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Abstract

We develop a new method for addressing certain weakly null systems of wave equa-
tions. This approach does not rely on Lorentz invariance nor on the use of null
foliations, both of which restrict applications to, e.g., multiple speed systems. The
proof uses a class of space-time Klainerman-Sobolev estimates of the first author,
Tataru, and Tohaneanu, which pair nicely with local energy estimates that combine
the r?-weighted method of Dafermos and Rodnianski with the ghost weight method
of Alinhac. We further refine the standard local energy estimate with a modification
of the 9, — 9, portion of the multiplier.

Keywords Wave equations - Local energy estimates - Weak null condition -
Global existence

1 Introduction

This article represents a proof of concept for a method of addressing certain systems
of weakly null wave equations that do not satisfy the classical null condition. This
example falls into the class of equations studied in [5]. For simplicity of exposition,
we only consider a semilinear system. Unlike [5], the methods here do not use the
Lorentz boosts, which is important for similar problems in the setting of multiple
speeds, exterior domains, or stationary asymptotically flat background geometry. And
when compared to the methods of [10], which apply to a broader class of weakly null
equations, we believe that our methods are simpler and, as we do not rely on null
foliations, additional applications to multiple speeds systems appear possible. The
current work is most akin to that of [6], which is based on the ideas of [13] and proves
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global existence without the use of the Lorentz boosts, but we believe our method to
have added flexibility for other applications.

In three spatial dimensions, it is known that solutions to semilinear systems of
equations of the form Uu = Q(du) with nonlinearity that vanishes to second order
at the origin can only be guaranteed to exist almost globally, which means that the
lifespan grows exponentially as the size of the data shrinks. See, e.g., [7] for the lower
bound on the lifespan and [8] and [21] for counterexamples to global existence. Based
on the fact that the components of the space-time gradient du = (d;u, Vyu) that are
tangent to the light cone decay faster, the null condition was identified in [2] and [11]
as a sufficient condition for guaranteeing small data global existence. This condition
requires that at least one factor of each nonlinear term (at the quadratic level) to be one
of the “good” directions. Einstein’s equations, for example, do not satisfy this classical
null condition, which led to the introduction of the weak null condition in [14, 15]
as a possible sufficient condition for small data global existence. Further evidence
supporting this is given in [10].

Here we shall consider a coupled system of equations. One of the equations satisfies
the classical null condition, but the other does not. The intuition is that the equation
satisfying the null condition has a solution that decays faster, and when that is plugged
into the second equation, this additional decay allows for an argument to be closed.

We specifically will consider

Uu = 0;ud;v — Vu - Vo,

v = 0,vo;u,

@ (0, -), 0u(0, -)) = (u@©), u@)),
(0, +), 3,;v(0, -)) = (v, v1))-

(1.1)

For simplicity of exposition, we shall take the initial data to be compactly supported,
say within {|x| < 2}.

In order to describe the “good” directions, we shall frequently orthogonally decom-
pose the (spatial) gradient into radial and angular portions:

X
V=-0+Y¥.
r

The directions that are tangent to the light cone are

P =@+, V).
By noting that

0iudv — Vu - Vv = (0 + 0,)udsv — 0,u(9; + 9,)v — Yu - ¥,

we see that the equation for u satisfies the null condition. The equation for v, however,
does not. Nevertheless, we shall prove that solutions to (1.1) with sufficiently small

initial data exist globally.
Our main theorem is the following statement of global existence.
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Theorem 1.1 Suppose that u(jy, v(j) € C2°(R?). Then there is a N € N sufficiently
large and ey > O sufficiently small so that if

o ou@lt Y I0%volla+ Y 10%um it Y 10%vall2<e

la|<N+1 le| <N+1 le|<N le| <N
(1.2)

with & < g, then (1.1) has a unique global solution (u, v) € (C*°([0, c0) x R3))2.

The methods that we employ are partly inspired by [9] where almost global exis-
tence was established for equations without a null condition by pairing a local energy
estimate with a weighted Sobolev estimate that provides decay in |x| rather the 7. The
latter does not require the use of any time dependent vector fields, which was instru-
mental in adapting the method of invariant vector fields to, e.g., exterior domains.
The paper [3] developed the r”-weighted local energy estimate. In this variant of the
local energy estimate, the additional decay for the “good” derivatives manifests itself
as much improved weights. In [4], an analog of [9] was established using these r?-
weighted estimates in order to show global existence for wave equations with the null
condition.

In [17], the r?-weighted multiplier of [3] was combined with a “ghost weight” as
in [1]. The resulting estimate allowed for additional improvements on the weight of
(0¢+9,)u near the light cone. This was then combined with the space-time Klainerman-
Sobolev estimates of [20] in order to establish long-time existence for systems of
wave equations where the nonlinearity is allowed to depend on the solution not just its
derivative. We rely strongly upon these ideas. A further modification of the (9; — 9,)
component of the multiplier for typical local energy estimates is introduced here. This
modification, in particular, while requiring a faster decaying weight also provides a
more rapidly decaying weight on the forcing term.

1.1 Notation
Here we fix some notation that will be used throughout the paper. We let
Q=xxV, S=td+rd, Z=(0,V,Q2,9)

denote the admissible vector fields. We will use the shorthand

|Z=Ny| = Z |ZHul, 19=Nu| = Z 10" u|.

[N [ul<N

A key property of the vector fields Z is that they all preserve solutions to the homo-
geneous wave equation since

[0,0]=[0,Q]1=0, [O,S]=20.
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It will also be important to notice that

VA
[, 9] € span(@). |12, #lul < 24 4+ . (13)

r

In the proof of local energy estimates, we will frequently use that

1
[V,0,1=1[¥,0,]1= ;W. (1.4)
We, moveover, note that
X 1
WZ—r—zxﬂ, IWMIS;IZML (1.5)

We will often decompose R> into (inhomogeneous) dyadic regions. To that end,
let

- 7 17
Ag = (R < (x) <2R), AR={§R§(x)§§R}.
Similarly, we set
XU={(t,x)eR+xR3 : U§(t—r)§2U},

with X/ denoting a similar enlargement.

We shall use a finer refinement, as in [20], when necessary. Because of our assump-
tion that the initial data are supported in {|x| < 2} and because of the finite speed of
propagation, it will suffice to examine C = {r < t 4 2}. We then consider a dyadic
strip

CT:{(t,x)eR+xR3 : r§t§2t,r§t+2}.

Away from the light cone ¢ = |x|, we further decompose into dyadic regions in the
r variable:

CR=l—c,Nn{r<2}, CR=C,N{R<r<2R}whenl <R < 1/4.

We additionally set

~R 7 17 7 17
c:=Ccn grgtfgt,gRSrng whenl < R <t/4
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to denote slight enlargements, which will accommodate the tails of the cutoff functions
that are used to localize in the sequel. The key property is that

~ ~ R ~R
(rY~R, t—r~t onC;,C;

witht >4and1 < R < t/4.

In the vicinity of the light cone, we instead dyadically decompose in t — |x|. To
this end, let

cl='=c,n{lr—rl<2}, CYV=C.N{U<t—r<2U}whenl <U < t/4

T

As above, we denote a slight enlargement on both scales by

T

U 7 17 17
C =CNi{=-t<t<—1,lt—r|<—4,
8 8 8

and
. 7 17 7 17
C.[:Cﬂ gffffgf,gUﬁ[—"S?U Whel’l1<U§‘L'/4.

These choices give
rt, (t—ry~U onCtU,C’y witht >4and 1 < U < t/4.

With these notations in place, we have

= U cklu|l U clucy?
1<R<t/4 1<U<t/4

where

CIP=C,n{t—r=1/2)N{r=>1/2).

On CE/Z, we have r ~ t and t — r ~ 7. We may regard this region as either a Cf or
a CY region (Fig. 1).
On occasion, we shall use C f ,C i] to denote an enlargement of C’f C‘y respec-
tively. In the sequel, it will be understood that 7, R, U always run over dyadic values.
In order to localize to such regions, we fix the following notation for cutoff functions.
Let x be a smooth, nonnegative function so that x (z) = 1 for z > 1 and x(z) = 0 for
z <7/8. We also set

9
B(@) = x@) —x (z — g)

sothat B(z) = 1for1 <z <2and B(z) =0whenz ¢ [7/8,17/8].
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U .
CT regions

CT/2

T

R .
CT regions

Fig.1 The decomposition of C; into C f and CTU regions

We will frequently use the mixed norm notation

oo
p p
”u”LPLq :/(‘) ”u(t? ‘)”Lq(R3)dt’

with the obvious alteration when p = oco. Unless specified, the domain of all mixed
norms of this type is Ry x R3. We also fix the following local energy norms, which

will be discussed more in the next section:

_1
lulle = sup R™2Nullp2r2®, xagy, lullppr = 11Qu, u/rliLE.

R>1

2 Local energy estimates

The integrated local energy estimate

||

o0
lll7 1 + 10217 2 < N10u(0, -)||iz+/0 /|Du| (|au|+—) dxdt (2.1)

r
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is frequently proved by pairing the equation Uu with a multiplier of the form
o + f(r)o, + A ir)u, integrating over a space-time slab, and integrating by parts.
The function f(r) needs to be C2, bounded, non-negative, increasing, and satisfy
—A(f(r)/r) = 0, which the function f(r) = r/(r + R) appropriately satisfies. See

[22], [18, 19]. We may rewrite this multiplier as

LA S S VR (PSS B sl GV P
Ty R T rER  r+R\T Ty r+R R

2.2)

which has the property that the coefficient of 9; — 9, — % is nonnegative and decreasing

in r, while the coefficient of o, + 9, + % is nonnegative and increasing. While there
are other requirements, this is the key observation to allow for generalizations of the
multiplier. In particular, we shall later consider

1 1
(1477 (a, — 8 — —) + (L4 r)Peovt=n (a, +0, + —) :
r r

Here oy (z) = z/(U 4+ 1z]), 6 > 0,and 0 < p < 2.

Multipliers of the form r? <8t + 0, + }) appeared previously in [3] and e =7 —")p,
in [1]. The combination of the two as reflected above is originally from [17]. The
change in multiplier on 9, — 9, — % provides an additional degree of decay on the
forcing term that helps to close the nonlinear arguments in the sequel.

We first record a corollary of (2.1).

Proposition 2.1 Suppose u € C>(Ry. x R3) and forall t € Ry, [3='u(t, x)| — O as
|[x| = o0. Then

oo
lullLpr + 10wl ooz S 10u(O, )liz2 +/0 I0u(e, )2 dt. (2.3)

The proposition follows immediately from (2.1) upon applying the Schwarz
inequality to see that

00 |ul o 00
10ul (10wl + = ) dxdr < (Joull s + 1wl ggz) | 18uG, g2 dr.
0 r 0

A Hardy inequality gives
I ull 2 S N18rull2,

which permits the first factor above to be bootstrapped.

We will now discuss the mixed r”-weighted and ghost weighted estimates of [17],
where the former is motivated by [3] and the latter by [1]. To begin, we look at a
variant of the Hardy inequality that holds in the space-time norms and yields a “good”
derivative. This, in essence, previously appeared in [17].
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Lemma22 Fix 0 < p < 2. Suppose u € C*(Ry x R3) and for every t € R,
rg|u(t,x)| — 0 as |x| = oo. Then,

r=l 4 p=l 1 < p=l 1
Ir) 2 ullp2p2 + 1r) 2 r 2ullpeore S IGF) 2 r2u(0, )22

YT Y@, + 8 )2 2. 2.4)

Proof We write
T p—1 T 00
/ /%uzdxdtz—/ f / (1+r)P! [(3t+3r)(r_l)] (rw)* dr dwa.
0 r 0 JstJo

form on S?. Integration by parts gives that this is

—1 —1
— _/%MZ(T’X)L{,C_Ff%uz(O,x)dx
r r

T -2 T —1
+(p — 1)/ [ﬂuzdx dt+2/ /%u(a, + 9,)(ru) dxdt.
0 r 0 r

Using that ﬁ < % in the third term and applying the Schwarz inequality to the last

term then shows that

T 1 p—1 1 p—1 1 p—1
(—|p— 1|)/ /%uzdxdur/%uz(r,x)dm/%uz(o, X)dx
0 r r r

+r _] 1
1 | p—1 2 T
0 7 0 ru

Bootstrapping the first factor of the last term and taking a supremum over 7 then
yields (2.4). O

We next record what, in essence, is the main new estimate of [17].

p+2
Proposition 2.3 Fix0 < p < 2. Ifu € C2(Ry x R3) and r*= |9="u(t, x)| — 0 as
|x| = o0, then

p=l 1
1r)P (B + 0p)ull o2 + Ir)P Vull poop2 + [I{r) 2 r 2uI|LooL2

@ —1
) T @B+ dull 22 + 1100 B 2WthILszJrH(r) Tl

+sup U™ 2||< >7 3+ 9y Yru)ll 22 xy)
U=>1

<P P20, i + 1) E @ + 800, 2 + 1) 2 Fu(©, i,

l 1

ptl
22 Du"%sz(Cf) +Z > Ul 2D”"i2L2(c§/)

T R<t/4 >4U
(2.5)
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Proof Noting that

Ou =1 (af—af— v - V) (ru), <3z+3r+%>u =r~1 @ +9,) (ruw),
(2.6)

we consider
! 1
/ /(1 +r)Pemv 0Oy (a, + 0y + —) udx dt
0 r
T 00
- / /Sz / (14 r)Pemv=n (atz —07 -y W) (ru) (9 + 9,) (ru) dr dwdt
0 0
for 0 < p < 2, which, using (1.4), is equivalent to
1 (7 o
2 / /S / (1 +1)Pe™V = (@3 — 3,) [(3 + 8,) (rw))? dr dwdt
0 0
e 00
*3 / / / (14+r)Pe D @+ 9,) ¥ (rw)* dr dwdi
2Jo Js2Jo

T 1 p
+/ / / ﬂeﬂv(’*”w/(m)ﬁdr dwdt.
0 sz Jo r

Subsequent integrations by parts then give

! I
/ / (14 r)Pe=ovt-n0y (at Lo+ -) wdx dt
0 r
1 = —oy (t—r) 2 ) T
_ E/Sz/o (1+r)Pe™ov [[(at+a,)(m)] 1Y (rw)| }drda)‘tzo
1 T
0 s?
p (" o0
+5/0 /;2/0 (14 r)P=le™ VD (3 +8,) (rw)]? dr do d
T 00
+/ /SZ / 1+ r)pa-l’](t _ r)e—JU(t—r) [(3; + 8,) (ru)]2 dr dewdi
0 0

T ® (1 P
+ (1 - 3) / f / QDT o090y 2 dr deo di
2 0 s2 Jo r

T ® (1 p—1
+§/0 /52/0 %e*”m*fnW(ru)ﬂdrdwdt. 2.7

Rearranging the terms, noting that

1
oy(t—r)z ——, onXy,

(t—r)
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and taking a supremum over 7 yields

2o 2 L 2 =l 2
Ir) 2r™ @ + 0 (ri)lly cop2 + 1M 2 Vullycopa +1(r) 2777 (3 + 8r) ru)ll 72,2

P _1
2 —r) "2 O+ 9 w124

p _1 2
I3Vl +sup ) o)

D o0
S Eru, 12, + 107 2 puc0, I3, +/0 /<r>1’|Du||r—1<at +0,)(rw)|dx dt.

By the Schwarz inequality, we may bound

o0
f /<r>”|Du||r‘1(at +9,)(ru)| dx dt
0
1

ptl ’ il
g (Z D 2 Dunisz@)) 1y 2 P @+ 0wl 22

T R<t/4

U |Lt=4U

1
2
4 1
+l§ {2 U|<r>’2DunizL2(CrU)} ](slu/pU‘z|<r>5r“<a,+ar><ru>||Lsz(XU>>(2.8)

The second factor of each term may be bootstrapped. Combining what results with
(2.4) completes the proof. O

We next combine the previous proposition with a modification of the (9; — 9,)
portion of the multiplier in (2.2). While the new 9, — 9, terms are easily controlled
using the LE' norm, the corresponding forcing term comes with an added factor of
decay, (1 + r)~%, when compared to the right side of (2.1).

Theorem 2.4 Fix0 < p <2andd > 0. Ifu € CZ(R+ x R?) andrpTH|851u(t,x)| —
0 as |x| — oo, then

10r) ™% @ = 0p)ull o2 + 11075 @ + 0l oo + 11(7) 3 Wl oo 2
1) T Rl e+ 10T @B — 3wl 22 + 16T B + 8wl 22
1) T Wl o + 1070 T+l o2
+sup U210 57 @+ 00 )l 21200 S 1077301 — 8)u0, )l 2

P _

FIrY 2@ + 00, gz + 1) Fu©, g2+ 10 2r (0, )2
1
2

1= Iip
) T Oull gz + (D0 D0 1602 Oull o ey
T R<t/4

1
2

+3 | X vl O e, |- 2.9)

U >4U
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Proof Using (2.6) and the related identity

r

(1= )u=r
0 — 0 — = Ju=r—" (8 —9) (ru),

we begin by considering

r 1
/ /(1 +r)70u (a, -9, — -) udx dt
0 r

T [ee)
= / / / (14+r)7° (83 S y) (ru) (3; — 9,) (ru) dr dw dt
0 s? Jo

with § > 0. Integrating by parts and using (1.4), this is

1 [T o0
N _/ / / (1477 @ + 3, [0 — 3,) rw))* dr dewdt
2Jo Js2Jo
T ® (1 -4
—/ / / 4D 9wl drdods
o Js2Jo r

1 T 00
+—/ / f 1+ @ —3) | ¥ruw*drdodt.

2Jo Js2Jo

The Fundamental Theorem of Calculus and subsequent integrations by parts give

T 1
/ /(1+r)*5mu (3,—8,~—7)udxdt
0 r

_! = -5 ) ) T
= 5,/52[) (1+r) {[(31*30 (rw)]” + |V (ru)| }drdw‘r:o

T T 00
—1/ f uz(t,O)dwdt+§f / / A+ 10 — 0 rw)? dr dwdt
2 Jo Je 2Jo Js2Jo

T o]
_/ f / A+r° (r_l +§(1+r)—1>|y(ru)|2drdwdz.
0o Js2Jo 2

We now consider a multiplier of the form

(2.10)

1 1
(14+mn7° (a, -9 — —) +C(1+r)Pemovt=n) (a, +0r + —) . C> 1,
r r

by adding a large multiple of (2.7) to (2.10). Since oy is bounded independently of
U, for a sufficiently large C,

c (T 1 (7
—/ / e*av(”uz(t,mdwdt——/ / u*(t,0)dwdt > 0,
2 0 S2 2 0 S2
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and as such, this » = 0 boundary term may be dropped. The nonnegative contribution

l/ /00(1 1) YUY (T, roo)2 dr deo
2 Js2 Jo

may also be omitted, and since §, p > 0, we can simplify by bounding

o0 o0
1/ / (147 Y0u) O, rw)|? drdow < 1/ / (1 + 1P Y Gu)©, rw) | dr do.
2 Js2 Jo 2 Js2 Jo

What then results from this combination of (2.10) and (2.7) is

5 2
[a+n=2r" @ -0 0w

L>®L2

n H(l 5 @+ 8 (ru)’ ?

LooLZ

+ H(l +r)2 WMHL‘X‘LZ

+|a+ r)*ﬁr*l @

et laEn T G

+H(1 +r) 2

L1212

HsupU” H(l b @+ o) ew

L2L2(Xy)

<latn i@ ewo. |

/ /|Du|{(1+r) ( -9, —%) + (1 +r)? <8,+8r+%>u}dxdt.
(2.11)
We use (2.8) and the fact that the Schwarz inequality allows us to bound
o 1
/ /|Du|(1 +r)7? (at — 8 — —)u dx dt
r
SN +7) T Dull 2l +1)7 27 @ = 30wl 22

Bootstrapping then gives

1r) 2 @y — 3 )l o2 + 1P 2P @ + 8 i)l oo 2 + 147) 2 Fatll oo 2
) @ = 30 w2 + 107 T B+ ) Gl 22
1) T Yl o2
+sup U214 51 @ + 90l 22000y S 11002 @r — 80u(0, )]l,2

) 2@+ 8)u(0, )z + 1) T Wu©, g2 + 1) Fr~ w0, )l
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1
2

1=s tp
) = Oull2gz + (D D0 100 Oullzpz oy

T R<t/4
1
2
P
+> | 2 Ul 20ullzzpz o,
U >4U
Pairing this with (2.4) then completes the proof. O

3 Sobolev estimates

In this section, we collect our principal decay estimates, which are variants of the
Klainerman-Sobolev estimate [12].

On occasion, it will suffice to apply the following standard weighted Sobolev esti-
mate, which is also from [12] and follows by applying Sobolev embeddings in the r
and o variables after localizing.

Lemma3.1 Forh € C®(R?) and R > 0,

InllLoar S RZ=2h] . (3.1)

(AR)’

Where a finer analysis is necessary, we shall use the space-time Klainerman-Sobolev
estimates of [20, Lemma 3.8]. We record these in the following lemma.

Lemma3.2 Ift> 1,1 <R <t/2,and1 < U < t/4, then

1
2 2
lwllpoo oo (cry S ﬁ”zs wll226r) + ﬁ”arZS w”Lsz(CR), (3.2)
T2R2 T T2R2 T
|
1 ’ U2 2
lwll oo Lo (cv) S ——lz= w2260y + —5 118, 2= w”LZLZ(CU)- (3.3)
202 T T2 T

We shall only tersely describe the proof since this result previously appeared in
[20]. If R = 1, (3.2) is an immediate consequence of standard Sobolev embeddings.
Andif 1 < R < 7, then after localizing, we may apply Sobolev embeddings in (s, w)
and the Fundamental Theorem of Calculus in p where t = ¢® and r = e*™°. This
gives that

(OUCOTTR
(1S TP (2)o(55) weemnal)

1/2
d,odsdw) .
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Relying on the observations that

s (w(e', e w)) = (Sw)(e’, e w), |du(w(e’, e Pw)| < [(Qu)e’, P o),
p(w(e', e Pw)) = (ro,w)(e’, e P w),

upon changing variables in the integrals, we see that

1 2
||w||LooL00(C§) ,S T%R% ||ZS wHLZLZ(C"er)
1 <2 <2
Iz “Lsz<cR>“3 z= ||L2L2(CR). (3.4)
T

The estimate (3.2) is now an immediate consequence. Moreover, if R = t/2, if we
replace w by x (2(t ”) w and note that § (X (@)) = (1), the estimate for
Ctt/ also follows.

When U = 1, the bound (3.3) follows from (3.4). Otherwise, with t = ¢* and

t —r = e’ a similar application of Sobolev embeddings yields (3.3).
When the estimates of [20] are applied to dw, the decomposition pairs nicely with

28w = (t+r)(0; + 0p)w + (t —r)(9; — 0w, 3.5)

which will allow us to recover [J to get additional decay out of the second derivative
terms. This represents space-time analogs of some estimates of [13]. See, also, [16]
where some similar analyses appeared previously.

Corollary3.3 Fort > land1 < R <7t/2,1 <U < 1/4, we have

1 1
0wl oo ooty S — 3||azf3w||L2L2(55)+l—RLIIDZSZwIILsz@), (3.6)
T2R2

T2R2

1
10Z=wl 127200y + —1 T I1BZ=2wl 21200y BT

lowll oo cvy S —73 T
Uztz Uitz

Proof We apply (3.2) to see

1
19wl poeicty S ——5 10Z=20l 22y + 7 18- 0252wl 212 ony - (B:8)
T2R2 T2R2
We notice that
1
”a WZ w”LZLZ(CR) ~ ”8Z w”LZLZ(CR) (39)

follows from (1.4) and (1.5). Moreover, by applying (3.5) with w replaced by (9; —
9.)Z=*w and (93; + 9,) Z=2w respectively, we obtain

10 = 02 Z=wll 226y S 5 Ljaz= Swll22@ry + 167 = D ZZ2wl 212 6n),
(3.10)
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and
1
10 +0°Z=wll 22 ey S GNOZZ Wl 2 g2 ey + 1O7 = D 252wl 226y
(3.11)

Observing that
19,0 Z=2w| < 18, VZ=2w]| 4 18,3, — 9,) Z=>w]| + 19,3, + 9,) Z=>w|

and subsequently writing 9, = % [(8; + ;) — (3; — 9,)] in the last two terms, we see
that

18, 0Z=2wll 1212 cry S N0 ¥ ZZ2wll 2 2y + 1@r = 30 Z52wll 226y
@+ 0)°ZFwll 2 2ny
+137 = N Z=wll 2 2cx)- (3.12)

Using this in (3.8) and the estimating via (3.9), (3.10), and (3.11) gives

< l <
Bl oo poocry S ——3 ||BZ—3wIILsz(5R) e [ 8r2)Z_2w||L2L2(C‘R)'
TIR2 ! T2R2 4
Relying upon
2 2 2
8t—8,=D+;8r+W~W (3.13)

and (1.5) yields (3.6).
For (3.7), we argue similarly. By (1.4) and (1.5) (applied to 9, Z=>w), we obtain

1
1Y ZZ2wll 21260, S 1025wl 22 cp)-

And using (3.5) with w replaced by (9; — 9.)Z=2w and (8, + 3,)Z=2w respectively,
we see that

1 T
16 = 00?252 wl 22y S NIZZ w22y + 107 = D ZZ 0l 2o oy,

1
10+ Z=wll 22 ey S ZI0Z5 2wl 22y + 107 = 9D Z w212 ey,

Using these in (3.3) and the (t"y analog of (3.12), in combination with (3.13) and (1.5)
as above, we see that

1

10wl oo poe(cty S — 1025wl 20 ey + —510-0 252wl 12 0
Uitz T T2 T
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1

S 1025wl 2000y + — 1025wl 2260
Uzr2 ' Uzr2 ‘
which completes the proof. O

4 Global existence

Here we provide the proof of Theorem 1.1. To do so, we set up = 0, vp = 0 and
recursively define uy, vx to solve

Oug = (0 + 0y )ug—1 0 vk—1 — Opttg—1(9; + 0r)Vk—1 — Wttk—1 = W Vg1,
vk = 0rug—1 0rvg—1,

(w0, -), 0ur (0, -)) = (u), u1)),

(vk (0, ), vk (0, -)) = (v(), V(1))-

A.1)

We will show that the sequences (u;) and (vi) converge. The limits yield the desired
solutions u, v to (1.1).

4.1 Boundedness

WefixO<p<1,0<6 < min(p, 1 —p),anleargeenough so that % +3<N.
We then set

Pt =t =
M= 1) T 9ZNugll o2 + 1) T r ' Z5Nul oo + 1) = 925N uell 22
p=l
+1r T r 2 Nl N Z5 N ukll g + 18 Z5N gl oo 2
_ 145 _$
+ry ™ T 02N uell 22 + 1) 29 Z "N vk oo 2

1
+sup sup (r7R||8Z5%uk||LooLOO(CR)>
T R<t/2 !

=

18 N 2
HX X (R 02 lmpnien)
T R<t/2

1 N
+sup sup <tU7||8257uk||LocLoo(cu))
T Us<t/4 ’

=

_8 1 N 2
+H Y (rl 2U2||az—zvk||LooLoo(Cy)) . 4.2)

T U<t/4
For any k > 1, we shall show that

My < Coe + CM}_, (4.3)
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for some fixed constant Cy. Provided that ¢ > 0 is sufficiently small, a straightforward
induction argument then shows that

My < 2Coe 4.4)

for any k.
The product rule gives

125V Ol S 10257 w1102V vy | + 102N w1 1025 F vl (45)

Hence,

L‘H <N
1(r) 2" 0Z="urll 212 cky
1 p+é

_ 1 _Jpro 1 N _ 148
SJT 2R <T2R“aZ§2Mk7]||LooL00(C5)) ||(r) 2 BZSva,]HLsz(Cf)

+7

09—

Jias) L 1-8 N
R'T (PRH0Z5F vl peiep ) 1250wt g (46)
and

1 yA
Uz || (}") 2 DZSNuk ”Lsz(Cy)

polts (1 N _1 oy
<tz (U2‘1:||8ZSZuk_1||LocLoo(CU)> 1) =3 025N w1212

p=l143

T (U211_7||8Z—2vk 1||LDOLOO(CU)) 1ZNu i . @)

From this, it follows that

I4+p
> 2 1 07 kL e,

T R<1/2

D=

BI—

+Z Y U OZ= Ny | S M- (4.8)
t>4U

By (2.5) and (1.2), along with a Hardy inequality, we get
Ir) ' gz=N uell 22 + 1) T r 25Nl 2 e S e+ M. (4.9)
As the above argument does not rely on the null structure of Lluy and we also have

1Z=N 0w S 1025w 11102V vy | + 102N w1 |10Z=T vy, (4.10)
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the same arguments show that

1l —

Z Z ||(}" DZ— Uk”LZLZ(Cf)

T R<1/2

+Z Y Ul zDzstk”izLQ(CTU) <M, (4.11)
T>4U

which we shall use later.

Itis in the process of bounding || Z=N uy ||, g1 and |0 Z=N u || ;oo ;2 that we will need
the null condition. A finer alternative to (4.5) that takes care with the good directions
is

N < <N <
025w | S1Z257 001 112N Jur—| + 1257 Jur 11125V duea|
N N
HZ=2 dup—t [1Z=N Joem1 | + 1257 et 125N dup—s | (4.12)

We need to consider

/0 1Z=N D Gs, >||des<2f 1Z=NBur(s, )l a,;) ds-

jz0

To each lower order term in (4.12), we apply (3.1) to see that this is

_7 p—l
<y / 2 T 25N a1 5. llgzea)
Jj=0

_Lﬂ
1)~ 5 255 200y s, ')||Lz(gzj)ds

+Z/ 2T 25 g, )
J=0
NEY
”LZ(A ,)Il(r) T 72N vy (s, .)||L2(A ,)ds
+Z/ 277]” 77Z—2+28uk 1(s, +)
Jj=0
p=1
”LZ(A .)Il(r) 2 ZSNavk_l(& ')”L?(Aj)ds
I B RER I [ER P VTS

Jj=0
—1

p-1 N
2 ) = Z52 2 g (s, Dl ) ds-
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By the Schwarz inequality and (1.3), this is

S (100% 92N il + 10) 7 ' 25N w22
_ 148
<N =T 025 vy 212
<N 2l -1
12Nl (10T 92wl + 10T 7 25N 02,2

provided % + 2 < N, which is clearly (’)(M,f_ 1) as desired. Hence, due to (2.3) and
(1.2), we have shown

1Z=Nug )l pr + 102N ug || poof2 S &+ M7, (4.13)
In order to address the v terms, we next consider
1= <N
[(r) 2 Z=" Dokl 1212

To the lower order factors in (4.10) we apply (3.1) to see that this is

<ﬂ 2 _ 143 <N
SIBZ=2 2wl oo 2 1)~ 2 9Z= N vt 242

N _ 148 Nio
HI0Z5 N w1 || poor21(r) ™7 9Z=T 0y 122

Since & > +2 < N, thisis O(M,f 1)- When combined with (1.2), (2.9), (4.11), and the
observation that

_3 _3 14
1r) 20 Z=N gl ooz S I "2 — 3) Z=Nvgll ooz + 17 2 YZ=N vg |l oo 2,

this gives
p=1 a
1Y T 92V vl 2ge + 107 T P 25N ul ap + 1175 025N gl 22
3
+Ir) 202N vl o2 S &+ ME . (4.14)

In order to show (4.3), it remains to bound the L% L terms in (4.2). Applying
(3.1) to each lower order piece in (4.12), we see that

d—p

—p _3 N p=1
¢ S RN EZ= 5200 1210 T 25N 2,2

1
R2(|Z=NDukll 2,2
S—p p=1 Ny 3 <N
R2(r) 2 Z52 2 gupi 22 I1r) "2 Z5N 0vg—1 | oo 2
_r N.io =l N
+R™INZ=229u | o2 1r) 2 ZZN Jop_i 122

_p <N E <ﬁ 2
FRTZNZEN u—t [l oo 2116r) T ZZ 2 Jupt 20

And thus, by (3.6) and the facts that % +2<Nand0 <é < p,
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1 N _1 N
TARIDZ= 2 ugll oo poery S 10729252 Pull 22y
_$ p=1
I 2 Z=V du o2 10r) T Z5N Jup—y Nl 212

<N ol <N
HIZ="0ui—1llpoop21{r) 7 Z=" Jug—1llp2p2

for 1 < R < t/2. When this is combined with (1.3) and (4.13) it yields that

Sup Sup (T%R”azf%uk”LmLm(CR)) SJ & + M]g—l' (415)
T R<1/)2 T

Similarly using (3.1) and (1.3) in (4.10) instead gives

_; _ 144
1Z=N Ol 2o ey S RTT 1025 T o2 107) ™ T 02N vl 20y

“ T z=r2 .
R™72(r) 2 0Z k1] rréEs 10Z=Nur 1l o2

When combined with (3.6), this yields

) 145
IR IOZE T vl e ey S P T 25T 0l o,
HIOZ= 2 2wyl e p2167) ™ T 02N 01l oy oy

a8 N .o
+ 2 0Z=2 7=<N
ll{r) 0 ve—1l 2L2(CR llo ui—1llpoor2,

which upon pairing with (4.14) gives

3-8 N 2
>3 (RT||azfzvk||LooLw(05)) <e+ M-, (4.16)

T R<t/4
Using (3.7) in place of (3.6), these same arguments show
1 <N Y
Uzz|dZ=2 “k“LOCLOO(Cy) Sry2Z=z “k||L2L2(C*1U)
_3 p=l
) T2 2N duet oo 2 107) T Z5Y Pu—i 22
p=1
HNZ=N dup il oo g2 l1(r) 2 ZZN Pl 22,

and

L ,ﬂ N
U 3025 F uell oo miery S 10T Z5 30l 12
'|'||8Z7 Mk—l||L°°L2”<r>7TBZ_ vk—l||L2L2((~j£/)

148 _N.o
HI)TF0Z= w1075 e
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When these are combined with (4.13) and (4.14) respectively, we obtain

1 N
sup sup (rU7||8257uk||LocLoo(CU))
T Ust/4 ’

1

2

51 N 2
+3Y Y (tl 2U2||3252vk||LooLo<>(C£/)) <e+ M2 . (417)
T U<t/4

The combination of (4.9), (4.13), (4.14), (4.15), (4.16), and (4.17) prove (4.3) and,
hence, (4.4) as desired.

4.2 Convergence

It remains to show that the sequence (uy) and (vg) converge. We set

p=1 p=1
A = 117 925N g — w22 + 100 7 7 25N (g — ug—1) 122

p—1
+14r) =T §Z=N (o — 1) 1122
ol
) T e 2N o — vkmD D22 + 125N (e — w1l
HIOZ=N ke — ug—1) |l o< 12

_ 148
+14r) ™2 Z=N (v — vk—Dl 212

1 N
+sup sup (t?R||8ZS7(Mk—Mk—1)||LocL°<>(cf))
T R<t/2

1
2

) N 2
+ Z Z (R 2 ||8252(vk—vk—l)llLooLOO(c,R)>

T R<t/2

1 N
+sup sup (IU7||8Z57(M1<—Mk—1)||LooLoc(cy))
T U<t/4

D=

I N 2
+ Z Z (Tl 2U2||az§2(Uk_vk_l)”LOOLOO(C%/)) . (418)

T U<t/4

We seek to show that

1
A < zAk—l, 4.19)

which implies that the sequences are Cauchy and thus convergent.
We note that
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N
1Z=V Ok — uk—D)| S10Z=7 (w1 — ug—2)10Z=N v
< <N
H10Z=N Uy — ug—2)|10Z=7 vp_y |
<N <N <N <N
HOZ=2up 2|0 Z=" (v—1 — vk—2)| + 10Z="u 2|[0Z=7 (V-1 — vk—2)I,
(4.20)

< N
1Z=NOe — ve— )| S 102572 (ug—1 — ug—2)19Z=N vy |
N
HAZ=N (ug—y — uk—2)|10Z=7 vp_1|
N N
HIZ=Z w2 |10Z=N (vp—1 — ve—2)| + 10Z=N ug 2|10 Z=7 (vp—1 — vg—2)I,
4.21)

and

N
10Z=N g — up—1)| S 1257 001 125N Jup—1 — ur—)|
7=N ZS% _

=+| ovk—1l] Pug—1 — ur—2)|
N N

HZ=7 Jural|Z=N 0 (vk—1 — v + 125N Jup 21257 3 (vk—1 — vk—2)|
N N

HZ=7 Jue 12N 0 (uk—1 — uk—2)| + 1 Z=N Joe 11257 0(ug—1 — ug—2)|
N N

HZ=7 Jok—1 — )1 Z=N dup—a| + 125N Fok—1 — ve—2) 1257 dual,

(4.22)

which will be used in place of (4.5), (4.10), and (4.12) respectively. Arguing as in the
proof of (4.3) then shows that

Ap S (My—1 + Mr—2)Ag—1.

Provided that ¢ is sufficiently small, an application of (4.4) immediately yields (4.19)
and completes the proof.

We end with a brief remark about the asymptotics of the solution. The solution u
is also bounded in the norms given by (4.2). Indeed, by examining the last two terms,
one can immediately observe that u as more rapid asymptotic decay O (¢~ ") than the

. . 14t
component v, which instead is O(r~12).
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