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Abstract
We examine type D ASEP, a two-species interacting particle system which generalizes the
usual asymmetric simple exclusion process. For certain cases of type D ASEP, the process
does not give priority for one species over another, even though there is nontrivial interaction
between the two species. For those specific cases, we prove that the type D ASEP is self-dual
with respect to an independent product of q-Krawtchouk polynomials. The type DASEPwas
originally constructed in [15], using the type D quantum groups Uq(so6) and Uq(so8). That
paper claimed that certain states needed to be “discarded” in order to ensure non-negativity.
Here, we also provide a more efficient argument for the same claim.

Keywords Exclusion · Quantum groups · Markov duality · Orthogonal polynomials

1 Introduction

The asymmetric simple exclusion process ASEPwas introduced by Spitzer in 1970 [18]. The
ASEP can be generalized to multiple species [16]. This paper considers the type D ASEP,
introduced in [15]. The state space of type D ASEP consists of interacting particles of two
species on a one-dimensional lattice, where at most one particle of each species may occupy
a single site, and two particles may occupy a site only if they are different species. Thus, if
the lattice has L sites then there are 4L possible configurations. Most generally, the type D
ASEP has three parameters (q, n, δ), where q ∈ (0, 1), n ∈ N and δ ∈ R. Roughly speaking
q is the asymmetry parameter, n characterizes the speed of the drift, and δ quantifies the
interaction between the two species of particles. When δ = 0 and n = 2, 3, it was proved
that the type D ASEP has blocking measures andMarkov self-duality which are independent
copies of the single-species blocking measures and Markov self-duality.
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Themain result concernsMarkov duality (see also [1–5, 13, 14, 17] for type D AESPwith
parameter (q, 2, 0) and (q, 3, 0). The previous duality function of [15] was a “triangular”
duality generalizing Schutz’s duality function [17]. In this paper, we produce an “orthogonal
polynomial” duality function. Recent work on orthogonal polynomial duality functions was
done in [6–10]. More specifically, the paper [7] proves that the q-Krawtchouk polynomials
are duality functions for the single-species ASEP. In this paper, we will prove that the type
D ASEP with parameters n = 2, 3 and δ = 0 are orthogonal with respect to an independent
product of q-Krawtchouk polynomials. Because these polynomials have an additional param-
eter α that is dependent on the reversible measures, they are more suitable for asymptotics
than the triangular duality functions.

The Markov duality will be proved with two different methods. The first is a direct prob-
abilistic argument, using induction on the number of lattice sites. The second is a more
algebraic method, using the ∗-bialgebra structure of Uq(so6). The connection between so6
and type D ASEP was explored in [15]; in fact, so6 is the type D Lie algebra, providing the
namesake for the type D ASEP. In that construction, two of the six potential particle con-
figurations were “discarded” in order to ensure non-negativity of the jump rates. That paper
uses a computer-aided construction of a Casimir element. Here, we calculate the “reversible
measures” that would appear if all six potential particle configurations were used. While
these measures have a factorized form, they do not appear to be an independent product for
any values of (n, δ).

2 Preliminary Definitions

2.1 Definition of the Type D ASEP

The continuous-time Markov process of interest is named the type D Asymmetric Simple
Exclusion Process (ASEP) with parameters (q, n, δ). There are two species (or classes) of
particles, which we will call “first-class” and “second-class” and will label with 1 and 2
accordingly. Particle interactions take place on a one-dimensional lattice of L sites �L =
{1, . . . , L}, L ∈ N. We denote the state space of the type D ASEP on L lattice sites by �L .
For η ∈ �L , and x ∈ �L , let ηx = (ηx

1 , η
x
2 ) denote the configuration at site x and ηx

1 and ηx
2

count the number of first class and second class particles at site x , respectively. We denote
with η1 = (η11, . . . , η

L
1 ) the “filtered” configuration obtained by removing all second class

particles from η and η2 = (η12, . . . , η
L
2 ) the “filtered” configuration obtained by removing

all first class particles from η.
For the dynamics, we will assume closed/reflecting boundary conditions in the case of

finite L , in that a particle that wishes to jump outside any outer lattice site is blocked from
doing so. Likewise, a particle that wishes to jump to a lattice site that is already occupied by
a particle of its same class is blocked from doing so. An explicit, but lengthy, description of
the model can be found in [15]. In the present paper, however, only formulas are needed.

First, the generator for a two-sitemodel (i.e. L = 2)will be given below.We index the rows
and columns by ordering the possible configurations lexicographically, where 0 denotes an
empty site, 1 denotes a class 1 particle, 2 denotes a class 2 particle, and 3 denotes both a class
1 and class 2 particle: (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1),
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(2, 2), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3). The generator is then a 16 × 16 matrix explicitly1

given by (for δ = 0)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ∗ 0 0 q
(
q1−2n + q2n−1

)
0 0 0 0 0 0 0 0 0 0 0

0 0 ∗ 0 0 0 0 0 q
(
q1−2n + q2n−1

)
0 0 0 0 0 0 0

0 0 0 ∗ 0 0 2q2 + q2−2n − q4−2n 0 0 2q2 + q2−2n − q4−2n 0 0 q2
(−q1−n + qn−1

)2
0 0 0

0 q1−2n +q2n−1

q 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ∗ 0 0 0 0 0 0 0 0 0 0

0 0 0
(

1
q

)2n −
(

1
q

)2n−2 + 2 0 0 ∗ 0 0
(−q1−n + qn−1

)2
0 0 q2n − q2n−2 + 2 0 0 0

0 0 0 0 0 0 0 ∗ 0 0 0 0 0 q
(
q1−2n + q2n−1

)
0 0

0 0 q1−2n +q2n−1

q 0 0 0 0 0 ∗ 0 0 0 0 0 0 0

0 0 0
(

1
q

)2n −
(

1
q

)2n−2 + 2 0 0
(−q1−n + qn−1

)2
0 0 ∗ 0 0 q2n − q2n−2 + 2 0 0 0

0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 q
(
q1−2n + q2n−1

)
0

0 0 0
(−q1−n +qn−1 )2

q2
0 0

(
1
q

)2−2n −
(

1
q

)4−2n + 2
q2

0 0
(

1
q

)2−2n −
(

1
q

)4−2n + 2
q2

0 0 ∗ 0 0 0

0 0 0 0 0 0 0 q1−2n +q2n−1

q 0 0 0 0 0 ∗ 0 0

0 0 0 0 0 0 0 0 0 0 0 q1−2n +q2n−1

q 0 0 ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

where the diagonal entries are chosen so that the rows sum to 0.

Remark 1 All the off-diagonal entries in the generator above are non-negativewhenq ∈ (0, 1)
and n ∈ N.

Remark 2 The jump between (3, 0) and (0, 3) has none zero rate, which means we allow two
particles to jump at the same time, this is not usual in interacting particle systems. In [15], the
model was described to have the clocks located at the bonds between adjacent vertex sites,
thus we can have jumps between (3, 0) and (0, 3).

Letting L denote the 16 × 16 matrix above, the generator in general is given by

L1,2 + L2,3 + · · · + LL−1,L

where Lx,x+1 is usual notation, denoting the matrix acting on adjacent lattice sites x and
x + 1. Note that when there are only species 1 or 2 particles, then the jump rates are

q±1(q1−2n + q2n−1),

making it a usual ASEP with time rescaled by (q1−2n + q2n−1). However, the parameter n
also appears in the interactions between the species of particles.

2.2 Duality

Two Markov processes X , Y with corresponding state spaces X , Y are said to be dual with
respect to a function D : X × Y → R if, for all x ∈ X , y ∈ Y , and t ≥ 0, we have

Ex [D(X(t), y)] = Ey[D(x, Y (t))]. (1)

When the processes in question are independent copies of each other, we refer to the above
property as “self-duality.”
The following condition, called the “interlacing property”, is equivalent to Markov duality:

LX D = DLT
Y , (2)

where LX , LY are matrix forms of the generators for the processes X , Y , and D is the matrix
whose entries are outputs of the duality function (all these matrices are assumed to index

1 Thematrices were generatedwith Python code, and is available from the third or fourth authors upon request.
The Python code also verified the duality result for 3 lattice sites, corresponding to 64 × 64 matrices.
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their rows/columns with x ∈ X and y ∈ Y in an identical manner). In the case of self-duality,
the interlacing property becomes

LD = DLT . (3)

We note that this interlacing property is particularly useful for computationally verifying
Markov duality for a fixed number of sites.

2.3 q-Deformed Notation

Define q-exponential, the q-analog of an exponential function, as

expq(x) :=
∞∑
n=0

xn

{n}q !
where

{n}q ! =
n∏

k=1

{n}q , {n}q = 1 − qn

1 − q
,

with {0}q ! = 1.
We define the q-Pochhammer symbol for a ∈ R and m ∈ N as follows:

(a; q)m :=
m−1∏
k=0

(1 − aqk) = (1 − a)(1 − aq) · · · (1 − aqm−1), (4)

as well as

(a; q)∞ :=
∞∏
k=0

(1 − aqk) = (1 − a)(1 − aq)(1 − aq2) · · · , (5)

and also employing the notation (a)m := (a; q2)m and (a)∞ := (a; q2)∞.

We can rewrite the q-binomial coefficient in terms of this notation:
(
n

k

)

q
= (−1)kqk(n+1) (q

−2n)k

(q2)k
. (6)

Define the new q-exponentials

eq(z) =
∞∑
n=0

zn

(q; q)n
= 1

(z; q)∞
, for |z| < 1, and Eq(z) =

∞∑
n=0

q(n2)zn

(q; q)n
= (−z; q)∞.

2.4 Algebraic Definitions

2.4.1 The Lie Algebra so2m

In this paper, we examine the so2m Lie algebra, which is defined as the following set of
matrices:

so2m(C) =
{(

A B
C D

) ∣∣∣∣A, B,C, D ∈ C
m×m, A = −DT , B = BT ,C = CT

}
. (7)

123



Orthogonal Polynomial Duality of a Two-Species… Page 5 of 16   101 

Define the Cartan subalgebra h of so2m as the subalgebra of diagonal matrices in so2m .
Since so2m is a semisimple Lie algebra, g = so2m can be written as a direct sum

g = h ⊕
⊕
βi

gi

where βi are linear functionals corresponding to the positive simple roots of so2m and g are
the one-dimensional eigenspaces of the adjoint representation of h, i.e. for each h ∈ h and
g ∈ g, [h, g] = β(h)g.

The so2m Lie Algebra corresponds to a type Dm Dynkin diagram. We can define a Cartan
matrix to encode the Dm Dynkin diagram as follows: an entry −1 in the Cartan matrix
indicates a single edge between nodes i and j and an entry of 0 indicates no connection
between the nodes.

ai j =

⎧⎪⎨
⎪⎩

2, i = j,

−1, {i, j} = {m − 2,m} or {k, k + 1}, 1 ≤ k ≤ m − 2,

0, otherwise.

Note that since βi correspond to the positive simple roots of so2m ,

ai j = 2
(βi , β j )

(βi , βi )
= (βi , β j )

due to the properties of root systems.

Diagram Automorphisms of so2m

Definition 2.1 A diagram automorphism φ permutes the nodes of a Dynkin diagram while
preserving its edge-vertex connectivity, i.e. ai j = aφ(i)φ( j) for all 1 ≤ i, j ≤ m.

Let Aut(g) denote the group of diagram automorphisms of a Lie Algebra g. We have that

Aut(Dm) ∼= Z/2 for m ≥ 5 and m = 2, 3

Aut(D4) ∼= S3 The symmetric group on 3 elements

In this paper, our focus is on so6 and so8. In the first case, Aut(Dm) corresponds to the
transposition of the twofinal nodes {id, (m−1,m)},while the special case ofm = 4yields the
automorphisms {id, (1, 3), (1, 4), (3, 4), (1, 3, 4), (1, 4, 3)}. A diagrammatic illustration
is shown in below figure.

Let φ(i) be a diagram automorphism of so2m over i = 1, . . . ,m such that φ2=id. The
non-trivial possibilities for φ are:

so6 : (2, 3);
so8 : (1, 3), (1, 4), (3, 4).
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2.4.2 The Quantized Enveloping AlgebraUq (so2m)

A primary motivation for using algebraic methods in probability stems from taking universal
enveloping algebra’s of an underlying Lie algebra g, and q-deforming it into the quantized
enveloping algebra Uq (g).

In this paper, we focus on the quantum group Uq (so2m), the quantized enveloping algebra
generated by

{
Ei , Fi , qHi : 1 ≤ i ≤ m

}
satisfying the following relations:

[Ei , Fi ] = qHi − q−Hi

q − q−1 ,

qHi E j = q(βi ,β j)E jq
Hi , qHi Fj = q−(βi ,β j)Fjq

Hi ,

E2
i E j + E j E

2
i = (q + q−1)Ei E j Ei , F2

i Fj + Fj F
2
i = (q + q−1)Fi Fj Fi . (8)

Note that we use Ki := qHi throughout the rest of the paper.

2.4.3 Coproduct Structure ofUq (so2m)

We define the coproduct on Uq (so2m) by specifying the coproduct on its generators:

	 : Uq (so2m) → Uq (so2m) ⊗ Uq (so2m) via:

	(Ei ) = Ei ⊗ 1 + Ki ⊗ Ei , 	(Fi ) = 1 ⊗ Fi + Fi ⊗ K−1
i , 	(Ki ) = Ki ⊗ Ki .(9)

The coproduct is extended to the entire quantum group by defining it to be an algebra homo-
morphism.

We will also need to define higher order powers of 	 from Uq (so2m) to arbitrary tensor
products of copies of Uq (so2m). We again do so by specifying actions on the generators of
Uq (so2m):

	L : Uq (so2m)−→ Uq (so2m) ⊗ · · · ⊗ Uq (so2m)︸ ︷︷ ︸
L+1 times

via:

	L(Ei ) =
L∑
j=0

Ki ⊗ · · · ⊗ Ki︸ ︷︷ ︸
j times

⊗Ei ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
L− j times

,

	L(Fi ) =
L∑
j=0

1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
j times

⊗Fi ⊗ K−1
i ⊗ · · · ⊗ K−1

i︸ ︷︷ ︸
L− j times

,

	L(Ki ) = Ki ⊗ · · · ⊗ Ki︸ ︷︷ ︸
L times

.

(10)

An induction proof on L shows that these indeed are the iterated coproducts on the
generators in (9).

We refer to the previous literature [11, 12] for a general theory of quantum groups and their
Hopf-algebra structures. In this paper, our focus is on the product, coproduct, and ∗-structures
on Uq (so2m).

2.4.4 Representation Theory ofUq (so2m)

Let Ei, j denotes the indicator matrix with 1 in entry (i, j) and 0 elsewhere.
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The representations of Uq (so2m) are built upon the fundamental representations of so2m
from [15]. We define ρ : Uq (so2m) → Hom(C2m,C2m) as follows for all 1 ≤ i ≤ m:

ρ(Ei ) =
{
Ei,i+1 − Em+i+1,m+i , 1 ≤ i ≤ m − 1,

Em−1,2m − Em,2m−1, i = m,

ρ(Fi ) =
{
Ei+1,i − Em+i,m+i+1, 1 ≤ i ≤ m − 1,

−E2m−1,m + E2m,m−1, i = m,

ρ(Hi ) =
{
Ei,i − Ei+1,i+1 − Em+i,m+i + Em+i+1,m+i+1, 1 ≤ i ≤ m − 1,

Em−1,m−1 + Em,m − E2m−1,2m−1 − E2m,2m, i = m,

ρ(Ki ) = qρ(Hi ), ρ(Ki
−1) = q−ρ(Hi ).

(11)

2.4.5 ∗-Structure onUq (so2m)

For later use, we introduce explicit forms for the ∗-algebra structure on Uq (so2m).
It can be checked easily that

K ∗
i = Ki , E∗

i = Fi , F∗
i = Ei (12)

gives a ∗-structure on Uq (so2m).
The ∗-structure is not unique, there are more based on the automorphism φ of the Dynkin

diagram of Uq (so2m) as defined in Sect. 2.4.1.

Lemma 2.2 The quantum groups Uq (so2m) is a Hopf ∗-algebra with ∗ : Uq (so2m) →
Uq (so2m) defined as follows:

K ∗
i = Kφ(i), E∗

i = Kφ(i)Fφ(i), F∗
i = Eφ(i)K

−1
φ(i). (13)

Proof It is also easy to see that the ∗ defined by 13 induces a ∗-structure with φ outlined in
Sect. 2.4.1, i.e. ∗ preserves Uq (so2m) relations. For instance, take the non-trivial φ for so6
(i.e. φ = (2, 3)). Then,

K ∗
2 = K3, E∗

2 = K3F3, F∗
2 = E3K

−1
3 ,

[E2, F2]∗ =
(
K2 − K−1

2

q − q−1

)∗
= K3 − K−1

3

q − q−1 = [E3, F3] = E3F3 − F3E3

= E3F3 − K3F3E3K
−1
3 = E3K

−1
3 K3F3 − K3F3E3K

−1
3

= [E3K
−1
3 , K3F3] = [F∗

2 , E∗
2 ].

Similarly, ∗ preserves all the other relations in 8. Thus, 13 gives a ∗-structure on Uq (so2m).
��

Remark 3 It is conjectured that we can get different duality from different ∗−structures but
we leave it to future work. In this paper, we will only make use of 12.
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3 Results

3.1 Orthogonal Polynomial Duality

We first state some important facts for later use. Define measure

μα(ξ) =
L∏

x=1

αξ x q−2xξ x ,

the reversible measure for type D ASEP which arises from the ground state is given by
ν(η) = μα1(η1)μα2(η2) (see Proposition 1.3 of [15]).

Define the q–hypergeometric function 2ϕ1 as:

2ϕ1

(
a, b
c

; q, z

)
:=

∞∑
k=0

(a; q)k(b; q)k

(c; q)k

zk

(q; q)k

and define the q-Krawtchouk polynomials as:

Kn(q
−x , p, c, q) = 2ϕ1

(
q−x , q−n

q−c ; q, pqn+1
)

.

Then define function

DL
αi

(ξi , ηi ) =
L∏

x=1

Kηxi

(
q−2ξ xi , pxi (ξi , ηi ), 1, q

2
)

, (14)

where

pxi (ξi , ηi ) = α−1
i q−2

(
N−
x−1(ξi )−N+

x+1(ηi )
)+2x−2 (15)

and N−
x−1 (ξi ) =

∑
1≤y≤x−1

ξ
y
i and N+

x+1 (ηi ) =
∑

x+1≤y≤L
η
y
i denotes the number of

particles in the configuration considered at the left, respectively right, of site x .
Dαi are orthogonal with respect to μαi when αi ∈ (0, q−1+(2L+1)) (see Theorem 3.2 in

[7] or Theorem 3.1 in [9]).

Theorem 3.1 Assume that α1, α2 ∈ (0, q−1+(2L+1)). The type D ASEP with parameters
(q, 2, 0) or (q, 3, 0) is self-dual with respect to the orthogonal function

DL
α1,α2

(η, ξ) = DL
α1

(η1, ξ1) · DL
α2

(η2, ξ2).

Remark 4 The duality function does not depend on the parameter n, it is believed that this
Theorem still holds true for general n. However, we don’t pursue this direction in this paper.

Proof Wewill actually provide two proofs for this theorem, with one being probabilistic and
one being algebraic.

The probabilistic proof will be based on induction on the number of sites. For the base
case of L = 2, one simply explicitly computes the multiplication of 16×16 matrices. Details
are omitted.

Note that

Kηxi

(
q−2ξ xi , pxi (ξi , ηi ), 1, q

2
)


= 1 if and only if ξ xi = ηx
i = 1.
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Rewrite the duality function as

DL
αi

(η, ξ) =
∏

x∈C(ηi ,ξi )

(
1 − q2(x−N−

x−1(ξi )+N+
x+1(ηi )

αi

)
,

where C(ηi , ξi ) ⊆ �L denotes the collection of locations of the common sites where both
ηi and ξi have a particle of species i .

We proceed using induction on the number of sites, L , where we consider to ’append’ a
site to the right of a configuration. The duality with two sites can be checked directly. We
assume that for any parameter α1 and α2,

LL DL
α1,α2

(η, ξ) = LL DL
α1,α2

(η, ξ), (16)

where LL acts on η on the LHS and on ξ on the RHS. First, note that the generator on L + 1
sites can be decomposed naturally into two sums: LL+1 = LL + LL,L+1, where LL,L+1 is
the local generator between sites L and L + 1, which gives

LL+1DL+1
α1,α2

(η, ξ) = LL DL+1
α1,α2

(η, ξ) + LL,L+1DL+1
α1,α2

(η, ξ).

Note that

DL+1
α1,α2

(η, ξ) =DL

α1q
−2ηL+1

1 ,α2q
−2ηL+1

2
(η[1,L], ξ [1,L])

2∏
i=1

K
ηL+1
i

(
q−2ξ L+1

i , pL+1
i (ξi , ηi ), 1, q

2
)

,

(17)

where η[1,L] is the restriction of η to the first L sites.

LL DL+1
α1,α2

(η, ξ) = LL DL

α1q
−2ηL+1

1 ,α2q
−2ηL+1

2
(η[1,L], ξ [1,L])

2∏
i=1

K
ηL+1
i

(
q−2ξ L+1

i , pL+1
i (ξi , ηi ), 1, q

2
)

= LL DL

α1q
−2ηL+1

1 ,α2q
−2ηL+1

2
(η[1,L], ξ [1,L])

2∏
i=1

K
ηL+1
i

(
q−2ξ L+1

i , pL+1
i (ξi , ηi ), 1, q

2
)

= LL DL+1
α1,α2

(η, ξ), (18)

where in the first line,L acts on ξ and in the second line, it acts on η. In addition, the induction
hypothesis is used in the second equality of 18.

Last, factor DL+1
α1,α2

into the first L − 1 sites and the last two sites, the proof reduces to the
two site case:

DL+1
α1,α2

(η, ξ) = D2

α1q
2N−

L−2ξ1 ,α2q
2N−

L−2ξ2
(η[L−1,L], ξ [L−1,L])

2∏
i=1

L−1∏
x=1

Kηxi

(
q−2ξ xi , pxi (ξi , ηi ), 1, q

2
)

, (19)
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thus

LL,L+1DL+1
α1,α2

(η, ξ) = LL,L+1DL+1
α1,α2

(η, ξ)

where LL,L+1 acts on η on the LHS and on ξ on the RHS. This finishes the probabilistic
proof.

Now for the algebraic proof. We show the proof for the parameters (q, 2, 0) only since
the proof for (q, 3, 0) follows from the same argument. First, we fix a choice of ∗−structure
of Uq(so6) as following:

K ∗
i = Ki , E∗

i = Fi , F∗
i = Ei . (20)

Notice that the subalgebra of Uq(so2m) generated by Ei , Fi and Ki is isomorphic to
Uq(sl2).

Then forUq(so6)with parameter (q, 2, 0), apply the arguments from [7] to the subalgebra
generated by E2, F2 and K2 we obtain a symmetry, which results in Dα1(η1, ξ1), and the
subalgebra generated by E3, F3 and K3 gives Dα2(η2, ξ2).

First, we recall from [15] the particle configurations as the following:

v2 =
1

2
v3 =

2
v4 =

1
v5 =

Different from [7], E2 acting on v5 yields an additional −1, same as F2 acting on v4, F3
acting on v3 and E3 acting on v5. We will show that in the algebraic construction of duality,
those extra −1s together give a constant.

Nowwe define two operator similar to Strα and Ŝtrα defined in section 8.3 of [7] as follows:

S1 = eq2

(
−√

α1(1 − q2)	L−1(K
1
2
2 E2)

)
, (21)

Ŝ1 = Eq2
(√

α1q
−L− 1

2 (1 − q2)	L−1(K
− 1

2
2 E2)

)
. (22)

Then using Eq. (92) in [7] and letting N (·) denote the total number of particles in a
configuration, Ŝ1S∗

1 acts as the following:

< ξ |Ŝ1S∗
1 |η >= Dα1(ξ1, η1)q

N (η1)−N (ξ1)
√

μα1(ξ1)μα1(η1)(−1)N (η1)(−1)Nv4 (ξ)+Nv4 (η),

(23)

where
Nv4(ξ) is the number of v4 in configuration ξ , i.e the number of sites containing both

species particles.
Similarly, define

S2 = eq2

(
−√

α2(1 − q2)	L−1
(
K

1
2
3 E3

))
, (24)

Ŝ2 = Eq2
(√

α2q
−L− 1

2 (1 − q2)	L−1
(
K

− 1
2

3 E3

))
, (25)

We have

< ξ |Ŝ2S∗
2 |η >= Dα2(ξ2, η2)q

N (η2)−N (ξ2)
√

μα2(ξ2)μα2(η2)(−1)N (η2)(−1)Nv3 (ξ)+Nv3 (η).

(26)
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Note that

(−1)Nv3 (ξ)+Nv4 (ξ) = (−1)Nv3 (ξ)+Nv4 (ξ)+2Nv2 (ξ) = (−1)N (ξ1)+N (ξ2),

Thus

< ξ |Ŝ2S∗
2 Ŝ1S

∗
1 |η >= const · Dα1(ξ1, η1)Dα2(ξ2, η2)

√
μα1(ξ1)μα1(η1)μα2(ξ2)μα2(η2).

(27)

By a standard argument as in [5, 7, 9, 15], dividing the symmetry 27 by square root of
reversible measures i.e.

√
ν(ξ)ν(η), we get the desired duality function.

To show orthogonality, notice that the duality function is an independent product of Dαi ,
it is orthogonal with respect to the reversible measure ν. ��

3.1.1 Conjecture About Asymptotics

We conjecture that the type D ASEP fluctuates as two Tracy–Widom distributions, based on
the Markov self-duality and the reversible measures having the same form as for the usual
ASEP.

Let xi (m, t) the position of the m−th particle of class i from the left at time t, recall that
when only one species of particles is present, the type D ASEP with parameter (q, n, 0)
reduces to a usual ASEP with jump rates

q±1 (q1−2n + q2n−1) ,
with drift to the right for q ∈ (0, 1).

Conjecture Let τ depend on t, q and n as

τ = t · (q1−2n + q2n−1) · q + q−1

q − q−1 .

Then for the type D ASEP with parameters (2, 0) and (3, 0) on the infinite lattice, and step
initial conditions (all lattice sites to the left of 0 are completely occupied with particles of
both species), there is the asymptotic limit

lim
t−→∞P

(
xi (mi , τ ) − c1i t

c2i t1/3
≤ s

)
= F2(s) (28)

where σi = mi/t , c1i = −1 + 2
√

σi , c2i = σ
−1/6
i (1 − √

σi )
2/3. Here F2(·) is the usual

Tracy–Widom distribution.

3.2 AMore Efficient Approach Than Non-negativity

To motivate the next section, we provide more context about [15]. The paper constructs
explicitly Casimir elements of Uq(so6) and Uq(so8) using Lusztig’s inner product. However,
these are very difficult to compute explicitly, effectively requiring one to invert a matrix with
8!=40320 rows and columns. In fact, the proof in [15] was computer aided with Python. After
computing the Casimir, it was found that in order tomaintain non-negativity of the jump rates,
several states had to be “discarded”, which is why there are only 4L configurations, rather
than 6L or 8L .

Because of the difficulty of computing Casimir elements, it would be helpful to develop
a more efficient method to determine if and when states need to be discarded. In this paper,
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the duality functions are orthogonal with respect to the reversible measures, which suggests
that studying the reversible measures is a more efficient approach than computing Casimir
elements. This section will generalize Proposition 2.5 of [15]. Note that [15] does not really
prove Proposition 2.5 (it is simply described as a calculation with no details), so the proof
here will also fill in the gaps in [15].

Consider the following basis vectors:

v1 = (1, 0, 0, 0, 0, 0) v4 = (0, 0, 0, 0, 0, 1)

v2 = (0, 1, 0, 0, 0, 0) v5 = (0, 0, 0, 0, 1, 0)

v3 = (0, 0, 1, 0, 0, 0) v6 = (0, 0, 0, 1, 0, 0)

(29)

Associate to each vector a particle configuration by:

v2 = 2
1

v3 = ©
2

v4 = ©
1

v5 = ©
©

Let v5 be the vacuum state and let �L = v⊗L
5 .

Through direct computation, we can see that the actions of the operators E ,F , and K on
the basis vectors are as follows:

• E2, E3 create particles of class one and class two, respectively,
• F2, F3 annihilate particles of class one and two, respectively,
• K2, K3 do not change the vectors, but produce factors of q as coefficients.

We start with �N = v⊗N
5 . By acting with E3 on �N , we introduce vector v3 (since

E3v5 = −v3). Next, the action of E2 introduces vectors v2 and v4 (since E2v3 = v2 and
E2v5 = −v4). Since wewanted to extend this proposition to include a subsequent action with
E1, we had to come up with an associating particle configuration for v1 (since E1v2 = v1).

We extend the above proposition from [15] so as to include the action of E1. From a
probabilistic perspective, fixing the vacuum vector �L = v⊗L

5 , only the actions of E2 and
E3 have probabilistic interpretations (creation of class 1 and class 2 particles).

From an algebraic perspective, since we are working with the structure Uq (so6) with
generators E1, E2, E3, the question of how do the representations of Ei ’s act on the basis of
C
6 should not exclude E1.

Theorem 3.2 For any M0, M1, M2, L ∈ N such that M1, M2 ≤ L − M0 ≤ L,

EM0
1 EM1

2 EM2
3 |�L 〉 =

∑
η

G(η)|η〉,

where the sum is over all particle configurations η on L sites with M1 first class particles
and M2 second class particles, and M0 null sites, and

|G(η)| = Z−1
L,M0,M1,M2

∏
x0∈(A0∩A1∩A2)c(η)

qx0
∏

x1∈A1(η)

q−x1
∏

x2∈A2(η)

q−x2
∏

x3∈A0(η)

q−2x3

for some normalization constant ZL,M0,M1,M2 .

Remark 5 A0 ⊆ [L] are the locations of the null sites, A1 ⊆ [L] are the locations of the class
1 particles, A2 ⊆ [L] are the locations of the class 2 particles, (A0 ∪ A1 ∪ A2)

c ⊆ [L] are
the sites with no particles (excluding null sites which will automatically have no particles).
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Proof We use the first q-exponential defined in Sect. 2.3 to encode all possible values of
L, M0, M1, M2. Equivalently, it suffices analyzing the following expression:

[
expq2 	L−1(E1)

] [
expq2 	L−1(E2)

] [
expq2 	L−1(E3)

]
|�L 〉 . (30)

The q-exponential power series specifies all possible powers of its argument. So if we fix a
particular M0, M1, M2 as exponents of E1, E2, E3, then the expression EM0

1 EM1
2 EM2

3 |�L 〉
can be found as a sub-series of Eq. (30).

Lemma 3.3 We define the relevant actions of Ei and Ki on the basis (29), up to a factor of
−1 since such factors will be cancelled out in |G(η)|.

E3 maps v5 → v3

E2 maps v5 → v4 v3 → v2

E1 maps v5 → 0 v2 → v1 v3 → 0 v4 → 0

K3 maps v5 → q−1v5

K2 maps v5 → q−1v5 v3 → q−1v3

K1 maps v5 → qv5 v2 → q−1v2 v3 → v3 v4 → v4

This lemma follows from direct computation on the matrix representations of Ei and Ki . To
approach equation (30), we first analyze the action EM2

3 on the vacuum vector �L = v⊗L
5 .

[
expq2 	L−1(E3)

]
|�L 〉 = expq2

( L−1∑
j=0

K3 ⊗ · · · ⊗ K3︸ ︷︷ ︸
j times

⊗E3 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
L− j−1 times

) |�L 〉 (31)

=
⎡
⎢⎣

L−1∏
j=0

expq2(K3 ⊗ · · · ⊗ K3︸ ︷︷ ︸
j times

⊗E3 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
L− j−1 times

)

⎤
⎥⎦ |�L 〉 (32)

=
⎡
⎢⎣

L−1∏
j=0

(1 + K3 ⊗ · · · ⊗ K3︸ ︷︷ ︸
j times

⊗E3 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
L− j−1 times

)

⎤
⎥⎦
∣∣∣v⊗L

5

〉
(33)

=
L∑

k=0

∑
S⊆[L],|S|=k

k∏
i=1

q−(Si−1)|VS〉, (34)

where [L] denotes {1, 2, . . . L} and the condition |S| = k denotes a particle configuration
with k many class 2 particles, and {S1, . . . , Sk} are the locations of those class 2 particles,
for example,

|VS〉 = v5 ⊗ v3 ⊗ v3 ⊗ v5 ⊗ v3 yields S = {S1, S2, S3} = {2, 3, 5}.
Equations (31) to (32) follows from the Psuedo-factorization property of the q-exponential,
as shown in [5]. The simplification to (33) follows from the fact that higher order powers
of E3 are the 0 matrix when viewed from the fundamental representation defined in Section
2.1.

Finally, Eq. (34) follows from a combinatorial argument. The binomial expansion of the
product in (33) will lead to 2L terms, which correponds to the sums over all subsets in (34).
Every action of K3 on v5 produces a singular factor of q−1, and distributing the product of
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operators in (33) yields that for every site x ∈ [L] in which E3 maps v5 → v3, there will
be x − 1 appearances of K3 and thus a factor of q−(x−1). This is best illustrated in a later
concrete example.

We now continue by examining the actions of EM1
2 on the resulting expression. Since

q is a constant and operators are linear, we can work inside the nested sums/products and
examine just the action on an existing particle configuration |VS〉.
[
expq2 	L−1(E2)

]
|VS〉 = expq2

( L−1∑
j=0

K2 ⊗ · · · ⊗ K2︸ ︷︷ ︸
j times

⊗E2 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
L− j−1 times

)
|VS〉 (35)

=
⎡
⎢⎣

L−1∏
j=0

expq2(K2 ⊗ · · · ⊗ K2︸ ︷︷ ︸
j times

⊗E2 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
L− j−1 times

)

⎤
⎥⎦ |VS〉 (36)

=
⎡
⎢⎣

L−1∏
j=0

(1 + K2 ⊗ · · · ⊗ K2︸ ︷︷ ︸
j times

⊗E2 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
L− j−1 times

)

⎤
⎥⎦ |VS〉 (37)

=
L∑

k=0

∑
I⊆[L],|I |=k

k∏
i=1

q−(Ii−1)|VI ,S〉. (38)

Using the same arguments of E3’s action on�L . Again, as before, |VI ,S〉 denotes a particular
particle configuration with a fixed many class 1 and class 2 particles. For example,

|VI ,S〉 = v5 ⊗ v3 ⊗ v2 ⊗ v4 ⊗ v2 yields S = {S1, S2, S3} = {2, 3, 5}
and I = {I1, I2, I3} = {3, 4, 5}.

Note however, K2 and K3 only produce a factor q−1 in both these cases, as K3v5 = q−1v5
and K2v5 = q−1v5 and K2v3 = q−1v3.

The action of E1 on |VI ,S〉 is different from the analysis of E2 and E3: not only are there
vectors being created that do not have a probabilistic particle interpretation (i.e. v1) but also
K1 acts on v5 producing a factor of q , while K1 acts on v2 by producing a factor of q−1. So
in order to properly analyze the factors of q produced, more attention must be paid to when
K1 acts, and on which vectors it acts upon.

[
expq2 	N−1(E1)

] ∣∣VI ,S
〉 =

⎡
⎢⎣

N−1∏
j=0

(1 + K1 ⊗ · · · ⊗ K1︸ ︷︷ ︸
j times

⊗E1 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
N− j−1 times

)

⎤
⎥⎦
∣∣VI ,S

〉

=
N∑

k=0

∑
T⊆[N ],|T |=k

k∏
i=1

q−[(2Ti−2)−λ1(Ti )−λ2(Ti )+λ5(Ti )] |VT ,I ,S〉,

where λn(x) is the number of vn vectors from (29) strictly left of position x .
The factors of q produced depend entirely on which vectors vn that are acted upon by

K1. Most notably, for every null site Ti , this means that a v1 “particle” must have emerged
through E1v2.

Combinatorially, this means that there are a corresponding Ti − 1 actions of K1 on each
of the sites to the left of Ti . The λ1 and λ2 terms take into account the action K2v2’s that
occur to the left of Ti , each of which is q−1. And the λ5 term takes into account the K2v5’s
that occur to the left of Ti , contributing a factor of q . Finally, the (2Ti − 2) = 2(Ti − 1) is
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present to preserve the original factors of q that were acquired through I and S but no longer
are multiplied when a double-occupied site becomes a null site.

Putting all three actions of the q-exponentials together, we can rewrite 30 as the following:

30 =
∑

M0,M1,M2

∑
η

⎡
⎣

|S|∏
i

q−(Si−1)

⎤
⎦
⎡
⎣

|I |∏
j

q−(I j−1)

⎤
⎦ [ψ]

∣∣VT ,I ,S
〉

(39)

where ψ = −((2Ti − 2) − λ1(Ti ) − λ2(Ti ) + λ5(Ti )).
The outer sum is over allM0, M1, M2 properly bounded in N such thatM1, M2 ≤ N−M0,

and the inner sum is over all η with null site, class 1, and class 2 locations as sets T , I , S
respectively, such that |T | = M0, |I | = M1, and |S| = M2. The notation follows conventions
used directly prior.

This decomposition (39) shows that EM0
1 EM1

2 EM2
3 |�N 〉 = ∑

η G(η)|η〉, a sum of particle
configurations scaled by G(≡). Moreover, we can express this scaling |G(η)| in a factorizable
form:

|G(η)| = Z−1
N ,M0,M1,M2

∏
x0∈(A0∩A1∩A2)c(η)

qx0
∏

x1∈A1(η)

q−x1
∏

x2∈A2(η)

q−x2
∏

x3∈A0(η)

q−2x3

up to a normalization constant Z , by looking at the factors of q that are contributed by null
sites, class 1 and class 2 particles, and empty sites. Each of the v5 empty sites contributes
positive factors of q , the class 1 and class 2 sites contribute negative exponents of q , and
null sites emulate factors of q−2, which come from the −2Ti found in ψ . This completes the
proof. ��
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