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Abstract

We examine type D ASEP, a two-species interacting particle system which generalizes the
usual asymmetric simple exclusion process. For certain cases of type D ASEP, the process
does not give priority for one species over another, even though there is nontrivial interaction
between the two species. For those specific cases, we prove that the type D ASEP is self-dual
with respect to an independent product of g-Krawtchouk polynomials. The type D ASEP was
originally constructed in [15], using the type D quantum groups U, (s06) and U, (sog). That
paper claimed that certain states needed to be “discarded” in order to ensure non-negativity.
Here, we also provide a more efficient argument for the same claim.

Keywords Exclusion - Quantum groups - Markov duality - Orthogonal polynomials

1 Introduction

The asymmetric simple exclusion process ASEP was introduced by Spitzer in 1970 [18]. The
ASEP can be generalized to multiple species [16]. This paper considers the type D ASEP,
introduced in [15]. The state space of type D ASEP consists of interacting particles of two
species on a one-dimensional lattice, where at most one particle of each species may occupy
a single site, and two particles may occupy a site only if they are different species. Thus, if
the lattice has L sites then there are 4- possible configurations. Most generally, the type D
ASEP has three parameters (g, n, §), where g € (0, 1), n € N and § € R. Roughly speaking
g is the asymmetry parameter, n characterizes the speed of the drift, and § quantifies the
interaction between the two species of particles. When § = 0 and n = 2, 3, it was proved
that the type D ASEP has blocking measures and Markov self-duality which are independent
copies of the single-species blocking measures and Markov self-duality.
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The main result concerns Markov duality (see also [1-5, 13, 14, 17] for type D AESP with
parameter (g, 2,0) and (g, 3, 0). The previous duality function of [15] was a “triangular”
duality generalizing Schutz’s duality function [17]. In this paper, we produce an “orthogonal
polynomial” duality function. Recent work on orthogonal polynomial duality functions was
done in [6-10]. More specifically, the paper [7] proves that the g-Krawtchouk polynomials
are duality functions for the single-species ASEP. In this paper, we will prove that the type
D ASEP with parameters n = 2, 3 and 6 = 0 are orthogonal with respect to an independent
product of g-Krawtchouk polynomials. Because these polynomials have an additional param-
eter « that is dependent on the reversible measures, they are more suitable for asymptotics
than the triangular duality functions.

The Markov duality will be proved with two different methods. The first is a direct prob-
abilistic argument, using induction on the number of lattice sites. The second is a more
algebraic method, using the *-bialgebra structure of 4, (s0s). The connection between sog
and type D ASEP was explored in [15]; in fact, sog is the type D Lie algebra, providing the
namesake for the type D ASEP. In that construction, two of the six potential particle con-
figurations were “discarded” in order to ensure non-negativity of the jump rates. That paper
uses a computer-aided construction of a Casimir element. Here, we calculate the “reversible
measures” that would appear if all six potential particle configurations were used. While
these measures have a factorized form, they do not appear to be an independent product for
any values of (n, 3).

2 Preliminary Definitions
2.1 Definition of the Type D ASEP

The continuous-time Markov process of interest is named the type D Asymmetric Simple
Exclusion Process (ASEP) with parameters (g, n, §). There are two species (or classes) of
particles, which we will call “first-class” and “second-class” and will label with 1 and 2
accordingly. Particle interactions take place on a one-dimensional lattice of L sites A; =
{1,..., L}, L € N. We denote the state space of the type D ASEP on L lattice sites by ..
Forn € Qr,andx € Az, let n* = (n7, ;) denote the configuration at site x and 7 and 1}
count the number of first class and second class particles at site x, respectively. We denote
with n; = (n}, ey 771L) the “filtered” configuration obtained by removing all second class
particles from n and ny = (n%, ey nzL) the “filtered” configuration obtained by removing
all first class particles from 7.

For the dynamics, we will assume closed/reflecting boundary conditions in the case of
finite L, in that a particle that wishes to jump outside any outer lattice site is blocked from
doing so. Likewise, a particle that wishes to jump to a lattice site that is already occupied by
a particle of its same class is blocked from doing so. An explicit, but lengthy, description of
the model can be found in [15]. In the present paper, however, only formulas are needed.

First, the generator for a two-site model (i.e. L = 2) will be given below. We index the rows
and columns by ordering the possible configurations lexicographically, where 0 denotes an
empty site, 1 denotes a class 1 particle, 2 denotes a class 2 particle, and 3 denotes both a class
1 and class 2 particle: (0, 0), (0, 1), (0, 2), (0, 3), (1,0), (1, 1), (1, 2), (1, 3), (2,0), (2, 1),
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(2,2),(2,3),(3,0), (3, 1), (3,2), (3, 3). The generator is then a 16 x 16 matrix explicitly’
given by (for § = 0)

0 0 0 0 0 0 0 0 0 0 0 o o 0 o

where the diagonal entries are chosen so that the rows sum to 0.

Remark 1 All the off-diagonal entries in the generator above are non-negative wheng € (0, 1)
andn € N.

Remark 2 The jump between (3, 0) and (0, 3) has none zero rate, which means we allow two
particles to jump at the same time, this is not usual in interacting particle systems. In [15], the
model was described to have the clocks located at the bonds between adjacent vertex sites,
thus we can have jumps between (3, 0) and (0, 3).

Letting £ denote the 16 x 16 matrix above, the generator in general is given by
£l24 23 4 4 pLolL

where £%**! is usual notation, denoting the matrix acting on adjacent lattice sites x and
x + 1. Note that when there are only species 1 or 2 particles, then the jump rates are

(@Y 4 g,
making it a usual ASEP with time rescaled by (¢'=2" 4+ ¢2*~!). However, the parameter n

also appears in the interactions between the species of particles.

2.2 Duality

Two Markov processes X, Y with corresponding state spaces X', ) are said to be dual with
respect to a function D : X x Y — Rif, forallx € X,y € Y, and ¢t > 0, we have

E[D(X(1), y)] = Ey[D(x, Y (1))]. ey

When the processes in question are independent copies of each other, we refer to the above
property as “self-duality.”
The following condition, called the “interlacing property”, is equivalent to Markov duality:

LxD = DL}, 2

where Ly, Ly are matrix forms of the generators for the processes X, Y, and D is the matrix
whose entries are outputs of the duality function (all these matrices are assumed to index

! The matrices were generated with Python code, and is available from the third or fourth authors upon request.
The Python code also verified the duality result for 3 lattice sites, corresponding to 64 x 64 matrices.
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their rows/columns with x € X and y € ) in an identical manner). In the case of self-duality,
the interlacing property becomes

LD =DLT. 3)

We note that this interlacing property is particularly useful for computationally verifying
Markov duality for a fixed number of sites.

2.3 g-Deformed Notation

Define g-exponential, the g-analog of an exponential function, as

[.¢] xn
exp, (x) = Z
o !
where
n
1—qg"
{nlg! =] |{nlg, f{n}y = :
q 1!:[1 q 1Ty
with {O},! = 1.
We define the g-Pochhammer symbol for a € R and m € A as follows:
m—1
@ @ =[]0 —ag"y =1 -a)1 —ag)---(1 —ag" ™", “
k=0
as well as
oo
(@ @)oo =[] (1 —ag") = 1 —a)(1 —ag)(1 —ag?) -, )
k=0

and also employing the notation (a),, := (a; qz)m and (a) o := (a; qz)oo.
We can rewrite the g-binomial coefficient in terms of this notation:

n )
(k)q 1 (qz)k
Define the new g-exponentials
o0 n o0 (”) n
z 1 q\¥z
es(2) = =—— for |z] <1, and &,(2) = = (-2 @)oo-
! HX:(:) @ @n (@ 9o ! ,12::0 @ @n e

2.4 Algebraic Definitions
2.4.1 The Lie Algebra soym,

In this paper, we examine the soy, Lie algebra, which is defined as the following set of
matrices:

509, (C) = {(é g) ‘A,B,C,D eC™m A=-pT' B=BT C= CT}. @)
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Define the Cartan subalgebra b of s0,,, as the subalgebra of diagonal matrices in s07,,.
Since s0,,, is a semisimple Lie algebra, g = s09,, can be written as a direct sum

QZbGB@gi
Bi

where B; are linear functionals corresponding to the positive simple roots of s0y,, and g are
the one-dimensional eigenspaces of the adjoint representation of b, i.e. for each & € h and
g€g lhgl=p8Mhg.

The soy,, Lie Algebra corresponds to a type D,, Dynkin diagram. We can define a Cartan
matrix to encode the D,, Dynkin diagram as follows: an entry —1 in the Cartan matrix
indicates a single edge between nodes i and j and an entry of O indicates no connection
between the nodes.

2, i=7,
aij=y—-1, {i,j}={m-2,mor{k,k+1},1 <k <m—2,
0, otherwise.

Note that since f; correspond to the positive simple roots of 502,,,

(Bi, Bj)
(Bi, Bi)

ajj =2

= (Bi. Bj)

due to the properties of root systems.
Diagram Automorphisms of s0zp,

Definition 2.1 A diagram automorphism ¢ permutes the nodes of a Dynkin diagram while
preserving its edge-vertex connectivity, i.e. a;; = ag()p(;) forall 1 <i, j <m.

Let Aut(g) denote the group of diagram automorphisms of a Lie Algebra g. We have that
Aut(Dy,) = Z/2 form>5andm =2,3
Aut(Dyg) = S3 The symmetric group on 3 elements

In this paper, our focus is on s0¢ and sog. In the first case, Aut(D,,) corresponds to the
transposition of the two final nodes {id, (m—1, m)}, while the special case of m = 4 yields the
automorphisms {id, (1, 3), (1,4), (3,4), (1,3,4), (1,4, 3)}. A diagrammatic illustration
is shown in below figure.

D3: Dy:

Let ¢ (i) be a diagram automorphism of so0y,, overi = 1, ..., m such that ¢2=id. The
non-trivial possibilities for ¢ are:

506 : (2, 3);
sog : (1,3),(1,4), (3,4).
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2.4.2 The Quantized Enveloping Algebra U4, (s02m)

A primary motivation for using algebraic methods in probability stems from taking universal
enveloping algebra’s of an underlying Lie algebra g, and q-deforming it into the quantized
enveloping algebra U, (g).
In this paper, we focus on the quantum group U, (502,), the quantized enveloping algebra
generated by {E;, Fi, ¢ : 1 <i < m} satisfying the following relations:
H; _ ,—H;
B, Fil =11

_q,] ’

qu Ej — q(ﬂiaﬁj)quHi’ qu Fj — q—(ﬁi,ﬂj)quHi,
E}E; + E;E? = (q+q DEEE;, F}F;+F;F}=(@+q Y FFjF. (8

Note that we use K; := ¢’ throughout the rest of the paper.

2.4.3 Coproduct Structure of Ly (so2m)

We define the coproduct on 4, (s03,,) by specifying the coproduct on its generators:

A Uy (502) —> Ug (502im) ® Uy (502y) Vvia:

ANE)=E®1+K ®E, AF)=19F+F®K "', AK)=K ®K.©)
The coproduct is extended to the entire quantum group by defining it to be an algebra homo-
morphism.

We will also need to define higher order powers of A from U, (s02,,) to arbitrary tensor

products of copies of U, (502,,). We again do so by specifying actions on the generators of
Uy (502m):

AL Uy (500m) —> Uy (502) ® - @ Uy (502) Via:

L+1 times

L
AME)=)"Ki® @K ®E®I® -l

JL 0 j times L—j times 10)
AMF)=) 18 ®IQF QK '® @K'
J=0 j times W
AMK)=Ki® - ®K;.
L times

An induction proof on L shows that these indeed are the iterated coproducts on the
generators in (9).

We refer to the previous literature [11, 12] for a general theory of quantum groups and their
Hopf-algebra structures. In this paper, our focus is on the product, coproduct, and *-structures
on Uy (s02).

2.4.4 Representation Theory of Uy (s02m)

Let &; ; denotes the indicator matrix with 1 in entry (i, j) and 0 elsewhere.
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The representations of U, (s02,,) are built upon the fundamental representations of s02,,
from [15]. We define p : U, (502,,) — Hom(C2™, C2™) as follows forall 1 <i < m:

D(E) = i+l — Emtitlm+i» 1 <i<m—1,
1 - .
éamfl,Zm - (gom,mel» L =m,

Eitli — Emvim+i+l, 1 <i<m—1,
p(F;) = ' - .
_éamel,m + me,mfl’ L =m,
(11)
D(H) = Eii = Gitlitl — Emtim+i T Emtittmtitl, 1 <i<m—1,
' gm—l,m—l + @(dm.m - <9@2m—1,2m—1 - g)Zm,va i=m,
p(Ki) =" ™, p(K;™h) = g7,
2.4.5 =-Structure on Uy (s02m)
For later use, we introduce explicit forms for the *-algebra structure on Uy (502,,).
It can be checked easily that
Ki =K, Ef=F. F'=E (12)

gives a *-structure on Uy (502,,).
The *-structure is not unique, there are more based on the automorphism ¢ of the Dynkin
diagram of Uy (502,,) as defined in Sect.2.4.1.

Lemma 2.2 The quantum groups U, ($02,,) is a Hopf x-algebra with x . Uy (502,,) —
U, (502,,) defined as follows:

K =Kpi). Ef =Kpi)Fpir. Fi = Ep Ky (13)

Proof Tt is also easy to see that the * defined by 13 induces a x-structure with ¢ outlined in
Sect.2.4.1, i.e. x preserves Uy (s02,,) relations. For instance, take the non-trivial ¢ for sog
(i.e. » = (2, 3)). Then,

K3 =K;, E;=K3F;, F5=E3K;',

Ky — K;! K3 — K7
[Ez, P2]" = ( " _q_zl ) e q—31 = |E3, F3] = E3F3 — F3E3

= E3F; — K3F3E3K; ' = EsKy'K3Fs — K3F3E3KS !
= [E3K; ' K3 F3] = [F5 E3).

Similarly, * preserves all the other relations in 8. Thus, 13 gives a *-structure on U, (502, ).
]

Remark 3 1t is conjectured that we can get different duality from different *«—structures but
we leave it to future work. In this paper, we will only make use of 12.
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3 Results
3.1 Orthogonal Polynomial Duality

We first state some important facts for later use. Define measure

L
pa®) = [ g7,
x=1

the reversible measure for type D ASEP which arises from the ground state is given by

v(n) = o, (1) ay (12) (see Proposition 1.3 of [15]).
Define the g—hypergeometric function 2¢; as:

a b @b
2<p1< ; ,q,z> =y

= @k (@ k

and define the g-Krawtchouk polynomials as:

n

e
Kn(g™*, p,c,q) =201 (q q’_Z ;q,pq”“).

Then define function

L
D &) = [T Ky (a7 piEom. 1.07). (14)

x=1
where

-1 - - (E)=Nt . _
P& m) = ap g PN 7N ) e (15)

- N y + N y
and N__, (&) = Zlfyfx_l & and N, (m) = Zx+1§y§L n; denotes the number of
particles in the configuration considered at the left, respectively right, of site x.
Dy, are orthogonal with respect to ue, when o; € (0, q’”(ﬂ“)) (see Theorem 3.2 in
[7] or Theorem 3.1 in [9]).

Theorem 3.1 Assume that a1, 00 € (0,¢ " TCLDY The rype D ASEP with parameters
(q,2,0) or (g, 3, 0) is self-dual with respect to the orthogonal function

Df, o,(n.&) = DL (n1.&) - DL (2. &).

Remark 4 The duality function does not depend on the parameter #, it is believed that this
Theorem still holds true for general n. However, we don’t pursue this direction in this paper.

Proof We will actually provide two proofs for this theorem, with one being probabilistic and
one being algebraic.

The probabilistic proof will be based on induction on the number of sites. For the base
case of L = 2, one simply explicitly computes the multiplication of 16 x 16 matrices. Details
are omitted.

Note that

Ky (472 pi &), 1,4%) # 1ifand only if & =y = 1.
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Rewrite the duality function as

; q2<x—N;,](s,->+N;|<m>
plmey= ] (1- :
)

o
xeC(n;.&i

where C(n;, &) € A denotes the collection of locations of the common sites where both
n; and &; have a particle of species i.

We proceed using induction on the number of sites, L, where we consider to "append’ a
site to the right of a configuration. The duality with two sites can be checked directly. We
assume that for any parameter o1 and o,

LEDy, 4, (1.8) = LDy, 4, (0. 6). (16)

o],02 o],02

where £L acts on 5 on the LHS and on & on the RHS. First, note that the generator on L + 1
sites can be decomposed naturally into two sums: £+ = £F 4 £LL+] where £11F] is
the local generator between sites L and L + 1, which gives

£L+1DL+1 (’,I7 g) — ELDL+1 (777 ‘é;:) + EL,L+1DL+1 (n’ %-)

ap,0 ap,0 oy,
Note that

DL+1

L 1,L 1,L
Cll,CQ(n’ &) =D Lt oLl (TI[ ’ ]75;'[ ’ ])
g M g2

2
gkt
l_[KniHl (61 % »P,‘I‘Jrl(giarli)a qu)’

i=1

(17)
where nl!L] is the restriction of 7 to the first L sites.
chplf me =ctot et )
arg L ang T2
2
gkt 141 2
[1&,0 (4727 pE 6 1. 6%)
i=1
Ll 1,L] £01,L
=L Daquz"lLH oyl ("t gl H)
2
g+l 14 2
HKU_LH (q toup T Gini) g )
i=1
=L'DLY, (0. ©), (18)

where in the first line, £ acts on & and in the second line, it acts on 7. In addition, the induction
hypothesis is used in the second equality of 18.

Last, factor Dél't)}z into the first L — 1 sites and the last two sites, the proof reduces to the
two site case:

L+1 _ 2 [L—1,L] [L—1,L]
PELME) =D
2 L—-1
LS (q_%f NGRS qz), (19)
i=1x=1
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thus

[:L,L+1DL+1 (77’ 5) — [:L,L+1DL+1 (77’ 5)

o],02 o],02

where £5L+1 acts on 5 on the LHS and on & on the RHS. This finishes the probabilistic
proof.

Now for the algebraic proof. We show the proof for the parameters (g, 2, 0) only since
the proof for (g, 3, 0) follows from the same argument. First, we fix a choice of x—structure
of Uy (s0¢) as following:

K'=K;, E'=F, F'=E,. (20)

1 1 1

Notice that the subalgebra of U, (s02,) generated by E;, F; and K; is isomorphic to
U, (sl).

Then for U, (so¢) with parameter (g, 2, 0), apply the arguments from [7] to the subalgebra
generated by E», F> and K, we obtain a symmetry, which results in Dg, (11, £1), and the
subalgebra generated by E3, F3 and K3 gives Dq, (12, £2).

First, we recall from [15] the particle configurations as the following:

e O @)

V) = V3 = V4 = V5 =

O

Different from [7], E» acting on vs yields an additional —1, same as F» acting on vy, F3
acting on v3 and E3 acting on vs. We will show that in the algebraic construction of duality,
those extra — s together give a constant.

Now we define two operator similar to S&’ and S‘éf defined in section 8.3 of [7] as follows:

Si =ep (—JoTl (1 — )AL (k] Ez)) : @
S =€, (ﬁq*L*%(1 - qz)AL’l(K;%E2)> . (22)

Then using Eq. (92) in [7] and letting N(-) denote the total number of particles in a
configuration, S S} acts as the following:

< &151571n >= Doy 1, nDg"™ " VE Vg Gty (1) (=N (= 1) Nea O N )
(23)

where

Ny, (&) is the number of v4 in configuration &, i.e the number of sites containing both
species particles.

Similarly, define

1
5 =ep (—faz(l SPRI (K32 E3>> , 24)
~ _1
$ =¢&p («/azq*“%(l —gHat! <K3 : E3)> : (25)
We have
< E152831n >= Doy (52, m)q" PN E) i, (€2t (1) (= DN ) (= N @ F Ny (),
(26)
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Note that
(—1)Nos EFNug €)= (L 1)Noy O+ Ny 42Ny ) — (_ )N EDTN &)
Thus

< £18,8581 87 |n >= const - Dy, (€1, 1) Day (€2, 12)v/ 1ty (1) iy (1) s (2) s (112)-
27

By a standard argument as in [5, 7, 9, 15], dividing the symmetry 27 by square root of
reversible measures i.e. /V(§)v (1), we get the desired duality function.

To show orthogonality, notice that the duality function is an independent product of Dy,
it is orthogonal with respect to the reversible measure v. O

3.1.1 Conjecture About Asymptotics

We conjecture that the type D ASEP fluctuates as two Tracy—Widom distributions, based on
the Markov self-duality and the reversible measures having the same form as for the usual
ASEP.

Let x; (m, t) the position of the m—th particle of class i from the left at time t, recall that
when only one species of particles is present, the type D ASEP with parameter (g, n, 0)
reduces to a usual ASEP with jump rates

q:tl (q1—2n +q2n—l) ,

with drift to the right for g € (0, 1).
Conjecture Let T depend on ¢, ¢ and n as

-1
t=1 (g g ) q9+tq

q—q"
Then for the type D ASEP with parameters (2, 0) and (3, 0) on the infinite lattice, and step
initial conditions (all lattice sites to the left of 0 are completely occupied with particles of
both species), there is the asymptotic limit

. xi(m;i, ©) — cit
where o; = m;/t, c1; = —1+42,/0;, c2i = 0;1/6(1 - @2/3. Here F,(-) is the usual

Tracy—Widom distribution.

3.2 A More Efficient Approach Than Non-negativity

To motivate the next section, we provide more context about [15]. The paper constructs
explicitly Casimir elements of U, (s0¢) and U, (s0g) using Lusztig’s inner product. However,
these are very difficult to compute explicitly, effectively requiring one to invert a matrix with
81=40320 rows and columns. In fact, the proof in [15] was computer aided with Python. After
computing the Casimir, it was found that in order to maintain non-negativity of the jump rates,
several states had to be “discarded”, which is why there are only 4 configurations, rather
than 6 or 8.

Because of the difficulty of computing Casimir elements, it would be helpful to develop
a more efficient method to determine if and when states need to be discarded. In this paper,
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the duality functions are orthogonal with respect to the reversible measures, which suggests
that studying the reversible measures is a more efficient approach than computing Casimir
elements. This section will generalize Proposition 2.5 of [15]. Note that [15] does not really
prove Proposition 2.5 (it is simply described as a calculation with no details), so the proof
here will also fill in the gaps in [15].

Consider the following basis vectors:

v1 =(1,0,0,0,0,0) v4=1(0,0,0,0,0,1)
v2 =1(0,1,0,0,0,0) v5=(0,0,0,0,1,0) (29)
v3 =(0,0,1,0,0,0) v =(0,0,0,1,0,0)

Associate to each vector a particle configuration by:

v2: U3ZO v4=O v5:O
O

Let vs be the vacuum state and let Q; = v? L,
Through direct computation, we can see that the actions of the operators E,F, and K on

the basis vectors are as follows:

e E,, Ej3 create particles of class one and class two, respectively,
e F,, F5 annihilate particles of class one and two, respectively,
e K>, K3 do not change the vectors, but produce factors of q as coefficients.

We start with Qy = vg@N . By acting with E3 on Qu, we introduce vector v3 (since
E3vs = —v3). Next, the action of E» introduces vectors vy and v4 (since Epvs = vy and
E>vs = —v4). Since we wanted to extend this proposition to include a subsequent action with
E1, we had to come up with an associating particle configuration for vy (since Ejvy = vyp).

We extend the above proposition from [15] so as to include the action of E;. From a
probabilistic perspective, fixing the vacuum vector Q2; = v?L, only the actions of E> and
E3 have probabilistic interpretations (creation of class 1 and class 2 particles).

From an algebraic perspective, since we are working with the structure U, (s0s) with
generators E1, E5, E3, the question of how do the representations of E;’s act on the basis of
C® should not exclude E;.

Theorem 3.2 For any My, My, M, L € N such that M, My < L — My <L,

EMEMEY 1Q0) = amln).
n

where the sum is over all particle configurations n on L sites with M first class particles
and M» second class particles, and My null sites, and

-1 - - -2
IG(n)| = ZL,MU,MI,MZ 1_[ g H g™ l—[ g 1_[ q e
x0€(AoNAINA2)¢ () x1€A1(n) x2€A2(n) x3€A0(n)
for some normalization constant Zy, py, My, M5-
Remark 5 Ay C [L] are the locations of the null sites, A; C [L] are the locations of the class

1 particles, A C [L] are the locations of the class 2 particles, (A9 U A1 U Ap)¢ C [L] are
the sites with no particles (excluding null sites which will automatically have no particles).
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Proof We use the first g-exponential defined in Sect.2.3 to encode all possible values of
L, My, My, M>. Equivalently, it suffices analyzing the following expression:

[equ2 AL_I(EI)] [equz AH(EQ)] [equz AL_I(E3)] 1Q.) . (30)

The g-exponential power series specifies all possible powers of its argument. So if we fix a
particular My, M, M, as exponents of E1, E,, E3, then the expression E;w" Eéwl E;Wz |21)
can be found as a sub-series of Eq. (30).

Lemma 3.3 We define the relevant actions of E; and K; on the basis (29), up to a factor of
—1 since such factors will be cancelled out in |G(n)|.

E3 maps vs — v3

E> maps vs — vy v3 —> V)

E| maps vs — 0 vw—>v v3—>0 vg—>0

K3 maps vs — q_lvs

K> maps vs — q_1v5 v3 —> q_1v3

K| maps vs — quvs v2—>q_1v2 U3 — U3 U4 — U4

This lemma follows from direct computation on the matrix representations of E; and K;. To

approach equation (30), we first analyze the action Eéw 2 on the vacuum vector Q; = v? L.

[equ2 AL~ 1(153)]|QL = exp,2 <ZK3® "RKIQE3®1Q---1)|QL) (31
—_—_— ——

J times L—j—1 times
_Lfl
=|[]exppK3® - @ K3 @E3@1®--® 1) | 2L) (32)
. — e
j=0 j times L—j—1 times
_L—l
=|[Jo+Kke ekenele- ol | ) 63
. —_— —
Jj=0 J times L—j—1 times

L
Z > ]_[q‘“‘”ws (34)

k=0 SC[L],|S|=k i=1

where [L] denotes {1, 2, ... L} and the condition |S| = k denotes a particle configuration
with k many class 2 particles, and {S1, ..., Sx} are the locations of those class 2 particles,
for example,

[Vs) =15 Qus QU3 ® vs @ vz yields § = {81, $2, $3} = {2, 3, 5}.

Equations (31) to (32) follows from the Psuedo-factorization property of the g-exponential,
as shown in [5]. The simplification to (33) follows from the fact that higher order powers
of E3 are the 0 matrix when viewed from the fundamental representation defined in Section
2.1.

Finally, Eq. (34) follows from a combinatorial argument. The binomial expansion of the
product in (33) will lead to 2% terms, which correponds to the sums over all subsets in (34).
Every action of K3 on vs produces a singular factor of ¢!, and distributing the product of

@ Springer



101 Page 140f 16 D. Blyschak et al.

operators in (33) yields that for every site x € [L] in which E3 maps vs — v3, there will
be x — 1 appearances of K3 and thus a factor of ¢ ~*~1. This is best illustrated in a later
concrete example.

We now continue by examining the actions of Eéw ' on the resulting expression. Since
g is a constant and operators are linear, we can work inside the nested sums/products and
examine just the action on an existing particle configuration |Vs).

[exp,2 AL (B | V) equ2<ZK2® ®K2®E2®1®-~-®1>|Vs) (35)
N— D e ——

J times L—j—1 times
_L—l
=|[[expp(K2® - @ Ka®E2®@1®---®1) [ |Vs) (36)
. D —— ——— —
| /=0 J times L—j—1 times
_L—l
_/ =0 J times L—j—1 times
L
:Z Z ]_[q*"‘*”le 5). (38)
k=0 L=k i=1

Using the same arguments of E3’s action on 2;,. Again, as before, | V; s) denotes a particular
particle configuration with a fixed many class 1 and class 2 particles. For example,

[Vi,s) =v5QU3 @V ®us vy yields S = {Sy, 52, $3} =1{2,3, 5}
and I ={I, b, I3} = {3,4, 5}.

1 1

Note however, K, and K3 only produce a factor ¢~ in both these cases, as Kzvs = ¢~ vs

and Kpvs = q_1v5 and Kpvz = q_1v3.

The action of E on |V} s) is different from the analysis of E; and E3: not only are there
vectors being created that do not have a probabilistic particle interpretation (i.e. vy) but also
K acts on vs producing a factor of ¢, while K| acts on v, by producing a factor of g ~'. So
in order to properly analyze the factors of ¢ produced, more attention must be paid to when

K acts, and on which vectors it acts upon.

N-1
[equQAN 1(El)]lvzs [[Jo+Ki® - ®@Ki®EI®1®---®1)||Vis)
—_——— ———
j=0 j times N—j—1 times

N k
:Z Z 1—[ g (CT=D=M TR T+ yp | ),

k=0 TCINLIT|=k i=1

where A, (x) is the number of v, vectors from (29) strictly left of position x.

The factors of ¢ produced depend entirely on which vectors v, that are acted upon by
K. Most notably, for every null site 7;, this means that a v; “particle” must have emerged
through Eqv;.

Combinatorially, this means that there are a corresponding 7; — 1 actions of K on each
of the sites to the left of 7;. The A; and A, terms take into account the action K>v;’s that
occur to the left of 7;, each of which is ¢~'. And the A5 term takes into account the Kovs’s
that occur to the left of T;, contributing a factor of ¢. Finally, the (27; — 2) = 2(T; — 1) is
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present to preserve the original factors of ¢ that were acquired through 7 and S but no longer
are multiplied when a double-occupied site becomes a null site.
Putting all three actions of the g-exponentials together, we can rewrite 30 as the following:

S| 17

30="3 D IITa S| TTa7 %" vl [Vrurs) (39)
j

Mo, M, M, n i

where Y = —(2T; —2) — 21(T3) — 22(T3) + As(T7)).

The outer sumis over all My, M, M, properly bounded in N such that M1, My < N —M,
and the inner sum is over all n with null site, class 1, and class 2 locations as sets 7', I, S
respectively, such that |T'| = My, |I| = M1, and |S| = M>. The notation follows conventions
used directly prior.

This decomposition (39) shows that Eiwo Eéwl E;wz I2n) = 3, G()In), a sum of particle
configurations scaled by G(=). Moreover, we can express this scaling |G(n)| in a factorizable
form:

G = Zy"vio 1031, I1 g I a ] «> [[ «*

x0€(AoNAINA2) (1) x1€A1(n) x2€A2(n) x3€A0(n)

up to a normalization constant Z, by looking at the factors of g that are contributed by null
sites, class 1 and class 2 particles, and empty sites. Each of the vs empty sites contributes
positive factors of g, the class 1 and class 2 sites contribute negative exponents of ¢, and
null sites emulate factors of ¢ ~2, which come from the —27; found in ¥ . This completes the
proof. O
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