

We can sample from a Cayley graphon on a finite group via the w-random graph G(n, w)
or, equivalently, via the w-random graph G(n,wg). To form G ~ G(n,wg ), assign to each
vertex with label i € {1,2,...,n} a group element z; € G selected uniformly at random. Next,
each pair of vertices with labels ¢ < j are linked independently with probability fy(:vlmj_l) The
assignment of the group elements to the vertices of G can be viewed as a natural partition of
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the vertex set of G into |G| subsets. The connection probability between two vertices is then
completely determined by the subsets they belong to.

Remark 2.5. The previous paragraphs consider the cases where either the probability space is
atom-free, or it is consisting entirely of atoms. In general, any graphon w : X x X — [0,1]
represented on a standard probability space (X, ) has a 0o-equivalent representation wy in Wy.
Indeed, every standard probability space is isomorphic mod 0 to a disjoint union of a closed
interval (equipped with the Lebesgue measure) and a countable set of atoms. A combination
of the above arguments for finite and infinite compact groups can be easily adjusted to produce
a (not necessarily injective) measure-preserving map ox : [0,1] — X. The representation
wo € Wy is then defined as wo(z,y) = w(ox(z),ox(y)).

2.5. Spectral decomposition of graphons. For the rest of this article, we consider graphons
in their general form, i.e. represented on a standard measure space (X, u). We may assume
that X is infinite; as seen in the previous section, graphons derived from finite graphs or
groups can be represented as graphons on the infinite probability space [0, 1]. Every graphon
w: X x X — [0,1] can act as the kernel of an integral operator on the Hilbert space L?(X)
as follows:

Ty L2(X) — LX), Tu(&)(x) = fX w(,y)&(y) duly), for € € L2(X),x € X.

By removing a null set if necessary, we can assume wlog that X is chosen so that L?(X) is
separable. In particular, if X is a locally compact group, we assume it is second countable.
This assumption guarantees the existence of a finite or countable orthonormal basis for L?(X).

Since w € L?(X x X) and as w is real-valued and symmetric, the Hilbert-Schmidt operator
T, is self-adjoint. In addition, the operator norm of Ty, is ||w||«, which is bounded by 1. Thus,
T,y has a countable spectrum lying in the interval [—1,1] for which 0 is the only possible
accumulation point. We label the nonzero eigenvalues of T;, as follows:

(12) IzMw)zXw)=...20>...2 X ow) = A_l(w) > —1

Note that the set of positive eigenvalues of T}, may be finite. In that case, we pad the sequence
with 0’s at the end, so we can view it as an infinite sequence. We do similarly for the set of
negative eigenvalues. This arrangement is important for our discussion of the convergence of
spectra for converging sequences of dense graphs (e.g. in Theorem 2.6).

Using spectral theory for compact operators, we see that L?(X) admits an orthonormal
basis containing eigenvectors of Ty,; this results in a spectral decomposition for T,,. More
precisely, let I,, € Z* be the indices in (12) enumerating nonzero eigenvalues of Ty, and let
{¢i}ier,, be an orthonormal collection of associated eigenvectors. Then we have

(13) Tw = Y, Nilw) ¢ ® ¢,
i€l

where ¢; ® ¢; denotes the rank-one projection on L?(X) defined as (¢; ® ¢;)(&) = (&, ¢i)¢; for
every £ € L2(X). Note that the infinite sum in the above spectral decomposition should be
interpreted as operator-norm convergence in the space of bounded operators on L?(X). Since
T, is a Hilbert-Schmidt operator, the spectral decomposition sum converges in the Hilbert-
Schmidt norm as well. In particular, given the spectral decomposition (13), we have

(14) w= Y \i(w) i ® i,

i€ly
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where ¢; ® ¢; € L?(X x X) is defined to be (¢; ® ¢;)(z,y) = ¢i(x)¢i(y), and the convergence
of the infinite sum is interpreted as convergence in L?(X x X). Note that by slight abuse of
notation, we use ¢; ® ¢; to denote a rank-one projection on L?(X) or its associated kernel in
L*(X x X).

For background material on compact operators and their spectral theory, we refer to |2,
Chapters 13-14].

We finish the discussion about spectra by quoting two theorems on convergence of spectra.

Theorem 2.6. 13, Theorem 11.54] Let {wy}nen be a sequence of graphons converging to a
graphon w in do-distance. Then for every fixed i € Z*, we have

Nilwa) = Aifw) as -,
where the eigenvalues of each graphon are indexed as in (12).

A more careful analysis of convergence of spectra was given in [29] where the convergence of
eigenspaces was shown. For a graphon w with spectral decomposition as in (13) and a positive
number « > 0, define

(15) wla= > Xi(w) i @i

{1€Z: |\i(w)|>a}

Theorem 2.7. |29, Proposition 1.1| Let {wy, }nen be a sequence of graphons. Then the following
two statements are equivalent:

(i) The sequence {wp}nen converges to w in cut-norm.
(ii) There is a decreasing positive real sequence {cu}nen approaching to 0 such that for
every j € N, we have |[wy]a; — [w]a,|z2(xxx) = 0
Furthermore, in the second statement the cut-norm limit w of {wy }nen can be computed as

w = lim (lim [wi]aj)

j—00 \i—w

converging in L*(X x X).
3. GRAPHON SIGNAL PROCESSING

Graphons can be viewed as limit objects of graph sequences. Consequently, it is natural
to develop the idea of a Fourier transform on graphons in such a way that the graph Fourier
transform, along a converging graph sequence, converges (in some appropriate topology) to
the graphon Fourier transform of the limit object. Such an approach was first proposed by
Ruiz, Chamon and Ribeiro in [22], and expanded upon in [23]. They define a graphon Fourier
transform based on the spectral decomposition of the graphon, and give a convergence result
restricted to the class of so-called non-derogatory graphons. In this section, we show that the
restriction can only be removed with a broader definition of the graphon Fourier transform,
which is independent of the choice of basis for each eigenspace. Using this new definition, we
establish a more general convergence result stated in Theorem 3.7.

The graphon Fourier transform as defined in [23] is evidently motivated by Fourier analysis
on R. Namely, it is derived from an orthonormal basis of L?(X), say B, consisting of eigenvec-
tors of Ty,. The graphon Fourier transform (WFT) of a graphon signal (w, f) is then defined
via expansion of f with respect to the basis B, that is,

Fo) = 1.0) = | r@)a@ dnte) for o B, (as defned in [23).
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The inverse graphon Fourier transform (iWFT) of f is given by

1WFT Z f )¢, (as defined in [23]).
¢eB

~

Since B is an orthonormal basis of L?(X), we have iWFT(f) = f, with the equality interpreted
in L2(X).

We now describe precisely what we mean by convergence of a sequence of graph/graphon
signals to a graphon signal, using the framework discussed in Section 2.4. Let G be a graph
on n vertices labeled {1,2,...,n}, and let w : X x X — [0, 1] be a graphon represented on
an infinite standard probability space X. With the given labeling for the vertex set of G,
a signal on G is just a function f : {1,2,...,n} — C. With respect to this labeling, every
graph signal can also be viewed as a step function in LQ[O 1] by identifying each vertex v
labeled ¢ with the interval I; = [©=2 s n) By Remark 2.5, the graphon w can be transformed
to a graphon wy € Wy using a measure-preserving map ox : [0,1] — X. Applying the same
measure-preserving map to the step function f € L2[0, 1] allows us to transform f to a signal
fX € L?(X) on the graphon w; namely, we define

(16) fX(s) =vnf(k) VYseox(ly),1<k<n.

Note that the scaling factor of \/n in (16) ensures that the map f — fX is an isometry
from C" to L?(X): if f,g:{1,2,...,n} — C are signals on a graph G with n vertices, then

(17) X910 = (L 9ren-

Consequently, applying the graph shift operator on f in C™ yields the same result as applying
the corresponding graphon shift operator to the functions fX in L?(X). Namely, let G be
a graph on n vertices labeled as above. Let A be the adjacency matrix of GG, and f be a
signal on G viewed as a vector f € C". Fix an infinite standard probability space X, with
the measure-preserving map ox : [0,1] — X. Let wg x : X x X — [0,1] be the graphon
associated with G represented on X (as defined in (1 1)) Then

(18) T f ¥ (2) = JX we,x (,y) [~ (y) dy = Z Ak,]fj (AN (x), for z € ox(Ir).

To discuss convergence of graphon signals, we need to clearly distinguish between con-
vergence in cut-norm of graphon signals (Definition 3.1) and convergence in cut-distance of
(unlabeled) graph signals (Definition 3.2).

Definition 3.1. We say a sequence {(wn, fn)}nen of graphon signals on a standard probability
space (X, p) converges in norm to a graphon signal (w, f) if

|wn —wlo — 0, and | fn— fl2— 0.

Definition 3.2. Fix an infinite standard probability space (X, u), together with a measure-
preserving map ox : [0,1] — X. A sequence {(Gn, fn)}nen of graph signals converges to a
graphon signal (w, f) represented on (X, ) if there exist labelings of each of the graphs Gy, so
that the suitably labeled graphon signal sequence {(wg, x, fi ) nen converges in norm.

Ruiz et al. prove a convergence result of the GFT of graph signals to the WFT of the
limiting graphon. Their result is limited to graphons and signals with certain properties. We
restate the convergence result here; see |23, Theorem 1] for the original statement.
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Theorem. |23, Theorem 1| Let {(Gn, fn)} be a sequence of graph signals converging to the
graphon signal (w, f). Assume all graphs are labeled to ensure convergence as in Definition
3.2. Suppose the following conditions hold:

~

(1) The signal (w, f) is c-bandlimited for some ¢ > 0. That is, f(x) = 0 whenever x is a
A-eigenvector of Ty, with || < c.
(ii) The graphon w is non-derogatory, i.e. every eigenvalue of Ty, has multiplicity 1.
Let {¢;} and {¢}} denote normalized eigenvectors associated with nonzero eigenvalues of w
and G, respectively, ordered as in (12). Then, we have that {GFT (G, fn)} converges to
WEFT(w, f) in the sense that for every index j, we have

1 — ~

I 6]) = F(65) asn— 0

The condition that convergence only holds for non-derogatory graphons is highly restrictive.
While non-derogatory graphons form a dense subset in the space of all graphons, the above
theorem does not imply continuity of signal processing on the whole space. Moreover, the
restriction excludes classes of graphons that have proven useful in practice, such as those of
stochastic block models [1]. Another such example is the class of Cayley graphons, which pro-
vide a versatile tool to model graphs whose link structure is informed by an underlying group
and its topology. As it turns out, Cayley graphons tend to have many nonzero eigenvalues of
multiplicity higher than 1.

To extend the above convergence result to all graphons, we need to modify the definition of
the graphon Fourier transform. Instead of defining the WFT as the projection of a signal on
each element of the eigenbasis of the graphon, we think of the projection onto each eigenspace
of w. The two definitions coincide when w is non-derogatory. However, the latter approach
enables us to handle eigenvalues of higher multiplicity, as it provides us with a definition which
is independent of the particular choice of eigenbasis.

To precisely state the new definition of graphon Fourier transform, and to analyze conver-
gence of the graphon Fourier transform along a converging graphon sequence in this context,
we need the following notation:

Notation 3.3. Let w be a (not necessarily non-derogatory) graphon on an infinite standard
probability space (X, p). Let w = Y ; Ni(w) ¢ @ ¢i be the spectral decomposition of w as
n (14), where {\j(w)}ier, are nonzero eigenvalues of the associated integral operator Ty,, and
Onner, @S an orthonormal set of eigenvectors of T, associated with nonzero eigenvalues.
Thus, I, = Z* is the set of indices j such that A\j(w) # 0. Let {pj(w)}jez+ be the sequence of
distinct nonzero eigenvalues of T,,. The sequence is padded with zeros if the number of positive
or negative eigenvalues is finite. We always order eigenvalues as in (12) .

For each p;(w), let

I, ={ie Ly Ni(w) = pj(w)}.

By definition of Ly, if pj = 0 then I, = &.

For a subset I < I, define the operator PV : L*(X) — L*(X) as

Py = Z bi ® ¢
1€l

Clearly this is an orthogonal projection. We set P}’ to be the zero operator when I = . For
each pj(w) # 0, the operator P}Z' is the orthogonal projection onto the pj(w)-eigenspace of
Tw, and is of finite rank. ’
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Finally, define Py’ to be the orthogonal projection onto the null space of Ty,. Contrary to
the previous projections, Py’ is not necessarily of finite rank.

With this notation, we can now formalize the new definition of the graphon Fourier trans-
form as follows.

Definition 3.4 (Graphon Fourier Transform). Let w : X x X — [0,1] be a graphon, and
Y. denote the set of distinct eigenvalues g\f Tw. The graphon Fourier transform of a graphon
signal (w, f) is a vector-valued function f on ¥ defined as

~

(19) Flus) = P (f) for every nonzero puj, and F(0) = PP (f),

where the notation is as given in (3.3).
The inverse Fourier transform can then be expressed as an infinite sum in L*(X):

(20) f=2 P (H+F() = flw)+ f0).

jezZ* jez*

The Fourier transform defined above exhibits principal features expected from a graphon
Fourier transform. Most importantly, this new definition allows appropriate convergence be-
havior of the Fourier transform, when applied to any convergent sequence of graphs (with no
restriction on the limiting graphon) as we will see in Theorem 3.7. Such general convergence
results can only be achieved by paying a price: each graphon Fourier transform ‘coefficient’ is
defined as a vector—often lying in an infinite dimensional space—rather than a numerical value.
We do not view this fact as a drawback of our approach/definition; indeed, this vector-valued
definition is in line with the harmonic analytic definition of the Fourier transform when the
ambient group is non-Abelian.

Remark 3.5. (Conventions for graph and graphon Fourier transforms.) Throughout this pa-
per, graph signals are considered as vectors in C", and the graph Fourier transform is as defined
in (1). The graphon Fourier transform is, however, the projection as defined in Definition 3.4.

For a graph GG and an associated graphon wg, the graph Fourier transform on GG and the
graphon Fourier transform on wg are closely related, as demonstrated in the following lemma.

Lemma 3.6. Let X be an infinite standard probability space with a measure-preserving map
ox :[0,1] —» X, let G be a graph on n vertices, and let f € C" be a signal on G. Let wg x
be the graphon associated with G and represented on X (as defined in (11)), and consider the
graphon signal (f*,wq x) associated with the graph signal (f,G) as defined in (16). Then we
have:

(i) Every eigenvector of a nonzero eigenvalue \ of Ty, is of the form ¢X for some

G, X
¢ e C".
(ii) Let X # 0. Then X is an eigenvalue of Ag of multiplicity m with A-eigenbasis {¢1,...,d¢m} S
C™ iff X is an eigenvalue of Ty  of multiplicity m with \-eigenbasis {oF,..., 0%} <

L?(X). Moreover,

X0 =] Flonsl,
i=1

~

where ]&(/\) is the graphon Fourier transform as defined in Definition 3.4 and f(¢;)
is the graph Fourier transform as given in (1).
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Proof. Let I,..., I, denote the partition of [0, 1] into n equal-sized intervals. Let h € L?(X),
and 1 <i < n. For z € ox(1;), we have

n

Ty h(z) = JX wox (. y)h(y) dy = 2 J e @)

<
|
=
D
Q
:3
.
q >
>
=
=
<
S~—
=N
<

So, the function T, h is constant on each set ox(/;), when 1 < i < n. Consequently, every
eigenvector of T,  associated with a nonzero eigenvalue must attain constant values on the
same subsets. This finishes the proof of (i).

The correspondence between nonzero eigenvalues /eigenvectors of Ag and T,  follows from

(i) together with (18). Finally, note that f(d)l) = {f, pi>en = {fX, gZ)%X>L2(X). This finishes the
proof of (ii). O

Theorem 3.7 below is stated in the most general form, dealing with sequences of graphon
signals that converge in norm. In Corollary 3.9, we will apply the theorem to converging graph
signals.

Theorem 3.7. Let w : X x X — [0,1] be a graphon with terminology as in Notation 3.3.

Let {(wy, fn)} be a sequence of graphon signals, all represented on X, converging in norm to

a graphon signal (w, f). Then, for every nonzero p;, P}Z’f — P}ﬁ_ in Hilbert-Schmidt norm.
J J

In particular, we have

(21) P}Z:(fn) _’Pﬁj(f) in L*(X) as n — 0.

Moreover, if P{"(f) = 0 (the zero function) then we have that

(22) Z HP}Z?(fn)—P}fLJ_(fH@—»O as n — oo.
jez*

Remark 3.8. (Remarks about the proof.) As defined earlier, Ty, is the integral operator
associated with the (Hilbert-Schmidt) kernel w € L*(X x X). It is well-known that the Hilbert-
Schmidt norm of Ty,, denoted by |Ty|2, and the L?>-norm of w are equal. In the following proof,
we use ¢ ® ¢ to denote both the rank-one operator on L*(X) defined as f — {f,¢>¢ and the
kernel of that operator which is the function in L*(X x X) given by (¢ ® ¢)(z,y) = ¢(z)d(y).
Notations such as |¢@ ¢|2 can be interpreted both as norm of a function in L*>(X x X) or the
Hilbert-Schmidt norm of the associated integral operator.

Proof. We apply Notation 3.3 to all graphons in the sequence {wy,}. That is, {\;(wn)}icr,, is
the sequence of (repeated) eigenvalues of w,, ordered as in (12), and {¢}'} is the sequence of
associated eigenvectors. Thus

€1y,

is the spectral decomposition of wy,.

Next, fix a decreasing sequence of positive numbers {q;};en converging to 0, and assume
that the sequences {a; }ieny and {|p5]}jez* 1,20 are interlacing sequences with no common terms.
Then, {a;}icn satisfies the condition of Theorem 2.7 (ii), so [[wn]a; — [W]a;|2(xxx) — O for
each 7 e N.

Fix j € Z*, and suppose pj(w) > 0; the case where p;(w) is negative can be done in an
identical manner. We choose r; = o; and s; = a;41 so that (sj,7;) N {|pi] : i€ Z*} = {p;(w)}
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is a singleton, so we have

(23) [wls; = [wle; = >} wi(w)gi @b — Y, pj(w)es ® .

i€l . iel_y, .
%] K

Let Pf (resp. P]*) denote the orthogonal projection onto the p;(w)-eigenspace (resp. the
eigenspace associated with —p;(w)). Then we can rewrite (23) as

(24) [wls, = [wlr, = pi(w)(P = P;).

We now invoke Theorem 2.7 to obtain that
|([wn]s; = [wnlr;) = ([w]s; = [wl)l2 = [([wals; = [wls;) + ([w]r; = [walr;)]2
(25) < Mwals; = [wls;ll2 + Iwlr; = [walr, |2
— 0 asn— .
For each n € N, define the finite-rank projections

Pnszz Z o ® ¢ and Pnij::' Z O ® By

€ (w) €Ly (w)

From Theorem 2.6, limy, Aj(wn) = pj(w) if ¢ € I, (), and limy, Ai(wy,) = —pj(w) if i € I, ().
For all other ¢, the value lim, A;(wy) does not fall in (sj,7;). Thus for large values of n,
Xi(wp) € (sj,75) iff @ € I,(w). Moreover, as n approaches infinity, A\;(w,) — p;(w) for
i€ I,(w). A similar statement holds for I_,(,,. Therefore, we have

(26) |([wnls; = [walr,) = 1 (w) (Pnfj - P;,j) l2 — 0 as n — o0.
Putting (24), (25), and (26) together, and using the fact that p;(w) # 0, we get that

(7 -77) (2 ) 0o

Let B(L?(X)) denote the space of bounded linear operators on L?(X) equipped with oper-
ator norm. Since Hilbert-Schmidt norm dominates the operator norm, we have

+ - + - 2
(27) Py, =P, — P =P inB(L*(X)).
+ -2 + —\2 : 2 +p— _ p—pt _
So, (P, ; — P, ;) = (P;7 — P;)° as well in B(L*(X)). Note that PP, = P, P = 0 and
P;’ an_’ ;=0= F, jP:’ ;» since they are orthogonal projections and the images of each pair are

orthogonal subspaces of L?(X). Applying this, together with the fact that every projection is
an idempotent, we obtain

(28) Pr.+ P, — Pf+ P~ in B(L*(X)).
Adding and subtracting (27) and (28) imply that P:,j — PjJr and P, — P, in B(L*(X))
as n — o0. Moreover, note that the operators PJ} i PJ-J’,PT; j and Pj_ are Hilbert-Schmidt

operators, and HP:JHQ, HP;r 2, 127 i ll2: [P ll2- < max{|1,,; (w)ls [{—y;w)l}- Using this uniform
bound, we can now prove convergence in the Hilbert-Schmidt norm as follows:

|y — P2 = (P, — PP, + P+ P (P, — P) + (P — P )P 2
< | By + P2l Pl — P sy + 1P 120P,) 5 — P lcrecx))
+ [P |2 P" — P

B(L*(X))>
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which converges to 0 as n tends to infinity. Here, we have used the fact that Hilbert-Schmidt
operators form an ideal in B(L?(X)). Namely, if T € B(#) and S is a Hilbert-Schmidt operator
on the Hilbert space H then | T'S|s < || [S]2 and [ST|2 < [T ae3)llS|l2. This completes
the first part of the theorem.

To prove the second part, fix a vector f € L?*(X), and assume that P(f) = 0. We will
show that

(29) > | P () = Piy, (f)|3 = 0 as n — .
jez*
This suffices to prove the claim of the theorem since ;.7 HPw"(f )3 < |If = fal3, and

fn— fin L*(X) as n — oo, by definition.

Wiog assume that f # 0, as (29) trivially holds if f = 0. To simplify notation, let P, ; =
P}Z’]‘ and Pj = P}Zj. Recall that {P;}; (resp. {Py,;}; for each n € N) is a collection of pairwise
orthogonal projections. To prove (29), let € > 0 be given. The collection {¢; }cs,, , together with
any orthonormal basis of the null space, forms an orthonormal basis for L?(X). Thus, using
the fact that P{’(f) = 0, we can decompose f into orthogonal components f = ZjeZ* P;(f).
(Recall that P; is defined to be the zero operator if y; = 0, and thus [,,; = ¢J.) Consequently,
we have

1713 =5 IR (I3

JEL*

Since the above sum is bounded, there exists a finite set S < I, such that

F=>.Pi(f)

jeS
Let h:= > ;s Pj(f), and note that | f — hl2 < €/4.

From the first part of the theorem, we have that, for each j € S, | P, ;(h) — Pj(h) Hg — 0,
as n — 00. Given that S is finite, there must exist V € N so that for all n > N,

62
3 1Paglh) ~ B(WIE < min{ 5. 2o

jes

< €
4.
2

(30)

To show (29), we use the triangle inequality in the space £~ @jez+ L?(X). Observe that

P (F) = Pi(f)I3 DUIP(f =B+ [ D IPi(f =)

jez* JEL* JEL*

2 1Pug(h) = Pi(R)3

JEL*

< 2f —hla+ X IPa(h) = Pi(h)|3
JeS

> IPasm3,

JELF\S

where the last step follows since, for any j € Z*\S, P;(h) = 0.
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It remains to show that \/Zjez*\s |Pn,j(h)|3 < €/4. For n > N, using the triangle inequal-

ity, we have

2

P, Py( P, P2 = |y — ———.
ZH g ( ZH ZH ni(R) — Pi(h)l3 = |[h]2 37T,

jes jes jes

Since \/Zjez* P (R)]3 < k]2, the above inequality implies that

¢Z|Pn,j S PGB = Y [P

jEZ* JEL* JEL*\S
2
€
31 < k]2 — Poi(h)|? < ————.
( ) H H J;g| n;]( )HZ 32“f“2

On the other hand,

(32) 2 P+ [ 2 1PagIE = > IPas(R)I3

JEL* JEL* JEZ*\S

< 2[hllz < 2| f]2-

Multiplying (31) and (32) together, finishes the proof, as we get >}z« g 1P j(R)]3 < %. O

As a direct corollary of Theorem 3.7, we now have the desired result that the graph Fourier
transform converges to the graphon Fourier transform, when applied to a converging sequence
of graph signals. As mentioned in Remark 3.5, in the following corollary, graph signals are
considered as vectors in C”, and the graph Fourier transform is as defined in (1). The limiting
graphon transform is the projection as defined in Definition 3.4.

Corollary 3.9. Fiz a graphon w : X x X — [0,1] and a graphon signal f € L*(X), and con-
sider the sequence {(Gn, fn)} of graph signals converging to the graphon signal (w, f). Suppose
that the graphs Gy, and the graph signals f,, are labeled so that (wg,, x, 1:X) converges in norm
to (w, f). Then graph Fourier transforms fn converge to the graphon Fourier transform f mn
the following sense:

For each nonzero eigenvalue pij of T, Z ﬁ(gf)?)((ﬁ’)x — f(,uj) asn — oo,

€1y,

where for each n, the adjacency matriz of G, has eigenvalues {\!'}, ordered as in (12), with
corresponding eigenvectors ¢i'. Moreover, if Py’(f) = 0, then

ST Fale™ ()X — F(u)]3 — 0 asn — oo

JEL* el

Proof. By Lemma 3.6, the sequence {A'} gives nonzero eigenvalues of the graphon wg, x
listed as in (12), with corresponding eigenvectors (¢')*. Wiog assume Gy, has n vertices. So,
if p; # 0, we have

PRen X (£5) = 2 @ om0 (00 = X nn8Den (@0)% = 3] FaldD) 6]

i€l i€l i€l

Now, applying Theorem 3.7 to the converging graph signal sequence (wg, x, fX) — (w, f)
finishes the proof. O
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For non-derogatory graphons, this corollary strengthens the previously known convergence
result from [23]. Namely, suppose p; has multiplicity 1, so I,; = {A;}. Then P (f) =
(f, ¢j)¢;, where ¢; is the \j-eigenvector of w. The corollary then states that

Fa(@) (@)X = (f,05) &; as n — oo,

Since the functions (QS;L)X and ¢; are elements of L*(X) with unit norm, this implies that

fn(@]) — {f,¢;) as n — o0,
In addition, if f is c-bandlimited for some ¢ > 0, then P’(f) = 0, and we get

D 1 fal@) = {frdpls — 0 as n— oo,

JEL*
Note that the scaling factor in the theorem of [23] does not appear here. This is due to the
fact that we have incorporated a scaling factor of 4/n in (16).

3.1. Interpretation of Theorem 3.7 and its applications. The graphon Fourier trans-
form as introduced in Definition 3.4 is a vector-valued transform, which provides a decom-
position for any given signal into projections of the signal onto each eigenspace of T,,. This
definition differs from the previously known approach, where graphon Fourier transform was
modeled after classical (Abelian) harmonic analysis, and the Fourier coefficients were simply
defined as real/complex numbers. The necessity for Definition 3.4 becomes apparent when
one deals with graphons which possess eigenvalues of higher multiplicities. In such cases,
convergence only occurs at the level of eigenspaces.

Suppose a graphon has an eigenvalue A with multiplicity k. Due to random fluctuations,
samples from the graphon will likely have k distinct eigenvalues close to A. Our result indicates
that the space spanned by the eigenvectors of those k eigenvalues will be increasingly similar to
the eigenspace of the graphon corresponding to A, as the size of the sampled graph increases.
However, there is no guarantee that the individual eigenvectors of the samples converge. We
therefore argue that if several eigenvalues of the graph sequence converge to a single (repeated)
eigenvalue of the limit graphon, then the corresponding eigenvectors should be considered in
their totality, and not individually.

A special case occurs when T, is of finite rank. Here, the set I, of nonzero (repeated)
eigenvalues is finite. We first note that, in this case, the second convergence result (22) follows
directly from (21), and thus the condition P’(f) = 0 is not necessary. Second, we observe
that, for large n, a sample graph G ~ G(n,w) drawn from a finite rank graphon w will
likely have more non-zero eigenvalues than w. Namely, since edges are chosen independently
at random, the rank of the adjacency matrix of a w-random graph, and thus its number of
non-zero eigenvalues, will likely grow to infinity as the size increases.

As a simple example, let {G,,} be a sequence of w-random graphs of increasing size, sampled
from a constant graphon w = p. We know from Theorem 2.7 that the sequence {\]'}, consisting
of the largest eigenvalue of the adjacency matrix of each graph G,, will converge to A\; = p,
while all smaller eigenvalues will converge to zero. By Theorem 3.7, the eigenvectors of Gy,
corresponding to the eigenvalues A} with ¢ > 1 will converge to the kernel of T},, and thus
will not play a role in the spectral decomposition of T,,. A similar situation occurs for any
finite rank graphon. That is, for any index j outside I,,, the sequence of eigenvalues {)\’;}n
converges to 0, and the associated sequence of eigenvectors converges to the kernel of T,,.
Our results suggest that such eigenvectors should be considered as sampling noise. Thus, an
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efficient analysis of the graph Fourier transform should only focus on eigenvalues with indices
in 1.

We suggest an approach for a unified Fourier analysis applicable to all graphs sampled from
a given graphon w : X x X — [0, 1]. Namely, we can propose as a graph Fourier transform,
the projection onto eigenspaces of T;,. Our results show that, for large graphs, this Fourier
transform will be similar to the GFT derived from the spectral decomposition of the adjacency
matrix of the graph itself. This viewpoint is similar to the transferability results in [24, 16]
for graph neural networks.

Example 3.10 (Watts-Strogatz model). Consider the graphon w : [0,1]*> — [0,1] defined as
follows. For all x,y € [0, 1], let

_f1=p iflx—yl<dor|z—yl =1-d,
w(@,y) = { P otherwise,

where p,d € (0, %) are parameters of the model. The graphon w is a Cayley graphon on the 1-
dimensional torus (see Example 4.5 for details). Random graphs drawn from w have a natural
circular layout: each vertex can be identified with a point €2™® on the unit circle. Then each
vertex is connected with probability 1 — p to vertices that are close (in angular distance), and
with probability p to any other vertex. When p is small, this graphon corresponds closely to
the Watts-Strogatz model first proposed in [33], which is widely used to model so-called “small-
world” networks.

FiGURE 1. Cayley graphon on the 1-dim torus with parameters d = 0.2,p =
0.08 and a graph sampled from it.

A straightforward calculation shows that the eigenvalues of T, are

{ (1 — 2p) sin(27kd)
mk

Taking d = p = 0.1 and using notation as in 3.3, the first three eigenvalues are

:keZ*}u{p+2d—4pd}.

A= 0.6p+ 0.2, = A3 = <1 :p) sin(0.27).
Then po = Ao = A3, I, = {2,3}, and the eigenspace corresponding to po has dimension 2.
Let {G,} be a sequence of w-random graphs G,, ~ G(n,w). Our convergence result tells us
that for large n, the adjacency matriz of Gy, interpreted as a graphon, will have second and
third largest positive eigenvalues Xy and N3 close to pa. However, due to stochastic variation
it s unlikely that Xy = N5. Corollary 3.9 tells us that the space spanned by the \5- and \j-
eigenvector converges to the eigenspace corresponding to pa (in the sense of the convergence
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of the associated orthogonal projections). It does not follow, and is likely not true, that the

sequences { f(A3)} and {f(\§)} each converge. We can then conclude that the graph Fourier co-
efficients f(Ay) and f(N5) have little significance individually, but should be considered jointly.

Example 3.11. Consider the graphon wy € Wy represented by the model matriz M, where

(06 03 01 0 0 O]
03 06 0 0 01 0

M- 01 0 06 03 0 O
0 0 03 06 0 01}
0 01 0 0 06 03
0 0 0 01 03 06

and wyr has constant value M; j on the sets I; x I;, for 1 <i,j < 6. This is a Cayley graphon
on the group Ss; see also Example 4.8.

We sample from this graphon as follows. We generate a graph Gy with vertex set V =
U?:l Vi, where |V;| = N for 1 <i < 6. Edges are added independently, with edge probabilities
given by the model matriz. That is, the probability that a vertex x € V; and y € V; form an
edge equals M; ;. It is straightforward to show that the sequence G converges to wyy.

The sixz eigenvalues of the model matrix are shown in the top row of the table below. Note
that there are two pairs of eigenvalues with multiplicity 2. We sample ten graphs Gy according
to the process described above, with N = 1000. The adjacency matrices of the sampled graphs
all have more than 6 non-zero eigenvalues. The first six eigenvalues of the samples are very
similar to the non-zero eigenvalues of the model matriz, as predicted by Theorem 2.7. The
seventh eigenvalue of the sample matrices demonstrates that the eigenvalues beyond the sixth
eigenvalue converge to zero.

A A2 A3 A4 A5 A6 A7
Model: 1.0000 ) 0.8646 | 0.8646 | 0.3354 | 0.3354 | 0.2000 0
Sample 1: | 1.0005 | 0.8653 | 0.8651 | 0.3371 | 0.3357 | 0.2020 | 0.0457
Sample 2: | 0.9999 | 0.8648 | 0.8642 | 0.3365 | 0.3352 | 0.2015 | 0.0457
Sample 3: | 1.0001 | 0.8648 | 0.8643 | 0.3373 | 0.3364 | 0.2023 | 0.0457
Sample 4: | 1.0001 | 0.8644 | 0.8644 | 0.574 | 0.3367 | 0.2025 | 0.0457
Sample 5: | 1.0000 | 0.8656 | 0.8642 | 0.3369 | 0.3364 | 0.2025 | 0.0457
Sample 6: | 0.9998 | 0.8645 | 0.8639 | 0.3362 | 0.3357 | 0.2014 | 0.0457
Sample 7: | 1.0004 | 0.8650 | 0.8646 | 0.3367 | 0.3358 | 0.2017| 0.0458
Sample 8: | 0.9998 | 0.8647| 0.8638 | 0.3360 | 0.3354 | 0.2012 | 0.0458
Sample 9: | 0.9997 | 0.8649 | 0.8635 | 0.3376 | 0.3370 | 0.2028 | 0.0457
Sample 10: | 0.9998 | 0.8646 | 0.8643 | 0.3369 | 0.3367 | 0.2025 | 0.0457

TABLE 1. Eigenvalues of the model matrix and the adjacency matrices of the
samples.

Using a signal f that is 1 on V1 and zero elsewhere, we compute the graph Fourier coeffi-
cients. The results are given in Table 2. We see that for coefficients 1 and 6, which correspond
to eigenvalues with multiplicity 1, the values of all 10 samples are very similar. (Apart from the
difference in sign, which is due to the fact that eigenvectors are unique up to sign.) However,
this is not the case for the coefficients corresponding to eigenvalues with higher multiplicities.
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To illustrate this, we focus on coefficients 2 and 3, computed from the projections of f onto
eigenvectors 2 and 3 (p2, ¢3) of each of the sampled graphs.

<f7 ¢1> <f7 ¢2> <f7 ¢3> <f7 ¢4> <f7 ¢5> <f7 ¢6> <f7 ¢7>
Sample 1 | -12.8588 | -153.8164 | -11.9317 | -5.1488 | -17.4057 | -12.9621 | 0.0178

Sample 2 | -12.8774 | -15.3514 | 9.8781 | -1.4261 | -18.1699 | -12.8366 | -0.0057
Sample 3 | -12.9054 | -18.1773 | -1.6169 | -16.9128 | -6.8229 | 12.7908 | 0.0168
Sample 4 | 12.9197 | -11.6449 | -14.0502 | -9.4462 | 15.5340 | 12.8565 | -0.0224
Sample 5 | -12.8981 | -12.9253 | 12.8846 | -12.4981 | 13.2556 | 12.8339 | -0.0071
Sample 6 | -12.9283 | -16.6597 | 7.3625 | 11.5844 | 14.1140 | -12.8307 | 0.0622
Sample 7 | 12.8443 | 5.5619 | -17.4151| 9.6619 | -15.425} | -12.858 | 0.0281
Sample 8 | 12.8251 | 11.0069 | -14.6563 | 18.2037 | 0.7167 | -12.7901 | 0.0715
Sample 9 | -12.9264 | -16.9912 | 6.6391 | -8.8731 | -17.8276 | 12.7807 | -0.0148
Sample 10 | -12.9554 | 10.4365 | 14.9858 | 17.3406 | -5.6170 | -12.7360 | 0.0066

TABLE 2. Fourier coefficients of the sampled graphs.

In the sample graphs, the eigenvectors ¢o, 3 do not belong to a single eigenspace. As shown
in Table 2, the modulus of the individual graph Fourier coefficients corresponding to ¢o (respec-
tively, ¢3) do not converge. Figure 2 shows that the graph Fourier coefficients f(qﬁg) ={f, d2)
and f(¢3) = {f, ¢3) vary greatly from sample to sample. The blue dots are the projections of
the signal f onto the eigenvectors ¢o and ¢3 of the sampled graphs: the x-coordinate of each
dot is the inner product {f, 2y, and the y-coordinate equals {f,ps). The dots do not cluster
together, since the individual values of {f, p2)y and {f,p3) do not converge. However, the dots
lie close to a circle; this shows that the length of the projection onto the eigenspace spanned
by ¢o and ¢3 does converge. This is indeed an easy consequence of the fact that the vectors
{f, payda + {f, d3)ps converge as the size of Gy grows (by Theorem 3.7).

In Section 4, we will show how to choose a basis to define a graph Fourier transform that is
sampled from a Cayley graphon. The red diamond shows the projection of f onto the vectors
of this basis which correspond to eigenvalue po. As predicted by the theory, this projection falls
on the same circle.

3.2. Application: Filter Design. In graph signal processing, the GFT guides the design of
graph filters. Diffusion of a graph signal reflects the structure of the graph. Therefore, the
graph shift operator S is often taken to be the adjacency matrix A. A polynomial graph filter
H on a graph with n vertices is any polynomial in A (see for example [19]):

H:imﬁ.
k=0

Let h be the polynomial h(z) = >°, hipa®. Tt follows directly from the definition of GFT
and the spectral decomposition of the adjacency matrix that, for each eigenvalue \; of A with
associated eigenvector ¢;:

(33) Hf(¢:) = h(N) (1)

As proposed in [18], this approach can be extended to graphons as follows. The shift operator
of a graphon w : X x X — [0, 1] is the associated operator T,, and a graphon filter is likewise
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FIGURE 2. Graph Fourier coefficients 2 and 3 for the different samples.

defined as a polynomial in Ty,:

m
H =) Ty,
k=0
Using the spectral decomposition of Ty, and adopting the notation from 3.3, we have that, for

each f e L*(X),

m
Hf =hof + ) b >, 1 Pi ().
k=1 Jipe; #0
As before, let h be the polynomial h(z) = D", hiz®. Using our extended definition of the
graphon Fourier transform as given in Definition 3.4, we then have that, for all u; # 0,

(34) H{(ny) = Pi (HF) = () PR f = hiu) F(wy).

Our convergence results then immediately imply the convergence of the filter response as stated
below.

Corollary 3.12. Let {(Gp, fn)} be a sequence of graph signals converging to a graphon signal
(w, f), and assume that the graphs Gy, and the graph signals f, are labeled so that (wg, x, fi¥)
converges in norm to (w, f).

For each n, let Ay, be the adjacency matriz of Gy, and let its eigenvalues be denoted as {\}'},
labeled as in (12), with corresponding eigenvectors Y. Given a polynomial h(x) = > 4L, hya®,
for each n let Hy, = Y hkAf;. Then for each nonzero eigenvalue ji; of T,

~

D Hafal @) (1) = h(p) f(ny) asn— o0,

i€l

Proof. The first statement follows directly from Corollary 3.9, Equations (33) and (34), and
the fact that lim, o A" = p; for each i€ I,;. O
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This corollary gives strong evidence that, for large graphs sampled from a graphon w, one
should design graph filters with respect to the limiting graphon, rather than the graph itself.
Also, when evaluating the effect of a filter on GFT, one should consider the Fourier coefficients
of eigenvalues with indices in I,,; as a whole.

4. SIGNAL PROCESSING ON CAYLEY GRAPHONS

The instance-independent approach presented in this article is particularly favorable in the
special case that the limit graphon is a Cayley graphon. In this case, we have the well-
established and rich theory of group representations at our disposal, which we employ to
obtain suitable graphon Fourier bases. Fourier analysis informed by representation theory of
the Cayley graphon can lead to decomposition of signals into ‘meaningful’ components; for an
instance of this phenomenon, see [6]. Cayley graphons reflect the symmetries of the underlying
group, and can be used to model real-life networks. For example, the Watts-Strogatz model
from Example 3.10 is a Cayley graphon. Also, graphons derived from the symmetric group
Sk can be used to represent ranked data (see Example 4.8). In this section, we show how
the representations of the underlying group naturally yield the spectral decomposition of the
associated Cayley graphon, and can be used to define a universal GF'T for samples from the
graphon.

We fix the following notations throughout this section: let w be a Cayley graphon on a
compact group G defined by a Cayley function v : G — [0,1] (see Section 2.4 and Definition
2.4 for precise descriptions).

Applying Fourier analysis of non-Abelian groups as discussed in Subsection 2.2.1, we obtain
properties of the eigenvalues/eigenvectors of T,,, which we list in Theorem 4.3. In the next
lemma, we will see that the action of T, on a signal f can be expressed in terms of a convolution
operator, which is computationally preferred when dealing with representations.

Lemma 4.1. Let f € LQ(G) For almost every x € G, we have Ty (f)(z) = (f+3)(z~1), where
the “check operation” f — f on LY(G) is defined as f( ) = f(z71). Consequently, we have

E@mwwhwm.

Proof. For almost every =z € G, we have T, ( = §c w( y)dy = Sev(@y™ ) f(y) dy.
So, applying the change of variable y — y 1 , We have
0 = | Forite @—ff v ) de = (Fe )@,
O

As we will see in Theorem 4.3, the spectral analysis of matrices 7(7y) play a central role in
the spectral decomposition of Ty,.

Lemma 4.2. Let v be a Cayley function on a group G, i.e. y(x) = y(z=1) for all z € G.
Then for every unitary representation © : G — U(Hy), the operator w(7) is self-adjoint. In
particular, w(7y) is diagonalizable, and its spectrum lies in R.

Proof. Recall that m(v) € B(Hy) is defined as {; v(z)m(x)dx, where the integration is with
respect to the Haar measure of G. This integral should be interpreted weakly, that is,

(L)) [roncis
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for each &, in the Hilbert space of 7. For an arbitrary pair £, € Hy, we have
<<J«; +(2)m() dx) e n> <<f 5 (x) dm) ", £> J ), &) de
_ f@wwm _ f@waz)@r(w e,y da
_ JGy(x—lxw(x)s,m dz = (n(v)€, 1),

where we used the change of variable x — 2!, and the fact that v(z) = y(z1). O

Theorem 4.3. Let w: G x G — [0,1] be the Cayley graphon defined by a Cayley function
v:G —[0,1] on a compact group G.
(i) The set of eigenvalues of T, is given as | __g {eigenvalues of w(v)}.
(ii) For every monzero eigenvalue X of Ty, there are finitely many m € G such that \ €
Spec(m(7y)). We denote this finite set by (@,\,7.
(iii) Let 0 # X be an eigenvalue of T,,. Then A-eigenvectors ¢ € L*(G) can be characterized

as
Z drTr[Azm(x)*],
7Gx
where Ay is a matriz with the property that every one of its columns is either zero, or
a A-eigenvector for w(y). (Note that at least one of the Az’s must be nonzero.)
(iv) The multiplicity of every nonzero eigenvalue X of Ty, is given by ZWG@A i dxmy x, where

myr is the multiplicity of the eigenvalue A for m(7y).
Proof. To prove (i), suppose 0 # ¢ € L?*(G) is a A-eigenvector of Tw, i.e. Ty(¢) = Ag in L?(G).
By Lemma 4.1, and the fact that v is a Cayley function (1 e. ¥ = 7), this identity can be
written as ¢ * v = A¢. Consequently, for every 7 € G, 7r(<;5 v) = w(d)m(y) = Aw(¢). So by

injectivity of the Fourier transform, ¢ is a A-eigenvector of T, precisely when for every m € G,
we have

(35) (@) (7 () = Ma,) =0
where I;_ is the identity matrix of dimension d,. Taking matrix-adjoint from both sides of
Equation (35), this equation can be written as

(36) (7(y) — Mg )m(¢) = 0 for every 7 € G.
Thus, we have:
(a) If X is not an eigenvalue of 7(7), then m(vy) — Ay, is invertible. So, m(¢) = 0.

(b) If X is an eigenvalue of 7(7), then every nonzero column of the matrix 7(¢) must be a
A-eigenvector of (7).

As a result, if A\ is not an eigenvalue of 7(y) for any = € @, then ¢ = 0, contradicting our
assumption. So A is an eigenvalkle of T, with associated eigenvector ¢ if and only if it is an
eigenvalue of 7(7) for some 7 € G. This finishes the proof of (i).

To prove (ii), we apply the Parseval identity for v as follows:

13 = 3, de Tl - Y| Y x

neG eG AeSpec(7(7))
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Since the above sum is finite, for every given A # 0, there are only finitely many 7 with

A € Spec(m(y)).
To prove (iii), assume A is a nonzero eigenvalue of Ty, and recall that

@,\77 = {77 eG: Ae Spec(w('y))} .

From (a) and (b), 0 # ¢ € L?(G) is a M-eigenvector of T, if and only if

(") 7(¢) =0 for all T € @\@)\,7~
(b') If m € Gy, every nonzero column of the matrix 7(¢) must be a A-eigenvector of 7 (7).

Using the inverse group Fourier transform (Equation (5)), we get ¢(z) = >, By d-Tr[r ()7 (z)*].
Since this is a finite sum, there are no convergence issues to be considered here. Letting

Ar = m(¢) finishes the proof of (iii).
To prove (iv), fix a nonzero eigenvalue A and a A-eigenvector ¢ of T,,. By part (iii) of this
theorem,

d(x) = >, deTr[Apm(z)*],

ﬂ'EGN’Y

where every nonzero column of A, is a A-eigenvector for 7(vy). For every 7 € @)\,7’ let € x(y)
denote a fixed basis for the \-eigenspace of (7). Recall that m » = |Ex z(y)|- It then follows
immediately, from the above expression, that ¢ can be written as a linear combination of
functions of the form = — Tr[A% ; m(z)*], where A% ; denotes the matrix of size d; whose
i’th column is X € & ~(,), and its every other column is zero. Applying a simple counting
argument, we obtain the upper bound )] dzmy » for the multiplicity of the eigenvalue A
of Ty,. i

To finish the proof, we will obtain the same number of independent A-eigenvectors for Ty,.
From the definition of coefficient functions (Subsection 2.2.1), we observe that the (i,7)th

entry of 7(z)* equals m; j(x). For Z € €y () represented as Z = [zj];.lll,

71'6@)\’

we have

dx
Tr[A7 7 (z)*] = Z zZjmij(x) € Span{m;; : j=1,...,dx}.
j=1

The above equation, together with Schur’s orthogonality relations (Proposition 2.2), implies
that

(i) If @ # j, then the functions Tr[A7 ;7(2)*] and Tr[A7 .m(x)*] are orthogonal nonzero
functions in L?(G).

(ii) If 7,0 € Gy, are distinct (inequivalent) representations, then for every X € &y ()
and Y € &, 5(), and every 1 < i < dr and 1 < j < d,, we have that Tr[A% ;7 (v)*]
and Tr[AY, ;o (x)*] are orthogonal nonzero functions in L%(G).

(ii) If Y, Z € &y n(y) are distinct, then Tr[Af w(x)*] and Tr[A7 7(x)*] are orthogonal
nonzero functions in L?(G).

Parts (i) and (ii) follow directly from the statement of Schur’s orthogonality relations. To
prove (iii), take distinct (orthogonal) elements Y = [yk]i’;l and Z = [zj];-lll of E r(y)- Using
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orthogonality relations between ; ; and m; 1, we get:

<Tr[A7Zr,i7T(')*]7Tr[A7{/7i ( LQ(G <Z 2T 5, Z YT, k>L2

dr

dr  dr
- Z Z Zj k(i Ti k) 12(G) = di Z ZjYj =
=lk=1 j=1

Thus, the set of functions {TI‘[AWXJ-TI'((L')*] I E ([A},\,Y, X€ebomy 11 < dw} forms a basis
for the A-eigenbasis of T,; this finishes the proof. O

Theorem 4.3 reduces the problem of finding a spectral decomposition for T, to finding
spectral decompositions of 7(7y) for each m € G. This application of representation theory
leads to significant simplification of the problem. Indeed, T, is an operator on the infinite-
dimensional space L?(X), and obtaining a spectral decomposition for T}, is a nontrivial task;
whereas each 7(7) is a finite-dimensional matrix.

A special case arises when G is Abelian. In this case, every representation y € G is 1-
dimensional. The following corollary uses Theorem 4.3 to describe eigenvalues and eigenvectors
of Ty,, when w is the Cayley graphon of a compact Abelian group. In the statement below, F
is used to refer to the group Fourier transform as defined in (4).

Corollary 4.4. Let w: G x G — [0,1] be the Cayley graphon of a compact Abelian group G
defined by a Cayley function v : G — [0, 1].
(i) For every A € R, define Uy := {x € G : (FY)(x) = A}. The set of eigenvalues of Ty,
can be described as {(Fy)(x): x€ G} ={AeR: Uy # T}.
(ii) Any nonzero ¢ € L*(G) such that F¢ is supported on Uy, is a A-eigenvector of Ty.

The above corollary follows directly from Theorem 4.3. We demonstrate a more direct proof
for the Abelian case in the following example.

Example 4.5 (Graphons on the 1-dimensional torus). Consider the Abelian compact group
T = {e2™@ : z € [0,1)}, with multiplication as the group product. Let v : T — [0,1] be a
Cayley function, i.e. y(x) = y(z~1) for all x € T. Using the identification of T and [0,1), the
Lebesgue measure on [0, 1) is transferred to the Haar measure on T. Let w: T x T — [0,1] be
the Cayley graphon defined by . The integral operator associated with w is defined as

T, LA(T) — LX(T), (Tof)(z) = meyl)f(y) dy = (f =) (),

where the last equality holds as T is Abelian. To find eigenvalues/eigenvectors of T,,, we use
classical Fourier analysis on T, noting that T ~ Z. In this example, we write J?(n) to denote
the n’th Fourier coefficient of f. Suppose f # 0 is a A-eigenvector of T,,. Then, we have the
following equivalent relations:

Twf = Af in L3(T) < fx~=M\f in L*(T)
< for every n € Z, f(n)"?(n) = )\f(n)
< for every neZ, f(n) =0 whenever §(n) # A.

LetUy ={neZ: ~(n) = A}. If Uy =, then we must have fE 0, and consequently f = 0;
this is a contradiction with the choice of f as a A-eigenvector. On the other hand, if Uy # &,
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then any nonzero function f whose Fourier series is supported on Uy is a A-eigenvector for
Ty.

We note that in this particular example, we can replace “F f is supported on Uy” with the
phrase “F f is supported on U\” in the statement of Corollary 4.4 (ii). This is due to the fact

that (i) f(n) = f(—n) for everyn € Z, and (ii) Uy is closed under negation as vy is real-valued.

Next, we show how to obtain an eigenbasis for the integral operator of a Cayley graphon, us-
ing its harmonic analysis. Harmonic analysis of non-Abelian compact groups is mainly focused
on the study of the group representations and their associated function spaces. An important
(not irreducible) unitary representation of a group G is the left reqular representation, defined
as L : G — U(LAG)), (L(g9)f)(h) = f(g7th), for f € L*(G) and g,h € G. The integral
operator of a Cayley graphon can be expressed in terms of the left regular representation of
the underlying group.

Remark 4.6. Let w be a graphon on a group G defined by a Cayley function v. There is a
direct relation between the integral operator T, and the left reqular representation L. Namely,
for f € L?(G) and almost every x € G, we have

To(f) () = f w(x,y>f<y>dy=va<xy1>f<y>dy - ijy<y>f<y1x>dy

G

f@w(y)(L(y)f)(w) dy

So, Tu(f) = L(7)f.

To develop signal processing on Cayley graphons, we use the Peter-Weyl basis of L?(G).
The Peter-Weyl theorem (|7, Theorem 5.12|) asserts that the left regular representation of
G is unitarily equivalent to (D__a dn7, where d; denotes the dimension of w. That is, every
irreducible representation of G appears in the decomposition of L with multiplicity equal to
the dimension of the representation. The orthogonal decomposition presented in the Peter-
Weyl theorem and the precise orthogonality relations amongst the irreducible pieces play a
central role in in the proof of the following proposition.

Proposition 4.7 (Eigenbasis for Cayley graphons). Let G be a second countable compact
group, and consider the Cayley graphon w : G x G — [0, 1] obtained from the Cayley function
v:G —[0,1]. For each m, let Em denote a fized eigenbasis for m(y), where the matriz 7(vy)

is obtained from w(7y) by taking complex conjugation entry-wise. Then

<1

dx
U U Z;Zjﬂ'z"j : € EW
j=

meG i1, dr 24,
is an (orthogonal) eigenbasis for T,,.

Proof. Let 7 € G. First, note that for the coefficient function m;.; € L*(G), we have
Tum)) = | wleam @ de = [ 2y Kr(e.e;)da

ij<m><w<wy>ei, ey dz = (n(7) (m()er), 5 = (r(w)en, w(v)es),

(37)
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where in the last equality we used the fact that 7() is self-adjoint. Now suppose 7(7y) = [a ;].
So for every i we have the linear expansion m(y)e; = Zi’;l oy jex. Moreover, the equation
7*(y) = 7(7y) implies that @; j = «;;. Now Equation (37), together with the linear expansion
of w(y)e; given above, implies that

dr dr
T (i )( 2 a1 (m(y)ei, ex) = Z ki) (Y) = (2 ki k) (Y)
k=1 k=1

So for every 7 € Gand1<i< dr, the set Sy; := span{m;; : 1 < j < dr} is an invariant
subspace for T;,. On the other hand, by Peter-Weyl Theorem, we have the Hilbert space
decomposition L?(G) ~ £2- D, ¢ 69;-1;18”. Thus T, is block diagonalized when this Hilbert
space decomposition is in place.

We now proceed to diagonalize each block. For every 7 € @, we know by Lemma 4.2 that
() is a self-adjoint matrix. So the same is true for the entry-wise complex conjugate matrix
@, and it can be diagonalized using its eigenbasis. Let A be an eigenvalue of (), and
suppose the nonzero vector Z = [z;] is a A-eigenvector, i.e. 7(7)Z = AZ. Then, for 1 <i < d,
we have,

7\' d7\'
Z Zjmij) = Z Zj Z Qi kT ke = Z (Z Oés,ﬂs) TG4
s=1

j=1 j=1 k=1
dx
- 5 (S mo-a S an
j=1 j=1
which proves that 2?21 zjm; j is a A-eigenvector of Ty,. U

As seen in Remark 4.6, for any ¢ € L?(G), Ty, (¢) = L(v)¢. This can be used to give a more
abstract proof of the previous proposition. We have avoided such abstract proofs in this paper,
as the details of the unitary equivalences and the precise change of basis are important for
graph signal processing applications. The following example demonstrates how the proposition
can be used in such a setting.

Example 4.8 (Ranking graphon). Consider the group of permutations on 3 elements:

Ss ={g1 =1id, g2 = (12), g3 = (23), g2 = (13), g5 = (123), g6 = (132)}.
The irreducible representations of Sg can be listed as follows:

(i) the trivial representation ¢ : S — C, defined as 1(g) =1 for all g € S3;
(i) the alternating representation T : S3 — C, assigning to a permutation g the sign of the
permutation;
(iii) the standard representation m : Sg — U(C?), defined as

_1 v3 _1 3
(id) = [é (1)] 7((12)) = [ﬁ? ;] m((23)) = [é _01] m((13)) = [ % %2 ]
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As usual, we represent a complex-valued function on S3 by a vector in C5. Clearly, the (unique)
coefficient function of every I-dimensional representation is simply the representation itself.

Equipping C? with the standard basis {{(1)] , [ﬂ }, the coefficient functions associated with m

are given as follows

0 0
iy v v s
12 0 0 _21
TILL= | _1|> 721 =] _ V3| T12= ] 3|, T22= 1
_1 J3 V3 2
i o i i
[~ 2 | 5 | —%5 [~ 2

The elements of Sg correspond to the different ways in which three distinct objects can be
ranked.  Consider the Cayley graphon w : Sg x S3 — [0, 1] defined by the Cayley function
v :S3 = R, v =1dia + pd12) + qd(23), where 0 <p < q <r <1 and §; denotes the Dirac delta
function. This is, in fact the same graphon as used in Example 3.11.

This graphon can be used to represent sets of individual entities that are distinguishable by
the way they rank or prioritize three different items. For example, the entities could be political
bloggers linked by ‘follow’ relationships, and the labels from S3 represent the priority orderings
the bloggers assign to a list of three election topics. A model for a graph corresponding to
this situation would have the population divided into 6 groups, each labeled with an element
of Ss. Members of the same group have an identical ranking, which is the same as the group
label. The link probability between entities is determined only by the set they belong to. The
Cayley function v = rdiq +pd(12) +qd(23) where 0 < p < q <r < 1 then represents the following
linking behaviour: entities in the same set are the most likely to link. Entities whose ranked list
only differs in their choice for numbers 2 and 3 have second highest link probability. Entities
whose ranked list transposes numbers 1 and 2 have a lower link probability. There are no links
between groups whose list differ by more than an adjacent transposition. The sampled graphs
in Example 3.11 conform to this model.

Clearly, we have

T+p+q r—p—q Lir—8+¢q V3p
) = TEREY o) TTRT W(v)=6[ AR N
2 2

(Here, we have normalized the counting measure on Sz to obtain a probability space.) The
eigenvalues of m(7y) are %(T‘ +/P? + ¢®> — pq). From an easy calculation, we see

_ p—2q—24/p*—pg+q? _ p—=2q+24/p*—pg+q*
and

V3p V3p
1 1
are eigenvectors of w(7y) associated with the positive and negative eigenvalues respectively.
Appealing to Theorem 4.3, we conclude that the eigenvalues of Ty, are

e 1
IRV i, 1), % (mult. 1), =(r £ ~/p? +q* = pg) (mult. 2 each).
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Next, using Proposition 4.7, we have the following set of eigenvectors for T,,, listed to corre-
spond to the above set of eigenvalues. Note that in this case, we have 7w(y) = 7(7), so the con-

.. .. . . —2¢—2+/p2—pg+q2 —2¢+24/p2—pg+q2
dition of Proposition 4.7 is satisfied. Let s = —2—=1 PP gnd r = -4 PP

\/3p V/3p
1] [ 1] S\/?T \/51 1
S S
1 ~1 T2ty 2 T3
1 —1 s —1
L= y T = , ST11 + 712 = s A3 |, sm21 + T2 = V3s 1|
1 ~1 —s 3 —v3s g1
2 2 2 2
1 1 s, V3 _VBs 1
2 2 2 2
1 1 _s _ A3 3s _ 1
- . L2 2 ) 2
_ . _ _ 1 _
_r A3 3r 41
3T 3 3 T3
T -1
TT T2 = /3|, T2+ 22 = _\/§r+1
2 2 2 2
_£+£ _NM3r 1
2 2 2 2
_r _ V3 3r 1
L 2 2 L 2 2

In Example 3.11, r = 0.6, ¢ = 0.3 and p = 0.1. The second eigenvalue ps = é(O.G +
O.I\ﬁ) has multiplicity 2, with eigenvectors smi 1 + 712 and sma 1 + w22 as given above. If this
theoretical basis is used to compute the graph Fourier transform, then the Fourier coefficients
corresponding to us are as indicated by the red diamond in Figure 2. Using the theoretical
basis gives a stable graph Fourier transform for samples of a Cayley graphon.

Finally, we consider the special case for Cayley graphons where the Cayley function is
constant on conjugacy classes. We refer to such graphons as quasi-Abelian Cayley graphons;
this terminology is an extension of a similar concept for Cayley graphs ([20]). In this case,
Proposition 4.7 takes a greatly simplified form. Namely, the eigenbasis for T, derived from the
irreducible representations of the group consists simply of all coefficient functions m; ;. This
result is a generalization of an analogue theorem for Cayley graphs; see [20, Theorem 1.1] or
[10, Theorem III.1] for a proof. We state the result in the following corollary.

Corollary 4.9. Consider a compact group G together with a Cayley function v : G — [0,1]
that is a class function, i.e. 7y is constant on conjugacy classes of G (or equivalently v(zy) =
v(yx) for all z,y € G). Let w be the Cayley graphon associated with G and . Then, for every

A

meGand 1l <i,j <d,
Tw(ﬂ-i,j) = AWWi:j’
where Ax = 7-Tr(m(7)).

Proof. 1t is known that the set of characters { Xr = 2?21 ;. ME @} of a group G forms an

orthonormal basis for the subspace of class functions in L*(G) (see e.g. |7, Proposition 5.23]).
Since 7 is a class function, we have

dx
(38) 7= 2 X r@)Xn = 2y 20 X a(@) T

7eG neG =1
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Let 7 € G be arbitrary. Using Schur’s orthogonality relations, Equation (38) implies that
vy migyreey = 01if @ # j, and {y, mi )12y = é@,xﬁp(@). This allows us to compute the
entries of the matrix 7(y). Namely, since v is real-valued, we have

0 i j

(2] (2 d - Py - . .
(r(er €57 = f Jeirei) 4 = (1 i) o) = {dl,r<X7r7'7>L2(G) i=]

In other words, 7(vy)e; = i@(”’ YVr2(c)éi for every 1 < i < dr. Conjugating both sides of the
previous equation, we conclude that the standard basis {ei}?zl is an orthonormal eigenbasis
of m(v) associated with the eigenvalue i(y, Xx)r2(G)- S0 by Proposition 4.7, u__a{m;; :

1 < i,j < dy} forms an orthogonal eigenbasis for T,, associated with (repeated) eigenvalues
i&y, Xx)r2(@)- Finally, observe that

dr
X = 3, [REEreE Zj 2er, ey dz = Z<w e esy = Tr((7),

which finishes the proof. U

Example 4.10 (SO(3)). Consider the (non-Abelian) group SO(3) of all rotations of the unit
ball around an axis through the origin. Thus, each element of SO(3) can be characterized by
a unit vector indicating the axis, and a rotation angle. It is well-known that two elements
of SO(3) are conjugate if and only if they have the same rotation angle. Thus, if we let the
Cayley function v be any function that depends only on the rotation angle, then =y satisfies
the conditions of Corollary 4.9. The corollary now tells us that the coefficient functions m; ;
provide an eigenbasis for the graphon, which can be used to define a Fourier transform for
graphs sampled from the graphon.

A natural Cayley graphon results if we let vy be a sharply declining function of the rotation
angle. In that case, two rotations o and T in SO(3) have high link probability if o7~ has a
very small angle. This can be interpreted as o and T having a similar effect on the unit ball.
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